Science.gov

Sample records for fuel property combustion

  1. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  2. Fuel properties to enable lifted-flame combustion

    SciTech Connect

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.

  3. Aviation-fuel property effects on combustion

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  4. Predicting combustion properties of hydrocarbon fuel mixtures

    E-print Network

    Goldsmith, Claude Franklin, III

    2010-01-01

    In this thesis, I applied computational quantum chemistry to improve the accuracy of kinetic mechanisms that are used to model combustion chemistry. I performed transition state theory calculations for several reactions ...

  5. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  6. Correlating microemulsion fuel composition, structure, and combustion properties

    SciTech Connect

    Griffith, W.L.; Compere, A.L.

    1989-01-01

    Microemulsion fuels provide a method for increasing the use of byproduct and biomass materials, including alcohols, in diesel fuels. The ability to replace 50% of diesel fuel with byproduct and biomass-derived materials microemulsion fuels could significantly decrease petroleum consumption. However, it is likely that the low particulate and NO{sub x} emissions characteristic of these fuels will drive the adoption of this technology. This report is concerned with the development of a series of short experiments to determine the fuel composition changes required to support development of microemulsion fuels which have combustion properties acceptable to the public and adequate to support widespread use in current diesel engines. The goal is delineation of microemulsion diesel fuel compositions which have acceptable compression ignition and emissions properties and which permit the replacement of one-third to one-half of current diesel fuel petroleum. A review of the literature on cetane enhancers for conventional and alternative diesel fuels was performed and a small number of enhancers likely to be effective with high-alcohol fuels selected. Based on linear regression analysis of emissions from a passenger diesel engine using alcohol and aqueous microemulsion fuels, correlation between microemulsion solution structure as determined by small-angle neutron scattering and actual NO{sub x} and particulate emissions was determined. The analysis indicates that solution structure and microemulsion composition play major roles in emissions modification. 223 refs., 5 figs., 9 tabs.

  7. Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf; McFarlane, Joanna; Daw, C Stuart

    2007-01-01

    A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

  8. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  9. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  10. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  11. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  12. Combustion gas properties of various fuels of interest to gas turbine engineers

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.

    1984-01-01

    A series of computations were made using the gas property computational schemes of Gordon and McBride to compute the gas properties and species concentration of ASTM-Jet A and dry air. The computed gas thermodynamic properties in a revised graphical format which gives information which is useful to combustion engineers is presented. A series of reports covering the properties of many fuel and air combinations will be published. The graphical presentation displays on one chart of the output of hundreds of computer sheets. The reports will contain microfiche cards, from which complete tables and graphs can be obtained. The extent of the planned effort and is documented samples of the many tables and charts that will be available on the microfiche cards are presented.

  13. Combustion behavior of solid fuel ramjets

    NASA Technical Reports Server (NTRS)

    Netzer, D. W.; Binn, B. A.; Scott, W. E.; Metochianakis, M.

    1980-01-01

    Nonreacting flowfield characteristics and fundamental fuel properties are considered with respect to their use in estimating the obtainable combustion efficiency for fuels and/or combustor geometries. It is shown that near wall turbulence intensity in nonreacting flow appears to correlate reasonably well with the fuel regression pattern in identical geometries. The HTPB based fuels exhibit solid phase exothermic reactions in contrast to purely endothermic reactions for plexiglas. It is further shown that combustion pressure oscillations appear to be related to physically induced disturbances to the fluctuating shear layers at the fuel grain and aft mixing chamber inlets.

  14. Solution combustion synthesis using Schiff-base aluminum complex without fuel and optical property investigations of alumina nanoparticles

    NASA Astrophysics Data System (ADS)

    Salehi, Mehdi; Arabsarhangi, Ehsan

    2015-05-01

    Synthesis of alumina nanomaterials via a solution combustion technique using Schiff base aluminum (III) complex at 820 and 950 C for 4 h was performed successfully. The synthesis procedure was performed using the complex in the absence and presence of urea and glycine as fuel for comparison. The obtained data showed that the procedure without using fuel resulted in a better phase and morphology. To investigate the phase formation, powder X-ray diffraction technique was used. Also, SEM micrographs were used to investigate the morphology of the obtained materials. The optical properties of the obtained materials were studied by FTIR spectra. According to the PXRD data, it was found that with annealing at 950 C, the phase formation of the obtained materials showed cubic crystal structure with cell parameter a = 3.14 for gamma phase. Also, by annealing at 820 C using fuels for 4 h, the main phase was found to be in gamma.

  15. Fossil fuel combustion, 1991

    SciTech Connect

    Ruiz, R. )

    1991-01-01

    This book contain the following topics Lean premixed combustion for gas-turbines: Review and required research, The reflex burner, Radian hybrid low NO{sub x} process, Mathematical model of a ceramic burner radiant heater, Diconex{sup tan} coupon testing in controlled atmosphere furnaces.

  16. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  17. Fuel-rich catalytic combustion of a high density fuel

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Merritt, Sylvia A.

    1993-01-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing the temperature above this value would remove the soot-free nature of the process. Since all the fuels studied show a similar breakdown of the primary fuel into smaller molecular combustion products, this technique can be applied to all hydrocarbon fuels.

  18. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  19. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH[sub 3] in small particle combustion

    SciTech Connect

    Aho, M.J.; Haemaelaeinen, J.P.; Tummavuori, J.L. Univ. of Jyvaeskylae . Dept. of Chemistry)

    1993-10-01

    The formation of nitrogen oxides from fuel-nitrogen through intermediates was studied by measuring first fuel-O/fuel-N ratios and nitrogen functionality in selected solid fuels. Then the ratios of the yields (fuel-N [r arrow] HCN)/(fuel-N [r arrow] NH[sub 3]) in a nearly inert atmosphere at 800 C in an entrained flow reactor was measured and finally the ratio (fuel-N [r arrow] N[sub 2]O)/(fuel-N [r arrow] NO) in an oxidizing atmosphere at 800 C The fuels studied were coal, brown coal, S- and C-type peat, fir bark, birch bark and pine bark, all milled to a particle size < 63[mu]m. The ratios of O/N in the fuel, measured by elemental analysis, ranged from 7 to 150. Nitrogen functionality (mass percent of the total nitrogen content) was determined by XPS. the (fuel-N [r arrow] HCN)/(fuel-N [r arrow] NH[sub 3]) conversion ratio in the absence of O[sub 2], and also the (fuel-N [r arrow] N[sub 2]O)/(fuel-N [r arrow] NO) conversion ratio with O[sub 2] present, decreased with increasing ratio of fuel-O/fuel-N, but neither ratio decreased regularly with the increasing ratio of pyrrolic to pyridinic nitrogen in the fuel. Thus, fuel-oxygen plays a more important role than nitrogen functionality in the chemistry of nitrogen oxide formation. The strong effect of (fuel-O/fuel-N) ratio on the (fuel-N [r arrow] HCN)/(fuel-N [r arrow] NH[sub 3]) ratio may be due to the reaction between OH radicals and HCN to form NH[sub 3] near the fuel particle. The importance of this reaction is considered. Charring the fuel sample before combustion led to a sharp drop in the conversion of fuel-N to N[sub 2]O compared with the virgin fuels. Thus, heterogeneous combustion reactions produced much less N[sub 2]O than homogeneous combustion reactions.

  20. Liquid metal fuel combustion mechanics

    NASA Astrophysics Data System (ADS)

    Duvvuri, Tirumalesa

    1990-07-01

    The modeling of the droplet formation at the gas/liquid boundary interface of a gaseous jet injected into a liquid metal bath and the turbulent mixing of the resultant two-phase (gas/liquid) mixture is presented as a preliminary to the analysis of the liquid metal fuel combustion problem. The model is used to predict velocity and liquid droplet fraction distributions across the mixing zone and along the centerline of the jet. These results show that the distribution of the liquid fuel droplets peaks away from the region of maximum oxidizer concentrations.

  1. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  2. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  3. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  4. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  5. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  6. Efficient Combustion for Renewable FuelsEfficient Combustion for Renewable Fuels Research sponsored by the Laboratory Directed Research and Development Program

    E-print Network

    Pennycook, Steve

    Efficient Combustion for Renewable FuelsEfficient Combustion for Renewable Fuels Research sponsored-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 Critical properties Fuels were Tested in Advanced Combustion Engines HCCI in Hatz engine (biodiesel up to B50) Methyl

  7. The effect of fuel and sorbent properties on their partitioning between the flyash and bottom ash streams in fluidized bed combustion

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter Lawrence

    2000-10-01

    The fluidized bed combustion process has been employed successfully in several applications, among which steam raising is notable. The use of circulating fluidized bed (CFB) combustion for steam and power generation offers a competitive alternative both in the United States and worldwide, yet there remain technical issues, which if addressed, can improve the competitive position of CFB boiler technology, and improve the operating economics of existing plants. Prominent among these technical issues are the performance of limestones and dolostones as sorbents for emissions control, and the ability of a plant's ash handling system to respond to changes in the fuel or sorbent used by the plant. Study of the effects of fuel and sorbent properties on the partitioning of their resultant bed particles between the ash streams, during the fluidized bed combustion process, has been carried out. This work used results from sorbent tests in a commercial CFB boiler and experimentation with laboratory fluid bed reactors. Sorbents varying in petrographic properties were used in the boiler tests as well as the laboratory testing. Fuels tested had varying distributions of ash content by specific gravity, and ranged in composite ash content from 25 to 49 wt%. Sorbent petrographic properties, described by a characteristic crystallite size, influenced the partitioning of calcium to the flyash and bottom ash streams of the boiler. Under the boiler conditions used for the sorbent tests, sorbent petrographic properties significantly influenced the sorbent consumption rate required by the boiler to maintain air quality compliance. Testing of a range of fuels was carried out in a laboratory fluid bed combustor. Ashing of different specific gravity fractions of the coarse fuel particles revealed a trend where higher specific gravity fractions of the fuel yielded coarse ash particles. A trend was found between increased presence of high ash content particles in a fuel, and increased production of bottom ash by the combustor. The results suggested that the distribution of ash content across the range of fuel particles, sorbent attrition properties, and the size classification characteristics of the system will influence the ash split produced by a fluid bed combustion system. (Abstract shortened by UMI.)

  8. Survey of Hydrogen Combustion Properties

    NASA Technical Reports Server (NTRS)

    Drell, Isadore L; Belles, Frank E

    1958-01-01

    This literature digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.

  9. Oscillating combustion from a premix fuel nozzle

    SciTech Connect

    Richards, G.A.; Yip, M.J.

    1995-08-01

    Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

  10. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Patel, R.L.; Levasseur, A.A.

    1987-07-01

    Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal-water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. Discussions on transport, rheology, combustion properties, and ash characterization are included. 11 refs., 9 figs., 7 tabs.

  11. Combustion Science for Cleaner Fuels

    SciTech Connect

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  12. Pollutant Formation in Monodisperse Fuel Spray Combustion

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Sarv, H.

    1983-01-01

    The combustion of liquid sprays represents an extremely important class of combustion processes. In the transition region, encompassing droplet sizes in the range of 25-80 micron diameter, the mixing and evaporation processes are both incomplete at the flame front and burning occurs in a combined diffusive and premixed fashion. Under these conditions, the relative importance of heterogeneous and homogeneous effects in dominating the combustion process is switched and gives rise to a number of interesting phenomena. NO (sub x) formation in monodisperse spray combustion was investigated with the following specific objectives: (1) to quantitatively determine the effect of droplet size, number density, etc. on NO sub x formation in monodisperse fuel spray combustion; and (2) to isolate the important physical and chemical phenomena in NO sub x formation in these combustion systems.

  13. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

    1987-06-01

    Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

  14. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  15. Engine combustion control via fuel reactivity stratification

    SciTech Connect

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  16. Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route

    NASA Astrophysics Data System (ADS)

    Kumar, M. R. Anil; Nagaswarupa, H. P.; Anantharaju, K. S.; Gurushantha, K.; Pratapkumar, C.; Prashantha, S. C.; Shashishekar, T. R.; Nagabhushana, H.; Sharma, S. C.; Vidya, Y. S.; Daruka Prasad, B.; Vivek Babu, C. S.; Vishnu Mahesh, K. R.

    2015-09-01

    MgO nanoparticles (MNPs) were prepared by a solution combustion route using banyan tree (BT) latex and glycine as fuels. The powder x-ray diffraction results indicate the formation of a single cubic phase and the crystallite size obtained from transmission electron microscopy was found to be 10-15 nm. Scanning electron microscopy result reveals spherical-shaped particles obtained with BT latex. However, in a chemical route, porous and agglomerated particles were obtained. The energy band gap of MNPs obtained using BT latex and a chemical route were found to be in the range 4.85-5.0 eV. Photoluminescence peaks observed at 473, 514, and 588 nm when excited at 433 nm, which were attributed to surface defects. The enhanced photocatalytic activities of spherical MgO were due to smaller crystallite size, higher surface defects, dye sensitization, and capability to reduce the electron-hole pair recombination. Further, green-synthesized MNPs exhibit superior antifungal activity against various plant pathogens. The present studies demonstrated a green engineering route for the synthesis of multifunctional MNPs using BT latex.

  17. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  18. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 ...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  19. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 ...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  20. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 ...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  1. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  2. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  3. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 ...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  4. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  5. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  6. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  7. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  8. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 ...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  9. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  10. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  11. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  12. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  13. Experimental study of gas turbine combustion with elevated fuel temperatures

    NASA Astrophysics Data System (ADS)

    Wiest, Heather K.

    Many thermal management challenges have developed as advancements in gas turbine engine designs are made. As the thermal demands on gas turbine engines continue to increase, the heat sink available in the combustor fuel flow becomes more attractive. Increasing the temperature of fuel by using it as a heat sink can lead to higher combustion efficiency due to the increase in flow enthalpy and improved vaporization of the heated fuel. Emissions levels can also be affected by using heated fuels with the levels of carbon monoxide and unburned hydrocarbons tending to decrease while the amount of the oxides of nitrogen tends to increase. Although there are several benefits associated with using heated fuels in gas turbine engines, some problems can arise from their use including combustion instabilities, flashing within the fuel injector, and fuel coking or deposit formation within the fuel system. Various deoxygenation methods have been created to address the coking problem seen when using heated fuels. In the Gas Turbine Test Cell of the High Pressure Laboratory at Purdue University's Maurice J. Zucrow Laboratories, a 5 MW combustion rig was developed to complete combustion test with heated fuels. The facility's supply systems including heated air, jet fuel, cooling water, and nitrogen were designed and integrated to produce simulated engine conditions within the combustion rig. Heating capabilities produced fuel temperatures ranging up to 600 deg F. Testing was completed with two fuel deoxygenation methods: nitrogen sparging and catalytic deoxygenation. Results from the testing campaign included conventional pressure, temperature, and fuel property measurements; however, the most important measurements were the emissions samples that were analyzed for each test condition. Levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen were determined as well as the combustion efficiency calculated from these emissions measurements. The trends in emissions and performance from the increase in fuel temperature will be discussed. In addition, high frequency pressure data were recorded during testing to monitor combustion instabilities. Fuel samples were also taken and analyzed to document the changes in the volatile composition of the fuel from the two deoxygenation methods. The testing campaign was extremely successful. All project objectives were met with the heated fuel testing campaign. The combustion rig was run safely with fuel temperature up to 600 deg F, allowing the effects of elevated fuel temperatures on the performance and emissions of a gas turbine combustor to be evaluated as planned.

  14. Fuel and Additive Characterization for HCCI Combustion

    SciTech Connect

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-02-12

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included.

  15. Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

  16. Apparatus for combustion of solid particulate fuel

    SciTech Connect

    Whitfield, O.J.

    1990-08-14

    This patent describes an apparatus for the combustion of solid particulate fuel. It comprises: a stationary grate including a perforated plate for receiving the solid particulate fuel; displaceable means positioned in a plane above the grate, movement of the displaceable means displacing spent solid particulate fuel from the stationary grate. The displaceable means including a rotatable member; and a burning cap positioned over the stationary grate, the burning cap defining a combustion chamber above the stationary grate. The burning cap including a battle that divided the combustion chamber into a primary half and a secondary half, the burning cap also including an aperture for allowing the particulate fuel to be introduced into the primary half.

  17. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  18. Experience in preparing fuel for combustion

    SciTech Connect

    Rude, J.

    1995-09-01

    The key phase seems to be that wood is the ORIGINAL FUEL. Certainly as man discovered fire, it was the most obvious as well as abundantly available fuel and it burned very well because man was smart enough to select the dry wood once he understood the basics of combustion. As the needs started to go beyond the most elementary, designs for burning ideal fuels were pretty well perfected, however, the burning of less ideal fuels still remain a challenge. To provide plant steam requirements by burning waste that must be disposed of anyway can reduce operating cost considerably. For most of us involved in producing steam, the experience we have with fuels such as bark, wood waste, sludge, and miscellaneous forms of solid combustible waste material, are a result of burning these fuels in an existing boiler supposedly designed for wood waste or possibly a combination of wood and other fuels such as coal, oil, or gas. For a supplier of fuel preparation systems, the typical application involves the sizing, cleaning, and drying of wood waste, and sludge from a pulp and/or paper mill. Other forms of combustible waste are dealt with occasionally and after proper preparation fired in the combustion system for the purpose of generating hot gas and/or steam for the plant process.

  19. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  20. Diesel engine combustion of sunflower oil fuels

    SciTech Connect

    Zubik, J.; Sorenson, S.C.; Goering, C.E.

    1984-09-01

    The performance, combustion, and exhaust emissions of diesel fuel, a blend of 25% sunflower oil in diesel fuel, and sunflower oil methyl ester have been compared. All fuels performed satisfactorily in a direct injection diesel engine, with the fuels derived from sunflower oil giving somewhat higher cylinder pressures and rates of pressure rise due to a higher percentage of 'premixed' burning than the diesel fuel. General performance and emissions characteristics of the two fuels were comparable, with the oil based fuels giving lower smoke readings. 15 references.

  1. Hybrid combustion with metallized fuels

    NASA Technical Reports Server (NTRS)

    Yi, Jianwen; Wygle, Brian S.; Bates, Ronald W.; Jones, Michael D.; Ramohalli, Kumar

    1993-01-01

    A chemical method of adding certain catalysts to improve the degradation process of a solid fuel is discussed. Thermogravimetric (TGA) analysis used to study the fundamental degradation behavior of a typical hybrid fuel (HTPB) shows that high surface temperatures increase the degradation rate. Fuels were tested in a laboratory-scale experimental hybrid rocket and their behavior was compared to a baseline behavior of HTPB fuel regression rates. It was found that a small amount of metal powder added to the fuel can significantly increase the regression rates.

  2. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  3. Plasma enhancement of combustion of solid fuels

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2006-03-15

    Plasma fuel systems that increase the coal burning efficiency are discussed. The systems were tested for fuel oil-free startup of boilers and stabilizating a pulverized-coal flame in power-generating boilers equipped with different types of burner and burning all types of power-generating coal. Plasma ignition, thermochemical treatment of an air-fuel mixture prior to combustion, and its burning in a power-generating boiler were numerically simulated. Environmental friendliness of the plasma technology was demonstrated.

  4. Combustion of liquid fuels in a flowing combustion gas environment at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1975-01-01

    The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

  5. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Gralton, G.W.; Lachowicz, Y.V.; Laflesh, R.C.; Levasseur, A.A.; Liljedahl, G.N.

    1989-02-01

    This five-year research project was established to provide sufficient data on coal-water fuel (CWF) chemical, physical, and combustion properties to assess the potential for commercial firing in furnaces designed for gas or oil firing. Extensive laboratory testing was performed at bench-scale, pilot-scale (4 {times} 10{sup 6}Btu/hr) and commercial-scale (25 {times} 10{sup 6} to 50 {times} 10{sup 6}Btu/hr) on a cross-section of CWFs. Fuel performance characteristics were assessed with respect to coal properties, level of coal beneficiation, and slurry formulation. The performance of four generic burner designs was also assessed. Boiler performance design models were applied to analyze the impacts associated with conversion of seven different generic unit designs to CWF firing. Equipment modifications, operating limitations, and retrofit costs were determined for each design when utilizing several CWFs. Unit performance analyses showed significantly better load capacity for utility and industrial boilers as the CWF feed coal ash content is reduced to 5% or 2.6%. In general, utility units had more attractive capacity limits and retrofit costs than the industrial boilers and process heaters studied. Economic analyses indicated that conversion to CWF firing generally becomes feasible when differential fuel costs are above $1.00/10{sup 6}Btu. 60 figs., 24 tabs.

  6. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  7. FUEL NOX CONTROL BY CATALYTIC COMBUSTION

    EPA Science Inventory

    The report gives results of an experimental study to: (1) define operating conditions for catalytic combustors that give low levels of NOx emissions for fuelbound nitrogen compounds, and (2) quantitatively determine the fate of fuel nitrogen during catalytic combustion. Tests wer...

  8. Fuel character effects on the TF41 engine combustion system

    SciTech Connect

    Vogel, R.E.; Troth, D.L.

    1983-05-01

    The effects of fuel property variations on the performance and exhaust emissions of the Allison TF41 engine combustion system were determined by combustor rig tests and data analysis. Hot section durability characteristics were evaluated through computer simulations. Twelve refined and blended fuels which incorporated variations in hydrogen content, aromatic type and content, distillation range, and viscosity were evaluated. At high-power operating conditions, fuel properties such as hydrogen and aromatic content affected emission levels, smoke formation, combustion efficiency, and linear wall temperatures. No significant correlation between combustor performance parameters and fuel properties could be found at idle conditions. The maximum attainable ignition altitude was severely limited by reduced fuel hydrogen content (increased aromatic content). Combustor barrel (dome to discharge nozzle) metal temperatures responded to changes in fuel hydrogen content and aromatic type. However, combustor life was not sensitive to fuel properties since the life-limiting discharge nozzle wall temperatures were relatively insensitive to any fuel tested. Turbine (stator vane and rotor blade) life showed very little correlation to any fuel property characteristic.

  9. Effect of different fuels on structural, photo and thermo luminescence properties of solution combustion prepared Y2SiO5 nanopowders

    NASA Astrophysics Data System (ADS)

    Ramakrishna, G.; Nagabhushana, H.; Sunitha, D. V.; Prashantha, S. C.; Sharma, S. C.; Nagabhushana, B. M.

    2014-06-01

    Y2SiO5 nanopowders are prepared by solution combustion method using DFH, sugar and urea as fuels. The final product was well characterized by powder X-ray diffraction, Scanning Electron Microscopy and UV-Vis spectroscopy. The average crystallite size was estimated using Debye-Scherer's formula and Williamson-Hall plots and are found to be in the range 34-40 nm for DFH, 45-50 nm for urea and 35-42 nm for sugar respectively. X1-X2 type YSO phase was obtained for all the samples calcined from 1200 to 1400 C. The optical energy band gaps (Eg) of the samples were estimated from Tauc relation and varies from 5.58 to 5.60 eV. SEM micrographs of sugar and urea used Y2SiO5 show agglomerated particles with porous morphology. However, for the sample prepared using DFH fuel observed to be almost spherical in shape. Thermoluminescence (TL) properties of ?-irradiated (1-5 kGy) and UV irradiated (1-30 min) Y2SiO5 nanopowder at a heating rate of 2.5 C s-1 was studied. The samples prepared by using urea and sugar fuels show a broad TL glow peak at 189 C. However, DFH used Y2SiO5 show a well resolved peak at 196 C with shouldered peak at 189 C. Among the fuels, DFH used Y2SiO5 show simple glow peak structure which perhaps useful in radiation dosimetry. This may be due to fuel and particle size effect. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics are estimated by Chens glow peak shape method.

  10. Effect of different fuels on structural, photo and thermo luminescence properties of solution combustion prepared Y(2)SiO(5) nanopowders.

    PubMed

    Ramakrishna, G; Nagabhushana, H; Sunitha, D V; Prashantha, S C; Sharma, S C; Nagabhushana, B M

    2014-06-01

    Y(2)SiO(5) nanopowders are prepared by solution combustion method using DFH, sugar and urea as fuels. The final product was well characterized by powder X-ray diffraction, Scanning Electron Microscopy and UV-Vis spectroscopy. The average crystallite size was estimated using Debye-Scherer's formula and Williamson-Hall plots and are found to be in the range 34-40nm for DFH, 45-50nm for urea and 35-42nm for sugar respectively. X1-X2 type YSO phase was obtained for all the samples calcined from 1200 to 1400C. The optical energy band gaps (Eg) of the samples were estimated from Tauc relation and varies from 5.58 to 5.60eV. SEM micrographs of sugar and urea used Y(2)SiO(5) show agglomerated particles with porous morphology. However, for the sample prepared using DFH fuel observed to be almost spherical in shape. Thermoluminescence (TL) properties of ?-irradiated (1-5kGy) and UV irradiated (1-30min) Y(2)SiO(5) nanopowder at a heating rate of 2.5Cs(-1) was studied. The samples prepared by using urea and sugar fuels show a broad TL glow peak at 189C. However, DFH used Y(2)SiO(5) show a well resolved peak at 196C with shouldered peak at 189C. Among the fuels, DFH used Y(2)SiO(5) show simple glow peak structure which perhaps useful in radiation dosimetry. This may be due to fuel and particle size effect. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics are estimated by Chens glow peak shape method. PMID:24632171

  11. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  12. Plasma-aided solid fuel combustion

    SciTech Connect

    E.I. Karpenko; V.E. Messerle; A.B. Ustimenko

    2007-07-01

    Plasma supported solid fuel combustion is promising technology for use in thermal power plants (TPP). The realisation of this technology comprises two main steps. The first is the execution of a numerical simulation and the second involves full-scale trials of plasma supported coal combustion through plasma-fuel systems (PFS) mounted on a TPP boiler. For both the numerical simulation and the full-scale trials, the boiler of 200 MW power of Gusinoozersk TPP (Russia) was selected. The optimization of the combustion of low-rank coals using plasma technology is described, together with the potential of this technology for the general optimization of the coal burning process. Numerical simulation and full-scale trials have enabled technological recommendations for improvement of existing conventional TPP to be made. PFS have been tested for boilers plasma start-up and flame stabilization in different countries at 27 power boilers steam productivity of 75-670 tons per hour (TPH) equipped with different type of pulverised coal burners. At PFS testing power coals of all ranks (brown, bituminous, anthracite and their mixtures) were used. Volatile content of them varied from 4 to 50%, ash from 15 to 48% and calorific values from 6700 to 25,100 KJ/kg. In summary, it is concluded that the developed and industrially tested PFS improve coal combustion efficiency and decrease harmful emission from pulverised coal-fired TPP. 9 refs., 14 figs., 2 tabs.

  13. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  14. Transport Properties for Combustion Modeling

    SciTech Connect

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules and (6) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, which is important in predicting flame development.

  15. Small scale combustion testing of synthetic fuels

    SciTech Connect

    Gibbon, G.A.; Ekmann, J.M.; Navadauskas, R.J.; White, C.M.

    1982-03-01

    In order to assess any changes in the environmental impact of industrial or utility boiler exhaust gases upon changing from petroleum-based fuels to synthetic fuels, detailed characterizations of the exhaust emissions from both types of fuels burned under identical combustion conditions are required. A 20-hp (approximately 5 gallons of liquid fuel feed per hour) firetube boiler has been installed in the Combustion Technology Division of the Pittsburgh Energy Technology Center (PETC) so such experiments can be performed. The boiler is fully instrumented for heat and material balance measurements, including analysis of the major and minor components of the combustion gases and the total hydrocarbons and particulates present in the gases. In addition, the exhaust duct of the boiler has a sampling port adjacent to the one used for major and minor components; this port is used to sample exhaust gases for the analysis of the trace organic compounds present in the gases. The Analytical Chemistry Division of PETC is developing the sampling and analytical methodologies for the trace organics. The effort to date has been focused on the problems involved in sampling the hot (ca. 350/sup 0/F) exhaust gases and on the analysis of the gases for polynuclear aromatic hydrocarbons.

  16. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    SciTech Connect

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  17. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  18. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  19. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  20. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  1. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  2. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  3. Combustor technology for broadened-properties fuels

    SciTech Connect

    Dodds, W.J.

    1984-01-01

    In order to increase the availability and reduce the cost of future fuels for aircraft gas turbine engines, it may be necessary to broaden fuel specifications. Anticipated changes in fuel properties, and the effects of these changes on combustion system performance, operating characteristics, durability, and emissions are briefly reviewed, and results to date of a program being conducted to develop and demonstrate combustor technology required to utilize broadened-properties fuels in current and next-generation engines are described. Combustion system design considerations and tradeoffs for burning broadened-properties fuels are discussed, and test experience with several applicable combustor design modifications to the G.E. CF6-80A combustion system is reviewed. Modifications have been demonstrated to improve liner cooling and reduce smoke in the conventional annular combustor, thereby reducing effects of variations in fuel hydrogen content. Advanced staged and variable geometry combustor concepts for burning broadened-properties fuels have also been demonstrated.

  4. Fuel-NOx release during coal blends combustion

    SciTech Connect

    Qiu, J.; Zhu, Q.; Li, F.; Liu, Y.; Zheng, C.; Zeng, H.

    1999-07-01

    The emission of nitrogen oxides from coal combustion has a major environmental impact. Recently, a number of power stations have been successively burning blended coals, while meeting NOx emission limits. In this paper, the emission of nitrogen and NOx release during blended pulverized coal combustion have been investigated in a horizontal' electric heating reactor and a drop-tube furnace. Formation and conversion of the intermediate N0containing species as HCN and NHI were also measured. The influence of components coal properties on NO and char-NO has been analyzed. The nitrogen evolution of blended coals has no obvious linear relation with blended ratios. Fuel-NOx release from blended coal combustion take a longer time than that form single one. At high temperature, the reaction of the conversion from Char-N to NOx is diffusion control reaction. At low temperature, the reaction is under chemical control reaction, which is similar with the conversion of volatile-N to NOx.

  5. Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion

    SciTech Connect

    Hiromi Shirai; Hirofumi Tsuji; Michitaka Ikeda; Toshinobu Kotsuji

    2009-07-15

    To develop combustion technology for upgrading the quality of fly ash, the influences of the coal properties, such as the size of pulverized coal particles and the two-stage combustion ratio during the combustion, on the fly ash properties were investigated using our test furnace. The particle size, density, specific surface area (obtained by the Blaine method), and shape of fly ash particles of seven types of coal were measured. It was confirmed that the size of pulverized coal particles affects the size of the ash particles. Regarding the coal properties, the fuel ratio affected the ash particle size distribution. The density and shape of the ash particles strongly depended on their ash size. Our results indicated that the shape of the ash particles and the concentration of unburned carbon affected the specific surface area. The influence of the two-stage combustion ratio was limited. 8 refs., 13 figs., 3 tabs.

  6. Fuel cock for an internal combustion engine

    SciTech Connect

    Miyamoto, Y.

    1987-09-22

    This patent describes a fuel cock for an internal combustion engine comprising: a valve body having a tapered bore portion and a cylindrical bore portion. The fuel inlet port and fuel outlet port being communicated with a bottom of a fuel tank and a carburetor, an air outlet passage provided in the valve body being communicated with the atmosphere and the air inlet port; a fuel plug, having a large diameter portion at one end and a small diameter portion at an opposite end and a tapered periphery between the ends. It rotates in the tapered bore portion of the valve body so as to close and open a fuel passage between the fuel inlet port and the fuel outlet port and axially displaceable in the tapered bore portion so as to serve as a piston; an air plug having a cam portion. The air plug forming a passage so as to apply fluid pressure at the air inlet port to the chamber to urge the fuel plug towards the small diameter end of the fuel plug; valve means mounted in the air outlet passage including a projection slidably engaged with the cam portion to close and open the air outlet passage dependent on rotatory position of the air plug; and the fuel plug and air plug being so arranged as to open both the fuel passage and the air outlet passage at the same time so as to discharge vapor in the fuel tank to the atmosphere and to supply fuel to the carburetor from the fuel tank at the same time and to close both the fuel passage and the air outlet passage at the same time.

  7. Combustion oscillation control by cyclic fuel injection

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Robey, E.; Cowell, L.; Rawlins, D.

    1995-04-01

    A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

  8. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion...

  9. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion...

  10. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion...

  11. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion...

  12. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  13. Fuel supply system for internal combustion engine

    SciTech Connect

    Gantenbine, H.A.

    1988-08-30

    This patent describes a fuel supply system for use with an internal combustion engine of a type controlled by an accelerator pedal, the system comprising means forming a fuel vaporizing chamber, an air intake housing having openings therein, one of the openings being open to receive air therethrough, another of the openings serving to discharge air into the chamber to form a flow path defined between the openings, the flow path leading into the chamber, variable valve means within the air intake housing for controlling the flow rate of air therealong, means for injecting fuel into air moving along the flow path to provide a mixture of fuel and air, the means for injecting fuel into the flow path comprises a supplemental fuel storage chamber, a fuel supply line adapted and designed to be coupled to the fuel storage chamber and to a fuel pump for partially filling and refilling the fuel storage chamber, means forming a spout extending between the fuel storage chamber and the flow path for delivering fuel into the flow path at a location which is subjected to suction from the flow of air passing to the vaporizer chamber, the flow of air across the open discharge end of the spout serving to aspirate fuel from the storage chamber via the spout and into the flow path, means for suddenly releasing a supplemental charge of fuel to travel from the storage chamber into the flow path, the last named the means including a valve movable between advanced and retracted positions respectively reducing and enlarging the fuel flow path via the spout.

  14. Oxygen enhanced switching to combustion of lower rank fuels

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  15. Fuel effects on gas turbine combustion systems

    SciTech Connect

    Mosier, S.A.

    1984-01-01

    The effects of variations in properties and characteristics of liquid hydrocarbon-base fuels in gas turbine engine combustors was investigated. Baseline fuels consisted of military-specification materials processed from petroleum and shale oil. Experimental fuels were comprised of liquid petroleum blends that were prepared specifically to exhibit desired physical and chemical properties. These fuels were assessed for their influence on ignition and performance characteristics in combustors of the F100, TF30, and J57 (TF33) engines at simulated operating conditions. In general, during relatively short duration tests, combustor ignition and performance became increasingly poorer as fuel quality deviated from specification or historical values.

  16. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T. (Middle Island, NY); Shen, Ming-shing (Rocky Point, NY)

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  17. Fuel Property Effects on Emissions from High Efficiency Clean Combustion in a Diesel Engine (SAE Paper Number 2006-01-0080)

    SciTech Connect

    Sluder, Scott; Wagner, Robert M; Lewis Sr, Samuel Arthur; Storey, John Morse

    2006-01-01

    High-efficiency clean combustion (HECC) modes provide simultaneous reductions in diesel particulate matter and nitrogen-oxides emissions while retaining efficiencies characteristic of normal diesel engines. Fuel parameters may have significant impacts on the ability to operate in HECC modes and on the emissions produced in HECC modes. In this study, 3 diesel-range fuels and 2 oxygenated blends are burned in both normal and HECC modes at 3 different engine conditions. The results show that fuel effects play an important role in the emissions of hydrocarbons, particulate matter, and carbon monoxide but do not significantly impact NOX emissions in HECC modes. HECC modes are achievable with 5% biodiesel blends in addition to petroleum-based and oil-sands derived fuels. Soot precursor and oxygenated compound concentrations in the exhaust were observed to generally increase with the sooting tendency of the fuel in HECC modes.

  18. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  19. Water interaction with laboratory-simulated fossil fuel combustion particles.

    PubMed

    Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

    2009-10-01

    To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere. PMID:19736954

  20. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  1. Vaporization and combustion of fuel droplets at supercritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, Vigor

    1991-01-01

    Vaporization and combustion liquid-fuel droplets in both sub- and super-critical environments have been examined. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. In addition, the dynamic responses of droplet vaporization and combustion to ambient-pressure oscillations are investigated. Results indicate that the droplet gasification and burning mechanisms depend greatly on the ambient pressure. In particular, a rapid enlargement of the vaporization and combustion responses occurs when the droplet surface reaches its critical point, mainly due to the strong variations of latent heat of vaporization and thermophysical properties at the critical state.

  2. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  3. Design handbook for gaseous fuel engine injectors and combustion chambers

    NASA Technical Reports Server (NTRS)

    Calhoon, D. F.; Ito, I.; Kors, D. L.

    1973-01-01

    Results of investigation of injection, mixing, and combustion processes using gaseous fuels and oxidizers have been summarized in handbook presenting succinct design procedures for injectors and methods for estimating combustion efficiency, chamber heat flux and stability characteristics. Handbook presents two approaches to injector and combustion chamber design: empirical and analytical.

  4. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  5. Combustion mechanism of liquid fuel spray in a gaseous flame

    NASA Astrophysics Data System (ADS)

    Nakamura, Mariko; Akamatsu, Fumiteru; Kurose, Ryoichi; Katsuki, Masashi

    2005-12-01

    Two-dimensional direct numerical simulation is applied to spray flames stabilized in a laminar counterflow, and the detailed behavior is studied in terms of the droplet group combustion. The stretch ratio of the laminar counterflow is 40 l/s. (C10H22) is used as a liquid spray fuel, and a one-step global reaction is employed for the combustion reaction model. The results show that with increasing the issued liquid fuel mass fraction, two types of spray combustion appear in front of and inside the high gaseous temperature region, i.e., "premixed-like combustion" and "diffusion-like combustion," respectively. A droplet group combustion behavior is observed in the diffusion-like combustion region. This diffusion-like combustion, however, disappears when the issued droplet size becomes small, because the droplets complete their evaporation before entering into the high gaseous temperature region. The droplet group combustion tends to reduce the gaseous temperature. This is caused mainly by the suppression of combustion reaction due to the lack of oxygen and partially by the energy exchange through the convective heat transfer between droplets and gaseous phase. The gaseous temperature reduction is promoted by the latent heat of vaporization of the droplets. The use of the parcel approach has a risk of causing a delay of combustion reaction, since the partial fuel vapor pressure increases at limited locations, which suppresses the global droplet evaporation rate.

  6. Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1957-01-01

    Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

  7. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  8. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  9. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    NASA Astrophysics Data System (ADS)

    ??, ?; ??, ??; ??, ??; ??, ???; ??, ??; ??, ??; ??, ??

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  10. Stabilization Of Combustion Of Sprayed Fuel

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Jan, Darrell L.

    1995-01-01

    Several modifications of nozzle spraying liquid propellant into combustion chamber proposed to stabilize combustion. Proposed changes in design of nozzle alter flow field in combustion chamber, according to fluid-mechanical principles, in such way as to suppress oscillations. Various alternative nozzle configurations include bluff or toroidal body to generate turbulence. Other features helping to suppress oscillations include down-stream recirculation zones, baffles, and damping cavities. Similar modifications help to suppress oscillations in industrial combustion chambers and in commercial and domestic oil-burning furnaces.

  11. Broad specification fuels combustion technology program, phase 2. Final report

    SciTech Connect

    Lohmann, R.P.; Jeroszko, R.A.; Kennedy, J.B.

    1990-10-01

    An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.

  12. Broad Specification Fuels Combustion Technology Program, Phase 2

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Jeroszko, R. A.; Kennedy, J. B.

    1990-01-01

    An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P&W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.

  13. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  14. Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: Comparison between aspartic acid and glycine as fuels

    NASA Astrophysics Data System (ADS)

    Shanmugavani, A.; Kalai Selvan, R.; Layek, Samar; Sanjeeviraja, C.

    2014-03-01

    Using two different fuels such as aspartic acid and glycine, the spinel zinc ferrite nanoparticles were synthesized by the combustion method at different pH values. The thermochemical calculations for both the fuel assisted materials and its adiabatic flame temperature were calculated. The X-ray diffraction (XRD) pattern revealed the formation of single phase ZnFe2O4 with high crystallinity. The characteristic functional groups of Fe3O and Zn3O were identified through FTIR analysis. Uniform size distribution of spherical particle in the average size range of 35-100 nm was inferred from SEM images. The room temperature DC conductivities of ZnFe2O4 particles prepared by using aspartic and glycine are in the order of 10-7 and 10-8 respectively. The dielectric spectral analysis inferred that the obtained dielectric constant is high at low frequency and decreases with increase in frequency. This dielectric behavior is in accordance with the Maxwell-Wagner interfacial polarization. VSM and Mssbauer analysis revealed that the prepared material exhibits paramagnetic behavior and Fe3+ state of iron content in ZnFe2O4 at room temperature.

  15. Oxy-combustion of high water content fuels

    NASA Astrophysics Data System (ADS)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the spray were measured in the chamber for a stable flame. The experimental results indicate significant preferential vaporization of ethanol over water. Modeling results support this observation and indicate that the vaporization process is best described as the distillation limit mode with enhanced mass transfer by convection. Further, the influence of preferential vaporization on flame stability was investigated. A procedure was developed to evaluate the extent of preferential vaporization and subsequent flame stability of a fuel in aqueous solution. Various water soluble fuels were analyzed via this procedure in order to identify a chemical fuel showing strong preferential vaporization. t-Butanol was identified as having excellent physical and chemical properties, indicating stronger preferential vaporization than ethanol. Flame stability tests were run for aqueous solutions of both t-butanol and ethanol under identical flow conditions. Flame stability was characterized by the blow-off limit. In each comparison, the energy contents in the two solutions were kept the same. For the experiments under high swirl flow conditions (100% swirl flow), 12.5 wt% t-butanol has slightly lower blow-off limits than 15 wt% ethanol, and 8.3 wt% t-butanol has much lower blow-off limits than 10 wt% ethanol. For the experiments under a low swirl flow condition (50% swirl/50% axial flow), 12.5 wt% t-butanol has a much lower blow-off limit than 15 wt% ethanol. The time to release the fuel from a droplet was also calculated for both ethanol and t-butanol. For the same size droplet, the time to release t-butanol is much shorter than that of ethanol under the same conditions. Faster release of the fuel from water enhances flame stability, which is consistent with the experimental results. For the oxy-combustion characteristics of low-volatility fuel with high water content, glycerol was chosen as the fuel to study. It is found that self-sustained flame can be obtained for glycerol solution with concentration as high as 60 wt%, when burned in pure O2. However, the flame is lifted far away f

  16. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  17. Engine combustion control at low loads via fuel reactivity stratification

    SciTech Connect

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  18. Combustion characteristics of alternative gaseous fuels

    SciTech Connect

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} ? O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  19. Combustion fundamentals of pyrolysis oil based fuels

    SciTech Connect

    Calabria, R.; Chiariello, F.; Massoli, P.

    2007-04-15

    The combustion behavior of emulsions of pyrolysis oil in commercial diesel oil was studied. The emulsions were different in terms of concentration and size of the dispersed phase. The study was carried out in a single droplet combustion chamber. The size of droplets varied between 400 {mu}m and 1200 {mu}m. They were suspended to a bare thermocouple and, hence, their temperature during combustion was measured. High-speed digital shadowgraphy was used to follow droplets evolution. The main features of the droplet combustion were recognized. The general combustion behavior of emulsions is intermediate with respect to pure PO and commercial diesel oil. Emulsion droplets underwent strong swelling and microexplosion phenomena. However, under the investigated conditions, the microexplosions were ineffective in destroying droplets. The size distribution of the dispersed PO droplets in the range 3-10 {mu}m was not effective either for determining the overall thermal behavior or for the efficacy of the microexplosions. The homogeneous combustion phase resulted identical for emulsions and diesel oil despite the emulsions composition (i.e., concentration of oil, surfactant and co-surfactant, as well as the size of the oil droplets in the emulsion) and the different structure of the flame and also its time and spatial evolution. (author)

  20. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  1. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  2. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  3. Broad specification fuels combustion technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1984-01-01

    Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures.

  4. NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

  5. The Impact of Alternative Fuels on Combustion Kinetics

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2009-07-30

    The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and selection of desirable F-T molecules for use in jet engine simulations, where we should be able to predict the ignition, combustion and emissions characteristics of proposed fuel components. These mechanisms include the reactions and chemical species needed to describe high temperature phenomena such as shock tube ignition and flammability behavior, and they will also include low temperature kinetics to describe other ignition phenomena such as compression ignition and knocking. During the past years, our hydrocarbon kinetics modeling group at LLNL has focused a great deal on fuels typical of gasoline and diesel fuel. About 10 years ago, we developed kinetic models for the fuel octane primary reference fuels, n-heptane [1] and iso-octane [2], which have 7 and 8 carbon atoms and are therefore representative of typical gasoline fuels. N-heptane represents the low limit of knock resistance with an octane number of 0, while iso-octane is very knock resistant with an octane number of 100. High knock resistance in iso-octane was attributed largely to the large fraction of primary C-H bonds in the molecule, including 15 of the 18 C-H bonds, and the high bond energy of these primary bonds plays a large role in this knock resistance. In contrast, in the much more ignitable n-heptane, 10 of its 16 C-H bonds are much less strongly bound secondary C-H bonds, leading to its very low octane number. All of these factors, as well as a similarly complex kinetic description of the equally important role of the transition state rings that transfer H atoms within the reacting fuel molecules, were quantified and collected into large kinetic reaction mechanisms that are used by many researchers in the fuel chemistry world.

  6. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A. (Berkeley, CA)

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  7. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  8. Investigation of combustion characteristics of methane-hydrogen fuels

    NASA Astrophysics Data System (ADS)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  9. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  10. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  11. High-pressure combustion of binary fuel sprays

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, Michikata; Sato, Jun'ichi; Dietrich, Daniel L.; Williams, Forman A.

    1995-01-01

    The ultimate objective of this study is to obtain fundamental information relevant to combustion processes that occur in fuel sprays of practical interest at high pressures in internal combustion engines. Since practical fuels are multicomponent and derived from petroleum, the present work involves the model alkane mixture of n-heptane and n-hexadecane. Since burning droplets in sprays can interact with each other, the present work involves investigation of the effects of this interaction on flame shapes and droplet burning times. The small droplets in practical combustion chambers are not significantly influenced by buoyancy. Since such small droplets are difficult to study experimentally, the present work takes advantage of microgravity to lessen buoyancy and enable information about droplet interactions to be obtained by studying larger droplets. The results are intended to provide fundamental understanding that can be used in improving descriptions of practical spray combustion.

  12. Fuel-Air Mixing and Combustion in Scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.

    2002-01-01

    Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.

  13. Effect of heterogeneous catalyst during combustion of diesel fuel

    NASA Astrophysics Data System (ADS)

    Arefeen, Quamrul

    1999-11-01

    With the increase in number of vehicles using diesel engines, the contributions to environmental pollution made by diesel engines is also on the rise. Carbon monoxide, oxides of nitrogen and sulfur, hydrocarbons, and particulates are currently regulated as harmful emissions from diesel engines. Recent technologies to control harmful engine emissions have been almost exclusively directed towards gasoline engines. It is generally held that fuel quality will have to play an important role with all IC engines to meet future stringent regulations. The objective of the present study was to determine the effects of heterogeneous catalyst on combustion. Micron sized solid catalyst, suspended in a specific organic peroxide, has been found to promote better combustion by modifying kinetics and changing the thermodynamics of the reactions. The catalyst reduces emissions without dramatically changing the properties of the fuel. The characteristic parameters of a baseline fuel, and the same fuel with the additive, were analyzed. The dosage of additive used was found to be compatible with commercial diesel. Diesel vehicles were driven unloaded at normal road conditions during the experiments. Exhaust emissions were measured when the trucks were at static conditions and the engine running on idle and at 2000 rpm. The gaseous components in the exhaust, O2, CO2, CO, NO, NO2, NOx, SO2, and CxH y were monitored. Particulates were trapped on a pre-weighed glass filter. Some of the filters were sent to an independent laboratory for microscopic and elemental analysis of the collected debris. Zinc oxide/peroxide suspended in tert-butyl hydro peroxide were used as the heterogeneous fuel catalyst. This combination increased the cetane rating of a commercial diesel fuel from 45 to a level of 70 depending on treatment ratio. A treatment ratio of one ounce additive per 5 gallons of diesel increased cetane number by an average of 5 points. Road mileage with the additive increased by an average of more than 10%. Gaseous and particulate emissions were reduced by more than 20%. Engine wear decreased due to increased lubricity of the fuel. A decrease in flash point of the diesel may make the additive more suitable at cold weather operation.

  14. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  15. Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.

    1999-01-01

    Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting the test droplet by a fiber fixes the droplet position but the fiber can perturb the burning process especially for a sooting fuel. Prior studies on heptane showed little evidence for soot formation due to g-droplets of similar size the relationship between sooting and droplet diameter. For nonane droplets we expect increased sooting due to the greater number of carbon atoms. As a sooting droplet burns and its diameter decreases, proportionally less soot should form. This reduced soot, as well as the influence of soot formed earlier in the burning process which collects in a 'shell', on heat transport to the flame offers the potential for a time-varying burning rate. Such an effect was investigated and revealed in results reported here. Speculation is offered for the cause of this effect and its possible relation to soot formation.

  16. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  17. Oxy-fuel combustion with integrated pollution control

    DOEpatents

    Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  18. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  19. FUEL RICH SULFUR CAPTURE IN A COMBUSTION ENVIRONMENT

    EPA Science Inventory

    A refractory-lined, natural gas furnace was used to study fuel rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel rich sulfur species H2S and COS were monitored in a near-continuous fashion using a gas chromatograph equipped with a fl...

  20. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  1. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    SciTech Connect

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  2. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  3. Fuel NOx pollution production during the combustion of a low caloric value fuel gas

    E-print Network

    Caraway, John Phillip

    1995-01-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value fuel gases (LCVG) and the formation of NO, pollutants produced from fuel ...

  4. Effect of Fuel System Impedance Mismatch on Combustion Dynamics

    SciTech Connect

    Richards, G.A.; Robey, E.H.

    2008-01-01

    Combustion dynamics are a challenging problem in the design and operation of premixed gas turbine combustors. In premixed combustors, pressure oscillations created by the flame dynamic response can lead to damage. These dynamics are typically controlled by designing the combustor to achieve a stable operation for planned conditions, but dynamics may still occur with minor changes in ambient operating conditions or fuel composition. In these situations, pilot flames or adjustment to fuel flow splits can be used to stabilize the combustor, but often with a compromise in emission performance. As an alternative to purely passive design changes, prior studies have demonstrated that adjustment to the fuel system impedance can be used to stabilize combustion. Prior studies have considered just the response of an individual fuel injector and combustor. However, in practical combustion systems, multiple fuel injectors are used. In this situation, individual injector impedance can be modified to produce a different dynamic response from individual flames. The resulting impedance mismatch prevents all injectors from strongly coupling to the same acoustic mode. In principle, this mismatch should reduce the amplitude of dynamics and may expand the operating margin for stable combustion conditions. In this paper, a 30 kW laboratory combustor with two premixed fuel injectors is used to study the effect of impedance mismatch on combustion stability. The two fuel injectors are equipped with variable geometry resonators that allow a survey of dynamic stability while changing the impedance of the individual fuel systems. Results demonstrate that a wide variation in dynamic response can be achieved by combining different impedance fuel injectors. A base line 7% rms pressure oscillation was reduced to less than 3% by mismatching the fuel impedance.

  5. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  6. Straw pellets as fuel in biomass combustion units

    SciTech Connect

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  7. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  8. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  9. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  10. Liquid fuel combustion within silicon-carbide coated carbon foam

    SciTech Connect

    Vijaykant, S.; Agrawal, Ajay K.

    2007-10-15

    Combustion of kerosene inside porous inert medium (PIM) has been investigated with the goal of reducing the emissions of nitric oxides (NO{sub x}), carbon monoxide (CO) and soot. Silicon-carbide (SiC) coated carbon foam is used as PIM to attain high structural strength. The two-zone porous burner design consists of preheat and combustion sections. Different PIM configurations were tested by stacking together square porous pieces of 2.5 cm thickness. Two types of fuel injectors are considered: (i) in the air-assist injector, approximately 5% of the combustion air is used for atomization and the remaining air enters as the primary co-flow around the injector, and (ii) in the swirling-air injector, all of the combustion air enters the injector to create a swirling flow around the fuel jet to enhance atomization and fuel-air premixing. The distance between the injector and PIM inlet is a key operational parameter, which was varied in experiments with both injectors over a range of equivalence ratios and heat release rates. The NO{sub x} and CO emissions were measured to optimize the PIM configuration with minimum emissions. Results show stable combustion over a wide operating range. Three combustor operational regimes are identified depending upon the injector location. (author)

  11. Solid Surface Combustion Experiment: Thick Fuel Results

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Bhattacharjee, Subrata; West, Jeff; Tang, Lin; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The results of experiments for spread over polymethylmethacrylate, PMMA, samples in the microgravity environment of the Space Shuttle are described. The results are coupled with modelling in an effort to describe the physics of the spread process for thick fuels in a quiescent, microgravity environment and uncover differences between thin and thick fuels. A quenching phenomenon not present for thin fuels is delineated, namely the fact that for thick fuels the possibility exists that, absent an opposing flow of sufficient strength to press the flame close enough to the fuel surface to allow the heated layer in the solid to develop, the heated layer fails to become 'fully developed.' The result is that the flame slows, which in turn causes an increase in the relative radiative loss from the flame, leading eventually to extinction. This potential inability of a thick fuel to develop a steady spread rate is not present for a thin fuel because the heated layer is the fuel thickness, which reaches a uniform temperature across the thickness relatively rapidly.

  12. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  13. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  14. Fundamental combustion studies of emulsified fuels. Annual progress report, October 1, 1979-September 30, 1980

    SciTech Connect

    Kennedy, I M

    1980-01-01

    A research program in the Fuels Research Laboratory at Princeton University has provided fundamental information on the combustion properties of emulsions and multi-component fuel mixtures. Particular attention has been given to understanding the phenomenon of micro-explosions and disruptive combustion. Earlier work which investigated the behavior of n-paraffin and water emulsions, binary mixtures of n-paraffins, and solutions of alcohol with n-paraffins has been completed and is now published in the open literature. This work has been extended during the current contract period to the study of the droplet combustion of a No. 2 fuel oil. Both emulsions with water and solutions of alcohols were investigated and very useful data were generated with regard to the optimization of the disruption phenomenon in terms of additive content. In addition, some preliminary work has been done with micro-emulsions. This indicated the importance of further work to elucidate the role of surfactant loading. Theoretical work on the growth of gaseous bubbles in fuel droplets has helped to define some of the controlling parameters in the disruption phenomenon. Finally the design of a new free droplet apparatus has been completed and a novel optical diagnostic technique for droplet sizing is near completion. This program has generated information which is of general interest in the field of droplet combustion and represents a considerable advance in our understanding of fuel related combustion phenomena.

  15. Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion

    E-print Network

    Shroll, Andrew Philip

    2011-01-01

    Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to ...

  16. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  17. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Fire Protection 77.1105...

  18. Fireside Corrosion in Oxy-Fuel Combustion of Coal

    SciTech Connect

    Holcomb, Gordon R.; Tylczak, Joseph; Meier, G.H.; Jung. K.; Mu, N.; Yanar, N.M.; Pettit, F.S.

    2012-08-01

    Oxy-fuel combustion is based on burning fossil fuels in a mixture of recirculated flue gas and oxygen, rather than in air. An optimized oxy-combustion power plant will have ultra-low emissions since the flue gas that results from oxy-fuel combustion consists almost entirely of CO2 and water vapor. Once the water vapor is condensed, it is relatively easy to sequester the CO2 so that it does not escape into the atmosphere. A variety of laboratory tests comparing air-firing to oxy-firing conditions, and tests examining specific simpler combinations of oxidants, were conducted at 650-700 C. Alloys studied included model Fe-Cr and Ni-Cr alloys, commercial ferritic steels, austenitic steels, and nickel base superalloys. The observed corrosion behavior shows accelerated corrosion even with sulfate additions that remain solid at the tested temperatures, encapsulation of ash components in outer iron oxide scales, and a differentiation between oxy-fuel combustion flue gas recirculation choices.

  19. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  20. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  1. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  2. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  3. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  4. Electrostatic fuel conditioning of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  5. Explosively Driven Combustion of Shock-Dispersed Fuels

    NASA Astrophysics Data System (ADS)

    Neuwald, P.

    2006-07-01

    The paper presents small-scale experiments with 1-g charges that explore the topic of post-detonation energy release due to the combustion of explosively dispersed fuels in the ambient air. To this end we have designed a new prototype small-scale charge, called Shock-Dispersed Fuel (SDF) charge. It consists of a lightweight, small paper cylinder filled with about one gram of a combustible powder (e.g., flake aluminum) surrounding a spherical PETN booster of 0.5 g. We have tested the SDF charges in a number of different environments, realized as closed steel vessels of simple geometry (barometric bombs). Three of the bombs vary in volume (6.6 1, 21.2 1 and 40.5 1), while their aspect ratio L/D is kept constant at about 1. Two further bombs are comparable to the smallest bomb in volume (6.3 1), but provide different aspect ratios: L/D = 4.6 and 12.5. In addition, we have also performed tests in a tunnel-model with an L/D = 37.5. Our basic goal is to assess the performance of the charges by means of the combustion-related pressure built-up. Thus we contrast experiments on SDF charges in air with tests in nitrogen, to inhibit combustion, and with tests on conventional charges. Experiments and theoretical estimates on the expected overpressure allow one to formulate various indicators of the combustion effectiveness. For SDF charges these indicate that the combustion effectiveness decreases with increasing volume of the barometric bomb, and also with increasing aspect ratio at constant volume. This bears importance to the performance of SDF charges in tunnel environments. The performance losses reflect at least in part geometry-specific constraints on the mixing between fuel and air.

  6. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  7. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  8. Fuel injector nozzle for an internal combustion engine

    SciTech Connect

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  9. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  10. Fuel Injector Nozzle For An Internal Combustion Engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr.; Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  11. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect

    Han, Manbae; Cho, Kukwon; Sluder, Scott; Wagner, Robert M

    2008-01-01

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  12. Evaluation of Planck mean coefficients for particle radiative properties in combustion environments

    NASA Astrophysics Data System (ADS)

    Hofgren, Henrik; Sundn, Bengt

    2014-09-01

    Thermal radiation is the dominating form of heat transfer in several combustion technologies that combust solid fuels, such as pulverized coal combustion and fixed bed combustion. The thermal radiation originates from the hot combustion gases and particles. For accurate modelling of thermal radiation in these environments the selection of the radiative transport model and radiative property model is important. Radiative property models for gases have received huge attention and several well documented models exist. For particles, soot has received considerable attention whereas other particles have not to a similar extent. The Planck mean coefficients are most commonly used to describe the radiative properties of the particles. For gases the Planck mean absorption coefficient is known to give large deviations from recognised exact models in predicting the radiative heat transfer. In this study the use of Planck mean coefficients for particles are investigated and compared to spectral models. Two particle mass size distributions of fly ash are used, representing biomass and coal combustion. The evaluation is conducted in several combustion-like test cases with both gases and particles. The evaluation shows that using Planck mean coefficients for particles, in combustion-like situations, can give large errors in predicting the radiative heat flux and especially the source term. A new weighted sum of grey gas approach is tested and evaluated. It includes both the particles and gases to better account for the non-greyness of the fly ash absorption coefficient.

  13. Evaluation of Planck mean coefficients for particle radiative properties in combustion environments

    NASA Astrophysics Data System (ADS)

    Hofgren, Henrik; Sundn, Bengt

    2015-04-01

    Thermal radiation is the dominating form of heat transfer in several combustion technologies that combust solid fuels, such as pulverized coal combustion and fixed bed combustion. The thermal radiation originates from the hot combustion gases and particles. For accurate modelling of thermal radiation in these environments the selection of the radiative transport model and radiative property model is important. Radiative property models for gases have received huge attention and several well documented models exist. For particles, soot has received considerable attention whereas other particles have not to a similar extent. The Planck mean coefficients are most commonly used to describe the radiative properties of the particles. For gases the Planck mean absorption coefficient is known to give large deviations from recognised exact models in predicting the radiative heat transfer. In this study the use of Planck mean coefficients for particles are investigated and compared to spectral models. Two particle mass size distributions of fly ash are used, representing biomass and coal combustion. The evaluation is conducted in several combustion-like test cases with both gases and particles. The evaluation shows that using Planck mean coefficients for particles, in combustion-like situations, can give large errors in predicting the radiative heat flux and especially the source term. A new weighted sum of grey gas approach is tested and evaluated. It includes both the particles and gases to better account for the non-greyness of the fly ash absorption coefficient.

  14. Combustion properties of Illinois coal-char blends

    SciTech Connect

    DeBarr, J.A.; Rostam-Abadi, M.; Benson, S.A.

    1996-12-31

    The principal product (about 60-70 percent by weight) of mild gasification (MG) processes is a partially devolatilized coal (herein referred to as char) that must be effectively utilized to help the overall economics of the process. The loss of volatile matter (VM) indicates loss of hydrocarbon materials from the coal that are desirable for ignition, carbon burn-out and flame stability. In addition, the chars produced from processing high-sulfur Illinois coals still contain a high residual sulfur content which, when burned directly, would exceed the years 1995 and 2000 emissions limits of 2.5 and 1.2 lbs SO{sub 2}/MMBtu. Recent research suggests that MG of a high-sulfur Illinois coal followed by a low temperature oxidation step may produce a low-sulfur char with considerable VM. One potential use of a low sulfur-char is as a compliance fuel burned in a boiler designed to burn low-volatile fuels. The char could also be burned in conventional pulverized coal (PC) boilers with or without an auxiliary fuel such as methane or by blending with high-sulfur Illinois coal or low-sulfur Western coal. However, the combustion characteristics of low-sulfur chars have not been researched extensively. Previous results obtained at the Illinois State Geological Survey (ISGS) indicate that the char derived under MG conditions, when mixed with coal to make a 25% VM blend, can be burned with an acceptable combustion efficiency in PC boilers. This paper describes our efforts to prepare a low-sulfur char from Illinois coal, blend this char with the parent coal, and determine the combustion properties of the char and coal-char blends.

  15. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  16. Sonically Enhanced Combustion of Coal Water Slurry Fuel.

    NASA Astrophysics Data System (ADS)

    Ramachandran, Prakash

    1990-01-01

    An investigation was performed to demonstrate that a high intensity acoustic field can enhance the convective transfer processes occurring during CWSF (coal water slurry fuel) combustion. It was carried out in a 300,000 Btu/h sonic combustor. For the runs conducted, SPLs of 156 dB and 145 dB, respectively, were measured below the fuel injection point and before the exit to the combustor. Frequency was held at 1400 Hz. Combustion efficiency was improved when the extent of burnout was well below 100% and when the droplet size distribution was relatively coarse. The maximum improvement in burnout was 7.9%, under the coarsest atomization conditions investigated. Results from modelling show that sonically enhanced heat transfer plays a negligible role in improving the rate of combustion of CWSF. However, such enhancement may well be important for other applications (e.g. spray drying) involving longer drying times and/or small steady slip velocities. The application of a sonic field improves the rate of combustion of CWSF mainly through increased mass transfer rates, the enhancement being greatest for relatively coarse atomization. It is commonly accepted that the largest particles of fuel are the most likely to avoid full burnout in a practical combustor and thus contribute to erosion, slagging, and fouling via inertial mechanisms. By acting preferentially on these particles, operational difficulties can be minimized.

  17. Sonically enhanced combustion of coal water slurry fuel

    SciTech Connect

    Ramachandran, P.

    1990-01-01

    An investigation was performed to demonstrate that a high intensity acoustic field can enhance the convective transfer processes occurring during CWSF (coal water slurry fuel) combustion. It was carried out in a 300,000 Btu/h sonic combustor. For the runs conducted, SPLs of 156 dB and 145 dB, respectively, were measured below the fuel injection point and before the exit to the combustor. Frequency was held at 1,400 Hz. Combustion efficiency was improved when the extent of burnout was well below 100% and when the droplet size distribution was relatively coarse. The maximum improvement in burnout was 7.9%, under the coarsest atomization conditions investigated. Results from modelling show that sonically enhanced heat transfer plays a negligible role in improving the rate of combustion of CWSF. However, such enhancement may well be important for other applications (e.g. spray drying) involving longer drying times and/or small steady slip velocities. The application of a sonic field improves the rate of combustion of CWSF mainly through increased mass transfer rates, the enhancement being greatest for relatively coarse atomization. It is commonly accepted that the largest particles of fuel are the most likely to avoid full burnout in a practical combustor and thus contribute to erosion, slagging, and fouling via inertial mechanisms. By acting preferentially on these particles, operational difficulties can be minimized.

  18. Combustion in a Bomb with a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Cohn, Mildred; Spencer, Robert C

    1935-01-01

    Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.

  19. Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz

    E-print Network

    Jacob, Daniel J.

    Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz Advanced Study University, Cambridge, MA 02138 (email djj@io.harvard.edu) #12; Abstract. Fossil fuel combustion of fossil fuel combustion on the global distribution of NO x . In the model, we tag fossil fuel NO x and its

  20. Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels

    E-print Network

    Vittilapuram Subramanian, Kannan

    2006-04-12

    The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been ...

  1. Fuel effects on gas turbine engine combustion. Final report 31 Sep 81-1 Jan 83

    SciTech Connect

    Ernst, R.C.; Andreadis, D.

    1983-06-01

    The objective of this study was to develop and/or improve correlations of fuel properties and engine design with combustion performance and hot section durability. The data base consisted primarily of fuel effect data obtained over the past four years under a number of DoD contracts. The approach taken was first to develop fuel effect correlations for specific combustor configurations, then to tie together these correlations using engine design parameters thereby allowing prediction of fuel effects in any current or future aircraft gas turbine combustion system. In most cases statistical analysis was used to identify the correlating variables. The relationships developed for individual combustors were then correlated with combustor design and operating parameters that were influence by fuel differences.

  2. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    SciTech Connect

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  3. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  4. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  5. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  6. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  7. Hybrid rocket fuel combustion and regression rate study

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Ray, R. L.; Anderson, F. A.; Cohen, N. S.

    1992-01-01

    The objectives of this study are to develop hybrid fuels (1) with higher regression rates and reduced dependence on fuel grain geometry and (2) that maximize potential specific impulse using low-cost materials. A hybrid slab window motor system was developed to screen candidate fuels - their combustion behavior and regression rate. Combustion behavior diagnostics consisted of video and high speed motion pictures coverage. The mean fuel regression rates were determined by before and after measurements of the fuel slabs. The fuel for this initial investigation consisted of hydroxyl-terminated polybutadiene binder with coal and aluminum fillers. At low oxidizer flux levels (and corresponding fuel regression rates) the filled-binder fuels burn in a layered fashion, forming an aluminum containing binder/coal surface melt that, in turn, forms into filigrees or flakes that are stripped off by the crossflow. This melt process appears to diminish with increasing oxidizer flux level. Heat transfer by radiation is a significant contributor, producing the desired increase in magnitude and reduction in flow dependency (power law exponent) of the fuel regression rate.

  8. A coal-fueled combustion turbine cogeneration system with topping combustion

    SciTech Connect

    Beer, J.M.; Garland, R.V.

    1997-01-01

    Cogeneration systems fired with coal or other solid fuels and containing conventional extracting-condensing or back pressure steam turbines can be found throughout the world. A potentially more economical plant of higher output per unit thermal energy is presented that employs a pressurized fluidized bed (PFB) and coal carbonizer. The carbonizer produces a char that is fed to the PFB and a low heating value fuel gas that is utilized in a topping combustion system. The topping combustor provides the means for achieving state-of-the-art turbine inlet temperatures and is the main contributor to enhancing the plant performance. An alternative to this fully coal-fired system is the partially coal, partially natural gas-fired air heater topping combustion cycle. In this cycle compressed air is preheated in an atmospheric pressure coal-fired boiler and its temperature raised further by burning natural gas in a topping gas turbine combustor. The coal fired boiler also generates steam for use in a cogeneration combined cycle. The conceptual design of the combustion turbine is presented with special emphasis on the low-emissions multiannular swirl burner topping combustion system and its special requirements and features.

  9. Aerodynamic properties of turbulent combustion fields

    NASA Technical Reports Server (NTRS)

    Hsiao, C. C.; Oppenheim, A. K.

    1985-01-01

    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

  10. Fuel-Air Mixing and Combustion in Scramjets. Chapter 6

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

    2006-01-01

    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

  11. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  12. Small-scale combustion testing of synthetic fuels

    SciTech Connect

    Gibbon, G.A.; Ekmann, J.M.; White, C.M.; Navadauskas, R.J.; Joubert, J.I.; Retcofsky, H.L.

    1981-11-01

    In order to assess the possible environmental impact of substituting synfuels for petroleum in utility and industrial boilers, two experimental programs have been undertaken at the Pittsburgh Energy Technology Center. First, a fully instrumented 20-hp firetube boiler capable of burning liquid fuels ranging in combustion characteristics from No. 2 to No. 6 petroleum has been installed in the Combustion Division. Second, a sampling and analytical methodology for the organic compounds present in the exhaust duct of the 20-hp boiler is being developed by the Analytical Chemistry Division. This report outlines the progress on this project to date: twenty-four successful combustion runs have been completed on the 20-hp boiler, using a variety of petroleum-based fuels and synfuels; a sampling protocol for organic vapors in hot exhaust gases has been developed; significant differences in the composition of the trace organics in the exhaust gases have been observed as a function of the fuel being burned, but total polynuclear aromatic hydrocarbon levels are comparable for all fuels.

  13. Elimination of abnormal combustion in a hydrogen-fueled engine

    SciTech Connect

    Swain, M.R.; Swain, M.N.

    1995-11-01

    This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

  14. Combustion properties of Kraft Black Liquors

    SciTech Connect

    Frederick, W.J. Jr.; Hupa, M. )

    1993-04-01

    In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysis of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.

  15. Santilli's new fuels as sources of clean combustion

    NASA Astrophysics Data System (ADS)

    Sarma, Indrani B. Das

    2013-10-01

    Molecular combustion or nuclear fission is the conventional source of energy, which are not clean as they generate large amount of green house gas or nuclear waste. Clean energy can be obtained by harnessing renewable energy sources like solar, wind, etc. However, each of these sources has their own limitations and is dependent on geographical locations. The modern day demand of clean, cheap and abundant energy gets fulfilled by the novel fuels that have been developed through hadronic mechanics/chemistry. In the present paper, a short review on such novel fuels like Hadronic energy of non-nuclear type (combustion of MagneGas) and nuclear type (intermediate controlled nuclear fusion and particle type like stimulated neutron decay) has been presented.

  16. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a...

  17. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a...

  18. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a...

  19. Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz

    E-print Network

    Jacob, Daniel J.

    Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz Advanced Study Program, MA 02138 (email djj@io.harvard.edu) #12;Abstract. Fossil fuel combustion is the largest global source-dimensional model of tropospheric chemistry and transport to study the impact of fossil fuel combustion

  20. Pressure Effects in Droplet Combustion of Miscible Binary Fuels

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Habara, Osamu; Kono, Michikata; Sato, Jun-Ichi; Dietrich, Daniel L.; Williams, Forman A.

    1997-01-01

    The objective of this research is to improve understanding of the combustion of binary fuel mixtures in the vicinity of the critical point. Fiber-supported droplets of mixtures of n-heptane and n-hexadecane, initially 1 mm in diameter, were burned in room-temperature air at pressures from 1 MPa to 6 MPa under free-fall microgravity conditions. For most mixtures the total burning time was observed to achieve a minimum value at pressures well above the critical pressure of either of the pure fuels. This behavior is explained in terms of critical mixing conditions of a ternary system consisting of the two fuels and nitrogen. The importance of inert-gas dissolution in the liquid fuel near the critical point is thereby re-emphasized, and nonmonotonic dependence of dissolution on initial fuel composition is demonstrated. The results provide information that can be used to estimate high-pressure burning rates of fuel mixtures.

  1. Apparatus and method for solid fuel chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  2. Nanocluster initiation of combustion of off-grade hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Pashchenko, S. .; Salomatov, V. V.

    2010-09-01

    We have performed large-scale experiments on burning, in the regime of nanocluster pulsating combustion, such off-grade fuels as straw oil, hydrocarbon fuel, exhaust crankcase waste, crude oil, and others on the laboratory prototype of the self-contained burner of the Institute of Thermal Physics, Siberian Branch of the Russian Academy of Sciences. The application of modern diagnostics has made it possible to obtain a large body of information on the features of the physicochemical processes of such combustion in the presence of superheated steam. The experimental and theoretical studies have shown that as a result of the heterogeneouscatalytic decomposition of water molecules on soot nanoclusters in the mixing zone, high concentrations of the OH radical are formed and that this decomposition can be effective on carbon particles of size 1-5 nm at temperatures characteristic of traditional flares. The generation of an active OH radical leads to a significant increase in the rates of chemical reactions and a stable high-temperature combustion of "heavy" fuels with the observance of ecological norms.

  3. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    PubMed

    Iano?, Robert; Istratie, Roxana; P?curariu, Cornelia; Laz?u, Radu

    2015-12-23

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 C - urea, 941 C - glycine) were much lower than the calculated adiabatic temperatures (1864 C - urea, 2147 C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (?,?)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 C), which was relatively close to the calculated adiabatic temperature (1930 C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure ?-SrAl2O4 directly from the combustion reaction. PMID:26661942

  4. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  5. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

    2012-05-20

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions.

  6. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  7. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  8. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  9. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  10. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    PubMed

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. PMID:26386413

  11. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  12. Fuel Governor Augmented Control of Recompression HCCI Combustion During Large Load Transients

    E-print Network

    Stefanopoulou, Anna

    requires careful regulation of the temperature, pressure and composition of the pre-combustion cylinderFuel Governor Augmented Control of Recompression HCCI Combustion During Large Load Transients Shyam combustion phasing using a mid-ranging control strategy. A fuel governor is then added on to the compensated

  13. Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion

    E-print Network

    Abu-Khamsin, Sidqi

    the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysisPaper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed

  14. Aalborg Universitet Modeling of large-scale oxy-fuel combustion processes

    E-print Network

    Yin, Chungen

    @et.aau.dk Introduction Oxy-fuel combustion is a promising carbon capture and storage technology and has gained increasing-fuel combustion, among which radiative heat transfer and combustion chemistry are two of the fundamental issues of natural gas". Table 1. The three global mechanisms: "WD", "WD_refined", "JL_refined". No Reactions Rate

  15. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  16. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...determine the total sulfur content of the turbine's combustion fuel? 60.4360 Section...of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must...

  17. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...determine the total sulfur content of the turbine's combustion fuel? 60.4360 Section...of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must...

  18. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...determine the total sulfur content of the turbine's combustion fuel? 60.4360 Section...of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must...

  19. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...determine the total sulfur content of the turbine's combustion fuel? 60.4360 Section...of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must...

  20. Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine

    E-print Network

    Cedrone, Kevin David

    2010-01-01

    There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

  1. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Myllri, Fanni; Karjalainen, Panu; Teinil, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemel, Ville; Hyrinen, Anna; Rautiainen, Jani; Kytmki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rnkk, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study. PMID:24328080

  2. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  3. Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products

    SciTech Connect

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

  4. Fuel properties of cottonseed oil

    SciTech Connect

    Karaosmanoglu, F.; Tueter, M.; Goellue, E.; Yanmaz, S.; Altintig, E.

    1999-11-01

    The use of vegetable oils as fuel alternatives has an exceptional importance in the field of research. In this study, evaluation possibilities of cottonseed oil have been investigated as an alternative candidate for diesel fuel and fuel oil. The fuel property tests were performed according to standard analysis methods for oil and fuel. An overall evaluation of the results indicates that cottonseed oil can be proposed as a possible green substitute for fuel.

  5. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H. (Fairmont, WV)

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  6. Method and apparatus for fuel metering in internal combustion engines

    SciTech Connect

    Becker, W.; Boehringer, A.; Eisele, H.

    1982-11-23

    A fuel control system for an internal combustion engine with correction for optimum values based on a variety of factors. Characteristic engine data is stored in preferably digital memories with capabilities for interpolation. Upon addressing the engine data fields with input signals related to current operational variables, for example the accelerator pedal position , the control system derives therefrom a nominal air flow rate which is used as the reference value in a control loop that sets the amount of recycled exhaust gas and the fresh air flow. As the actual air flow rate approaches the reference value, the fuel flow is adjusted to insure correct mixtures at all times. In another embodiment, the fuel is supplied on demand but cannot exceed a maximum value except under special override conditions. Several other embodiments and variants are presented.

  7. Experimental results with hydrogen fueled internal combustion engines

    NASA Technical Reports Server (NTRS)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  8. Combustion characterization of coal-water slurry fuel

    SciTech Connect

    Masudi, Houshang; Samudrala, S.

    1996-12-31

    As a result of coal cleaning operations, a substantial amount of coal is disposed as waste into the ponds, effecting and endangering the environment. This study includes a technique to recover and utilize the waste coal fines from the preparation plant effluent streams and tailing ponds. Due to the large moisture content of the recovered coal fines, this investigation is focused on the utilization of coal fines in the coal-water slurry fuel. It is our belief that a blend of plant coal and waste coal fines can be used to produce a coal-water slurry fuel with the desired combustion characteristics required by the industry. The coal blend is composed of 85% clean coal and 15% recovered coal fines. The coal-water slurry is prepared at 60% solids with a viscosity less than 500 centipose and 80-90% of solid particles passing through 200 mesh. This paper contains analysis of clean coal, recovered coal fines, and coal-water slurry fuel as well as combustion characteristics.

  9. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  10. Analytical fuel property effects--small combustors

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.

    1984-01-01

    The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.

  11. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  12. A jet fuel surrogate formulated by real fuel properties

    SciTech Connect

    Dooley, Stephen; Won, Sang Hee; Chaos, Marcos; Heyne, Joshua; Ju, Yiguang; Dryer, Frederick L.; Kumar, Kamal; Sung, Chih-Jen; Wang, Haowei; Oehlschlaeger, Matthew A.; Santoro, Robert J.; Litzinger, Thomas A.

    2010-12-15

    An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate. (1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O{sub 2}/N{sub 2} and POSF 4658 surrogate/O{sub 2}/N{sub 2} at 12.5 atm and 500-1000 K, fixing the carbon content at 0.3% for both mixtures. (2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames. (3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714 K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675 K) and high temperature (900 K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity. (author)

  13. A Review on Suspended Wood Dust Combustion. Efficiency and Fuel Quality

    NASA Astrophysics Data System (ADS)

    Silins, Kaspars

    2012-09-01

    The paper is dedicated to review the combustion efficiency in low capacity wood dust suspension burners. Fuel quality is reviewed as the main contributor to the combustion efficiency. Wood dust moisture content, particle size and shape, amount of volatiles are discussed as the main contributors. Some additional aspects like burner ignition, fuel and combustion air feeding are reviewed to increase the efficiency. A brief overview of particle combustion process is provided followed by an identification and discussion of combustion efficiency influencing parameters. The significance of fuel feeding and air supply is discussed at the end of the paper.

  14. NASA Broad Specification Fuels Combustion Technology program - Pratt and Whitney Aircraft Phase I results and status

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Fear, J. S.

    1982-01-01

    In connection with increases in the cost of fuels and the reduced availability of high quality petroleum crude, a modification of fuel specifications has been considered to allow acceptance of poorer quality fuels. To obtain the information upon which a selection of appropriate fuels for aircraft can be based, the Broad Specification Fuels Combustion Technology program was formulated by NASA. A description is presented of program-related investigations conducted by an American aerospace company. The specific objective of Phase I of this program has been to evaluate the impact of the use of broadened properties fuels on combustor design through comprehensive combustor rig testing. Attention is given to combustor concepts, experimental evaluation, results obtained with single stage combustors, the stage combustor concept, and the capability of a variable geometry combustor.

  15. Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

    1990-01-01

    Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

  16. Health effects of fossil-fuel combustion products: needed research

    SciTech Connect

    Not Available

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  17. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  18. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  19. Fuel supply apparatus and method for internal combustion engines

    SciTech Connect

    Yamamoto, T.; Oota, T.

    1986-04-01

    A fuel supply apparatus is described for an internal combustion engine consisting of: (a) means for changing the cross-sectional area of an intake air passage leading into the engine in accordance with the operation of an accelerator pedal; (b) means for supplying fuel to the air within the intake air passage at an adjustable rate and causing the fuel to vaporize; (c) means for measuring the difference between the temperature of the intake air before being supplied with fuel and the temperature of the mixture of the intake air and the vaporized fuel; (d) means for determining a target temperature difference; (e) means for sensing an operating condition of the engine; (f) means for correcting the target temperature difference in accordance to the sensed engine operating conditions; (g) means for comparing the measured target difference with the corrected target temperature difference; and (h) means for adjusting the rate of fuel supply in accordance with the result of the comparison between the temperature differences.

  20. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect

    Holcomb, Gordon R; Tylczak, Joseph; Meier, Gerald H; Lutz, Bradley; Jung, Keeyoung; Mu, Nan; Yanar, Nazik M; Pettit, Frederick S; Zhu, Jingxi; Wise, Adam; Laughlin, David E.; Sridhar, Seetharaman

    2013-11-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N2 with CO2 and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model FeCr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Evidence was found for a hreshold for severe attack between 10-4 and 10-3 atm of SO3 at 700C.

  1. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  2. Explosively Driven Combustion of Shock-Dispersed Fuels

    NASA Astrophysics Data System (ADS)

    Neuwald, Peter

    2005-07-01

    Since the eighties our working group has been studying classical blast effects in small-scale experiments using custom-made miniature charges of 0.2 g to 1.5 g PETN. However, in the recent years the interest has shifted towards the performance of non-ideal explosives and the importance of secondary reactions such as after-burning. Thus we have designed an additional charge type, called Shock-Dispersed Fuel (SDF) charge. It consists of a lightweight, small paper cylinder filled with about one gram of a flammable powder (e.g., flake aluminum) surrounding a spherical PETN booster of 0.5 g. We have tested the SDF charges in a number of different environments, realized as closed steel vessels of simple geometry (barometric bombs). Three of the bombs vary in volume (6.6 l, 21.2 l and 40.5 l), while their aspect ratio L/D is kept constant at about 1. Two further bombs are comparable to the smallest bomb in volume (6.3 l), but provide different aspect ratios: L/D = 4.6 and 12.5. In addition, we have also performed tests in a tunnel-model with an L/D = 37.5. Our basic goal is to assess the performance of the charges by means of the combustion-related pressure built-up. Thus we contrast experiments on SDF charges in air with tests in nitrogen, to inhibit combustion, and with tests on conventional charges. Experiments and theoretical estimates on the expected overpressure allow one to formulate various indicators for the observed combustion performance. For SDF charges these indicate that the combustion efficiency decreases not only with increasing volume of the barometric bomb, but also with increasing aspect ratio at constant volume. This bears importance to the performance of SDF charges in tunnel environments. The performance losses reflect -- at least in part -- geometry-specific constraints on the mixing between fuel and air.

  3. Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion

    E-print Network

    Foss, Bjarne A.

    Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion Dagfinn (compared to conventional combustion control). Analysis on the developed model show that secondary injection combustion have been proposed as an alternative to conventional gas turbine cycles for achieving CO2-capture

  4. HIWI-Stelle On Oxy-Fuel Combustion Coal combustion accounts for over 40% of the global electricity supply and is likely to continue to be

    E-print Network

    Peters, Norbert

    HIWI-Stelle On Oxy-Fuel Combustion Coal combustion accounts for over 40% of the global electricity-effective technologies to capture CO2 is becoming increasingly important, particularly for the coal combustion processes for carbon capture while producing electricity is oxy-combustion of coal. In the process of oxy

  5. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    SciTech Connect

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  6. DOES FOSSIL FUEL COMBUSTION LEAD TO GLOBAL WARMING? Stephen E. Schwartz

    E-print Network

    Schwartz, Stephen E.

    DOES FOSSIL FUEL COMBUSTION LEAD TO GLOBAL WARMING? Stephen E. Schwartz Environmental Chemistry of the United States Department of Energy, under Contract No. DE-AC02-76CH00016. #12;Schwartz--Fossil Fuel--Fri, Dec 1, 2006 DOES FOSSIL FUEL COMBUSTION LEAD TO GLOBAL WARMING? Stephen E. Schwartz Environmental

  7. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  8. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    PubMed

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers. PMID:24300845

  9. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  10. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  11. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines

    SciTech Connect

    Bunting, Bruce G; Bunce, Michael

    2012-01-01

    Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

  12. A new comprehensive reaction mechanism for combustion of hydrocarbon fuels

    SciTech Connect

    Ranzi, E.; Sogaro, A.; Gaffuri, P.; Pennati, G.; Westbrook, C.K.; Pitz, W.J.

    1993-12-03

    A chemical kinetic model has been developed which describes pyrolysis, ignition and oxidation of many small hydrocarbon fuels over a wide range of experimental conditions. Fuels include carbon monoxide and hydrogen, methane and other alkane species up to n-butane, ethylene, propene, acetylene, and oxygenated species such as methanol, acetaldehyde and ethanol. Formation of some larger intermediate and product species including benzene, butadiene, large olefins, and cyclopentadiene has been treated in a semi-empirical manner. The reaction mechanism has been tested for conditions that do not involve transport and diffusional processes, including plug flow and stirred reactors, batch reactors and shock tubes. The present kinetic model and its validation differ from previous reaction mechanisms in two ways. First, in addition to conventional combustion data, experiments more commonly associated with chemical engineering problems such as oxidative coupling, oxidative pyrolysis and steam cracking are used to test the reaction mechanism, making it even more general than previous models. In addition, H atom abstraction and some other reaction rates, even for the smaller C{sub 2}, C{sub 3} and C{sub 4} species, are treated using approximations that facilitate future extensions to larger fuels in a convenient manner. Construction of the reaction mechanism and comparisons with experimental data illustrate the generality of the model.

  13. What should be the apparent viscosity target of a coal-water slurry fuel for combustion?

    SciTech Connect

    Pisupati, S.V.; Morrison, J.L.; Scaroni, A.W.

    1997-12-31

    The rheological properties of a coal water slurry fuel (CWSF) affect its handling, atomization, and combustion behavior. The flow behavior and apparent viscosity are two rheological properties that are often specified by the end user. A pseudoplastic (shear thinning) flow behavior is preferred since there is a decrease in the apparent viscosity as the fuel is pumped to, and then atomized into the boiler. Specifying an apparent viscosity target for the CWSF is more problematic since there are often competing forces to maximize the solids loading of the fuel while minimizing the apparent viscosity. The apparent viscosity is a function of the particle size distribution of the coal, the solids loading of the CWSF, the physical and chemical properties of the coal, and the additive package used to prepare the CWSF. Targeting an apparent viscosity is necessary during the formulation and production of a CWSF. The trade off between maximizing the solids loading in order to increase the BTU content and maintaining an acceptable apparent viscosity to ensure good atomization behavior is not well established. In order to better define this trade-off, an investigation was carried out to examine the interrelationship between solids loading, apparent viscosity, atomization behavior, and the combustion performance of a CWSF. The CWSF was prepared in a continuous ball mill and isolated in a storage tank. Small batches of CWSF were taken from the storage tank and then diluted to determine how the changes in the CWSF`s rheology and solids loading affected it`s atomization and combustion behavior.

  14. Predicting various biodiesel fuel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several essential fuel properties of biodiesel are largely determined by the properties of the fatty esters which are its main components. These include cetane number, kinematic viscosity, oxidative stability, and cold flow which are contained in almost all biodiesel standards but also other propert...

  15. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    NASA Astrophysics Data System (ADS)

    Bari?, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  16. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro.

    PubMed

    Uski, O; Jalava, P I; Happo, M S; Torvela, T; Leskinen, J; Mki-Paakkanen, J; Tissari, J; Sippula, O; Lamberg, H; Jokiniemi, J; Hirvonen, M-R

    2015-04-01

    Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24h to different doses (15, 50,150 and 300 ?g ml(-1)) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM. PMID:25553547

  17. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  18. CHARACTERIZATION OF EMISSIONS FROM THE COMBUSTION OF WOOD AND ALTERNATIVE FUELS IN A RESIDENTIAL WOODSTOVE

    EPA Science Inventory

    The report gives results of a comparison of emissions from the combustion of alternative fuels to those from wood in a residential woodstove, and of a study of the effects of woodstove operating parameters on combustion emissions. Overall, oak wood is the best fuel tested, consid...

  19. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  20. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    EPA Science Inventory

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  1. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  2. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  3. Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air

    E-print Network

    Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

    1980-01-01

    The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

  4. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  5. Effect [of] co-combustion of sewage sludge and biomass on combustion behavior and emissions in pulverized fuel systems

    SciTech Connect

    Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Biomass not only has a considerable potential as an additional fuel source but also shows a reasonable cost level in comparison to other renewable energies. The practicable fuel types are both residual material from forestry and agriculture, such as wood or straw, and especially cultivated reproducible feedstock such as Miscanthus Sinensis, whole cereal plants, poplars, or willows. Besides as single fuel, it is also considered to be sensible to utilize biomass in co-combustion in existing firing systems, such as pc-fired power stations. Biomass or sewage sludge utilized as additional fuel in coal combustion systems has consequences on combustion behavior, emissions, corrosion and residual matter. The effects of burning sewage sludge and agricultural residuals such as straw and manure as well as specially grown energy plants in combination with coal were studied in a 0.5 MW pulverized fuel test facility and a 20 kW electrically heated combustor. A major aspect of the investigations had been the required preparation and milling of the additional fuels. The investigations showed that in co-combustion of straw with coal, a grinding of 6 mm and finer is sufficient. The definitely coarser milling degree of biomass delays combustion and is observable by in-flame measurements. The investigations reveal that biomass addition has a positive effect on emissions. Since biomass in most cases contains considerably less sulphur than coal, an increasing biomass share in the thermal output makes the SO{sub 2} emissions decrease proportionally. In addition, SO{sub 2} can partly be captured in the ash by the alkaline-earth fractions of the biomass ash. As for sewage sludge, the emissions of SO{sub 2} correlate with the sulphur content of the fuel and, hence, rise with an increasing share of this biomass. Independently from the type, biomass shows a considerably stronger release of volatile matter. This latter fact may have a positive impact on NOx emissions when NOx-reducing techniques are applied. Within the framework of these investigations the following configurations were used: (1) unstaged combustion with preblending of coal and biomass, (2) air-staged combustion with preblending of coal and biomass, (3) reburning with biomass as reduction fuel, and (4) various burner configurations. The results show that the burner design and operation mode have a great influence on the NOx emissions of combined flames. Air staging and reburning are effective measures to reduce the NOx emissions of combined fuels. NOx emissions smaller than 300 mg/m at 6% O{sub 2} can be reached with all fuels.

  6. Analysis of fuel oxidation in in-situ combustion oil recovery: SUPRI TR-26

    SciTech Connect

    Fassihi, M.R.; Brigham, W.E.

    1981-06-01

    In-situ combustion is a thermal method of enhanced oil recovery whereby oil is ignited underground, creating a combustion front which is propagated through the reservoir by continuous air injection. In recent years, results of laboratory and field experiments have been reported in literature describing the forward combustion process, but as yet, only limited qualitative or quantitative studies of the kinetics of fuel combustion involved in this process have been reported. The main purpose of this work was to study the oxidation reaction kinetics in the forward combustion oil recovery process. To accomplish this, an apparatus was designed. A total of 31 runs were made wherein a thin, stationary layer of oil sand was oxidized isothermally in a combustion cell. Individual runs were made at various temperatures, pressures, and flow rates to permit determination of the effects of these variables upon the reaction. In addition, regular combustion tube experiments were run to assess the importance of process variables on frontal behavior.

  7. Effects of fuel cracking on combustion characteristics of a supersonic model combustor

    NASA Astrophysics Data System (ADS)

    Zhong, Zhan; Wang, Zhenguo; Sun, Mingbo

    2015-05-01

    The compositions of endothermic hydrocarbon fuels in cooling channels of regenerative cooled scramjet engines change along with fuel cracking. To investigate the effect of fuel compositions variation resulting from cracking on the combustion characteristics of supersonic combustors, a series of combustion tests with a wide range of equivalence ratios were conducted in a direct-connected test rig under the inflow conditions of Ma=3.46 and Tt=1430 K. The combustion characteristics of room temperature ethylene and vaporized China no. 3 aviation kerosene (RP-3) with negligible cracking were analyzed and compared based on the measured static pressure distributions along the combustor wall, fuel specific impulses, flame luminosity images and the one-dimensional average flow parameter distributions calculated by a quasi-one-dimensional data analysis method. The experimental results showed that the differences between the combustion characteristics of vaporized RP-3 and ethylene were sensitive to equivalence ratio. Under low equivalence ratios, vaporized RP-3 and ethylene had remarkably different combustion characteristics. Ethylene had an obvious higher static pressure level, specific impulse and combustion efficiency than vaporized RP-3 for its higher activity. The difference of combustion performance between vaporized RP-3 and ethylene was narrowed with the increase of equivalence ratio and the corresponding combustion condition improvement. When the equivalence ratio increased to 1.09, vaporized RP-3 and ethylene had tiny difference in combustion performance.

  8. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    NASA Astrophysics Data System (ADS)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  9. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  10. Formation of oxides of nitrogen in monodisperse spray combustion of hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Nizami, A. A.; Singh, S.; Cernansky, N. P.

    1982-01-01

    Experimental results of exit plane NO/NO(x) emissions from atmospheric monodisperse fuel spray combustion are presented. Six different hydrocarbon fuels were studied: isopropanol, n-propanol, n-octane, iso-octane, n-heptane and methanol. The results indicate an optimum droplet size for minimizing NO/NO(x) production for all of the test fuels. At the optimum droplet diameter, reductions in NO/NO(x) relative to the NO(x) occurred at droplet diameters of 55 and 48 microns respectively, as compared to a 50-micron droplet size for isopropanol. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties. Estimates are also given for the behavior of heavy fuels and of polydisperse fuel sprays in shifting the minimum NO(x) point compared to a monodisperse situation.

  11. Combustion and emissions characterization of pelletized coal fuels. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Rajan, S.

    1993-12-31

    The feasibility of converting waste preparation plant coal streams into marketable fuels with good combustion and emissions properties has been investigated in this project. Coal pellets containing both hydrated lime and limestone as sorbents were made from a flotation column waste feedstock under a related Illinois Clean Coal Institute project. These pellets, which contain sorbent with Ca/S ratio varying from 0.8 to 2.4 were successfully burnt in a 4-inch internal diameter circulating fluidized bed combustor. Emissions levels of sulfur dioxide, oxides of nitrogen and hydrogen chloride were measured as a function of bed temperature. Mineral matter analyses of the combustion generated ash was made, and combustion efficiencies were studied. The pellet coals combustion performance was compared to that of an Illinois No. 6 run-of-mine coal from the same preparation plant. Results show that the coal pellets, produced from the flotation column waste stream, are excellent fluidized bed combustor fuels. Calcium hydroxide impregnated pellets yielded lower sulfur dioxide emissions than limestone sorbent pellets for the same Ca/S ratio. Increase in Ca/S ratio with the hydrated lime sorbent produced a more rapid decline in sulfur dioxide emissions than with the limestone sorbent. Oxides of nitrogen emissions were generally on the order of 0.3 to 0.4 lbs/10{sup 6} Btu. Hydrogen chloride emissions were found to be influenced more by Ca/S ratios than by bed temperature, and varied in the range of 0.0075 to 0.055 lbs/10{sup 6} Btu in the present tests. Combustion efficiencies of the pellet fuels were about 98% without secondary cyclones recycle. EDX analysis of the mineral matter in the raw coal and the combustion-generated ash samples sheds light on the mineral transformations during combustion.

  12. Trapped Vortex Combustion Chamber: Design and Experimental Investigations Using Hydrogen as Fuel

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, D. B.; Channiwala, S. A.

    2014-01-01

    The design of trapped vortex combustion chamber was undertaken as a part of ongoing research on micro combustion chamber using hydrogen as fuel. The reacting experimental studies were then carried out on the designed chamber. The fuel was injected directly into the cavity. The combustion was first initiated in the cavity with 3 % of the main flow air supplied in reverse direction to the fuel flow. The combustion in cavity was of rich type. Temperature levels in the range of 900 K were encountered in the cavity. Thereafter, diffusion combustion was initiated using the flame generated in the cavity. The temperature levels in this stage were in the range of 1,800 K. The overall pressure drop for a trapped vortex combustor was less than 5 % at all operating parameters.

  13. Combustion and heat transfer in a high speed diesel engine operating with rape seed oil methyl ester fuel

    NASA Astrophysics Data System (ADS)

    Turunen, R.

    The properties of RME (rape seed oil methyl ester) as a fuel for a diesel engine have been investigated theoretically and experimentally. The experiments were made with a turbocharged high-speed DI engine. During experiments the specific fuel consumption, exhaust gas emissions, heat release rate, flame temperature and the temperatures of the combustion chamber walls were measured. A test was also made using the measured flame temperature as an initial value for a two-zone combustion model. The theoretical investigations show that it is possible to achieve with RME approximately the same power as with ordinary diesel fuel from the same cylinder volume. The fuels give very similar theoretical (ideal) working cycles and also the efficiencies of the cycles are very near to each other.

  14. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-print Network

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    premixed flames of variable burning velocity. Combustion andfluctuating pressures and velocities and the flame response.flame front distance from droplet center r s droplet radius t time T a acoustic time period u velocity

  15. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    EPA Science Inventory

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW-rated fire-tube boiler yielded a weakly bimodal PM size distribution (PSD) with over...

  16. Combustion Instability: Liquid-Propellant Rockets and Liquid-Fueled Ramjets

    E-print Network

    Heydari, Payam

    Combustion Instability: Liquid-Propellant Rockets and Liquid-Fueled Ramjets William A. Sirignano Mechanical and Aerospace Engineering University of California, Irvine Linear Theory Nonlinear Theory Nozzle;Linearization and separation of variables in cylindrical combustion chamber #12;Wall Boundary Condition

  17. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    EPA Science Inventory

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW fire-tube boiler yielded a weakly bi-modal particulate size distribution (PSD) with...

  18. Investigation of thermal and environmental characteristics of combustion of gaseous fuels

    NASA Astrophysics Data System (ADS)

    Vetkin, A. V.; Suris, A. L.

    2015-03-01

    Numerical investigations are fulfilled for some thermal and environmental characteristics of combustion of gaseous fuels used at present in tube furnaces of petroleum refineries. The effect of the fuel composition on these characteristics is shown and probable consequences of the substitution of natural gas to other types of fuels. Methane, ethane, propane, butane, propylene, and hydrogen are considered for comparison, which in most cases are constituents of the composition of the fuel burnt in furnaces. The effect of the fuel type, its associated combustion temperature, combustion product emissivity, temperature of combustion chamber walls, mean beam length, and heat release on the variation in the radiant heat flux within the radiant chamber of furnaces is investigated. The effect of flame characteristics, which are determined by the presence of diffusion combustion zones formed by burners used at present in furnaces for reducing nitrogen oxides emission, is analyzed. The effect of the fuel type on the equilibrium NO concentration is also investigated. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures dependent on the adiabatic combustion temperature and the temperature at the chamber output and determined based on solving a set of equations at various heat-release rates of the combustion chamber.

  19. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    SciTech Connect

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  20. Controlling the composition, microstructure, electrical and magnetic properties of LiFe5O8 powders synthesized by sol gel auto-combustion method using urea as a fuel

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; El-Shaarawy, M. G.; Shash, N. M.; Maklad, M. H.; Afifi, F. A.

    2015-01-01

    Nanocrystalline lithium ferrite LiFe5O8 powders were synthesized by the sol gel auto-combustion method from the corresponding metal nitrates using urea as a fuel. DTA results showed that the LiFe5O8 phase started to form at temperature around 385 C. X-ray diffraction analysis indicates that all compositions were formed in a single-phase cubic spinel structure at different annealing temperatures from 400 to 800 C for 2 h. The lattice parameter was found to decrease whereas the particle size was increased with annealing temperature. The frequency exponent "s" of lithium ferrite lies in the range 0.5?s?1, which confirmed the electron hopping between Fe2+ and Fe3+ ions. The electron mobility in LiFe5O8 samples ranged from 0.05 to 0.29 eV, which clearly indicated that the present lithium ferrites have semiconductor-like behavior. The saturation magnetization was increased on increasing the annealing temperature up to 800 C. High saturation magnetization (Ms=51.9 emu/g) was achieved for the ferrite powders produced at annealing temperature 800 C for 2 h.

  1. Comparison of fuel value and combustion characteristics of two different RDF samples.

    PubMed

    Sever Akda?, A; At?mtay, A; Sanin, F D

    2016-01-01

    Generation of Municipal Solid Waste (MSW) tends to increase with the growing population and economic development of the society; therefore, establishing environmentally sustainable waste management strategies is crucial. In this sense, waste to energy strategies have come into prominence since they increase the resource efficiency and replace the fossil fuels with renewable energy sources by enabling material and energy recovery instead of landfill disposal of the wastes. Refuse Derived Fuel (RDF), which is an alternative fuel produced from energy-rich Municipal Solid Waste (MSW) materials diverted from landfills, is one of the waste to energy strategies gaining more and more attention. This study aims to investigate the thermal characteristics and co-combustion efficiency of two RDF samples in Turkey. Proximate, ultimate and thermogravimetric analyses (TGA) were conducted on these samples. Furthermore, elemental compositions of ash from RDF samples were determined by X-Ray Fluorescence (XRF) analysis. The RDF samples were combusted alone and co-combusted in mixtures with coal and petroleum coke in a lab scale reactor at certain percentages on energy basis (3%, 5%, 10%, 20% and 30%) where co-combustion processes and efficiencies were investigated. It was found that the calorific values of RDF samples on dry basis were close to that of coal and a little lower compared to petroleum coke used in this study. Furthermore, the analysis indicated that when RDF in the mixture was higher than 10%, the CO concentration in the flue gas increased and so the combustion efficiency decreased; furthermore, the combustion characteristics changed from char combustion to volatile combustion. However, RDF addition to the fuel mixtures decreased the SO2 emission and did not change the NOx profiles. Also, XRF analysis showed that the slagging and fouling potential of RDF combustion was a function of RDF portion in fuel blend. When the RDF was combusted alone, the slagging and fouling indices of its ash were found to be higher than the limit values producing slagging and fouling. PMID:26360232

  2. Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1

    SciTech Connect

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff

    2007-08-15

    The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

  3. Pressure-coupled vaporization and combustion responses of liquid-fuel droplets in high-pressure environments

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Shuen, J. S.; Hsiao, C. C.

    1991-01-01

    The dynamic responses of liquid-fuel droplet vaporization and combustion to ambient pressure oscillations are examined. The analysis is based on the complete sets of conservation equations for both gas and liquid phases, and accommodates detailed treatments of finite-rate chemical kinetics and variable properties. With a full account of thermodynamic phase equilibrium at the droplet surface, the model enables a systematic examination of the effects of ambient flow conditions on the droplet behavior. The responses of hydrocarbon fuel droplets in both sub- and super-critical environments are investigated. Results indicate that the droplet gasification and burning mechanisms depend greatly on the ambient pressure. In particular, a rapid enlargement of the vaporization and combustion responses occurs when the droplet surface reaches its critical point, mainly due to the strong variations of latent heat of vaporization and thermophysical properties at the critical state.

  4. Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Arnold, Ian J.; Francisco, Dianna M.; Hatchett, Benjamin; Hosseinpour, Farnaz; Loria, Marcela; Pokharel, Ashok; Woody, Brian M.

    2013-06-01

    Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer - operating simultaneously at 405, 532 and 781nm - to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption ngstrm exponent (AAE), and scattering ngstrm exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532nm) and 6.48 (between 532 and 781nm). This spectrally-varying characteristic of AAE indicates that brown carbon - a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet - is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were 1.3 (between 405 and 781nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (Df)=1.90.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d Df=1.850.09.

  5. Effect of air-staging on mercury speciation in pulverized fuel co-combustion: part 2

    SciTech Connect

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff

    2007-08-15

    The concerns regarding global warming and need for new energy resources brought the concept of biomass and waste as secondary fuels to the power industry. Mercury emissions in cases of cofiring of chicken manure, olive residue, and B-wood with a high volatile bituminous coal blend are studied in the first part of this paper. The use of secondary fuels significantly affects NOx emissions due to different types of nitrogen present in the fuel matrix. Air-staging is a proven in-furnace NOx reduction technology. The present work mainly involves bench scale studies to investigate the effect of air-staging on partitioning of mercury in pulverized fuel co-combustion. The combustion experiments are carried out in an entrained flow reactor at 1300{sup o}C with a 20%th share of secondary fuels. Elemental and total gaseous mercury from the reactor is measured on-line, and ash is analyzed for particulate mercury along with elemental and surface properties. Reducing the air stoichiometry in the primary zone of the combustor increases unburnt carbon which in turn reduces mercury emissions in the gas phase. Ash analysis shows the effect of surface area, particle size, and unburnt carbon on mercury capture. Calcium variation in the ash was observed due to formation of different slag in reducing and oxidizing conditions and might have affected the mercury capture in combination with the above parameters. A low iron concentration of ash does not seem to affect the capture of mercury. The results will help in predicting different forms of mercury emitted from the furnace at desired operating conditions which will eventually form the basis for the design of the control strategies for mercury emissions. 22 refs., 3 figs., 1 tab.

  6. Pozzolanic properties of pulverized coal combustion bottom ash

    SciTech Connect

    Cheriaf, M.; Rocha, J.C.; Pera, J.

    1999-09-01

    The pozzolanic properties of a coal combustion bottom ash were investigated. Plain pastes containing equal amounts of calcium hydroxide and bottom ash were prepared and analyzed at different ages for their strength and the calcium hydroxide consumption. At early ages, bottom ash does not react with calcium hydroxide. Its pozzolanic reaction proceeds slowly and accelerates gradually to become very interesting after 28 days and especially after 90 days. The strength activity indexes measured on mortars are sufficiently important to allow the use of bottom ash in concrete. When ground for 6 h in a laboratory ball mill, the 28-day strength activity index of bottom ash is increased by 27%.

  7. Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery

    E-print Network

    Bongartz, Dominik

    2014-01-01

    Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

  8. ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal

    E-print Network

    Laughlin, David E.

    & Materials Science, University of ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb Joseph Tylczak: 28 February 2013 Springer Science+Business Media New York (outside the USA) 2013 Abstract Oxy

  9. Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture

    E-print Network

    Hong, Jongsup

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

  10. Solid Fuel Delivery System Developed for Combustion Testing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Frate, David T.

    2004-01-01

    NASA initiated Bioastronautics and Human Research Initiatives in 2001 and 2003, respectively, to enhance the safety and performance of humans in space. The Flow Enclosure Accommodating Novel Investigations in Combustion of Solids (FEANICS) is a multiuser facility being built at the NASA Glenn Research Center to advance these initiatives by studying fire safety and the combustion of solid fuels in the microgravity environment of the International Space Station (ISS). One of the challenges for the FEANICS team was to build a system that allowed for several consecutive combustion tests to be performed with minimal astronaut crew interaction. FEANICS developed a fuel carousel that contains a various number of fuel samples, depending on the fuel width, and introduces them one at a time into a flow tunnel in which the combustion testing takes place. This approach will allow the science team to run the experiments from the ground, while only requiring the crew to change out carousels after several tests have been completed.

  11. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1984-01-01

    A number of important effects were observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NO(x) formation. Unfortunately, because of differences in experimental facilities and limitations in the ranges of experimental data, a unified description of these transition region effects is not available at this time. Consequently, a fundamental experimental investigation was initiated to study the effect of droplet size, size distribution, and operating parameters on these transition region phenomena in a single well controlled spray combustion facility.

  12. Fuel combustion exhibiting low NO.sub.x and CO levels

    DOEpatents

    Keller, Jay O. (3534 Brunell Dr., Oakland, CA 94602); Bramlette, T. Tazwell (2105 Canyon Lakes Dr., San Ramon, CA 94583); Barr, Pamela K. (294 Joyce St., Livermore, CA 94550)

    1996-01-01

    Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).

  13. Compression ignition engine having fuel system for non-sooting combustion and method

    SciTech Connect

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  14. Internal combustion engine fuel controls. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1992-12-01

    The bibliography contains citations of selected patents concerning fuel control devices and methods for use in internal combustion engines. Patents describe air-fuel ratio control, fuel injection systems, evaporative fuel control, and surge-corrected fuel control. Citations also discuss electronic and feedback control, methods for engine protection, and fuel conservation. (Contains a minimum of 232 citations and includes a subject term index and title list.)

  15. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  16. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    SciTech Connect

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  17. Study Into Combustion of Sewage Sludge as Energetic Fuel / Badania Spalania OSADW ?CIEKOWYCH Jako Paliwa Energetycznego

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka; ?roda, Katarzyna; Otwinowski, Henryk

    2013-12-01

    Along with the development of civilisation, it can be observed that the amount of waste of different type is growing and the preparation process for further usage of the waste or the utilization process differs. What is to be focused on is municipal sewage sludge which, due to its energetic properties, constitutes a valuable fuel. The problem of usage of municipal sewage sludge remains still unsolved, which stems both from the increasing amount of such waste, and from the lack of properly adjusted systems for thermal processing thereof. What is of an additional obstacle are the increasingly stricter legal regulations regarding disposal of sewage sludge after the year 2013; hence, it is necessary to consider various benefits resulting from thermal processing of such waste. This work presents an overview of methods of disposal of sewage sludge, taking into consideration, in particular, thermal methods including the process of combustion and co-combustion as a means of successful utilization. The research section of the work presents the results of study into the mechanism and kinetics of combustion of sewage sludge in various conditions of the process carried out in air flow. Combustion of sewage sludge has been compared against combustion of coal and biomass. Wraz z rozwojem cywilizacji zaobserwowa? mo?na post?puj?ce powstawanie r?nego rodzaju odpadw r?ni?cych si?, m.in. sposobem przygotowania do dalszego wykorzystania, czy procesem utylizacji. Na szczegln? uwag? zas?uguj? komunalne osady ?ciekowe, ktre z uwagi na w?a?ciwo?ci energetyczne stanowi? cenne paliwo. Problem wykorzystania komunalnych osadw ?ciekowych jest nadal otwarty, a wynika to zarwno z rosn?cej produkcji tych odpadw, jak i braku odpowiednio przystosowanych instalacji do termicznego ich przekszta?cania. Dodatkowym utrudnieniem s? zaostrzaj?ce si? przepisy prawne dotycz?ce sk?adowania osadw ?ciekowych po 2013 r. sk?aniaj?ce tym samym do rozwa?a? nad korzy?ciami p?yn?cymi z termicznej obrbki tych odpadw. W pracy przedstawiono przegl?d sposobw unieszkodliwiania osadw ?ciekowych ze szczeglnym uwzgl?dnieniem metod termicznych, g?wnie spalania i wsp?spalania jako drogi do ich sukcesywnej utylizacji. W cz??ci badawczej pracy zaprezentowano wyniki bada? mechanizmu i kinetyki spalania osadw ?ciekowych w r?nych warunkach procesu prowadzonego w strumieniu powietrza. Spalanie osadw ?ciekowych porwnano ze spalaniem w?gla oraz biomasy.

  18. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of...

  19. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of...

  20. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of...

  1. Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2003-01-01

    Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.

  2. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  3. Characterizing droplet combustion of pure and multi-component liquid fuels in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Jackson, Gregory S.; Avedisian, C. Thomas

    1993-01-01

    The importance of understanding the effects of fuel composition, length scales, and other parameters on the combustion of liquid fuels has motivated the examination of simple flames which have easily characterized flow fields and hence, the potential of being modeled accurately. One such flame for liquid fuel combustion is the spherically symmetric droplet flame which can be achieved in an environment with sufficiently low gravity (i.e., low buoyancy). To examine fundamental characteristics of spherically symmetric droplet combustion, a drop tower facility has been employed to provide a microgravity environment to study droplet combustion. This paper gives a brief review of results obtained over the past three years under NASA sponsorship (grant NAG3-987).

  4. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  5. Determining size of drops in fuel mixture of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Sauter, J

    1926-01-01

    In compressorless Diesel engines and in explosion engines using fuels with high boiling points it is difficult to effect a good combustion of the fuel mixture. This report presents different methods for calculating the size and uniformity of fuel droplets and mixtures.

  6. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    SciTech Connect

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L. ); DePriest, J.C.; Wade, J. ); Ahmad, N.; Sibtain, F.; Zahid Raza, M. )

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m[sup 3] internal volume, air exchange rate 14 h[sup [minus]1] was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO[sub 2], and NO[sub x]. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

  7. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    SciTech Connect

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L.; DePriest, J.C.; Wade, J.; Ahmad, N.; Sibtain, F.; Zahid Raza, M.

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m{sup 3} internal volume, air exchange rate 14 h{sup {minus}1} was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO{sub 2}, and NO{sub x}. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

  8. Fuel system design concepts for broad property fuels

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.

    1984-01-01

    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  9. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????¢????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????¢????????????????relative combustion phasing???????¢???????????????). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????° to 60???????????????°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  10. The physical, chemical and combustion characteristics of EFB fuel briquettes

    NASA Astrophysics Data System (ADS)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    The abundance of empty fruit bunches (EFB) from oil palm mill made them an economically attractive and viable source of energy nowadays. Converting pyrolyzed EFB into densified solid fuel (briquette) could overcome the troublesome of using raw material which has low energy density and lack of uniform properties for domestic and industrial energy utilization. In this work, EFB is pyrolyzed at 400C under heating rate of 10C/min for at least 2 hours to obtain char and pyrolysis liquid needed. Char is prepared as a main source for the briquette mixture, meanwhile the pyrolysis liquid acts as the binder. Both char and pyrolysis liquid were mixed at various percentage of concentrations; 90:10, 80:20, 70:30 and 60:40, and then manually compressed at 10MPa for at least 10 minutes. The results of the properties found that the proportion of 60:40 mixtures has the highest density value of approximately around 0.95 g/cm3, with largest weight loss of production up to 4.83%. The increased pyrolysis liquid added into the mixture has seemly lowered the energy value of the briquette from 23.13 to 21.23 MJ/kg. In the burning test determination, briquettes mixture of 70:30 was found to generate the highest temperature up to 483C compared to others, and could retain a temperature of 100C for at least 10 minutes after the flame was gradually put out by itself.

  11. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    SciTech Connect

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-07-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database.

  12. Investigation of structural and chemical transitions in copper oxide microstructures produced by combustion waves in a mixture of CuO-Cu2O-Cu and fuel

    NASA Astrophysics Data System (ADS)

    Hwang, Hayoung; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2015-12-01

    The application of micro/nanostructured materials to combustion enables distinctive chemical reactions that can be used to modulate the reaction rates. Simultaneously, combustion is capable of changing the intrinsic properties of micro/nanostructured materials based on chemical interactions in high-temperature conditions. In this work, we investigate the structural-chemical transition of copper oxide microstructures exposed to interfacially driven combustion waves. The high thermal energy and exchange of chemical compounds resulting from the instant combustion waves cause direct transition without any further processes. The precise characterization of the structural and chemical transitions in the copper oxide microstructures and chemical fuels confirm that the self-propagating combustion waves in the layered composites of Cu/Cu2O/CuO microparticle-based films and the chemical fuel layers yield the direct synthesis of Cu(OH)2 flower-like structures and nanowires. The propagation of combustion waves at the interface induces an increase of the surface temperatures over 650 C and the direct interaction between the copper oxide and chemical compounds of the fuel layers. Further application of these interfacially driven combustion waves will contribute to the development of one-step, fast, low-cost methods for the synthesis of micro/nanostructured materials.

  13. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1978-01-01

    High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.

  14. Thermal conductivity and combustion properties of wheat gluten foams.

    PubMed

    Blomfeldt, Thomas O J; Nilsson, Fritjof; Holgate, Tim; Xu, Jianxiao; Johansson, Eva; Hedenqvist, Mikael S

    2012-03-01

    Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam. PMID:22332837

  15. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. PMID:24632362

  16. GRH 12-01 Fireside Corrosion in Oxy-fuel Combustion Poster 0108

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

    2012-05-20

    The goals are to: (1) Achieve 90% CO{sub 2} capture at no more than a 35% increase in levelized cost of electricity of post-combustion capture for new and existing conventional coal-fired power plants; (2) Provide high-temperature corrosion information to aid in materials development and selection for oxy-fuel combustion; and (3) Identify corrosion mechanism and behavior differences between air- and oxy-firing.

  17. Retene Emission from Residential Solid Fuels in China and Evaluation of Retene as a Unique Marker for Soft Wood Combustion

    PubMed Central

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Massey Simonich, Staci L.

    2012-01-01

    Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EFRET) from 11 crop residues, 27 firewood and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EFRET varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EFRET for pine (0.340.08 mg/kg) and larch (0.290.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.0810.058 mg/kg). However, EFRET for crop residues varied from 0.0480.008 to 0.370.14 mg/kg and were not significantly lower than those for softwood (0.0740.026 to 0.340.08 mg/kg). The EFRET for coal were very high and ranged from 2.21.5 (anthracite briquette) to 187113 mg/kg (raw bituminous chunk). EFRET was positively correlated with EFs of co-emitted particulate matter (EFPM) and phenanthrene (EFPHE) for crop residue and coal, but not for wood. In addition, the ratios of EFPHE/EFRET and EFPM/EFRET for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment. PMID:22452486

  18. Combustion synthesis and effects of processing parameters on physical properties of {alpha}-alumina

    SciTech Connect

    Collins, M.V.; Hirschfeld, D.A.; Shea, L.E.

    2000-01-04

    Fine particle porous {alpha}-alumina has been prepared by a wet chemical method of combustion synthesis using an aqueous precursor containing aluminum nitrate (oxidizer) and carbohydrazide, an organic fuel as starting materials. The aluminum nitrate and carbohydrazide were reacted exothermically at 400--600 C. The synthesis of {alpha}-alumina ({alpha}-Al{sub 2}O{sub 3}) was used as a model for understanding the effects of processing parameters on physical properties such as surface area, average pore size, and residual carbon content. The porous powders were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis and elemental analysis. The decomposition of the starting materials was investigated using differential thermal and thermogravimetric analyses (DTA/TGA). It has been shown that the furnace temperature, fuel/oxidizer ratio, and precursor water content can be tailored to produce powders with different physical properties.

  19. Effects of fuel-injector design on ultra-lean combustion performance

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Emissions data were obtained for six fuel injector configurations tested with ultra lean combustion. Fuel injectors included three multiple source designs and three configurations using a single air assist injector. Only the multiple source fuel injectors provided acceptable emissions. Values of 16g CO/kg fuel, 1.9g HC/kg fuel, and 19.g NO2/kg fuel were obtained for the combustion temperature range of 1450 to 1700 K for both a high blockage 19 source injector and a low blockage 41 source injector. It was shown that high fuel injector pressure drop may not be required to achieve low emissions performance at high inlet air temperature when the fuel is well dispersed in the airstream.

  20. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  1. High-density fuel combustion and cooling investigation. [kengine design

    NASA Technical Reports Server (NTRS)

    Labotz, R. J.; Rousar, D. C.; Valler, H. W.

    1980-01-01

    The analysis, design, fabrication and testing of several engine configurations are discussed with respect to the combustion and heat transfer characteristics of LOX/RP-1 at chamber pressures between 6895 and 13790 kPa (1000 and 2000 psia). The different engine configurations discussed include: 8274 kPa and 13790 kPa (1200 psia and 2000 psia) chamber pressure injectors with like doublet and preatomized triplet elements; cooled and uncooled acoustic resonators; and graphite, regeneratively cooled and calorimetric chambers ranging in length from 27.9 to 37.5 cm (11 to 15 in.). A high pressure LOX/RP-1 spark igniter is also evaluated.

  2. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  3. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  4. Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

    SciTech Connect

    Bunting, Bruce G; Eaton, Scott J; Crawford, Robert W

    2009-01-01

    The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

  5. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Bok, Agnieszka; Guzia?owska-Tic, Joanna; Tic, Wilhelm Jan

    2014-12-01

    The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  6. Co-combustion of solid recovered fuels in coal-fired power plants.

    PubMed

    Thiel, Stephanie; Thom-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO? allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011. PMID:22143900

  7. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Daugherty, M.J.; Heakin, A.J.; Pryde, E.H.; Schwab, A.W.

    1982-11-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study of chemical and fuel properties. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical compositions.

  8. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    E-print Network

    Qiao, Li

    Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum Aluminum nanoparticles Microexplosion Particle aggregation a b s t r a c t The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size

  9. ASSESSMENT OF ORGANIC CONTAMINANTS IN EMISSIONS FROM REFUSE-DERIVED FUEL COMBUSTION

    EPA Science Inventory

    Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source ...

  10. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  11. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  12. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  13. Fuels-combustion research. Annual report, 10 October 1986-30 September 1987

    SciTech Connect

    Dryer, F.L.; Glassman, I.; Williams, F.A.

    1987-10-31

    After studying soot formation in normal diffusion flames, near and slightly sooting inverse diffusion flames were investigated to determine the key intermediates to soot formation. The results indirectly confirm that the initial number density of soot particles that form scale with aromatic formation just prior to soot inception. Correlations exist between a fuel's sooting tendency as measured by the Princeton smoke-height experiment and the extent of aromatic formation measured in both inverse and normal diffusion flames. Work on the oxidation of the aromatics present in jet propulsion fuels continues with th major effort directed at the dialkylated benzenes. The major study concerned the oxidation of para-xylene. The results indicate oxidation of one side chain at a time before the benzene ring is attached. There is a linear decay of the fuel and the major species detected were toluene, benzene, p-tolualdehyde, p-ethyltoluene and carbon monoxide. Kinetics steps leading to these intermediates are given. Combustion-property observations of isolated boron-slurry droplets were extended to in-house boron/JP-10 slurries with and without surfactants. The experimental results revealed that stabilizing agents are responsible for the violent disruption of the primary slurry droplet and strongly support the previously proposed hypothesis of the formation of the impermeable shell and subsequent disruption phenomena.

  14. Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report

    NASA Technical Reports Server (NTRS)

    Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

    2011-01-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

  15. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers

    SciTech Connect

    Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga

    2007-07-01

    High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

  16. Improving combustion stability in a bi-fuel engine

    SciTech Connect

    1995-06-01

    This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

  17. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  18. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  19. ORGANIC COMBUSTION FINGERPRINTS OF THREE COMMON HOME HEATING FUELS

    EPA Science Inventory

    The paper discusses the chemical structures of three common home eating fuels: wood, coal, and No. 2 fuel oil. GC and GC/MS data are then presented which demonstrate how the thermal destruction of each fuel results in the production of a characteristic group of organic "fingerpri...

  20. Reduction of fuel side costs due to biomass co-combustion.

    PubMed

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k yr(-1) (0.09 M Wh(-1)). PMID:21514049

  1. Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-12-01

    Numerical simulations are performed for full scale scramjet combustor of a hypersonic airbreathing vehicle with ethylene fuel at ground test conditions corresponding to flight Mach number, altitude and stagnation enthalpy of 6.0, 30 km and 1.61 MJ/kg respectively. Three dimensional RANS equations are solved along with species transport equations and SST-k? turbulence model using Commercial CFD software CFX-11. Both nonreacting (with fuel injection) and reacting flow simulations [using a single step global reaction of ethylene-air with combined combustion model (CCM)] are carried out. The computational methodology is first validated against experimental results available in the literature and the performance parameters of full scale combustor in terms of thrust, combustion efficiency and total pressure loss are estimated from the simulation results. Parametric studies are conducted to study the effect of fuel equivalence ratio on the mixing and combustion behavior of the combustor.

  2. Fuels combustion research. Final technical report, 1 October 1985-30 September 1988

    SciTech Connect

    Glassman, I.; Dryer, F.L.; Williams, F.A.

    1988-11-30

    Studies of near and slightly sooting inverse and normal co-flow diffusion flames determined aromatics as the key intermediates to soot formation. The extent of aromatic formation correlated with the earlier Princeton smoke-height test results. The effect of oxygen addition to tightly bound fuels (ethene, ethyne and benzene) in diffusion flames was found to accelerate the pyrolysis and thus the soothing tendency, but not to affect other fuels in the temperature range of soot formation. Flow-reactor experiments determined oxidation kinetic results for the mono- and dialkylated aromatic components of jet fuels. Succinctly, it was found that the alkyl chains are attached initially and in the case of dialkylated compounds not simultaneously. Mechanisms have been presented. Results on boron-slurry droplet combustion were obtained and provided a basis for calculating when droplet disruption would occur. Questions with respect to boron-cloud combustion addressed mechanisms of ignition and combustion in the regime of chemical kinetic control.

  3. Study of the combustion of various alternate fuels

    SciTech Connect

    Barfield, B.F.; Acker, G.J. Jr.; Lindsay, M.H.

    1984-01-01

    This research project used two methods for studying the problems facing alternate fuels. The first method studied the use of chemicals to improve fuel characteristics without changing the basic engine design. The second method was to make engine modifications to suit characteristics of the alternate fuel. The result of the two methods studied is a two-part report. Alcohols, solvent-refined coal (SRC-II), vegetable oils, and mixtures of these with diesel fuels and with each other are the alternative fuels discussed and tested. 21 references, 4 figures, 10 tables.

  4. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels.

    PubMed

    Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma

    2014-11-18

    The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion. PMID:25365741

  5. Combustion research at Penn State`s Energy and Fuels Research Center

    SciTech Connect

    Scaroni, A.W.; Miller, B.G.; Pisupati, S.V.

    1996-12-31

    The history of coal and combustion research at Penn State is storied. The Combustion Laboratory was formed in 1949 and continues to serve the university and the combustion community as a unit of the Energy and Fuels Research Center (EFRC). A second EFRC unit added in 1992 is the National Center of Excellence for Coal Utilization (referred to as the Coal Utilization Center) which focuses on demonstration scale combustion activities. General characteristics of, and data for the Center are given in Tables 1 and 2, respectively. The purpose of this paper is to highlight selected accomplishments of the Center over the past decade. During this time almost $30 million of sponsored research has been conducted for dozens of sponsors by hundreds of researchers. The paper provides a flavor of the research conducted and the results obtained.

  6. 1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel burning and fossil fuel combustion

    E-print Network

    Dickerson, Russell R.

    /biofuel burning and fossil fuel combustion 3 S. A. Guazzotti,1 D. T. Suess,1,2 K. R. Coffee,1,3 P. K. Quinn,4 T. S, or proximate sources. Aerosol and trace gas 21 measurements provide evidence that emissions from fossil fuel Peninsula, where dominance of fossil fuel combustion is suggested by 30 results from single

  7. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    E-print Network

    and fossil fuel combustion S. A. Guazzotti,1 D. T. Suess,2 K. R. Coffee,2,3 P. K. Quinn,4 T. S. Bates,4 A evidence that emissions from fossil fuel and biomass/biofuel burning are subject to long-range transport the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results from single

  8. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun; Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gassolid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  9. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    SciTech Connect

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  10. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  11. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Shin, Dongjoon; Choi, Wonjoon

    2015-10-01

    Manipulating the interface of micro/nanostructured materials and chemical fuels can change the fundamental characteristics of combustion waves that are generated during a reaction. In this study, we report that Mg/MgO nanoparticles actively amplify the propagation of combustion waves at the interface of multi-walled carbon nanotubes (MWCNTs) and chemical fuels. Fuel/MWCNT and fuel/MWCNT-Mg/MgO composite films were prepared by a facile synthetic method. We present complete physiochemical characterization of these composite films and evaluate the propagating velocities and real-time surface temperatures of combustion waves. Mg/MgO nanoparticles at the interface enhanced the reaction front velocity by 41%. The resulting explosive reactions supplied additional thermal energy to the chemical fuel, accelerating flame propagation. Furthermore, the surface temperatures of the composites with Mg/MgO nanoparticles were much lower, indicating how the transient heat from the reaction would ignite the unreacted fuels at lower surface temperatures despite not reaching the necessary activation energy for a chain reaction. This mechanism contributed to thermopower waves that amplified the output voltage. Furthermore, large temperature gradients due to the presence of nanoparticles increased charge transport inside the nanostructured material, due to the increased thermoelectric effects. This manipulation could contribute to the active control of interfacially driven combustion waves along nanostructured materials, yielding many potential applications. PMID:26419765

  12. Effect of degree of fuel vaporization upon emissions for a premixed prevaporized combustion system

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1979-01-01

    An experimental and analytical study of the combustion of partially vaporized fuel/air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected showed near-linear increases in NOx emmissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on NOx emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

  13. Hydrocarbon-fuel/copper combustion chamber liner compatibility, corrosion prevention, and refurbishment

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Gage, M. L.; Homer, G. D.; Franklin, J. E.

    1991-01-01

    An evaluation is made of combustion product/combustion chamber compatibility in the case of a LOX/liquid hydrocarbon booster engine based on copper-alloy thrust chamber which is regeneratively cooled by the fuel. It is found that sulfur impurities in the fuel are the primary causes of copper corrosion, through formation of Cu2S; sulfur levels as low as 1 ppm can result in sufficiently severe copper corrosion to degrade cooling channel performance. This corrosion can be completely eliminated, however, through the incorporation of an electrodeposited gold coating on the copper cooling-channel walls.

  14. Combustion stabilization based on a center flame strut in a liquid kerosene fueled supersonic combustor

    NASA Astrophysics Data System (ADS)

    Hu, Jichao; Qin, Jiang; Chang, Juntao; Bao, Wen; Zong, Youhai; Yang, Qingchun

    2013-10-01

    A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8mm and the front blockage is about 8%. The characteristic of this strut is that extra oxygen can be injected through a set of orifices at the back of the strut, which can change the local flow field structure and ER (Equivalence Ratio). Based on the above mentioned strut, a stable local flame is generated at the back of the strut and the main combustion can be organized around this local fire. Numerical simulation is conducted to compare the local flow field distribution at the back of the strut with/without extra oxygen injection. Experiments are conducted to test the combustion characteristics based on this fuel injection and flame holding strategy. The temperature distribution which can reflect the local flame characteristic has been measured in the experiments conducted under cold incoming supersonic air flow condition. In addition, the overall combustion performance in a full-scale supersonic combustor has been evaluated in the experiments conducted under hot incoming supersonic air flow condition. Results show that this strut strategy is very promising since it can organize stable supersonic combustion at the center of the combustor without any cavity or rearward facing step. Besides that, even with the 8mm thick strut, the combustion can be stable in a wide range of ER from 0.25-1 by using liquid room-temperature kerosene.

  15. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  16. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners while maintaining the superior CuCrNb properties are also presented.

  17. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Blling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  18. Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes.

    PubMed

    Chiou, Ing-Jia; Wu, I-Tsung

    2014-10-01

    Based on the physical and chemical properties as well as calorific values of pulp sludge and textile sludge, this study investigates the differences between manufacturability, relationship between extrusion pressure and formability, as well as stability and combustion behaviors of extruded sludge-derived fuel briquettes (ESBB) and cemented sludge-derived fuel blocks (CSBB). The optimum proportion and relevant usage ESBB policies are proposed as well. Experimental results indicate that a large amount of water can be saved during the ESBB manufacturing process. Additionally, energy consumption decreases during the drying process. ESBB also has a more compact structure than that of CSBB, and its mean penetration loading is approximately 18.7 times higher as well. Moreover, the flame temperature of ESBB (624-968C) is significantly higher than that of CSBB (393-517C). Also, the dry bulk density and moisture regain of ESBB is significantly related to the penetration loading. Furthermore, the optimum mix proportion of ESBB is co-determined by the formability of pulp sludge and the calorific values of textile sludge. While considering the specific conditions (including formability, stability and calorific values), the recommended mix proportion for ESBB is PS50TS50. PMID:24913348

  19. Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report

    SciTech Connect

    Kakwani, R.M.; Kamo, R.

    1989-01-01

    This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

  20. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    PubMed

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels. PMID:11219694

  1. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have been presented showing comparative trends in pollutant emissions generation, flame blowout stability, and combustion efficiency. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  2. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  3. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  4. Effect of Fuel-air Ratio Concentration in Combustion Zone on Combustion Performance of a 16-inch Ram-jet Engine

    NASA Technical Reports Server (NTRS)

    Dangle, E E; Cervenka, A J; Bahr, D W

    1953-01-01

    The results of fuel-air ratio and temperature surveys made in the flame stabilizing zone of a 16-inch ram-jet combustor indicated that the distribution of combustible mixture immediately downstream of a flame holder should be mechanically controlled if a preferred mixture composition is to be maintained in that zone. A sloping-baffle combustor configuration gave combustion efficiencies of 90 percent or greater over a range of fuel-air ratios from 0.010 to 0.045.

  5. Developments in integrated pollutant removal for low-emission oxy-fuel combustion

    SciTech Connect

    Gerdemann, Stephen J.; Summers, Cathy A.; Oryshchyn, Danylo B.; Patrick, Brian; Ochs, Thomas L.

    2005-09-01

    A complete coal combustion and flue gas treatment scheme was designed, constructed, and operated at bench scale as a product of cooperative research between US DOEs Albany Research Center (ARC) and Jupiter Oxygen Corporation. The combustion gas generated using this oxy-fuel coal combustion process was effectively captured using an integrated pollutant removal (IPR) process. Supporting laboratory-scale research focuses on elements of IPR such as extraction of particulates, SO2, and mercury, and on the character of the liquid and vapor phase compositions for the CO2 - N2 - O2 mixture at the temperature and pressure conditions found at the end of the process. Future pilot-scale work will be necessary to generate economic and engineering data that will apply to full-scale oxy-fuel/IPR systems.

  6. Combustion characteristics of simulated gas fuel in a 30 kg/h scale pyrolysis-melting incinerator.

    PubMed

    Shin, D; Yu, T; Yang, W; Jeon, B; Park, S; Hwang, J

    2008-11-01

    Combustion characteristics of gas fuel in a pyrolysis-melting incinerator having a 30 kg/h capacity were investigated. Pyrolyzed gas from waste was simulated by propane that was injected in the combustion chamber, and burnt through multi-staged combustion by distributing the combustion air to primary, secondary, and tertiary air nozzles. Temperatures and the concentrations of gas components in the combustion chamber were measured. Combustion performance was evaluated with respect to the temperature distribution and combustion gas concentrations of O2, CO and NOx. Using secondary air and/or tertiary air, the combustion performance was improved, and, in particular, NOx concentration decreased significantly following the tertiary air injection. PMID:18325753

  7. Combustion of hydrogen in a two-dimensional duct with step fuel injectors

    NASA Technical Reports Server (NTRS)

    Eggers, J. M.; Reagon, P. G.; Gooderum, P. B.

    1978-01-01

    An investigation of the combustion of hydrogen perpendicularly injected from step fuel injectors into a Mach 2.72, 2100 K vitiated test gas was conducted. The model simulated the flow between the center and side struts of an integrated scramjet module at Mach 7 flight and an altitude of 29 km. Parametric variation included equivalence ratio, fuel dynamic pressure ratio, and area distribution of the model. The overall area ratio of the model was held constant at 2.87. The data analysis indicated that no measurable improvement in mixing or combustion efficiency was obtained by varying the fuel dynamic pressure ratio from 0.79 to 2.45. Computations indicated approximately 80 percent of the fuel was mixed so that it could react; however, only approximately 50 percent of the mixed fuel actually reacted in two test configurations, and 74 percent in later tests where less area expansion of the flow occurred.

  8. Combustion physics

    NASA Astrophysics Data System (ADS)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  9. Ideal Temperature Rise Due to Constant-pressure Combustion of a JP-4 Fuel

    NASA Technical Reports Server (NTRS)

    Huntley, S C

    1955-01-01

    The ideal temperature rise due to the constant-pressure combustion of a methylene (CH sub 2) fuel was calculated. CH sub 2 fuel closely approximates MIL-F-5624 grade JP-4 fuel presently used in most turbojet and ram-jet engines. Charts are presented from which the ideal temperature rise or the ideal quantity of fuel required to obtain a specified combustion temperature may be obtained for any flight condition likely to be encountered with turbojet or ram-jet engines using this fuel. The charts are applicable only to a fuel having a hydrogen-carbon mass ratio of 0.168. They include a range of fuel-air ratios from 0 to 1.2 fraction of stoichiometric fuel-air ratio with dissociation taken into account, inlet-air temperatures from 400 degrees to 1600 degrees R, and combustion pressures from 1/16 to 64 atmospheres. The use of the charts is illustrated by several examples.

  10. Fuels combustion research. Final report, 1 March 1982-30 September 1985

    SciTech Connect

    Dryer, F.L.; Glassman; Williams, F.A.

    1985-12-09

    The qualitative mechanisms for the oxidation of benzene and alkylated benzenes corresponds well with flow-reactor results. Major results were obtained on how the aromatic sidechain reacts, and specific fundamental reaction rate data were obtained. A fundamental correlation with respect to fuel C-C bonds for the sooting tendency of fuels under premixed combustion conditions was developed and the concept that fuel structure plays no direct role in determining the critical sooting equivalence ratio was put forth and substantiated by results on pure fuels and fuel mixtures. Fuel-structure and pyrolysis mechanisms were found to be the important controlling factors in sooting diffusion flames. From a knowledge of basic pyrolysis studies, it is now possible to predict a fuel's synergistic trends with diffusion-flame sooting trends; however, these trends may be due to the structural aspects of these flames. Experimental and theoretical research efforts on high-energy-density slurry propellants are reported. Transient internal heat conduction and liquid surface regression of a rigid slurry droplet during liquid vaporization and combustion were investigated using singular perturbation methods. Experimentally, a technique to produce isolated slurry fuel droplets of boron and JP-10 was developed, and observations on the isolated droplet combustion characteristics of several commercially prepared boron/JP-10 slurries were made.

  11. Corrosion performance of structural alloys for oxy-fuel combustion systems.

    SciTech Connect

    Natesan, K.; Rink, D. L.; Nuclear Engineering Division

    2007-01-01

    The U.S. Department of Energy (DOE) Office of Fossil Energy is intensely promoting research and development of oxyfuel combustion systems that employ oxygen, instead of air, for burning the fuel. The resulting flue gas primarily consists of H{sub 2}O and CO{sub 2} that facilitates sequestration of CO{sub 2}, thereby leading to reduction in CO{sub 2} emissions. Also, as the oxidant is bereft of N{sub 2}, NO{sub x} emissions are minimized to a great extent from the exhaust gas. Studies at NETL have indicated that oxy-fuel combustion can increase efficiency in the power plants from the current 30-35% to 50-60%. However, the presence of H{sub 2}O/CO{sub 2} and trace constituents like nitrogen and sulfur in the environment at the operating temperatures and pressures can have adverse effects on the corrosion and mechanical properties of structural alloys. Thus, there is a critical need to evaluate the response of structural and turbine materials in simulated H{sub 2}O/CO{sub 2} environments in an effort to select materials that have adequate high temperature mechanical properties and environmental performance. During the past year, a program was initiated to evaluate the corrosion performance of structural alloys in CO{sub 2} and CO{sub 2}-steam environments at elevated temperatures. Materials selected for the study include intermediate-chromium ferritic steels, Fe-Cr-Ni heat-resistant alloys, and nickelbased superalloys. Coupon specimens of several of the alloys were exposed to pure CO{sub 2} at temperatures between 650 and 850C for times up to 1450 h. The corrosion tests in CO{sub 2}-50% steam environment was conducted at temperatures between 650 and 850C for times up to 1250 h. The steam for the experiment was generated by pumping distilled water and converting it to steam in the preheat portion of the furnace, ahead of the specimen exposure location. Preliminary results will be presented on weight change, scale thickness, internal penetration, and microstructural characteristics of corrosion products.

  12. Determination of combustion products from alternative fuels. Part I. LPG and CNG combustion products

    SciTech Connect

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2 nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. 4 refs., 3 figs., 14 tabs.

  13. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  14. CHARACTERIZATION OF FINE PARTICULATE MATTER PRODUCED BY COMBUSTION OF RESIDUAL FUEL OIL

    EPA Science Inventory

    Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than (PM2.5) and greater (PM2.5+) that 2.5 micrometers in diameter. However, ex...

  15. Health effects of fossil fuel combustion products: report of a workshop.

    PubMed Central

    Comar, C L; Nelson, N

    1975-01-01

    Judgemental positions are presented on research priorities in regard to the health effects from stationary sources of fossil fuel combustion products. Hopefully, they can provide guidance for efforts to ensure that national energy needs are met with minimum environmental and economic burdens on the public. The major areas include epidemiological studies, controlled biological studies, mutagenesis and carcinogenesis, trace elements, monitoring and analysis. PMID:1227856

  16. QUANTIFYING HAZARDOUS SPECIES IN PARTICULATE MATTER DERIVED FROM FOSSIL-FUEL COMBUSTION

    EPA Science Inventory

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size- segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used...

  17. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  18. CARCINOGENICITY OF HOUSEHOLD SOLID FUEL COMBUSTION AND OF HIGH-TEMPERATURE FRYING

    EPA Science Inventory

    In October, 2006, 19 scientists from eight countries met at the International Agency for Research on Cancer (IARC) in Lyon, France, to assess the carcinogenicity of household solid fuel combustion (coal and biomass) and of high-temperature frying. These assessments will be publi...

  19. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  20. NATIONAL INVENTORIES FOR AREA SOURCE FUEL COMBUSTION AND GASOLINE MARKETING IN 1999

    EPA Science Inventory

    The product will be a set of estimates of county-level 1999 emissions of all relevant air pollutants from gasoline marketing and from the combustion of fuel by "area" sources, i.e., those too small be be required to report their emissions individually.

  1. RECENT DEVELOPMENTS OF EMISSION CONTROL TECHNOLOGY IN THE UNITED STATES FOR FOSSIL FUEL COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses control of air pollution from fossil fuel combustion. ntil recently, this meant abatement of smoke (particulate), sulfur dioxide, and oxides of nitrogen. With growing concern about global climate change, carbon dioxide has been added to the list. The paper inc...

  2. Concentrates, lubricant compositions and methods for improving fuel economy of internal combustion engine

    SciTech Connect

    Chamberlin, W.B.

    1982-04-27

    Fuel economy of internal combustion engines, especially gasoline engines, is improved by lubricating such engines with specific lubricant compositions in which the essential ingredients are a specific sulfurized composition and a basic alkali metal sulfonate. Additional ingredients may include at least one oildispersible detergent or dispersant, a viscosity improving agent, and a specific salt of a phosphorus acid.

  3. Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products

    SciTech Connect

    Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M.

    2007-07-01

    A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

  4. Determination of alternative fuels combustion products: Phase 1 report

    SciTech Connect

    Whitney, K.A.

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  5. COMBUSTION RESEARCH ON THE FATE OF FUEL-NITROGEN UNDER CONDITIONS OF PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    The report gives results of an experimental investigation of coal pyrolysis and oxidation, and char oxidation to determine the effects of temperature and fuel/oxygen equivalence ratio on the conversion of coal-nitrogen to NOx. Experiments involved a laboratory laminar flow furnac...

  6. Deposition and material response from Mach 0.3 burner rig combustion of SRC 2 fuels

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.; Johnson, J. R.

    1980-01-01

    Collectors at 1173K (900 C) were exposed to the combustion products of a Mach 0.3 burner rig fueled with various industrial turbine liquid fuels from solvent refined coals. Four fuels were employed: a naphtha, a light oil, a wash solvent and a mid-heavy distillate blend. The response of four superalloys (IN-100, U 700, IN 792 and M-509) to exposure to the combustion gases from the SRC-2 naphtha and resultant deposits was also determined. The SRC-2 fuel analysis and insights obtained during the combustion experience are discussed. Particular problems encountered were fuel instability and reactions of the fuel with hardware components. The major metallic elements which contributed to the deposits were copper, iron, chromium, calcium, aluminum, nickel, silicon, titanium, zinc, and sodium. The deposits were found to be mainly metal oxides. An equilibrium thermodynamic analysis was employed to predict the chemical composition of the deposits. The agreement between the predicted and observed compounds was excellent. No hot corrosion was observed. This was expected because the deposits contained very little sodium or potassium and consisted mainly of the unreactive oxides. However, the amounts of deposits formed indicated that fouling is a potential problem with the use of these fuels.

  7. FEATURE FOCUS: Fuels & Combustion a new dawn for

    E-print Network

    consume a great deal of fuel. Hybrid electric-gasoline vehicles have recently gained the spotlight as one plant of the lion's share of small pickup trucks, sport utility vehicles, and passenger cars. And it can-efficient alternative--the diesel engine--has largely been overlooked as a means of curbing American cars' appetites

  8. High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for

    E-print Network

    Gurney, Kevin Robert

    product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent

  9. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations

    E-print Network

    Qiao, Li

    Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense in revised form 3 November 2011 Accepted 9 December 2011 Available online 7 January 2012 Keywords: Nanofluid t The combustion characteristics of nanofluid fuels containing additions of boron and iron particles were

  10. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You...the fuel being fired in the turbine, except as provided in...D4810, D5504, or D6228, or Gas Processors Association...

  11. Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants

    SciTech Connect

    Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

    2001-01-01

    One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

  12. Airfoil cooling hole plugging by combustion gas impurities of the type found in coal derived fuels

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1979-01-01

    The plugging of airfoil cooling holes by typical coal-derived fuel impurities was evaluated using doped combustion gases in an atmospheric pressure burner rig. Very high specific cooling air mass flow rates reduced or eliminated plugging. The amount of flow needed was a function of the composition of the deposit. It appears that plugging of film-cooled holes may be a problem for gas turbines burning coal-derived fuels.

  13. Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

    NASA Astrophysics Data System (ADS)

    Daw, C. S.; Green, J. B.; Wagner, R. M.; Finney, C. E. A.; Davis, L. I.; Feldkamp, L. A.; Hoard, J. W.; Yuan, F.; Connolly, F. T.

    2002-07-01

    Under conditions of lean fueling or high exhaust gas recirculation, interactions between residual cylinder gas and freshly injected fuel and air produce undesirable combustion instabilities in spark-ignition engines. The resulting dynamics can be described as noisy bifurcations of a nonlinear map and are complicated by cylinder-to-cylinder coupling. We discuss the key dynamic features relevant to control and demonstrate simple feedback control of a multi-cylinder test vehicle.

  14. Oxy-fuel combustion systems for pollution free coal fired power generation

    SciTech Connect

    Ochs, Thomas L.; Oryshchyn, Danylo B.; Gross, Dietrich; Patrick, Brian; Gross, Alex; Dogan, Cindy; Summers, Cathy A.; Simmons, William; Schoenfeld, Mark

    2004-01-01

    Jupiter Oxygen's patented oxy-fuel combustion systems1 are capable of economically generating power from coal with ultra-low emissions and increased boiler efficiency. Jupiter's system uses pure oxygen as the combustion agent, excluding air and thus nitrogen, concentrating CO2 and pollutants for efficient capture with near zero NOx production, reducing exhaust mass flow, and increasing radiant heat transfer. Flue-gas recirculation rates can be varied to add flexibility to new boiler designs using this technology. Computer modeling and thermal analysis have identified important design considerations in retrofit applications.

  15. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  16. Combustion properties of coal-char blends: No{sub x} emission characteristics. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Rostam-Abadi, M.; Khan, L.; Smoot, L.D.; Germane, G.J.; Eatough, C.N.; Honea, F.

    1993-05-01

    Tests under pulverized coal combustion conditions suggest that NO{sub x} formed during release of volatile matter far exceed NO{sub x} formed during combustion of the resulting char. This is attributed to char/NO{sub x} interactions by both direct reduction of NO, by carbon and char-catalyzed reduction by CO. This implies combustion of char not only produces substantially lower No{sub x} but the presence of char in the flame during initial stages of combustion may potentially provide catalytic activity for reduction of NO{sub x} produced from volatile nitrogen. The goal of the project is to determine if the concept of NO{sub x} reduction by char/NO{sub x} interactions, while maintaining a high combustion efficiency by co-firing coal with char, is a technically feasible way to reduce NO{sub x} emissions. Char samples will be prepared in a continuous rotary tube kiln under mild gasification conditions. Combustion testing will be conducted with the coal and coal-char blends in a combustor located at BYU. The effect of coal/char ratio, formation characteristics, ignition characteristics, flame stability, and combustion efficiency will be determined. Physical and chemical properties of the fuels will be measured to help explain combustion and emission characteristics of fuels.

  17. Combustion studies of coal-derived solid fuels. Part IV. Correlation of ignition temperatures from thermogravimetry and free-floating experiments

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1992-01-01

    The usefulness of TG as an efficient and practical method to characterize the combustion properties of fuels used in large-scale combustors is of considerable interest. Relative ignition temperatures of a lignite, an anthracite, a bituminous coal and three chars derived from this coal were measured by a free-floating technique. These temperatures were correlated with those estimated from TG burning profiles of the fuels. ?? 1992.

  18. Synthetic fuels handbook: properties, process and performance

    SciTech Connect

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  19. Combustion Performance of Waste-Derived Fuels with respect to Ultra-Low Sulfur Diesel in a Compression Ignition Engine

    E-print Network

    Churkunti, Preetham Reddy

    2015-08-31

    fuel and waste cooking oil biodiesel from well to exhaust, and optimization of combustion of waste cooking oil biodiesel by employing higher injection pressures and normalized injection timings in comparison to commercial ultra low sulfur diesel fuel...

  20. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T. A.; Bron, F.-M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J. S.; Jacobson, A.; Marland, G.; Miller, J.; Oda, T.; Olivier, J. G. J.; Raupach, M. R.; Rayner, P.; Treanton, K.

    2012-05-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.

  1. Stack contamination effects during small-scale combustion testing of synthetic fuels

    SciTech Connect

    Douglas, L.J.; Gibbon, G.A.; White, C.M.

    1984-01-01

    The Analytical Chemistry Branch at the Pittsburgh Energy Technology Center has undertaken the assessment of the possible environmental impact of substituting synfuels for petroleum-based fuels in utility and industrial boilers. The assessment is based on a study of results obtained from the analysis of trace organic compounds present in the exaust gases of a fully instrumented 20-hp firetube boiler. The stack gases from petroleum-based fuels, synfuels, and methanol combustion tests have been sampled and analyzed by combined gas chromatography/mass spectrometry. The stack gas sampled during the combustion of methanol showed the presence of saturated and aromatiic hydrocarbons as well as detectable amounts of organic sulfur compounds, such as dibenzothiophene. The presence of these compounds could not be explained on the basis of methanol showed the presence of saturated and aromatic hydrocarbons as well as detectable amounts of organic sulfur compounds, such as dibenzothiophene. The presence of these compounds could not be explained on the basis of methanol combustion but suggests contamination of the 20-hp combustor-exhaust system from earlier tests using petroleum or coal-derived fuels. The previously established exhaust stack protocol was reviewed by the Combustion Technology Branch and the Analytical Chemistry Branch. It was decided that a more exhaustive protocol was required. When this revised protocol was instituted, cross-contamination and memory effects disappeared, and sampling integrity was reestablished, thus allowing the analytical data to be properly interpreted. 5 references, 7 figures, 5 tables.

  2. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  3. Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow

    SciTech Connect

    Kopyl, P. V.; Surkont, O. S.; Shibkov, V. M.; Shibkova, L. V.

    2012-06-15

    Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3-0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches {approx}2000 K.

  4. Graphite fuels combustion off-gas treatment options

    SciTech Connect

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual {sup 129}I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the {sup 3}, {sup 14}C, {sup 85}Kr, and {sup 129}I in the total fuel mass if 0.43 mrem/year.

  5. Combined catalysts for the combustion of fuel in gas turbines

    DOEpatents

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  6. The role of fuel preparation in low-emission combustion

    SciTech Connect

    Lefebvre, A.H.

    1995-10-01

    The attainment of very low pollutant emissions, in particular oxides of nitrogen (NO{sub x}), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultralow NO{sub x} has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultralow emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas-turbine-generated pollutants and their mechanisms of formation are described, along with related environmental risk and various issues concerning emissions regulations and recently enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact so these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of dry low-NO{sub x} and ultralow-NO{sub x} combustors are reviewed.

  7. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400?rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions. PMID:25637916

  8. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  9. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400?rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  10. Radiography of liquid-metal-fuel combustion. Professional paper for period ending August 1987

    SciTech Connect

    Parnell, L.A.; Katz, D.L.; Gilchrist, J.T.; Bryant, L.E.; Lucero, J.P.

    1988-01-01

    Liquid-metal fuels are being employed as Rankine-cycle heat sources for undersea vehicle propulsion systems, necessitating investigation of the fundamental chemical, thermodynamic, and hydrodynamic processes that occur during the confined combustion of these fuels. Results of the development of techniques for this use of flash x-ray radiography to investigate these processes is presented. Experimental combustors designed to permit studies of the combustion zone and fluid dynamics of the jet-driven circulating flow in the fuel bath are described. Radiographic images showing the reaction zone, multiphase flow structures and the behavior and mixing characteristics of the products-rich phase are shown, demonstrating the utility of this experimental techniques in energy-conversion research.

  11. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Kang Yeol; Hwang, Hayoung; Shin, Dongjoon; Choi, Wonjoon

    2015-10-01

    Manipulating the interface of micro/nanostructured materials and chemical fuels can change the fundamental characteristics of combustion waves that are generated during a reaction. In this study, we report that Mg/MgO nanoparticles actively amplify the propagation of combustion waves at the interface of multi-walled carbon nanotubes (MWCNTs) and chemical fuels. Fuel/MWCNT and fuel/MWCNT-Mg/MgO composite films were prepared by a facile synthetic method. We present complete physiochemical characterization of these composite films and evaluate the propagating velocities and real-time surface temperatures of combustion waves. Mg/MgO nanoparticles at the interface enhanced the reaction front velocity by 41%. The resulting explosive reactions supplied additional thermal energy to the chemical fuel, accelerating flame propagation. Furthermore, the surface temperatures of the composites with Mg/MgO nanoparticles were much lower, indicating how the transient heat from the reaction would ignite the unreacted fuels at lower surface temperatures despite not reaching the necessary activation energy for a chain reaction. This mechanism contributed to thermopower waves that amplified the output voltage. Furthermore, large temperature gradients due to the presence of nanoparticles increased charge transport inside the nanostructured material, due to the increased thermoelectric effects. This manipulation could contribute to the active control of interfacially driven combustion waves along nanostructured materials, yielding many potential applications.Manipulating the interface of micro/nanostructured materials and chemical fuels can change the fundamental characteristics of combustion waves that are generated during a reaction. In this study, we report that Mg/MgO nanoparticles actively amplify the propagation of combustion waves at the interface of multi-walled carbon nanotubes (MWCNTs) and chemical fuels. Fuel/MWCNT and fuel/MWCNT-Mg/MgO composite films were prepared by a facile synthetic method. We present complete physiochemical characterization of these composite films and evaluate the propagating velocities and real-time surface temperatures of combustion waves. Mg/MgO nanoparticles at the interface enhanced the reaction front velocity by 41%. The resulting explosive reactions supplied additional thermal energy to the chemical fuel, accelerating flame propagation. Furthermore, the surface temperatures of the composites with Mg/MgO nanoparticles were much lower, indicating how the transient heat from the reaction would ignite the unreacted fuels at lower surface temperatures despite not reaching the necessary activation energy for a chain reaction. This mechanism contributed to thermopower waves that amplified the output voltage. Furthermore, large temperature gradients due to the presence of nanoparticles increased charge transport inside the nanostructured material, due to the increased thermoelectric effects. This manipulation could contribute to the active control of interfacially driven combustion waves along nanostructured materials, yielding many potential applications. Electronic supplementary information (ESI) available: The scheme of preparation of MWCNT and MWCNT-Mg films; characterization of MWCNT-Mg(NO3)2 composites; and distribution of Mg/MgO nanoparticles. See DOI: 10.1039/c5nr03795f

  12. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  13. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  14. Water cooled vibrating grate stoker for proven, efficient and reliable combustion of biomass fuels

    SciTech Connect

    Giaier, T.A.

    1996-12-31

    Bioenergy from waste sources and dedicated crops can provide substantial contributions for energy production. Together, these energy technologies are the wave of the future as they offer a localized, decentralized way of meeting electricity and process steam needs. The biomass industry accounts for about 15% of energy production worldwide, according to the National Wood Energy Association. For developing countries, the percentage is much higher. Currently, many types of combustible solid waste products like bark, wood waste, wood chips, sawdust, municipal and industrial refuse, agricultural wastes such as bagasse, spent coffee, etc.; are profitably utilized as excellent fuel sources. Many of these produce less acid gas than the fossil fuels they replace. Additionally, biomass feed stocks can reduce the quantity of carbon dioxide CO{sub 2} over fossil fuel burning since CO{sub 2} is used in the growth cycle of biomass feed stocks. Water cooled grates, both vibrating and stationary, have been used for many years for the combustion of biomass fuels. Both grates have relatively low maintenance and operating costs, thus making each grate a popular choice for a wide variety of applications. This paper chronicles combustion technologies for biomass fuels and the development of the water cooled grate followed by two case histories. The first case describes the conversion of an existing black liquor recovery boiler to wood firing and the second is the installation of the largest biomass fired Independent Power Producing plant in North America.

  15. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO?) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  16. Aviation fuel property effects on altitude relight

    NASA Technical Reports Server (NTRS)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  17. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Keakin, A.J.

    1981-01-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical composition. 10 refs.

  18. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    SciTech Connect

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C, all reaction reactivities were improved, especially the CO{sub 2} gasification reactivity of char. Thus, the reduction of CuO by the gasification product CO could proceed quickly. Based on the results obtained, the following coal characteristics would be desirable for the Chemical Looping Combustion process: high volatile matter with a high reactivity of the char produced. PRB coal meets these criteria while being comparatively less expensive and also very abundant. The high moisture content present in PRB coal might also increase the reactivity for char gasification through the development of pore structure and specific surface area in the char during pyrolysis. Biomass materials are also suitable, considering the reaction mechanism of CLC system of solid fuels. The feasibility of the chemical looping combustion process of solid fuels was verified by focusing on PRB coal and biomass. Based on PRB coal as the preferred solid fuel in the development of the CLC system, the mass, energy and system in a dual reactor recirculation system has been determined. In the Cu oxidation tests, it was confirmed that the heating rate is the most important effect on the Cu oxidation process. Lower heating rates and lower operational temperatures would result in incomplete conversion of Cu to CuO. Cu{sub 2}O may be the intermediate product. The operating temperature did not affect the reaction rate of the oxidation process. Under any operating conditions, the exothermic properties are clearly shown.

  19. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    SciTech Connect

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  20. System approach to the analysis of an integrated oxy-fuel combustion power plant

    NASA Astrophysics Data System (ADS)

    Zi?bik, Andrzej; G?adysz, Pawe?

    2014-09-01

    Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2. Due to the limited adiabatic temperature of combustion some part of CO2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the `input-output' method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

  1. Compound cycle turbofan engine (CCTE). Task IX. Carbon-slurry fuel combustion evaluation program. Final report June-September 1979

    SciTech Connect

    Bruce, T.W.; Mongia, H.

    1980-03-01

    The carbon-slurry fuel evaluation program demonstrated the feasibility of running a currently available carbon-slurry fuel in a combustion rig and a turbine engine. This program also established the preliminary design criteria for operating on carbon-slurry fuels. Subcontracts work was performed by Pennsylvania State for fuel droplet measurements and by Suntech, Inc. for fuel development and manufacture.

  2. Combustion aspects of the reapplication of energetic materials as fuels as a viable demil technology

    SciTech Connect

    Baxter, L.; Davis, K.; Sinquefield, S.; Huey, S.; Lipkin, J.; Shah, D.; Ross, J.; Sclippa, G.

    1996-05-01

    This investigation addresses the combustion-related aspects of the reapplication of energetic materials as fuels in boilers as an economically viable and environmentally acceptable use of excess energetic materials. The economics of this approach indicate that the revenues from power generation and chemical recovery approximately equal the costs of boiler modification and changes in operation. The primary tradeoff is the cost of desensitizing the fuels against the cost of open burn/open detonation (OB/OD) or other disposal techniques. Two principal combustion-related obstacles to the use of energetic-material-derived fuels are NO{sub x} generation and the behavior of metals. NO{sub x} measurements obtained in this investigation indicate that the nitrated components (nitrocellulose, nitroglycerin, etc.) of energetic materials decompose with NO{sub x} as the primary product. This can lead to high uncontrolled NO{sub x} levels (as high as 2,600 ppm on a 3% O{sub 2} basis for a 5% blend of energetic material in the fuel). NO{sub x} levels are sensitive to local stoichiometry and temperature. The observed trends resemble those common during the combustion of other nitrogen-containing fuels. Implications for NO{sub x} control strategies are discussed. The behavior of inorganic components in energetic materials tested in this investigation could lead to boiler maintenance problems such as deposition, grate failure, and bed agglomeration. The root cause of the problem is the potentially extreme temperature generated during metal combustion. Implications for furnace selection and operation are discussed.

  3. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  4. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-11-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  5. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  6. Investigation of sources, properties and preparation of distillate test fuels

    NASA Technical Reports Server (NTRS)

    Bowden, J. N.; Erwin, J.

    1983-01-01

    Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.

  7. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    PubMed

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-01

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene. PMID:22534092

  8. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schnemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-01

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions. PMID:25582882

  9. Impact of aviation non-CO? combustion effects on the environmental feasibility of alternative jet fuels.

    PubMed

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system. PMID:22106939

  10. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    SciTech Connect

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  11. Dispersion of sound in a combustion duct by fuel droplets and soot particles

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Raftopoulos, D. D.

    1979-01-01

    Dispersion and attenuation of acoustic plane wave disturbances propagating in a ducted combustion system are studied. The dispersion and attenuation are caused by fuel droplet and soot emissions from a jet engine combustor. The attenuation and dispersion are due to heat transfer and mass transfer and viscous drag forces between the emissions and the ambient gas. Theoretical calculations show sound propagation at speeds below the isentropic speed of sound at low frequencies. Experimental results are in good agreement with the theory.

  12. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels

    E-print Network

    Carney, Christopher Mark

    1995-01-01

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  13. Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"

    E-print Network

    Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except have been the workhorse of land, air and sea transportation system propulsion for nearly 100 years directly for propulsive force. Examples of internal combustion engines include gasoline, LPG or natural

  14. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine

    NASA Astrophysics Data System (ADS)

    Boerner, S.; Funke, H. H.-W.; Hendrick, P.; Recker, E.; Elsing, R.

    2013-03-01

    The usage of alternative fuels in aircraft industry plays an important role of current aero engine research and development processes. The micromix burning principle allows a secure and low NOx combustion of gaseous hydrogen. The combustion principle is based on the fluid phenomenon of jet in cross flow and achieves a significant lowering in NOx formation by using multiple miniaturized flames. The paper highlights the development and the integration of a combustion chamber, based on the micromix combustion principle, into an Auxiliary Power Unit (APU) GTCP 36-300 with regard to the necessary modifications on the gas turbine and on the engine controller.

  15. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-01

    The nitrogen stable isotope composition of NOx (?(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the ?(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of ?(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of ?(15)N-NOx values was measured from -28.1 to 8.5 for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and ?(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases ?(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the ?(15)N-NOx measured in this study with previous published values, a ?(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources. PMID:26332865

  16. Nanoscopic fuel-rich thermobaric formulations: Chemical composition optimization and sustained secondary combustion shock wave modulation.

    PubMed

    Mohamed, Ahmed K; Mostafa, Hosam E; Elbasuney, Sherif

    2016-01-15

    Advanced thermobaric explosives have become one of the urgent requirements when targeting caves, fortified structures, and bunkers. Highly metal-based systems are designed to exploit the secondary combustion resulted from active metal particles; thus sustained overpressure and additional thermal loadings can be achieved. This study, reports on a novel approach for chemical composition optimization using thermochemical calculations in an attempt to achieve the highest explosion power. Shock wave resulted from thermobaric explosives (TBX) was simulated using ANSYS() AUTODYN() 2D hydrocode. Nanoscopic fuel-rich thermobaric charge was prepared by pressing technique; static field test was conducted. Comparative studies of modeled pressure-time histories to practical measurements were conducted. Good agreement between numerical modeling and experimental measurements was observed, particularly in terms of the prediction of wider overpressure profile which is the main characteristics of TBX. The TBX wider overpressure profile was ascribed to the secondary shock wave resulted from fuel combustion. The shock wave duration time and its decay pattern were acceptably predicted. Effective lethal fire-ball duration up to 50ms was achieved and evaluated using image analysis technique. The extended fire-ball duration was correlated to the additional thermal loading due to active metal fuel combustion. The tailored thermobaric charge exhibited an increase in the total impulse by 40-45% compared with reference charge. PMID:26426986

  17. Combustion and emissions characterization of pelletized coal fuels. [Quarterly] technical report, March 1--May 31, 1993

    SciTech Connect

    Rajan, S.

    1993-09-01

    Pelletization of coal offers a means of utilizing coal fines which otherwise would be difficult to use. Other advantages of coal pelletization include: (a) utilization of low grade fuels such as preparation plant waste, (b) impregnation of pellets with calcium carbonate or calcium hydroxide sorbent for efficient sulfur removal, and (c) utilization of coal fines of low quality in combination with different types of binders. The objective of this project is to investigate the carbon conversion efficiency and SO{sub 2} and NO{sub x} emissions from combusting pelletized coal fuels made from preparation plant waste streams using both limestone and calcium hydroxide as sorbent and cornstarch and gasification tar as binders. The combustion performance of these pelletized fuels is compared with equivalent data from a reference run-of-mine coal. Six different samples of coal pellets have been secured from ISGS researchers. Combustion and emissions characterization of these pellets in the laboratory scale 4-inch diameter circulating fluidized bed have been performed on some of the pellet samples. The pellets burn readily, and provide good bed temperature control. Preliminary results show good carbon conversion efficiencies. Oxides of nitrogen emissions are quite low and sulfur dioxide emissions are as good as or lower than those from a representative run-of-mine coal.

  18. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  19. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T. A.; Bron, F.-M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J. S.; Jacobson, A.; Marland, G.; Miller, J.; Oda, T.; Olivier, J. G. J.; Raupach, M. R.; Rayner, P.; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50%. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  20. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  1. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide an engineering technology base for development of large scale hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed for conducting experimental investigations. Oxidizer (LOX or GOX) is injected through the head-end over a solid fuel (HTPB) surface. Experiments using fuels supplied by NASA designated industrial companies will also be conducted. The study focuses on the following areas: measurement and observation of solid fuel burning with LOX or GOX, correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study also being conducted at PSU.

  2. Accelerating the Computation of Detailed Chemical Reaction Kinetics for Simulating Combustion of Complex Fuels

    SciTech Connect

    Sankaran, R.; Grout, R.

    2012-01-01

    Combustion of hydrocarbon fuels has been a very challenging scientific and engineering problem due to the complexity of turbulent flows and hydrocarbon reaction kinetics. There is an urgent need to develop an efficient modeling capability to accurately predict the combustion of complex fuels. Detailed chemical kinetic models for the surrogates of fuels such as gasoline, diesel and JP-8 consist of thousands of chemical species and Arrhenius reaction steps. Oxygenated fuels such as bio-fuels and heavier hydrocarbons, such as from newer fossil fuel sources, are expected to have a much more complex chemistry requiring increasingly larger chemical kinetic models. Such models are beyond current computational capability, except for homogeneous or partially stirred reactor type calculations. The advent of highly parallel multi-core processors and graphical processing units (GPUs) promises a steep increase in computational performance in the coming years. This paper will present a software framework that translates the detailed chemical kinetic models to high-performance code targeted for GPU accelerators.

  3. Accelerating the Computation of Detailed Chemical Reaction Kinetics for Simulating Combustion of Complex Fuels

    SciTech Connect

    Grout, Ray W

    2012-01-01

    Combustion of hydrocarbon fuels has been a very challenging scientific and engineering problem due to the complexity of turbulent flows and hydrocarbon reaction kinetics. There is an urgent need to develop an efficient modeling capability to accurately predict the combustion of complex fuels. Detailed chemical kinetic models for the surrogates of fuels such as gasoline, diesel and JP-8 consist of thousands of chemical species and Arrhenius reaction steps. Oxygenated fuels such as bio-fuels and heavier hydrocarbons, such as from newer fossil fuel sources, are expected to have a much more complex chemistry requiring increasingly larger chemical kinetic models. Such models are beyond current computational capability, except for homogeneous or partially stirred reactor type calculations. The advent of highly parallel multi-core processors and graphical processing units (GPUs) promises a steep increase in computational performance in the coming years. This paper will present a software framework that translates the detailed chemical kinetic models to high- performance code targeted for GPU accelerators.

  4. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated- Polybutadiene) fuel cross linked with diisocyanate was burned with GOX under various operating conditions. Large amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed line system and combustion chamber, the pressure oscillations were drastically reduced from +/- 20% of the localized mean pressure to an acceptable range of +/- 1.5%. Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations arc thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison to the translucent fuel slabs.

  5. Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison to the translucent fuel slabs.

  6. Trends of jet fuel demand and properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1984-01-01

    Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

  7. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  8. Fuel and physical properties of biodiesel components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats or used oils. Specifically, biodiesel is the methyl or other alkyl esters of these oils or fats. Biodiesel also contains minor components such as free fatty acids and acylglycerols. Important fuel properties of biodi...

  9. Effect of broad properties fuel on injector performance in a reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Raddlebaugh, S. M.; Norgren, C. T.

    1983-01-01

    The effect of fuel type on the performance of various fuel injectors was investigated in a reverse flow combustor. Combustor performance and emissions are documented for simplex pressure atomizing, spill flow, and airblast fuel injectors using a broad properties fuel and compared with performance using Jet A fuel. Test conditions simulated a range of flight conditions including sea level take off, low and high altitude cruise, as well as a parametric evaluation of the effect of increased combustor loading. The baseline simplex injector produced higher emission levels with corresponding lower combustion efficiency with the broad properties fuel. There was little or not loss in performance by the two advanced concept injectors with the broad properties fuel. The airblast injector proved to be especially insensitive to fuel type.

  10. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  11. Methods and systems to thermally protect fuel nozzles in combustion systems

    DOEpatents

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  12. A semi-analytical variable property droplet combustion model

    NASA Astrophysics Data System (ADS)

    Sisti, John

    A multizone droplet burn model is developed to account for changes in the thermal and transport properties as a function of droplet radius. The formulation is semi-analytical---allowing for accurate and computationally efficient estimates of flame structure and burn rates. Zonal thermal and transport properties are computed using the Cantera software and pre-tabulated for rapid evaluation during run-time. Model predictions are compared to experimental measurements of burning n-heptane, ethanol and methanol droplets. An adaptive zone refinement algorithm is developed that minimizes the number of zones required to provide accurate estimates of burn time without excess zones. A sensitivity study of burn rate and flame stand-off with far-field oxygen concentration is conducted with comparisons to experimental data. Overall agreement to data is encouraging with errors typically less than 20% for predictions of burn rates, stand-off ratio and flame temperature for the fuels considered. The quiescent quasi-steady solution is extended to a convective transient solution without the need to solve an eigenvalue solution in time. The time history of the burning droplets show good comparison with experimental data. To further decrease computational cost, the source terms for the transient solution are linearized for an explicit time marching solution. An error convergence study was performed to show a time-step independent solution exists at a reasonable Delta t.

  13. RTR studies of closed combustion of liquid-metal fuels. Professional paper for period ending June 1987

    SciTech Connect

    Parnell, L.A.; Edmunds, D.G.; Rogerson, D.J.

    1988-01-01

    The use of liquid-metal combustion as a Rankine cycle heat source in stored-chemical-energy propulsion systems for undersea vehicles has fostered interest in the fundamental processes occurring during such combustion. This paper reports an investigation into the use of high energy, real-time radiography to provide x-ray images of the confined combustion of an oxidant injected and submerged in a fuel bath. Studies of the combustion processes and fluid dynamics of the jet driven circulating flow in the fuel bath are described. Results of tests using cylindrical combustors that have single, horizontal oxidizer jets at their centerlines are presented. Selected radiographic images showing some of the large-scale, low-frequency turbulence, dense product behavior and reaction zone growth that occurs during such closed combustion processes are presented and discussed.

  14. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    SciTech Connect

    Chirone, R.; Scala, F.; Solimene, R.; Salatino, P.; Urciuolo, M.

    2008-10-15

    The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)

  15. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  16. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    E-print Network

    Santilli, R M

    2000-01-01

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capaciti...

  17. Design and implementation of Carbon Monoxide and Oxygen emissions measurement in swirl-stabilized oxy-fuel combustion

    E-print Network

    Sommer, Andrew (Andrew Zhang)

    2013-01-01

    Oxy-fuel combustion in natural gas power generation is a technology of growing interest as it provides the most efficient means of carbon capture. Since all the emissions from these power plants are sequestered, there are ...

  18. Co-Combustion of Refuse Derived Fuel with Anthracites in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Lee, Jong-Min; Kim, Jae-Sung

    Combustion of Refuse derived fuel (RDF) is considered as a priority solution to energy recovery from municipal solid waste (MSW). The co-combustion characteristics of anthracite coals with RDF were determined in the commercial scale Tonghae CFB Power Plant. As the feeding ratio of the RDF to the anthracites increased to 5%, temperature and pressure were not changed in comparison with firing only anthracites. The amount of the required air was reduced due to high O2 content in RDF relative to the anthracites. The emissions of NOx, SOx, HCl and Dioxin were also measured. According to higher mixing ratio of the RDF to the anthracites, SOx, NOx emissions slightly decreased and HCl emissions increased, because RDF has relatively smaller S, N and higher CI than the anthracites. Heavy metals of the fly ash and bottom ash and the dioxin emissions were far below Korean maximum permissible concentration level at incinerator. The results showed that it is of great use and technically possible to co-combustion of RDF with the anthracites by 5% in the form of fuel recovery and energy production in commercial scale CFB boiler.

  19. Fuel-Specific Effect of Exhaust Gas Residuals on HCCI Combustion: A Modeling Study

    SciTech Connect

    Szybist, James P

    2008-01-01

    A modeling study was performed to investigate fuel-specific effects of exhaust gas recirculation (EGR) components on homogeneous charge compression ignition (HCCI) combustion at conditions relevant to the negative valve overlap (NVO) strategy using CHEMKIN-PRO. Four single-component fuels with well-established kinetic models were chosen: n-heptane, iso-octane, ethanol, and toluene. These fuels were chosen because they span a wide range of fuel chemistries, and produce a wide compositions range of complete stoichiometric products (CSP). The simulated engine conditions combined a typical spark ignition engine compression ratio (11.34) and high intake charge temperatures (500-550 K) that are relevant to NVO HCCI. It was found that over the conditions investigated, all the fuels had overlapping start of combustion (SOC) phasing, despite the wide range in octane number (RON = 0 to 120). The effect of the EGR components CO2 and H2O was to suppress the compression temperature because of their higher heat capacities, which retarded SOC. For a concentration of O2 higher than the stoichiometric amount, or excess O2, there was an effect of advancing SOC for n-heptane, iso-octane, and toluene, but SOC for ethanol was not advanced. Low temperature heat release (LTHR) for n-heptane was also found to be highly dependent on excess O2, and mild endothermic reaction was observed for cases when excess O2 was not present.

  20. Combustion-derived nanoparticle exposure and household solid fuel use in Xuanwei and Fuyuan, China

    PubMed Central

    Hosgood, H. Dean; Lan, Qing; Vermeulen, Roel; Wei, Hu; Reiss, Boris; Coble, Joseph; Wei, Fusheng; Jun, Xu; Wu, Guoping; Rothman, Nat

    2014-01-01

    Combustion-derived nanoparticles (CDNPs) have not been readably measurable until recently. We conducted a pilot study to determine CDNP levels during solid fuel burning. The aggregate surface area of CDNP (?m2/cm3) was monitored continuously in 15 Chinese homes using varying fuel types (i.e. bituminous coal, anthracite coal, wood) and stove types (i.e. portable stoves, stoves with chimneys, firepits). Information on fuel burning activities was collected and PM2.5 levels were measured. Substantial exposure differences were observed during solid fuel burning (mean: 228.1 ?m2/cm3) compared to times without combustion (mean: 14.0 ?m2/cm3). The observed levels during burning were reduced by about four-fold in homes with a chimney (mean: 92.1 ?m2/cm3; n = 9), and effects were present for all fuel types. Each homes CDNP measurement was only moderately correlated with the respective PM2.5 measurements (r2 = 0.43; p = 0.11). Our results indicate that household coal and wood burning contributes to indoor nanoparticle levels, which are not fully reflected in PM2.5 measurements. PMID:22639822

  1. Fuels combustion research. Annual report, 1 March 1983-29 February 1984

    SciTech Connect

    Dryer, F.L.; Glassman, I.; Williams, F.A.

    1984-07-18

    Further oxidation studies of the n-alkylated aromatics reveal insights with respect to the oxidation of the alkyl side chains. Toluene is unique in its oxidation due to the nonreactivity of the benzyl radical that forms. The higher normal alkyl aromatics all form styrene and allyl radicals during the initial stages of oxidation. Thus the oxidation of these fuels will all be similar to ethyl benzene. The first results on the oxidation 1-methyl naphthalene have been obtained. A study on the oxidation and pyrolysis of butadiene, an important aromatic intermediate and soot precursor, has been completed. More extensive experimentation on the sooting tendencies in premixed and diffusion flames has been performed. The new fuels used were the cycloalkanes, the cycloolefins, purified 1,3-butadiene and 1-methyl naphthalene. A new model for sooting under premixed conditions reveals that original fuel structure does not play a role in soot production, but the number of carbon-carbon bonds in the fuel do. Diffusion flame results confirm that fuel pyrolysis rates and intermediates determine the sooting tendency in this combustion system. The new theory of boron ignition and combustion has been improved further. Appropriate droplet generators for boron and carbon slurries have been developed.

  2. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Wolfbrandt, G.

    1980-01-01

    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.

  3. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  4. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.

    PubMed

    Fournel, S; Marcos, B; Godbout, S; Heitz, M

    2015-03-01

    A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. PMID:25543541

  5. Fuels-combustion research. Final report, 1 August 1986-31 July 1987

    SciTech Connect

    Dryer, F.L.; Glassman, I.; Williams, F.A.

    1987-10-08

    The DOD URIP equipment grant received by the Fuels Combustion Research Group was used, in accord with the original intent of the award, to update an advance the analytic capabilities of the combustion laboratories. The newly purchased gas- and liquid-chromatographic instrumentation became the center pieces of a DOD-supported analytic facility recently shown to the Chairman of the Joint Chiefs of Staff, Admiral William J. Crowe, Jr. as an example of DOD-supported research in the School of Engineering. The chemical-analysis instrumentation in the facility as well as the boron-particle sizing and visualizing devices are described briefly. Photographs of the installed equipment are used to facilitate the description of the various pieces of instrumentation.

  6. Catalytically supported thermal combustion of coal derived low Btu gas. Part 1. Performance with low Btu gas fuels

    SciTech Connect

    Osgerby, I.T.

    1981-01-01

    To design a catalyst configuration for burning low-Btu gas, Engelhard chose experimental parameters simulating gas-turbine operation and demonstrated that catalytically supported combustion can succeed with a wide range of low-Btu fuel compositions while maintaining high efficiency, low emissions, and an acceptable pressure drop. A parametric performance map for a prototype catalyst configuration shows the effects on combustion of the fuel-gas composition and calorific value, operating temperature and pressure, and reference velocity.

  7. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  8. The origin of organic pollutants from the combustion of alternative fuels: Phase IV report

    SciTech Connect

    Taylor, P.H.; Dellinger, B.; Sidhu, S.K.

    1997-06-01

    As part of the US-DOE`s on-going interest in the use of alternative automotive fuels, the University of Dayton Research Institute has been conducting research on pollutant emissions resulting from the combustion of candidate fuels. This research, under the direction and sponsorship of the NREL, has been concerned primarily with the combustion of compressed natural gas, liquefied petroleum gas (LPG), methanol, and ethanol. In the first 24 months of this program, studies of the oxygen rich, stoichiometric, and fuel-rich thermal degradation of these fuels in the temperature range of 300 to 1100{degrees}C at atmospheric pressure and for reaction times of 1.0 and 2.0 s were completed. Trace organic products were identified and quantified for each fuel as a function of temperature. The results of these studies agreed well with the results of tail-pipe emission studies in that the types and quantity of emissions measured in both the laboratory and engine tests were shown to be very similar under certain operating conditions. However, some chemicals were observed in the laboratory studies that were not observed in the engine studies and vice versa. This result is important in that it has implications concerning the origin of these emissions. Experiments concerning the NO perturbed oxidation of methanol, M85, ethanol, and E85 indicated the presence of complex oxidation chemistry. At mild temperatures, NO addition resulted in enhanced fuel conversion. At elevated temperatures, an inhibitory effect was observed through increased yields of both partial oxidation and pyrolysis-type reaction products. Comparison of flow reactor product distributions with engine test results generally indicated improved comparisons when NO was added to the fuel. Analysis of secondary components of alcohol fuels resulted in some unexpected observations. Several previously unidentified species were observed in these experiments which may impact atmospheric reactivity assessments of these fuels.

  9. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal. PMID:25402169

  10. Electrochemical Sensing of Dopamine and Antibacterial Properties of ZnO Nanoparticles Synthesized from Solution Combustion Method

    NASA Astrophysics Data System (ADS)

    Manjunath, K.; Lingaraju, K.; Kumar, D.; Nagabhushan, H.; Samrat, D.; Reddy, V.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G.

    2015-03-01

    We have successfully synthesized ZnO nanoparticles (NPs) from solution combustion method using combustible fuel (Green gram). XRD pattern confirms that the prepared compound is composed of wurtzite hexagonal zinc-oxide. FTIR spectrum of ZnO NPs shows the band at 417 cm-1 associated with the characteristic vibration of Zn-O. The UV-Vis spectrum shows a strong absorption band at 365 nm which is blue shifted due to quantum confinement effect. TEM images show the average sizes of the nanoparticles are found to be almost 15-30 nm. The as-synthesized product shows good electrochemical sensing of dopamine. Furthermore the antibacterial properties of ZnO NPs were investigated by their bactericidal activity against four bacterial strains using the agar well diffusion method.

  11. Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers

    DOEpatents

    Tuttle, Kenneth L. (Federal Way, WA)

    1980-01-01

    A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

  12. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    SciTech Connect

    Biteau, H.; Fuentes, A.; Marlair, G.; Torero, J.L.

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations were observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)

  13. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  14. Aerodynamic drag and fuel spreading measurements in a simulated scramjet combustion module

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1974-01-01

    The drag of a simulated scramjet combustion module was measured at Mach 2, 2.5, and 3. The combustor was rectangular in cross section and incorporated six swept fuel injector struts. The effect of strut leading edge radius, position of maximum thickness, thickness ratio, sweep angle, and strut length on the drag was determined. Reduction in thickness ratio had the largest effect on drag reduction. Sweeping the struts upstream yielded the same drag as sweeping the struts downstream and potentially offers the advantages of increased mixing time for the fuel. Helium injection was used to simulate hydrogen fuel. The interstrut spacing required to achieve good distribution of fuel was was found to be about 10 jet diameters. The contribution of helium injection to drag reduction was small.

  15. Flatness-based embedded control of air-fuel ratio in combustion engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    A nonlinear controller is designed for air-fuel ratio control in combustion engines, making use of differential flatness theory and of the Derivative-free nonlinear Kalman Filter. It is proven that the air-fuel ratio system is a differentially flat one and admits dynamic feedback linearization. Using a change of variables that is based on differential flatness theory it is shown that the air-fuel ratio system can be transformed to the linear canonical form, for which the design of a state feedback controller is easier. Moreover, to compensate for modeling uncertainties and external disturbances the Derivative-free nonlinear Kalman Filter is designed as a disturbance observer. The estimation of the perturbations that effect the air-fuel systems enables their compensation through the inclusion of an additional term in the feedback control law. The efficiency of the proposed nonlinear feedback control scheme is tested through simulation experiments.

  16. Cold start fuel management of port-fuel-injected internal combustion engines

    E-print Network

    Cuseo, James M. (James Michael)

    2005-01-01

    The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

  17. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  18. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bnger, Jrgen; Krahl, Jrgen; Schrder, Olaf; Schmidt, Lasse; Westphal, Gtz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel hydrotreated vegetable oil (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a decreased mutagenicity. PMID:22871157

  19. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.

    PubMed

    Bnger, Jrgen; Krahl, Jrgen; Schrder, Olaf; Schmidt, Lasse; Westphal, Gtz A

    2012-10-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a decreased mutagenicity. PMID:22871157

  20. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.

  1. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.

  2. Meat and bone meal as secondary fuel in fluidized bed combustion

    SciTech Connect

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  3. Effects of compression and expansion ramp fuel injector configuration on scramjet combustion and heat transfer

    NASA Technical Reports Server (NTRS)

    Stouffer, Scott D.; Baker, N. R.; Capriotti, D. P.; Northam, G. B.

    1993-01-01

    A scramjet combustor with four wall-ramp injectors containing Mach-1.7 fuel jets in the base of the ramps was investigated experimentally. During the test program, two swept ramp injector designs were evaluated. One swept-ramp model had 10-deg compression-ramps and the other had 10-deg expansion cavities between flush wall ramps. The scramjet combustor model was instrumented with pressure taps and heat-flux gages. The pressure measurements indicated that both injector configurations were effective in promoting mixing and combustion. Autoignition occurred for the compression-ramp injectors, and the fuel began to burn immediately downstream of the injectors. In tests of the expansion ramps, a pilot was required to ignite the fuel, and the fuel did not burn for a distance of at least two gaps downstream of the injectors. Once initiated, combustion was rapid in this configuration. Heat transfer measurements showed that the heat flux differed greatly both across the width of the combustor and along the length of the combustor.

  4. COMBUSTION CHARACTERIZATION OF COAL-WATER SLURRY FUEL PREPARED FROM PLANT COAL AND RECOVERED COAL FINES

    SciTech Connect

    Houshang Masudi, Ph.D.

    1997-07-01

    In the process of coal cleaning operations, a significant amount of coal is washed away as waste into the ponds. Clearly, such a large quantity of dumped coal fines has a detrimental effect on the environment. This investigation presents in innovative approach to recover and utilize waste coal fines from the preparation plant effluent streams and tailing ponds. Due to the large moisture content of the recovered coal fines, this study is focused on the utilization of coal fines in the coal-water slurry fuel (CWSF). The CWSF consists of 53.3% weight solids with a viscosity of less than 500 centipoise and 80-90% of solids passing 200 mesh. The 53.3% weight solids constitute a blend of 15% effluent recovered coal fines and 85% clean coal. It is the authors premise that a blend of plant coal and recovered waste coal fines can be used to produce a coal-water slurry fuel with the desired combustion characteristics required by the industry. In order to evaluate these characteristics the coal-water slurry fuel is fired in a test furnace at three firing rates (834,330 Btu/hr, 669,488 Btu/hr and 508,215 Btu/hr) with three different burner settings for each firing rate. Combustion tests were conducted to determine the range of secondary air swirl required to maintain a stable combustion flame. Results obtained during the flame stability testing show no significant effect of swirl settings on Nox, SO2 and CO2 for three combustion tests (834, 330 Btu/hr, 669, 488 Btu/hr, 508 215 Btu/hr). At each of the two higher firing rates, combustion was relatively complete regardless of swirl settings, therefore, burner settings may be adjusted to provide a visually stable flame without concern for higher carbon in ash as a function of burner settings. The parameters affecting flame stability are mainly coal particle size, volatile matter, ash content and excess air. Tests conducted at three different locations (top, Middle, Bottom) revealed that the gaseous concentrations such as Nox, SO2 and CO2 were a function of residence time for each of the firing rates. Effect of swirl settings on Nox for three firing rates were investigated. It was found that the variation of Nox concentrations with respect to the change in swirl numbers was significant. But, the variation of Nox Concentration with respect to firing rates was found to be consistent with the increase in firing rates. The flame stability was accessed by the visual observation of the flame with relation to the burner quarl.

  5. Wood fuel for power generation at Wendel, California. Volume 4. Fuel properties

    SciTech Connect

    Not Available

    1981-05-01

    Wood materials available from within the 100-mile Susanville procurement area for fueling the Honey Lake hybrid power plant are studied, treating (a) heating values, (b) drying characteristics, (c) soil-rock contamination, (d) storage degradation, and (e) combustion emissions.

  6. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I determine the total sulfur... total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of the fuel being fired in the turbine, except as provided in 60.4365. The sulfur content of the fuel...

  7. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I determine the total sulfur... total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of the fuel being fired in the turbine, except as provided in 60.4365. The sulfur content of the fuel...

  8. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    E-print Network

    R. M. Santilli

    2000-09-04

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capacities of quantum chemistry. In fact, magnegas contains up to 50% hydrogen, while having combustion exhaust with: 1) a positive oxygen balance (releasing more oxygen in the exhaust than that used in the combustion); 2) no appreciable carcinogenic or toxic substances; 3) considerably reduced carbon dioxide as compared to fossil fuels; 4) considerably reduced nitrogen oxides; and 5) general reduction of pollutants in the exhaust up to 96% of current EPA standards.

  9. Combustion of fuel with high fines in Ahlstrom Pyroflow{reg_sign} CFB boilers

    SciTech Connect

    Chelian, P.K.; Gamble, R.

    1995-12-31

    Ahlstrom Pyroflow{reg_sign} boilers have demonstrated the ability of circulating fluidized bed (CFB) boilers to successfully burn unconventional fuels. These boilers have played a major role in the utilization of waste fuels, like bituminous gob and anthracite culm. Many of the waste fuels are processed prior to combustion to increase their heating value. As the technology for combustion of these fuels advanced, so has the desire of the owners to utilize more of the waste fuel and minimize the rejects. In the past, a majority of the fines content (less than 150 microns) was rejected and returned to the piles along with other rejects. In some cases, pond settlings were found to have a reasonably useful heat content, and were a preferred supplement to the anthracite culm. The use of these rejects had one result in common, i.e., to increase the fines content in the fuel feed to the CFB boilers. Pyropower was involved in tests conducted at two boilers, one burning bituminous gob and the other burning processed anthracite culm and silt. These tests were aimed at studying the effect of the high fuel fines content on the CFB boiler performance to determine the maximum practical fines limit. There were concerns of high unburned carbon loss, high CO and high cyclone temperatures. The actual test data confirmed that these boilers could fire a high percent of fines without major concerns. This paper discusses in detail the results of the testing with anthracite culm and silt, and references similar observations made during the testing with high fines bituminous gob.

  10. Experimental study of oxy-fuel combustion and sulfur capture in a mini-CFBC

    SciTech Connect

    L. Jia; Y. Tan; C. Wang; E.J. Anthony

    2007-12-15

    Oxy-fuel technology uses effectively pure oxygen for fossil fuel combustion in order to obtain a highly concentrated CO{sub 2} stream, suitable for direct compression and sequestration. It is an effective technology to reduce greenhouse gas emissions to the atmosphere from large point sources such as power generation plants. Oxy-fuel FBC technology has the combined advantage of producing high CO{sub 2} concentration flue gas and allowing excellent fuel flexibility. In addition, with external cooling of the recirculated solids, the flue gas recirculation ratio can be reduced. CETC-Ottawa has carried out oxy-fuel fluidized bed combustion with flue gas recirculation on its modified mini-CFBC. The mini-CFBC has an internal diameter of 100 mm and internal height of 5000 mm. Both bituminous and sub-bituminous coals were fired. Limestone was premixed with coal and fed to the mini-CFBC. Recirculated solids were cooled in the return leg of the mini-CFBC. The bed temperature was controlled at about 850{sup o}C, while the oxygen concentration in the primary gas was about 25% and in the secondary gas was about 50%. With flue gas recycle, the CO{sub 2} concentration in the flue gas reached 82-90%. Sulfur capture efficiency and CO and NOx concentrations were also measured and were all at acceptable levels. The transition from air firing to oxy-fuel firing was a fast and relatively smooth process, and operation of the mini-CFBC under oxy-fuel firing conditions was similar to that of air firing. 15 refs., 4 figs., 3 tabs.

  11. Fuels-combustion resaearch. Annual technical report, 1 October 1985-30 September 1986

    SciTech Connect

    Dryer, F.L.; Glassman, I.; Williams, F.A.

    1986-10-31

    After great progress related to soot formation in normal diffusion flames, studies of near sooting inverse-diffusion flames were begun to determine controlling precursors. Stable, temperature-controlled inverse-diffusion flames were successfully developed and numerous chemical samples extracted and analyzed. Observed trends are being studied. The side-chain oxidation of n-butyl benzene was found to follow the same processes as the smaller n-alkyl benzenes; abstraction, alkyl group displacement and thermal cleavage. The results led to development of a simple general, mechanistic model for the oxidation of n-alkyl benzenes. Combustion-property observations of isolated boron droplets were extended to boron/JP-10 slurries with various solid loadings. Some physical understanding of observed droplet burning and disruption behavior was developed. Quasi-spherical hollow shells of the boron agglomerate with blowholes support the hypothesis of the formation of the impermeable shell and subsequent disruption of the primary slurry droplet. Boron suspension (cloud) combustion in the hot reaction products of a flat-flame burner has been pursued. The boric acid fluctuation bands were identified spectroscopically, and conditions for their flame occurrence measured. The work progresses toward establishment of ignition conditions and combustion times of 0.1-5 micron boron particles.

  12. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did not have the diluent requirements of Prototype-1 and was demonstrated at targeted gas turbine conditions. The TVC combustor, Prototype-2, premixes the syngas with air for low emission performance. The combustor was designed for operation with syngas and no additional diluents. The combustor was successfully operated at targeted gas turbine conditions. Another goal of the program was to advance the status of development tools for syngas systems. In Task 3 a syngas flame evaluation facility was developed. Fundamental data on syngas flame speeds and flame strain were obtained at pressure for a wide range of syngas fuels with preheated air. Several promising reduced order kinetic mechanisms were compared with the results from the evaluation facility. The mechanism with the best agreement was selected for application to syngas combustor modeling studies in Task 6. Prototype-1 was modeled using an advanced LES combustion code. The tools and combustor technology development culminate in a full-scale demonstration of the most promising technology in Task 8. The combustor was operated at engine conditions and evaluated against the various engine performance requirements.

  13. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of opportunity gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burners aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeecos offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the projects burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the projects technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  14. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems.

    PubMed

    Ochoa-Gonzlez, Raquel; Daz-Somoano, Mercedes; Martnez-Tarazona, M Rosa

    2014-07-15

    This paper evaluates the influence of the main constituents of flue gases from coal combustion (CO2, O2, N2 and water vapor), in air and oxy-fuel combustion conditions on the re-emission of Hg(0) in wet scrubbers. It was observed that the concentration of water vapor does not affect the re-emission of mercury, whereas O2 and CO2 have a notable influence. High concentrations of O2 in the flue gas prevent the re-emission of Hg(0) due to the reaction of oxygen with the metals present in low oxidation states. High concentrations of CO2, which cause a decrease in the pH and the redox potential of gypsum slurries, reduce the amount of Hg(0) that is re-emitted. As a consequence, the high content of CO2 in oxy-fuel combustion may decrease the re-emission of Hg(0) due to the solubility of CO2 in the suspension and the decrease in the pH. It was also found that O2 affects the stabilization of Hg(2+) species in gypsum slurries. The results of this study confirm that the amount of metals present in limestone as well as the redox potential and pH of the slurries in wet desulphurization plants need to be strictly controlled to reduce Hg(0) re-emissions from power plants operating under oxy-fuel combustion conditions. PMID:24887118

  15. System for optimizing the fuel consumption of an internal combustion engine

    SciTech Connect

    Maurer, F.

    1981-08-04

    Optimum fuel consumption in an internal combustion engine driving a hydrostatic transmission having a continuously variable gear ratio is achieved by first applying the signal derived from the gas pedal directly to the transmission ratio regulator and, secondly, by controlling the fuel consumption of the engine in response to the gas pedal signal as follows: first, the signal from the gas pedal is multiplied by a signal signifying the output speed of the transmission. The so-formed desired power signal is applied to a storage which furnishes a desired engine speed signal in response thereto. The desired speed signal is compared to the actual engine speed and the resulting error signal, after amplification and integration, is applied to a unit controlling the fuel supply of the engine.

  16. Regulating the combustion temperature of the fuel in kilns for firing electrical porcelain

    SciTech Connect

    Etingen, L.A.; Koren, M.G.; Tishkevich, L.B.

    1986-11-01

    It can be assumed that the use of ballasted air in burner devices of kilns working with natural gas and equipped with low-pressure burners will give an increase in the consumption and pressure of the ballasted air compared with pure (nonballasted) air; there should be an improvement in the introduction of the fuel, its mixing conditions, and the combustion conditions. The proposed method of regulating the temperature in kilns can be used in other industries with similar heattreatment conditions for the goods.

  17. Experimental and Numerical Study on Combustion Mechanism of Liquid Fuel Spray Entering Gaseous Flame Front

    NASA Astrophysics Data System (ADS)

    Nakamura, Mariko; Akamatsu, Fumiteru; Kurose, Ryoichi; Katsuki, Masashi

    Experimental observations and numerical simulations are conducted on combustion processes of n-decane polydisperse spray entering a gaseous flat flame stabilized in a laminar 2D counterflow configuration. For the gaseous phase, Eulerian mass, momentum, energy, and species conservation equations are solved. For the disperse phase, all individual droplets are tracked without using a droplet parcel model. The experimental results show that blue flames and luminous flames are observed and there are unsteady changes in the behavior. The numerical results show that the spray flame structures vary depending on the supplied quantities of liquid fuel spray. Furthermore, the instantaneous flame structures are consistent with the typical flame structures observed with the experiment.

  18. NASA broad-specification fuels combustion technology program: Status and description

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1979-01-01

    The program presented is a contracted effort to evolve and demonstrate the technology required to utilize broad-specification fuels in current and next generation commercial Conventional Takeoff and Landing aircraft engines, and to verify this technology in full-scale engine tests in 1983. The program consists of three phases: Combustor Concept Screening, Combustor Optimization Testing, and Engine Verification Testing. The development and screening of the combustion system designs for the CF6-80 engine and the JT9D-7 engine, respectively, in high-pressure sector test rigs are reported.

  19. Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines

    NASA Astrophysics Data System (ADS)

    MacLeod, C.

    This paper describes some innovative methods for achieving enhanced fuel-air mixing and combustion in Scramjet-like spaceplane engines. A multimodal approach to the problem is discussed; this involves using several concurrent methods of forced mixing. The paper concentrates on Electromagnetic Activation (EMA) and Electrostatic Attraction as suitable techniques for this purpose - although several other potential methods are also discussed. Previously published empirical data is used to draw conclusions about the likely effectiveness of the system and possible engine topologies are outlined.

  20. Fuels combustion research. Annual report, October 1979-30 September 1980

    SciTech Connect

    Glassman, I.; Dryer, F.L.

    1981-02-27

    A high temperature sampling system for the Princeton flow reactor has been developed. Initial results have been obtained on the oxidation of toluene. Benzaldehyde forms as an important intermediate and then the process becomes one of the oxidizing formly and phenyl reactions. The effects of oxygen index and temperature on sooting diffusion flames have been studied. Results indicate that the stoichiometric flame temperature dominates the sooting tendency and that the C4 and C5 olefin and diolefins and the aromatics are the most dominant sooting fuels. In development, as well are a powerful family of sensitivity analysis tools to quantitatively address the complex interaction between a combustion system's chemical and transport component.