These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Aviation-fuel property effects on combustion  

NASA Technical Reports Server (NTRS)

The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

Rosfjord, T. J.

1984-01-01

2

Predicting combustion properties of hydrocarbon fuel mixtures  

E-print Network

In this thesis, I applied computational quantum chemistry to improve the accuracy of kinetic mechanisms that are used to model combustion chemistry. I performed transition state theory calculations for several reactions ...

Goldsmith, Claude Franklin, III

2010-01-01

3

Fuel property effects on engine combustion processes. Final report  

SciTech Connect

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27

4

Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels  

SciTech Connect

A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

2007-01-01

5

The Effect of Air\\/Fuel Ratio on Properties and Reactivity of Combustion Soots  

Microsoft Academic Search

The dependence of specific properties of black carbon (BC) soots on fuel type and combustion conditions has been studied, and the effects of these properties on soot particle hydration and reaction with ozone determined. Series of soots were prepared from n-hexane, diesel and JP8 aircraft fuels, utilizing a flow combustion system designed for accurate control of the air\\/fuel ratio in

A. R. Chughtai; J. M. Kim; D. M. Smith

2002-01-01

6

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties  

Microsoft Academic Search

The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC\\/MS and \\/u1H\\/\\/u1\\/u3C NMR

Tom Gallant; Jim Franz; Mikhail Alnajjar; John Morse Storey; Samuel Arthur Lewis Sr; Scott Sluder; William C Cannella; Craig Fairbridge; Darcy Hager; Heather Dettman; Jon Luecke; Matthew A. Ratcliff; Brad Zigler

2009-01-01

7

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties  

SciTech Connect

The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

2009-01-01

8

Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air  

NASA Technical Reports Server (NTRS)

A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

1984-01-01

9

Effect of W/O Emulsion Fuel Properties on Spray Combustion  

NASA Astrophysics Data System (ADS)

This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

10

An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency  

SciTech Connect

In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

Szybist, James P [ORNL; Chakravathy, Kalyana [Oak Ridge National Laboratory (ORNL); Daw, C Stuart [ORNL

2012-01-01

11

Combustion properties of biomass  

Microsoft Academic Search

Properties of biomass relevant to combustion are briefly reviewed. The compositions of biomass among fuel types are variable, especially with respect to inorganic constituents important to the critical problems of fouling and slagging. Alkali and alkaline earth metals, in combination with other fuel elements such as silica and sulfur, and facilitated by the presence of chlorine, are responsible for many

B. M Jenkins; L. L Baxter; T. R Miles

1998-01-01

12

Combustion gas properties of various fuels of interest to gas turbine engineers  

NASA Technical Reports Server (NTRS)

A series of computations were made using the gas property computational schemes of Gordon and McBride to compute the gas properties and species concentration of ASTM-Jet A and dry air. The computed gas thermodynamic properties in a revised graphical format which gives information which is useful to combustion engineers is presented. A series of reports covering the properties of many fuel and air combinations will be published. The graphical presentation displays on one chart of the output of hundreds of computer sheets. The reports will contain microfiche cards, from which complete tables and graphs can be obtained. The extent of the planned effort and is documented samples of the many tables and charts that will be available on the microfiche cards are presented.

Jones, R. E.; Trout, A. M.; Wear, J. D.

1984-01-01

13

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15

14

An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency  

Microsoft Academic Search

In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate

James P Szybist; Kalyana Chakravathy; C Stuart Daw

2012-01-01

15

Flame combustion of carbonaceous fuels  

Microsoft Academic Search

A method for improving the flame combustion of carbonaceous fuels. The method enables the reduction of oxides of nitrogen generated by the flame combustion, and enables an improvement in boiler efficiency. An ionic sodium or potassium compound, or a combination of them, is supplied with the combustible mixture of fuel and air so as intimately and uniformly to be present

W. J. Hampton; R. L. Hatch; G. R. James

1984-01-01

16

Fuel-Rich Catalytic Combustion  

NASA Technical Reports Server (NTRS)

Two-stage combustion system reduces particulate emissions. Program on catalytic oxidation of iso-octane demonstrates feasibility of two-stage combustion system for reducing particulate emissions. With fuel-rich (fuel/air equivalence ratios of 4.8 to 7.8) catalytic-combustion preburner as first stage, combustion process free of soot at reactor-outlet temperatures of 1,200 K or less.

Brabbs, Theodore A.; Olson, Sandra L.

1987-01-01

17

Fuel Flexibility in Combustion  

SciTech Connect

This poster presents research findings from cofiring studies of various biomass feedstocks such as pentachlorophenol (PCP) and creosote-treated wood, lumber mill and furniture waste sawdusts, pallets, feedlot biomass (cattle manure), hybrid willow, and switchgrass with several bituminous and subbituminous coals. This research includes evaluation of advanced instrumentation and the study of interrelated combustion/emissions issues, such as char burnout, impacts on SO2, NOx, fine particulate (PM2.5), mercury (Hg) and other trace emissions, as well as issues impacting heat transfer, such as ash deposition slagging/fouling behavior. Biomass cofiring in large industrial and utility coal-fired boilers is a practical approach for increasing renewable energy given the wide availability, capital investment, and established performance of coal-fired boilers for providing efficient, low cost power. Although some utility biomass cofiring is successfully practiced in the U.S. and abroad, establishing long-term reliability and improving economics are still significant needs, along with research to support advanced combustion in future Vision 21 systems. Biomass cofiring in Vision 21 systems may reduce fossil CO2 emissions per MWe at capital and operations/maintenance cost savings relative to other technology options. Because an increasing number (currently 14) states have recently passed legislation establishing renewable portfolio standards (RPS), goals, or set-asides that will impact new power generation by 2009 and beyond, cofiring may broaden the appeal of Vision 21 systems to solve other environmental issues, including reducing landfill requirements. Legislation has been proposed to establish a federal RPS as well as extend IRS Section 29/45 tax credits (e.g., $0.005-0.010/kW-hr) for cofiring residues to supplement existing incentives, such as a $0.015/kW-hr tax credit for closed loop biomass (e.g., energy crops, such as switchgrass, hybrid willow) gasification. In addition, the coproduction/cogeneration concepts embodied in Vision 21 may also lend itself well to the type of utility/industry partnering involved in cofiring approaches. In light of the cost limitations in shipping distance (e.g., 50-100 miles or less) from collection to end-use based on the low energy density of biomass, resource availability is a site-specific consideration. Biomass fuels also exhibit significant differences in fuel characteristics, including volatility and ash chemistry that can also influence cofiring performance. Pilot-scale biomass cofiring tests have been conducted in the 150 kWt Combustion and Environmental Research Facility (CERF). A key aspect of the present work is to examine biomass char conversion for a range of initial particle sizes at various residence times for combustion relative to fuel processing/handling issues. In addition, a number of biomass cofiring R&D as well as full-scale utility demonstrations are providing technical insights to assist in cofiring technology commercialization. The paper will also discuss research plans, including lignin cofiring for ethanol/power co-production, novel concepts involving animal waste utilization, advanced combustion studies, and tri-firing concepts with other fuels.

Freeman, M.C.; O'Dowd, W.J.; Mathur, M.P. (U.S. DOE National Energy Technology Laboratory); Walbert, G.F. (Parsons Infrastructure and Technology, Inc.)

2001-11-06

18

Flame combustion of carbonaceous fuels  

SciTech Connect

A method for improving the flame combustion of carbonaceous fuels. The method enables the reduction of oxides of nitrogen generated by the flame combustion, and enables an improvement in boiler efficiency. An ionic sodium or potassium compound, or a combination of them, is supplied with the combustible mixture of fuel and air so as intimately and uniformly to be present where and when the flame exists. Preferably the compound is supplied in an aqueous solution, and can be intimately mixed with the fuel, or with the atomizing air or steam, or with the combustion air. The process is useful with both single-stage and staged (multiple-staged) combustion systems.

Hampton, W.J.; Hatch, R.L.; James, G.R.

1984-05-08

19

Fuels for internal combustion engines  

Microsoft Academic Search

A liquid fuel for internal combustion engines is disclosed which allows better combustion and increased purity of exhaust gases, especially in terms of CO concentration and freedom from unburned or only partially burned hydrocarbons. The fuel is a conventional hydrocarbon based fuel, like gasoline and diesel oil, containing at least one additive which reduces the surface tension of the liquid

Mohnhaupt

1978-01-01

20

Characteristics and combustion of future hydrocarbon fuels  

NASA Technical Reports Server (NTRS)

Changes in fuel properties that are expected in future hydrocarbon fuels for aircraft are discussed along with the principal properties of 'syncrudes' and the fuels that can be derived from them. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition, flame radiation, and emissions.

Rudey, R. A.; Grobman, J. S.

1978-01-01

21

Experimental reactor for analysing biomass combustion properties  

Microsoft Academic Search

The objective of the present contribution is to summarise the main parameters of a new- generation experimental grate combustion reactor. The conclusions are based on a review of the main properties and construction details of existing grate combustion reactors. Grate combustion reactors are used for the collection of data necessary for detailed modelling of grate combustion of solid biomass fuels,

Milan Recman

22

Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique  

NASA Astrophysics Data System (ADS)

The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon.

Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

2015-03-01

23

Characteristics and combustion of future hydrocarbon fuels  

NASA Technical Reports Server (NTRS)

Dwindling supply of high-quality crude is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulfur, nitrogen, and trace constituents. In the present paper, problems which have arisen with regard to the hydrogen content in jet fuels derived from these crude oil sources are discussed, with particular reference to the effects of varying the fuel properties on the combustion and thermal stability characteristics of a fuel. The importance of knowing how severe the effects of variations in hydrogen content, fuel-bound-nitrogen content, and boiling range are on such combustion phenomena as soot and carbon formation, emissions, and ignition is pointed out.

Rudey, R. A.; Grobman, J. S.

1978-01-01

24

Fuel quality combustion analysis  

NASA Technical Reports Server (NTRS)

A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

Naegeli, D. W.; Moses, C. A.

1979-01-01

25

Fuel-rich catalytic combustion of a high density fuel  

NASA Technical Reports Server (NTRS)

Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing the temperature above this value would remove the soot-free nature of the process. Since all the fuels studied show a similar breakdown of the primary fuel into smaller molecular combustion products, this technique can be applied to all hydrocarbon fuels.

Brabbs, Theodore A.; Merritt, Sylvia A.

1993-01-01

26

Importance of solid fuel properties to nitrogen oxide formation through HCN and NH[sub 3] in small particle combustion  

SciTech Connect

The formation of nitrogen oxides from fuel-nitrogen through intermediates was studied by measuring first fuel-O/fuel-N ratios and nitrogen functionality in selected solid fuels. Then the ratios of the yields (fuel-N [r arrow] HCN)/(fuel-N [r arrow] NH[sub 3]) in a nearly inert atmosphere at 800 C in an entrained flow reactor was measured and finally the ratio (fuel-N [r arrow] N[sub 2]O)/(fuel-N [r arrow] NO) in an oxidizing atmosphere at 800 C The fuels studied were coal, brown coal, S- and C-type peat, fir bark, birch bark and pine bark, all milled to a particle size < 63[mu]m. The ratios of O/N in the fuel, measured by elemental analysis, ranged from 7 to 150. Nitrogen functionality (mass percent of the total nitrogen content) was determined by XPS. the (fuel-N [r arrow] HCN)/(fuel-N [r arrow] NH[sub 3]) conversion ratio in the absence of O[sub 2], and also the (fuel-N [r arrow] N[sub 2]O)/(fuel-N [r arrow] NO) conversion ratio with O[sub 2] present, decreased with increasing ratio of fuel-O/fuel-N, but neither ratio decreased regularly with the increasing ratio of pyrrolic to pyridinic nitrogen in the fuel. Thus, fuel-oxygen plays a more important role than nitrogen functionality in the chemistry of nitrogen oxide formation. The strong effect of (fuel-O/fuel-N) ratio on the (fuel-N [r arrow] HCN)/(fuel-N [r arrow] NH[sub 3]) ratio may be due to the reaction between OH radicals and HCN to form NH[sub 3] near the fuel particle. The importance of this reaction is considered. Charring the fuel sample before combustion led to a sharp drop in the conversion of fuel-N to N[sub 2]O compared with the virgin fuels. Thus, heterogeneous combustion reactions produced much less N[sub 2]O than homogeneous combustion reactions.

Aho, M.J.; Haemaelaeinen, J.P.; Tummavuori, J.L. (Technical Research Centre of Finland, Jyvaeskylae (Finland) Univ. of Jyvaeskylae (Finland). Dept. of Chemistry)

1993-10-01

27

Algae, Canola, or Palm OilsDiesel Microemulsion Fuels: Phase Behaviors, Viscosity, and Combustion Properties  

Microsoft Academic Search

Vegetable oils are being considered as a renewable energy alternative for diesel. The high viscosity of vegetable oils causes injector fouling and durability problems in compressionignition engines. Microemulsification can be used to reduce vegetable oil viscosity without complex chemical transformation processes. The goal of our work is to formulate reverse micellar microemulsions of vegetable oils and No. 2 diesel fuel

Linh D. Do; Vinay Singh; Lixia Chen; Tohren C. G. Kibbey; Sub. R. Gollahalli; David A. Sabatini

2011-01-01

28

Detailed chemical kinetic mechanisms for combustion of oxygenated fuels  

Microsoft Academic Search

Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in

E. M. Fisher; W. J. Pitz; H. J. Curran; C. K. Westbrook

2000-01-01

29

Catalytic combustion of residual fuels  

NASA Technical Reports Server (NTRS)

A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

Bulzan, D. L.; Tacina, R. R.

1981-01-01

30

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-print Network

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

31

Method of combustion for dual fuel engine  

DOEpatents

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21

32

Method of combustion for dual fuel engine  

DOEpatents

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21

33

Risk factors of jet fuel combustion products.  

PubMed

Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment. PMID:15093276

Tesseraux, Irene

2004-04-01

34

Sensitivities of internal combustion automotive engines to variations in fuel properties. Final report, April-December 1981  

Microsoft Academic Search

An assessment of the sensitivity of the automotive gasoline and diesel engines to variations in fuel properties has been made. The variables studied include H\\/C ratio, distillation range, aromatic content, ignition quality as determined by the octane number, and the auto-ignition quality as determined by the cetane number. The sensitivity of the engine is 'measured' against its power output, fuel

Henein

1982-01-01

35

The effect of fuel and sorbent properties on their partitioning between the flyash and bottom ash streams in fluidized bed combustion  

NASA Astrophysics Data System (ADS)

The fluidized bed combustion process has been employed successfully in several applications, among which steam raising is notable. The use of circulating fluidized bed (CFB) combustion for steam and power generation offers a competitive alternative both in the United States and worldwide, yet there remain technical issues, which if addressed, can improve the competitive position of CFB boiler technology, and improve the operating economics of existing plants. Prominent among these technical issues are the performance of limestones and dolostones as sorbents for emissions control, and the ability of a plant's ash handling system to respond to changes in the fuel or sorbent used by the plant. Study of the effects of fuel and sorbent properties on the partitioning of their resultant bed particles between the ash streams, during the fluidized bed combustion process, has been carried out. This work used results from sorbent tests in a commercial CFB boiler and experimentation with laboratory fluid bed reactors. Sorbents varying in petrographic properties were used in the boiler tests as well as the laboratory testing. Fuels tested had varying distributions of ash content by specific gravity, and ranged in composite ash content from 25 to 49 wt%. Sorbent petrographic properties, described by a characteristic crystallite size, influenced the partitioning of calcium to the flyash and bottom ash streams of the boiler. Under the boiler conditions used for the sorbent tests, sorbent petrographic properties significantly influenced the sorbent consumption rate required by the boiler to maintain air quality compliance. Testing of a range of fuels was carried out in a laboratory fluid bed combustor. Ashing of different specific gravity fractions of the coarse fuel particles revealed a trend where higher specific gravity fractions of the fuel yielded coarse ash particles. A trend was found between increased presence of high ash content particles in a fuel, and increased production of bottom ash by the combustor. The results suggested that the distribution of ash content across the range of fuel particles, sorbent attrition properties, and the size classification characteristics of the system will influence the ash split produced by a fluid bed combustion system. (Abstract shortened by UMI.)

Rozelle, Peter Lawrence

2000-10-01

36

Combustor nozzle for a fuel-flexible combustion system  

SciTech Connect

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22

37

Flameless combustion for hydrogen containing fuels  

Microsoft Academic Search

In this paper, flameless combustion was promoted to suppress thermal-NOx formation in the hydrogen-high-containing fuel combustion. The PSRN model was used to model the flameless combustion in the air for four fuels: H2\\/CH4 60\\/40% (by volume), H2\\/CH4 40\\/60%, H2\\/CH4 20\\/80% and pure hydrogen. The results show that the NOx emissions below 30ppmv while CO emissions are under 50ppmv, which are

Yu Yu; Wang Gaofeng; Lin Qizhao; Ma Chengbiao; Xing Xianjun

2010-01-01

38

Combustion and fuel characterization of coal-water fuels  

Microsoft Academic Search

The ash deposition and performance behavior of a cross-section of coal-water fuels (CWFs) were investigated during comprehensive pilot-scale testing under Task 5 of the Department of Energy's Combustion and Fuel Characterization of Coal-Water Fuels project. The key results from this effort including combustion, furnace slagging, convective pass fouling, fly ash erosion and electrostatic precipitator collection characteristics of the test fuels,

O. K. Chow; J. F. Durant; B. F. Griffith; L. S. Miemiec; A. A. Levasseur; B. C. Teigen

1987-01-01

39

Fluidized bed combustion of alternative solid fuels  

Microsoft Academic Search

The fluidized bed combustion of a number of alternative fuels of practical interest has been analyzed by a combination of experimental and modeling techniques. Solid fuels of widely different origin (biomass, agricultural, civil and industrial wastes) have been considered in this work. A lab-scale experimental campaign was carried out to evaluate the comminution (fragmentation, attrition) behavior of the fuels. Experimental

Fabrizio Scala; Riccardo Chirone

2004-01-01

40

Apparatus for combustion of solid particulate fuel  

Microsoft Academic Search

This patent describes an apparatus for the combustion of solid particulate fuel. It comprises: a stationary grate including a perforated plate for receiving the solid particulate fuel; displaceable means positioned in a plane above the grate, movement of the displaceable means displacing spent solid particulate fuel from the stationary grate. The displaceable means including a rotatable member; and a burning

Whitfield

1990-01-01

41

Fuel control apparatus in internal combustion engine  

SciTech Connect

A fuel control apparatus is an internal combustion engine arranged to increase a quantity of fuel supply uniquely determined on the basis of an engine speed and a quantity of suction air by a predetermined quantity upon detection of acceleration of the internal combustion engine is described comprising: a detection means for detecting acceleration and deceleration of the internal combustion engine; an engine speed operation means for calculating the number of engine resolutions; a calculation means for calculating a continuous acceleration correcting factor representing a quantity to be subtracted from the predetermined quantity in accordance with the value of integration of the number of engine revolutions calculated by the engine speed operation means; and a fuel supply means for supplying fuel to the internal combustion engine in accordance with an output of the calculation means.

Morita, K.; Miyake, J.; Hatanaka, K.; Sakuma, K.

1988-05-17

42

Engine combustion control via fuel reactivity stratification  

DOEpatents

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31

43

Combustion characteristics of alternative liquid fuels  

E-print Network

atomizer are investigated using a phase Doppler anemometry (PDA) under non-reacting conditions. The droplet size and velocity distribution of biodiesels are compared to conventional fuels. For spray combustion investigations, a generic gas turbine...

Chong, Cheng Tung

2011-11-08

44

Fuel Interchangeability Considerations for Gas Turbine Combustion  

SciTech Connect

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01

45

Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels  

NASA Technical Reports Server (NTRS)

As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

Rudey, R. A.; Grobman, J. S.

1978-01-01

46

Fuel and Additive Characterization for HCCI Combustion  

SciTech Connect

This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included.

Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

2003-02-12

47

The hydrogen-fueled internal combustion engine: a technical review  

Microsoft Academic Search

A review is given of contemporary research on the hydrogen-fueled internal combustion engine. The emphasis is on light- to medium-duty engine research. We first describe hydrogen-engine fundamentals by examining the engine-specific properties of hydrogen and surveying the existing literature. Here it will be shown that, due to low volumetric efficiencies and frequent preignition combustion events, the power densities of premixed

C. M. White; R. R. Steeper; A. E. Lutz

2006-01-01

48

Fuel economizer for carbureted internal combustion engines  

Microsoft Academic Search

A fuel economizer for carbureted internal combustion engines comprises a tubular body having open inlet and outlet ends and adapted to be positioned and supported between the carburetor and the intake manifold of the engine. An annular, liquid collecting chamber is defined in the body between the ends thereof for collecting liquid fuel exiting from the carburetor and includes air

Fabritz

1977-01-01

49

Hydrocarbon fuel having improved combustion efficiency  

SciTech Connect

A hydrocarbon fuel is described having very highly improved in combustion efficiency and not generating any harmful substances. It is obtained by adding a compound of organic silicon of the formula, (SiCH/sub 2/CH/sub 2/COOH)NO/sub 3/, to an ordinary hydrocarbon fuel, such as gasoline, kerosene or the like.

Minezaki, T.

1981-06-09

50

Combustion characteristics of gas turbine alternative fuels  

NASA Technical Reports Server (NTRS)

An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

Rollbuhler, R. James

1987-01-01

51

Apparatus for combustion of solid particulate fuel  

SciTech Connect

This patent describes an apparatus for the combustion of solid particulate fuel. It comprises: a stationary grate including a perforated plate for receiving the solid particulate fuel; displaceable means positioned in a plane above the grate, movement of the displaceable means displacing spent solid particulate fuel from the stationary grate. The displaceable means including a rotatable member; and a burning cap positioned over the stationary grate, the burning cap defining a combustion chamber above the stationary grate. The burning cap including a battle that divided the combustion chamber into a primary half and a secondary half, the burning cap also including an aperture for allowing the particulate fuel to be introduced into the primary half.

Whitfield, O.J.

1990-08-14

52

30 CFR 77.1105 - Internal combustion engines; fueling.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

2012-07-01

53

30 CFR 77.1105 - Internal combustion engines; fueling.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

2014-07-01

54

30 CFR 77.1105 - Internal combustion engines; fueling.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

2011-07-01

55

30 CFR 57.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2014-07-01

56

30 CFR 77.1105 - Internal combustion engines; fueling.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

2013-07-01

57

30 CFR 56.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 ...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2010-07-01

58

30 CFR 77.1105 - Internal combustion engines; fueling.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

2010-07-01

59

30 CFR 56.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2011-07-01

60

30 CFR 57.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2013-07-01

61

30 CFR 56.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2012-07-01

62

30 CFR 57.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2011-07-01

63

30 CFR 56.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2013-07-01

64

30 CFR 57.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2012-07-01

65

30 CFR 56.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2014-07-01

66

30 CFR 57.4103 - Fueling internal combustion engines.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

2010-07-01

67

Combustion engine for solid and liquid fuels  

NASA Technical Reports Server (NTRS)

A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

Pabst, W.

1986-01-01

68

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01

69

Fuel control system for internal combustion engine  

SciTech Connect

This patent describes a fuel control system for an internal combustion engine having fuel supply means for metering fuel to be supplied to the engine in response to an electric command given by fuel supply command means. The fuel control system consists of: a step motor for driving a fuel metering member of the fuel supply means; learning means for learning the number of steps required for energizing the step motor to move the fuel metering member from an idle position to a full-load position; computing means for computing the number of steps required for the step motor to reach a target load position by dividing in proportion the learned number of steps by a ratio between a target load value of an electric command from the fuel supply command means and a maximum value of the electric command; and drive means for energizing the step motor to achieve the number of steps computed by the computing means.

Koshizawa, T.; Yoshimura, H.; Sugimura, T.

1988-09-27

70

Biomass fuel combustion and health*  

PubMed Central

Biomass fuels (wood, agricultural waste, and dung) are used by about half the world's population as a major, often the only, source of domestic energy for cooking and heating. The smoke emissions from these fuels are an important source of indoor air pollution, especially in rural communities in developing countries. These emissions contain important pollutants that adversely affect healthsuch as suspended particulate matter and polycyclic organic matter which includes a number of known carcinogens, such as benzo[a]pyrene, as well as gaseous pollutants like carbon monoxide and formaldehyde. Exposure to large amounts of smoke may present a health risk that is of a similar order of magnitude to the risk from tobacco smoke. The effects on health arising from exposure to air pollution are reviewed, based on what has been reported in the literature so far. Further and more detailed information on exposures and on the epidemiological aspects is urgently required. The persons most frequently affected are women who do the cooking for households in rural villages; they suffer from impaired health due to prolonged and repeated contact with these harmful pollutants. When they are pregnant, the developing fetus may also be exposed and this leads to the risk of excess deaths. In the developing countries, exposure to biomass fuel emissions is probably one of the most important occupational health hazards for women. A conservatively estimated 300-400 million people worldwide, mostly in the rural areas of developing countries, are affected by these problems. PMID:3872729

de Koning, H. W.; Smith, K. R.; Last, J. M.

1985-01-01

71

Internal combustion engine fuel rail assembly joint  

SciTech Connect

This patent describes a fuel rail assembly of an internal combustion engine. It comprises a non-metallic fuel rail containing devices that are part of a fuel injection system of the engine, and also comprising a metal tube which is in fluid communication with a fuel passage in the non-metallic fuel rail and connected with the non-metallic fuel rail by means of a joint, characterized in that the joint comprises a cylindrical metal sleeve that is partially embedded in the non-metallic fuel rail such that a first cylindrical portion of the non-metallic fuel rail lines an interior end portion of the sleeve and is in fluid communication with the fuel passage in the non-metallic fuel rail and such that the sleeve lines the interior of a second cylindrical portion of the non-metallic fuel rail, the metal tube and the first cylindrical portion of the non-metallic fuel rail fit together in a sealed manner to place the metal tube in fluid communication with the fuel passage in the non-metallic fuel rail, the sleeve has another portion that is not embedded in the non-metallic fuel rail, and a retention means coacts with the another axis end segment and with the metal tube to retain the metal tube and the first cylindrical portion of the non-metallic fuel rail fit together in a sealed manner.

Imoehl, W.J.

1992-04-21

72

Catalytic combustion with incompletely vaporized residual fuel  

NASA Astrophysics Data System (ADS)

Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

Rosfjord, T. J.

1981-03-01

73

Catalytic combustion with incompletely vaporized residual fuel  

NASA Technical Reports Server (NTRS)

Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

Rosfjord, T. J.

1981-01-01

74

Carbonaceous fuel combustion with improved desulfurization  

Microsoft Academic Search

Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron

Ralph T. Yang; Ming-shing Shen

1980-01-01

75

CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION  

EPA Science Inventory

Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

76

Effect of different fuels on structural, photo and thermo luminescence properties of solution combustion prepared Y(2)SiO(5) nanopowders.  

PubMed

Y(2)SiO(5) nanopowders are prepared by solution combustion method using DFH, sugar and urea as fuels. The final product was well characterized by powder X-ray diffraction, Scanning Electron Microscopy and UV-Vis spectroscopy. The average crystallite size was estimated using Debye-Scherer's formula and Williamson-Hall plots and are found to be in the range 34-40nm for DFH, 45-50nm for urea and 35-42nm for sugar respectively. X1-X2 type YSO phase was obtained for all the samples calcined from 1200 to 1400C. The optical energy band gaps (Eg) of the samples were estimated from Tauc relation and varies from 5.58 to 5.60eV. SEM micrographs of sugar and urea used Y(2)SiO(5) show agglomerated particles with porous morphology. However, for the sample prepared using DFH fuel observed to be almost spherical in shape. Thermoluminescence (TL) properties of ?-irradiated (1-5kGy) and UV irradiated (1-30min) Y(2)SiO(5) nanopowder at a heating rate of 2.5Cs(-1) was studied. The samples prepared by using urea and sugar fuels show a broad TL glow peak at 189C. However, DFH used Y(2)SiO(5) show a well resolved peak at 196C with shouldered peak at 189C. Among the fuels, DFH used Y(2)SiO(5) show simple glow peak structure which perhaps useful in radiation dosimetry. This may be due to fuel and particle size effect. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics are estimated by Chens glow peak shape method. PMID:24632171

Ramakrishna, G; Nagabhushana, H; Sunitha, D V; Prashantha, S C; Sharma, S C; Nagabhushana, B M

2014-06-01

77

Combustion of liquid fuels in a flowing combustion gas environment at high pressures  

NASA Technical Reports Server (NTRS)

The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

Canada, G. S.; Faeth, G. M.

1975-01-01

78

A comprehensive combustion model for biodiesel-fueled engine simulations  

NASA Astrophysics Data System (ADS)

Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.

Brakora, Jessica L.

79

Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

Not Available

2014-12-01

80

Fuel Droplet Burning During Droplet Combustion Experiment  

NASA Technical Reports Server (NTRS)

Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

2003-01-01

81

Studies of oscillatory combustion and fuel vaporization  

NASA Technical Reports Server (NTRS)

Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

Borman, G. L.; Myers, P. S.; Uyehara, O. A.

1972-01-01

82

Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part I: Effect of Partial Fuel Vaporization on Spray Combustion  

Microsoft Academic Search

\\u000a This work aims at investigating the impact of the interaction between evaporation process and combustion on spray combustion\\u000a characteristics in gas turbine combustion chambers. It is subdivided into two parts. The first part studies how the evaporation\\u000a process affects the behavior of partially pre-vaporized spray combustion. The second part attempts to answer the question\\u000a how the fuel evaporation process behaves

Amsini Sadiki; W. Ahmadi; Mouldi Chrigui; J. Janicka

83

Fuel controlling system for internal combustion engine  

SciTech Connect

This patent describes a fuel control system, consisting of means for detecting the quantity of intake air at a predetermined crank angle on the basis of both the quantity of intake air detected by the intake air quantity sensor and the crank angle detected by the crank angle sensor; means for correcting the output of the predetermined intake air quantity detecting means by performing an arithmetic processing using a predetermined certain correction coefficient; means for detecting the number of revolutions, or the output, of the internal combustion engine on the basis of the detected crank angle; and means which judges that the running condition of the vehicle is a very low speed condition when the number of revolutions of the internal combustion engine detected by the revolution detecting means is below a predetermined value and when the vehicle running speed detected by the vehicle speed sensor is within a predetermined range, and which changes the correction coefficient used in the predetermined intake air quantity correcting means when the vehicle and the internal combustion engine are in the very low speed condition, thereby controlling the quantity of fuel to be fed to the engine in the very low speed condition.

Nakamoto, K.; Kanno, Y.; Nishiyama, R.

1989-03-07

84

Demonstration of catalytic combustion with residual fuel  

NASA Technical Reports Server (NTRS)

An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

Dodds, W. J.; Ekstedt, E. E.

1981-01-01

85

The hydrogen-fueled internal combustion engine : a technical review.  

SciTech Connect

A review is given of contemporary research on the hydrogen-fueled internal combustion engine. The emphasis is on light- to medium-duty engine research. We first describe hydrogen-engine fundamentals by examining the engine-specific properties of hydrogen and surveying the existing literature. Here it will be shown that, due to low volumetric efficiencies and frequent preignition combustion events, the power densities of premixed or port-fuel-injected hydrogen engines are diminished relative to gasoline-fueled engines. Significant progress has been made in the development of advanced hydrogen engines with improved power densities. We discuss several examples and their salient features. Finally, we consider the overall progress made and provide suggestions for future work.

Steeper, Richard R.; White, Christopher M.; Lutz, Andrew E.

2005-05-01

86

Air fuel mixture control apparatus for carbureted internal combustion engines  

Microsoft Academic Search

Air-fuel mixture control apparatus for a carbureted internal combustion engine having air bleed and fuel supply passages comprises a detector for sensing precombustion data such as engine operating parameters and an exhaust gas sensor for providing post-combustion data. The pre-combustion data is used to control the fuel flow rate, while the post-combustion data controls the passage of air through the

Aono

1977-01-01

87

Fuel Property Effects on Emissions from High Efficiency Clean Combustion in a Diesel Engine (SAE Paper Number 2006-01-0080)  

SciTech Connect

High-efficiency clean combustion (HECC) modes provide simultaneous reductions in diesel particulate matter and nitrogen-oxides emissions while retaining efficiencies characteristic of normal diesel engines. Fuel parameters may have significant impacts on the ability to operate in HECC modes and on the emissions produced in HECC modes. In this study, 3 diesel-range fuels and 2 oxygenated blends are burned in both normal and HECC modes at 3 different engine conditions. The results show that fuel effects play an important role in the emissions of hydrocarbons, particulate matter, and carbon monoxide but do not significantly impact NOX emissions in HECC modes. HECC modes are achievable with 5% biodiesel blends in addition to petroleum-based and oil-sands derived fuels. Soot precursor and oxygenated compound concentrations in the exhaust were observed to generally increase with the sooting tendency of the fuel in HECC modes.

Sluder, Scott [ORNL; Wagner, Robert M [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL

2006-01-01

88

Hydrogen-fueled internal combustion engines.  

SciTech Connect

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

2009-12-01

89

Synthetic fuel aromaticity and staged combustion  

SciTech Connect

Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

Longanbach, J. R.; Chan, L. K.; Levy, A.

1982-11-15

90

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30

91

Carbonaceous fuel combustion with improved desulfurization  

DOEpatents

Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

Yang, Ralph T. (Middle Island, NY); Shen, Ming-shing (Rocky Point, NY)

1980-01-01

92

Numerical modeling of hydrogen-fueled internal combustion engines  

SciTech Connect

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

Johnson, N.L.; Amsden, A.A.

1996-12-31

93

Automotive fuels and internal combustion engines: a chemical perspective.  

PubMed

Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

Wallington, T J; Kaiser, E W; Farrell, J T

2006-04-01

94

Fuel injection system for an internal combustion engine  

Microsoft Academic Search

This patent describes a fuel injection system for an internal combustion engine having a rotatable crankshaft and combustion chambers. The system consists of: (a) a device for contracting and expanding the working chamber at a frequency equal to the number of the combustion chamber times the angular frequency of the crankshaft; (b) a device for conducting fuel to the working

Yasuhara

1986-01-01

95

Fuel-air supply system for internal combustion engines  

Microsoft Academic Search

A fuel-air supply system for a combustion engine is presented wherein unmixed supplies of liquid fuel and combustion air are heated and after heating are bypassed around the engine's carburetor for delivery to the engine in place of the fuel air mixture from the carburetor when the temperature of the liquid fuel being heated rises to a preselected temperature.

Trexler; C. H. Sr

1979-01-01

96

Water interaction with laboratory-simulated fossil fuel combustion particles.  

PubMed

To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere. PMID:19736954

Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

2009-10-01

97

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-08-01

98

Oxygen enhanced switching to combustion of lower rank fuels  

DOEpatents

A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

Kobayashi, Hisashi; Bool III, Lawrence E.; Wu, Kuang Tsai

2004-03-02

99

Oscillating combustion from a premix fuel nozzle  

Microsoft Academic Search

Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the

G. A. Richards; M. J. Yip

1995-01-01

100

Numerical analysis of supersonic combustion ramjet with upstream fuel injection  

Microsoft Academic Search

This paper describes possible fuel injection scheme for airbreathing engines that use hydrocarbon fuels. The basic idea is to inject fuel at the spike tip of the supersonic inlet to achieve mixing and combustion efficiency with a limited length combustion chamber. A numerical code, able to solve the full Navier-Stokes equations in turbulent and reacting flows, is employed to obtain

Raffaele Savino; Giuseppe Pezzella

2003-01-01

101

Introduction Fossil fuel combustion by aviation, shipping and road  

E-print Network

96 Introduction Fossil fuel combustion by aviation, shipping and road traffic contributes about one. here we summarize some of the first findings. Emissions by transport modes Emissions from fossil fuel to global CO emissions are estimated to be much smaller, likely due to more efficient fuel combustion. Road

Haak, Hein

102

Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications.  

E-print Network

1 Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications. N Gascoin1 , G Abraham.e. 5000 km.h-1) and to the combustion heat release. If passive and ablative protections are a way phenomenon (heat and mass transfers, pyrolysis, combustion) in a cooling channel surrounding a SCRamjet

Boyer, Edmond

103

Broad Specification Fuels Combustion Technology Program, Phase 2  

NASA Technical Reports Server (NTRS)

An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P&W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.

Lohmann, R. P.; Jeroszko, R. A.; Kennedy, J. B.

1990-01-01

104

Fuel injected internal combustion engine pollutant control system  

SciTech Connect

A fuel injected internal combustion engine is described comprising: an air intake apparatus having at least one resistance heating element capable of heating air passing therethrough to a temperature within a range of 160/sup 0/F to 180/sup 0/F, and an air temperature sensing means situated downstream of the resistance heating element to control the temperature of the heating element; combustion chamber means including a primary combustion chamber and a contiguous pre-combustion chamber wherein a sparkplug is situated. The combustion chamber means further include a primary intake port to the primary combustion chamber and an auxiliary intake port to the pre-combustion chamber, as well as an exhaust port to the primary combustion chamber, wherein passage of air/fuel or exhaust through the ports is controlled by the selective positioning of a valve respectively positioned adjacent each port; air intake manifold means for directing air from the air intake apparatus to the combustion chamber means; a free-wheeling fan situated within the air intake apparatus to increase the turbulence of the air drawn through the air intake manifold means, whereby mixing of the air and fuel is enhanced to improve combustion within the combustion chamber means; a fuel pump; fuel injector means for directing fuel received from the fuel pump to the air intake manifold means for mixing with air prior to being drawn into the combustion chamber means; a flow constricting valve in the proximity of the fuel injector means inlet, to help vaporize and increase turbulence of the fuel as it enters the fuel heating reservoir; and means for injecting a menthanol/water vapor mixture into the air intake manifold means.

Rawlings, K.R.

1987-11-24

105

Fuel NOx production during the combustion of low caloric value fuel  

SciTech Connect

The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

Colaluca, M.A.; Caraway, J.P. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.

1997-07-01

106

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

SciTech Connect

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17

107

Combustion of liquid-fuel droplets in supercritical conditions  

NASA Technical Reports Server (NTRS)

A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

1992-01-01

108

Electronic fuel injection control device for internal combustion engines  

Microsoft Academic Search

An electronic fuel injection control device for an internal combustion engine having a source of fuel, and electrically operated fuel injection means for effecting fuel supply into the engine from the source of fuel during energization thereof, is described: first detecting means for detecting rotational speed of the engine to produce a first signal indicative of the detected rotational speed;

M. Takao; T. Kimura

1988-01-01

109

Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine  

NASA Astrophysics Data System (ADS)

Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

??, ?; ??, ??; ??, ??; ??, ???; ??, ??; ??, ??; ??, ??

110

Basic Considerations in the Combustion of Hydrocarbon Fuels with Air  

NASA Technical Reports Server (NTRS)

Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

Barnett, Henry C; Hibbard, Robert R

1957-01-01

111

Fossil Fuel Combustion and the Major Sedimentary Cycle  

Microsoft Academic Search

The combustion of the fossil fuels coal, oil, and lignite potentially can mobilize many elements into the atmosphere at rates, in general, less than but comparable to their rates of flow through natural waters during the weathering cycle. Since the principal sites of fossil fuel combustion are in the mid-latitudes of the Northern Hemisphere, changes in the composition of natural

K. K. Bertine; Edward D. Goldberg

1971-01-01

112

Effect of fuel to oxidant molar ratio on particle size and LPG sensing properties of ZnO nanoparticles prepared by simple solution combustion method.  

NASA Astrophysics Data System (ADS)

ZnO nanoparticles of different size were prepared by varying the molar ratio of glycine and zinc nitrate hexahydrate as fuel and oxidizer (F/O molar ratio = 0.8, 1.11, 1.7) by simple solution combustion method. Powder samples were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM). LPG sensing measurements were carried out in the temperature range 523-673K. It was found that, ZnO nanoparticle thick film prepared from F/O molar ratio 1.7 has maximum sensitivity of 5.20% for 520ppm of LPG at 623K compared to other thick films.

Naveen, C. S.; Rajeeva, M. P.; Lamani, Ashok R.; Deshmukh, P. R.; Lokhande, C. D.; Jayanna, H. S.

2013-06-01

113

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

SciTech Connect

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30

114

Broad specification fuels combustion technology program  

NASA Technical Reports Server (NTRS)

Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures.

Dodds, W. J.; Ekstedt, E. E.

1984-01-01

115

Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0  

NASA Technical Reports Server (NTRS)

Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

1989-01-01

116

Oxy-combustion of high water content fuels  

NASA Astrophysics Data System (ADS)

As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the spray were measured in the chamber for a stable flame. The experimental results indicate significant preferential vaporization of ethanol over water. Modeling results support this observation and indicate that the vaporization process is best described as the distillation limit mode with enhanced mass transfer by convection. Further, the influence of preferential vaporization on flame stability was investigated. A procedure was developed to evaluate the extent of preferential vaporization and subsequent flame stability of a fuel in aqueous solution. Various water soluble fuels were analyzed via this procedure in order to identify a chemical fuel showing strong preferential vaporization. t-Butanol was identified as having excellent physical and chemical properties, indicating stronger preferential vaporization than ethanol. Flame stability tests were run for aqueous solutions of both t-butanol and ethanol under identical flow conditions. Flame stability was characterized by the blow-off limit. In each comparison, the energy contents in the two solutions were kept the same. For the experiments under high swirl flow conditions (100% swirl flow), 12.5 wt% t-butanol has slightly lower blow-off limits than 15 wt% ethanol, and 8.3 wt% t-butanol has much lower blow-off limits than 10 wt% ethanol. For the experiments under a low swirl flow condition (50% swirl/50% axial flow), 12.5 wt% t-butanol has a much lower blow-off limit than 15 wt% ethanol. The time to release the fuel from a droplet was also calculated for both ethanol and t-butanol. For the same size droplet, the time to release t-butanol is much shorter than that of ethanol under the same conditions. Faster release of the fuel from water enhances flame stability, which is consistent with the experimental results. For the oxy-combustion characteristics of low-volatility fuel with high water content, glycerol was chosen as the fuel to study. It is found that self-sustained flame can be obtained for glycerol solution with concentration as high as 60 wt%, when burned in pure O2. However, the flame is lifted far away f

Yi, Fei

117

Combustion system for hybrid solar fossil fuel receiver  

DOEpatents

A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

2004-05-25

118

The Impact of Alternative Fuels on Combustion Kinetics  

SciTech Connect

The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and selection of desirable F-T molecules for use in jet engine simulations, where we should be able to predict the ignition, combustion and emissions characteristics of proposed fuel components. These mechanisms include the reactions and chemical species needed to describe high temperature phenomena such as shock tube ignition and flammability behavior, and they will also include low temperature kinetics to describe other ignition phenomena such as compression ignition and knocking. During the past years, our hydrocarbon kinetics modeling group at LLNL has focused a great deal on fuels typical of gasoline and diesel fuel. About 10 years ago, we developed kinetic models for the fuel octane primary reference fuels, n-heptane [1] and iso-octane [2], which have 7 and 8 carbon atoms and are therefore representative of typical gasoline fuels. N-heptane represents the low limit of knock resistance with an octane number of 0, while iso-octane is very knock resistant with an octane number of 100. High knock resistance in iso-octane was attributed largely to the large fraction of primary C-H bonds in the molecule, including 15 of the 18 C-H bonds, and the high bond energy of these primary bonds plays a large role in this knock resistance. In contrast, in the much more ignitable n-heptane, 10 of its 16 C-H bonds are much less strongly bound secondary C-H bonds, leading to its very low octane number. All of these factors, as well as a similarly complex kinetic description of the equally important role of the transition state rings that transfer H atoms within the reacting fuel molecules, were quantified and collected into large kinetic reaction mechanisms that are used by many researchers in the fuel chemistry world.

Pitz, W J; Westbrook, C K

2009-07-30

119

Combustion fundamentals of pyrolysis oil based fuels  

SciTech Connect

The combustion behavior of emulsions of pyrolysis oil in commercial diesel oil was studied. The emulsions were different in terms of concentration and size of the dispersed phase. The study was carried out in a single droplet combustion chamber. The size of droplets varied between 400 {mu}m and 1200 {mu}m. They were suspended to a bare thermocouple and, hence, their temperature during combustion was measured. High-speed digital shadowgraphy was used to follow droplets evolution. The main features of the droplet combustion were recognized. The general combustion behavior of emulsions is intermediate with respect to pure PO and commercial diesel oil. Emulsion droplets underwent strong swelling and microexplosion phenomena. However, under the investigated conditions, the microexplosions were ineffective in destroying droplets. The size distribution of the dispersed PO droplets in the range 3-10 {mu}m was not effective either for determining the overall thermal behavior or for the efficacy of the microexplosions. The homogeneous combustion phase resulted identical for emulsions and diesel oil despite the emulsions composition (i.e., concentration of oil, surfactant and co-surfactant, as well as the size of the oil droplets in the emulsion) and the different structure of the flame and also its time and spatial evolution. (author)

Calabria, R.; Chiariello, F.; Massoli, P. [Istituto Motori CNR, Via Marconi 8, 80125 Napoli (Italy)

2007-04-15

120

Effective Heat of Combustion for Flaming Combustion of Mediterranean Forest Fuels  

Microsoft Academic Search

An adapted bench-scale Mass Loss Calorimeter (MLC) device is proposed for evaluating effective heat of rapid flaming combustion\\u000a of fine Mediterranean forest fuels. The MLC apparatus uses a calibrated thermopile to quantify heat release rate (HRR) as\\u000a an alternative to the classical oxygen consumption measurement. A porous holder was used to simulate rapid flaming combustion.\\u000a Average effective heat of combustion

J. Madrigal; M. Guijarro; C. Hernando; C. Dez; E. Marino

2011-01-01

121

Engine combustion control at low loads via fuel reactivity stratification  

DOEpatents

A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2014-10-07

122

LOW NOX STRATEGY FOR COMBUSTING HIGH NITROGEN CONTENT FUELS  

EPA Science Inventory

The report gives results of an evaluation of a multistaged combustion urner (designed for in-furnace NOx control and high combustion efficieiicy) for [high nitrogen content fuel and waste incineration application in a 1.0 MW package boiler. simulator. A low NOx precombustion cham...

123

Combustion of hydrocarbon fuels within porous inert media  

Microsoft Academic Search

There has been a recent surge of interest in the combustion of hydrocarbon fuels within porous inert media. The interest has been directed by the needs of industry to develop high performance radiant heaters while complying with increasingly stringent emissions regulations. This paper reviews the processes associated with non-catalytic combustion within porous media, and describes related experimental and modeling research.

J. R. Howell; M. J. Hall; J. L. Ellzey

1996-01-01

124

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel  

E-print Network

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O, olefins, oxygenates, and gasoline using a 23-component surrogate formulation. The 1,3-butadiene emission Gasolineisthemostimportantfuelforindustrializedsocieties and accounts for half of the petroleum consumed in the U.S. Emissions from combustion in gasoline

Utah, University of

125

Effect of air distribution on solid fuel bed combustion  

SciTech Connect

One important aspect of refuse mass-burn combination control is the manipulation of combustion air. Proper air manipulation is key to the achievement of good combustion efficiency and reduction of pollutant emissions. Experiments, using a small fix-grate laboratory furnace with cylindrical combustion chamber, were performed to investigate the influence of undergrate/sidewall air distribution on the combustion of beds of wood cubes. Wood cubes were used as a convenient laboratory surrogate of solid refuse. Specifically, for different bed configurations (e.g. bed height, bed voidage and bed fuel size, etc.), burning rates and combustion temperatures at different bed locations were measured under various air supply and distribution conditions. One of the significant results of the experimental investigation is that combustion, with air injected from side walls and no undergrate air, provide the most efficient combustion. On the other hand, combustion with undergrate air achieves higher combustion rates but with higher CO emissions. A simple one-dimensional model was constructed to derive correlations of combustion rate as functions of flue gas temperature and oxygen concentration. Despite the fact that the model is one dimensional and many detailed chemical and physical processes of combustion are not considered, comparisons of the model predictions and the experimental results indicate that the model is appropriate for quantitative evaluation of bed burning rates.

Kuo, J.T.; Hsu, W.S.; Yo, T.C. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

1996-09-01

126

Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.  

PubMed

Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

Golovitchev, Valeri I; Yang, Junfeng

2009-01-01

127

Future Fuels for Internal Combustion Engines  

Microsoft Academic Search

Today the world is facing three critical problems: (1) high fuel prices, (2) climatic changes, and (3) air pollution. Experts suggest that current oil and gas reserves would suffice to last only a few more decades. Biorenewable liquids are the main substitutes to petroleum-based gasoline and diesel fuel. These fuels are important because they replace petroleum fuels; however, some still

A. Demirbas

2010-01-01

128

NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION  

EPA Science Inventory

The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

129

Alternate-Fueled Combustion-Sector Emissions  

NASA Technical Reports Server (NTRS)

In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

2012-01-01

130

Co-combustion of recycled RDF and PDF fuels  

SciTech Connect

Energy recovery of used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel recovery for co-combustion. Recovered fuels are refuse derived fuel (RDF), which is mechanically separated and processed from MSW, and packaging derived fuel (PDF), which is the source separated, processed, dry combustible part of MSW. A one year co-combustion of RDF with peat and coal was carried out in a 65 MW CFB power plant at Kauttua, Finland. The efficiency of the combustion process and the corrosion behavior of the boiler were particular focuses of attention in this study. Five different PDFs were also co-combusted in the same power plant. A wide analytical program was carried out including the solid and gaseous emission measurements. Results were encouraging, showing that RDF and PDFs are technically and economically feasible and environmentally friendly fuels for co-combustion. Low CO emissions showed clean and efficient combustion. SO{sub 2} emissions decreased, because part of the coal was replaced by RDF and PDFs. HCl emissions increased when the chlorine content of the fuel mixture increase, because limestone injection was not used. Heavy metals concentrated to the fly ash in unleachable form. PCDD/F (dioxin) emissions were in the normal power plant level and far below the strictest incineration limit. Long-term co-combustion of 10% RDF did not cause any high temperature chlorine corrosion of the superheater materials (500 C). The results showed that it is useful and technically possible to combine resource and waste management in the form of fuel recovery and energy production in the normal power plants.

Manninen, H. [Neste Oy Corporate Technology, Porvoo (Finland); Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

1996-12-31

131

Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine  

NASA Technical Reports Server (NTRS)

The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

Schoenman, L.

1981-01-01

132

Effect of heterogeneous catalyst during combustion of diesel fuel  

NASA Astrophysics Data System (ADS)

With the increase in number of vehicles using diesel engines, the contributions to environmental pollution made by diesel engines is also on the rise. Carbon monoxide, oxides of nitrogen and sulfur, hydrocarbons, and particulates are currently regulated as harmful emissions from diesel engines. Recent technologies to control harmful engine emissions have been almost exclusively directed towards gasoline engines. It is generally held that fuel quality will have to play an important role with all IC engines to meet future stringent regulations. The objective of the present study was to determine the effects of heterogeneous catalyst on combustion. Micron sized solid catalyst, suspended in a specific organic peroxide, has been found to promote better combustion by modifying kinetics and changing the thermodynamics of the reactions. The catalyst reduces emissions without dramatically changing the properties of the fuel. The characteristic parameters of a baseline fuel, and the same fuel with the additive, were analyzed. The dosage of additive used was found to be compatible with commercial diesel. Diesel vehicles were driven unloaded at normal road conditions during the experiments. Exhaust emissions were measured when the trucks were at static conditions and the engine running on idle and at 2000 rpm. The gaseous components in the exhaust, O2, CO2, CO, NO, NO2, NOx, SO2, and CxH y were monitored. Particulates were trapped on a pre-weighed glass filter. Some of the filters were sent to an independent laboratory for microscopic and elemental analysis of the collected debris. Zinc oxide/peroxide suspended in tert-butyl hydro peroxide were used as the heterogeneous fuel catalyst. This combination increased the cetane rating of a commercial diesel fuel from 45 to a level of 70 depending on treatment ratio. A treatment ratio of one ounce additive per 5 gallons of diesel increased cetane number by an average of 5 points. Road mileage with the additive increased by an average of more than 10%. Gaseous and particulate emissions were reduced by more than 20%. Engine wear decreased due to increased lubricity of the fuel. A decrease in flash point of the diesel may make the additive more suitable at cold weather operation.

Arefeen, Quamrul

1999-11-01

133

Solid fuel combustion system for gas turbine engine  

DOEpatents

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01

134

Investigation of combustion characteristics of methane-hydrogen fuels  

NASA Astrophysics Data System (ADS)

Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

2015-01-01

135

Hydrocarbon-fuel/combustion-chamber-liner materials compatibility  

NASA Technical Reports Server (NTRS)

Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

Gage, Mark L.

1990-01-01

136

Superheated fuel injection for combustion of liquid-solid slurries  

DOEpatents

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01

137

Superheated fuel injection for combustion of liquid-solid slurries  

DOEpatents

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19

138

A combustion model for IC engine combustion simulations with multi-component fuels  

SciTech Connect

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15

139

FUEL RICH SULFUR CAPTURE IN A COMBUSTION ENVIRONMENT  

EPA Science Inventory

A refractory-lined, natural gas furnace was used to study fuel rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel rich sulfur species H2S and COS were monitored in a near-continuous fashion using a gas chromatograph equipped with a fl...

140

Mesoscale combustion: a first step towards liquid fueled batteries  

Microsoft Academic Search

The development of a liquid fueled mesoscale catalytic combustor is presented, based on the coupling of multiplexed electrosprays for liquid fuel dispersion and a stack of catalytic grids. The grids act as a compact catalytic reactor for combustion initiation, stabilization and enhanced conversion, as well as ground electrodes for the electrospray. The combustor has a volume on the order of

Dimitrios C. Kyritsis; Subir Roychoudhury; Charles S. McEnally; Lisa D. Pfefferle; Alessandro Gomez

2004-01-01

141

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

SciTech Connect

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13

142

Combustion of liquid fuels in diesel engine  

NASA Technical Reports Server (NTRS)

Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

Alt, Otto

1924-01-01

143

Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity  

NASA Technical Reports Server (NTRS)

Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting the test droplet by a fiber fixes the droplet position but the fiber can perturb the burning process especially for a sooting fuel. Prior studies on heptane showed little evidence for soot formation due to g-droplets of similar size the relationship between sooting and droplet diameter. For nonane droplets we expect increased sooting due to the greater number of carbon atoms. As a sooting droplet burns and its diameter decreases, proportionally less soot should form. This reduced soot, as well as the influence of soot formed earlier in the burning process which collects in a 'shell', on heat transport to the flame offers the potential for a time-varying burning rate. Such an effect was investigated and revealed in results reported here. Speculation is offered for the cause of this effect and its possible relation to soot formation.

Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.

1999-01-01

144

Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines  

NASA Technical Reports Server (NTRS)

This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

Joachim, William F; Rothrock, A M

1930-01-01

145

Oxy-fuel combustion with integrated pollution control  

DOEpatents

An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

2012-01-03

146

Combustion of coal-gas fuels in a staged combustor  

SciTech Connect

Gaseous fuels produced from coal resources have been considered for use in industrial gas turbines. Such fuels generally have heating values much lower than the typical gaseous fuel, natural gas; the low heating value could result in unstable or inefficient combustion. Additionally, coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable NO/sub x/ exhaust emission levels. Previous investigations have indicated that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low NO/sub x/ emission operation for coal-derived liquid fuels containing up to 0.8-wt % nitrogen. An experimental program has been conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7% ammonia are presented. The test results permit the following conclusions to be drawn: (1) Staged, rich-lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with heating values of 210 kJ/mol (238 Btu/scf) or higher. (2) Lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with low heating values (84 kJ/mol (95 Btu/scf)). (3) Staged combustion has the ability to limit NH/sub 3/ to NO/sub x/ conversion rates to less than 5%. NO/sub x/ emissions below the EPA limit can readily be achieved.

Rosfjord, T J; McVey, J B; Sederquist, R A; Schultz, D F

1982-01-01

147

Apparatus and method for combusting low quality fuel  

DOEpatents

A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

2003-11-04

148

Chemical Kinetic Modeling of Combustion of Automotive Fuels  

SciTech Connect

The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

Pitz, W J; Westbrook, C K; Silke, E J

2006-11-10

149

Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report  

SciTech Connect

Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

C. R. Shaddix; D. R. Hardesty

1999-04-01

150

Investigation of coal-water slurry fuel combustion in reciprocating, internal combustion engine  

Microsoft Academic Search

Coal-water slurry(CWS) engine tests designed to investigate the ignition and combustion processes of the fuel are described\\u000a in this paper. The effects of three different parameters, namely, (a) needle lift pressure, (b) fuel injection timing, and\\u000a (c) percent coal loading in the slurry fuel are studied in detail. Successful operation of the engine using the coal water\\u000a slurry required modifications

G. H. Choi; S. R. Bell

1994-01-01

151

Surrogate Model Development for Fuels for Advanced Combustion Engines  

SciTech Connect

The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

2011-01-01

152

Straw pellets as fuel in biomass combustion units  

SciTech Connect

In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

Andreasen, P.; Larsen, M.G. [Danish Technological Inst., Aarhus (Denmark)

1996-12-31

153

Atomization and combustion performance of antimisting kerosene and jet fuel  

NASA Technical Reports Server (NTRS)

Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

Fleeter, R.; Parikh, P.; Sarohia, V.

1983-01-01

154

Hydrogen-fueled internal combustion engines  

Microsoft Academic Search

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts.Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number

Sebastian Verhelst; Thomas Wallner

2009-01-01

155

Electrostatic fuel conditioning of internal combustion engines  

NASA Technical Reports Server (NTRS)

Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

Gold, P. I.

1982-01-01

156

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01

157

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

Microsoft Academic Search

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed\\/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry

Bruce G

2006-01-01

158

Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion  

E-print Network

Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to ...

Shroll, Andrew Philip

2011-01-01

159

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

Microsoft Academic Search

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms,

Don Ferguson; Geo. A. Richard; Doug Straub

2008-01-01

160

ShockTube Combustion of High Density Hydrocarbon Fuels  

Microsoft Academic Search

Shock-tube techniques have been used to determine rates of carbon dioxide production in shock-wave heated mixtures of oxygen and hydrogenated dimers of bicycloheptadiene, components of the high density fuel RJ-S. Reaction profiles generated by this method have demonstrated that the combustion rate of the hydrocarbon vapors increases with fuel and oxygen concentration, but is not affected by the total pressure

J. M. BRUPBACHER; M. T. McCALL; M. McCARTY Jr

1978-01-01

161

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

Chow, O.K.; Nsakala, N.Y.

1991-07-01

162

Fundamental combustion studies of emulsified fuels. Annual progress report, October 1, 1979-September 30, 1980  

SciTech Connect

A research program in the Fuels Research Laboratory at Princeton University has provided fundamental information on the combustion properties of emulsions and multi-component fuel mixtures. Particular attention has been given to understanding the phenomenon of micro-explosions and disruptive combustion. Earlier work which investigated the behavior of n-paraffin and water emulsions, binary mixtures of n-paraffins, and solutions of alcohol with n-paraffins has been completed and is now published in the open literature. This work has been extended during the current contract period to the study of the droplet combustion of a No. 2 fuel oil. Both emulsions with water and solutions of alcohols were investigated and very useful data were generated with regard to the optimization of the disruption phenomenon in terms of additive content. In addition, some preliminary work has been done with micro-emulsions. This indicated the importance of further work to elucidate the role of surfactant loading. Theoretical work on the growth of gaseous bubbles in fuel droplets has helped to define some of the controlling parameters in the disruption phenomenon. Finally the design of a new free droplet apparatus has been completed and a novel optical diagnostic technique for droplet sizing is near completion. This program has generated information which is of general interest in the field of droplet combustion and represents a considerable advance in our understanding of fuel related combustion phenomena.

Kennedy, I M

1980-01-01

163

Characterization of fuels for atmospheric fluidized bed combustion  

SciTech Connect

The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

Daw, C.S. (Oak Ridge National Lab., TN (USA)); Rowley, D.R.; Perna, M.A. (Babcock and Wilcox Co., Alliance, OH (USA). Research Center); Stallings, J.W. (Electric Power Research Inst., Palo Alto, CA (USA)); Divilio, R.J. (Combustion Systems, Inc., Silver Spring, MD (USA))

1990-01-01

164

Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels  

SciTech Connect

Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

Naik, C V; Westbrook, C K

2009-04-08

165

Numerical modeling of hydrogen-fueled internal combustion engines  

SciTech Connect

Major progress was achieved in the last year in advancing the modeling capabilities of hydrogen-fueled engines, both in support of the multi-laboratory project with SNL and LLNL to develop a high-efficiency, low emission powerplant and to provide the engine design tools to industry and research laboratories for hydrogen-fueled engines and stationary power generators. The culmination of efforts on many fronts was the excellent comparison of the experimental data from the Onan engine, operated by SNL.These efforts include the following. An extensive study of the intake flow culminated in a major understanding of the interdependence of the details of the intake port design and the engine operating condition on the emissions and efficiency. This study also resulted in design suggestions for future engines and general scaling laws for turbulence that enables the KIVA results to be applied to a wide variety of operating conditions. The research on the turbulent combustion of hydrogen brought into perspective the effect of the unique aspects of hydrogen combustion and their influence on possible models of turbulent combustion. The effort culminated in a proposed model for turbulent hydrogen combustion that is in agreement with available literature. Future work will continue the development in order to provide a generally predictive model for hydrogen combustion. The application of the combustion model to the Onan experiments elucidated the observed improvement of the efficiency of the engine with the addition of a shroud on the intake valve. This understanding will give guidance to future engine design for optimal efficiency. Finally, a brief summary is given of the extensions and refinements of the KIVA-3 code, in support of future designers of hydrogen-fueled engines.

Johnson, N.L.; Amsden, A.A.; Butler, T.D. [Los Alamos National Lab., NM (United States). Theoretical Div.

1996-07-01

166

Investigation of trapped vortex combustion using hydrogen-rich fuels  

NASA Astrophysics Data System (ADS)

The combustion process of a fuel is a challenging subject when it comes to analyze its performance and resultant emissions. The main task of this study is to optimize the selection of a hydrogen-rich fuel based on its performance and emissions. Computational Fluid Dynamics analysis is performed to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthesis gas. Correlation graphs for the trapped vortex combustor performance and NOx, CO, and CO2 emissions for various types of fuels with different compositions and heat of combustion values were established. Methane, Hydrogen and 10 different syngas fuels were analyzed in this study using computational fluid dynamics numerical method. The trapped vortex combustor that represents an efficient and compact combustor for flame stability was investigated. The TVC consists of a fore body and two after body disks. These components are all encircled with a Pyrex tube. The purpose of the after body disks is to create the vortex wakes that will enhance the combustion process and minimize the NOx emissions. The TVC CFD model was validated by comparing the CFD model results using propane fuel with existing experimental results that were established in Rome, Italy. The static temperature distribution and NOx, CO emissions, combustor efficiency and total pressure drop results of the three dimensional CFD model were similar to the experimental data. Effects of H2/CO and H2/CH4 ratios and the mass fraction of each constituent of syngas fuels and Hydrogen-Methane fuel mixture on the TVC performance and emissions were investigated. Moreover, the fuel injector Reynolds number and Lower heating values for Methane, Hydrogen and 10 syngas fuels on the TVC performance and emissions were also investigated. Correlation plots for the NOx, CO and CO2 emissions versus the fuel injector Reynolds number and lower heating value were established. These correlation curves can be used as a fair design diagram to optimize the fuel selection process for aerospace and electrical power plant applications.

Zbeeb, Khaled

167

Fuel Injector Nozzle For An Internal Combustion Engine  

DOEpatents

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr.; Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2006-04-25

168

Fuel injector nozzle for an internal combustion engine  

DOEpatents

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2007-11-06

169

Fuel cycle analysis for fossil energy systems: Coal combustion  

NASA Astrophysics Data System (ADS)

Elements of the fuel cycle for coal combustion in power generation are examined; and information on economics, technological status, energy efficiencies, and environmental issues is reviewed. Overall background information is provided for guidance in identifying issues and establishing needs and priorities for engineering research, development, and demonstration. The elements treated include mining, transportation, coal preparation, direct combustion, and environmental control technology. The treatment used differs from that of usual compendiums in its emphasis on integrated examination and presentation directed primarily toward providing bases for general assessment and for guidance in program development. Emphasis is on program identification as opposed to advocacy.

Greenstreet, W. L.; Carmichael, R. L.

1981-02-01

170

Fuel injector nozzle for an internal combustion engine  

DOEpatents

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2008-11-04

171

Fuel injector nozzle for an internal combustion engine  

DOEpatents

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2011-03-22

172

Numerical analysis of supersonic combustion ramjet with upstream fuel injection  

NASA Astrophysics Data System (ADS)

This paper describes possible fuel injection scheme for airbreathing engines that use hydrocarbon fuels. The basic idea is to inject fuel at the spike tip of the supersonic inlet to achieve mixing and combustion efficiency with a limited length combustion chamber. A numerical code, able to solve the full Navier-Stokes equations in turbulent and reacting flows, is employed to obtain numerical simulations of the thermo-fluidynamic fields at different scramjet flight conditions, at Mach numbers of M=6.5 and 8. The feasibility of the idea of the upstream injection is checked for a simple axisymmetric configuration and relatively small size. The results are discussed in connection with the potential benefits deriving from the use of new ultra high temperature ceramics (UHTC).

Savino, Raffaele; Pezzella, Giuseppe

2003-09-01

173

Municipal solid waste combustion: Fuel testing and characterization  

SciTech Connect

The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

1990-10-01

174

Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion  

SciTech Connect

The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

Confer, Keith

2014-09-30

175

Disturbing effect of free hydrogen on fuel combustion in internal combustion engines  

NASA Technical Reports Server (NTRS)

Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

Riedler, A

1923-01-01

176

Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels  

E-print Network

The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been used to describe the gas...

Vittilapuram Subramanian, Kannan

2006-04-12

177

Elimination of abnormal combustion in a hydrogen-fueled engine  

SciTech Connect

This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

Swain, M.R.; Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

1995-11-01

178

Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz  

E-print Network

Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz Advanced Study University, Cambridge, MA 02138 (email djj@io.harvard.edu) #12; Abstract. Fossil fuel combustion of fossil fuel combustion on the global distribution of NO x . In the model, we tag fossil fuel NO x and its

Jacob, Daniel J.

179

Combustion Of Poultry-Derived Fuel in a CFBC  

NASA Astrophysics Data System (ADS)

Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

Jia, Lufei; Anthony, Edward J.

180

Fuel properties of cottonseed oil  

SciTech Connect

The use of vegetable oils as fuel alternatives has an exceptional importance in the field of research. In this study, evaluation possibilities of cottonseed oil have been investigated as an alternative candidate for diesel fuel and fuel oil. The fuel property tests were performed according to standard analysis methods for oil and fuel. An overall evaluation of the results indicates that cottonseed oil can be proposed as a possible green substitute for fuel.

Karaosmanoglu, F.; Tueter, M.; Goellue, E. [Istanbul Technical Univ. (Turkey). Dept. of Chemical Engineering; Yanmaz, S.; Altintig, E. [Sakarya Univ. (Turkey). Dept. of Chemistry

1999-11-01

181

Fuel-Air Mixing and Combustion in Scramjets. Chapter 6  

NASA Technical Reports Server (NTRS)

At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

2006-01-01

182

Combustion instabilities in sudden expansion oxy-fuel flames  

SciTech Connect

An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

2006-08-15

183

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

DOEpatents

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02

184

The effect of air preheating on the combustion of solid fuels on a grate  

Microsoft Academic Search

Combustion of solid fuels on a grate is widely used. Mostly, the combustion behaviour is explained by the classical theory of Rogers. However, that theory cannot explain the combustion process when primary air preheating is applied. Solid fuel grate combustion is studied by experiments in a pot furnace. Experiments with and without primary air heating are described. These are compared

L. B. M van Kessel; A. R. J Arendsen; P. D. M de Boer-Meulman; G Brem

2004-01-01

185

Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion  

NASA Technical Reports Server (NTRS)

The results of an investigation of the effect of operating conditions and fuel properties on emission for the two-stage combustion of fuels with significant organic nitrogen content are presented. The way in which the emissions of nitrogen oxides and carbon monoxide are affected by the decreased hydrogen content and the increased organic nitrogen content of coal-derived fuels is discussed. Limited measurements of smoke from the rich-lean combustion of simulated syncrude fuels indicate relatively high smoke emissions in spite of the very lean second-stage burning. This fact, together with the high observed carbon monoxide emissions, suggests that trade-offs will be necessary between the conditions that minimize NOx and those that control CO and smoke emissions.

Bittker, D. A.; Wolfbrandt, G.

1981-01-01

186

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 9, April--June 1991  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the second quarter of 1991, the following technical progress was made: completed drop tube furnace devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of samples to determine devolatilization kinetics; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; completed writing a summary topical report including all results to date on he nine fuels tested; and presented three technical papers on the project results at the 16th International Conference on Coal & Slurry Technologies.

Chow, O.K.; Nsakala, N.Y.

1991-08-01

187

The Implications of Fossil Fuel Combustion for Climate Change  

Microsoft Academic Search

Emissions from fossil fuel combustion alter the composition of the atmosphere and have been touted as a major cause of climate change. The amount of CO2 in the atmosphere, for example, has increased by more than 30% since pre-industrial times. Average global surface temperature has increased by approximately 0.6 0.2 C since the late 19th Century, and surface temperature

Kristy E. Ross; Stuart J. Piketh

188

Grate Furnace Combustion: A Submodel for the Solid Fuel Layer  

Microsoft Academic Search

The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales\\u000a and physical processes playing a role in the conversion, newly developed submodels are required. Here, a submodel for the\\u000a reverse combustion process in the solid fuel layer on the grate is described. The submodel is shown to give good

H. A. J. A. Van Kuijk; R. J. M. Bastiaans; J. A. Van Oijen; L. P. H. De Goey

2007-01-01

189

Fuel rich sulfur capture in a combustion environment  

Microsoft Academic Search

A major concern associated with the combustion of coal for heat and electricity is the emission of acid rain precursors, NO\\/sub x\\/ and SO. Dry calcium based sorbent injection is a potential method for reducing SO emissions from existing coal-fired boilers. A great deal of study has been devoted to the fuel lean SO reaction: CaO + SO + 12O

E. R. Lindgren; D. W. Pershing

1987-01-01

190

Fireside Corrosion in Oxy-fuel Combustion of Coal  

SciTech Connect

Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions.

G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

2012-05-20

191

Advantages of repowering with solid-fuel combustion technologies  

SciTech Connect

Many solid-fuel fired steam generators in the US are approaching the limits of their economic service lives as indicated by their decreasing capacity factor. In most cases, the boiler is the principal component of obsolescence due to highest wear and lowest reliability. The transition from a highly regulated, cost-based electric utility to a more wholesale competitive industry, as well as ever-increasing and costly emission regulation, are accelerating this obsolescence. Even so, these older plants often still have significant remaining value in the form of site location near load centers, facilities and infrastructure, permits, transmission access, water rights, recent upgraded equipment, and other factors. The increasing availability of low cost solid fuels such as petroleum coke and coal beneficiation wastes, combined with the emergence of a number of solid-fuel combustion technologies, has provided power plant operators with the opportunity to leverage the plant`s existing assets to produce low cost base load power through solid-fuel repowering. This paper discusses the technical and business issues associated with repowering existing solid fuel fired steam generators with a number of combustion based technologies.

Johnson, S.A.; Giermak, E.A.; Khanna, R.D. [Sargent and Lundy, Chicago, IL (United States)

1997-09-01

192

Aerodynamic properties of turbulent combustion fields  

NASA Technical Reports Server (NTRS)

Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

Hsiao, C. C.; Oppenheim, A. K.

1985-01-01

193

Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel  

Microsoft Academic Search

In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel

Mustafa Canakci

2007-01-01

194

Device for fuel delivery to internal combustion engine with vaporization of injected fuel  

Microsoft Academic Search

Disclosed is a device for fuel delivery to an internal combustion engine, comprising a vaporizing element whose one section is heated by exhaust gases and the other section is disposed in an intake duct and has an operating surface, a fuel charge being injected onto said surface by an injection nozzle. In this device the operating surface of the vaporizing

J. B. Sviridov; A. M. Andreev; V. V. Kozlovsky; A. M. Lukin; E. V. Novikov

1984-01-01

195

Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2  

SciTech Connect

EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

Klosky, M.K. [EnerTech Environmental, Inc., Atlanta, GA (United States)

1996-09-01

196

Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges  

SciTech Connect

This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

Cappelli, Mark; Mungal, M Godfrey

2014-10-28

197

Combustion engine with fuel injection system, and a spray valve for such an engine  

SciTech Connect

This patent describes a combustion engine with a fuel system. The engine has at least one cylinder with an air inlet passage, into which passage opens a fuel spray valve which is connected to a fuel pipe with a pump, while disposed in a selected part of the fuel system is a fuel heating element with which the infed fuel can come into direct contact. It is characterized in that the fuel system comprises a fuel injection system having a fuel spray valve which is connected to the fuel pipe and the fuel heating element is provided in the form of a thermistor of material with a positive temperature coefficient associated with the fuel spray valve, the thermistor being connected to an electrical supply and discharge cable, a holder being disposed on the fuel spray valve and having therein the thermistor in the form of a PTC tablet which is connected to a heat sink for transfer of heat to the fuel. The heat sink being designed as a metal box to have good heat-conducting properties and low mass with at least one fuel passage for heat transfer from the box to fuel flowing in the passage.

Van Wechem, G.; Beunk, G.; Van Den Elst, F; Van Der Ploeg, A.

1990-02-06

198

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 11, October--December 1991  

SciTech Connect

The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of beneficiated coal-based fuels (BCFs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors perform parts of the test work are the Massachusetts Institute of Technology Physical Science, Inc. Technology Company and the University of North Dakota Energy and Environmental Research Center. Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for full-scale tests. Approximately nine BCFs will be in dry ultra fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of three Freeport Pittsburgh 8 fuels; conducted pilot-scale combustion and ash deposition tests of a fresh batch of Upper Freeport parent coal in the CE fireside Performance Test Facility; and completed editing of the fourth quarterly report and sent it to the publishing office.

Chow, O.K.; Nsakala, N.Y.

1992-03-01

199

Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz  

E-print Network

Global impact of fossil fuel combustion on atmospheric NOx Larry W. Horowitz Advanced Study Program, MA 02138 (email djj@io.harvard.edu) #12;Abstract. Fossil fuel combustion is the largest global source-dimensional model of tropospheric chemistry and transport to study the impact of fossil fuel combustion

Jacob, Daniel J.

200

40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.  

Code of Federal Regulations, 2010 CFR

...Monitoring of emissions and operations for fuel gas combustion devices. 60.107a Section 60.107a...Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2...

2010-07-01

201

40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.  

Code of Federal Regulations, 2012 CFR

...Monitoring of emissions and operations for fuel gas combustion devices. 60.107a Section 60.107a...Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2...

2012-07-01

202

40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.  

Code of Federal Regulations, 2011 CFR

...Monitoring of emissions and operations for fuel gas combustion devices. 60.107a Section 60.107a...Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2...

2011-07-01

203

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 10, July--September 1991  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of unweathered Upper Freeport fuels; completed editing of the first three quarterly reports and sent them to the publishing office; presented the project results at the Annual Contractors` Conference.

Chow, O.K.; Nsakala, N.Y.

1991-11-01

204

Fuel injection control device for internal combustion engine  

SciTech Connect

This patent describes a fuel injection control device for an internal combustion engine including synchronous injection control means for controlling a fuel injection amount synchronously with a signal generated at every predetermined crank angle in the internal combustion engine, asynchronous injection control means for controlling the fuel injection amount according to an output signal from means for detecting a time of acceleration, and injector driving means for driving a fuel injector according to output signals from the synchronous injection control means and the asynchronous injection control means. The improvement described consists of: acceleration starting time detection means for detecting an acceleration starting time; number of engine revolution measuring means for measuring number of engine revolutions from the acceleration starting time; throttle valve angle detection means for detecting that a throttle valve angle is equal to or more than a predetermined angle after start of acceleration; and means for operating the asynchronous injection control means when the number of engine revolution measuring means measures a value equal to or less than a predetermined number of engine revolutions and the throttle valve angle detection means generates a signal equal to or more than a predetermined throttle valve angle signal.

Oba, H.

1987-08-11

205

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

SciTech Connect

The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

2005-04-29

206

Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels.  

PubMed

This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions. PMID:14643990

Permchart, W; Kouprianov, V I

2004-03-01

207

A jet fuel surrogate formulated by real fuel properties  

SciTech Connect

An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate. (1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O{sub 2}/N{sub 2} and POSF 4658 surrogate/O{sub 2}/N{sub 2} at 12.5 atm and 500-1000 K, fixing the carbon content at 0.3% for both mixtures. (2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames. (3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714 K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675 K) and high temperature (900 K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity. (author)

Dooley, Stephen; Won, Sang Hee; Chaos, Marcos; Heyne, Joshua; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Kumar, Kamal; Sung, Chih-Jen [School of Engineering, University of Connecticut, Storrs, CT (United States); Wang, Haowei; Oehlschlaeger, Matthew A. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Santoro, Robert J.; Litzinger, Thomas A. [Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA (United States)

2010-12-15

208

Fuel-Air Mixing in a Direct-Injection Hydrogen-Fueled Internal Combustion Engine  

Microsoft Academic Search

Acetone planar laser induced fluorescence (PLIF) and particle image velocimetry (PIV) are used to investigate pre-combustion fuel-air mixing in an optically accessible single-cylinder engine fueled with hydrogen. PLIF and PIV are acquired separately in a plane parallel to the piston top ( r-? plane) at a fixed engine speed and crank angle. The experiments include measurements for non-fueled engine operation

Christopher M. White; Sebastian Kaiser; Michael Roux

2008-01-01

209

Analytical fuel property effects--small combustors  

NASA Technical Reports Server (NTRS)

The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.

Sutton, R. D.; Troth, D. L.; Miles, G. A.

1984-01-01

210

Evaluation of Planck mean coefficients for particle radiative properties in combustion environments  

NASA Astrophysics Data System (ADS)

Thermal radiation is the dominating form of heat transfer in several combustion technologies that combust solid fuels, such as pulverized coal combustion and fixed bed combustion. The thermal radiation originates from the hot combustion gases and particles. For accurate modelling of thermal radiation in these environments the selection of the radiative transport model and radiative property model is important. Radiative property models for gases have received huge attention and several well documented models exist. For particles, soot has received considerable attention whereas other particles have not to a similar extent. The Planck mean coefficients are most commonly used to describe the radiative properties of the particles. For gases the Planck mean absorption coefficient is known to give large deviations from recognised exact models in predicting the radiative heat transfer. In this study the use of Planck mean coefficients for particles are investigated and compared to spectral models. Two particle mass size distributions of fly ash are used, representing biomass and coal combustion. The evaluation is conducted in several combustion-like test cases with both gases and particles. The evaluation shows that using Planck mean coefficients for particles, in combustion-like situations, can give large errors in predicting the radiative heat flux and especially the source term. A new weighted sum of grey gas approach is tested and evaluated. It includes both the particles and gases to better account for the non-greyness of the fly ash absorption coefficient.

Hofgren, Henrik; Sundn, Bengt

2015-04-01

211

Combustion  

NASA Technical Reports Server (NTRS)

An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

Bulzan, Dan

2007-01-01

212

Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency  

USGS Publications Warehouse

Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

1990-01-01

213

Experimental results with hydrogen fueled internal combustion engines  

NASA Technical Reports Server (NTRS)

The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

1975-01-01

214

Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion  

DOEpatents

Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

1980-01-01

215

Fuel-rich catalytic combustion - A fuel processor for high-speed propulsion  

NASA Technical Reports Server (NTRS)

Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatuers was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

1990-01-01

216

Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion  

NASA Technical Reports Server (NTRS)

Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

1990-01-01

217

Supersonic cavity based combustion with kerosene/hydrogen fuel  

NASA Astrophysics Data System (ADS)

A comparative study with kerosene and hydrogen fuel in a model scramjet combustor has been carried out numerically. The effect of fuel-air equivalence ratio on the flow field properties in a cavity based mixing mechanism at a freestream Mach number of 2.08 has been probed. The investigation has been carried out in a two dimensional numerical model where a cavity of length to depth ratio of 2 is mounted on one of the walls of the flow channel. The flow field shock structure is observed to change with the change in fuel-air equivalence ratio. Total pressure loss is observed to depend both on fuel air equivalence ratio and the fuel type. The spread of fuel in the test section shows marked variation with the equivalence ratio. Performance of injector location on the fuel-air mixing is also probed during the course of the investigation.

Das, Rajarshi; Kim, Jeong Soo; Kim, Heuy Dong

2015-04-01

218

Combustion characteristics in the transition region of liquid fuel sprays  

NASA Technical Reports Server (NTRS)

A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

Cernansky, N. P.; Namer, I.; Tidona, R. J.

1986-01-01

219

Fluidized-bed combustion test of low-quality fuels: Texas lignite and lignite refuse  

Microsoft Academic Search

Samples of Texas lignite from the Wilcox formation were investigated to assess this fuel as a potential feedstock for fluidized bed combustors. Combustion tests were performed over a wide range of operating conditions to develop fluidized bed combustion (FBC) engineering and emissions data on this low-quality fuel. Combustion characteristics observed include: no clinker formation at bed temperature as high as

J. S. Mei; U. Grimm; J. S. Halow

1978-01-01

220

System for examining burning based on traditional fuel sources for internal-combustion engines  

SciTech Connect

An experimental system is described for examining stable turbulent combustion of various fuels in a burner having a cylindrical channel. Results are presented on the formation of nitric oxide in the combustion of hydrocarbon fuels with the addition of water in the burner and in internal-combustion engines.

Nazarov, I.P.; Naumov, S.V.; Prostov, V.N.

1983-11-01

221

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion  

E-print Network

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

Abu-Khamsin, Sidqi

222

Combustion Simulation Databases for Real Transportation Fuels: A New Community Collaboration  

E-print Network

Combustion Simulation Databases for Real Transportation Fuels: A New Community Collaboration T. C, and health benefits that could be derived from improved combustion processes are enormous and well recognized on Combustion Simulation Databases for Real Transportation Fuels to assess needs and opportunities to translate

Magee, Joseph W.

223

Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen  

NASA Technical Reports Server (NTRS)

Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

Klich, G. F.

1976-01-01

224

Fireside Corrosion in Oxy-fuel Combustion of Coal  

SciTech Connect

Oxy-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N2 with CO2 and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model FeCr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Evidence was found for a hreshold for severe attack between 10-4 and 10-3 atm of SO3 at 700C.

Holcomb, Gordon R [National Energy Technology Laboratory; Tylczak, Joseph [National Energy Technology Laboratory; Meier, Gerald H [University of Pittsburgh; Lutz, Bradley [University of Pittsburgh; Jung, Keeyoung [Institute of Industrial Science and Technology, Korea; Mu, Nan; Yanar, Nazik M [University of Pittsburgh; Pettit, Frederick S [University of Pittsburgh; Zhu, Jingxi [Carnegie Mellon University; Wise, Adam [Carnegie Mellon University; Laughlin, David E. [Carnegie Mellon University; Sridhar, Seetharaman [Carnegie Mellon University

2013-11-25

225

Some principles of combustion of homogeneous fuel-air mixtures in the cylinder of an internal combustion engine  

Microsoft Academic Search

An algorithm is presented for the problem of flame propagation rate in combustion of a homogeneous fuel-air mixture in the cylinder of an internal combustion engine. It is assumed that the mixture is not overturbulized and that the flame front is spherical. The model used for the phenomenon is based on a turbulent transport mechanism. In the near-wall region the

R. M. Petrichenko; A. B. Kanishchev; L. A. Zakharov; Bassam Kandakzhi

1990-01-01

226

Health effects of fossil-fuel combustion products: needed research  

SciTech Connect

An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

Not Available

1980-01-01

227

Combustion of liquid fuel droplets in supercritical conditions  

NASA Technical Reports Server (NTRS)

A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

Shuen, J. S.; Yang, Vigor

1991-01-01

228

Fuel-injection control system for an internal combustion engine  

SciTech Connect

A fuel-injection control system for an internal combustion engine is described in which a basic pulse width, being calculated from the amount of intake air sucked into an internal combustion engine and the number of engine revolutions, is generated in synchronization with engine revolution, and a series of special injection pulses are generated independently of the generation timing of the basic injection pulse width for revision of engine acceleration. The fuel injection control system comprises: an arithmetic operation means for calculating an engine load from the amount of intake air sucked into the engine and the number of engine revolutions; a judging means for judging whether or not a parameter representative of the engine load is less than a predetermined reference value; a first pulse-generating means adapted to generate a first special injection pulse in response to the amount of the intake air when the judging means judges that the parameter is less than the predetermined reference value; a second pulse-generating means adapted to revise the engine acceleration outside a pulsation range; and a revision-prohibiting means for prohibiting the revision of engine acceleration in the pulsation range of the intake air during a second predetermined period of time exceeding the first predetermined period starting from the generation of the first special injection pulse.

Nishikawa, T.; Hanada, K.; Nishimura, Y.; Shimomura, S.

1987-11-17

229

Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures  

NASA Technical Reports Server (NTRS)

The combustion of H2/CH4 and H2/C2H4 mixtures containing 10 to 70 vol pct hydrocarbon at combustor inlet Mach number 2 and temperatures 2000 to 4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H2/C2H4 is shown to burn much more efficiently than H2/CH4, with no pilot-off blowout equivalence ratios greater than 0.5. It is suggested that H2/hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

Diskin, Glenn S.; Jachimowski, C. J.; Northam, G. Burton; Bell, Randy A.

1987-01-01

230

Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures  

NASA Technical Reports Server (NTRS)

The combustion of H2/CH4 and H2/C2H4 mixtures containing 10-70 vol pct hydrocarbon at cumbustor inlet Mach number 2 and temperatures 2000-4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H2/C2H4 is shown to burn much more efficiently than H2/CH4, with no pilot-off blowout at equivalence ratios greater than 0.5. It is suggested that H2/hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

Diskin, Glenn S.; Northam, G. Burton; Bell, Randy A.

1987-01-01

231

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 5, May 1990--June 1990  

SciTech Connect

The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-08-01

232

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01

233

FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL  

SciTech Connect

This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

2003-08-24

234

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-print Network

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse between 10-4 and 10-3 atm of SO3 at 700 °C. Keywords Fireside corrosion Á Oxidation Á Oxy-fuel combustion

Laughlin, David E.

235

Fundamental characterization of alternate fuel effects in continuous combustion systems. Summary technical progress report, August 15, 1978-January 31, 1980  

SciTech Connect

The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resources. Fuel-flexible combustion systems will provide for more rapid transition of these alternative fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are: (a) develop an improved understanding of relationships between alternative fuel properties and continuous combustion system effects, and (b) provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. This is the second major report of the program. Key experimental findings during this reporting period concern stirred combustor soot production during operation at controlled temperature conditions, soot production as a function of combustor residence time, an improved measurement technique for total hydrocarbons and initial stirred combustor results of fuel nitrogen conversion. While the results to be presented concern a stirred combustor which utilizes premixed fuel vapor/oxidant mixtures, a new combustor which combusts liquid fuel injected into the reactor as a spray has been developed and will be described. Analytical program progress includes the development of new quasiglobal models of soot formation and assessment of needs for other submodel development.

Blazowski, W.S.; Edelman, R.B.; Wong, E.

1980-02-27

236

Biomedically relevant chemical and physical properties of coal combustion products.  

PubMed Central

The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

Fisher, G L

1983-01-01

237

High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels  

NASA Technical Reports Server (NTRS)

Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

Canada, G. S.

1974-01-01

238

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

SciTech Connect

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01

239

Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine  

E-print Network

There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

Cedrone, Kevin David

2010-01-01

240

Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders  

NASA Technical Reports Server (NTRS)

Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

Deur, J. M.; Cline, M. C.

2004-01-01

241

40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?  

Code of Federal Regulations, 2010 CFR

...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

2010-07-01

242

40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?  

Code of Federal Regulations, 2012 CFR

...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

2012-07-01

243

40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?  

Code of Federal Regulations, 2014 CFR

...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

2014-07-01

244

40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?  

Code of Federal Regulations, 2013 CFR

...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

2013-07-01

245

40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?  

Code of Federal Regulations, 2011 CFR

...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

2011-07-01

246

Vaporizer design criteria for ethanol fueled internal combustion engines  

E-print Network

Properties of Alcohols, Water and Petroleum Fuels. 2 Results of regression analysis. 3 Effect of various parameters on vaporization length. 51 4 Predicted tube length for different fuel requirements (Ten stainless steel tubes, 4. 7 mm ID. ). 60 ix LIST... the single tube heat exchanger. 37 10 Thermocouple installation on stainless steel tube. 38 11 Schematic diagram of the experimental ethanol vaporizer. . 40 12 Effect of concentration on vaporization length. 13 Effect of flow rate on vaporization length...

Ariyaratne, Arachchi Rallage

1985-01-01

247

Fuel supply control system for an internal combustion engine  

SciTech Connect

This patent describes an internal combustion engine which is adapted to be supplied with fuel by fuel injection means and in which is part of exhaust gas discharged from the engine proper is adjustable recirculated to a location downstream of a throttle valve in an intake pipe, a fuel supply control system comprising: an engine revolutions per minute (RPM) detecting means for detecting the number of revolutions per minute of the engine; a pressure detecting means for detecting manifold pressure of the intake gases in the portion of the intake pipe downstream of the throttle valve; an oxygen density detecting means for detecting the density of the oxygen in the intake gases in the intake pipe after a part of the engine exhaust gas has been recirculated to the intake pipe downstream of the throttle valve; a memory means for prestoring data determining the amount of fuel to be supplied to the engine in the absence of the exhaust gas recirculation and corresponding to respective engine operating conditions which are determined by the manifold pressure of the intake gases downstream of the throttle valve detected by the pressure detecting means and the engine RPM detected by the engine RPM detecting means, the data being classified in a two dimensional manner.

Nishida, M.

1988-09-06

248

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

SciTech Connect

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01

249

Predicting various biodiesel fuel properties  

Technology Transfer Automated Retrieval System (TEKTRAN)

Several essential fuel properties of biodiesel are largely determined by the properties of the fatty esters which are its main components. These include cetane number, kinematic viscosity, oxidative stability, and cold flow which are contained in almost all biodiesel standards but also other propert...

250

Device at combustion plants for automatic feeding of fuels within the furnace of the plant  

Microsoft Academic Search

A method is described for feeding solid fuel through a furnace of a combustion plant, comprising the steps of: positioning solid fuel on a fuel-receiving end of movable grate means, advancing the movable grate means through the furnace from the fuel-receiving end to a fuel-discharging end of the grate means, while combusting the fuel disposed thereon. The grate means is

Lovgren

1986-01-01

251

Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units  

SciTech Connect

Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

Gordon, S.

1982-07-01

252

Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units  

NASA Technical Reports Server (NTRS)

Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

Gordon, S.

1982-01-01

253

Combustion Study of Stabilized Water-in-Diesel Fuel Emulsion  

Microsoft Academic Search

An experimental investigation has been carried out to produce a stable diesel\\/water emulsion fuel and use it in a diesel engine under different operating and design conditions. The emulsion stayed stable for up to 30% water in diesel for up to one week and 20% water in diesel for four weeks. The physical properties of the stable W\\/D emulsions in

M. Y. E. Selim; M. T. Ghannam

2009-01-01

254

Determination of alternative fuels combustion products: Phase 2 final report  

SciTech Connect

This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

Whitney, K.A.

1997-06-01

255

Combustion of refuse derived fuel in a fluidized bed  

SciTech Connect

Power generation from Refuse Derived Fuel (RDF) is an attractive utilization technology of municipal solid waste. To explain the behavior of RDF-fired fluidized bed incinerator, the commercial size RDF was continuously burnt in a 30 x 30 cm bubbling type fluidized-bed combustor. It was found that 12 kg/h of RDF feed rate was too high feed for this test unit and the Co level was higher than 500 ppm. However, 10 kg/h of RDF was a proper feed rate and the Co level was kept under 150 ppm. Secondary air injection and changing air ratio from the pipe grid were effective for the complete combustion of RDE. It was also found that HCl concentration in flue gas was controlled by the calcium component contained in RDF and its level was decreased with decreasing the combustor temperature.

Piao, Guilin; Aono, Shigeru; Mori, Shigekatsu; Deguchi, Seiichi; Fujima, Yukihisa [Nagoya Univ. (Japan)] [Nagoya Univ. (Japan); Kondoh, Motohiro; Yamaguchi, Masataka [Toyota Motor Corp. (Japan). Plant Engineering Dept.] [Toyota Motor Corp. (Japan). Plant Engineering Dept.

1998-12-31

256

Evaluation of alternate-fuels performance in an external combustion system. Final report  

Microsoft Academic Search

As the economic attractiveness of many alternate fuels increases relative to gasoline, the viability of any future automotive power plant may soon depend on the ease with which these alternate fuels can be utilized. It is generally assumed that external-combustion engines are more tolerant of alternate fuels than internal-combustion engines. This study attempted to verify that assumption. The purpose of

R. A. Battista; M. Connelly

1985-01-01

257

Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles  

NASA Astrophysics Data System (ADS)

Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

2006-12-01

258

On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures  

NASA Technical Reports Server (NTRS)

A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

1996-01-01

259

A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion  

Microsoft Academic Search

In this paper we have proposed a novel gas turbine cycle with hydrogen-fueled chemical-looping combustion, and the system study on two hydrogen-fueled power plants, the new gas turbine cycle and an advanced gas turbine cycle with H2\\/O2 combustion, has been investigated with the aid of exergy principle (EUD methodology). The hydrogen fueled chemical-looping combustion in the new gas turbine cycle

Hongguang Jin; Masaru Ishida

2000-01-01

260

The energyclimate challenge: Recent trends in CO 2 emissions from fuel combustion  

Microsoft Academic Search

Fossil fuel combustion is the single largest human influence on climate, accounting for 80% of anthropogenic greenhouse gas emissions. This paper presents trends in world carbon dioxide (CO2) emissions from fossil fuel combustion worldwide, based on the estimates of the International Energy Agency (IEA) [IEA, 2006a. CO2 Emissions from Fuel Combustion 19712004. International Energy Agency, Paris, France]. Analyzing the drivers

Roberta Quadrelli; Sierra Peterson

2007-01-01

261

Coal-water slurry fuel internal combustion engine and method for operating same  

DOEpatents

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01

262

Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion  

E-print Network

Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion Dagfinn combustion have been proposed as an alternative to conventional gas turbine cycles for achieving CO2-capture for CO2 sequestration purposes. While combustion instabilities is a problem in modern conventional gas

Foss, Bjarne A.

263

Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor  

SciTech Connect

The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

2014-03-04

264

Extinction of model fuels with anomalous pressure dependence of the combustion velocity  

SciTech Connect

This article investigates the regimes of combustion of model fuels with a drop in pressure. The following fuel compositions were examined: a reference composition consisting of a model nitroglycerine fuel, nitroglycerine fuel with a 2% additive of lead and copper compounds, and nitroglycerine with the addition of 1% compound of lead. The temperature gradient in the gas near the combustion surface was determined from the temperature profile. The results indicate that when the pressure boundary for the change in combustion mechanisms is crossed during the pressure drop, the conditions for extinguishing the fuel are considerably eased. It is concluded that the investigation of fuel combustion accompanying a pressure drop permits the obtaining of additional data and enables the understanding of the combustion mechanism at constant pressure.

Marshakov, V.N.; Melik-Gaikazov, G.V.

1983-09-01

265

Formation of oxides of nitrogen in monodisperse spray combustion of hydrocarbon fuels  

NASA Technical Reports Server (NTRS)

Experimental results of exit plane NO/NO(x) emissions from atmospheric monodisperse fuel spray combustion are presented. Six different hydrocarbon fuels were studied: isopropanol, n-propanol, n-octane, iso-octane, n-heptane and methanol. The results indicate an optimum droplet size for minimizing NO/NO(x) production for all of the test fuels. At the optimum droplet diameter, reductions in NO/NO(x) relative to the NO(x) occurred at droplet diameters of 55 and 48 microns respectively, as compared to a 50-micron droplet size for isopropanol. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties. Estimates are also given for the behavior of heavy fuels and of polydisperse fuel sprays in shifting the minimum NO(x) point compared to a monodisperse situation.

Nizami, A. A.; Singh, S.; Cernansky, N. P.

1982-01-01

266

Recent technology to improve engine combustion noise and exhaust emission by optimizing fuel injection system  

SciTech Connect

In recent years, lower noise has been in high demand in small diesel engines for agricultural and industrial uses as well as automotive engines. Furthermore, emission regulations become more severe due to environmental concerns. In order to satisfy these objects, diesel engine combustion needs to be improved. Especially fuel injection system is the key element to control engine combustion and should be improved dramatically. This research is to pursue the ideal fuel injection system to realize optimized diesel engine combustion which creates low combustion noise and clean exhaust emission. Recent progress will be reported in fuel injection technology including injection pressure pattern, injection rate pattern, injection timing and spray pattern, etc.

Tabuchi, Tetsuya; Fujitani, Nobuyuki; Makino, Niro

1995-12-31

267

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-print Network

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01

268

Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.  

ERIC Educational Resources Information Center

Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

Lloyd, William G.; Davenport, Derek A.

1980-01-01

269

Combustion of Biomass  

Microsoft Academic Search

In this article, combustion properties of biomass fuels in boiler power systems are briefly reviewed. Brief summaries of the basic concepts involved in the combustion of biomass fuels are presented. Biomass is an attractive renewable fuel in utility boilers. The compositions of biomass among fuel types are variable. Ash composition for the biomass is fundamentally different from ash composition for

A. Demirbas

2007-01-01

270

Chemical Properties of Combustion Aerosols: An Overview  

EPA Science Inventory

A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

271

Reactivity study on a novel hydrogen fueled chemical-looping combustion  

Microsoft Academic Search

In this paper the reactivity study on hydrogen fueled chemical-looping combustion, which is capable of making breakthrough in simultaneous contribution to the efficient use of energy and being environmentally benign, has been carried out by a thermogravimetric analyzer (TGA) and a fixed bed reactor. The hydrogen fueled chemical-looping combustion in the new gas turbine cycle consists of two successive reactions:

Hongguang Jin; Masaru Ishida

2001-01-01

272

CHARACTERIZATION OF EMISSIONS FROM THE COMBUSTION OF WOOD AND ALTERNATIVE FUELS IN A RESIDENTIAL WOODSTOVE  

EPA Science Inventory

The report gives results of a comparison of emissions from the combustion of alternative fuels to those from wood in a residential woodstove, and of a study of the effects of woodstove operating parameters on combustion emissions. Overall, oak wood is the best fuel tested, consid...

273

Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology  

Microsoft Academic Search

Fluidized bed combustion can be used for energy production or incineration for almost any material containing carbon, hydrogen and sulphur in a combustible form, whether it be in the form of a solid, liquid, slurry or gas. The technology's fuel flexibility arises from the fact that the fuel is present in the combustor at a low level and is burnt

E. J Anthony

1995-01-01

274

THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION  

EPA Science Inventory

The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

275

Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere  

E-print Network

Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: daou@tupi.dmt.upm.es Ignition and combustion of an initially spherical pocket of fuel represented by an irreversible one-step reaction. Attention is focused on the development of the ignition

Heil, Matthias

276

Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network  

E-print Network

DS-06-1351 Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network Tomás dynamics of gasoline engines during transient operation. With a collection of input-output data measured;Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network I. INTRODUCTION

Johansen, Tor Arne

277

Advanced fuel system technology for utilizing broadened property aircraft fuels  

NASA Technical Reports Server (NTRS)

Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

Reck, G. M.

1980-01-01

278

Device at combustion plants for automatic feeding of fuels within the furnace of the plant  

SciTech Connect

A method is described for feeding solid fuel through a furnace of a combustion plant, comprising the steps of: positioning solid fuel on a fuel-receiving end of movable grate means, advancing the movable grate means through the furnace from the fuel-receiving end to a fuel-discharging end of the grate means, while combusting the fuel disposed thereon. The grate means is advanced through a sensing zone of the furnace disposed in the vicinity of, and upstream of, the fuel-discharging end, conducting a supply of measuring air to fuel disposed on the grate means in the sensing zone, such that the temperature of incompletely combusted fuel increases and the temperature of completely combusted fuel decreases, sensing the temperature of the fuel in the sensing zone to obtain an indication of the extent of combustion thereof, and adjusting the rate of advance of the grate means in accordance with the sensed temperature in a manner tending to achieve a complete combustion of the fuel.

Lovgren, A.

1986-12-23

279

Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro.  

PubMed

Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300mgZn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24h to different doses (15, 50,150 and 300?gml(-1)) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM. PMID:25553547

Uski, O; Jalava, P I; Happo, M S; Torvela, T; Leskinen, J; Mki-Paakkanen, J; Tissari, J; Sippula, O; Lamberg, H; Jokiniemi, J; Hirvonen, M-R

2015-04-01

280

Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air  

NASA Technical Reports Server (NTRS)

The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

1955-01-01

281

Sustainability of mild combustion of hydrogen-containing hybrid fuels  

Microsoft Academic Search

Nowadays a process of sensitization on the fundamental problems related to energetic sources and their environmental impact is observed. In this context, the so-called flameless or mild combustion technology offers great advantages in terms of thermal efficiency and pollution emissions with respect to conventional burner-stabilized firing. The achievement of mild conditions requires to heat up the combustion chamber above a

Marco Derudi; Alessandro Villani; Renato Rota

2007-01-01

282

Utilization of Biomass as Alternative Fuel for External Combustion Engines  

Microsoft Academic Search

Because Turkey is an energy-important country, external combustion engines for Turkey possess strategic importance. Turkey's annual biomass potential is 32 million tons of oil equivalent. Gasoline is 9.836 fold more expensive than wood in Turkey. Railway transportation that operate with external combustion engines with wood or coal fire is more economic than highway transportation for Turkey. Thermal energy, produced by

AYHAN DEMIRBAS; FUAT MEYDAN

2004-01-01

283

Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel  

Microsoft Academic Search

Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel

Allister Hickson; Al Phillips; Gene Morales

2007-01-01

284

Analytical fuel property effects: Small combustors  

NASA Technical Reports Server (NTRS)

The study performed in Phase 1 of this program applies only to a T700/CT7 engine family type combustor functioning in the engine as defined and does not necessarily apply to other cycles or combustors of differing stoichiometry. The study was not extended to any of the fuel delivery accessories such as pumps or control systems, nor was there any investigation of potential systems problems which might arise as a consequence of abnormal properties such as density which might affect delivery schedules or aromatics content which might affect fuel system seals. The T700/CT7 engine is a front drive turboshaft or turboprop engine in the 1500-1800 shp (1120-1340 kW) class as currently configured with highpower core flows of about 10 lb/sec (4.5 kg/sec). It employs a straight-through annular combustion system less than 5 in. (12.5 cm) in length utilizing a machined ring film cooled construction and twelve low-pressure air blast fuel injectors. Commercial and Naval versions employ two 0.5 Joule capacitive discharge surface gap ignitors.

Cohen, J. D.

1984-01-01

285

Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions  

Microsoft Academic Search

Hygroscopic properties of combustion particles were measured online with a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) during PartEmis jet engine combustor experiments. The combustor was operated at old and modern cruise conditions with fuel sulfur contents (FSC) of 50, 410 and 1270 mug g-1, and hygroscopic growth factors (HGF) of particles with different dry diameters were investigated at relative humidities

M. Gysel; S. Nyeki; E. Weingartner; U. Baltensperger; H. Giebl; R. Hitzenberger; A. Petzold; C. W. Wilson

2003-01-01

286

Combustion characteristics of a direct-injection natural gas engine under various fuel injection timings  

Microsoft Academic Search

The combustion characteristics of a direct-injection natural gas engine under various fuel injection timings were investigated. The results showed that fuel injection timing had a large influence on the engine performance, combustion and emissions and these influences became largely in the case of late injection. Over-late injection would supply insufficient time for the fuelair mixing of the late part of

Ke Zeng; Zuohua Huang; Bing Liu; Liangxin Liu; Deming Jiang; Yi Ren; Jinhua Wang

2006-01-01

287

Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development  

SciTech Connect

This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

LeCren, R.T.

1994-06-01

288

Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1  

SciTech Connect

The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

2007-08-15

289

Effect of air-staging on mercury speciation in pulverized fuel co-combustion: part 2  

SciTech Connect

The concerns regarding global warming and need for new energy resources brought the concept of biomass and waste as secondary fuels to the power industry. Mercury emissions in cases of cofiring of chicken manure, olive residue, and B-wood with a high volatile bituminous coal blend are studied in the first part of this paper. The use of secondary fuels significantly affects NOx emissions due to different types of nitrogen present in the fuel matrix. Air-staging is a proven in-furnace NOx reduction technology. The present work mainly involves bench scale studies to investigate the effect of air-staging on partitioning of mercury in pulverized fuel co-combustion. The combustion experiments are carried out in an entrained flow reactor at 1300{sup o}C with a 20%th share of secondary fuels. Elemental and total gaseous mercury from the reactor is measured on-line, and ash is analyzed for particulate mercury along with elemental and surface properties. Reducing the air stoichiometry in the primary zone of the combustor increases unburnt carbon which in turn reduces mercury emissions in the gas phase. Ash analysis shows the effect of surface area, particle size, and unburnt carbon on mercury capture. Calcium variation in the ash was observed due to formation of different slag in reducing and oxidizing conditions and might have affected the mercury capture in combination with the above parameters. A low iron concentration of ash does not seem to affect the capture of mercury. The results will help in predicting different forms of mercury emitted from the furnace at desired operating conditions which will eventually form the basis for the design of the control strategies for mercury emissions. 22 refs., 3 figs., 1 tab.

Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

2007-08-15

290

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 7, October 1990--December 1990  

SciTech Connect

During the fourth quarter of 1990, the following technical progress was made: (1) Calculated the kinetic characteristics of chars from the combustion of microbubble flotation beneficiated products; (2) continued drop tube combustion tests of the spherical oil agglomeration beneficiated products; (3) analyzed the data from three (MIT) pilot-scale combustion tests of the Upper Freeport feed coal; and (4) continued analyses of the data from the CE pilot-scale tests of nine fuels.

Hargrove, M.J.; Chow, O.K.; Nsakala, N.Y.

1991-02-01

291

Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios  

DOEpatents

A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

2006-01-03

292

Controlling the composition, microstructure, electrical and magnetic properties of LiFe5O8 powders synthesized by sol gel auto-combustion method using urea as a fuel  

NASA Astrophysics Data System (ADS)

Nanocrystalline lithium ferrite LiFe5O8 powders were synthesized by the sol gel auto-combustion method from the corresponding metal nitrates using urea as a fuel. DTA results showed that the LiFe5O8 phase started to form at temperature around 385 C. X-ray diffraction analysis indicates that all compositions were formed in a single-phase cubic spinel structure at different annealing temperatures from 400 to 800 C for 2 h. The lattice parameter was found to decrease whereas the particle size was increased with annealing temperature. The frequency exponent "s" of lithium ferrite lies in the range 0.5?s?1, which confirmed the electron hopping between Fe2+ and Fe3+ ions. The electron mobility in LiFe5O8 samples ranged from 0.05 to 0.29 eV, which clearly indicated that the present lithium ferrites have semiconductor-like behavior. The saturation magnetization was increased on increasing the annealing temperature up to 800 C. High saturation magnetization (Ms=51.9 emu/g) was achieved for the ferrite powders produced at annealing temperature 800 C for 2 h.

Rashad, M. M.; El-Shaarawy, M. G.; Shash, N. M.; Maklad, M. H.; Afifi, F. A.

2015-01-01

293

Investigation of thermal and environmental characteristics of combustion of gaseous fuels  

NASA Astrophysics Data System (ADS)

Numerical investigations are fulfilled for some thermal and environmental characteristics of combustion of gaseous fuels used at present in tube furnaces of petroleum refineries. The effect of the fuel composition on these characteristics is shown and probable consequences of the substitution of natural gas to other types of fuels. Methane, ethane, propane, butane, propylene, and hydrogen are considered for comparison, which in most cases are constituents of the composition of the fuel burnt in furnaces. The effect of the fuel type, its associated combustion temperature, combustion product emissivity, temperature of combustion chamber walls, mean beam length, and heat release on the variation in the radiant heat flux within the radiant chamber of furnaces is investigated. The effect of flame characteristics, which are determined by the presence of diffusion combustion zones formed by burners used at present in furnaces for reducing nitrogen oxides emission, is analyzed. The effect of the fuel type on the equilibrium NO concentration is also investigated. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures dependent on the adiabatic combustion temperature and the temperature at the chamber output and determined based on solving a set of equations at various heat-release rates of the combustion chamber.

Vetkin, A. V.; Suris, A. L.

2015-03-01

294

Advanced fuel system technology for utilizing broadened property aircraft fuels  

NASA Technical Reports Server (NTRS)

Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

Reck, G. M.

1980-01-01

295

Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia  

E-print Network

Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion modeling methodology, we find that the source of carbon monoxide from fossil-fuel and biofuel combustion source of atmospheric carbon monoxide associated with fuel combustion in Asia, Geophys. Res. Lett., 29

Palmer, Paul

296

Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel  

NASA Technical Reports Server (NTRS)

Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.

Molnar, Melissa; Marek, C. John

2003-01-01

297

Fuel properties of eleven vegetable oils  

SciTech Connect

Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study of chemical and fuel properties. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical compositions.

Goering, C.E.; Daugherty, M.J.; Heakin, A.J.; Pryde, E.H.; Schwab, A.W.

1982-11-01

298

New mixture formation technology of direct fuel injection stratified combustion SI engine (OSKA)  

SciTech Connect

A new type of internal combustion engine has been developed. The new idea incorporates an impinging part in the central piston cavity. The fuel spray is injected against the impinging area, spreads and forms a fuel mixture. Since a comparatively rich fuel mixture, always stays around the impinging part and ignition is accomplished at the center of the rich fuel mixture, steady, instantaneous and high-speed combustion is possible. As the fuel mixture is always formed in the cavity, there is little fuel in the squish area. Therefore, it is possible to prevent end-gas knocking, and in spite of the use of spark ignition, to operate the engine at higher compression ratio than a conventional premixed SI engine. Experiments with methanol fuel showed that BMEP was 1.1MPa and the maximum brake thermal efficiency was 42%. The combustion noise was lower than that of diesel engine. Brief tests with gasoline showed a maximum brake thermal efficency of 36%.

Kato, S.; Onishi, S.

1987-01-01

299

An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines  

Microsoft Academic Search

The combustion temperatures required for complete combustion in homogeneous charge compression ignition engines have been investigated computationally and experimentally. Fuels from several different hydrocarbon classes are covered including: iso-octane, n-heptane, toluene, and methylcyclohexane. Over a wide range of conditions, it was found that the temperature requirements are well described by the peak cycle temperature. For operation with a compression ratio

Magnus Sjberg; John E. Dec

2005-01-01

300

Evaluation of the potential air pollution from fuel combustion in industrial boilers in Kocaeli, Turkey  

Microsoft Academic Search

The potential air pollution from the fuel combustion in the uncontrolled industrial boilers in Kocaeli, the most industrialized area in Turkey, was evaluated by using the emission factors determined based on the flue gas measurements conducted at over 100 industrial plants in the area. The emissions were modeled for conventional combustion pollutants by a Gaussian dispersion model to determine the

Aykan Karademir

2006-01-01

301

FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION  

EPA Science Inventory

The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW fire-tube boiler yielded a weakly bi-modal particulate size distribution (PSD) with...

302

FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION  

EPA Science Inventory

The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW-rated fire-tube boiler yielded a weakly bimodal PM size distribution (PSD) with over...

303

Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program  

SciTech Connect

An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

1982-12-01

304

Combustion characteristics in the transition region of liquid fuel sprays  

NASA Technical Reports Server (NTRS)

A number of important effects were observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NO(x) formation. Unfortunately, because of differences in experimental facilities and limitations in the ranges of experimental data, a unified description of these transition region effects is not available at this time. Consequently, a fundamental experimental investigation was initiated to study the effect of droplet size, size distribution, and operating parameters on these transition region phenomena in a single well controlled spray combustion facility.

Cernansky, N. P.; Namer, I.; Tidona, R. J.

1984-01-01

305

Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals  

NASA Astrophysics Data System (ADS)

Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer - operating simultaneously at 405, 532 and 781nm - to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption ngstrm exponent (AAE), and scattering ngstrm exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532nm) and 6.48 (between 532 and 781nm). This spectrally-varying characteristic of AAE indicates that brown carbon - a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet - is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were 1.3 (between 405 and 781nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (Df)=1.90.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d Df=1.850.09.

Chakrabarty, Rajan K.; Arnold, Ian J.; Francisco, Dianna M.; Hatchett, Benjamin; Hosseinpour, Farnaz; Loria, Marcela; Pokharel, Ashok; Woody, Brian M.

2013-06-01

306

Combustion of Liquid Fuels Spilled on Water. Prediction of Time to Start of Boilover  

Microsoft Academic Search

The combustion of a liquid fuel floating on water is a problem of interest because of its potential environmental and safety consequences. When a liquid fuel is burning under these conditions, the presence of the water may cause some particular effects due to heat transfer to the water. If the fuel layer is thin, heat losses to the water may

J. P. GARO; P. GILLARD; J. P. VANTELON; A. C. FERNANDEZ-PELLO

1999-01-01

307

Electronically controlled distributor type fuel injection pump for internal combustion engines  

Microsoft Academic Search

A distributor type fuel injection pump is described for an internal combustion engine, comprising: a suction space filled with fuel under pressure variable as a function of the rotational speed of the engine; a plunger driven by the engine for concurrent reciprocating and rotative motion to effect suction of fuel from the suction space into a pump working chamber defined

T. Kobayashi; S. Nozaki; K. Yamada

1986-01-01

308

Determining size of drops in fuel mixture of internal combustion engines  

NASA Technical Reports Server (NTRS)

In compressorless Diesel engines and in explosion engines using fuels with high boiling points it is difficult to effect a good combustion of the fuel mixture. This report presents different methods for calculating the size and uniformity of fuel droplets and mixtures.

Sauter, J

1926-01-01

309

Estimating particulate matter health impact related to the combustion of different fossil fuels  

E-print Network

Estimating particulate matter health impact related to the combustion of different fossil fuels generated a web map service that allows to access information on fuel dependent health effects due a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated

Paris-Sud XI, Universit de

310

APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION  

EPA Science Inventory

The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

311

Laboratory characterization of PM emissions from combustion of wildland biomass fuels  

E-print Network

Laboratory characterization of PM emissions from combustion of wildland biomass fuels S. Hosseini,1 burning of southwestern (SW) and southeastern (SE) U.S. fuel types during 77 controlled laboratory burns are presented. The fuels include SW vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub

312

Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery  

E-print Network

Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

Bongartz, Dominik

2014-01-01

313

Solid Fuel Delivery System Developed for Combustion Testing on the International Space Station  

NASA Technical Reports Server (NTRS)

NASA initiated Bioastronautics and Human Research Initiatives in 2001 and 2003, respectively, to enhance the safety and performance of humans in space. The Flow Enclosure Accommodating Novel Investigations in Combustion of Solids (FEANICS) is a multiuser facility being built at the NASA Glenn Research Center to advance these initiatives by studying fire safety and the combustion of solid fuels in the microgravity environment of the International Space Station (ISS). One of the challenges for the FEANICS team was to build a system that allowed for several consecutive combustion tests to be performed with minimal astronaut crew interaction. FEANICS developed a fuel carousel that contains a various number of fuel samples, depending on the fuel width, and introduces them one at a time into a flow tunnel in which the combustion testing takes place. This approach will allow the science team to run the experiments from the ground, while only requiring the crew to change out carousels after several tests have been completed.

Frate, David T.

2004-01-01

314

Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture  

E-print Network

Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

Hong, Jongsup

2009-01-01

315

Fuel combustion exhibiting low NO.sub.x and CO levels  

DOEpatents

Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).

Keller, Jay O. (3534 Brunell Dr., Oakland, CA 94602); Bramlette, T. Tazwell (2105 Canyon Lakes Dr., San Ramon, CA 94583); Barr, Pamela K. (294 Joyce St., Livermore, CA 94550)

1996-01-01

316

The potential for clean energy production using oxy-fuel combustion and integrated pollutant removal  

SciTech Connect

Effective remediation of flue gas produced by an oxy-fuel coal combustion process has been proven at bench scale in the course of cooperative research between USDOEs Albany Research Center (ARC) and Jupiter Oxygen Corporation. All combustion gas pollutants were captured, including CO2 which was compressed to a liquefied state suitable for sequestration. Current laboratory-scale research and the future of combined oxy-fuel/IPR systems are discussed.

Ochs, Thomas L.; Oryshchyn, Danylo B.; Weber, Thomas (Jupiter Oxygen Corporation, Schiller Park, IL 60176).; Summers, Cathy A.

2005-05-01

317

Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels  

Microsoft Academic Search

A method for both combustion irreversibility and working medium availability computations in a high-speed, naturally-aspirated, four-stroke, internal combustion engine cylinder is presented. The results of the second-law analysis of engine operation with n-dodecane (n-C12H26) fuel are compared with the results of a similar analysis for cases where a light, gaseous (CH4) and an oxygenated (CH3OH) fuel is used. The rate

C. D Rakopoulos; D. C Kyritsis

2001-01-01

318

A cycle simulation of coal particle fueled reciprocating internal-combustion engines  

E-print Network

A CYCLE SIMULATION OF COAL PARTICLE FUELED RECIPROCATING INTERNAL-COMBUSTION ENGINES A Thesis by KENNETH HAROLD ROSEGAY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1982 Major Subject: Mechanical Engineering A CYCLE SIMULATION OF COAL PARTICLE FUELED RECIPROCATING INTERNAL-COMBUSTION ENGINES A Thesis by KENNETH HAROLD ROSEGAY Approved as to style and content by; J. A. Caton...

Rosegay, Kenneth Harold

1982-01-01

319

Detailed chemical kinetic models for the combustion of hydrocarbon fuels  

Microsoft Academic Search

The status of detailed chemical kinetic models for the intermediate to high-temperature oxidation, ignition, combustion of hydrocarbons is reviewed in conjunction with the experiments that validate them.All classes of hydrocarbons are covered including linear and cyclic alkanes, alkenes, alkynes as well as aromatics.

John M. Simmie

2003-01-01

320

Fuel regenerated non-polluting internal combustion engine  

Microsoft Academic Search

The design is given of an internal combustion engine consisting of: (1) an engine block; (2) an exhaust pipe extending from the block; (3) a closed system for a working fluid including a pump for circulating the working fluid through the system, a turbine which is operated by the working fluid when in a gaseous state and a condenser for

1974-01-01

321

Internal combustion engines fueled by natural gashydrogen mixtures  

Microsoft Academic Search

In this study, a survey of research papers on utilization of natural gashydrogen mixtures in internal combustion engines is carried out. In general, HC, CO2, and CO emissions decrease with increasing H2, but NOx emissions generally increase. If a catalytic converter is used, NOx emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards

S. Orhan Akansu; Zafer Dulger; Nafiz Kahraman; T. Nejat Veziro?lu

2004-01-01

322

Propagation of a pulsating reaction front in solid fuel combustion  

Microsoft Academic Search

We consider a system of reaction diffusion equations which describe gasless combustion of condensed systems. To analytically describe recent experimental results, we show that a solution exhibiting a periodically pulsating, propagating reaction front arises as a Hopf bifurication from a solution describing a uniformly propagating front. The bifurcation parameter is the product of a nondimensional activation energy and a factor

B. J. Matkowsky; G. I. Sivashinsky

1978-01-01

323

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01

324

Synthetic fuel aromaticity and staged combustion. First quarterly technical progress report, September 23-December 31, 1980  

SciTech Connect

Synthetic liquid fuels, otherwise referred to as synfuels or coal-derived liquids, are probably best characterized from a combustion-environmental point of view as low in hydrogen, low in sulfur, high in nitrogen, and high in aromatics. As a consequence two of the more critical problems in synfuel combustion are NO/sub x/ formation and soot formation (and polycyclic organic matter). This program is directed to these two issues. At first hand the solutions to burning synfuels high in aromatics and fuel-bound nitrogen are diametrically opposed, i.e., high temperature and excess air keep soot levels down, low temperatures and vitiated air keep nitrogen oxide levels down. Staged combustion however offers a logical solution to the above. This program separates and analyzes the synfuel combustion problem via its component parts and then puts them together again phenomenologically via the stage combustion process.

Levy, Arthur; Longanbach, James R.; Chan, Lisa K.

1981-01-28

325

Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.  

SciTech Connect

Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

1990-04-01

326

Compression ignition engine having fuel system for non-sooting combustion and method  

SciTech Connect

A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

Bazyn, Timothy; Gehrke, Christopher

2014-10-28

327

Aviation turbine fuel properties and their trends  

NASA Technical Reports Server (NTRS)

Fuel property values and their trends were studied through a review of a recognized, wide ranging sample population from actual fuel inspection data. A total of 676 fuel samples of Jet A aviation turbine fuel were compiled over an eleven year period. Results indicate that most fuel samples have one to three near-specification properties, the most common being aromatics, smoke point, and freezing point.

Friedman, R.

1981-01-01

328

MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING  

EPA Science Inventory

The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

329

Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels  

Microsoft Academic Search

The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and

W J Pitz; H J Curran; E Fisher; P A Glaude; N M Marinov; C K Westbrook

1999-01-01

330

ORGANIC COMBUSTION FINGERPRINTS OF THREE COMMON HOME HEATING FUELS  

EPA Science Inventory

The paper discusses the chemical structures of three common home eating fuels: wood, coal, and No. 2 fuel oil. GC and GC/MS data are then presented which demonstrate how the thermal destruction of each fuel results in the production of a characteristic group of organic "fingerpri...

331

Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels  

SciTech Connect

A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m[sup 3] internal volume, air exchange rate 14 h[sup [minus]1] was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO[sub 2], and NO[sub x]. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L. (Oak Ridge National Lab., TN (United States)); DePriest, J.C.; Wade, J. (Midwest Technical, Inc., Oak Ridge, TN (United States)); Ahmad, N.; Sibtain, F.; Zahid Raza, M. (Pakistan Council of Scientific and Industrial Research Labs., Karachi (Pakistan))

1992-10-01

332

Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels  

SciTech Connect

A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m{sup 3} internal volume, air exchange rate 14 h{sup {minus}1} was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO{sub 2}, and NO{sub x}. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L. [Oak Ridge National Lab., TN (United States); DePriest, J.C.; Wade, J. [Midwest Technical, Inc., Oak Ridge, TN (United States); Ahmad, N.; Sibtain, F.; Zahid Raza, M. [Pakistan Council of Scientific and Industrial Research Labs., Karachi (Pakistan)

1992-10-01

333

Internal combustion engines for alcohol motor fuels: a compilation of background technical information  

SciTech Connect

This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

Blaser, Richard

1980-11-01

334

HCCI combustion characteristics during operation on DME and methane fuels  

Microsoft Academic Search

The Homogeneous Charge Compression Ignition (HCCI) engine has attracted much interest because it can simultaneously achieve\\u000a high efficiency and low emissions. However, the ignition timing is difficult to control because this engine has no physical\\u000a ignition mechanism. In addition, combustion proceeds very rapidly because the premixed mixture ignites simultaneously at multiple\\u000a locations in the cylinder, making it difficult to increase

Y. Tsutsumi; A. Iijima; K. Yoshida; H. Shoji; J. T. Lee

2009-01-01

335

Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines  

SciTech Connect

Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????¢????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????¢????????????????relative combustion phasing???????¢???????????????). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????° to 60???????????????°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

Srinivasan, K. K.; Krishnan, S. R.

2012-05-09

336

Study Into Combustion of Sewage Sludge as Energetic Fuel / Badania Spalania OSADW ?CIEKOWYCH Jako Paliwa Energetycznego  

NASA Astrophysics Data System (ADS)

Along with the development of civilisation, it can be observed that the amount of waste of different type is growing and the preparation process for further usage of the waste or the utilization process differs. What is to be focused on is municipal sewage sludge which, due to its energetic properties, constitutes a valuable fuel. The problem of usage of municipal sewage sludge remains still unsolved, which stems both from the increasing amount of such waste, and from the lack of properly adjusted systems for thermal processing thereof. What is of an additional obstacle are the increasingly stricter legal regulations regarding disposal of sewage sludge after the year 2013; hence, it is necessary to consider various benefits resulting from thermal processing of such waste. This work presents an overview of methods of disposal of sewage sludge, taking into consideration, in particular, thermal methods including the process of combustion and co-combustion as a means of successful utilization. The research section of the work presents the results of study into the mechanism and kinetics of combustion of sewage sludge in various conditions of the process carried out in air flow. Combustion of sewage sludge has been compared against combustion of coal and biomass. Wraz z rozwojem cywilizacji zaobserwowa? mo?na post?puj?ce powstawanie r?nego rodzaju odpadw r?ni?cych si?, m.in. sposobem przygotowania do dalszego wykorzystania, czy procesem utylizacji. Na szczegln? uwag? zas?uguj? komunalne osady ?ciekowe, ktre z uwagi na w?a?ciwo?ci energetyczne stanowi? cenne paliwo. Problem wykorzystania komunalnych osadw ?ciekowych jest nadal otwarty, a wynika to zarwno z rosn?cej produkcji tych odpadw, jak i braku odpowiednio przystosowanych instalacji do termicznego ich przekszta?cania. Dodatkowym utrudnieniem s? zaostrzaj?ce si? przepisy prawne dotycz?ce sk?adowania osadw ?ciekowych po 2013 r. sk?aniaj?ce tym samym do rozwa?a? nad korzy?ciami p?yn?cymi z termicznej obrbki tych odpadw. W pracy przedstawiono przegl?d sposobw unieszkodliwiania osadw ?ciekowych ze szczeglnym uwzgl?dnieniem metod termicznych, g?wnie spalania i wsp?spalania jako drogi do ich sukcesywnej utylizacji. W cz??ci badawczej pracy zaprezentowano wyniki bada? mechanizmu i kinetyki spalania osadw ?ciekowych w r?nych warunkach procesu prowadzonego w strumieniu powietrza. Spalanie osadw ?ciekowych porwnano ze spalaniem w?gla oraz biomasy.

Kijo-Kleczkowska, Agnieszka; ?roda, Katarzyna; Otwinowski, Henryk

2013-12-01

337

Systematic assessment of combustion characteristics of biofuels and emulsions with water for use as diesel engine fuels  

Microsoft Academic Search

Measurements of the combustion performance of biofuel oils, blends with diesel fuel and emulsions with water have been made, using a variety of experimental techniques. Photographic examination of single droplets demonstrated similar burning rates to diesel fuel. High speed records revealed the explosive combustion of oil-water emulsion droplets. Spray-flame photography showed up the poor combustion efficiency at atmospheric pressure, of

Roy J. Crookes; Fariborz Kiannejad; Marouan A. A. Nazha

1997-01-01

338

1 Characterization of carbonaceous aerosols outflow from India and 2 Arabia: Biomass/biofuel burning and fossil fuel combustion  

E-print Network

/biofuel burning and fossil fuel combustion 3 S. A. Guazzotti,1 D. T. Suess,1,2 K. R. Coffee,1,3 P. K. Quinn,4 T. S with potassium 17 (indicative of combustion sources), and mass concentration of submicrometer non-sea- 18 salt Peninsula, where dominance of fossil fuel combustion is suggested by 30 results from single

Dickerson, Russell R.

339

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-print Network

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines system paradigm are discussed. First a definition of an internal combustion engine is needed

340

Characteristics of soot emitted from combustion of municipal waste fuels  

SciTech Connect

This manuscript reports on particulate emissions (mainly soot) from laboratory combustion of typical municipal waste plastics, such as poly(styrene)(PS), poly(propylene)(PP), poly(methylmethacrylate)(PMMA), and poly(vinyl chloride)(PVC). In this experimental study combustion took place in a laboratory-scale, electrically-heated, drop-tube furnace at a gas temperature of 1,500 K, in air. The bulk (global) equivalence ratio, {phi}, was varied in the range of 0.5--1.5 and the gas residence time in the nearly-isothermal radiation zone of the furnace was {approximately}1 sec. The particle emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. Substantial amounts of soot agglomerates were larger than 10 {micro}m. At this temperature <35% of the soot mass was PM{sub 2.5} (2.5 {micro}m or smaller). Soot yields increased with increasing bulk equivalence ratio in the furnace. The emissions from PE and PP were remarkably similar to each other, but strikingly different than those from PS. These polymers produced very low emissions at {phi} {le} 0.5, but emissions increased drastically with {phi}, and most of the soot was very fine (70--97% of the mass was PM{sub 2.5} depending on {phi}). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk {phi}; 80--95% of the emissions were PM{sub 2.5}. Combustion of PVC yielded relatively low amounts of soot; moreover, only 13--34% of the mass was PM{sub 2.5}. Hence, comparatively, PS produced the highest amounts of fine particulates followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduced the particulate emissions from PE and PP, substantially reduced those from PS, and mildly reduced those from PMMA and PVC.

Levendis, Y.A.; Shemwell, B.E.

2000-07-01

341

The effect of azeotropism on combustion characteristics of blended fuel pool fire.  

PubMed

The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. PMID:24632362

Ding, Yanming; Wang, Changjian; Lu, Shouxiang

2014-04-30

342

Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report  

NASA Technical Reports Server (NTRS)

The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

2011-01-01

343

Combustion development of a BiFuel engine  

Microsoft Academic Search

Environmental improvement and energy issues are increasingly becoming more important as worldwide concerns. Natural gas is\\u000a a good alternative fuel that can help to improve these issues because of its large quantity and clean burning characteristics.\\u000a This paper provides the experimental performance results of a Bi-Fuel engine that uses Compressed Natural Gas as its Primary\\u000a fuel and gasoline as its

O. S. Abianeh; M. Mirsalim; F. Ommi

2009-01-01

344

Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion.  

PubMed

Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EF(RET)s) from 11 crop residues, 27 firewood fuels, and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EF(RET)s varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EF(RET)s for pine (0.34 0.08 mg/kg) and larch (0.29 0.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.081 0.058 mg/kg). However, EF(RET)s for crop residues varied from 0.048 0.008 to 0.37 0.14 mg/kg and were not significantly lower than those for softwood (0.074 0.026 to 0.34 0.08 mg/kg). The EF(RET)s for coal were very high and ranged from 2.2 1.5 (anthracite briquette) to 187 113 mg/kg (raw bituminous chunk). EF(RET) was positively correlated with EFs of coemitted particulate matter (EF(PM)) and phenanthrene (EF(PHE)) for crop residue and coal, but not for wood. In addition, the ratios of EF(PHE)/EF(RET) and EF(PM)/EF(RET) for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment. PMID:22452486

Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Simonich, Staci L Massey

2012-04-17

345

Mixing fuel particles for space combustion research using acoustics  

NASA Astrophysics Data System (ADS)

Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. This paper describes the experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

1988-08-01

346

Mixing fuel particles for space combustion research using acoustics  

NASA Technical Reports Server (NTRS)

Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

1988-01-01

347

Mixing fuel particles for space combustion research using acoustics  

NASA Technical Reports Server (NTRS)

Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

1988-01-01

348

High-density fuel combustion and cooling investigation. [kengine design  

NASA Technical Reports Server (NTRS)

The analysis, design, fabrication and testing of several engine configurations are discussed with respect to the combustion and heat transfer characteristics of LOX/RP-1 at chamber pressures between 6895 and 13790 kPa (1000 and 2000 psia). The different engine configurations discussed include: 8274 kPa and 13790 kPa (1200 psia and 2000 psia) chamber pressure injectors with like doublet and preatomized triplet elements; cooled and uncooled acoustic resonators; and graphite, regeneratively cooled and calorimetric chambers ranging in length from 27.9 to 37.5 cm (11 to 15 in.). A high pressure LOX/RP-1 spark igniter is also evaluated.

Labotz, R. J.; Rousar, D. C.; Valler, H. W.

1980-01-01

349

Parametric examination of the destruction of availability due to combustion for a range of conditions and fuels  

E-print Network

A comprehensive second law analysis of combustion for a range of conditions and fuels was completed. Constant pressure, constant volume and constant temperature combustion processes were examined. The parameters studied were reactant temperature...

Chavannavar, Praveen Shivshankar

2005-11-01

350

ASSESSMENT OF ORGANIC CONTAMINANTS IN EMISSIONS FROM REFUSE-DERIVED FUEL COMBUSTION  

EPA Science Inventory

Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source ...

351

Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency  

NASA Technical Reports Server (NTRS)

A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

Heywood, J. B.; Chigier, N. A.

1975-01-01

352

Fuel injection control device for an internal combustion engine with throttle opening detection means  

Microsoft Academic Search

This patent describes a fuel injection control device for an internal combustion engine having an intake air passage with a throttle valve and a fuel injector arranged therein. The device consists of: a first detecting means for detecting a degree of opening of the throttle valve; a second detecting means for detecting a flow of intake air in the intake

H. Oba; S. Kato

1988-01-01

353

Distinctive features of operation of an internal combustion engine running on hydrogen-containing fuels  

Microsoft Academic Search

Experimental investigations have been carried out on an internal combustion engine with hydrogen added to the hydrocarbon fuel, i.e., gasoline. The possibility of improving the energy and environmental indices in the case of hydrogen feed to the engine's air path has been shown. It has been established that increase in the fraction of hydrogen in the fuel mixture causes the

M. S. Assad; O. G. Penyazkov

2010-01-01

354

Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles  

E-print Network

Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum Aluminum nanoparticles Microexplosion Particle aggregation a b s t r a c t The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size

Qiao, Li

355

Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels  

SciTech Connect

The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R. [CNR, Rome (Italy). Institute of Research for Combustion

2008-12-15

356

EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION WITH PRIMARY REFERENCE FUEL  

Microsoft Academic Search

By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain a primary reference fuel (PRF) with octane rating between 0 and 100. The influences of PRF fuel's octane number on the combustion characteristics, operation range, performance, and emissions characteristics of homogeneous charge compression ignition (HCCI) engine were investigated. The experiments were

MINGFA YAO; BO ZHANG; ZUNQING ZHENG; ZHENG CHEN

2007-01-01

357

Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control  

NASA Technical Reports Server (NTRS)

At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

2012-01-01

358

A new comprehensive reaction mechanism for combustion of hydrocarbon fuels  

Microsoft Academic Search

A detailed chemical kinetic model has been developed that accurately describes pyrolysis, ignition and oxidation of many small hydrocarbon fuels over a wide range of experimental conditions. Fuels include carbon monoxide and hydrogen methane, and other alkane species up to n-butane, ethylene, propene, acetylene, and oxygenated species such as methanol, acetaldehyde, and ethanol. Formation of some larger intermediate and product

E. Ranzi; A. Sogaro; P. Gaffuri; G. Pennati; C. K. Westbrook; W. J. Pitz

1994-01-01

359

Synthetic fuels handbook: properties, process and performance  

SciTech Connect

The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

Speight, J. [University of Utah, UT (United States)

2008-07-01

360

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine  

SciTech Connect

The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

Bunting, Bruce G [ORNL] [ORNL; Eaton, Scott J [ORNL] [ORNL; Crawford, Robert W [Rincon Ranch Consulting] [Rincon Ranch Consulting

2009-01-01

361

Determination of alternative fuels combustion products: Phase 3 report  

SciTech Connect

This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-12-01

362

Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels  

NASA Technical Reports Server (NTRS)

An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

1981-01-01

363

Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels  

NASA Astrophysics Data System (ADS)

An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

1981-10-01

364

Progress on the investigation of coal-water slurry fuel combustion in a medium-speed diesel engine; Part 6: In-cylinder combustion photography studies  

SciTech Connect

In the GE 7FDL single cylinder research diesel engine, in-cylinder high-speed photographic studies were conducted on coal-water slurry (CWS) fuel combustion. Distinct flames of pilot and CWS combustion were noticed. It was proven that the coal fuel burns after piston impingement and secondary atomization. Agglomerated particles will develop when combustion conditions are not favorable. Cylinder pressure data were simultaneously recorded for each film frame. Heat release data can thus be produced for each photo study. Most of the findings of earlier combustion studies on engine performance were confirmed.

Hsu, B.D.; Branyon, D.P. (General Electric Co., Erie, PA (United States). Transportation Systems)

1993-10-01

365

The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report  

SciTech Connect

As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B. [Univ. of Dayton, OH (United States). Research Inst.

1998-05-01

366

Co-combustion of solid recovered fuels in coal-fired power plants.  

PubMed

Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO? allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011. PMID:22143900

Thiel, Stephanie; Thom-Kozmiensky, Karl Joachim

2012-04-01

367

Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels  

NASA Astrophysics Data System (ADS)

The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

Bok, Agnieszka; Guzia?owska-Tic, Joanna; Tic, Wilhelm Jan

2014-12-01

368

An experimental and numerical investigation on hydrogen-hydrocarbon composite fuel combustion  

Microsoft Academic Search

An experimental and numerical study on the combustion characteristics of turbulent diffusion flames of natural gas-hydrogen composite fuel is presented. Three mixtures (90--10%, 80--20% and 65--35% by volume) of natural gas and hydrogen were used. The results are compared with the combustion characteristics of a pure natural gas flame. The following parameters were measured: (i) flame stability (blowout velocity, and

Ahsan Reza Choudhuri

2000-01-01

369

GRH 12-01 Fireside Corrosion in Oxy-fuel Combustion Poster 0108  

SciTech Connect

The goals are to: (1) Achieve 90% CO{sub 2} capture at no more than a 35% increase in levelized cost of electricity of post-combustion capture for new and existing conventional coal-fired power plants; (2) Provide high-temperature corrosion information to aid in materials development and selection for oxy-fuel combustion; and (3) Identify corrosion mechanism and behavior differences between air- and oxy-firing.

G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

2012-05-20

370

Modeling of Waste-to-Energy Combustion with Continuous Variation of the Solid Waste Fuel  

Microsoft Academic Search

A mathematical model of a mass-burn, waste-to-energy combustion chamber has been developed that includes stochastic representation of the variability of the fuel (municipal solid waste, MSW). The drying, pyrolysis, gasification and combustion processes on the moving grate are governed by several factors such as proximate and ultimate analysis, particle size, moisture, heating value, and bulk density, all of which change

MASATO NAKAMURA; HANWEI ZHANG; KARSTEN MILLRATH; NICKOLAS J. THEMELIS

371

Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis  

NASA Technical Reports Server (NTRS)

High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.

Mcdonald, G. H.

1978-01-01

372

Combustion characteristics of intake port injection type hydrogen fueled engine  

Microsoft Academic Search

This paper describes the experimental results on a hydrogen fueled single cylinder engine to study the characteristics of a solenoid-driven intake port injection type hydrogen injection valve. In experiments, the fuel-air equivalence ratio was varied from the lean limit at which stable operation was guaranteed to the rich limit at which flash-back occurred and spark timing was also changed. As

S. J. Lee; H. S. Yi; E. S. Kim

1995-01-01

373

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOEpatents

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W.; Scott, Paul B.

2003-09-02

374

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOEpatents

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01

375

Retene Emission from Residential Solid Fuels in China and Evaluation of Retene as a Unique Marker for Soft Wood Combustion  

PubMed Central

Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EFRET) from 11 crop residues, 27 firewood and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EFRET varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EFRET for pine (0.340.08 mg/kg) and larch (0.290.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.0810.058 mg/kg). However, EFRET for crop residues varied from 0.0480.008 to 0.370.14 mg/kg and were not significantly lower than those for softwood (0.0740.026 to 0.340.08 mg/kg). The EFRET for coal were very high and ranged from 2.21.5 (anthracite briquette) to 187113 mg/kg (raw bituminous chunk). EFRET was positively correlated with EFs of co-emitted particulate matter (EFPM) and phenanthrene (EFPHE) for crop residue and coal, but not for wood. In addition, the ratios of EFPHE/EFRET and EFPM/EFRET for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment. PMID:22452486

Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Massey Simonich, Staci L.

2012-01-01

376

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01

377

Fuel injection system for mixture-compressing internal combustion engines with spark ignition  

SciTech Connect

Problems associated with warm engine starting of spark-ignition internal combustion engines are described. Continuous injection into the intake manifold and fuel injection systems of the type utilizing a measuring element and a deliberately operable power control element connected in series, the measuring element being moved as a function of the air volume through-put so as to displace a fuel valve disposed in a fuel supply line for metering a volume of fuel which is proportional to the air volume and which has a warmup control connected by a control pressure line with the fuel valve and a zero-pressure fuel return line with a fuel tank for enriching the fuel-air mixture during the warmup of the internal combustion engine are avoided according to the present invention by an improvement comprising a bypass line interconnecting the control pressure line of the fuel pressure line in bypassing relationship with respect to the warmup control. A valve is disposed in the bypass line and is controlled so as to open the bypass line when the engine is started in a warmed up condition. According to a preferred embodiment, the operating parameter in response to which the valve is controlled is the temperature of the internal combustion engine.

Ulrich, J.

1981-03-24

378

Determination of alternative fuels combustion products: Phase 1 report  

SciTech Connect

This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-09-01

379

Thermal conductivity and combustion properties of wheat gluten foams.  

PubMed

Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam. PMID:22332837

Blomfeldt, Thomas O J; Nilsson, Fritjof; Holgate, Tim; Xu, Jianxiao; Johansson, Eva; Hedenqvist, Mikael S

2012-03-01

380

Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.  

PubMed

Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems. PMID:23301852

Chen, Luguang; Bhattacharya, Sankar

2013-02-01

381

Development of high temperature air combustion technology in pulverized fossil fuel fired boilers  

SciTech Connect

High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga [Tsinghua University, Beijing (China). Department of Thermal Engineering

2007-07-01

382

Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes.  

PubMed

Based on the physical and chemical properties as well as calorific values of pulp sludge and textile sludge, this study investigates the differences between manufacturability, relationship between extrusion pressure and formability, as well as stability and combustion behaviors of extruded sludge-derived fuel briquettes (ESBB) and cemented sludge-derived fuel blocks (CSBB). The optimum proportion and relevant usage ESBB policies are proposed as well. Experimental results indicate that a large amount of water can be saved during the ESBB manufacturing process. Additionally, energy consumption decreases during the drying process. ESBB also has a more compact structure than that of CSBB, and its mean penetration loading is approximately 18.7 times higher as well. Moreover, the flame temperature of ESBB (624-968C) is significantly higher than that of CSBB (393-517C). Also, the dry bulk density and moisture regain of ESBB is significantly related to the penetration loading. Furthermore, the optimum mix proportion of ESBB is co-determined by the formability of pulp sludge and the calorific values of textile sludge. While considering the specific conditions (including formability, stability and calorific values), the recommended mix proportion for ESBB is PS50TS50. PMID:24913348

Chiou, Ing-Jia; Wu, I-Tsung

2014-10-01

383

The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet  

Microsoft Academic Search

The Global energy system transition from fossil fuel to hydrogen utilization is described. Environmental benefits of the combustion of hydrogen are reported. World carbon emissions from fossil fuel are schematized in connection with the opportunities of using hydrogen. The atomic hydrogen\\/carbon ratio and chemical properties of hydrogen are described. Pollutants of the energy system in our planet and hydrogen production

Magdalena Momirlan; T. N. Veziroglu

2005-01-01

384

FEATURE FOCUS: Fuels & Combustion a new dawn for  

E-print Network

consume a great deal of fuel. Hybrid electric-gasoline vehicles have recently gained the spotlight as one plant of the lion's share of small pickup trucks, sport utility vehicles, and passenger cars. And it can-efficient alternative--the diesel engine--has largely been overlooked as a means of curbing American cars' appetites

385

EMISSIONS ASSESSMENT FOR REFUSE-DERIVED FUEL COMBUSTION  

EPA Science Inventory

The RDF and coal were burned in a small spreader-stoker fired boiler. The parameters that were varied in this program were RDF type and amount of coal burned with the RDF. In two experiments a waste chemical, triethanolamine, was added to the fuel, and its destruction efficiency ...

386

Fuel properties of eleven vegetable oils  

SciTech Connect

Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical composition. 10 refs.

Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Keakin, A.J.

1981-01-01

387

Global mercury emissions from combustion in light of international fuel trading.  

PubMed

The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1 0.1 resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000. PMID:24433051

Chen, Yilin; Wang, Rong; Shen, Huizhong; Li, Wei; Chen, Han; Huang, Ye; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Liu, Junfeng; Li, Bengang; Wang, Xilong; Liu, Wenxin; Coveney, Raymond M; Tao, Shu

2014-02-01

388

Methodology development of a time-resolved in-cylinder fuel oxidation analysis: Homogeneous charge compression ignition combustion study application  

SciTech Connect

A technique was developed and applied to understand the mechanism of fuel oxidation in an internal combustion engine. This methodology determines the fuel and concentrations of various intermediates during the combustion cycle. A time-resolved measurement of a large number of species is the objective of this work and is achieved by the use of a sampling probe developed in-house. A system featuring an electromagnetically actuated sampling valve with internal N{sub 2} dilution was developed for sampling gases coming from the combustion chamber. Combustion species include O{sub 2}, CO{sub 2}, CO, NO{sub x}, fuel components, and hydrocarbons produced due to incomplete combustion of fuel. Combustion gases were collected and analyzed with the objectives of analysis by an automotive exhaust analyzer, separation by gas chromatography, and detection by flame ionization detection and mass spectrometry. The work presented was processed in a homogeneous charge compression ignition combustion mode context. (author)

Nowak, L.; Guibert, P.; Cavadias, S. [Universite de Pierre et Marie Curie, Institut Jean Le Rond D'Alembert CNRS UMR 7190, 2 place de la Gare de Ceinture, 78210 Saint Cyr l'Ecole (France); Dupre, S.; Momique, J.C. [PSA Peugeot Citroen, Centre Technique de Velizy, Route de Gizy, 78943 Velizy-Villacoublay (France)

2008-08-15

389

COMBUSTION RESEARCH ON THE FATE OF FUEL-NITROGEN UNDER CONDITIONS OF PULVERIZED COAL COMBUSTION  

EPA Science Inventory

The report gives results of an experimental investigation of coal pyrolysis and oxidation, and char oxidation to determine the effects of temperature and fuel/oxygen equivalence ratio on the conversion of coal-nitrogen to NOx. Experiments involved a laboratory laminar flow furnac...

390

Hydrocarbon-fuel/copper combustion chamber liner compatibility, corrosion prevention, and refurbishment  

NASA Technical Reports Server (NTRS)

An evaluation is made of combustion product/combustion chamber compatibility in the case of a LOX/liquid hydrocarbon booster engine based on copper-alloy thrust chamber which is regeneratively cooled by the fuel. It is found that sulfur impurities in the fuel are the primary causes of copper corrosion, through formation of Cu2S; sulfur levels as low as 1 ppm can result in sufficiently severe copper corrosion to degrade cooling channel performance. This corrosion can be completely eliminated, however, through the incorporation of an electrodeposited gold coating on the copper cooling-channel walls.

Rosenberg, S. D.; Gage, M. L.; Homer, G. D.; Franklin, J. E.

1991-01-01

391

Effect of degree of fuel vaporization upon emissions for a premixed prevaporized combustion system  

NASA Technical Reports Server (NTRS)

An experimental and analytical study of the combustion of partially vaporized fuel/air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected showed near-linear increases in NOx emmissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on NOx emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

Cooper, L. P.

1979-01-01

392

Combustion of hydrogen in a two-dimensional duct with step fuel injectors  

NASA Technical Reports Server (NTRS)

An investigation of the combustion of hydrogen perpendicularly injected from step fuel injectors into a Mach 2.72, 2100 K vitiated test gas was conducted. The model simulated the flow between the center and side struts of an integrated scramjet module at Mach 7 flight and an altitude of 29 km. Parametric variation included equivalence ratio, fuel dynamic pressure ratio, and area distribution of the model. The overall area ratio of the model was held constant at 2.87. The data analysis indicated that no measurable improvement in mixing or combustion efficiency was obtained by varying the fuel dynamic pressure ratio from 0.79 to 2.45. Computations indicated approximately 80 percent of the fuel was mixed so that it could react; however, only approximately 50 percent of the mixed fuel actually reacted in two test configurations, and 74 percent in later tests where less area expansion of the flow occurred.

Eggers, J. M.; Reagon, P. G.; Gooderum, P. B.

1978-01-01

393

Municipal waste combustion assessment: Fossil fuel co-firing. Final report, October 1988-July 1989  

SciTech Connect

The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; and describes the population of coal fired boilers that currently co-fire RDF, have previously co-fired RDF but have ceased to do so, and have been used in RDF co-firing demonstrations. (Fossil fuel co-firing, defined as the combustion of RDF with another fuel (usually coal) in a device designed primarily to burn the other fuel, is generally confined to commercial and utility boilers.) Model plants are developed and good combustion practices are recommended.

Landrum, V.J.; Barton, R.G.

1989-07-01

394

Combustion characteristics of hydrogenhydrocarbon hybrid fuels  

Microsoft Academic Search

A comparative study of the flame structure and characteristics of diffusion flames of the mixture of hydrogenhydrocarbon (natural gas and propane) hybrid fuel in a slow co-flowing stream of air is presented. The volumetric content of natural gas and propane in the mixture was varied from 035%. The burner exit Reynolds number was varied from 1503000. Measurements include flame length,

Ahsan R Choudhuri; S. R Gollahalli

2000-01-01

395

FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS  

NASA Technical Reports Server (NTRS)

The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

Frate, David T.; Tofil, Todd A.

2001-01-01

396

Graphite fuels combustion off-gas treatment options  

SciTech Connect

Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual {sup 129}I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the {sup 3}, {sup 14}C, {sup 85}Kr, and {sup 129}I in the total fuel mass if 0.43 mrem/year.

Kirkham, R.J.; Lords, R.E.

1993-03-01

397

Combined catalysts for the combustion of fuel in gas turbines  

DOEpatents

A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

Anoshkina, Elvira V.; Laster, Walter R.

2012-11-13

398

Deposition and material response from Mach 0.3 burner rig combustion of SRC 2 fuels  

NASA Technical Reports Server (NTRS)

Collectors at 1173K (900 C) were exposed to the combustion products of a Mach 0.3 burner rig fueled with various industrial turbine liquid fuels from solvent refined coals. Four fuels were employed: a naphtha, a light oil, a wash solvent and a mid-heavy distillate blend. The response of four superalloys (IN-100, U 700, IN 792 and M-509) to exposure to the combustion gases from the SRC-2 naphtha and resultant deposits was also determined. The SRC-2 fuel analysis and insights obtained during the combustion experience are discussed. Particular problems encountered were fuel instability and reactions of the fuel with hardware components. The major metallic elements which contributed to the deposits were copper, iron, chromium, calcium, aluminum, nickel, silicon, titanium, zinc, and sodium. The deposits were found to be mainly metal oxides. An equilibrium thermodynamic analysis was employed to predict the chemical composition of the deposits. The agreement between the predicted and observed compounds was excellent. No hot corrosion was observed. This was expected because the deposits contained very little sodium or potassium and consisted mainly of the unreactive oxides. However, the amounts of deposits formed indicated that fouling is a potential problem with the use of these fuels.

Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.; Johnson, J. R.

1980-01-01

399

Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.  

PubMed

In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine. PMID:12659230

Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

2003-01-01

400

Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed  

SciTech Connect

Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem [Umeaa University, Umeaa (Sweden). Energy Technology and Thermal Process Chemistry

2005-12-01

401

Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion  

NASA Technical Reports Server (NTRS)

Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

Shaw, Benjamin D.

2004-01-01

402

Combustion  

NSDL National Science Digital Library

In this chemistry activity, learners discover that the weight of the product of combustion is greater than that of the starting material. Learners will compare the weight of steel wool before and after it is heated. Learners are asked to consider why the steel wool weighs more (oxidation) as well as write the balanced chemical equation for the burning of steel. This activity uses an open flame; adult supervision is recommended. The resource includes notes for educators and extension ideas.

2014-01-28

403

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01

404

The history of mercury emissions from fuel combustion in Maritime Canada  

E-print Network

, but also a cumulative burden of the contaminant released throughout much of human history. One exampleThe history of mercury emissions from fuel combustion in Maritime Canada E.M. Sunderlanda, *, G., 1994). Thus, today's popula- tion bears the burden of not only the amount of mercury they have produced

Sunderland, Elsie M.

405

Effect of fuel mixture on moderate and intense low oxygen dilution combustion  

Microsoft Academic Search

The effects of fuel mixture on the establishment of moderate and intense low oxygen dilution (MILD) combustion in a recuperative furnace were investigated. Experimental as well as computational results are presented in this paper. Data from exhaust sampling of NOx and thermocouple measurements of temperature are reported along with results from simultaneous measurement of temperature and OH using Rayleigh scattering

B. B. Dally; E. Riesmeier; N. Peters

2004-01-01

406

PROGRESS IN THE DEVELOPMENT OF A COMBUSTION KINETICS DATABASE FOR LIQUID FUELS  

Microsoft Academic Search

We describe our progress in the development of chemical kinetics databases for liquid fuels. The intention is to create kinetics databases that can be used to simulate all aspects of combustion across a wide range of equivalence ratios. This paper will include some brief comments on existing databases, a summary of current work and a discussion of future directions. Liquid

Wing Tsang

407

Health effects of fossil fuel combustion products: report of a workshop.  

PubMed Central

Judgemental positions are presented on research priorities in regard to the health effects from stationary sources of fossil fuel combustion products. Hopefully, they can provide guidance for efforts to ensure that national energy needs are met with minimum environmental and economic burdens on the public. The major areas include epidemiological studies, controlled biological studies, mutagenesis and carcinogenesis, trace elements, monitoring and analysis. PMID:1227856

Comar, C L; Nelson, N

1975-01-01

408

NATIONAL INVENTORIES FOR AREA SOURCE FUEL COMBUSTION AND GASOLINE MARKETING IN 1999  

EPA Science Inventory

The product will be a set of estimates of county-level 1999 emissions of all relevant air pollutants from gasoline marketing and from the combustion of fuel by "area" sources, i.e., those too small be be required to report their emissions individually....

409

CHARACTERIZATION OF FINE PARTICULATE MATTER PRODUCED BY COMBUSTION OF RESIDUAL FUEL OIL  

EPA Science Inventory

Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than (PM2.5) and greater (PM2.5+) that 2.5 micrometers in diameter. However, ex...

410

Emission and combustion characteristics of different fuel in a HCCI engine  

Microsoft Academic Search

Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA) in a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI engine is a promising concept for future automobile engines and stationary power plants. Two-stage ignition process in a HCCI engine creates advanced ignition and

Wing Commander M. Sekaran; S. Mohanamurugan

2011-01-01

411

Reducing Cyclic Dispersion in Autoignition Combustion by Controlling Fuel Injection Timing  

E-print Network

in [9] using the injection timing whereas valve timings were modified on a per-cycle basis in [10], [11 variables for typical cylinder pressure p(), heat release Q(), and valve lift (dashed). The statesReducing Cyclic Dispersion in Autoignition Combustion by Controlling Fuel Injection Timing Erik

Stefanopoulou, Anna

412

Theoretical Combustion Performance of Several High-Energy Fuels for Ramjet Engines  

NASA Technical Reports Server (NTRS)

An analytical evaluation of the air and fuel specific-impulse characteristics of magnesium, magnesium octene-1 slurries, aluminum, aluminum octene-1 slurries, boron, boron octene-1 slurries, carbon, hydrogen, alpha-methylnaphthalene, diborane, pentaborane, and octene-1 is presented. While chemical equilibrium was assumed in the combustion process, the expansion was assumed to occur at fixed composition.

Tower, Leonard K; Breitwieser, Roland; Gammon, Benson E

1958-01-01

413

Knock prediction for dual fuel engines by using a simplified combustion model.  

PubMed

The present work used a methane-air mixture chemical kinetics scheme consisting of 119 elementary reaction steps and 41 chemical species to develop a simplified combustion model for prediction of the knock in dual fuel engines. Calculated values by the model for natural gas operation showed good agreement with corresponding experimental values over a broad range of operating conditions. PMID:12958720

Fei, Shao-mei; Liu, Zhen-tao; Yan, Zhao-da

2003-01-01

414

CARCINOGENICITY OF HOUSEHOLD SOLID FUEL COMBUSTION AND OF HIGH-TEMPERATURE FRYING  

EPA Science Inventory

In October, 2006, 19 scientists from eight countries met at the International Agency for Research on Cancer (IARC) in Lyon, France, to assess the carcinogenicity of household solid fuel combustion (coal and biomass) and of high-temperature frying. These assessments will be publi...

415

HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER  

EPA Science Inventory

The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

416

QUANTIFYING HAZARDOUS SPECIES IN PARTICULATE MATTER DERIVED FROM FOSSIL-FUEL COMBUSTION  

EPA Science Inventory

An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size- segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used...

417

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-print Network

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Lawrence Berkeley National Laboratory October, 2008 Contract #05-310 "Improving the Carbon Dioxide Emission-310 "Spatial disaggregated estimate of energy-related carbon dioxide for California" #12;Acknowledgments

418

Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion  

Microsoft Academic Search

Microchannel reactor offers opportunities for the development of compact fuel processor for PEMFCs. The design and experimental work concerning a microdevice for the methane steam reforming with hydrogen catalytic combustion is presented herein. We designed novel flow channel on reformer sheets and microholes on combustor sheet to inhibit the hot spot, which takes place in front of the reactor. Experimental

Shin-Kun Ryi; Jong-Soo Park; Seung-Hoon Choi; Sung-Ho Cho; Sung-Hyun Kim

2005-01-01

419

Domestic biomass fuel combustion and chronic bronchitis in two rural Bolivian villages  

Microsoft Academic Search

BACKGROUNDChronic bronchitis is an important public health problem worldwide. A study was undertaken to examine the association between exposure to air pollution from domestic biomass fuel combustion and chronic bronchitis in two rural Bolivian highland villages: a village in which cooking is done exclusively indoors and a village in which cooking is done primarily outdoors. Apart from this difference, the

R Albalak; A R Frisancho; G J Keeler

1999-01-01

420

Rate coefficients of combustion\\/fuel conversion reactions by high-temperature photochemistry  

Microsoft Academic Search

Reliable kinetic data on isolated elementary combustion reactions spanning a broad temperature range are required for modeling and scaling studies aimed at improving the performance of, and reducing the pollutant formation from fossil fuel burning devices. High temperature photochemistry was developed to provide such data. It combines the technology of the high temperature, fast flow reactors developed to study kinetics

W. Felder

1980-01-01

421

Distinctive features of operation of an internal combustion engine running on hydrogen-containing fuels  

Microsoft Academic Search

Experimental investigations have been carried out on an internal combustion engine with hydrogen added to the hydrocarbon\\u000a fuel, i.e., gasoline. The possibility of improving the energy and environmental indices in the case of hydrogen feed to the\\u000a engines air path has been shown. It has been established that increase in the fraction of hydrogen in the fuel mixture causes\\u000a the

M. S. Assad; O. G. Penyazkov

2010-01-01

422

Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage  

Microsoft Academic Search

The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and

Rohan Stanger; Terry Wall

2011-01-01

423

Combustion of coal-water slurry in a two-cycle diesel engine; Effects of fuel amount and timing  

SciTech Connect

This paper reports on coal-water slurry having micronized coal particles with approximately 50 percent coal loading successfully ignited and combusted in one cylinder of a two-cylinder 645 EMD engine by using diesel fuel pilot ignition aid. The effects of three different parameters, namely, pilot timing, pilot amount, and CWS fuel amount, are investigated in detail. The physical trends of combustion under single parametric variations are presented in terms of the cylinder pressure, temperature, heat release rates, and cumulative heat release curves. CWS combustion with less than 5 percent of the energy of combustion coming from pilot fuel is achieved.

Uzkan, T.; Horton, C.E. (General Motors Corp., Locomotive Group, Electro-Motive Div., LaGrange, IL (US))

1990-07-01

424

Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers  

NASA Technical Reports Server (NTRS)

The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners while maintaining the superior CuCrNb properties are also presented.

Zimmerman, Frank

2000-01-01

425

Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.  

PubMed

Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (?) increases, TI, Tf and Rp increase, while Mr decreases. PMID:23890976

Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

2013-09-01

426

Trends of jet fuel demand and properties  

NASA Technical Reports Server (NTRS)

Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

Friedman, R.

1984-01-01

427

Combustion studies of coal-derived solid fuels. Part IV. Correlation of ignition temperatures from thermogravimetry and free-floating experiments  

USGS Publications Warehouse

The usefulness of TG as an efficient and practical method to characterize the combustion properties of fuels used in large-scale combustors is of considerable interest. Relative ignition temperatures of a lignite, an anthracite, a bituminous coal and three chars derived from this coal were measured by a free-floating technique. These temperatures were correlated with those estimated from TG burning profiles of the fuels. ?? 1992.

Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

1992-01-01

428

Fuel-air mixing and combustion in a two-dimensional Wankel engine  

NASA Technical Reports Server (NTRS)

A two-equation turbulence model, an algebraic grid generalization method, and an approximate factorization time-linearized numerical technique are used to study the effects of mixture stratification at the intake port and gaseous fuel injection on the flow field and fuel-air mixing in a two-dimensional rotary engine model. The fuel distribution in the combustion chamber is found to be a function of the air-fuel mixture fluctuations at the intake port. It is shown that the fuel is advected by the flow field induced by the rotor and is concentrated near the leading apex during the intake stroke, while during compression, the fuel concentration is highest near the trailing apex and is lowest near the rotor. It is also found that the fuel concentration near the trailing apex and rotor is small except at high injection velocities.

Shih, T. I.-P.; Schock, H. J.; Ramos, J. I.

1987-01-01

429

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen\\/Natural Gas Blends  

Microsoft Academic Search

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines,

Kirby S. Chapman; Amar Patil

2007-01-01

430

Modeling the Feasibility of Using Fuel Cells and Hydrogen Internal Combustion Engines in Remote Renewable Energy Systems: Preprint  

Microsoft Academic Search

Recent advances in hydrogen fuel cell and internal combustion engine technologies have enabled new energy options for supplying electrical power in remote, off-grid areas. The objective of this investigation is to determine under which conditions wind turbines and PV systems can feasibly power electrolyzers to generate and store hydrogen for remote power generation using fuel cells and internal combustion engines.

J. Cotrell; W. Pratt

2003-01-01

431

Fuel and physical properties of biodiesel components  

Technology Transfer Automated Retrieval System (TEKTRAN)

Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats or used oils. Specifically, biodiesel is the methyl or other alkyl esters of these oils or fats. Biodiesel also contains minor components such as free fatty acids and acylglycerols. Important fuel properties of biodi...

432

Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels  

SciTech Connect

Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

Koomey, J.

1990-07-01

433

Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions  

NASA Technical Reports Server (NTRS)

The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

Wang, Y.; Gupta, A. K.

2001-01-01

434

Chemical Kinetic Simulation of the Combustion of Bio-based Fuels  

SciTech Connect

Due to environmental and economic issues, there has been an increased interest in the use of alternative fuels. However, before widespread use of biofuels is feasible, the compatibility of these fuels with specific engines needs to be examined. More accurate models of the chemical combustion of alternative fuels in Homogeneous Charge Compression Ignition (HCCI) engines are necessary, and this project evaluates the performance of emissions models and uses the information gathered to study the chemical kinetics involved. The computer simulations for each alternative fuel were executed using the Chemkin chemical kinetics program, and results from the runs were compared with data gathered from an actual engine that was run under similar conditions. A new heat transfer mechanism was added to the existing model's subroutine, and simulations were then conducted using the heat transfer mechanism. Results from the simulation proved to be accurate when compared with the data taken from the actual engine. The addition of heat transfer produced more realistic temperature and pressure data for biodiesel when biodiesel's combustion was simulated in an HCCI engine. The addition of the heat transfer mechanism essentially lowered the peak pressures and peak temperatures during combustion of all fuels simulated in this project.

Ashen, Ms. Refuyat [Oak Ridge High School; Cushman, Ms. Katherine C. [Oak Ridge High School

2007-10-01

435

Water cooled vibrating grate stoker for proven, efficient and reliable combustion of biomass fuels  

SciTech Connect

Bioenergy from waste sources and dedicated crops can provide substantial contributions for energy production. Together, these energy technologies are the wave of the future as they offer a localized, decentralized way of meeting electricity and process steam needs. The biomass industry accounts for about 15% of energy production worldwide, according to the National Wood Energy Association. For developing countries, the percentage is much higher. Currently, many types of combustible solid waste products like bark, wood waste, wood chips, sawdust, municipal and industrial refuse, agricultural wastes such as bagasse, spent coffee, etc.; are profitably utilized as excellent fuel sources. Many of these produce less acid gas than the fossil fuels they replace. Additionally, biomass feed stocks can reduce the quantity of carbon dioxide CO{sub 2} over fossil fuel burning since CO{sub 2} is used in the growth cycle of biomass feed stocks. Water cooled grates, both vibrating and stationary, have been used for many years for the combustion of biomass fuels. Both grates have relatively low maintenance and operating costs, thus making each grate a popular choice for a wide variety of applications. This paper chronicles combustion technologies for biomass fuels and the development of the water cooled grate followed by two case histories. The first case describes the conversion of an existing black liquor recovery boiler to wood firing and the second is the installation of the largest biomass fired Independent Power Producing plant in North America.

Giaier, T.A.

1996-12-31

436

Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb  

NASA Technical Reports Server (NTRS)

Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

Selden, Robert F

1938-01-01

437

Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation  

NASA Technical Reports Server (NTRS)

The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

1981-01-01

438

Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine  

NASA Technical Reports Server (NTRS)

The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

Rothrock, A M; Waldron, C D

1933-01-01

439

Performance and Emissions of LPG Fueled Internal Combustion Engine: A Review  

E-print Network

environmental protection concern, the need to reduce dependency on petroleum and even socioeconomic aspects. The investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on low ering the concentration of toxic components in combustion products. Realizing the gravity of the problem, steps are being taken to introduce better technologies, better fuel quality, shift to environment friendly fuels. Alternative fuels like LPG, CNG, hydrogen etc has emerged as a solution to depleting crude oil resources as well as to the deteriorating urban air quality problem. As a gaseous fuel, gains from LPG have already been established in terms of low emissions of carbon monoxide, hydroc arbon. Air-fuel ratio, operating cylinder pressure ignition timing and compression ratio are some of the parameters that need to be analyzed and optimally exploited for better engine performance and reduced emissions. In the present paper a comprehensive review of various oper ating parameters and concerns have been prepared for better understanding of operating conditions and constrains for a LPG fueled internal combustion engine.

Albela H. Pundkar; S. M. Lawankar; Dr. Sameer Deshmukh

440

Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors  

NASA Astrophysics Data System (ADS)

An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

1994-11-01

441

Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors  

NASA Technical Reports Server (NTRS)

An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

1994-01-01

442

Achieve Continuous Injection of Solid Fuels into Advanced Combustion System Pressures  

SciTech Connect

The overall objective of this project is the development of a mechanical rotary-disk feeder, known as the Stamet Posimetric High Pressure Solids Feeder System, to feed dry granular coal continuously and controllably into pressurized environments of up to 35 kg/cm{sup 2} (500 psi). This was to be accomplished in two phases. The first task was to review materials handling experience in pressurized operations as it related to the target pressures for this project, and review existing coal preparation processes and specifications currently used in advanced combustion systems. Samples of existing fuel materials were obtained and tested to evaluate flow, sealing and friction properties. This provided input data for use in the design of the Stamet Feeders for the project, and ensured that the material specification used met the requirements of advanced combustion & gasification systems. Ultimately, Powder River Basin coal provided by the PSDF facility in Wilsonville, AL was used as the basis for the feeder design and test program. Based on the material property information, a Phase 1 feeder system was designed and built to accomplish feeding the coal to an intermediate pressure up to 21 kg/cm{sup 2} (300 psi) at feed rates of approximately 100 kilograms (220lbs) per hour. The pump & motor system was installed in a custom built test rig comprising an inlet vessel containing an active live-wall hopper mounted in a support frame, transition into the pump inlet, transition from pump outlet and a receiver vessel containing a receiver drum supported on weigh cells. All pressure containment on the rig was rated for the final pressure requirement of 35 kg/cm{sup 2} (500psi). A program of testing and modification was carried out in Stamet's facility in CA, culminating in successful feeding of coal into the Phase 1 target of 21 kg/cm{sup 2} (300psi) gas pressure in December 2003. Further testing was carried out at CQ Inc's facility in PA, providing longer run times and experience of handling and feeding the coal in winter conditions. Based on the data developed through the testing of the Phase I unit, a Phase II system was designed for feeding coal into pressures of up to 35 kg/cm{sup 2} (500 psi). A further program of testing and modification was then carried out in Stamet's facility, with the target pressure being achieved in January 2005. Repeated runs at pressure were achieved, and optimization of the machine resulted in power reductions of 60% from the first successful pressure runs. General design layout of a commercial-scale unit was conducted, and preliminary cost estimates for a commercial unit obtained.

Derek L. Aldred; Timothy Saunders

2005-07-01

443

Investigation of sources, properties and preparation of distillate test fuels  

NASA Technical Reports Server (NTRS)

Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.

Bowden, J. N.; Erwin, J.

1983-01-01

444

Spark ignition combustion engine of the fuel injection type and heating element therefore  

SciTech Connect

This patent describes a spark ignition combustion engine of the fuel injector type. It comprises at least one cylinder, an inlet duct for air, a fuel injector, a cylinder head having a passage leading from the air inlet duct to the cylinder, at least one inlet valve disposed on the cylinder head regulating flow of the air-fuel mixture to the cylinder, and a heating element having a heat sink with at least one tablet of electrical resistance material of positive temperature coefficient of resistivity thereon.

Pickartz, R.

1992-05-26

445

Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel  

Microsoft Academic Search

Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic\\u000a level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified\\u000a single-cylinder direct-injection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional\\u000a diesel fuel operation. The

Yongcheng Huang; Longbao Zhou; Keyu Pan

2007-01-01

446

Fuel injection control system for internal combustion engine with asynchronous fuel injection for fuel supply resumption following temporary fuel cut-off  

SciTech Connect

This patent describes a fuel injection control system for an internal combustion engine comprising: a first sensor producing a first sensor signal representative of the angular position of the crank shaft; a second sensor producing a second sensor signal representative of preselected engine operating parameters; a third sensor detecting whether engine operating conditions satisfy a predetermined fuel cut-off condition and if so, producing a third sensor signal; fourth means for deriving a fuel injection amount on the basis of a value of the second sensor signal and producing a fuel injection control signal having a value indicative of the derived fuel injection amount; fifth means for disabling the fourth means in the presence of the third sensor signal and for resumption operation of the fourth means after the third sensor signal ends, sixth means for deriving fuel injection timing and producing an injection timing control signal, wherein the first sensor signal includes a first pulse train representative of predetermined angular positions of the crank shaft and a second pulse train representative of predetermined units of rotation of the crank shaft. The sixth means counts the pulses of the first and second pulse trains, produces the injection timing signal when the first pulses and second pulses reach given values and presets the first and second counter values to the first and second value in response to the third sensor signal.

Mori, Y.

1987-09-22

447

Recent trends in aviation turbine fuel properties  

NASA Technical Reports Server (NTRS)

Plots and tables, compiled from Department of Energy (and predecessor agency) inspection reports from 1969 to 1980, present ranges, averages, extremes, and trends for most of the 22 properties of Jet A aviation turbine fuel. In recent years, average values of aromatics content, mercaptan sulfur content, distillation temperature of 10 percent recovered, smoke point, and freezing point show small but recognizable trends toward their specification limits. About 80 percent of the fuel samples had at least one property near specification, defined as within a standard band about the specification limit. By far the most common near-specification properties were aromatics content, smoke point, and freezing point.

Friedman, R.

1982-01-01

448

Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel  

SciTech Connect

Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C, all reaction reactivities were improved, especially the CO{sub 2} gasification reactivity of char. Thus, the reduction of CuO by the gasification product CO could proceed quickly. Based on the results obtained, the following coal characteristics would be desirable for the Chemical Looping Combustion process: high volatile matter with a high reactivity of the char produced. PRB coal meets these criteria while being comparatively less expensive and also very abundant. The high moisture content present in PRB coal might also increase the reactivity for char gasification through the development of pore structure and specific surface area in the char during pyrolysis. Biomass materials are also suitable, considering the reaction mechanism of CLC system of solid fuels. The feasibility of the chemical looping combustion process of solid fuels was verified by focusing on PRB coal and biomass. Based on PRB coal as the preferred solid fuel in the development of the CLC system, the mass, energy and system in a dual reactor recirculation system has been determined. In the Cu oxidation tests, it was confirmed that the heating rate is the most important effect on the Cu oxidation process. Lower heating rates and lower operational temperatures would result in incomplete conversion of Cu to CuO. Cu{sub 2}O may be the intermediate product. The operating temperature did not affect the reaction rate of the oxidation process. Under any operating conditions, the exothermic properties are clearly shown.

Dr. Wei-Ping Pan; Dr. John T. Riley

2005-10-10

449

Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.  

PubMed

We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene. PMID:22534092

Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

2012-06-01

450

Effect of broad properties fuel on injector performance in a reverse flow combustor  

NASA Technical Reports Server (NTRS)

The effect of fuel type on the performance of various fuel injectors was investigated in a reverse flow combustor. Combustor performance and emissions are documented for simplex pressure atomizing, spill flow, and airblast fuel injectors using a broad properties fuel and compared with performance using Jet A fuel. Test conditions simulated a range of flight conditions including sea level take off, low and high altitude cruise, as well as a parametric evaluation of the effect of increased combustor loading. The baseline simplex injector produced higher emission levels with corresponding