Sample records for full scale pipe

  1. Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test

    NASA Astrophysics Data System (ADS)

    Ivankovic, A.; Muzaferija, S.; Demirdzic, I.

    1997-07-01

    Rapid Crack Propagation (RCP) along pressurised plastic pipes is by far the most dangerous pipe failure mode. Despite the economic benefits offered by increasing pipe size and operating pressure, both strategies increase the risk and the potential consequences of RCP. It is therefore extremely important to account for RCP in establishing the safe operational conditions. Combined experimental-numerical study is the only reliable approach of addressing the problem, and extensive research is undertaken by various fracture groups (e.g. Southwest Research Institute - USA, Imperial College - UK). This paper presents numerical results from finite volume modelling of full-scale test on medium density polyethylene gas pressurised pipes. The crack speed and pressure profile are prescribed in the analysis. Both steady-state and transient RCPs are considered, and the comparison between the two shown. The steady-state results are efficiently achieved employing a full multigrid acceleration technique, where sets of progressively finer grids are used in V-cycles. Also, the effect of inelastic behaviour of polyethylene on RCP results is demonstrated.

  2. Laser propagation through full-scale, high-gain MagLIF gas pipes using the NIF

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Sefkow, Adam; Goyon, Clement; Strozzi, David; Khan, Shahab; Rosen, Mordy; Campbell, Mike; Logan, Grant; Peterson, Kyle; Moody, John

    2016-10-01

    The first relevant measurements of laser propagation through surrogate high-gain MagLIF gas pipe targets at full scale have been performed at the NIF, using 30 kJ of laser drive from one quad in a 10 ns pulse at an intensity of 2e14 W/cm2. The unmagnetized pipe is filled with 1 atm of 99%/1% neopentane/Ar, and uses an entrance window of 0.75 um polyimide and an exit window of 0.3 um of Ta backed with 5 um of polyimide. Side-on x-ray emission from the plasma is imaged through the 100 um-thick epoxy wall onto a framing camera at four times during the drive, and is in excellent agreement with pre-shot HYDRA radiation-hydrodynamics modeling. X-ray emission from the Ta exit plane is imaged onto a streak camera to determine the timing and intensity of the laser burning through the pipe, and the Ar emission from the center of the pipe is spectrally- and temporally-resolved to determine the plasma electron temperature. Backscatter is measured throughout the laser drive, and is found to be of significance only when the laser reaches the Ta exit plane and produces SBS. These first results in unmagnetized surrogate gas fills are encouraging since they demonstrate sufficient laser energy absorption and low LPI losses within high-density long-scale-length plasmas for proposed high-gain MagLIF target designs. We will discuss plans to magnetize targets filled with high-density DT gas in future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  3. Asymptotic scalings of developing curved pipe flow

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  4. Comparison of corrosion scales in full and partially replaced ...

    EPA Pesticide Factsheets

    Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the background zones. Hydrocerussite and litharge are found both in field and pilot rigs. However, plumbonacrite, massicot, scrutinyite and plattnerite are only present in pipes harvested directly from the field. Laurionite, leadhillite, cerussite and calcite are found in rigs from the pilot. Cerussite is mostly present in the galvanic zones, close to the connection to the Cu pipe. Different types of scales are present in the rigs from the pilot and from the field, suggesting that differences in the formation in the scales and therefore differences in lead release from the pipes. The particulate Pb fraction in water samples is more important in samples from the pilot than from the field, median concentrations are 85X higher in partial LSL and 10X higher in full LSL in the pilot. Lead phosphates are present in the scales from the rigs treated with orthophosphate. Complete results will be obtained by the end of July 2016. The main objective is to compare scales from full and partial LSLs harvested from the field and from a pilot setup fed with water from the same distribution system and subjected to water quality changes.

  5. Elimination of Acid Cleaning of High Temperature Salt Water Heat Exchangers: Redesigned Pre-Production Full-Scale Heat Pipe Bleed Air Cooler for Shipboard Evaluation

    DTIC Science & Technology

    2011-11-01

    Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe

  6. From lab to full-scale ultrafiltration in microalgae harvesting

    NASA Astrophysics Data System (ADS)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  7. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.

    PubMed

    Zhang, Zhe; Stout, Janet E; Yu, Victor L; Vidic, Radisav

    2008-01-01

    Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.

  8. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    EPA Science Inventory

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  9. Turbulence scalings in pipe flows exhibiting polymer-induced drag reduction

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Markides, Christos

    2014-11-01

    Non-intrusive laser based diagnostics technique, namely Particle Image Velocimetry, was used to in detail characterise polymer induced drag reduction in a turbulent pipe flow. The effect of polymer additives was investigated in a pneumatically-driven flow facility featuring a horizontal pipe test section of inner diameter 25.3 mm and length 8 m. Three high molecular weight polymers (2, 4 and 8 MDa) at concentrations of 5 - 250 wppm were used at Reynolds numbers from 35000 to 210000. The PIV derived results show that the level of drag reduction scales with different normalised turbulence parameters, e.g. streamwise and spanwise velocity fluctuations, vorticity or Reynolds stresses. These scalings are dependent of the distance from the wall, however, are independent of the Reynolds numbers range investigated.

  10. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE (L TO R) LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  12. Full Scale Drinking Water System Decontamination at the Water Security Test Bed.

    PubMed

    Szabo, Jeffrey; Hall, John; Reese, Steve; Goodrich, Jim; Panguluri, Sri; Meiners, Greg; Ernst, Hiba

    2018-03-20

    The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.

  13. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  14. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    PubMed

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Flow and evaporation in single micrometer and nanometer scale pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipemore » in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.« less

  16. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  17. 78 FR 12784 - Welded Large Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Welded Large Diameter Line Pipe From Japan AGENCY: United States International Trade Commission... revocation of the antidumping duty order on welded large diameter line pipe from Japan would be likely to...

  18. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.

    PubMed

    Yang, Fan; Shi, Baoyou; Bai, Yaohui; Sun, Huifang; Lytle, Darren A; Wang, Dongsheng

    2014-08-01

    The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB

  19. CaSO4 Scale Formation on Vibrated Piping System in the Presence Citric Acid

    NASA Astrophysics Data System (ADS)

    Mangestiyono, W.; Jamari, J.; Muryanto, S.; Bayuseno, A. P.

    2018-02-01

    Vibration in many industries commonly generated by the operation mechanical equipment such as extruder, mixer, blower, compressor, turbine, generator etc. Vibration propagates into the floor and attacks the pipe around those mechanical equipment. In this paper, the influence of vibration in a pipe on the CaSO4 scale formation was investigated to understand the effect of vibration on the kinetics, mass of scale, crystal phases and crystal polymorph. To generate vibration force, mechanical equipment was prepared consisted of electrical motor, crankshaft, connecting rod and a vibration table at where test pipe section mounted. Deposition rate increased significantly when the vibration affected to the system i.e. 0.5997 and 1.6705 gr/hr for vibration frequency 4.00 and 8.00 Hz. The addition 10.00 ppm of citric acid declined the deposition rate of 8 Hz experiment from 3.4599 gr/hr to 2.2865 gr/hr.

  20. 50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' = 1'; August 26, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  1. 78 FR 74161 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... Turkey AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The Commission... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...

  2. Experience with the design and start up of two full-scale UASB plants in Brazil: enhancements and drawbacks.

    PubMed

    Chernicharo, C A L; Almeida, P G S; Lobato, L C S; Couto, T C; Borges, J M; Lacerda, Y S

    2009-01-01

    This paper discusses the main drawbacks and enhancements experienced with the design and start up of two full-scale UASB plants in Brazil. The topics addressed are related to blockage of inlet pipes, scum accumulation, seed sludge for the start-up, corrosion and gas leakage, odour generation and sludge management. The paper describes the main improvements achieved.

  3. Heat pipes for wing leading edges of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.

    1990-01-01

    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.

  4. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  5. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  6. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Robert; Halkyard, John; Johnson, Peter

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to finalmore » design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.« less

  7. Procedure improves line pipe Charpy test interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenfeld, M.J.

    1997-04-14

    The Charpy V-notch (CVN) impact test is a method of characterizing a line-pipe material`s notch toughness and resistance to fracture growth. Although CVN testing of line pipe material is routine, test results are sometimes misinterpreted because of specimen size and load rate on actual toughness transition behavior. These effects are readily accounted for by a simple mathematical procedure, offered here, which enables extrapolation of the full-scale transition curve from as little as a single subsize specimen test. This procedure is useful when the toughness transition curve is incomplete or nonexistent. Toughness data may be incomplete because the API 5L toughnessmore » test establishes minimum performance at a single temperature, which does not reveal the full transition curve. Toughness data may be nonexistent because the first requirements for toughness testing of line pipe appeared in the 16th Edition of API 5LX in 1969, and those requirements remain at the option of the purchaser today.« less

  8. Enhanced heat transfer with full circumferential ribs in helical pipe

    NASA Astrophysics Data System (ADS)

    Chang, S. W.; Su, L. M.; Yang, T. L.

    2002-08-01

    This paper describes an experimental study of heat transfers in the smooth-walled and rib-roughened helical pipes with reference to the design of enhanced cooling passages in the cylinder head and liner of a marine propulsive diesel engine. The manner in which the repeated ribs modify the forced heat convection in the helical pipe is considered for the case where the flow is turbulent upon entering the coil but laminar in further downstream. A selection of experimental results illustrates the individual and interactive effects of Dean vortices and rib-flows on heat transfer along the inner and outer helixes of coils. The experimental-based observations reveal that the centrifugal force modifies the heat transfer in a manner to generate circumferential heat transfer variation with better cooling performance on the outer edge relative to its inner counterpart even with the agitated flow field caused by the repeated ribs. Heat transfer augmentation factor in the range of 1.3 - 3 times of the smooth-walled level is achieved using the present ribbing geometry. A set of empirical correlations based on the experimental data has been developed to permit the evaluation of heat transfers along the inner and outer helixes of the smooth-walled and rib-roughened helical pipes.

  9. Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE

    PubMed Central

    Fiorini, T.; Bellani, G.; Talamelli, A.

    2017-01-01

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend–Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend–Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167586

  10. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    PubMed

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  11. Dynamic model including piping acoustics of a centrifugal compression system

    NASA Astrophysics Data System (ADS)

    van Helvoirt, Jan; de Jager, Bram

    2007-04-01

    This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.

  12. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  13. CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM

    EPA Science Inventory

    Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

  14. Comparison of corrosion scales in full and partially replaced lead service lines after changes in water quality

    EPA Science Inventory

    Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the back...

  15. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  16. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    NASA Astrophysics Data System (ADS)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  17. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    PubMed Central

    Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting. PMID:29551957

  18. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology.

    PubMed

    Chen, Fengchen; Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  19. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  20. Boomwhackers and End-Pipe Corrections

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2014-02-01

    End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.

  1. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Brust, F.; Ghadiali, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessingmore » temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.« less

  2. Importance of Pipe Deposits to Lead and Copper Rule Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, Michael R.; Cantor, Abigail F.; Triantafyllidou, Simoni

    When Madison, Wis., exceeded the lead action level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a lead solubility mechanism. Scale analyses (color and texture as well as mineralogical and elemental composition) of five excavated lead service lines (LSLs) revealed that accumulation of manganese (and iron) onto pipe walls had implications for lead corrosion by providing a high-capacity sink for lead. Manganese that accumulated from source well water onto pipe scales (up to 10% by weight of scale composition) served to capture and eventually transport lead to consumer taps. In addition,more » manganese sometimes obstructed the predominance of an insoluble (and thus potentially protective) plattnerite [Pb(IV) solid] scale layer. Full LSL replacement in Madison achieved Lead and Copper Rule compliance and a major reduction in lead contamination and exposure, supplemented by unidirectional flushing of water mains and manganese control in the source well water.« less

  3. Canonical Nonlinear Viscous Core Solution in pipe and elliptical geometry

    NASA Astrophysics Data System (ADS)

    Ozcakir, Ozge

    2016-11-01

    In an earlier paper (Ozcakir et al. (2016)), two new nonlinear traveling wave solutions were found with collapsing structure towards the center of the pipe as Reynolds number R -> ∞ , which were called Nonlinear Viscous Core (NVC) states. Asymptotic scaling arguments suggested that the NVC state collapse rate scales as R - 1 / 4 where axial, radial and azimuthal velocity perturbations from Hagen-Poiseuille flow scale as R - 1 / 2, R - 3 / 4 and R - 3 / 4 respectively, while (1 - c) = O (R - 1 / 2) where c is the traveling wave speed. The theoretical scaling results were roughly consistent with full Navier-Stokes numerical computations in the range 105 < R <106 . In the present paper, through numerical solutions, we show that the scaled parameter free canonical differential equations derived in Ozcakir et al. (2016) indeed has solution that satisfies requisite far-field conditions. We also show that these are in good agreement with full Navier-Stokes calculations in a larger R range than previously calculated (R upto 106). Further, we extend our study to NVC states for pipes with elliptical cross-section and identify similar canonical structure in these cases. National Science Foundation NSF-DMS-1515755, EPSRC Grant EP/1037948/1.

  4. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  5. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  6. Why Online Education Will Attain Full Scale

    ERIC Educational Resources Information Center

    Sener, John

    2010-01-01

    Online higher education has attained scale and is poised to take the next step in its growth. Although significant obstacles to a full scale adoption of online education remain, we will see full scale adoption of online higher education within the next five to ten years. Practically all higher education students will experience online education in…

  7. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  8. Full scale tank car coupler impact tests

    DOT National Transportation Integrated Search

    2003-11-15

    Full scale tests were performed to investigate various : aspects of tank car behavior during coupler impacts. A tank car : was equipped with 37 accelerometers and an instrumented : coupler. Two series of full scale coupler impact tests, : comprising ...

  9. CaSO4 Scale Inhibition by a Trace Amount of Zinc Ion in Piping System

    NASA Astrophysics Data System (ADS)

    Mangestiyono, W.; Sutrisno

    2017-05-01

    Usually, a small steam generator is not complemented by equipment such as demineralization and chlorination process apparatus since the economic aspect was a precedence. Such phenomenon was uncovered in a case study of green tea industrial process in which the boiler capacity was not more than 1 ton/hour. The operation of the small boiler affected the scaling process in its piping system. In a year operation, there was already a large scale of calcium attached to the inner surface of the pipe. Such large scale formed a layer and decreased the overall heat transfer coefficient, prolonged the process time and decreased the production. The aim of the current research was to solve the problem through a laboratory research to inhibit the CaSO4 scale formation by the addition of trace amounts of zinc ion. This research was conducted through a built in-house experimental rig which consisted of a dosing pump for controlling the flow rate and a thermocouple to control the temperature. Synthesis solution was prepared with 3,500 ppm concentration of CaCl2 and Na2SO4. The concentration of zinc was set at 0.00; 5.00 and 10.00 ppm. The data found were characterized by scanning electron microscopy (SEM) to analyze crystal polymorph as the influence of zinc ion addition. The induction time was also investigated to analyze the nucleation time, and it was found on the 9th, 13th, and 19th minute of the zinc ion addition of 0.00, 5.00 and 10.00 ppm. After running for a four-hour duration, the scale grow-rate was found to be 5.799; 5.501 and 4.950 × 10-3 gr/min for 0.00; 5.00 and 10.00 ppm of zinc addition at 50 °C.

  10. Friction Stir Welding of Line-Pipe Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Samuel; Mahoney, Murray; Feng, Zhili

    Friction stir welding (FSW) offers both economic and technical advantages over conventional fusion welding practices for welding line-pipe. For offshore line-pipe construction, the economic savings has been shown to be considerable, approaching a calculated 25%. Offshore pipe is relatively small diameter but heavy wall compared to onshore pipe. One concern is the ability to achieve consistent full weld penetration in an on-site offshore FSW operation, e.g., on a lay-barge. In addition, depending on the size and morphology of the unwelded zone, lack of penetration at the weld root can be difficult if not impossible to detect by conventional NDE methods.more » Thus, an approach to assure consistent full penetration via process control is required for offshore line-pipe construction using FSW. For offshore construction, an internal structural mandrel can be used offering the opportunity to use a sacrificial anvil FSW approach. With this approach, a small volume of sacrificial material can be inserted into the structural anvil. The FSW tool penetrates into the sacrificial anvil, beyond the inner diameter of the pipe wall, thus assuring full penetration. The sacrificial material is subsequently removed from the pipe inner wall. In the work presented herein, FSW studies were completed on both 6 mm and 12 mm wall thickness line-pipe. Lastly, post-FSW evaluations including radiography, root-bend tests, and metallography demonstrated the merits of the sacrificial anvil approach to achieve consistent full penetration.« less

  11. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System

    PubMed Central

    Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development. PMID:28060947

  12. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  13. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.

    PubMed

    Inkinen, Jenni; Kaunisto, Tuija; Pursiainen, Anna; Miettinen, Ilkka T; Kusnetsov, Jaana; Riihinen, Kalle; Keinänen-Toivola, Minna M

    2014-02-01

    Complex interactions existing between water distribution systems' materials and water can cause a reduction in water quality and unwanted changes in materials, aging or corrosion of materials and formation of biofilms on surfaces. Substances leaching from pipe materials and water fittings, as well as the microbiological quality of water and formation of biofilms were evaluated by applying a Living Lab theme i.e. a research in a real life setting using a full scale system during its first year of operation. The study site was a real office building with one part of the building lined with copper pipes, the other with cross-linked polyethylene (PEX) pipes thus enabling material comparison; also differences within the cold and hot water systems were analysed. It was found that operational conditions, such as flow conditions and temperature affected the amounts of metals leaching from the pipe network. In particular, brass components were considered to be a source of leaching; e. g. the lead concentration was highest during the first few weeks after the commissioning of the pipe network when the water was allowed to stagnate. Assimilable organic carbon (AOC) and microbially available phosphorus (MAP) were found to leach from PEX pipelines with minor effects on biomass of the biofilm. Cultivable and viable biomass (heterotrophic plate count (HPC), and adenosine triphosphate (ATP)) levels in biofilms were higher in the cold than in the hot water system whereas total microbial biomass (total cell count (DAPI)) was similar with both systems. The type of pipeline material was not found to greatly affect the microbial biomass or Alpha-, Beta- and Gammaproteobacteria profiles (16s rRNA gene copies) after the first one year of operation. Also microbiological quality of water was found to deteriorate due to stagnation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Education, Wechler's Full Scale IQ and "g."

    ERIC Educational Resources Information Center

    Colom, Roberto; Abad, Francisco J.; Garcia, Luis F.; Juan-Espinosa, Manuel

    2002-01-01

    Investigated whether average Full Scale IQ (FSIQ) differences can be attributed to "g" using the Spanish standardization sample of the Wechsler Adult Intelligence Scale III (WAIS III) (n=703 females and 666 men). Results support the conclusion that WAIS III FSIQ does not directly or exclusively measure "g" across the full range…

  15. Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement

    NASA Astrophysics Data System (ADS)

    Khalaj, Omid; Joz Darabi, N.; Moghaddas Tafreshi, S. N.; Mašek, Bohuslav

    2017-12-01

    With increase in cities’ population and development of urbane life, passing buried pipelines near ground’s surface is inevitable in urban areas, roads, subways and highways. This paper presents the results of three-dimensional full scale model tests on high-density polyethylene (HDPE) pipe with diameter of 250 mm in geocell reinforced soil, subjected to repeated loading to simulate the vehicle loads. The effect of geocell’s pocket size (55*55 mm and 110*110 mm) and embedment depth of buried pipe (1.5 and 2 times pipe diameter) in improving the behaviour of buried pipes was investigated. The geocell’s height of 100 mm was used in all tests. The repeated load of 800 kPa was applied on circular loading plate with diameter of 250 mm. The results show that the pipe displacement, soil surface settlement and transferred pressure on the pipe’s crown has been influenced significantly upon the use of geocells. For example, the vertical diametric strain (VDS) and soil surface settlement (SSS), in a way that using a geocell with pocket size of 110*110 mm reduces by 27% and 43%, respectively, compared with the unreinforced one. Meanwhile, by increasing buried depth of pipe from 1.5D to 2D, the use of geocell of 110*110 mm delivers about 50% reduction in SSS and VDS, compared with the unreinforced soil.

  16. Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Jansen, Emmert T; Thorman, H Carl

    1950-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.

  17. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  18. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  19. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors to...

  20. Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin

    2015-11-01

    The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  1. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  2. Transition to Turbulence in curved pipe

    NASA Astrophysics Data System (ADS)

    Hashemi, Amirreza; Loth, Francis

    2014-11-01

    Studies have shown that transitional turbulence in a curved pipe is delayed significantly compared with straight pipes. These analytical, numerical and experimental studies employed a helical geometry that is infinitely long such that the effect of the inlet and outlet can be neglected. The present study examined transition to turbulence in a finite curved pipe with a straight inlet/outlet and a 180 degrees curved pipe with a constant radius of curvature and diameter (D). We have employed the large scale direct numerical simulation (DNS) by using the spectral element method, nek5000, to simulate the flow field within curved pipe geometry with different curvature radii and Reynolds numbers to determine the point of the transition to turbulence. Long extensions for the inlet (5D) and outlet (20D) were used to diminish the effect of the boundary conditions. Our numerical results for radius of curvatures of 1.5D and 5D show transition turbulence is near Re = 3000. This is delayed compared with a straight pipe (Re = 2200) but still less that observed for helical geometries (Reynolds number less than 5000). Our research aims to describe the critical Reynolds number for transition to turbulence for a finite curved pipe at various curvature radii.

  3. Impact of the scale-up of piped water on urogenital schistosomiasis infection in rural South Africa

    PubMed Central

    Azongo, Daniel K; Vandormael, Alain; Bärnighausen, Till; Appleton, Christopher

    2018-01-01

    Recent work has estimated that sub-Saharan Africa could lose US$3.5 billion of economic productivity every year as a result of schistosomiasis and soil-transmitted helminthiasis. One of the main interventions to control schistosomiasis is the provision of safe water to limit the contact with infected water bodies and break the cycle of transmission. To date, a rigorous quantification of the impact of safe water supplies on schistosomiasis is lacking. Using data from one of Africa’s largest population-based cohorts, we establish the impact of the scale-up of piped water in a typical rural South African population over a seven-year time horizon. High coverage of piped water in the community decreased a child’s risk of urogenital schistosomiasis infection eight-fold (adjusted odds ratio = 0.12, 95% CI 0.06–0.26, p<0.001). The provision of safe water could drive levels of urogenital schistosomiasis infection to low levels of endemicity in rural African settings. PMID:29460779

  4. Sensory aspects of drinking water in contact with epoxy lined copper pipe.

    PubMed

    Heim, T H; Dietrich, A M

    2007-01-01

    Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a "plastic/adhesive/putty" odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.

  5. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  6. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  7. Comparison of sub-scaled to full-scaled aircrafts in simulation environment for air traffic management

    NASA Astrophysics Data System (ADS)

    Elbakary, Mohamed I.; Iftekharuddin, Khan M.; Papelis, Yiannis; Newman, Brett

    2017-05-01

    Air Traffic Management (ATM) concepts are commonly tested in simulation to obtain preliminary results and validate the concepts before adoption. Recently, the researchers found that simulation is not enough because of complexity associated with ATM concepts. In other words, full-scale tests must eventually take place to provide compelling performance evidence before adopting full implementation. Testing using full-scale aircraft produces a high-cost approach that yields high-confidence results but simulation provides a low-risk/low-cost approach with reduced confidence on the results. One possible approach to increase the confidence of the results and simultaneously reduce the risk and the cost is using unmanned sub-scale aircraft in testing new concepts for ATM. This paper presents the simulation results of using unmanned sub-scale aircraft in implementing ATM concepts compared to the full scale aircraft. The results of simulation show that the performance of sub-scale is quite comparable to that of the full-scale which validates use of the sub-scale in testing new ATM concepts. Keywords: Unmanned

  8. The Influence of Various Vibration Frequency on Barium Sulfate Scale Formation Of Vibrated Piping System In The Presence Citric Acid

    NASA Astrophysics Data System (ADS)

    Karaman, N.; Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2018-01-01

    In this paper, the influence of vibrated piping system for BaSO4 scale formation was investigated. The vibration frequency and presence of citric acid were independent variables determining the kinetics, mass deposit and polymorph of the crystals. Correspondingly, induction time and mass of scale were obtained during the experiments. The crystalline scale was observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) to investigate the morphology and the phase mineral deposits, respectively. This effect indicated that the increase in vibration frequency promoted the increased deposition rate, while the pure barite with a plate-like morphology was produced in the experiments.

  9. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.

    PubMed

    Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A

    2004-03-01

    Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.

  10. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  11. Full-scale phosphorus recovery from digested waste water sludge in Belgium - part I: technical achievements and challenges.

    PubMed

    Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V

    2015-01-01

    To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.

  12. Heat pipes for sodium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Hartenstine, John R.

    1989-08-01

    The objective of this program was to develop a variable conductance heat pipe (VCHP) for the thermal management of sodium-sulfur batteries. The VCHP maintains the sodium sulfur battery within a specified temperature rise limit (20 C) while the battery discharges a thermal load from 0 watts to 500 watts. A preliminary full scale thermal management design was developed for the sodium-sulfur battery, incorporating the VCHPs and supporting integration hardware. The feasibility of the VCHPs for this application was proved by test. The VCHP developed in Phase 1 utilized titanium as the heat pipe envelope material, and cesium as the heat pipe working fluid. The wick structure was axial grooves. Analysis and test indicate that the VCHP can provide the passive thermal control necessary for the sodium-sulfur battery. Test data show that with the heat input from Q = 0 watts to Q = 500 watts, the VCHP evaporator temperature increased from 350 C to 385 C. The temperature control range was higher than predicted due to working fluid vapor diffusion into the noncondensible gas and thermal axial conduction into the VCHP reservoir. Analysis has shown that by utilizing VCHPs for passive temperature control, the sodium-sulfur battery cells will have a lower axial delta-T during discharge than a current louver design. The VCHP thermal management package has the potential to be used in geosynchronous earth orbits (GEO) and low earth orbits (LEO).

  13. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  14. An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Bridges, James

    2003-01-01

    Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.

  15. Investigation of guided waves propagation in pipe buried in sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less

  16. SPF Full-scale emissions test method development status ...

    EPA Pesticide Factsheets

    This is a non-technical presentation that is intended to inform ASTM task group members about our intended approach to full-scale emissions testing that includes the application of spray foam in an environmental chamber. The presentation describes the approach to emissions characterization, types of measurement systems employed, and expected outcomes from the planned tests. Purpose of this presentation is to update the ASTM D22.05 work group regarding status of our full-scale emissions test method development.

  17. Full-scale results for TAM limestone injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  18. JWST Full-Scale Model on Display in Germany

    NASA Image and Video Library

    2010-03-10

    JWST Full-Scale Model on Display. A full-scale model of the James Webb Space Telescope was built by the prime contractor, Northrop Grumman, to provide a better understanding of the size, scale and complexity of this satellite. The model is constructed mainly of aluminum and steel, weighs 12,000 lb., and is approximately 80 feet long, 40 feet wide and 40 feet tall. The model requires 2 trucks to ship it and assembly takes a crew of 12 approximately four days. This model has travelled to a few sites since 2005. The photographs below were taken at some of its destinations. The model is pictured here in Munich, Germany Credit: EADS Astrium

  19. JWST Full-Scale Model on Display in Germany

    NASA Image and Video Library

    2017-12-08

    JWST Full-Scale Model on Display. A full-scale model of the James Webb Space Telescope was built by the prime contractor, Northrop Grumman, to provide a better understanding of the size, scale and complexity of this satellite. The model is constructed mainly of aluminum and steel, weighs 12,000 lb., and is approximately 80 feet long, 40 feet wide and 40 feet tall. The model requires 2 trucks to ship it and assembly takes a crew of 12 approximately four days. This model has travelled to a few sites since 2005. The photographs below were taken at some of its destinations. The model is pictured here in Munich, Germany Credit: EADS Astrium

  20. (Congressional Add) Partnership in Innovative Preparation for Educators and Students (PIPES)

    DTIC Science & Technology

    2011-12-30

    researchers collected and analyzed both qualitative and quantitative data from students, teachers, and parents related to PIPES program effectiveness...years. PIPES researchers collected and analyzed both qualitative and quantitative data from students, teachers, and parents related to PIPES program...reported an internal reliability of .93 at pretest and .95 at posttest and follow-up. We used a six point scale "not at all true" to "definitely

  1. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  2. Machined Titanium Heat-Pipe Wick Structure

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Minnerly, Kenneth G.; Gernert, Nelson J.

    2009-01-01

    Wick structures fabricated by machining of titanium porous material are essential components of lightweight titanium/ water heat pipes of a type now being developed for operation at temperatures up to 530 K in high-radiation environments. In the fabrication of some prior heat pipes, wicks have been made by extruding axial grooves into aluminum unfortunately, titanium cannot be extruded. In the fabrication of some other prior heat pipes, wicks have been made by in-situ sintering of metal powders shaped by the use of forming mandrels that are subsequently removed, but in the specific application that gave rise to the present fabrication method, the required dimensions and shapes of the heat-pipe structures would make it very difficult if not impossible to remove the mandrels due to the length and the small diameter. In the present method, a wick is made from one or more sections that are fabricated separately and assembled outside the tube that constitutes the outer heat pipe wall. The starting wick material is a slab of porous titanium material. This material is machined in its original flat configuration to form axial grooves. In addition, interlocking features are machined at the mating ends of short wick sections that are to be assembled to make a full-length continuous wick structure. Once the sections have been thus assembled, the resulting full-length flat wick structure is rolled into a cylindrical shape and inserted in the heatpipe tube (see figure). This wick-structure fabrication method is not limited to titanium/water heat pipes: It could be extended to other heat pipe materials and working fluids in which the wicks could be made from materials that could be pre-formed into porous slabs.

  3. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  4. JWST Full-Scale Model on Display at GSFC

    NASA Image and Video Library

    2010-02-26

    JWST Full-Scale Model on Display. A full-scale model of the James Webb Space Telescope was built by the prime contractor, Northrop Grumman, to provide a better understanding of the size, scale and complexity of this satellite. The model is constructed mainly of aluminum and steel, weighs 12,000 lb., and is approximately 80 feet long, 40 feet wide and 40 feet tall. The model requires 2 trucks to ship it and assembly takes a crew of 12 approximately four days. This model has travelled to a few sites since 2005. The photographs below were taken at some of its destinations. The model is pictured here in Greenbelt, MD at the NASA Goddard Space Flight Center. Credit: NASA/Goddard Space Flight Center/Pat Izzo

  5. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  6. A Method for Estimating Noise from Full-Scale Distributed Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Schein, David B.

    2004-01-01

    A method to estimate the full-scale noise suppression from a scale model distributed exhaust nozzle (DEN) is presented. For a conventional scale model exhaust nozzle, Strouhal number scaling using a scale factor related to the nozzle exit area is typically applied that shifts model scale frequency in proportion to the geometric scale factor. However, model scale DEN designs have two inherent length scales. One is associated with the mini-nozzles, whose size do not change in going from model scale to full scale. The other is associated with the overall nozzle exit area which is much smaller than full size. Consequently, lower frequency energy that is generated by the coalesced jet plume should scale to lower frequency, but higher frequency energy generated by individual mini-jets does not shift frequency. In addition, jet-jet acoustic shielding by the array of mini-nozzles is a significant noise reduction effect that may change with DEN model size. A technique has been developed to scale laboratory model spectral data based on the premise that high and low frequency content must be treated differently during the scaling process. The model-scale distributed exhaust spectra are divided into low and high frequency regions that are then adjusted to full scale separately based on different physics-based scaling laws. The regions are then recombined to create an estimate of the full-scale acoustic spectra. These spectra can then be converted to perceived noise levels (PNL). The paper presents the details of this methodology and provides an example of the estimated noise suppression by a distributed exhaust nozzle compared to a round conic nozzle.

  7. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    PubMed

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  8. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    PubMed Central

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  9. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems.

    PubMed

    Schock, Michael R; Hyland, Robert N; Welch, Meghan M

    2008-06-15

    Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.

  10. Turbulent flow in a partially filled pipe

    NASA Astrophysics Data System (ADS)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  11. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  12. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.

    1998-01-01

    The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.

  13. Drag reduction of turbulent pipe flows by circular-wall oscillation

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So; Graham, Mark

    1998-01-01

    An experimental study on turbulent pipe flows was conducted with a view to reduce their friction drag by oscillating a section of the pipe in a circumferential direction. The results indicated that the friction factor of the pipe is reduced by as much as 25% as a result of active manipulation of near-wall turbulence structure by circular-wall oscillation. An increase in the bulk velocity was clearly shown when the pipe was oscillated at a constant head, supporting the measured drag reduction in the present experiment. The percentage reduction in pipe friction was found to be better scaled with the nondimensional velocity of the oscillating wall than with its nondimensional period, confirming a suggestion that the drag reduction seem to be resulted from the realignment of longitudinal vortices into a circumferential direction by the wall oscillation.

  14. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  15. Full-scale monitoring of wind and suspension bridge response

    NASA Astrophysics Data System (ADS)

    Snæbjörnsson, J. T.; Jakobsen, J. B.; Cheynet, E.; Wang, J.

    2017-12-01

    Monitoring of real structures is important for many reasons. For structures susceptible to environmental actions, full-scale observations can provide valuable information about the environmental conditions at the site, as well as the characteristics of the excitation acting on the structure. The recorded data, if properly analyzed, can be used to validate and/or update experiments and models used in the design of new structures, such as the load description and modelling of the structural response. Various aspects of full-scale monitoring are discussed in the paper and the full-scale wind engineering laboratory at the Lysefjord suspension bridge introduced. The natural excitation of the bridge comes from wind and traffic. The surrounding terrain is complex and its effect on the wind flow can only be fully studied on site, in full-scale. The monitoring program and associated data analysis are described. These include various studies of the relevant turbulence characteristics, identification of dynamic properties and estimation of wind- and traffic-induced response parameters. The overall monitoring activity also included a novel application of the remote optical sensing in bridge engineering, which is found to have an important potential to complement traditional “single-point” wind observations by sonic anemometers.

  16. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    NASA Astrophysics Data System (ADS)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  17. Clastic Pipes: Proxies of High Water Tables and Strong Ground Motion, Jurassic Carmel Formation, Southern Utah

    NASA Astrophysics Data System (ADS)

    Wheatley, David; Chan, Marjorie

    2015-04-01

    Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water

  18. KENTUCKY STRAIGHT PIPES REPORT, DECEMBER 2002

    EPA Science Inventory

    The poor sanitary conditions and water pollution problems EPA observed in the Kentucky counties of Harlan, Martin, Bath, and Montgomery were of the highest concern. The widespread scale of both the straight pipe issues as well as package plant wastewater problems present an envir...

  19. Pipe inspection using the pipe crawler. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in rollmore » off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.« less

  20. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage... the local wage survey committee. (e) Selection and appointment of data collectors. (1) The local wage...

  1. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  2. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  3. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  4. Experimental study of Siphon breaker about size effect in real scale reactor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. H.; Ahn, H. S.; Kim, J. M.

    2012-07-01

    Rupture accident within the pipe of a nuclear reactor is one of the main causes of a loss of coolant accident (LOCA). Siphon-breaking is a passive method that can prevent a LOCA. In this study, either a line or a hole is used as a siphon-breaker, and the effect of various parameters, such as the siphon-breaker size, pipe rupture point, pipe rupture size, and the presence of an orifice, are investigated using an experimental facility similar in size to a full-scale reactor. (authors)

  5. A full-scale STOVL ejector experiment

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1993-01-01

    The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.

  6. IRAC Full-Scale Flight Testbed Capabilities

    NASA Technical Reports Server (NTRS)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  7. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    PubMed

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Systems for animal exposure in full-scale fire tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  9. The Collection of Ice in Jet A-1 Fuel Pipes

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas C.

    Ice collection and blockages in fuel systems have been of interest to the aerospace community since their discovery in the late 1950's when a B-52 crashed. A recent growth of interest was provoked by several incidents that occurred within the last few years. This study seeks to understand the underlying principles of ice growth in fuel flow systems. Tests were performed in a recirculated fuel system with a fuel tank that held approximately 115 gallons of Jet A-1 fuel and ice accumulation was observed in two removable test pipes. The setup was in an altitude chamber capable of -60 °F and the experiments involved full scale flow components. Initially, tests were done to better understand the system and variables that effected accumulation. First, initial conditions within the test pipes were varied. Next, pipe geometry, pipe surface properties, initial water content of the fuel and heat transfer from the fuel pipe were varied. As a result of the tests, observations were made about other effects involved in the study. The effects include: the result of sequentially run tests, the effect of the fuel on the freezing temperature of the entrained water, the effect of ice accumulation on pipe welds, and the effect of the test pipe entrance and exit flow conditions on ice accumulation. The results of initial tests were qualitative. Later quantitative tests were done to demonstrate the dependence of temperature, Reynolds number, and heat transfer on ice accumulation. Tests were quantified with a pressure increase across the pipe sections that was normalized by the expected theoretical initial pressure. As a result of these tests the effect of contamination in the fuel was revealed. For ease of reference, the initial tests were called "stage I" and the later tests were called "stage II". The results of stage I showed that accumulation of soft ice was greatest when a layer of hard ice had initially formed on the pipe surface. Stainless steel collected more ice than Teflon

  10. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  11. Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Kondracka, Marta

    2016-12-01

    This paper aims to provide a more comprehensive characterization of piping systems in mountainous areas under a temperate climate using geomorphological mapping and geophysical methods (electrical resistivity tomography - ERT and ground penetrating radar - GPR). The significance of piping in gully formation and hillslope hydrology has been discussed for many years, and most of the studies are based on surface investigations. However, it seems that most surface investigations underestimate this subsurface process. Therefore, our purpose was to estimate the scale of piping activity based on both surface and subsurface investigations. We used geophysical methods to detect the boundary of lateral water movement fostering pipe development and recognize the internal structure of the underlying materials. The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mountains. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a mean depth of about 0.7-0.8 m. The geophysical techniques that were used are shown to be successful in identifying pipes. GPR data suggest that the density of piping systems is much larger than that detectible from surface observations alone. Pipe length can be > 6.5-9.2% (maximum = 49%) higher than what surface mapping suggests. Thus, the significance of piping in hillslope hydrology and gully formation can be greater than previously assumed. These results also draw attention to the scale of piping activity in the Carpathians, where this process has been neglected for many years. The ERT profiles reveal areas affected by piping as places of higher resistivity values, which are an effect of a higher content of air-filled pores (due to higher soil porosity, intense biological activity, and well-developed soil structure). In addition, the ERT profiles show that the pipes in the study area develop at the soil-bedrock interface, probably above the layers of shales or mudstones which create a water restrictive layer

  12. Evolution of turbulence characteristics from straight to curved pipes

    NASA Astrophysics Data System (ADS)

    El Khoury, George K.; Noorani, Azad; Schlatter, Philipp; Fischer, Paul F.

    2012-11-01

    Large-scale direct numerical simulations are performed to study turbulent flow in straight and bent pipes at four different Reynolds numbers: Reb = 5300 , 11700 (bent and straight) and 19000 and 37700 (only straight). We consider a pipe of radius R and axial length 25 R with curvature parameter κ taken to be 0 , 0 . 01 and 0 . 1 for zero, mild and strong curvatures, respectively. The code used is Nek5000 based on the spectral element method. In the straight configuration, the obtained DNS data is carefully checked against other recent simulations, highlighting minute differences between the available data. Owing to a centrifugal instability mechanism, the flow in bent pipe (κ ≠ 0) develops counter-rotating vortices, so-called Dean vortices. The presence of the secondary motion thus induces substantial asymmetries both in the mean flow and turbulence characteristics for the bent pipe. These asymmetries tend to damp turbulence along the inner side and correspondingly enhance it along the upper side. The results are validated with recent experiments, and we could confirm the peculiar behaviour of the friction factor for specific curvatures and Re , leading to a lower friction in curved pipes than in straight pipes for the same mass flux.

  13. Response of reinforced concrete and corrugated steel pipes to surface load

    NASA Astrophysics Data System (ADS)

    Lay, Geoff R.

    Full-scale simulated live load tests were conducted in a controlled laboratory setting using a single-axle frame on 600-mm-inner-diameter reinforced concrete pipe (RCP) and corrugated steel pipe (CSP) when buried in dense, well-graded sand and gravel. Measurements of the RCP at nominal and working forces and beyond are reported for 0.3, 0.6 and 0.9 m of soil cover above the pipe crown. The RCP experienced no cracking when buried at 0.3 m under nominal and working CL-625 and CL-800 single-axle design loads. At these loads, the vertical contraction of the pipe diameter was less than 0.08 and 0.10 mm and the largest tensile strains in the pipe were 75 and 100 muepsilon (50-60% of the cracking strain), respectively. A 0.15 (+/-0.05)-mm-wide axial crack developed at the inner crown in the presence of a 6 kNm/m circumferential bending moment (70% of the theoretical ultimate moment capacity) at the fully factored CL-625 load. This crack did not propagate or widen from 3 series of cyclic load-unload tests. At 1300 kN of applied load the change in pipe diameter was less than 3.5 mm. Increasing soil cover from 0.3 to 0.6 to 0.9 m reduced the circumferential crown bending moment from 6.0 to 3.9 to 2.1 kNm/m, respectively, at 400 kN of axle load. A 1.6- and a 2.8-mm-thick CSP were also subjected to axle loading. No yielding or limit states occurred in the 1.6-mm-thick CSP when buried 0.9-m-deep. However, at 0.6 m of cover a 300 kN axle load caused local yielding at the pipe crown. Increasing soil cover from 0.6 to 0.9 m decreased the vertical diameter change from -3.0 to -1.2 mm and the crown bending moment from 0.7 to 0.2 kNm/m (75% and 20% of the yield moment), respectively, at a 250 kN axle load. Deflections of the thicker CSP were less than the thinner pipe below the CL-625 single-axle load, however further increases in applied load produced a greater response in the thicker pipe, likely due to a haunch support issue. Shallow axle loading produced a greater 3-dimensional

  14. End-effects-regime in full scale and lab scale rocket nozzles

    NASA Astrophysics Data System (ADS)

    Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph

    2014-11-01

    Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.

  15. Dynamics of large-diameter water pipes in hydroelectric power plants

    NASA Astrophysics Data System (ADS)

    Pavić, G.; Chevillotte, F.; Heraud, J.

    2017-04-01

    An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.

  16. Characterization of the Boundary Layers on Full-Scale Bluefin Tuna

    DTIC Science & Technology

    2014-09-30

    NUWC-NPT Technical Report 12,163 30 September 2014 Characterization of the Boundary Layers on Full-Scale Bluefin Tuna Kimberly M. Cipolla...Center Division Newport, under Section 219 Research Project, “Characterization of the Boundary Layers on Full-Scale Bluefin Tuna ,” principal...K. Amaral (Code 1522). The author thanks Barbara Block (Stanford University), head of the Tuna Research and Conservation Center (TRCC) at the

  17. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hot water for heating systems may not exceed 375 °F. (i) Where positive shutoff valves are fitted in..., turbine casings, exhaust piping and shutoff valves, is not designed for the full inlet pressure, the... must be provided for draining every steam pipe in which dangerous water hammer might otherwise occur...

  19. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hot water for heating systems may not exceed 375 °F. (i) Where positive shutoff valves are fitted in..., turbine casings, exhaust piping and shutoff valves, is not designed for the full inlet pressure, the... must be provided for draining every steam pipe in which dangerous water hammer might otherwise occur...

  20. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hot water for heating systems may not exceed 375 °F. (i) Where positive shutoff valves are fitted in..., turbine casings, exhaust piping and shutoff valves, is not designed for the full inlet pressure, the... must be provided for draining every steam pipe in which dangerous water hammer might otherwise occur...

  1. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hot water for heating systems may not exceed 375 °F. (i) Where positive shutoff valves are fitted in..., turbine casings, exhaust piping and shutoff valves, is not designed for the full inlet pressure, the... must be provided for draining every steam pipe in which dangerous water hammer might otherwise occur...

  2. Statespace geometry of puff formation in pipe flow

    NASA Astrophysics Data System (ADS)

    Budanur, Nazmi Burak; Hof, Bjoern

    2017-11-01

    Localized patches of chaotically moving fluid known as puffs play a central role in the transition to turbulence in pipe flow. Puffs coexist with the laminar flow and their large-scale dynamics sets the critical Reynolds number: When the rate of puff splitting exceeds that of decaying, turbulence in a long pipe becomes sustained in a statistical sense. Since puffs appear despite the linear stability of the Hagen-Poiseuille flow, one expects them to emerge from the bifurcations of finite-amplitude solutions of Navier-Stokes equations. In numerical simulations of pipe flow, Avila et al., discovered a pair of streamwise localized relative periodic orbits, which are time-periodic solutions with spatial drifts. We combine symmetry reduction and Poincaré section methods to compute the unstable manifolds of these orbits, revealing statespace structures associated with different stages of puff formation.

  3. Identification And Distribution Of Vanadinite (Pb5(V5+O4)3Cl) In Lead Pipe Corrosion By-Products

    EPA Science Inventory

    This study presents the first detailed look at vanadium (V) speciation in drinking water pipe corrosion scales. A pool of 34 scale layers from 15 lead or lead-lined pipes representing eight different municipal drinking water distribution systems in the Northeastern and Midwester...

  4. JWST Full-Scale Model on Display in Orlando

    NASA Image and Video Library

    2017-12-08

    JWST Full-Scale Model on Display. A full-scale model of the James Webb Space Telescope was built by the prime contractor, Northrop Grumman, to provide a better understanding of the size, scale and complexity of this satellite. The model is constructed mainly of aluminum and steel, weighs 12,000 lb., and is approximately 80 feet long, 40 feet wide and 40 feet tall. The model requires 2 trucks to ship it and assembly takes a crew of 12 approximately four days. This model has traveled to a few sites since 2005. The photographs below were taken at some of its destinations. The model was on display at The International Society for Optical Engineering's (SPIE) week-long Astronomical Telescopes and Instrumentations conference,May 25 - 30, 2006. Credit: NASA/Goddard Space Flight Center/Dr Mark Clampin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  6. Turbulent pipe flows subjected to temporal decelerations

    NASA Astrophysics Data System (ADS)

    Jeong, Wongwan; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  7. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  8. Phase transition to turbulence in a pipe

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel

    Leo Kadanoff taught us much about phase transitions, turbulence and collective behavior. Here I explore the transition to turbulence in a pipe, showing how a collective mode determines the universality class. Near the transition, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Direct numerical simulations reveal that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as represented by Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to a Landau theory of predator-prey type, in the directed percolation universality class. Stochastic simulations of this model reproduce the functional form and phenomenology of pipe flow experiments. Talk based on work performed with Hong-Yan Shih and Tsung-Lin Hsieh. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.

  9. Design, Development, Pre-Testing and Preparation for Full Scale Cold Testing of a System for Field Remediation of Vertical Pipe Units at the Hanford Site 618-10 Burial Grounds -12495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliwell, Stephen

    2012-07-01

    At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less

  10. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  11. Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 8 ACSIM Technology Standards Group Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges Co ns tr...default. ACSIM Technology Standards Group ERDC/CERL TR-17-18 June 2017 Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges Ghassan... tests were con- ducted on commercially available, thermoplastic polymer composite I- beams at U.S. Army Corps of Engineers, Engineer Research and

  12. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  13. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  14. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  15. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  16. The Full-Scale Implementation of an Innovative

    EPA Pesticide Factsheets

    Across the United States, high levels of ammonia in drinking watersources can be found. Although ammonia in water does not posea direct health concern, ammonia nitrification can cause a numberof issues and reduce the effectiveness of some treatment processes.An innovative biological ammonia-removal drinking watertreatment process was developed and, after the success of a pilotstudy, a full-scale treatment system using the process was built ina small Iowa community. The treatment plant included a uniqueaeration contactor design that is able to consistently reduceammonia from 3.3 mg of nitrogen/L to nearly nondetectable aftera biofilm acclimation period. Close system monitoring wasperformed to avoid excess nitrite release during acclimation, andphosphate was added to enhance biological activity on the basisof pilot study findings. The treatment system is robust, reliable,and relatively simple to operate. The operations and effectivenessof the treatment plant were documented in the study.This dataset is associated with the following publication:Lytle , D., D. Williams , C. Muhlen , M. Pham , K. Kelty , M. Wildman, G. Lang, M. Wilcox, and M. Kohne. The Full-Scale Implementation of an Innovative Biological Ammonia Treatment Process. Journal AWWA. American Water Works Association, Denver, CO, USA, 107(12): E648-E665, (2015).

  17. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  18. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine.

    PubMed

    Mizutani, Jun; Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu

    2008-05-01

    Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results.

  19. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  20. Pipe crawler apparatus

    DOEpatents

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  1. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  2. Comparisons of the Impact Responses of a 1/5-Scale Model and a Full-Scale Crashworthy Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.

    2003-01-01

    A 25-fps vertical drop test of a 1/5-scale model composite fuselage section was conducted to replicate a previous test of a full-scale fuselage section. The purpose of the test was to obtain experimental data characterizing the impact response of the 1/5-scale model fuselage section for comparison with the corresponding full-scale data. This comparison is performed to assess the scaling procedures and to determine if scaling effects are present. For the drop test, the 1/5-scale model fuselage section was configured in a similar manner as the full-scale section, with lead masses attached to the floor through simulated seat rails. Scaled acceleration and velocity responses are compared and a general assessment of structural damage is made. To further quantify the data correlation, comparisons of the average acceleration data are made as a function of floor location and longitudinal position. Also, the percentage differences in the velocity change (area under the acceleration curve) and the velocity change squared (proportional to kinetic energy) are compared as a function of floor location. Finally, correlation coefficients are calculated for corresponding 1/5- and full-scale data channels and these values are plotted versus floor location. From a scaling perspective, the differences between the 1/5- and full-scale tests are relatively small, indicating that appropriate scaling procedures were used in fabricating the test specimens and in conducting the experiments. The small differences in the scaled test data are attributed to minor scaling anomalies in mass, potential energy, and impact attitude.

  3. Experimental study of Large-scale cryogenic Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Barba, Maria; Bruce, Romain; Bonelli, Antoine; Baudouy, Bertrand

    2017-12-01

    Pulsating Heat Pipes (PHP) are passive two-phase heat transfer devices consisting of a long capillary tube bent into many U-turns connecting the condenser part to the evaporator part. They are thermally driven by an oscillatory flow of liquid slugs and vapor plugs coming from phase changes and pressure differences along the tube. The coupling of hydrodynamic and thermodynamic effects allows high heat transfer performances. Three closed-loop pulsating heat pipes have been developed by the DACM (Department of Accelerators, Cryogenics and Magnetism) of CEA Paris-Saclay, France. Each PHP measures 3.7 meters long (0.35 m for the condenser and the evaporator and 3 m for the adiabatic part), being almost 20 times longer than the longest cryogenic PHP tested. These PHPs have 36, 22 and 12 parallel channels. Numerous tests have been performed in horizontal position (the closest configuration to non-gravity) using nitrogen as working fluid, operating between 75 and 90 K. The inner and outer diameters of the stainless steel capillary tubes are 1.5 and 2 mm respectively. The PHPs were operated at different filling ratios (20 to 90 %), heat input powers (3 to 20 W) and evaporator and condenser temperatures (75 to 90 K). As a result, the PHP with 36 parallel channels achieves a certain level of stability during more than thirty minutes with an effective thermal conductivity up to 200 kW/m.K at 10 W heat load and during forty minutes with an effective thermal conductivity close to 300 kW/m.K at 5 W heat load.

  4. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  5. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  6. A full scale hydrodynamic simulation of pyrotechnic combustion

    NASA Astrophysics Data System (ADS)

    Kim, Bohoon; Jang, Seung-Gyo; Yoh, Jack

    2017-06-01

    A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A series of small scale gap tests and detailed hydrodynamic simulations were used to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The energetic component system is composed of four main components, namely a donor unit (HNS + HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BKNO3) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (ωc = 8.3 kHz). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

  7. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  8. Approximate similarity principle for a full-scale STOVL ejector

    NASA Astrophysics Data System (ADS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1994-03-01

    Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.

  9. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  10. Full-Scale Tests of NACA Cowlings

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Brevoort, M J; Stickle, George W

    1937-01-01

    A comprehensive investigation has been carried on with full-scale models in the NACA 20-foot wind tunnel, the general purpose of which is to furnish information in regard to the physical functioning of the composite propeller-nacelle unit under all conditions of take-off, taxiing, and normal flight. This report deals exclusively with the cowling characteristics under condition of normal flight and includes the results of tests of numerous combinations of more than a dozen nose cowlings, about a dozen skirts, two propellers, two sizes of nacelle, as well as various types of spinners and other devices.

  11. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer.

  12. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  13. Extendable pipe crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapstack, M.

    1990-05-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radically outward to increase the range of the legs when the pipe crawler enters a section of pipe having a larger diameter. The crawler crawls by inchworm''-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up themore » rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figs.« less

  14. Extendable pipe crawler

    DOEpatents

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  15. CLOSED-CYCLE TEXTILE DYEING: FULL-SCALE HYPERFILTRATION DEMONSTRATION

    EPA Science Inventory

    The report gives results of a project of joining a full-scale dynamic-membrane hyperfiltration (HF) system with an operating dye range. (HF is a membrane separation technique that has been used successfully to desalinate natural water. The dye range is a multi-purpose unit with a...

  16. Determination of ac conductor and pipe loss in pipe-type cable systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, D.A.; Seman, G.W.

    1982-02-01

    The results are presented of investigations into the determination of the ac/dc resistance ratios of high and extra high voltage pipe-type cables with conventional and large size segmental conductors in carbon steel, stainless steel and aluminum pipes in three cable per pipe and single cable per pipe configurations. The measurements included 115 through 765 kV cables with copper, enamel coated copper, and aluminum conductors in sizes of 2000 kcmil (1015 mm/sup 2/), 3250 kcmil (1650 mm/sup 2/), and 3500 kcmil (1776 mm/sup 2/). Calculations using presently available techniques were employed to provide correlation between measured and calculated values in bothmore » magnetic and non-magnetic pipes. In addition, a number of new techniques in conductor construction, pipe material and pipe liners and cable wraps were investigated as means of decreasing the ac/dc resistance ratios of pipe-type cables. Finally, the various systems studied were compared on the basis of system MVA rating and by evaluation of installed and overall operating costs as compared to conventional three cable per pipe systems installed in carbon steel pipes.« less

  17. Performance Comparison at Mach Numbers 1.8 and 2.0 of Full Scale and Quarter Scale Translating-Spike Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Dryer, M.; Hearth, D. P.

    1957-01-01

    The performance of a full-scale translating-spike inlet was obtained at Mach numbers of 1.8 and 2.0 and at angles of attach from 0 deg to 6 deg. Comparisons were made between the full-scale production inlet configuration and a geometrically similar quarter-scale model. The inlet pressure-recovery, cowl pressure-distribution, and compressor-face distortion characteristics of the full-scale inlet agreed fairly well with the quarter-scale results. In addition, the results indicated that bleeding around the periphery ahead of the compressor-face station improved pressure recovery and compressor-face distortion, especially at angle of attack.

  18. Hypersonic Glider Model in Full Scale Tunnel 1957

    NASA Image and Video Library

    1957-09-07

    L57-1439 A model based on Langley s concept of a hypersonic glider was test flown on an umbilical cord inside the Full Scale Tunnel in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 374.

  19. Extendable pipe crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly andmore » bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.« less

  20. High performance felt-metal-wick heat pipe for solar receivers

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  1. Full-Scale Accelerated Testing of Multi-axial Geogrid Stabilized Flexible Pavements

    DTIC Science & Technology

    2017-06-01

    costs and reduced budgets, transportation officials are often tasked with applying innovative solutions to pavement design and construction projects... pavement designers . 1.2 Objective The objective of this effort was to construct and traffic full-scale flexible pavement sections to provide...Development Center (ERDC) constructed the full-scale test section as designed by Tensar under shelter in its Hangar 2 Pavement Test Facility. During

  2. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  3. On the Uses of Full-Scale Schlieren Flow Visualization

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Miller, J. D.; Dodson-Dreibelbis, L. J.

    2000-11-01

    A lens-and-grid-type schlieren system using a very large grid as a light source was described at earlier APS/DFD meetings. With a field-of-view of 2.3x2.9 m (7.5x9.5 feet), it is the largest indoor schlieren system in the world. Still and video examples of several full-scale airflows and heat-transfer problems visualized thus far will be shown. These include: heating and ventilation airflows, flows due to appliances and equipment, the thermal plumes of people, the aerodynamics of an explosive trace detection portal, gas leak detection, shock wave motion associated with aviation security problems, and heat transfer from live crops. Planned future projects include visualizing fume-hood and grocery display freezer airflows and studying the dispersion of insect repellent plumes at full scale.

  4. Turbine-Driven Pipe-Cleaning Brush

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Rowell, David E.

    1994-01-01

    Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.

  5. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  6. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  7. Design of megawatt power level heat pipe reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors.more » The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.« less

  8. Pipe crawler development for duct elbow removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.; Treanor, R.C.

    1992-01-01

    This paper describes the development of equipment for removing an elbow in a 36 inch diameter ventilation line by cutting from the inside. Radiation levels, high air flow and physical constraints preclude any manual rework of the ventilation system. A remotely operated pipe crawler was developed. Testing has been performed in a full-scale mockup which models the ventilation duct configuration with the exception of radiation levels. The results gathered from the testing are discussed, and illustrate the strengths and weaknesses of the crawler and plasma arc torch system. To date, the equipment has successfully completed the tasks of maneuvering throughmore » the duct geometry, performing the two required cuts, and backing out of the duct mockup. The elbow successfully fell away from the main duct, showing that the line would be clear of obstructions.« less

  9. Pipe crawler development for duct elbow removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.; Treanor, R.C.

    1992-11-01

    This paper describes the development of equipment for removing an elbow in a 36 inch diameter ventilation line by cutting from the inside. Radiation levels, high air flow and physical constraints preclude any manual rework of the ventilation system. A remotely operated pipe crawler was developed. Testing has been performed in a full-scale mockup which models the ventilation duct configuration with the exception of radiation levels. The results gathered from the testing are discussed, and illustrate the strengths and weaknesses of the crawler and plasma arc torch system. To date, the equipment has successfully completed the tasks of maneuvering throughmore » the duct geometry, performing the two required cuts, and backing out of the duct mockup. The elbow successfully fell away from the main duct, showing that the line would be clear of obstructions.« less

  10. Heat Pipes

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  11. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  12. The monster sound pipe

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2017-03-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which illustrates how an Internet keyboard can be used to estimate the fundamental pitches of each pipe. Since both pipes have similar end corrections, the pitch discrepancy between the smooth pipe and drainage tube is due to the corrugations, which lower the speed of sound inside the flexible tube, dropping its pitch a semitone.

  13. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    PubMed

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  15. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  16. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  17. An overview of passenger equipment full-scale impact tests

    DOT National Transportation Integrated Search

    2003-10-07

    As part of the Federal Railroad Administrations Equipment Safety Research Program, a series of full-scale impact tests are being conducted on rail passenger vehicles. Four types of tests are intended to define the performance of current-design equ...

  18. Full-Scale Field Test of Wake Steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  19. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  20. Experimental study of geysers through a vent pipe connected to flowing sewers.

    PubMed

    Huang, Biao; Wu, Shiqiang; Zhu, David Z; Schulz, Harry E

    2017-04-01

    Geysers of air-water mixtures in urban drainage systems is receiving considerable attention due to public safety concerns. However, the geyser formation process and its relation with air release from pressurized pipes are still relatively little known. A large-scale physical model, that consisted of a main tunnel with a diameter of 270 mm and a length of 25 m connecting two reservoirs and a vertical vent pipe, was established to investigate geyser evolution and pressure transients. Experimental results including dynamic pressure data and high speed videos were analysed in order to characterize geysering flow through the vent pipe. Pressure transients were observed during geysering events. Their amplitudes were found to be about three times the driving pressure head and their periods were close to the classic surge tank predictions. The influence of flow rate and vent pipe size were examined: geyser heights and pressure peaks decreased for small flow rate and large diameter vent pipe. It is suggested that geyser heights are related with the pressure head and the density of the air-water mixture.

  1. Dehumidifying Heat Pipe

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1993-01-01

    U-shaped heat pipe partly dehumidifies air leaving air conditioner. Fits readily in air-handling unit of conditioner. Evaporator and condenser sections of heat pipe consist of finned tubes in comb pattern. Each tube sealed at one end and joined to manifold at other. Sections connected by single pipe carrying vapor to condenser manifold and liquid to evaporator manifold. Simple on/off or proportional valve used to control flow of working fluid. Valve actuated by temperature/humidity sensor.

  2. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only for...

  3. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only for...

  4. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  5. Multileg Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  6. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    NASA Astrophysics Data System (ADS)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  7. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  8. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  9. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  10. Intermittent gravity-driven flow of grains through narrow pipes

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos A.; de Moraes Franklin, Erick

    2017-01-01

    Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.

  11. Experimenting with a "Pipe" Whistle

    ERIC Educational Resources Information Center

    Stafford, Olga

    2012-01-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here…

  12. Piping dynamics in mid-altitude mountains under a temperate climate: the Bieszczady Mts., the Eastern Carpathians

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Jakiel, Michał; Krzemień, Kazimierz

    2017-04-01

    problem. The scale of piping in the study area is at least by three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under a similar land use (grasslands), and it is comparable to the scale of surface soil erosion on arable lands. It means that piping is an important sediment source for fluvial systems, and it leads to significant soil loss in mid-altitude mountains under a temperate climate. This study is supported by the National Science Centre of Poland, as a part of the first author's project - PRELUDIUM 3 (DEC-2012/05/N/ST10/03926). The first author was also granted the ETIUDA 3 doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland.

  13. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  14. JWST Full-Scale Model on Display at Goddard Space Flight Center

    NASA Image and Video Library

    2010-02-26

    JWST Full-Scale Model on Display. A full-scale model of the James Webb Space Telescope was built by the prime contractor, Northrop Grumman, to provide a better understanding of the size, scale and complexity of this satellite. The model is constructed mainly of aluminum and steel, weighs 12,000 lb., and is approximately 80 feet long, 40 feet wide and 40 feet tall. The model requires 2 trucks to ship it and assembly takes a crew of 12 approximately four days. This model has travelled to a few sites since 2005. The photographs below were taken at some of its destinations. The model is pictured here in Greenbelt, MD at the NASA Goddard Space Flight Center. Credit: NASA/Goddard Space Flight Center/Pat Izzo

  15. Horizontal Axis Wind Turbine Experiments at Full-Scale Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Miller, Mark; Kiefer, Janik; Nealon, Tara; Westergaard, Carsten; Hultmark, Marcus

    2017-11-01

    Achieving high Reynolds numbers on a wind turbine model remains a major challenge for experimentalists. Since Reynolds number effects need to be captured accurately, matching this parameter is of great importance. The challenge stems from the large scale ratio between model and full-size, typically on the order of 1:100. Traditional wind tunnels are limited due to finite tunnel size, with velocity as the only free-parameter available for increasing the Reynolds number. Unfortunately, increasing the velocity 100 times is untenable because it violates Mach number matching with the full-scale and results in unfeasible rotation rates. Present work in Princeton University's high pressure wind tunnel makes it possible to evaluate the Reynolds number sensitivity with regard to wind turbine aerodynamics. This facility, which uses compressed air as the working fluid, allows for adjustment of the Reynolds number, via the fluid density, independent of the Tip Speed Ratio (TSR) and Mach number. Power and thrust coefficients will be shown as a function of Reynolds number and TSR for a model wind turbine. The Reynolds number range investigated exceeds 10 ×106 based on diameter and free-stream conditions or 3 ×106 based on the tip chord, matching those of the full-scale. National Science Foundation and Andlinger Center for Energy and the Environment.

  16. Model Wind Turbines Tested at Full-Scale Similarity

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Kiefer, J.; Westergaard, C.; Hultmark, M.

    2016-09-01

    The enormous length scales associated with modern wind turbines complicate any efforts to predict their mechanical loads and performance. Both experiments and numerical simulations are constrained by the large Reynolds numbers governing the full- scale aerodynamics. The limited fundamental understanding of Reynolds number effects in combination with the lack of empirical data affects our ability to predict, model, and design improved turbines and wind farms. A new experimental approach is presented, which utilizes a highly pressurized wind tunnel (up to 220 bar). It allows exact matching of the Reynolds numbers (no matter how it is defined), tip speed ratios, and Mach numbers on a geometrically similar, small-scale model. The design of a measurement and instrumentation stack to control the turbine and measure the loads in the pressurized environment is discussed. Results are then presented in the form of power coefficients as a function of Reynolds number and Tip Speed Ratio. Due to gearbox power loss, a preliminary study has also been completed to find the gearbox efficiency and the resulting correction has been applied to the data set.

  17. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  18. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  19. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  20. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less

  1. Modeling the GPR response of leaking, buried pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, M.H.; Olhoeft, G.R.

    1996-11-01

    Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectablemore » when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.« less

  2. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling

  3. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  4. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  5. Space capsule mounted in the Full Scale Wind Tunnel

    NASA Image and Video Library

    1959-01-22

    The Mercury space capsule undergoing tests in Full Scale Wind Tunnel, January 1959. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 75, by James Schultz. Also Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958, page 389, by James R. Hansen.

  6. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  7. Pipe crawler with stabilizing midsection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe crawler having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ``inch worm`` fashion with the front and rear leg assembliesmore » alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.« less

  8. Pipe crawler with stabilizing midsection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between anmore » extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.« less

  9. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  10. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  11. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... the lead agency believes is appropriate and useful in determining local prevailing rates. (c) The data...

  12. Investigation of guided wave propagation and attenuation in pipe buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2015-07-01

    Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  13. 53. EQUIPMENT HOUSE AND PIPING, PLANS AND ELEVATION, Y&D No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. EQUIPMENT HOUSE AND PIPING, PLANS AND ELEVATION, Y&D No. 107731 Scale 1/2' = 1', July 2, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  14. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...

  15. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...

  16. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...

  17. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded brass pipe in iron pipe sizes may be used. Threaded brass pipe shall comply with ASTM B43-91, Standard Specification for Seamless Red Brass Pipe, Standard...

  18. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  20. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  1. Measurements of the wall-normal velocity component in very high Reynolds number pipe flow

    NASA Astrophysics Data System (ADS)

    Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.

    2012-11-01

    Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  2. Remotely operated pipe connector

    DOEpatents

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  3. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  4. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or...

  6. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  7. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    NASA Astrophysics Data System (ADS)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.

  8. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  9. Characterization of convective heating in full scale wildland fires

    Treesearch

    Bret Butler

    2010-01-01

    Data collected in the International Crown Fire modeling Experiment during 1999 are evaluated to characterize the magnitude and duration of convective energy heating in full scale crown fires. To accomplish this objective data on total and radiant incident heat flux, air temperature, and horizontal and vertical gas velocities were evaluated. Total and radiant energy...

  10. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  11. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  12. Noise control of waste water pipes

    NASA Astrophysics Data System (ADS)

    Lilly, Jerry

    2005-09-01

    Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.

  13. Dynamics of heat-pipe reactors

    NASA Technical Reports Server (NTRS)

    Niederauer, G. F.

    1971-01-01

    A split-core heat pipe reactor, fueled with either U(233)C or U(235)C in a tungsten cermet and cooled by 7-Li-W heat pipes, was examined for the effects of the heat pipes on reactor while trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel melting temperature and heat pipe wall heat flux were mapped for the reactor in both startup and at-power operating modes.

  14. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  15. Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry

    NASA Astrophysics Data System (ADS)

    Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.

    2017-11-01

    A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.

  16. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  17. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  18. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  19. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  20. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  1. Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500

    NASA Astrophysics Data System (ADS)

    Feldmann, Daniel; Avila, Marc

    2018-04-01

    We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.

  2. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping

    2008-10-15

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less

  3. Interrelationships between Blended Phosphate Treatment and Scale Formation for a Utility with Lead Pipes

    EPA Science Inventory

    Lead (Pb) in tap water (released from Pb-based plumbing materials) poses a serious public health concern. Water utilities experiencing Pb problems often use orthophosphate treatment, with the theory of forming insoluble Pb(II)-orthophosphate compounds on the pipe wall to inhibit ...

  4. Elaboration and Device Complex Trial for Pipe Production of Raised Quality

    NASA Astrophysics Data System (ADS)

    Privarnikov, J. K.; Vdovin, V. D.; Privarnikova, I. J.

    2002-01-01

    Technology and device for production of heightened quality pipes for arterial oil and gas conduits are created and inculcated on factual data of work of Novomoskovsk Pipe Plant. At present such pipes are made with using heat treatment in penetrated sectional stoves. Herewith big volume of natural gas is expended. Besides, it is observed an incomplete removal of residual stresses during heat treatment that adversely affects at operation pipe indexes and durability of welded seam. Researches, which authors have conducted, have shown that offered weakly annealing technology and device provide almost full removal of undesirable residual stresses that considerably raises durability of welded junctions and improves operation pipe indexes. Inculcation of offered technology in Ukraine at the same time will allow to reduce by 40-50 % natural gas expense, to raise ecological safety at the sacrifice of diminish of possible damages at conduits as well as to produce electric welded pipes of heightened quality. I am sending you the abstract of the report Elaboration and device complex trial for pipe production of heightened quality, reference number - IAC-02.V.6./1.7 - ? (Unfortunately number is lost. Please inform us the number of our report once again) authors Privarnikov J.K, Vdovin V.D., Privarnikova I.J. for presentation at the 53rd International Asnronautical Congress/ Professor Yu. Privarnikov

  5. Freezable Radiator Coupon Testing and Full Scale Radiator Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses

    2009-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.

  6. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  7. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  8. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  9. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  10. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  11. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in...

  12. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  13. Ultrasonic multi-skip tomography for pipe inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno; Zon, Tim van

    The inspection of wall loss corrosion is difficult at pipe supports due to limited accessibility. The recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, butmore » it is difficult to quantify both the extent and depth of the loss. Multi-skip tomography has been developed to reconstruct the wall thickness profile along the axial direction of the pipe. The method uses model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). Experimental results are very encouraging. Various defects (slot and flat bottom hole) are reconstructed using the tomographic inversion. The general shape and width are well recovered. The current sizing accuracy is in the order of 1 mm.« less

  14. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to avoid...

  15. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to avoid...

  16. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to avoid...

  17. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to avoid...

  18. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to avoid...

  19. Mineralogy of Galvanic Corrosion By-products in Domestic Drinking Water Pipes

    EPA Science Inventory

    This study presents the results of a visual and mineralogical characterization of scales developed over long time periods at galvanically coupled lead-brass and lead-copper pipe joints from several different drinking water distribution systems. The long-term exposure aspect of t...

  20. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  1. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  2. Pipe Crawler{reg_sign} internal piping characterization system - deactivation and decommissioning focus area. Innovative Technology Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, andmore » intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.« less

  3. The "Long Pipe" in CICLoPE: A Design for Detailed Turbulence Measurements

    NASA Astrophysics Data System (ADS)

    Talamelli, A.; Bellani, G.; Rossetti, A.

    A new facility to study high Reynolds number wall bounded turbulent flow has been designed. It will be installed in the laboratory of Center for International Collaboration on Long Pipe Experiments "CICLoPE" in Predappio (Italy). The facility consists of a large pipe, allowing to reach high Reynolds numbers, where all turbulent scales can be resolved with standard measurement techniques. The pipe operates with air at ambient conditions with a maximum speed of 60 m/s in order to avoid any compressibility effect. In order to maintain stable conditions over long period of time the pipe is part of a close loop circuit. The pipe will be located in a tunnel 60 m underground, thus ensuring very low level of external perturbations. The layout resembles an ordinary wind tunnel where the main difference is the long test section, which produces most of the friction losses. This requires the use of a multiple stage axial fan driven by two independent motors. Even though many of the various aerodynamic components are similar to those ordinary used in wind tunnel (corners, diffusers, turbulence manipulators, contraction, etc.) they have been designed aiming at obtaining a very good quality of the flow and minimizing the overall pressure losses.

  4. Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems

    NASA Astrophysics Data System (ADS)

    Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo

    With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.

  5. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... described in § 3280.706(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI B 36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded copper or brass pipe in iron pipe sizes may be used. (2) Fittings for oil piping shall be wrought-iron, malleable iron, steel, or brass (containing...

  6. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... described in § 3280.706(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI B 36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded copper or brass pipe in iron pipe sizes may be used. (2) Fittings for oil piping shall be wrought-iron, malleable iron, steel, or brass (containing...

  7. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  8. Lightweight Heat Pipes Made from Magnesium

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  9. Experimental study on the connection property of full-scale composite member

    NASA Astrophysics Data System (ADS)

    Panpan, Cao; Qing, Sun

    2018-01-01

    The excellent properties of composite result in its increasingly application in electric power construction, however there are less experimental studies on full-scale composite member connection property. Full-scale experiments of the connection property between E-glass fiber/epoxy reinforced polymer member and steel casing in practical engineering have been conducted. Based on the axial compression test of the designed specimens, the failure process and failure characteristics were observed, the load-displacement curves and strain distribution of the specimens were obtained. The finite element analysis was used to get the tensile connection strength of the component. The connection property of the components was analyzed to provide basis of the casing connection of GFRP application in practical engineering.

  10. Pipe weld crown removal device

    DOEpatents

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  11. Light Pipe Energy Savings Calculator

    NASA Astrophysics Data System (ADS)

    Owens, Erin; Behringer, Ernest R.

    2009-04-01

    Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.

  12. Laboratory exercises on oscillation modes of pipes

    NASA Astrophysics Data System (ADS)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  13. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  14. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  15. System and Method for Traversing Pipes

    NASA Technical Reports Server (NTRS)

    Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)

    2017-01-01

    A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.

  16. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  17. The pipes of pan.

    PubMed

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  18. Composite drill pipe

    DOEpatents

    Leslie, James C [Fountain Valley, CA; Leslie, II, James C.; Heard, James [Huntington Beach, CA; Truong, Liem , Josephson; Marvin, Neubert [Huntington Beach, CA; Hans, [Anaheim, CA

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  19. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  20. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  1. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  2. The locating ways of laying pipe manipulator

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Li, Bin; Lei, DongLiang

    2010-01-01

    The laying pipe manipulator is a new equipment to lay concrete pipe. This kind of manipulator makes the work of laying pipes mechanized and automated. We report here a new laying pipe manipulator. The manipulator has 5 free degrees, and is driven by the hydraulic system. In the paper, one critical question of manipulator is studied: the locating ways of the manipulator to lay concrete pipe. During the process of laying concrete pipe, how to locate the manipulator is realized by the locating system of manipulator. The locating system consists of photoelectric target, laser producer, and computer. According to different construction condition, one or two or three photoelectric targets can be used. During the process of laying concrete pipe, if the interface of pipes are jointed together, and the other segment of pipe deviates from the pipe way, one target can be used, if the angle that the manipulator rotates around the holding pipe's axes is 0°, two targets can be used, three targets can be used at any site. In the paper, according to each locating way, the theory analysis is done. And the mathematical models of the manipulator moving from original position to goal position are obtained by different locating way. And the locating experiment was done. According to the experiment result, the work principle and mathematical models of different locating way was turned out to be well adopted for requirement, the mathematical model of different locating way supplies the basic control theory for the manipulator to lay and joint concrete pipe automatically.

  3. Piping Connector

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In Stennis Space Center's Component Test Facility, piping lines carry rocket propellants and high pressure cryogenic fuels. When the lines are chilled to a pretest temperature of 400 degrees below zero, ordinary piping connectors can leak. Under contract to Stennis, Reflange, Inc. developed the T-Con connector, which included a secondary seal that tolerates severe temperature change. Because of the limited need for the large and expensive T-Con product, Reflange also developed the less costly E-Con, a smaller more compact design with the same technical advantages as the T-Con.

  4. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  5. Automated internal pipe cutting device

    DOEpatents

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  6. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  7. Heat pipes in solar collectors

    NASA Astrophysics Data System (ADS)

    Bairamov, R.; Toiliev, K.

    The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed

  8. Promethus Hot Leg Piping Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactormore » (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.« less

  9. Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric

    2018-03-01

    Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.

  10. Large Eddy Simulation of Turbulent Flow in a Ribbed Pipe

    NASA Astrophysics Data System (ADS)

    Kang, Changwoo; Yang, Kyung-Soo

    2011-11-01

    Turbulent flow in a pipe with periodically wall-mounted ribs has been investigated by large eddy simulation with a dynamic subgrid-scale model. The value of Re considered is 98,000, based on hydraulic diameter and mean bulk velocity. An immersed boundary method was employed to implement the ribs in the computational domain. The spacing of the ribs is the key parameter to produce the d-type, intermediate and k-type roughness flows. The mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the experimental measurements currently available. Turbulence statistics, including budgets of the Reynolds stresses, were computed, and analyzed to elucidate turbulence structures, especially around the ribs. In particular, effects of the ribs are identified by comparing the turbulence structures with those of smooth pipe flow. The present investigation is relevant to the erosion/corrosion that often occurs around a protruding roughness in a pipe system. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  11. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  12. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A cumulative bibliography on heat pipe research and development projects is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) testing and operation, (6) subject and author index, and (7) heat pipe related patents.

  13. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  14. Miniature pipe crawler tractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, M.D.; Anderson, M.O.; Ferrante, T.A.

    2000-03-14

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantiallymore » diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.« less

  15. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where necessary...

  16. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where necessary...

  17. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where necessary...

  18. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where necessary...

  19. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where necessary...

  20. Stress Indices and Flexibility Factors for 90-Degree Piping Elbows with Straight Pipe Extensions.

    DTIC Science & Technology

    1982-02-01

    Laboratory, Oak Ridge, Tennessee (March 1972). 5. The M.W. Kellogg Company , Design of Piping Systems, Second Edition, John Wiley and Sons, Inc., New York (1964...FLEXIBILITY FACTORS FOR 90-DEGREE PIPING ELBOWS WITH STRAIGHT PIPE EXTENSIONS 6. PERFORMING OrG. REPORT NUMBER = 7. AUTHOR(e S . CONTRACT OR GRANT NUMBER(e...UNCLASSIFIED S /N 0102-LF-014-6601 SECURITY CLAUIFICAION OF THII PAGE (Sie. Det Shtee.E) SECURITY CLASSIFICATION OF THIS PACE (When Does Sat* .*) (Block 20

  1. Study on fluid-structure interaction in liquid oxygen feeding pipe systems using finite volume method

    NASA Astrophysics Data System (ADS)

    Wei, Xin; Sun, Bing

    2011-10-01

    The fluid-structure interaction may occur in space launch vehicles, which would lead to bad performance of vehicles, damage equipments on vehicles, or even affect astronauts' health. In this paper, analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed, with the effect of fluid-structure interaction (FSI) taken into consideration. The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling. Numerical tests on pipes between the tank and the pump are solved by the finite volume method. Results show that restrictions weaken the interaction between axial and lateral vibrations. The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis, and thus highlight the usefulness of the proposed model. This study would provide a reference to the pipe test, as well as facilitate further studies on oscillation suppression.

  2. Chemical laser exhaust pipe design research

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  3. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  4. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  5. Full-color large-scaled computer-generated holograms using RGB color filters.

    PubMed

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji

    2017-02-06

    A technique using RGB color filters is proposed for creating high-quality full-color computer-generated holograms (CGHs). The fringe of these CGHs is composed of more than a billion pixels. The CGHs reconstruct full-parallax three-dimensional color images with a deep sensation of depth caused by natural motion parallax. The simulation technique as well as the principle and challenges of high-quality full-color reconstruction are presented to address the design of filter properties suitable for large-scaled CGHs. Optical reconstructions of actual fabricated full-color CGHs are demonstrated in order to verify the proposed techniques.

  6. Heat pipe technology: A biblography with abstracts

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe research and development projects conducted during April through June 1972, is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) test and operation, (6) subject and author index, and (7) heat pipe related patents.

  7. FIELD STUDIES OF IMPREGNATED CONCRETE PIPE

    EPA Science Inventory

    The follow-on study (initiated in June 1980) continued to monitor performance of 1,400 ft of impregnated concrete pipe installed in several Texas cities. The performance of concrete pipe has been compared with that of sulfur-impregnated concrete pipe; hydrofluoric acid (HF)-treat...

  8. 46 CFR 76.23-20 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-20 Piping. (a) All piping, valves, and fittings shall meet the applicable... the Commandant. (c) All piping, valves, fittings, and sprinkler heads shall be securely supported, and...

  9. 46 CFR 76.23-20 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-20 Piping. (a) All piping, valves, and fittings shall meet the applicable... the Commandant. (c) All piping, valves, fittings, and sprinkler heads shall be securely supported, and...

  10. 46 CFR 76.23-20 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-20 Piping. (a) All piping, valves, and fittings shall meet the applicable... the Commandant. (c) All piping, valves, fittings, and sprinkler heads shall be securely supported, and...

  11. 46 CFR 76.23-20 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Sprinkling System, Details § 76.23-20 Piping. (a) All piping, valves, and fittings shall meet the applicable... the Commandant. (c) All piping, valves, fittings, and sprinkler heads shall be securely supported, and...

  12. Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control

    NASA Technical Reports Server (NTRS)

    Pahle, Joe W.

    2008-01-01

    This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.

  13. Multi-leg heat pipe evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  14. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, Donald J.

    1994-01-01

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  15. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  16. Sintered Lining for Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.; Eastman, G. Y.

    1985-01-01

    Hotspots eliminated by lining inner wall. Distribution of heat transfer liquid in heat-pipe evaporator improved by lining inner wall with layer of sintered metal. Sintered layer takes place of layer of screen wick formerly sintered or bonded to wall. Since sintered layer always full of liquid, no hotspot of type that previously arose where former screen wick did not fit properly against wall.

  17. 24 CFR 3280.706 - Oil piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI B 36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded copper or brass pipe in iron pipe sizes may be used. (2) Fittings for oil... Seamless Copper Tube for Air Conditioning and Refrigeration Field Service. (4) Steel tubing shall have a...

  18. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal bonding...

  19. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal bonding...

  20. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal bonding...

  1. Pipe support for use in a nuclear system

    DOEpatents

    Pollono, Louis P.; Mello, Raymond M.

    1977-01-01

    A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.

  2. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  3. Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2006-01-01

    Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles. . Heat-pipe leading edge development. Design validation heat pipe testing confirmed design. Three heat pipes embedded and tested in C/C. Single J-tube heat pipe fabricated and testing initiated. HPCLE work is currently underway at several locations.

  4. Full-scale high-speed ``Edgerton'' retroreflective shadowgraphy of gunshots

    NASA Astrophysics Data System (ADS)

    Settles, Gary

    2005-11-01

    Almost 1/2 century ago, H. E. ``Doc'' Edgerton demonstrated a simple and elegant direct-shadowgraph technique for imaging large-scale events like explosions and gunshots. Only a retroreflective screen, flashlamp illumination, and an ordinary view camera were required. Retroreflective shadowgraphy has seen occasional use since then, but its unique combination of large scale, simplicity and portability has barely been tapped. It functions well in environments hostile to most optical diagnostics, such as full-scale outdoor daylight ballistics and explosives testing. Here, shadowgrams cast upon a 2.4 m square retroreflective screen are imaged by a Photron Fastcam APX-RS digital camera that is capable of megapixel image resolution at 3000 frames/sec up to 250,000 frames/sec at lower resolution. Microsecond frame exposures are used to examine the external ballistics of several firearms, including a high-powered rifle, an AK-47 submachine gun, and several pistols and revolvers. Muzzle blast phenomena and the mechanism of gunpowder residue deposition on the shooter's hands are clearly visualized. In particular, observing the firing of a pistol with and without a silencer (suppressor) suggests that some of the muzzle blast energy is converted by the silencer into supersonic jet noise.

  5. Heat-pipe planets

    NASA Astrophysics Data System (ADS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2017-09-01

    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  6. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consist of one or more of the materials described in § 3280.705(b) (1) through (4). (1) Steel or wrought-iron pipe shall comply with ANSI Standard B36.10-1979, Welded and Seamless Wrought Steel Pipe. Threaded... Specification for Seamless Red Brass Pipe, Standard Sizes. (2) Fittings for gas piping shall be wrought iron...

  7. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes. [CGFR 68...

  8. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes. [CGFR 68...

  9. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes. [CGFR 68...

  10. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes. [CGFR 68...

  11. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes. [CGFR 68...

  12. 49 CFR 195.212 - Bending of pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2) Each...

  13. 49 CFR 195.212 - Bending of pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2) Each...

  14. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, D.J.

    1994-12-27

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  15. Piping support system for liquid-metal fast-breeder reactor

    DOEpatents

    Brussalis, Jr., William G.

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  16. Heat Pipe Technology

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  17. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    PubMed

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  18. A Full-Scale Fatigue Test of 9-m CX-100 Wind Turbine Blades

    DTIC Science & Technology

    2011-09-01

    A Full-Scale Fatigue Test of 9-m CX-100 Wind Turbine Blades G. PARK, K. M. FARINHOLT, S. G. TAYLOR and C. R. FARRAR ABSTRACT This paper...presents the SHM result of a 9m CX-100 wind turbine blade under full- scale fatigue loads. The test was performed at the National Renewable Energy...surface of the blade. The blade underwent fatigue excitation at 1.8 Hz for defined intervals, and data from the sensors were collected between and

  19. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...

  20. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...

  1. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  2. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt welds...

  3. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  4. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt welds...

  5. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt welds...

  6. Sills, aureoles and pipes in the Karoo Basin, South Africa, as triggers for Early Jurassic environmental changes

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik H.; Planke, Sverre; Silkoset, Petter; Hammer, Øyvind; Iyer, Karthik; Schmid, Dani W.; Chevallier, Luc

    2017-04-01

    Most of the Large Igneous Provinces (LIPs) formed during the last 260 million years are associated with climatic change, oceanic anoxia, or extinctions in marine and terrestrial environments. Current hypotheses involve A) degassing of carbon either from oceans or shallow sea-bed reservoirs, B) carbon and sulfur degassing from flood basalts, C) degassing from sedimentary basins heavily intruded by LIPs. Here we present new data on gas generation and degassing from the Karoo LIP, based on fieldwork, borehole studies (geochemistry, petrography), and thermal modeling. Our data expand and corroborate earlier work on the sub-volcanic processes in the Karoo Basin. We show that 1) hundreds of breccia pipes are rooted in Early Jurassic sill complexes and contact aureoles within the organic-rich Ecca Group, 2) statistical analyses reveal a fractal distribution of pipes and that they are overdispersed at small scales (<50 m), but clustered at larger scales (>800 m), 3) contact aureoles show a reduction in organic matter content towards the sill contacts, reduced to zero in the nearest zones, producing more carbon gas compared to thermal model calculations, 4) we find up to 3 permil reduction in the d13C of the organic matter remaining in the aureoles, and finally 5) some pipes contain recent oil seeps. We conclude that the sill-pipe system released thermogenic gases to the Early Jurassic atmosphere and that the pipes may have acted as permanent fluid flow pathways.

  7. Study of fatigue behavior of longitudinal welded pipes

    NASA Astrophysics Data System (ADS)

    Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.

    2016-08-01

    During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.

  8. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...

  9. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...

  10. Centrally activated pipe snubbing system

    DOEpatents

    Cawley, William E.

    1985-01-01

    An electromechanical pipe snubbing system and an electromechanical pipe snubber. In the system, each pipe snubber, in a set of pipe snubbers, has an electromechanical mechanism to lock and unlock the snubber. A sensor, such as a seismometer, measures a quantity related to making a snubber locking or unlocking decision. A control device makes an electrical connection between a power supply and each snubber's electromechanical mechanism to simultaneously lock each snubber when the sensor measurement indicates a snubber locking condition. The control device breaks the connection to simultaneously unlock each snubber when the sensor measurement indicates a snubber unlocking condition. In the snubber, one end of the shaft slides within a bore in one end of a housing. The other end of the shaft is rotatably attached to a pipe; the other end of the housing is rotatively attached to a wall. The snubber's electromechanical mechanism locks the slidable end of the shaft to the housing and unlocks that end from the housing. The electromechanical mechanism permits remote testing and lockup status indication for each snubber.

  11. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  12. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  13. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawlmore » through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.« less

  14. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, Richard W.; Hoffman, Myron A.

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  15. CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS

    EPA Science Inventory

    A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...

  16. Analysis of Municipal Pipe Network Franchise Institution

    NASA Astrophysics Data System (ADS)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  17. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  18. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  19. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  20. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less...

  1. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... is such that ordinary leakage can be removed this way. (b) The bilge pipe on vessels 65 feet in length and under must be not less than one inch nominal pipe size. On vessels greater than 65 but less...

  2. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion..., see § 192.7). (3) The joint may not be heated to accelerate the setting of the cement. (c) Heat-fusion joints. Each heat-fusion joint on plastic pipe must comply with the following: (1) A butt heat-fusion...

  3. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion..., see § 192.7). (3) The joint may not be heated to accelerate the setting of the cement. (c) Heat-fusion joints. Each heat-fusion joint on plastic pipe must comply with the following: (1) A butt heat-fusion...

  4. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion..., see § 192.7). (3) The joint may not be heated to accelerate the setting of the cement. (c) Heat-fusion joints. Each heat-fusion joint on plastic pipe must comply with the following: (1) A butt heat-fusion...

  5. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion..., see § 192.7). (3) The joint may not be heated to accelerate the setting of the cement. (c) Heat-fusion joints. Each heat-fusion joint on plastic pipe must comply with the following: (1) A butt heat-fusion...

  6. Water driven turbine/brush pipe cleaner

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  7. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  8. Physics of heat pipe rewetting

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  9. Design and construction of a full-scale lateral impact testing facility.

    DOT National Transportation Integrated Search

    2015-05-01

    The goal of this work is to design and construct a full scale lateral impact testing facility that is capable of recreating the damage that would be created by an overheight vehicle collision. This was accomplished by impacting a test specimen with 8...

  10. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    NASA Astrophysics Data System (ADS)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  11. Selection of the surface water treatment technology - a full-scale technological investigation.

    PubMed

    Pruss, Alina

    2015-01-01

    A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1-1.5 m³/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m³/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.

  12. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  13. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  14. Study on pipe deflection by using numerical method

    NASA Astrophysics Data System (ADS)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  15. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    PubMed

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... strap attached by welding or bolting. (2) Two or more bolts that give metal to metal contact between the...

  17. Performance of buried pipe installation.

    DOT National Transportation Integrated Search

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  18. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  19. These Pipes Are "Happening"

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  20. Modeling a full-scale primary sedimentation tank using artificial neural networks.

    PubMed

    Gamal El-Din, A; Smith, D W

    2002-05-01

    Modeling the performance of full-scale primary sedimentation tanks has been commonly done using regression-based models, which are empirical relationships derived strictly from observed daily average influent and effluent data. Another approach to model a sedimentation tank is using a hydraulic efficiency model that utilizes tracer studies to characterize the performance of model sedimentation tanks based on eddy diffusion. However, the use of hydraulic efficiency models to predict the dynamic behavior of a full-scale sedimentation tank is very difficult as the development of such models has been done using controlled studies of model tanks. In this paper, another type of model, namely artificial neural network modeling approach, is used to predict the dynamic response of a full-scale primary sedimentation tank. The neuralmodel consists of two separate networks, one uses flow and influent total suspended solids data in order to predict the effluent total suspended solids from the tank, and the other makes predictions of the effluent chemical oxygen demand using data of the flow and influent chemical oxygen demand as inputs. An extensive sampling program was conducted in order to collect a data set to be used in training and validating the networks. A systematic approach was used in the building process of the model which allowed the identification of a parsimonious neural model that is able to learn (and not memorize) from past data and generalize very well to unseen data that were used to validate the model. Theresults seem very promising. The potential of using the model as part of a real-time process control system isalso discussed.

  1. Effectiveness of distributed temperature measurements for early detection of piping in river embankments

    NASA Astrophysics Data System (ADS)

    Bersan, Silvia; Koelewijn, André R.; Simonini, Paolo

    2018-02-01

    Internal erosion is the cause of a significant percentage of failure and incidents involving both dams and river embankments in many countries. In the past 20 years the use of fibre-optic Distributed Temperature Sensing (DTS) in dams has proved to be an effective tool for the detection of leakages and internal erosion. This work investigates the effectiveness of DTS for dike monitoring, focusing on the early detection of backward erosion piping, a mechanism that affects the foundation layer of structures resting on permeable, sandy soils. The paper presents data from a piping test performed on a large-scale experimental dike equipped with a DTS system together with a large number of accompanying sensors. The effect of seepage and piping on the temperature field is analysed, eventually identifying the processes that cause the onset of thermal anomalies around piping channels and thus enable their early detection. Making use of dimensional analysis, the factors that influence this thermal response of a dike foundation are identified. Finally some tools are provided that can be helpful for the design of monitoring systems and for the interpretation of temperature data.

  2. Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests

    DTIC Science & Technology

    2017-09-01

    AFCEC-CO-TY-TR-2018-0001 CONVERTING HANGAR HIGH EXPANSION FOAM SYSTEMS TO PREVENT COCKPIT DAMAGE: FULL-SCALE VALIDATION TESTS Gerard G...REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b...09-2017 Final Test Report May 2017 Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests N00173-15-D

  3. Simplified pipe gun

    NASA Astrophysics Data System (ADS)

    Sørensen, H.; Nordskov, A.; Sass, B.; Visler, T.

    1987-12-01

    A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of ±2% are obtained with a propellant gas pressure of 40 bar.

  4. 46 CFR 56.10-5 - Pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-22 of this chapter.) (c) Nonferrous pipe. (See also § 56.60-20.) (1) Copper and brass pipe for water... temperatures to 406 °F. (2) Copper and brass pipe for air may be used in accordance with the allowable stresses found from Table 56.60-1(a). (3) Copper-nickel alloys may be used for water and steam service within the...

  5. 46 CFR 56.10-5 - Pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-22 of this chapter.) (c) Nonferrous pipe. (See also § 56.60-20.) (1) Copper and brass pipe for water... temperatures to 406 °F. (2) Copper and brass pipe for air may be used in accordance with the allowable stresses found from Table 56.60-1(a). (3) Copper-nickel alloys may be used for water and steam service within the...

  6. Heat pipe fatigue test specimen: Metallurgical evaluation

    NASA Technical Reports Server (NTRS)

    Walak, Steven E.; Cronin, Michael J.; Grobstein, Toni

    1992-01-01

    An innovative creep/fatigue test was run to simulate the temperature, mechanical load, and sodium corrosion conditions expected in a heat pipe designed to supply thermal energy to a Stirling cycle power converter. A sodium-charged Inconel 718 heat pipe with a Nickel 200 screen wick was operated for 1090 hr at temperatures between 950 K (1250 F) and 1050 K (1430 F) while being subjected to creep and fatigue loads in a servo-hydraulic testing machine. After testing, the heat pipe was sectioned and examined using optical microscopy, scanning electron microscopy, and electron microprobe analysis with wavelength dispersive x-ray spectroscopy. The analysis concentrated on evaluating topographic, microstructural, and chemical changes in the sodium exposed surfaces of the heat pipe wall and wick. Surface changes in the evaporator, condenser, and adiabatic sections of the heat pipe were examined in an effort to correlate the changes with the expected sodium environment in the heat pipe. This report describes the setup, operating conditions, and analytical results of the sodium heat pipe fatigue test.

  7. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion

  8. DEVELOPMENT OF TECHNOLOGY TO REMOTELY NAVIGATE VERTICAL PIPE ARRAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D.; Immel, D.; Vrettos, N.

    Situations exist around the Savannah River Site (SRS) and the Department of Energy (DOE) complex where it is advantageous to remotely navigate vertical pipe arrays. Specific examples are waste tanks in the SRS Tank Farms, which contain horizontal cooling coils at the tank bottom, vertical cooling coils throughout and a limited number of access points or ''risers''. These factors limit accessibility to many parts of these tanks by conventional means. Pipe Traveler technology has been developed to address these issues. The Pipe Traveler addresses these issues by using the vertical cooling coils as its medium of travel. The unit operatesmore » by grabbing a pipe using dual grippers located on either side of the equipment. Once securely attached to the pipe a drive wheel is extended to come in contact with the pipe. Rotation of the drive wheel causes the unit to rotate around the pipe. This action is continued until the second set of grippers is aligned with the next pipe. Extension pistons are actuated to extend the second set of grippers in contact with a second pipe. The second set of grippers is then actuated to grasp the pipe. The first set of grippers releases the original pipe and the process is repeated until the unit reaches its desired location. Once at the tool deployment location the desired tool may be used. The current design has proven the concept of pipe-to-pipe navigation. Testing of the Pipe Traveler has proven its ability to transfer itself from one pipe to another.« less

  9. Utilizing Snap-Tite slip line pipe as a direct burial cross pipe, construction and first interim report, October, 2007.

    DOT National Transportation Integrated Search

    2007-10-01

    The Maine Department of Transportation uses reinforced concrete, polymer coated corrugated metal, : corrugated aluminum or corrugated polyethylene for highway cross pipes. Design life for cross pipe is 50 : plus years. Repair of failed cross pipes in...

  10. Experimental operation of a sodium heat pipe

    NASA Astrophysics Data System (ADS)

    Holtz, R. E.; McLennan, G. A.; Koehl, E. R.

    1985-05-01

    This report documents the operation of a 28 in. long sodium heat pipe in the Heat Pipe Test Facility (HPTF) installed at Argonne National Laboratory. Experimental data were collected to simulate conditions prototypic of both a fluidized bed coal combustor application and a space environment application. Both sets of experiment data show good agreement with the heat pipe analytical model. The heat transfer performance of the heat pipe proved reliable over a substantial period of operation and over much thermal cycling. Additional testing of longer heat pipes under controlled laboratory conditions will be necessary to determine performance limitations and to complete the design code validation.

  11. Heat pipes in space and on earth

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1978-01-01

    The performance of heat pipes used in the thermal control system of spacecraft such as OAO-III and ATS-6 is discussed, and applications of heat pipes to permafrost stabilization on the Alaska Pipeline and to heat recovery systems are described. Particular attention is given to the ATS-6, launched in 1974, which employs 55 heat pipes to carry solar and internal power loads to radiator surfaces. In addition, experiments involving radiative cooling based on cryogenic heat pipes have been planned for the Long Duration Exposure Facility spacecraft and for Spacelab. The role of heat pipes in Space Shuttle heat rejection services is also mentioned.

  12. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1991-04-02

    This invention is comprised of a pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing. between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair laying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is widemore » and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.« less

  13. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  14. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  15. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  16. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  17. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe fittings...

  18. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe fittings...

  19. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe fittings...

  20. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe fittings...

  1. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe fittings...

  2. Static Thrust and Power Characteristics of Six Full-Scale Propellers

    NASA Technical Reports Server (NTRS)

    Hartman, Erwin P; Biermann, David

    1940-01-01

    Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.

  3. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant.

    PubMed

    Garuti, Mirco; Langone, Michela; Fabbri, Claudio; Piccinini, Sergio

    2018-01-01

    The implementation of hydrodynamic cavitation (HC) pretreatment for enhancing the methane potential from agricultural biomasses was evaluated in a full scale agricultural biogas plant, with molasses and corn meal as a supplementary energy source. HC batch tests were run to investigate the influence on methane production, particle size and viscosity of specific energy input. 470kJ/kgTS was chosen for the full-scale implementation. Nearly 6-months of operational data showed that the HC pretreatment maximized the specific methane production of about 10%, allowing the biogas plant to get out of the fluctuating markets of supplementary energy sources and to reduce the methane emissions. HC influenced viscosity and particle size of digestate, contributing to reduce the energy demand for mixing, heating and pumping. In the light of the obtained results the HC process appears to be an attractive and energetically promising alternative to other pretreatments for the degradation of biomasses in biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  5. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  6. Ultrasonic multi-skip tomography for pipe inspection

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Vos, Rik; Hunter, Alan; Lorenz, Maarten

    2012-05-01

    The inspection of wall loss corrosion is difficult at pipe support locations due to limited accessibility. However, the recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, but it is difficult to quantify both the extent and depth of the loss. If the extent is unknown, then only a conservative estimate of the depth can be made due to the cumulative nature of the travel time variations. Multi-Skip tomography is an extension of Multi-Skip screening and has shown promise as a complimentary follow-up inspection technique. In recent work, we have developed the technique and demonstrated its use for reconstructing high-resolution estimates of pipe wall thickness profiles. The method operates via a model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). This paper presents our recent developments in Multi-Skip tomographic inversion, focusing on the initial localization of corrosion regions for efficient parameterization of the surface profile model and utilization of the signal phase information for improving resolution.

  7. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    EPA Science Inventory

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  8. Heat pipes to reduce engine exhaust emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  9. Heat pipe cooling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  10. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  11. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  12. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  13. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  14. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  15. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  16. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  17. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  18. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  19. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  20. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less

  1. A Corrosion Risk Assessment Model for Underground Piping

    NASA Technical Reports Server (NTRS)

    Datta, Koushik; Fraser, Douglas R.

    2009-01-01

    The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.

  2. Seam-weld quality of modern ERW/HFI line pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groeneveld, T.P.; Barnes, C.R.

    1991-09-01

    This study was undertaken to determine whether the seam-weld quality of modern ERW (electric resistance-welded)/HFI (high-frequency induction) welded pipe has been improved and justifies more widespread use of this type of pipe in critical applications. Wider use of ERW/HFI line pipe in gas-transmission lines would be expected to reduce construction costs. Five recently produced, heavy wall pipes fabricated using high-frequency electric-resistance welding (ERW) processes to make the seam weld and one pipe fabricated using the high-frequency induction (HFI) welding process to make the seam weld were studied. Four of the pipes were Grade X-60, one was Grade X-65, and onemore » was Grade X-70. All of the pipes were produced from microalloyed, controlled-rolled steels, and the weld zones were post-weld normalized. Ultrasonic inspection of the seam welds in the six pipe sections evaluated revealed no indications of defects. The tensile properties of all of the weld zones exceeded the minimum specified yield strengths for the respective grades of pipe and all of the pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited relatively low 85% shear area transition temperatures and relatively high upper-shelf energy absorptions as determined with Charpy V-notch specimens. In addition, for two of the three joints of pipe for which the properties were determined at both ends of the pipe, the tensile and impact properties showed little variation from end-to-end. However, for the other joint of pipe, the impact properties varied substantially from one end to the other.« less

  3. 46 CFR 154.500 - Cargo and process piping standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo and Process Piping Systems § 154.500 Cargo and process piping standards. The cargo liquid and vapor piping and process piping systems must meet the requirements in §§ 154.503 through 154.562... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo and process piping standards. 154.500 Section 154...

  4. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  5. The Monster Sound Pipe

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2017-01-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which…

  6. Demonstrating Sound Impulses in Pipes.

    ERIC Educational Resources Information Center

    Raymer, M. G.; Micklavzina, Stan

    1995-01-01

    Describes a simple, direct method to demonstrate the effects of the boundary conditions on sound impulse reflections in pipes. A graphical display of the results can be made using a pipe, cork, small hammer, microphone, and fast recording electronics. Explains the principles involved. (LZ)

  7. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...

  8. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...

  9. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...

  10. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  11. 46 CFR 154.516 - Piping: Hull protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Hull protection. 154.516 Section 154.516 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... and Process Piping Systems § 154.516 Piping: Hull protection. A vessel's hull must be protected from...

  12. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  13. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  14. 77 FR 30522 - Sunoco Pipeline L.P., West Texas Gulf Pipe Line Company, Mobil Pipe Line Company; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-16-000] Sunoco Pipeline L.P., West Texas Gulf Pipe Line Company, Mobil Pipe Line Company; Notice of Petition for Declartaory... Company, and Mobil Pipe Line Company (collectively, Petitioners) filed a petition for a declaratory order...

  15. Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes

    NASA Technical Reports Server (NTRS)

    Orlandi, P.

    1995-01-01

    Finite-difference second-order accurate direct simulation of a turbulent pipe has been used to investigate how the turbulence production and dissipation change when a solid body rotation is applied. It is shown that when the helicity increases, the dissipation is reduced. It is asserted that to have a drag reduction the external action should be such as to disrupt the symmetry of right- and left-handed helical structures. In this study the Navier-Stokes equations in rotational form permit the turbulent energy production to be split into a part related to the energy cascade from large to small scales and into a part related to the convection by large scales. The full simulation data have shown the latter is greater than the former in the wall region and that, on the contrary, these two terms balance each other in the central region. From the pdf of the former, it has been shown how the vortical structures are changed in the wall region by the background radiation and how they are related to the changes in the energy production.

  16. Pipe penetration inspection and repair equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, G.; Gebrath, D.; Schlusen, H.J.

    Kraftwerk Union (KWU) has developed an in-pipe inspection and repair equipment package for use on pipe welds inside drywell penetrations since these welds are susceptible to integranular stress corrosion cracking (IGSCC) attack. The following paper does not give a detailed description of inspection and repair techniques (e.g., nondestructive examination (NDE), milling, or welding) but is aimed at providing information on recent developments at KWU with regard to in-pipe inspection and repair equipment.

  17. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  18. Full-scale control of Mycolata foam by FEX-120 addition.

    PubMed

    Kragelund, C; Nilsson, B; Eskilsson, K; Bøgh, A M; Nielsen, P H

    2010-01-01

    Foaming incidents in activated sludge treatment plants are a worldwide problem and occur on a regular basis in both municipal and industrial activated sludge treatment plants. Foaming is most often caused by excessive growth of filamentous bacteria, especially the gram-positive ones affiliated within the Actinobacteria, e.g. the branched Mycolata or Candidatus Microthrix parvicella. Previous studies have shown that populations of Microthrix can be controlled by addition of certain polyaluminium compounds, but until now no effective chemicals have been identified to control other important foam formers such as the Mycolata. A new chemical (FilamentEx, FEX-120) was tested in full-scale in a Swedish wastewater treatment plant (WWTP) with immense foaming problems. In total, three different dosing events were carried out for more than 1 year. After only 8-17 weeks in each period, all foam had disappeared, and dosing of FEX-120 was stopped. Another 11 full-scale WWTPs in different countries were treated with FEX-120 because of severe Mycolata foaming on process tanks. In nine out of 11 plants, where the causative organisms were Gordonia or Skermania, a significant reduction of foam up to 100% was observed after treatment for approx. 10 weeks. In two WWTPs with unknown Mycolata organisms, no reduction was observed.

  19. Application of displacement monitoring system on high temperature steam pipe

    NASA Astrophysics Data System (ADS)

    Ghaffar, M. H. A.; Husin, S.; Baek, J. E.

    2017-10-01

    High-energy piping systems of power plants such as Main Steam (MS) pipe or Hot Reheat (HR) pipe are operating at high temperature and high pressure at base and cyclic loads. In the event of transient condition, a pipe can be deflected dramatically and caused high stress in the pipe, yielding to failure of the piping system. Periodic monitoring and walk down can identify abnormalities but limitations exist in the standard walk down practice. This paper provides a study of pipe displacement monitoring on MS pipe of coal-fired power plant to continuously capture the pipe movement behaviour at different load using 3-Dimensional Displacement Measuring System (3DDMS). The displacement trending at Location 5 and 6 (north and south) demonstrated pipes displace less than 25% to that of design movement. It was determined from synchronisation analysis that Location 7 (north) and Location 8 (south) pipe actual movement difference has exceeded the design movement difference. Visual survey at specified locations with significant displacement trending reveals issues of hydraulic snubber and piping interferences. The study demonstrated that the displacement monitoring is able to capture pipe movement at all time and allows engineer to monitor pipe movement behaviour, aids in identifying issue early for remedy action.

  20. Stratified Shear Flows In Pipe Geometries

    NASA Astrophysics Data System (ADS)

    Harabin, George; Camassa, Roberto; McLaughlin, Richard; UNC Joint Fluids Lab Team Team

    2015-11-01

    Exact and series solutions to the full Navier-Stokes equations coupled to the advection diffusion equation are investigated in tilted three-dimensional pipe geometries. Analytic techniques for studying the three-dimensional problem provide a means for tackling interesting questions such as the optimal domain for mass transport, and provide new avenues for experimental investigation of diffusion driven flows. Both static and time dependent solutions will be discussed. NSF RTG DMS-0943851, NSF RTG ARC-1025523, NSF DMS-1009750.

  1. Heat pipe radiators for space

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1976-01-01

    Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.

  2. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  3. 46 CFR 154.528 - Piping joints: Flange type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Process Piping Systems § 154.528 Piping joints: Flange type. (a) A flange must be one of the following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... less; or (3) Welding neck. (c) If the piping is designed for a temperature lower than −55 °C (−67 °F...

  4. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  5. Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher

    2006-06-30

    Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need formore » large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial

  6. 76 FR 65748 - Certain Pipe and Tube From Brazil, India, Korea, Mexico, Taiwan, Thailand, and Turkey; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ...-534, and 536 (Third Review)] Certain Pipe and Tube From Brazil, India, Korea, Mexico, Taiwan, Thailand... Turkey, the antidumping duty orders on welded carbon steel pipe and tube from India, Thailand, and Turkey... group responses with respect to Mexico, Thailand, and Turkey were adequate, and decided to conduct full...

  7. Impact of treatment on Pb release from full and partially replaced harvested Lead Service Lines (LSLs).

    PubMed

    Cartier, Clément; Doré, Evelyne; Laroche, Laurent; Nour, Shokoufeh; Edwards, Marc; Prévost, Michèle

    2013-02-01

    Release of lead from 80% partially replaced service lines was compared to full lead service lines using harvested-stabilized lead pipes and field brass connectors. After more than a year of stabilization, lead release was consistent with field samples. Over the relatively short duration partial replacement of lead pipe by copper pipe (3 months), generated high lead release, attributed to galvanic corrosion, resulting in a final outcome for lead release that was even worse than for a full lead pipe. Increased lead release was especially evident at higher flow rates. Orthophosphate reduced lead release from full lead pipes by 64%. For partially replaced samples with copper, lead concentrations were unchanged by phosphate dosing at moderate flow (103 ± 265 vs 169 ± 349 μg/L) and were increased to very high levels when sampled at high flow rates (1001 ± 1808 vs 257 ± 224 μg/L). The increase lead release was in the form of particulate lead (>90%). In comparison to the condition without treatment, increased sulfate treatment had little impact on lead release from 100%-Pb rigs but reduced lead release from partially replaced lead pipes with copper. Our results also raise questions concerning protocols based on short 30 min stagnation (as those used in Canada) due to their incapacity to consider particulate lead release generated mostly after longer stagnation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 5. INDUSTRIAL PIPING SYSTEM FOR 500 H.P. LLEWELLYN BOILER, ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INDUSTRIAL PIPING SYSTEM FOR 500 H.P. LLEWELLYN BOILER, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet M1. Plan no. 10,551. Scale 1/4 inch to the foot. June 1, 1945. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  9. A quality assessment of 3D video analysis for full scale rockfall experiments

    NASA Astrophysics Data System (ADS)

    Volkwein, A.; Glover, J.; Bourrier, F.; Gerber, W.

    2012-04-01

    Main goal of full scale rockfall experiments is to retrieve a 3D trajectory of a boulder along the slope. Such trajectories then can be used to calibrate rockfall simulation models. This contribution presents the application of video analysis techniques capturing rock fall velocity of some free fall full scale rockfall experiments along a rock face with an inclination of about 50 degrees. Different scaling methodologies have been evaluated. They mainly differ in the way the scaling factors between the movie frames and the reality and are determined. For this purpose some scale bars and targets with known dimensions have been distributed in advance along the slope. The single scaling approaches are briefly described as follows: (i) Image raster is scaled to the distant fixed scale bar then recalibrated to the plane of the passing rock boulder by taking the measured position of the nearest impact as the distance to the camera. The distance between the camera, scale bar, and passing boulder are surveyed. (ii) The image raster was scaled using the four nearest targets (identified using frontal video) from the trajectory to be analyzed. The average of the scaling factors was finally taken as scaling factor. (iii) The image raster was scaled using the four nearest targets from the trajectory to be analyzed. The scaling factor for one trajectory was calculated by balancing the mean scaling factors associated with the two nearest and the two farthest targets in relation to their mean distance to the analyzed trajectory. (iv) Same as previous method but with varying scaling factors during along the trajectory. It has shown that a direct measure of the scaling target and nearest impact zone is the most accurate. If constant plane is assumed it doesn't account for the lateral deviations of the rock boulder from the fall line consequently adding error into the analysis. Thus a combination of scaling methods (i) and (iv) are considered to give the best results. For best results

  10. 46 CFR 119.510 - Bilge piping system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Bilge piping system. 119.510 Section 119.510 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Ballast Systems § 119.510 Bilge piping system. A vessel must be provided with a piping system that meets...

  11. 46 CFR 119.510 - Bilge piping system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Bilge piping system. 119.510 Section 119.510 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Ballast Systems § 119.510 Bilge piping system. A vessel must be provided with a piping system that meets...

  12. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, Gene T.

    1987-01-01

    The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.

  13. Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Giacomoni, Clothilde

    2016-01-01

    The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.

  14. Small, Untethered, Mobile Robots for Inspecting Gas Pipes

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2003-01-01

    Small, untethered mobile robots denoted gas-pipe explorers (GPEXs) have been proposed for inspecting the interiors of pipes used in the local distribution natural gas. The United States has network of gas-distribution pipes with a total length of approximately 109 m. These pipes are often made of iron and steel and some are more than 100 years old. As this network ages, there is a need to locate weaknesses that necessitate repair and/or preventive maintenance. The most common weaknesses are leaks and reductions in thickness, which are caused mostly by chemical reactions between the iron in the pipes and various substances in soil and groundwater. At present, mobile robots called pigs are used to inspect and clean the interiors of gas-transmission pipelines. Some carry magnetic-flux-leakage (MFL) sensors for measuring average wall thicknesses, some capture images, and some measure sizes and physical conditions. The operating ranges of pigs are limited to fairly straight sections of wide transmission- type (as distinguished from distribution- type) pipes: pigs are too large to negotiate such obstacles as bends with radii comparable to or smaller than pipe diameters, intrusions of other pipes at branch connections, and reductions in diameter at valves and meters. The GPEXs would be smaller and would be able to negotiate sharp bends and other obstacles that typically occur in gas-distribution pipes.

  15. A sensitivity study of the effects of evaporation/condensation accommodation coefficients on transient heat pipe modeling

    NASA Astrophysics Data System (ADS)

    Hall, Michael L.; Doster, J. Michael

    1990-03-01

    The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.

  16. Downhole pipe selection for acoustic telemetry

    DOEpatents

    Drumheller, Douglas S.

    1995-01-01

    A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.

  17. 46 CFR 154.519 - Piping relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Process Piping Systems § 154.519 Piping relief valves. (a) The liquid relief valve that protects the cargo piping system from liquid pressure exceeding the design pressure must discharge into: (1) A cargo tank; or (2) A cargo vent mast if that vent mast has a means for the detection and removal of the liquid...

  18. 46 CFR 154.519 - Piping relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Process Piping Systems § 154.519 Piping relief valves. (a) The liquid relief valve that protects the cargo piping system from liquid pressure exceeding the design pressure must discharge into: (1) A cargo tank; or (2) A cargo vent mast if that vent mast has a means for the detection and removal of the liquid...

  19. 46 CFR 154.519 - Piping relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Process Piping Systems § 154.519 Piping relief valves. (a) The liquid relief valve that protects the cargo piping system from liquid pressure exceeding the design pressure must discharge into: (1) A cargo tank; or (2) A cargo vent mast if that vent mast has a means for the detection and removal of the liquid...

  20. 46 CFR 154.519 - Piping relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Process Piping Systems § 154.519 Piping relief valves. (a) The liquid relief valve that protects the cargo piping system from liquid pressure exceeding the design pressure must discharge into: (1) A cargo tank; or (2) A cargo vent mast if that vent mast has a means for the detection and removal of the liquid...

  1. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  2. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used for... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it passes...

  3. 46 CFR 119.430 - Engine exhaust pipe installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used for... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it passes...

  4. Downhole pipe selection for acoustic telemetry

    DOEpatents

    Drumheller, D.S.

    1995-12-19

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  5. Glass light pipes for solar concentration

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.

    2018-02-01

    Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.

  6. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies.

    PubMed

    Schwitalla, P; Mennerich, A; Austermann-Haun, U; Müller, A; Dorninger, C; Daims, H; Holm, N C; Rönner-Holm, S G E

    2008-01-01

    Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle-specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption.One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded. IWA Publishing 2008.

  7. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    NASA Astrophysics Data System (ADS)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  8. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  9. Carboxyhaemoglobin levels in water-pipe and cigarette smokers.

    PubMed

    Theron, Ansa; Schultz, Cedric; Ker, James A; Falzone, Nadia

    2010-01-29

    Water-pipe smoking is growing in popularity, especially among young people, because of the social nature of the smoking session and the assumption that the effects are less harmful than those of cigarette smoking. It has however been shown that a single water-pipe smoking session produces a 24-hour urinary cotinine level equivalent to smoking 10 cigarettes per day. We aimed to measure carboxyhaemoglogin (COHb) blood levels before and after water-pipe and cigarette smoking sessions. Self-confessed smokers older than 18 years (N=30) volunteered to smoke a water-pipe or a cigarette and have their blood COHb levels measured under controlled conditions. Mean baseline COHb levels were 2.9% for the 15 cigarette smokers and 1.0% for the 15 water-pipe smokers. Levels increased by a mean of 481.7% in water-pipe smokers as opposed to 39.9% in cigarette smokers. The study demonstrated that water-pipe smokers had significantly higher increases in blood COHb levels than cigarette smokers during a single smoking session.

  10. Watertight pipe joint survey : final report

    DOT National Transportation Integrated Search

    2000-04-01

    Oregon Department of Transportation (ODOT) has been specifying watertight pipes for storm sewer and some culvert pipe installations. The ODOT designer is responsible for specifying the watertight requirement, but there is no currently accepted standa...

  11. Heat pipes and their use in technology

    NASA Technical Reports Server (NTRS)

    Vasilyev, L.

    1977-01-01

    Heat pipes may be employed as temperature regulators, heat diodes, transformers, storage batteries, or utilized for transforming thermal energy into mechanical, electric, or other forms of energy. General concepts were established for the analysis of the transfer process in heat pipes. A system of equations was developed to describe the thermodynamics of steam passage through a cross section of a heat pipe.

  12. Performance evaluation of buried pipe installation.

    DOT National Transportation Integrated Search

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  13. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, Gene T.

    1989-01-01

    Mathematical models and an associated computer program for heat pipe startup from the frozen state have been developed. Finite element formulations of the governing equations are written for each heat pipe region for each operating condition during startup from the frozen state. The various models were checked against analytical and experimental data available in the literature for three specific types of operation. Computations using the methods developed were made for a space shuttle reentry mission where a heat pipe cooled leading edge was used on the wing.

  14. Transient thermohydraulic heat pipe modeling

    NASA Astrophysics Data System (ADS)

    Hall, Michael L.; Doster, Joseph M.

    Many space based reactor designs employ heat pipes as a means of conveying heat. In these designs, thermal radiation is the principle means for rejecting waste heat from the reactor system, making it desirable to operate at high temperatures. Lithium is generally the working fluid of choice as it undergoes a liquid-vapor transformation at the preferred operating temperature. The nature of remote startup, restart, and reaction to threats necessitates an accurate, detailed transient model of the heat pipe operation. A model is outlined of the vapor core region of the heat pipe which is part of a large model of the entire heat pipe thermal response. The vapor core is modeled using the area averaged Navier-Stokes equations in one dimension, which take into account the effects of mass, energy and momentum transfer. The core model is single phase (gaseous), but contains two components: lithium gas and a noncondensible vapor. The vapor core model consists of the continuity equations for the mixture and noncondensible, as well as mixture equations for internal energy and momentum.

  15. Refined pipe theory for mechanistic modeling of wood development.

    PubMed

    Deckmyn, Gaby; Evans, Sam P; Randle, Tim J

    2006-06-01

    We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).

  16. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  17. Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Abrego, Anita I.; Olson, Lawrence E.

    2011-01-01

    Blade displacement measurements were acquired during a wind tunnel test of the full-scale UH-60A Airloads rotor. The test was conducted in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at NASA Ames Research Center. Multi-camera photogrammetry was used to measure the blade displacements of the four-bladed rotor. These measurements encompass a range of test conditions that include advance ratios from 0.15 to unique slowed-rotor simulations as high as 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective of these measurements is to provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft computational tools. The methodology, system development, measurement techniques, and preliminary sample blade displacement measurements are presented.

  18. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  19. Fully localised nonlinear energy growth optimals in pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shearmore » flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.« less

  20. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics.

    PubMed

    Yang, Yin; Wu, Yingying; Yang, Xiao; Zhang, Kai; Yang, Jiakuan

    2010-01-01

    In order to optimize the flow field in a full-scale Carrousel oxidation ditch with many sets of disc aerators operating simultaneously, an experimentally validated numerical tool, based on computational fluid dynamics (CFD), was proposed. A full-scale, closed-loop bioreactor (Carrousel oxidation ditch) in Ping Dingshan Sewage Treatment Plant in Ping Dingshan City, a medium-sized city in Henan Province of China, was evaluated using CFD. Moving wall model was created to simulate many sets of disc aerators which created fluid motion in the ditch. The simulated results were acceptable compared with the experimental data and the following results were obtained: (1) a new method called moving wall model could simulate the flow field in Carrousel oxidation ditch with many sets of disc aerators operating simultaneously. The whole number of cells of grids decreased significantly, thus the calculation amount decreased, and (2) CFD modeling generally characterized the flow pattern in the full-scale tank. 3D simulation could be a good supplement for improving the hydrodynamic performance in oxidation ditch designs.

  1. Detecting damage in full-scale honeycomb sandwich composite curved fuselage panels through frequency response

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.; Ozevin, Didem; Mosinyi, Bao; Bakuckas, John G., Jr.; Awerbuch, Jonathan; Lau, Alan; Tan, Tein-Min

    2008-03-01

    Preliminary tests were conducted using frequency response (FR) characteristics to determine damage initiation and growth in a honeycomb sandwich graphite/epoxy curved panel. This investigation was part of a more general study investigating the damage tolerance characteristics of several such panels subjected to quasi-static internal pressurization combined with hoop and axial loading. The panels were tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center in Atlantic City, NJ. The overall program objective was to investigate the damage tolerance characteristics of full-scale composite curved aircraft fuselage panels and the evolution of damage under quasi-static loading up to failure. This paper focuses on one aspect of this comprehensive investigation: the effect of state-of-damage on the characteristics of the frequency response of the subject material. The results presented herein show that recording the frequency response could be used for real-time monitoring of damage growth and in determining damage severity in full-scale composites fuselage aircraft structures.

  2. Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure.

    PubMed

    Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko

    2006-10-01

    Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.

  3. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    PubMed

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Boomwhackers and End-Pipe Corrections

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2014-01-01

    End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meter-stick. This article describes a lab activity in which students model data from…

  5. 46 CFR 154.528 - Piping joints: Flange type.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...

  6. 46 CFR 154.528 - Piping joints: Flange type.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...

  7. 46 CFR 154.528 - Piping joints: Flange type.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...

  8. 46 CFR 154.528 - Piping joints: Flange type.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... nominal pipe size is 100 mm (4 in.) or less; (2) Socket weld, if the nominal pipe size is 50 mm (2 in.) or...

  9. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  10. Microstructural characterization of pipe bomb fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Otto, E-mail: gregory@egr.uri.edu; Oxley, Jimmie; Smith, James

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of themore » smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.« less

  11. Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways

    DTIC Science & Technology

    2007-12-01

    system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A

  12. Corrosion of Spiral Rib Aluminized Pipe

    DOT National Transportation Integrated Search

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  13. NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2008-01-01

    In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.

  14. Struvite scale formation and control.

    PubMed

    Parsons, S A; Doyle, J D

    2004-01-01

    Struvite scale formation is a major operational issue at both conventional and biological nutrient removal wastewater treatment plants. Factors affecting the formation of struvite scales were investigated including supersaturation, pH and pipe material and roughness. A range of control methods have been investigated including low fouling materials, pH control, inhibitor and chemical dosing. Control methods exist to reduce scale formation although each has its advantages and disadvantages.

  15. Simple biogas desulfurization by microaeration - Full scale experience.

    PubMed

    Jeníček, P; Horejš, J; Pokorná-Krayzelová, L; Bindzar, J; Bartáček, J

    2017-08-01

    Hydrogen sulfide in biogas is common problem during anaerobic treatment of wastewater with high sulfate concentration (breweries, distilleries, etc.) and needs to be removed before biogas utilization. Physico-chemical desulfurization methods are energetically demanding and expensive compare to biochemical methods. Microaeration, i.e. dosing of small amount of air, is suitable and cost effective biochemical method of sulfide oxidation to elemental sulfur. It has been widely used in biogas plants, but its application in anaerobic reactors for wastewater treatment has been rarely studied or tested. The lack of full-scale experience with microaeration in wastewater treatment plants has been overcome by evaluating the results of seven microaerobic digesters in central Europe. The desulfurization efficiency has been more than 90% in most of the cases. Moreover, microaeration improved the degradability of COD and volatile suspended solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  17. Rotating optical geometry sensor for inner pipe-surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  18. 46 CFR 56.04-2 - Piping classification according to service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping classification according to service. 56.04-2... PIPING SYSTEMS AND APPURTENANCES Piping Classification § 56.04-2 Piping classification according to... Piping Classification Service Class 1 Pressure (p.s.i.g.) Temp. (°F) Class B and C poisons 2 I any and 0...

  19. 46 CFR 56.04-2 - Piping classification according to service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Piping classification according to service. 56.04-2... PIPING SYSTEMS AND APPURTENANCES Piping Classification § 56.04-2 Piping classification according to... Piping Classification Service Class 1 Pressure (p.s.i.g.) Temp. (°F) Class B and C poisons 2 I any and 0...

  20. Inspecting Pipe Radiographically Through Asbestos Insulation

    NASA Technical Reports Server (NTRS)

    Gianettino, David P.

    1994-01-01

    Welds between sections of insulated steampipe located and inspected radiographically. Unless need to repair defective weld, one avoids cost, time, and hazard of removing asbestos insulation. Enables inspectors to locate and evaluate nondestructively any weld in pipe system, without shutting down steam. Hidden weld joints first located by use of low-power fluoroscope, moved along pipe while technician observes fluoroscopic image. Low-energy x rays from fluoroscope penetrate insulation but not pipe. Weld bead appears in silhouette on fluoroscope screen. Technician then accurately marks weld sites on insulation for later inspection.