Science.gov

Sample records for full scale pipe

  1. Ductile fracture propagation in gas pipelines - results of full scale burst tests of big diameter pipes

    SciTech Connect

    de Vito, A.; Morini, A.; Pozzi, A.; Bonomo, F.; Bramante, M.

    1981-01-01

    Full-scale burst tests have been conducted at Perdasdefogu station of 48- and 56-in. diameter pipes of grade X70 and X80; hoop stresses were between 317 and 385 N/sq mm and thicknesses between 17 and 20 m. Two types of materials have been examined and other aspects have been considered. Particular efforts have been devoted to deformation measured by strain gages. From results obtained, examined also using a new formula as a prevision arrest criterion, the following conclusions can be drawn: (1) behavior of Q.T. materials is not properly covered by current design criteria, related limit cv energy values predicting arrest appear in fact unsafe for Q.T. steels; (2) frozen backfill might play an important role in containing fracture; and (3) simple mechanical devices can act, if properly designed, as very efficient crack-arrestors. 10 references.

  2. Full-scale Testing and Numerical Modeling oF Axial and Lateral Soil Pipe Interaction in Deepwater

    NASA Astrophysics Data System (ADS)

    Sarraf Joshaghani, M.; M Raheem, A.

    2014-12-01

    A thorough understanding of the behavior of deep sea pipes is crucial for off-shore oil & gas industry. During the service life, network of oil and gas pipelines that connect the floating platforms to the subsea wells in deepwater undergo significant changes in temperature and pressure resulting in high shears, strains and movement. These pipelines laid on the very soft seabed become susceptible to large movement and lateral buckling resulting in global instability of the entire system. Hence, it is of paramount importance to address the aforementioned issues through combined numerical modeling and experimental study of various conditions in the field. Modeling this behavior needs to take into account the complex interactions between pipe, water, and soil (which, in this case, will be a saturated porous media). Physical experiments can be challenging as the undrained shear strength is very low of the order of 0.01 kPa. In this research, we have performed large-scale experiments as well as numerical modeling. Several full-scale models have been designed and constructed to investigate the behavior of various types of pipes (steel, plastic) on the simulated clayey sea bed (undrained shear strength ranged from 0.01 kPa to 0.11 kPa). Axial and lateral pipe soil interactions have been characterized, and appropriate mitigation solutions for axial walking and lateral buckling have been proposed. On the numerical modeling front, the pipe-soil behavior is simulated using the Coupled Eulerian Lagrangian (CEL) and Arbitrary-Lagrangian-Eulerian (ALE) formulations.

  3. Fracture mechanics and full scale pipe break testing for the Department of Environment's New Production Reactor-Heavy Water Reactor

    NASA Astrophysics Data System (ADS)

    Poole, A. B.

    Oak Ridge National Laboratory (ORNL) is completing a major task for the Department of Energy (DOE) in the demonstration that the primary piping of the New Production Heavy Water Reactor (NPR-HWR), with its relatively moderate temperature and pressure, should not suffer an instantaneous Double-Ended-Guillotine-Break (DEGB) under design basis loadings and conditions. The growth of possible small preexisting defects in the piping wall was estimated over a plant life of 60 years. This worst case flaw was then evaluated using fracture mechanics methods. J estimation methods and tearing instability approximations used in this analysis are discussed in this paper. It was established that this worst case flaw would increase in size by at least 14 times before pipe instability during an earthquake would even begin to be possible. The fatigue crack growth analysis is discussed in this paper.

  4. Full Scale Tunnel model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. (Small human figures have been added for scale.) On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow.

  5. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  6. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  7. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Installation of Full Scale Tunnel (FST) power plant. Virginia Public Service Company could not supply adequate electricity to run the wind tunnels being built at Langley. (The Propeller Research Tunnel was powered by two submarine diesel engines.) This led to the consideration of a number of different ideas for generating electric power to drive the fan motors in the FST. The main proposition involved two 3000 hp and two 1000 hp diesel engines with directly connected generators. Another, proposition suggested 30 Liberty motors driving 600 hp DC generators in pairs. For a month, engineers at Langley were hopeful they could secure additional diesel engines from decommissioned Navy T-boats but the Navy could not offer a firm commitment regarding the future status of the submarines. By mid-December 1929, Virginia Public Service Company had agreed to supply service to the field at the north end of the King Street Bridge connecting Hampton and Langley Field. Thus, new plans for FST powerplant and motors were made. Smith DeFrance described the motors in NACA TR No. 459: 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed.'

  8. Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of Full-Scale Tunnel (FST) balance. Smith DeFrance described the 6-component type balance in NACA TR No. 459 (which also includes a schematic diagram of the balance and its various parts). 'Ball and socket fittings at the top of each of the struts hod the axles of the airplane to be tested; the tail is attached to the triangular frame. These struts are secured to the turntable, which is attached to the floating frame. This frame rests on the struts (next to the concrete piers on all four corners), which transmit the lift forces to the scales (partially visible on the left). The drag linkage is attached to the floating frame on the center line and, working against a known counterweight, transmits the drag force to the scale (center, face out). The cross-wind force linkages are attached to the floating frame on the front and rear sides at the center line. These linkages, working against known counterweights, transmit the cross-wind force to scales (two front scales, face in). In the above manner the forces in three directions are measured and by combining the forces and the proper lever arms, the pitching, rolling, and yawing moments can be computed. The scales are of the dial type and are provided with solenoid-operated printing devices. When the proper test condition is obtained, a push-button switch is momentarily closed and the readings on all seven scales are recorded simultaneously, eliminating the possibility of personal errors.'

  9. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Modified propeller and spinner in Full-Scale Tunnel (FST) model. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project

  10. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Wing and nacelle set-up in Full-Scale Tunnel (FST). The NACA conducted drag tests in 1931 on a P3M-1 nacelle which were presented in a special report to the Navy. Smith DeFrance described this work in the report's introduction: 'Tests were conducted in the full-scale wind tunnel on a five to four geared Pratt and Whitney Wasp engine mounted in a P3M-1 nacelle. In order to simulate the flight conditions the nacelle was assembled on a 15-foot span of wing from the same airplane. The purpose of the tests was to improve the cooling of the engine and to reduce the drag of the nacelle combination. Thermocouples were installed at various points on the cylinders and temperature readings were obtained from these by the power plants division. These results will be reported in a memorandum by that division. The drag results, which are covered by this memorandum, were obtained with the original nacelle condition as received from the Navy with the tail of the nacelle modified, with the nose section of the nacelle modified, with a Curtiss anti-drag ring attached to the engine, with a Type G ring developed by the N.A.C.A., and with a Type D cowling which was also developed by the N.A.C.A.' (p. 1)

  11. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  12. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST): 120-Foot Truss hoisting, one and two point suspension. In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  13. Education, Wechler's Full Scale IQ and "g."

    ERIC Educational Resources Information Center

    Colom, Roberto; Abad, Francisco J.; Garcia, Luis F.; Juan-Espinosa, Manuel

    2002-01-01

    Investigated whether average Full Scale IQ (FSIQ) differences can be attributed to "g" using the Spanish standardization sample of the Wechsler Adult Intelligence Scale III (WAIS III) (n=703 females and 666 men). Results support the conclusion that WAIS III FSIQ does not directly or exclusively measure "g" across the full range of population…

  14. Large scale EHD heat pipe experiments

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Taketani, T.; Shiraishi, M.; Yamanishi, T.

    An experiment of flat plate EHD heat pipe was performed in order to investigate the maximum heat transport capability and dry out conditions. The result indicates that relatively stable and high performance devices are possible. The EHD tent flow structures at evaporator and condenser sections were observed in order to investigate the effect of a variation of flow structures by heat transport and applied voltage on the dry out heat flux at an evaporator. The dry out of liquid flow at the evaporator caused by a variation of crosssectional area of EHD flow structure exerts a considerable effect to heat pipe performance.

  15. Strain concentrations in pipelines with concrete coating full scale bending tests and analytical calculations

    SciTech Connect

    Verley, R.; Ness, O.B.

    1995-12-31

    This paper presents the results of full scale bending tests on 16 in. and 20 in. diameter, concrete coated pipes with polyethene and asphalt corrosion coatings. Constant moment, four-point bending was applied to a pipe string consisting of one pipe joint welded between two half-length joints. The strain concentration factor (SCF) at the field joints (FJ), expressing the ratio between the strain in the FJ and the average strain for the pipe joint, was investigated and compared to predictions using an analytical model presented in an accompanying paper (Ness and Verley, 1995). Material tests on the pipe steel, the corrosion coating and the concrete were conducted. The analytical model is found to give a good prediction of the strain distribution along the pipe joint, for both the steel and the concrete, and therefore also of the SCF. The sliding of the concrete over the steel is also predicted reasonably well.

  16. JWST Full Scale Model Being Built

    NASA Video Gallery

    : The full-scale model of the James Webb Space Telescope is constructed for the 2010 World Science Festival in Battery Park, NY. The model takes about five days to construct. This video contains a ...

  17. Full-scale granular sludge Anammox process.

    PubMed

    Abma, W R; Schultz, C E; Mulder, J W; van der Star, W R L; Strous, M; Tokutomi, T; van Loosdrecht, M C M

    2007-01-01

    The start-up of the first full scale Anammox reactor is complete. The reactor shows stable operation, even at loading rates of 10 kg N/m3.d. This performance is the result of the formation of Anammox granules, which have a high density and settling velocities exceeding 100 m/h. With this performance, the Anammox granular sludge technology has been proven on full scale. PMID:17546966

  18. Aircraft Engineering Conference 1934 - Full Scale Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Gathered together in the only facility big enough to hold them, attendees at Langleys 1934 aircraft Engineering Conference pose in the Full Scale Wind Tunnel underneath a Boeing P-26A Peashooter. Present, among other notables, were Orville Wright, Charles Lindbergh, and Howard Hughes.

  19. Optimal numerical flux of power-law fluids in some partially full pipes

    NASA Astrophysics Data System (ADS)

    Lefton, Lew; Wei, Dongming; Liu, Yu

    2014-07-01

    Consider the steady state pressure driven flow of a power-law fluid in a partially filled straight pipe. It is known that an increase in flux can be achieved for a fixed pressure by partially filling the pipe and having the remaining volume either void or filled with a less viscous, lubricating fluid. If the pipe has circular cross section, the fluid level which maximizes flux is the level which avoids contact with exactly 25% of the boundary. This result can be proved analytically for Newtonian fluids and has been verified numerically for certain non-Newtonian models. This paper provides a generalization of this work numerically to pipes with non-circular cross sections which are partially full with a power-law fluid. A simple and physically plausible geometric condition is presented which can be used to approximate the fluid level that maximizes flux in a wide range of pipe geometries. Additional increases in flux for a given pressure can be obtained by changing the shape of the pipe but leaving the perimeter fixed. This computational analysis of flux as a function of both fluid level and pipe geometry has not been considered to our knowledge. Fluxes are computed using a special discretization scheme, designed to uncover general properties which are only dependent on fluid level and/or pipe cross-sectional geometry. Computations use finite elements and take advantage of the variational structure inherent in the power-law model. A minimization technique for approximating the critical points of the associated non-linear energy functional is used. In particular, the numerical scheme for the non-linear partial differential equation has been proved to be convergent with known error estimates. The numerical results obtained in this work can be useful for designing pipes and canals for transportation of non-Newtonian fluids, such as those in chemical engineering and food processing engineering.

  20. Natural radioactivity in the scale of water well pipes.

    PubMed

    Aksoy, A; Al-Jarallah, M; Al-Haddad, M N

    2002-01-01

    The natural radioactivity of 226Ra and 228Ra in scale samples taken from pipes used in several local water wells was investigated. The results showed 226Ra activities to be varying from 1284 to 3613 Bq/kg whereas, the 228Ra concentrations did not show any significant variation, all being low, below 30 Bq/kg. The 222Rn exhalations from these scale samples were also measured and compared with the 226Ra contents. The average ratio of 222Rn/226Ra was 31%. Chemical analyses showed that the main constituent of the scale samples was iron. The radiation dose rates from the pipes and scale were up to 100nSv/h. Although not a major hazard this could present a long-term risk if the scale materials were handled indiscriminately. PMID:12113504

  1. Full-scale studies of alum recovery

    SciTech Connect

    1988-01-01

    Full-scale testing was conducted at the Williams Water Treatment Plant to evaluate alum recovery. Two tests were conducted, one in August and one is September. The objective was to determine the dewaterability of the solids remaining after alum recovery on sand drying beds and to evaluate the effectiveness of the recovered alum as a coagulant in the water plant and for phosphorus removal at the wastewater plant.

  2. IRAC Full-Scale Flight Testbed Capabilities

    NASA Technical Reports Server (NTRS)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  3. Full scale upper surface blown flap noise

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.; Jones, W. L.

    1975-01-01

    A highly noise suppressed TF 34 engine was used to investigate the noise of several powered lift configurations involving upper surface blown (USB) flaps. The configuration variables were nozzle type (i.e. slot and circular with deflector), flap chord length, and flap angle. The results of velocity surveys at both the nozzle exit and the flap trailing edge are also presented and used for correlation of the noise data. Configurations using a long flap design were 4 db quieter than a short flap typical of current trends in USB flap design. The lower noise for the long flap is attributed primarily to the greater velocity decay of the jet at the flap trailing edge. The full-scale data revealed substantially more quadrupole noise in the region near the deflected jet than observed in previous sub-scale tests.

  4. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    EPA Science Inventory

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  5. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P.; Toimil-Molares, M. E.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipe in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  6. Full-Scale Tests of NACA Cowlings

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Brevoort, M J; Stickle, George W

    1937-01-01

    A comprehensive investigation has been carried on with full-scale models in the NACA 20-foot wind tunnel, the general purpose of which is to furnish information in regard to the physical functioning of the composite propeller-nacelle unit under all conditions of take-off, taxiing, and normal flight. This report deals exclusively with the cowling characteristics under condition of normal flight and includes the results of tests of numerous combinations of more than a dozen nose cowlings, about a dozen skirts, two propellers, two sizes of nacelle, as well as various types of spinners and other devices.

  7. Full-Scale Tunnel (FST) model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Model of Full-Scale Tunnel (FST) under construction. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. Small included angle for the exit cone; 2. Carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. Tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  8. Full-Scale Tunnel (FST) model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  9. A full-scale STOVL ejector experiment

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1993-01-01

    The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.

  10. X-38 Full Scale TPS Flight Qualification

    NASA Astrophysics Data System (ADS)

    Hilfer, G.

    2002-01-01

    The X-38 of NASA which is an experimental vehicle to prove crucial technologies of a future Crew Return Vehicle (CRV) for the International Space Station (ISS) will be equipped with a large number of newly developed components and systems. In particular, the thermal protection system of the most severely loaded surface areas such as the nose cap and the control surfaces represent a promising approach with respect to thermal endurance and re-usability aspects. The foremost nose section, the body flaps and a wing leading edge segment are all made from SiC-based fiber ceramics. Moreover, the body flap is an entire hot structure. The Nose Skirt Assembly and the Body Flap were developed and manufactured by German industry (MAN Technologie, DLR and ASTRIUM) within the frame of the national TETRA program. The Leading Edge Unit was developed and manufactured by MAN Technologie within the ESA-ARTP. As another effort within the TETRA program aimed at extending the national competence range, IABG developed and built a high-temperature test facility enabling full-scale flight qualification of thermal protection components. The main purpose of this facility was to allow application of all relevant load categories encountered during re-entry flight, i.e. thermal, mechanical and oxidative loads. The facility is in service since April 1999. Within the scope of the X-38 qualification tests the flexibility of the test facility could be demonstrated. Three full scale thermal protection components of X-38 which were very different in size, shape and test requirements were successfully flight qualified in the years 1999 - 2001. For all of the three components, namely the Leading Edge Unit, the Nose Skirt Assembly and the Body Flap, the time- dependent and locally variable temperature profiles of the re-entry flight had to be simulated in order to verify the structural integrity under thermal loads. Within these tests a superposition of the thermal loads with oxidative loads, with the

  11. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  12. 78 FR 12784 - Welded Large Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ...-year review were such that a full review pursuant to section 751(c)(5) of the Act should proceed (78 FR... COMMISSION Welded Large Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Welded Large Diameter Line Pipe From Japan AGENCY: United States International...

  13. Very large-scale motions in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hwa; Jang, Seong Jae; Sung, Hyung Jin

    2011-11-01

    Direct numerical simulation of a turbulent pipe flow with ReD=35000 was performed to investigate the spatially coherent structures associated with very large-scale motions. The corresponding friction Reynolds number, based on pipe radius R, is R+=934, and the computational domain length is 30 R. The computed mean flow statistics agree well with previous DNS data at ReD=44000 and 24000. Inspection of the instantaneous fields and two-point correlation of the streamwise velocity fluctuations showed that the very long meandering motions exceeding 25R exist in logarithmic and wake regions, and the streamwise length scale is almost linearly increased up to y/R ~0.3, while the structures in the turbulent boundary layer only reach up to the edge of the log-layer. Time-resolved instantaneous fields revealed that the hairpin packet-like structures grow with continuous stretching along the streamwise direction and create the very large-scale structures with meandering in the spanwise direction, consistent with the previous conceptual model of Kim & Adrian (1999). This work was supported by the Creative Research Initiatives of NRF/MEST of Korea (No. 2011-0000423).

  14. 78 FR 74161 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... COMMISSION Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full..., Mexico, and Turkey AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The... duty orders on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would...

  15. Wind tunnel simulation of full scale vortices

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffitt, R. C.

    1973-01-01

    An experimental investigation has been conducted to determine the important scaling parameters for the flow in the core region of a vortex generated by a rectangular wing tip. The effect of an unconventional planform, the ogee tip, on the tip vortex is also determined. For rectangular planform wings, the measured vortex core diameter to chord ratios, peak tangential velocity ratios, and axial velocity ratios are shown to be functions only of wing lift coefficient and elapsed time from vortex formation, and appear to be independent of both Mach number and Reynolds number. The peak tangential velocities in the diffuse vortex generated by the ogee tip are only 25 percent of those in the vortex generated by the rectangular wing.

  16. Large scale shaking table test on modal responses of 3-D piping system with friction support

    SciTech Connect

    Shimizu, Nobuyuki; Suzuki, Kohei; Watanabe, Tetsuya; Ogawa, Nobuyuki; Kobayashi, Hiroe

    1996-12-01

    Friction between pipe and supporting structure is generally known to reduce seismic responses of the piping system. Vibration tests using large-scale piping model of three dimensional configuration with friction support were carried out to evaluate reduction effect of piping response. The piping responses were governed by the first and the second mode of vibration. The test data of load and velocity via displacement showed that the mathematical model of friction in plane motion was reasonably described by f = {minus}{mu}N{nu}/{vert_bar}{nu}{vert_bar}, and was applicable to evaluate the response of the piping with friction support. A seismic response analysis procedure of the piping system with friction was developed by an approximate modal analysis and confirmed to be adequate to evaluate the piping response by comparing simulated results and test results, and consequently, response reduction effect due to friction was evaluated.

  17. Full-scale Experiments for Roadbed Cavity Detection with GPR

    NASA Astrophysics Data System (ADS)

    Kim, C.; Kang, W.; Son, J.

    2015-12-01

    Past few decades, deterioration of the underground facilities such as sewage facilities has increased significantly with growing urban development in Korea. The old damaged sewage pipes or conduits have washed away the surrounding soils beneath the roadbed, causing underground cavities and eventual ground depressions or sinkholes in the urban areas. Therefore, the detection of the roadbed cavities is increasingly required to prevent property damage and loss of human lives for precautionary measures. 3-D GPR technique was applied to conduct the full-scale experiment for roadbed cavity detection. The physical experiment has employed the soil characteristics of silty sand soils. The experimental site is composed of physically simulated cavities (Styrofoam, ɛr = 1.03) with dome-shaped structure and concrete sewage conduit. The simulated cavities were installed at regular intervals in spatial distribution. The land surface of the site was not paved with asphalt concrete at the current stage of the experiments. The results of the GPR measurements over the experimental site show that the reflection patterns from the simulated cavities are hyperbolic returns typical to the point source in 2-D perspective. A closer inspection of 3-D GPR volume data has yielded more clear interpretation than 2-D GPR data regarding where the cavities are situated in space. However, in case sewage conduits adjacent to the cavities are present, they could mask the GPR signals from cavities, leading misinterpretations. Therefore, data processing procedures should be more appropriately applied compared to the data for linear target detections. It is strongly believed that 3-D high density GPR data could be usefully applied to the roadbed cavity detections in the experiments. This study is an ongoing project of KIGAM and more realistic environments of the underground conditions would be prepared for the future study.

  18. 50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' = 1'; August 26, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM

    EPA Science Inventory

    Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...

  20. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  1. Experimental comparison of the rotating cylinder electrode and full pipe flow for evaluating flow induced CO{sub 2} corrosion

    SciTech Connect

    McMahon, A.J.; Webster, S.; Paisley, D.; Moros, T.; Harrop, D.

    1995-10-01

    Corrosion of oil and gas pipelines by the internal fluids is complex and difficult to simulate in the laboratory. Here, the rotating cylinder electrode and full pipe flow in a recirculating flow loop give different results for nominally equivalent conditions. Pipe flow produces a higher mass transfer rate for the same nominal wall shear stress. Pipe flow also produces a higher CO{sub 2} corrosion rate for inhibited and uninhibited conditions at either the same shear stress or at the same mass transfer rate. Crucially, the rotating cylinder overestimates the performance of corrosion inhibitors. Therefore, while the cylinder is suitable for preliminary inhibitor screening it is not recommended for final selection of products.

  2. Post-Processing of the Full Matrix of Ultrasonic Transmit-Receive Array Data for Guided Wave Pipe Inspection

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2009-03-01

    The paper describes a method for processing data from a guided wave transducer array on a pipe. The raw data set from such an array contains the full matrix of time-domain signals from each transmitter-receiver combination. It is shown that for certain configurations of an array the total focusing method can be applied which allows the array to be focused at every point on a pipe surface in both transmission and reception. The effect of array configuration parameters on the sensitivity of the proposed method to the random and coherent noise is discussed. Experimental results are presented using electromagnetic acoustic transducers (EMAT) for exciting and detecting the S0 Lamb wave mode in a 12 inch steel pipe at 200 kHz excitation frequency. The results show that using the imaging algorithm a 2-mm-diameter (0.08 wavelength) half-thickness hole can be detected.

  3. Full scale assessment of pansharpening methods and data products

    NASA Astrophysics Data System (ADS)

    Aiazzi, B.; Alparone, L.; Baronti, S.; Carlà, R.; Garzelli, A.; Santurri, L.

    2014-10-01

    Quality assessment of pansharpened images is traditionally carried out either at degraded spatial scale by checking the synthesis property ofWald's protocol or at the full spatial scale by separately checking the spectral and spatial consistencies. The spatial distortion of the QNR protocol and the spectral distortion of Khan's protocol may be combined into a unique quality index, referred to as hybrid QNR (HQNR), that is calculated at full scale. Alternatively, multiscale measurements of indices requiring a reference, like SAM, ERGAS and Q4, may be extrapolated to yield a quality measurement at the full scale of the fusion product, where a reference does not exist. Experiments on simulated Pĺeiades data, of which reference originals at full scale are available, highlight that quadratic polynomials having three-point support, i.e. fitting three measurements at as many progressively doubled scales, are adequate. Q4 is more suitable for extrapolation than ERGAS and SAM. The Q4 value predicted from multiscale measurements and the Q4 value measured at full scale thanks to the reference original, differ by very few percents for six different state-of-the-art methods that have been compared. HQNR is substantially comparable to the extrapolated Q4.

  4. Full-scale results for TAM limestone injection

    SciTech Connect

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  5. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  6. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  7. Submarine in Full Scale Tunnel at NACA Langley

    NASA Technical Reports Server (NTRS)

    1958-01-01

    In 1950 Langley tested the drag characteristics of what was then the world's fastest submarine, the Albacore, in the 30 x 60 Full Scale Tunnel. Water and air are both essentially fluids of different densities. Air traveling at high speed can simulate water traveling at lower speed for many purposes.

  8. CLOSED-CYCLE TEXTILE DYEING: FULL-SCALE HYPERFILTRATION DEMONSTRATION

    EPA Science Inventory

    The report gives results of a project of joining a full-scale dynamic-membrane hyperfiltration (HF) system with an operating dye range. (HF is a membrane separation technique that has been used successfully to desalinate natural water. The dye range is a multi-purpose unit with a...

  9. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, aerials of East Area. L5169: Langley's seaplane towing facility (right) and the Full Scale Tunnel (left) were photographed in November of 1930. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 39), by James Schultz.

  10. Experiments on turbulent flows in rough pipes: Spectral scaling laws and the spectral link

    NASA Astrophysics Data System (ADS)

    Zuniga Zamalloa, Carlo Cesar

    Motivated by a recently proposed theory that entails the existence of a "spectral link" between the turbulent energy spectra and the attendant turbulent mean velocity profile in a pipe flow, we establish new scaling laws for the turbulent energy spectra of pipe flows. These new scaling laws--- an inner scaling law and an outer scaling law---differ from the scaling laws that were predicated on Townsend's attached-eddy hypothesis in that they are proper analogues (or spectral counterparts) of the classical scaling properties of the turbulent mean velocity profile. To test the new scaling laws, we have recourse to (1) published computational data from direct numerical simulations and (2) new experimental data from unprecedented measurements, carried out in our laboratory, of the streamwise component of the turbulent energy spectrum on numerous locations along the radii of three rough-walled pipes, for flows spanning a decade in Reynolds number. We show that the new scaling laws are consistent with the turbulent energy spectra of both smooth- and rough- walled flows. In addition, we use the new experimental data to probe the spatial distribution of the streamwise turbulent kinetic energy u 2, the longitudinal integral length scale L 11, and the Kolmogorov length scale eta in turbulent rough-walled pipe flows. We document in our rough- pipe flows a striking phenomenon recently discovered in smooth-pipe flows: the occurrence of an outer peak in u+2 (y+), whose magnitude is an increasing function of the Reynolds number, but the Reynolds number where the outer peak emerges is an order of magnitude smaller than the corresponding Reynolds number in smooth pipes. Last, we carry out a comparative study of the three canonical wall-bounded turbulent flows: pipe flow, channel flow, and boundary layer flow. We are able to trace the similarities and disparities among the turbulent mean velocity profiles of the three canonical flows to corresponding similarities and disparities

  11. Nonlinear Seismic Correlation Analysis of the JNES/NUPEC Large-Scale Piping System Tests.

    SciTech Connect

    Nie,J.; DeGrassi, G.; Hofmayer, C.; Ali, S.

    2008-06-01

    The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the US and Japan on seismic issues, the US Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using derailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.

  12. Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hwa; Sung, Hyung Jin

    2013-04-01

    A direct numerical simulation of a fully developed turbulent pipe flow was performed to investigate the similarities and differences of very-large-scale motions (VLSMs) to those of turbulent boundary layer (TBL) flows. The Reynolds number was set to ReD = 35 000, and the computational domain was 30 pipe radii in length. Inspection of instantaneous fields, streamwise two-point correlations, and population trends of the momentum regions showed that the streamwise length of the structures in the pipe flow grew continuously beyond the log layer (y/δ < 0.3-0.4) with a large population of long structures (>3δ), and the maximum length of the VLSMs increased up to ˜30δ. Such differences between the TBL and pipe flows arose due to the entrainment of large plumes of the intermittent potential flow in the TBL, creating break-down of the streamwise coherence of the structures above the log layer with the strong swirling strength and Reynolds shear stress. The average streamwise length scale of the pipe flow was approximately 1.5-3.0 times larger than that of the TBL through the log and wake regions. The maximum contribution of the structures to the Reynolds shear stress was observed at approximately 6δ in length, whereas that of the TBL was at 1δ-2δ, indicating a higher contribution of the VLSMs to the Reynolds shear stress in the pipe flow than in the TBL flow.

  13. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  14. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  15. Anaerobic ammonium oxidation: from laboratory to full-scale application.

    PubMed

    Ni, Shou-Qing; Zhang, Jian

    2013-01-01

    From discovery in the early 1990s to completion of full-scale anammox reactor, it took almost two decades to uncover the secret veil of anammox bacteria. There were three milestones during the commercialization of anammox: the development of the first enrichment culture medium, the completion of the first commercial anammox reactor, and the fast start-up of full-scale anammox plant. Till now, the culture of anammox bacteria experienced a big progress through two general strategies: (a) to start up a reactor from scratch and (b) to seed the reactor with enriched anammox sludge. The first full-scale anammox reactor took 3.5 years to realize full operation using the first approach due to several reasons besides the lack of anammox sludge. On the other hand, the first Asian anammox reactor started up in two months, thanks to the availability of anammox seed. Along with the implementation of anammox plants, anammox eventually becomes the priority choice for ammonium wastewater treatment. PMID:23956985

  16. Anaerobic Ammonium Oxidation: From Laboratory to Full-Scale Application

    PubMed Central

    Zhang, Jian

    2013-01-01

    From discovery in the early 1990s to completion of full-scale anammox reactor, it took almost two decades to uncover the secret veil of anammox bacteria. There were three milestones during the commercialization of anammox: the development of the first enrichment culture medium, the completion of the first commercial anammox reactor, and the fast start-up of full-scale anammox plant. Till now, the culture of anammox bacteria experienced a big progress through two general strategies: (a) to start up a reactor from scratch and (b) to seed the reactor with enriched anammox sludge. The first full-scale anammox reactor took 3.5 years to realize full operation using the first approach due to several reasons besides the lack of anammox sludge. On the other hand, the first Asian anammox reactor started up in two months, thanks to the availability of anammox seed. Along with the implementation of anammox plants, anammox eventually becomes the priority choice for ammonium wastewater treatment. PMID:23956985

  17. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. PMID:26605686

  18. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale entrance cone looking north, exit cone looking south, wind vanes north end, wind vanes north end of east return passage, wind vanes south end of west exit cone looking north east, wind vanes at south end of east exit cone looking north west, entrance cone looking south from north end. Full-Scale Tunnel (FST) entrance cone under construction. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'The entrance cone is 75 feet in length and in this distance the cross section changes from a rectangle 72 by 110 feet to a 30 by 60 foot elliptic section. The area reduction in the entrance cone is slightly less than 5:1. The shape of the entrance cone was chosen to give as fas as possible a constant acceleration to the air stream and to retain a 9-foot length of nozzle for directing the flow.' (p. 293)

  19. On the Uses of Full-Scale Schlieren Flow Visualization

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Miller, J. D.; Dodson-Dreibelbis, L. J.

    2000-11-01

    A lens-and-grid-type schlieren system using a very large grid as a light source was described at earlier APS/DFD meetings. With a field-of-view of 2.3x2.9 m (7.5x9.5 feet), it is the largest indoor schlieren system in the world. Still and video examples of several full-scale airflows and heat-transfer problems visualized thus far will be shown. These include: heating and ventilation airflows, flows due to appliances and equipment, the thermal plumes of people, the aerodynamics of an explosive trace detection portal, gas leak detection, shock wave motion associated with aviation security problems, and heat transfer from live crops. Planned future projects include visualizing fume-hood and grocery display freezer airflows and studying the dispersion of insect repellent plumes at full scale.

  20. Full scale LANDSAT-D antenna pattern measurements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design verification of the LANDSAT-D antenna subsystem is addressed. In particular, the analysis of the antenna radiation patterns utilizing a full scale mockup of the LANDSAT-D satellite is discussed. Test antennas included two S-Band shaped beam antennas, two S-Band omni unit radiators (to operate in array), a GPS antenna, an X-Band shaped beam antenna, and one S-Band high-gain parabolic antenna.

  1. Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control

    NASA Technical Reports Server (NTRS)

    Pahle, Joe W.

    2008-01-01

    This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.

  2. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal. PMID:26931606

  3. Full scale tests of all-steel buckling restrained braces

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Wu, Bin; Li, Hui; Ou, Jinping; Yang, Weibiao

    2009-03-01

    Buckling-restrained braces (BRBs) are widely used seismic response-controlling members with excellent energy dissipation capacity without buckling at design deformation. However, the property of all-steel BRBs with cruciform cross section encased in a square steel tube remains insufficiently studied. In this paper, the properties of this kind of BRBs, which were used in two office buildings in Beijing, were examined by full-scale test. First, initial design was done according to the client's requirement. Then, two full-scale specimens were tested under uniaxial quasi-static cyclic loading. The test results indicate that there should be no welding in yielding portion of the core. Finally, the full-scale subassemblage test was done with an improved BRB and gusset plates installed in a frame. The result shows that the brace exhibited high energy dissipation capacity and stable hysteretic characteristic. According to the results from above tests, some important issues are summarized to provide advices for practical applications.

  4. Distinct large-scale turbulent-laminar states in transitional pipe flow.

    PubMed

    Moxey, David; Barkley, Dwight

    2010-05-01

    When fluid flows through a channel, pipe, or duct, there are two basic forms of motion: smooth laminar motion and complex turbulent motion. The discontinuous transition between these states is a fundamental problem that has been studied for more than 100 yr. What has received far less attention is the large-scale nature of the turbulent flows near transition once they are established. We have carried out extensive numerical computations in pipes of variable lengths up to 125 diameters to investigate the nature of transitional turbulence in pipe flow. We show the existence of three fundamentally different turbulent states separated by two distinct Reynolds numbers. Below Re (1) approximately equal 2,300, turbulence takes the form of familiar equilibrium (or longtime transient) puffs that are spatially localized and keep their size independent of pipe length. At Re (1) the flow makes a striking transition to a spatio-temporally intermittent flow that fills the pipe. Irregular alternation of turbulent and laminar regions is inherent and does not result from random disturbances. The fraction of turbulence increases with Re until Re (2) approximately equal 2,600 where there is a continuous transition to a state of uniform turbulence along the pipe. We relate these observations to directed percolation and argue that Re (1) marks the onset of infinite-lifetime turbulence. PMID:20404193

  5. Analysis of panthers full-scale heat transfer tests with RELAP5

    SciTech Connect

    Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.

    1996-01-01

    The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric`s (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit.

  6. Microbubble Swarms in a Full-Scale Water Model Tundish

    NASA Astrophysics Data System (ADS)

    Chang, Sheng; Cao, Xiangkun; Zou, Zongshu; Isac, Mihaiela; Guthrie, Roderick I. L.

    2016-08-01

    Water modeling, using microbubble swarms, was performed in a full-scale, four-strand, delta-shaped tundish, located at the McGill Metals Processing Centre (MMPC). The objective of the study was to investigate the effectiveness of microbubbles in removing inclusions smaller than 50 μm, applying the principles and conditions previously researched using a smaller scale arrangement. Air was injected into a full-scale model of a ladle shroud (the connecting tube through which liquid steel flows into the tundish below). The model ladle shroud was fitted with twelve, laser-drilled orifices, so as to create microbubbles. The bubbles generated using different gas injection protocols were recorded using a high-speed camera, and the bubble images were postprocessed using the commercial software, ImageJ. With this newly designed ladle shroud, bubble sizes could be reduced dramatically, to as small as a 675 µm average diameter. A three-dimensional, CFD model simulation was developed, using parameters obtained from the corresponding water model experiments, in order to predict the behavior of these microbubbles within the tundish and their potential influence on flow patterns and inclusion float-out capability.

  7. Freezable Radiator Coupon Testing and Full Scale Radiator Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses

    2009-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.

  8. Polyethylene encapsulation full-scale technology demonstration. Final report

    SciTech Connect

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  9. Full-scale tilt-rotor hover performance

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Maisel, M. D.; Betzina, M. D.

    1986-01-01

    The hover performance of three full-scale rotors was measured at the Ames Outdoor Aerodynamic Research Facility. The rotors, all designed for tilt-rotor aircraft, were the original metal blades for the XV-15 Tilt Rotor Research Aircraft, a set of composite, advanced technology blades for the XV-15, and a 0.658-scale model of the proposed V-22A Osprey (JVX) rotor. The composite advanced technology blades for the XV-15 were tested with several alternate blade root and blade tip configurations. This paper presents the performance of these three rotors, shows the effects of tip Mach number and root and tip configuration changes on rotor performance, and presents data on rotor wake velocity distributions and tip vortex geometry. Measured rotor performance is compared with theoretical predictions, and the discrepancies are discussed.

  10. Acoustic Emission and Guided Wave Monitoring of Fatigue Crack Growth on a Full Pipe Specimen

    SciTech Connect

    Meyer, Ryan M.; Cumblidge, Stephen E.; Ramuhalli, Pradeep; Watson, Bruce E.; Doctor, Steven R.; Bond, Leonard J.

    2011-05-06

    Continuous on-line monitoring of active and passive systems, structures and components in nuclear power plants will be critical to extending the lifetimes of nuclear power plants in the US beyond 60 years. Acoustic emission and guided ultrasonic waves are two tools for continuously monitoring passive systems, structures and components within nuclear power plants and are the focus of this study. These tools are used to monitor fatigue damage induced in a SA 312 TP304 stainless steel pipe specimen. The results of acoustic emission monitoring indicate that crack propagation signals were not directly detected. However, acoustic emission monitoring exposed crack formation prior to visual confirmation through the detection of signals caused by crack closure friction. The results of guided ultrasonic wave monitoring indicate that this technology is sensitive to the presence and size of cracks. The sensitivity and complexity of GUW signals is observed to vary with respect to signal frequency and path traveled by the guided ultrasonic wave relative to the crack orientation.

  11. Correlation of full-scale helicopter rotor performance in air with model-scale Freon data

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Mantay, W. R.

    1976-01-01

    An investigation was conducted in a transonic dynamics tunnel to measure the performance of a 1/5 scale model helicopter rotor in a Freon atmosphere. Comparisons were made between these data and full scale data obtained in air. Both the model and full scale tests were conducted at advance ratios between 0.30 and 0.40 and advancing tip Mach numbers between 0.79 and 0.95. Results show that correlation of model scale rotor performance data obtained in Freon with full scale rotor performance data in air is good with regard to data trends. Mach number effects were found to be essentially the same for the model rotor performance data obtained in Freon and the full scale rotor performance data obtained in air. It was determined that Reynolds number effects may be of the same magnitude or smaller than rotor solidity effects or blade elastic modeling in rotor aerodynamic performance testing.

  12. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    PubMed

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-01

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. PMID:27244696

  13. Freezable Radiator Model Correlation and Full Scale Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Navarro, Moses

    2010-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes efforts made to correlate a Thermal Desktop (TM) model with empirical testing data from two test articles. A 50-50 mixture of DowFrost HD and water is used as the working fluid. Efforts to scale this model to a full scale design, as well as efforts to characterize various thermal control fluids at low temperatures are also discussed.

  14. Model of Full-Scale Tunnel (FST) under construction

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Model of Full-Scale Tunnel (FST) under construction. On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel. 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow. This model can be constructed in a comparatively short time, using 2 by 4 framing with matched sheathing inside, and where circular sections are desired they can be obtained by nailing sheet metal to wooden ribs, which can be cut on the band saw. It is estimated that three months will be required for the construction and testing of such a model and that the cost will be approximately three thousand dollars, one thousand dollars of which will be for the motors. No suitable location appears to exist in any of our present buildings, and it may be necessary to build it outside and cover it with a roof.' George Lewis responded immediately (June 27) granting the authority to proceed. He urged Langley to expedite construction and to employ extra carpenters if necessary. Funds for the model came from the FST project. In a 1979

  15. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress: Preparation for test of Careystone panels used to cover the exterior of the Full-Scale Tunnel (FST). The corrugated concrete and asbestos panels (1/4 inch thick; 42 inches wide; 62 inches long) which were used as siding and roofing for the Full-Scale Tunnel were manufactured by The Philip Carey Company. The NACA conducted seven different tests to determine the exact properties of the the substance which was called 'Careystone'. Three of these tests involved applying a load until the test panel ruptured. The results of these tests were supplied to the manufacturer but with the condition that the information remain confidential. The Philip Carey Company very much wanted to publicized the NACA test results (They had underbid the project in hopes of getting a strong return through an advertising campaign.) but the company's request was rejected out of hand as a violation of government policy. For the NACA, the choice of Careystone had been based on several factors. First and foremost was its low cost. NACA engineers had observed the very durable, low-maintenance and fireproof qualities of the concrete-asbestos covering of the airship hanger at Langley Field. Further, tests showed the material to be 3.8 times stronger than required (The maximum load the material was expected to withstand was 52 lbs. per square foot; the breaking load was 196 lbs. per sq. ft.).

  16. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale exit cone looking south from entrance cone, east switchboard, west switchboard, wind vanes at north end looking north through entrance cone, north end looking south through entrance cone, entrance cone looking north from exit cone, wind vanes south end of west exit cone, wind vanes south end of east exit cone, Tow Channel trolley lines looking north, east and west incline braces at north end. Full-Scale Tunnel (FST) exit cone construction and installation of fan motors. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'Forward of the propellers and located on the center line of the tunnel is a smooth fairing which transforms the somewhat elliptic section of the single passage into two circular ones at the propellers. From the propellers aft, the exit cone is divided into two passages and each transforms in the length of 132 feet from a 35-foot 61/2-inch circular section to a 46-foot square. The included angle between the sides of each passage is 6 inches.' (p. 293)

  17. Full scale field demonstration of unheated anaerobic contact stabilization

    SciTech Connect

    Sykes, R.M.; Fan, K.S.

    1983-09-01

    A full scale field demonstration of unheated anaerobic digestion, including both solids recycle and solids nonrecycle processes, was conducted at the Jackson Pike Wastewater Treatment Plant at Columbus, Ohio. Two digesters (locally called Tanks 4E and 6E) at this facility were used for this purpose. In the experimental system, the operating temperature was reduced gradually from 91/sup 0/F to 63/sup 0/F. There were eight periods in the Recycle Phase and four periods in the Nonrecycle Phase. Gas production, solids destruction, volatile fatty acid variation, alkalinity, and pH were monitored in each period. In addition, grease, long-chain fatty acids, and foaming were intensively investigated at the last two periods, C and D, of the Nonrecycle Phase. The objectives of this research were: (1) evaluation of the unheated anaerobic digestion in full scale field units, and (2) and development of criteria for design and operation of a cold anaerobic digester. 48 references, 41 figures, 84 tables.

  18. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  19. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  20. Scaling the Pipe: NASA EOS Terra Data Systems at 10

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ramapriyan, Hampapuram K.

    2010-01-01

    Standard products from the five sensors on NASA's Earth Observing System's (EOS) Terra satellite are being used world-wide for earth science research and applications. This paper describes the evolution of the Terra data systems over the last decade in which the distributed systems that produce, archive and distribute high quality Terra data products were scaled by two orders of magnitude.

  1. New Orleans full-scale trommel evaluation: interim test report

    SciTech Connect

    Campbell, J.

    1981-06-01

    This report presents the data from five tests of a full-scale trommel processing unsegregated municipal solid waste at throughtputs ranging from 58% to 175% of design capacity, or 32 to 98 Mg/h (36 to 109 tph). The tests were conducted between December 1980 and March 1981 at the Recovery 1 solid waste processing facility in New Orleans, La. Included in the report are a description of the equipment, discussion of the test procedures and primary summaries of data on the trommel mass balance and separation efficiency, and on the analysis of infeed and product samples for size, composition, density, and moisture. Heat content and ash values of the trommel oversize and recovery results on surrogate aluminum cans and flakes also are reported.

  2. Full scale subsonic wind tunnel requirements and design studies

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  3. N2O emissions from full-scale nitrifying biofilters.

    PubMed

    Bollon, Julien; Filali, Ahlem; Fayolle, Yannick; Guerin, Sabrina; Rocher, Vincent; Gillot, Sylvie

    2016-10-01

    A full-scale nitrifying biofilter was continuously monitored during two measurement periods (September 2014; February 2015) during which both gaseous and liquid N2O fluxes were monitored on-line. The results showed diurnal and seasonal variations of N2O emissions. A statistical model was run to determine the main operational parameters governing N2O emissions. Modification of the distribution between the gas phase and the liquid phase was observed related to the effects of temperature and aeration flow on the volumetric mass transfer coefficient (kLa). With similar nitrification performance values, the N2O emission factor was twice as high during the winter campaign. The increase in N2O emissions in winter was correlated to higher effluent nitrite concentrations and suspected increased biofilm thickness. PMID:27318446

  4. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  5. Acoustic measurements of a full-scale coaxial helicopter

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Peterson, R. L.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept (ABC) Technology Demonstrator in the NASA Ames 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, noise at various forward speeds, rotor lift coefficients, and rotor shaft angles of attack were investigated. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where it is increased by significant impulsive blade/vortex interactions. The impulsivity appears to depend upon how the lift is distributed between the two rotors. The noise levels measured are shown to be slightly higher than on a modern conventional rotor tested in the same facility.

  6. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  7. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  8. Full-scale Skylab Apollo telescope mount deployment tests

    NASA Technical Reports Server (NTRS)

    Fricker, G. F.

    1972-01-01

    During the initial stages of the NASA Skylab orbit, the Apollo telescope mount (ATM) is deployed by the deployment assembly (DA) which clears the multiple docking adapter axial docking port. This is an essential prerequisite to docking the command service module with the orbital workshop and subsequent occupancy of the workshop by the Apollo three-man crew. The objectives of the full-scale NASA Skylab ATM deployment test program were (1) to evaluate the design concept of the DA and deployment mechanisms while functioning in a zero-g environment with simulated ATM mass properties and (2) to evaluate the effects of handling, transporting, and deployment with respect to the structural geometry and stability of the DA.

  9. Full-scale hydrogen anodes for immersed-tank electrowinning

    NASA Astrophysics Data System (ADS)

    Allen, Robert J.; Foller, Peter C.; Vora, Ravindra J.; Bombard, R. Todd; Demarinis, Michael

    1993-03-01

    Full-scale (1.2 m2) immersed-tank hydrogen-diffusion anodes have been prepared by a newly patented lamination technique onto metallic sheet substrates. The use of such free-standing electrodes has been characterized in the electrowinning of zinc, but the electrodes are also suitable for use in the electrowinning of other metals and in electroplating. The electrodes may find application in processes where voltage savings of approximately 1.8-2.0 V versus oxygen evolution are of importance, or where parasitic anodic oxidations need to be eliminated. The hydrogen-diffusion anode structure developed incorporates a novel microporous polymeric coating designed to prevent both the percolation of feed hydrogen through the electrode to the electrolyte and the seepage of electrolyte into the gas plenum.

  10. Full-scale demonstration of improvement in aeration efficiency

    SciTech Connect

    Mueller, J.A.; Kim, Y.K.; Krupa, J.J.; Shkreli, F.; Nasr, S.; Fitzpatrick, B.

    2000-06-01

    This paper describes the results of side-by-side full-scale aeration testing of a plug-flow process and a modified contact stabilization process incorporating an anaerobic selector at the wastewater treatment facility in Fredonia, NY. Over 40 tests were completed utilizing the off-gas technique during the 2-month investigation period (summer of 1995). Compared to the plug-flow process, the modified contact stabilization process with internal sludge recycle was shown to have higher {alpha} values and to require less blower energy consumption when the selector operation was properly controlled. Dissolved oxygen concentration, selector COD concentration, and internal recycle sludge levels were found to be critical parameters in the successful operation of the modified process. Higher internal recycle sludge levels allowed the plant to run at more stable operating conditions in terms of the oxygen transfer efficiency, {alpha}, and sludge volume index.

  11. Full-Scale Demonstration Low-NOx Cell Burner retrofit

    SciTech Connect

    Not Available

    1991-05-24

    The overall objective of the Full-Scale Low-NOx Cell (LNC) Burner Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: at least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; and demonstrate that the LNC burner retrofits are the most cost-effective alternative to emerging, or commercially- available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  12. Full Scale Tunnel (FST) and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Aerial and ground views of the overall construction of Full-Scale Tunnel (FST) and the Seaplane Tow Channel. In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293). Ground shots of work in progress, aerials of east area.

  13. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction progress, studding in Tow Channel office area, Full Scale motor fairing in west exit cone, motor fairing in east exit cone. Propeller and motor fairing for west exit cone. Smith DeFrance described the propellers and motors in NACA TR No. 459. ' The propellers are located side by side and 48 feet aft of the throat of the exit-cone bell. The propellers are 35 feet 5 inches in diameter and each consists of four cast aluminum alloy blades screwed into a cast steel hub.' 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the full-scale wind tunnel it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4,000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed. In order to obtain the range of speed one pole change was provided and the other variations are obtained by the introduction of resistance in the rotor circuit. This control permits a variation in air speed from 25 to 118 miles per hour. The two motors are connected through an automatic switchboard to one drum-type controller located in the test chamber. All the control equipment is interlocked and connected through time-limit relays, so that regardless of how fast the controller handle is moved the motors will increase in speed at regular intervals.' (p. 294-295)

  14. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  15. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A. ); Blake, J.E.; Rush, G.C. )

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  16. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-12-31

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  17. Full Scale Rotor Aeroacoustic Predictions and the Link to Model Scale Rotor Data

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2004-01-01

    The NASA Aeroacoustic Prediction System (NAPS) is used to establish a link between model-scale and full-scale rotor predictions and is partially validated against measured wind tunnel and flight aeroacoustic data. The prediction approach of NAPS couples a comprehensive rotorcraft analysis with acoustic source noise and propagation codes. The comprehensive analysis selected for this study is CAMRAD-II, which provides the performance/trim/wake solution for a given rotor or flight condition. The post-trim capabilities of CAMRAD-II are used to compute high-resolution sectional airloads for the acoustic tone noise analysis, WOPMOD. The tone noise is propagated to observers on the ground with the propagation code, RNM (Rotor Noise Model). Aeroacoustic predictions are made with NAPS for an isolated rotor and compared to results of the second Harmonic Aeroacoustic Rotor Test (HART-II) program, which tested a 40% dynamically and Mach-scaled BO-105 main rotor at the DNW. The NAPS is validated with comparisons for three rotor conditions: a baseline condition and two Higher Harmonic Control (HHC) conditions. To establish a link between model and full-scale rotor predictions, a full-scale BO-105 main rotor input deck for NAPS is created from the 40% scale rotor input deck. The full-scale isolated rotor predictions are then compared to the model predictions. The comparisons include aerodynamic loading, acoustic levels, and acoustic pressure time histories for each of the three conditions. With this link established, full-scale predictions are made for a range of descent flight conditions and compared with measured trends from the recent Rotorcraft Operational Noise Abatement Procedures (RONAP) flight test conducted by DLR and ONERA. Additionally, the effectiveness of two HHC conditions from the HART-II program is demonstrated for the full-scale rotor in flight.

  18. Full Scale Tunnel (FST) and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Installation of Careystone covering at the Full-Scale Tunnel (FST) facility. The corrugated concrete and asbestos panels (1/4 inch thick; 42 inches wide; 62 inches long) which were used as siding and roofing for the Full-Scale Tunnel were manufactured by The Philip Carey Company. For the NACA, the choice of Careystone had been based on several factors. First and foremost was its low cost. NACA engineers had observed the very durable, low-maintenance and fireproof qualities of the concrete-asbestos covering of the airship hanger at Langley Field. Further, tests showed the material to be 3.8 times stronger than required (The maximum load the material was expected to withstand was 52 lbs. per square foot; the breaking load was 196 lbs. per sq. ft.). L4695 shows the interior view of construction of the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' This picture shows the tank before the coving was added. This brought the rails for the carriage closer together and helped suppress waves produced by the models. The finished tank would be filled with approximately 4 million

  19. Scale incidence on production pipes of Cerro Prieto geothermal wells

    SciTech Connect

    Mercado, S.; Hurtado, R. ); Bermejo, F.; Terrazas, B.; Hernandez, L. . Coordinadora Ejecutiva de Cerro Prieto)

    1989-01-01

    Scaling of geothermal wells in the Cerro Prieto field is a problem that has been experienced since the plant start-up, but has been diminished by selection of the main productive strata (avoiding the mixing of water from different temperature layers) and using orifice restrictions at the wellhead discharge. This last technique works in some new wells with a wellhead pressure of 120 bars. One hundred fifty wells have been drilled with the deepest production well being 3650 m. The drilling for exploration and production wells continues at the present time. Around one hundred million tons of a water-steam mixture is extracted every year; 40% is separated steam which is used in three geothermoelectric power stations having a total of 620 MWe of installed capacity.

  20. A New Method for Flow Rate Measurement in Millimeter-Scale Pipes

    PubMed Central

    Ji, Haifeng; Gao, Xuemin; Wang, Baoliang; Huang, Zhiyao; Li, Haiqing

    2013-01-01

    Combining the Capacitively Coupled Contactless Conductivity Detection (C4D) technique and the principle of cross correlation flow measurement, a new method for flow rate measurement in millimeter-scale pipes was proposed. The research work included two parts. First, a new five-electrode C4D sensor was developed. Second, with two conductivity signals obtained by the developed sensor, the flow rate measurement was implemented by using the principle of cross correlation flow measurement. The experimental results showed that the proposed flow rate measurement method was effective, the developed five-electrode C4D sensor was successful, and the measurement accuracy was satisfactory. In five millimeter-scale pipes with different inner diameters of 0.5, 0.8, 1.8, 3.0 and 3.9 mm respectively, the maximum relative difference of the flow rate measurement between the reference flow rate and the measured flow rate was less than 5%. PMID:23353139

  1. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites

    SciTech Connect

    Rood, A.S.; White, G.J.

    1999-10-07

    This report describes a study of radon (Rn) emanation from pipe scale and soil samples contaminated with naturally occurring radioactive material (NORM). Samples were collected at petroleum production sites in Oklahoma, Michigan, Kentucky, and Illinois. For comparison, data are also presented from preliminary studies conducted at sites in Texas and Wyoming. All samples collected were analyzed for their Rn emanation fraction, defined as the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. This measure represents one of the important parameters that determine the overall Rn activity flux from any solid medium. The goal of this project was to determine whether Rn emanation from pipe scale and soil is similar to emanation from uranium mill tailings.

  2. An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Bridges, James

    2003-01-01

    Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.

  3. Evaluation of full-scale biofilter media performance

    SciTech Connect

    Cardenas-Gonzalez, B.; Ergas, S.J.; Switzenbaum, M.S.; Phillibert, N.

    1999-09-30

    The objective of this study was to characterize the key physical, chemical and biological properties of compost media from a full-scale biofiltration system used to control VOC emissions. Results of media characterization were used to assess the need for operational changes and media replacement. Biofilter media properties evaluated included: moisture content, pH, total organic carbon (TOC) and nitrogen content in water extracts and solid matrix, oxygen uptake rates, and microbial plate counts including total heterotrophs, oligotrophs, actinomycetes and fungi. Samples were taken from various locations and depths in the biofilter after three and five years of system operation. Media moisture content was highly variable, with samples from deeper in the bed dryer than surface samples. Low moisture contents were associated with low pH values and low oxygen uptake rates. Total organic carbon contents in water extracts were higher than typical biosolids compost in samples near the inlet to the biofilter, possibly due to extracellular polysaccharides. After five years of use, total nitrogen and organic carbon contents in the solid matrix did not significantly differ from initial levels or those in typical biosolids compost.

  4. Lightweight alumina refractory aggregate: Phase 3, Full-scale demonstration

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Technical problems (higher than target fired density, and poor intermediate strength after burnout but before sintering) were addressed and solved; solution involved use of large loading of CP-5 alumina (controlled pore, rehydratable), increased loading of one of the binders, and a steam aging step. Resistance of the lightweight aggregate in a brick formulation to steel slag penetration was assessed in a preliminary test and found to be almost as good as that of T-64. Pelletized process economic feasibility study was updated, based on production levels of 10,000 and 20,000 mt/year, the most up- to-date raw material costs, and the assumption of a retrofit into the Arkansas plant tabular production facility. For the 10,000 mt/y production level, the required selling price of 35% more than the T- 64 selling price exceeds the {le}25% objective. The market survey will determine whether to proceed with the full scale demonstration that will produce at least 54.4 mt (120,000 lb) of the aggregate for incorporation into products, followed by end-user testing and evaluation.

  5. Full-scale testing and analysis of fuselage structure

    NASA Technical Reports Server (NTRS)

    Miller, M.; Gruber, M. L.; Wilkins, K. E.; Worden, R. E.

    1994-01-01

    This paper presents recent results from a program in the Boeing Commercial Airplane Group to study the behavior of cracks in fuselage structures. The goal of this program is to improve methods for analyzing crack growth and residual strength in pressurized fuselages, thus improving new airplane designs and optimizing the required structural inspections for current models. The program consists of full-scale experimental testing of pressurized fuselage panels in both wide-body and narrow-body fixtures and finite element analyses to predict the results. The finite element analyses are geometrically nonlinear with material and fastener nonlinearity included on a case-by-case basis. The analysis results are compared with the strain gage, crack growth, and residual strength data from the experimental program. Most of the studies reported in this paper concern the behavior of single or multiple cracks in the lap joints of narrow-body airplanes (such as 727 and 737 commercial jets). The phenomenon where the crack trajectory is curved creating a 'flap' and resulting in a controlled decompression is discussed.

  6. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1983-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine. Previously announced in STAR as N83-21896

  7. Full Scale Tunnel (FST) and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    L4855: Full-Scale Tunnel (FST) circuit breaker panel prior to installation. In NACA TR No. 459, Smith DeFrance notes that the FST differed from other wind tunnels in is use of alternating current slip-ring induction motors rather than a direct-current motor and motor-generator set. 'Two 4,000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were ...installed. In order to obtain the range of speed one pole change was provided and the other variations are obtained by the introduction of resistance in the rotor circuit. This control permits a variation in air speed from 25 to 118 miles per hour. The two motors are connected through an automatic switchboard to one drum-type controller located in the test chamber. All the control equipment is interlocked and connected through time-limit relays, so that regardless of how fast the controller handle is moved the motors will increase in speed at regular intervals.' (p. 294-295)

  8. Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Settles, G. S.

    1996-11-01

    The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)

  9. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  10. Hover performance tests of full scale variable geometry rotors

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.

    1976-01-01

    Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.

  11. Full-Scale Crash Test of an MD-500 Helicopter

    NASA Technical Reports Server (NTRS)

    Littell, Justin

    2011-01-01

    A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.

  12. Characterization results of the JUNGFRAU full scale readout ASIC

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bergamaschi, A.; Brueckner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jungmann-Smith, J.; Maliakal, D.; Mezza, D.; Ramilli, M.; Ruder, C.; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2016-02-01

    The two-dimensional pixel detector JUNGFRAU is designed for high performance photon science applications at free electron lasers and synchrotron light sources. It is developed for the SwissFEL currently under construction at the Paul Scherrer Institut, Switzerland. The detector is a hybrid pixel detector with a charge integration readout ASIC characterized by single photon sensitivity and a low noise performance over a dynamic range of 104 12 keV photons. Geometrically, a JUNGFRAU readout chip consists of 256×256 pixels of 75×75 μm2. The chips are bump bonded to 320 μm thick silicon sensors. Arrays of 2×4 chips are tiled to form modules of 4×8 cm2 area. Several multi-module systems with up to 16 Mpixels per system will be delivered to the two end stations at SwissFEL. The JUNGFRAU full scale readout ASIC and module design are presented along with characterization results of the first systems. Experiments from fluorescence X-ray, visible light illumination, and synchrotron irradiation are shown. The results include an electronic noise of ~50 electrons r.m.s., which enables single photon detection energies below 2 keV and a noise well below the Poisson statistical limit over the entire dynamic range. First imaging experiments are also shown.

  13. Full-scale testing and analysis of fuselage structure

    NASA Astrophysics Data System (ADS)

    Miller, M.; Gruber, M. L.; Wilkins, K. E.; Worden, R. E.

    1994-09-01

    This paper presents recent results from a program in the Boeing Commercial Airplane Group to study the behavior of cracks in fuselage structures. The goal of this program is to improve methods for analyzing crack growth and residual strength in pressurized fuselages, thus improving new airplane designs and optimizing the required structural inspections for current models. The program consists of full-scale experimental testing of pressurized fuselage panels in both wide-body and narrow-body fixtures and finite element analyses to predict the results. The finite element analyses are geometrically nonlinear with material and fastener nonlinearity included on a case-by-case basis. The analysis results are compared with the strain gage, crack growth, and residual strength data from the experimental program. Most of the studies reported in this paper concern the behavior of single or multiple cracks in the lap joints of narrow-body airplanes (such as 727 and 737 commercial jets). The phenomenon where the crack trajectory is curved creating a 'flap' and resulting in a controlled decompression is discussed.

  14. Behavior of full-scale concrete segmented pipelines under permanent ground displacements

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; O'Connor, Sean; Nadukuru, Srinivasa; Lynch, Jerome P.; Michalowski, Radoslaw; Green, Russell A.; Pour-Ghaz, Mohammed; Weiss, W. Jason; Bradshaw, Aaron

    2010-03-01

    Concrete pipelines are one of the most popular underground lifelines used for the transportation of water resources. Unfortunately, this critical infrastructure system remains vulnerable to ground displacements during seismic and landslide events. Ground displacements may induce significant bending, shear, and axial forces to concrete pipelines and eventually lead to joint failures. In order to understand and model the typical failure mechanisms of concrete segmented pipelines, large-scale experimentation is necessary to explore structural and soil-structure behavior during ground faulting. This paper reports on the experimentation of a reinforced concrete segmented concrete pipeline using the unique capabilities of the NEES Lifeline Experimental and Testing Facilities at Cornell University. Five segments of a full-scale commercial concrete pressure pipe (244 cm long and 37.5 cm diameter) are constructed as a segmented pipeline under a compacted granular soil in the facility test basin (13.4 m long and 3.6 m wide). Ground displacements are simulated through translation of half of the test basin. A dense array of sensors including LVDT's, strain gages, and load cells are installed along the length of the pipeline to measure the pipeline response while the ground is incrementally displaced. Accurate measures of pipeline displacements and strains are captured up to the compressive and flexural failure of the pipeline joints.

  15. Crash pulse recorder--validation in full scale crash tests.

    PubMed

    Kullgren, A; Lie, A; Tingvall, C

    1995-10-01

    Estimation of the accident severity is a fundamental requirement in accident reconstruction and analysis. Accident severity can be measured in many different ways, but in frontal collisions change of velocity, energy equivalent speed or equivalent barrier speed are frequently used parameters. These parameters are most often estimated from vehicle deformation. It is known, however, that the quality of these estimates is limited if compared with these obtained in laboratory test conditions. To be able to achieve almost the same measurements and measurement accuracy in real-life accidents as in the laboratory, where the acceleration time history is measured, an on-board measurement technique is required. This presentation gives results of tests of a low cost device for measuring the crash pulse for a car involved in an accident, concerning systematic and random error. The device, called the Crash Pulse Recorder (CPR), has been tested previously in several sled tests. The CPR is based on measurement of the movement of the mass in a spring mass system in a collision. A brief description of its construction is also included. The CPR is an integral part of a large accident data collection system including interior and exterior deformation measurements and evaluation of injury outcome. This report presents the results of several full-scale crash tests, undertaken to evaluate the accuracy and precision of the CPR in cars in different impact modes. The tests comprised both offset and angled collisions. Most of the tests were car to car collisions, but barrier tests were also performed. The random error of the CPR was found to be 2.2 km/hr for the delta V measurements and 0.6 g for mean acceleration. PMID:8579702

  16. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  17. Study of very-large-scale motions in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hwa; Sung, Hyung Jin

    2012-11-01

    Direct numerical simulation (DNS) of turbulent pipe flow was performed at Reτ=544 to investigate the spatial organization of the very large-scale motions (VLSMs). The streamwise domain length employed here was 30 R, where R is the pipe radius. Inspection of the three-dimensional instantaneous fields showed that adjacent large-scale packet-like structures combine to form the VLSMs, and this formation process was attributed to continuous stretching of the hairpins coupled with lifting-up and backward curling of the vortices. To support our results found in the analysis of the instantaneous flow fields, we applied the spatial filter to decompose the signal into two length scales related to the VLSMs and smaller structures. The resulting streamwise length scale from the streamwise two-point correlations showed that the magnitude of the correlations for the VLSMs is larger than that from the large-scale motions (LSMs) through all directions. In addition, the mean inclination angle to the wall for the smaller scale structures was found to be larger than that of the VLSMs. These findings support the previous conjecture of Kim & Adrian (1999) that the coherent alignment of LSMs creates the VLSMs. This work was supported by KISTI under the Strategic Supercomputing.

  18. Full-scale retrieval of simulated buried transuranic waste

    SciTech Connect

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd{sup 3} volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed.

  19. Full-Scale Spectrum of Boundary-Layer Winds

    NASA Astrophysics Data System (ADS)

    Larsén, Xiaoli G.; Larsen, Søren E.; Petersen, Erik L.

    2016-05-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr^{-1} to 10 Hz. 10-min cup anemometer data are used to estimate the spectrum from about 1 yr^{-1} to 0.05 min^{-1}; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day^{-1} to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various spectral ranges, including the spectral gap, are revisited. Following the seasonal peak at 1 yr^{-1}, the frequency spectrum fS( f) increases with f^{+1} and gradually reaches a peak at about 0.2 day^{-1}. From this peak to about 1 hr^{-1}, the spectrum fS( f) decreases with frequency with a -2 slope, followed by a -2/3 slope, which can be described by fS(f)=a_1f^{-2/3}+a_2f^{-2}, ending in the frequency range for which the debate on the spectral gap is ongoing. It is shown here that the spectral gap exists and can be modelled. The linear composition of the horizontal wind variation from the mesoscale and microscale gives the observed spectrum in the gap range, leading to a suggestion that mesoscale and microscale processes are uncorrelated. Depending on the relative strength of the two processes, the gap may be deep or shallow, visible or invisible. Generally, the depth of the gap decreases with height. In the low frequency region of the gap, the mesoscale spectrum shows a two-dimensional isotropic nature; in the high frequency region, the classical three-dimensional boundary-layer turbulence is evident. We also provide the cospectrum of the horizontal and vertical components, and the power spectra of the three velocity components over a wide range from 1 day^{-1} to 10 Hz, which is useful in determining the necessary sample duration when measuring turbulence

  20. CYMIC{reg_sign} -- Boiler scale-up and full scale demonstration experiences

    SciTech Connect

    Kokko, A.; Karvinen, R.; Ahlstedt, H.

    1995-12-31

    This paper describes the CYMIC boiler scale-up principles, first full scale experiences from demonstration plant and results from mathematical modelling of the cyclones. CYMIC pilot testing was successfully completed with very positive results, the next step was a CYMIC scale-up and full scale demonstration. The 30 MWth demonstration plant was commissioned during the fall of 1994. The plant is owned by VAPO Oy and it is in the city of Lieksa, eastern Finland. The CYMIC has been scaled up by developing six different cyclones and the multiplication system to cover the capacity range from 30 to 600 MWth. The design of this CYMIC series and the first sold industrial scale CYMIC are presented in the paper. The scale-up of the cyclone was mathematically modelled by Professor Karvinen and his group at Tampere University of Technology. The model which uses Sflow-code was tested and the parameters were set using the pilot test results. The model operated well, so three bigger cyclones were calculated. The first was the cyclone for the Lieksa plant and the other two were bigger standard cyclones. Particles were also included in the model. The variables in the calculations were the cyclone diameter, inlet vane shape and position. Commissioning of the Lieksa plant began in August 1994. The process including operation of the cyclone and the gaslock were then verified at full scale. Flue gas emissions, the combustion efficiency and the performance of the cyclone were also measured. This paper discuss the most interesting results of the measurements.

  1. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  2. Experimental study on seismic responses of piping systems with friction. Part 1: Large-scale shaking table vibration test

    SciTech Connect

    Suzuki, K.; Watanabe, T.; Mitsumori, T.; Shimizu, N.; Kobayashi, H.; Ogawa, N.

    1995-08-01

    This report deals with the experimental study of seismic response behavior of piping systems in industrial facilities such as petrochemical, oil refinery, and nuclear plants. Special attention is focused on the nonlinear dynamic response of piping systems due to frictional vibration appearing in piping and supporting devices. A three-dimensional mock-up piping and supporting structure model wherein piping is of 30-m length and 200-mm diameter is excited by a large-scale (15 m x 15 m) shaking table belong to the National Research Institute for Earth Science and Disaster Prevention in Tsukuba, Ibaraki. Power spectra of the response vibration and the loading-response relationship in the form of a hysteresis loop under several loading conditions are obtained. The response reduction effect caused by frictional vibration is evaluated and demonstrated in terms of response reduction factor.

  3. Estimated Full Scale IQ in an Adult Heroin Addict Population.

    ERIC Educational Resources Information Center

    Chastain, Robert L.; And Others

    The research concerning intellectual functioning in addict populations has not addressed basic questions concerning why and how intelligence quotients (IQ) might be related to drug addiction. A study was undertaken to estimate intellectual functioning based upon a demographic profile for Wechsler Adult Intelligence Scale-Revised (WAIS-R) Full…

  4. FULL-SCALE DEMONSTRATION OF NITROGEN REMOVAL BY BREAKPOINT CHLORINATION

    EPA Science Inventory

    A large-scale breakpoint chlorination system was constructed and operated at Rancho Cordova, CA. Reliable operation was demonstrated and a number of observations regarding process chemistry and engineering were made, including (1) the chlorine to ammonia-N ratio required to reach...

  5. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  6. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  7. Structural organization of large and very-large scales in turbulent pipe flow simulation

    NASA Astrophysics Data System (ADS)

    Baltzer, Jon; Adrian, Ronald; Wu, Xiaohua

    2012-11-01

    The physical structures of velocity are examined in a recent DNS of fully developed incompressible turbulent pipe flow at ReD = 24 580 (R+ = 684 . 8) with a periodic domain length of 30 pipe radii R (Wu, Baltzer, & Adrian, J. Fluid Mech., 2012). In this simulation, the long motions of negative velocity fluctuation correspond to large fractions of energy present at very long streamwise wavelengths (>= 3 R). We study how long motions are composed of smaller motions. We characterize the spatial arrangements of very large scale motions (VLSMs) and find that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by 2D and 3D two-point spatial correlations of velocity. The correlations also reveal that the shorter, large scale motions (LSMs) that concatenate to comprise the VLSMs are themselves more streamwise aligned. We show that the largest VLSMs possess a form similar to roll cells and that they appear to play an important role in organizing the flow, while smaller scales of motion are necessary to create the strong streaks of velocity fluctuation that characterize the flow. Supported by NSF Award CBET-0933848.

  8. Experimental study of full-scale iced-airfoil aerodynamic performance using sub-scale simulations

    NASA Astrophysics Data System (ADS)

    Busch, Greg T.

    Determining the aerodynamic effects of ice accretion on aircraft surfaces is an important step in aircraft design and certification. The goal of this work was to develop a complete sub-scale wind tunnel simulation methodology based on knowledge of the detailed iced-airfoil flowfield that allows the accurate measurement of aerodynamic penalties associated with the accretion of ice on an airfoil and to validate this methodology using full-scale iced-airfoil performance data obtained at near-flight Reynolds numbers. In earlier work, several classifications of ice shape were developed based on key aerodynamic features in the iced-airfoil flowfield: ice roughness, streamwise ice, horn ice, and tall and short spanwise-ridge ice. Castings of each of these classifications were acquired on a full-scale NACA 23012 airfoil model and the aero-dynamic performance of each was measured at a Reynolds number of 12.0 x 106 and a Mach number = 0.20. In the current study, sub-scale simple-geometry and 2-D smooth simulations of each of these castings were constructed based on knowledge of iced-airfoil flowfields. The effects of each simulation on the aerodynamic performance of an 18-inch chord NACA 23012 airfoil model was measured in the University of Illinois 3 x 4 ft. wind tunnel at a Reynolds number of 1.8 x 106 and a Mach number of 0.18 and compared with that measured for the corresponding full-scale casting at high Reynolds number. Geometrically-scaled simulations of the horn-ice and tall spanwise-ridge ice castings modeled C l,maxto within 2% and Cd,min to within 15%. Good qualitative agreement in the Cp distributions suggests that important geometric features such as horn and ridge height, surface location, and angle with respect to the airfoil chordline were appropriately modeled. Geometrically-scaled simulations of the ice roughness, streamwise ice, and short-ridge ice tended to have conservative C l,max and Cd. The aerodynamic performance of simulations of these types of

  9. Full-Scale 3D Simulation of a sputtering magnetron

    NASA Astrophysics Data System (ADS)

    Walton, C. C.; Wilks, S. C.; Ayyaswamy, V.; Verboncoeur, J. P.; Parks, P. B.; Wu, W.; Zhou, C. D.; Stoltz, P. H.

    2010-11-01

    PIC simulations have been used to study ion energy distributions in magnetron plasmas, and coupled with other simulations to relate plasma processes to properties of sputtered films. The plasma is weakly ionized and exchanges heat with the background gas by scattering and charge-exchange reactions. Resulting heating of neutral background gas up to ˜1200K, leading to ˜5X rarefaction and increased plasma impedance, was studied with coupled PIC and Direct Simulation Monte Carlo (DSMC) simulations. Effects of scaling the PIC simulations from 0.1X to 1X physical size, and modifying the plasma potential by a dc substrate bias, will be presented. Comparison to experimental I-V relations and importance for roughness and density of sputtered films will be discussed.

  10. End-effects-regime in full scale and lab scale rocket nozzles

    NASA Astrophysics Data System (ADS)

    Rojo, Raymundo; Tinney, Charles; Baars, Woutijn; Ruf, Joseph

    2014-11-01

    Modern rockets utilize a thrust-optimized parabolic-contour design for their nozzles for its high performance and reliability. However, the evolving internal flow structures within these high area ratio rocket nozzles during start up generate a powerful amount of vibro-acoustic loads that act on the launch vehicle. Modern rockets must be designed to accommodate for these heavy loads or else risk a catastrophic failure. This study quantifies a particular moment referred to as the ``end-effects regime,'' or the largest source of vibro-acoustic loading during start-up [Nave & Coffey, AIAA Paper 1973-1284]. Measurements from full scale ignitions are compared with aerodynamically scaled representations in a fully anechoic chamber. Laboratory scale data is then matched with both static and dynamic wall pressure measurements to capture the associating shock structures within the nozzle. The event generated during the ``end-effects regime'' was successfully reproduced in the both the lab-scale models, and was characterized in terms of its mean, variance and skewness, as well as the spectral properties of the signal obtained by way of time-frequency analyses.

  11. Development of a full scale selective oil agglomeration plant

    SciTech Connect

    Donnelly, J.C.; Cooney, B.; Hoare, I.; Waugh, B.; Robinson, R.

    1998-12-31

    A research and development program managed by Australian Mining Investments Limited (AMI) on behalf of an investment syndicate was conducted with the objective of improving the efficiency and economy of the Selective Oil Agglomeration Process (SOAP), and developing viable commercial sized operating plants. Fewer than half the coal preparation plants in Australia beneficiate fine coal by froth flotation, the only viable alternative to SOAP for the recovery of low ash, fine and ultra fine coal. Those plants without flotation generally dispose of the ultra fine material, approximately {minus}100{micro}m in size, as tailings to waste. In the majority of cases this ultra fine waste contains more than 50% relatively low ash coal of saleable quality. It is believed that this coal constitutes a loss of 8--10 million tonnes per annum and that the coal mining industry would welcome a recovery process which has low capital and operating costs and will function automatically with minimal operator attention. The authors carried out a comprehensive literature study of selective oil agglomeration in order to gain a full understanding of the process and to plan the research program. Extensive studies were then undertaken on oil dispersion in the water phase, formation of oil water emulsions with surfactants and the optimization of surfactant selection. Oil and emulsion properties were investigated including stability, viscosity, temperature, concentration of components, time of formation, and cost. This work was followed by characterization studies on coals from the Gunnedah Basin and agglomeration test work on these coals. These agglomeration studies were performed firstly at bench level and then by using a small, 200 kg/hr continuous process development unit. The results were sufficiently encouraging to justify the design and construction of a fully instrumented, PLC controlled, 2 tph pilot plant at Gunnedah Colliery Coal Preparation Plant. Extensive trials were carried out on

  12. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment.

    PubMed

    Zhou, Quanlin; Birkholzer, Jens T; Mehnert, Edward; Lin, Yu-Feng; Zhang, Keni

    2010-01-01

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO(2) storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO(2) over 50 years was used. The CO(2)-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO(2) plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO(2) migration as a result of multiple secondary seals, coupled with lateral preferential CO(2) viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO(2) migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers. PMID:20015343

  13. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    SciTech Connect

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

    2009-08-15

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

  14. Biological treatment of habitation waste streams using full scale MABRs

    NASA Astrophysics Data System (ADS)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  15. Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin

    2015-11-01

    The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  16. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. PMID:25037928

  17. Application of numerical modelling in the design of a full-scale heated Tunnel Sealing Experiment

    NASA Astrophysics Data System (ADS)

    Guo, R.; Chandler, N.; Martino, J.; Dixon, D.

    2005-10-01

    The Tunnel Sealing Experiment (TSX) was a full-scale in situ demonstration of technology for constructing nearly water tight-seals in excavations through crystalline rock deep below the surface of the earth. The experiment has been carried out at Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory near Lac du Bonnet, Canada, in support of international programs for geologic disposal of radioactive waste. The TSX, with partners from Canada, Japan, France and the United States, was carried under conditions of high pressure (up to 4 MPa) and elevated temperature (up to 85°C). Comparing numerical model predictions with eight years of data collected from approximately 900 sensors was an important component of this experiment. Model of Transport In Fractured/porous Media (MOTIF), a finite element computer program developed by AECL for simulating fully coupled or uncoupled fluid flow, solute transport and heat transport, was used to model both the ambient temperature and heated phases of the TSX. The plan to heat the water in the TSX to 85°C was developed using model predictions and a comparison of simulated results with measurements during heating of the water in the TSX to about 50°C. The three-dimensional MOTIF simulations were conducted in parallel with axisymmetric modelling using Fast Lagrangian Analysis of Continua (FLAC), which computed the heat loss from pipes that carried the heated water through the rock to and from the experiment. The numerical model was initially used to develop a plan for operation of the experiment heaters, and then subsequently used to predict temperatures and hydraulic heads in the TSX bulkhead seals and surrounding rock. Copyright

  18. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors...

  19. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors...

  20. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a...

  1. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors...

  2. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment....

  3. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors...

  4. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment....

  5. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a...

  6. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a...

  7. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment....

  8. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Preparation for full-scale wage surveys... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale wage surveys. (a) The local wage survey committee, prior to each full-scale survey: (1) Shall hold a...

  9. 48 CFR 34.005-5 - Full-scale development contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Full-scale development... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.005-5 Full-scale development contracts. Whenever practicable, the full-scale development contracts should provide for the contractors...

  10. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment....

  11. 5 CFR 532.235 - Conduct of full-scale wage survey.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Conduct of full-scale wage survey. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.235 Conduct of full-scale wage survey. (a) Wage... collection for a full-scale wage survey shall be accomplished by personal visit to the establishment....

  12. Measurement of 222Rn flux, 222Rn emanation, and 226,228Ra concentration from injection well pipe scale.

    PubMed

    Rood, A S; White, G J; Kendrick, D T

    1998-08-01

    222Rn flux (Bq s(-1)) was measured from the ends of twenty sections of produced water injection tubing (pipe) containing barite scale contaminated with naturally occurring radioactive material. Exposure measurements near the pipes were as high as 77.4 nC kg(-1)h(-1) (300 microR h(-1)). Flux measurements were accomplished by first purging the pipes with dry nitrogen and then collecting the outflow (nitrogen and radon) on charcoal columns affixed to the end of the pipe for 66 hours. As determined in this manner, 222Rn flux from the ends of the pipe ranged from 0.017 to 0.10 Bq s(-1) (0.46 to 2.7 pCi s(-1)). Following the radon flux measurements, pipe scale was removed and a representative sample was taken for 226Ra and 228Ra concentration measurements and determination of 222Rn emanation fractions (the fraction of the total radon contained in a material that is released from the material and free to migrate). The samples were also analyzed for gross mineral content. Emanation fraction measurements for 222Rn ranged from 0.020 to 0.063, while 226Ra concentrations ranged from 15.7 to 102 Bq g(-1) (424 to 2,760 pCi g(-1)). Barite was the predominate mineral in 17 of the 20 scale samples collected. Much of the previous work dealing with radon emanation fraction measurements has involved uranium mill tailings. Compared to mill tailings and natural soils which have emanation fractions that typically range from 0.1 to 0.3, the emanation fractions measured for these NORM scales are substantially lower. PMID:9685074

  13. The use of model-test data for predicting full-scale ACV resistance

    NASA Astrophysics Data System (ADS)

    Forstell, B. G.; Harry, C. W.

    The paper summarizes the analysis of test data obtained with a 1/12-scale model of the Amphibious Assault Landing Craft (AALC) JEFF(B). The analysis was conducted with the objective of improving the accuracy of drag predictions for a JEFF(B)-type air-cushion vehicle (ACV). Model test results, scaled to full-scale, are compared with full-scale drag obtained in various sea states during JEFF(B) trials. From the results of this comparison, it is found that the Froude-scale model rough-water drag data is consistently greater than full-scale derived drag, and is a function of both wave height and craft forward speed. Results are presented indicating that Froude scaling model data obtained in calm water also causes an over-prediction of calm-water drag at full-scale. An empirical correction that was developed for use on a JEFF(B)-type craft is discussed.

  14. Evolving desiderata for validating engineered-physics systems without full-scale testing

    SciTech Connect

    Langenbrunner, James R; Booker, Jane M; Hemez, Francois M; Ross, Timothy J

    2010-01-01

    Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

  15. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  16. A Method for Estimating Noise from Full-Scale Distributed Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Schein, David B.

    2004-01-01

    A method to estimate the full-scale noise suppression from a scale model distributed exhaust nozzle (DEN) is presented. For a conventional scale model exhaust nozzle, Strouhal number scaling using a scale factor related to the nozzle exit area is typically applied that shifts model scale frequency in proportion to the geometric scale factor. However, model scale DEN designs have two inherent length scales. One is associated with the mini-nozzles, whose size do not change in going from model scale to full scale. The other is associated with the overall nozzle exit area which is much smaller than full size. Consequently, lower frequency energy that is generated by the coalesced jet plume should scale to lower frequency, but higher frequency energy generated by individual mini-jets does not shift frequency. In addition, jet-jet acoustic shielding by the array of mini-nozzles is a significant noise reduction effect that may change with DEN model size. A technique has been developed to scale laboratory model spectral data based on the premise that high and low frequency content must be treated differently during the scaling process. The model-scale distributed exhaust spectra are divided into low and high frequency regions that are then adjusted to full scale separately based on different physics-based scaling laws. The regions are then recombined to create an estimate of the full-scale acoustic spectra. These spectra can then be converted to perceived noise levels (PNL). The paper presents the details of this methodology and provides an example of the estimated noise suppression by a distributed exhaust nozzle compared to a round conic nozzle.

  17. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors.

    PubMed

    Batstone, D J; Hernandez, J L A; Schmidt, J E

    2005-08-01

    Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors are often used as test platforms to evaluate full-scale applications. However, for a given volume specific hydraulic loading rate and geometry, the gas and liquid flows increase proportionally with the cube root of volume. In this communication, we demonstrate that a laboratory-scale reactor had plug-flow hydraulics, while a full-scale reactor had mixed flow hydraulics. The laboratory-scale reactor could be modeled using an existing biochemical model, and parameters identified, but because of computational speed with plug-flow hydraulics, mixed systems are instead recommended for parameter identification studies. Because of the scaling issues identified, operational data should not be directly projected from laboratory-scale results to the full-scale design. PMID:15977253

  18. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    SciTech Connect

    Huerta, M.; Lamoreaux, G.H.; Romesberg, L.E.; Yoshimura, H.R.; Joseph, B.J.; May, R.A.

    1983-01-01

    This report describes extensive full-scale and scale-model testing of 55-gallon drums used for shipping low-level radioactive waste materials. The tests conducted include static crush, single-can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full-, quarter-, and eighth-scale with different types of waste materials. The full-scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full-scale drums. Two computer techniques for calculating the response of drum stacks are presented. 83 figures, 9 tables.

  19. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    NASA Astrophysics Data System (ADS)

    Huerta, M.; Lamoreaux, G. H.; Romesberg, L. E.; Yoshimura, H. R.; Joseph, B. J.; May, R. A.

    1983-01-01

    Extensive full scale and scale model testing of 55 gallon drums used for shipping low level radioactive waste materials are described. The tests conducted include static crush, single can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full, quarter, and eight scale with different types of waste materials. The full scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full scale drums. Two computer techniques for calculating the response of drum stacks are presented.

  20. Large scale steam valve test: Performance testing of large butterfly valves and full scale high flowrate steam testing

    SciTech Connect

    Meadows, J.B.; Robbins, G.E.; Roselius, D.G.

    1995-05-01

    This report presents the results of the design testing of large (36-inch diameter) butterfly valves under high flow conditions. The two butterfly valves were pneumatically operated air-open, air-shut valves (termed valves 1 and 2). These butterfly valves were redesigned to improve their ability to function under high flow conditions. Concern was raised regarding the ability of the butterfly valves to function as required with high flow-induced torque imposed on the valve discs during high steam flow conditions. High flow testing was required to address the flow-induced torque concerns. The valve testing was done using a heavily instrumented piping system. This test program was called the Large Scale Steam Valve Test (LSSVT). The LSSVT program demonstrated that the redesigned valves operated satisfactorily under high flow conditions.

  1. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine

    PubMed Central

    Matsubara, Takeshi; Fukuoka, Muneyoshi; Tanaka, Nobuhiko; Iguchi, Hirotaka; Furuya, Aiharu; Okamoto, Hideki; Wada, Ikuo; Otsuka, Takanobu

    2008-01-01

    Full-scale three-dimensional (3D) models offer a useful tool in preoperative planning, allowing full-scale stereoscopic recognition from any direction and distance with tactile feedback. Although skills and implants have progressed with various innovations, rheumatoid cervical spine surgery remains challenging. No previous studies have documented the usefulness of full-scale 3D models in this complicated situation. The present study assessed the utility of full-scale 3D models in rheumatoid cervical spine surgery. Polyurethane or plaster 3D models of 15 full-sized occipitocervical or upper cervical spines were fabricated using rapid prototyping (stereolithography) techniques from 1-mm slices of individual CT data. A comfortable alignment for patients was reproduced from CT data obtained with the patient in a comfortable occipitocervical position. Usefulness of these models was analyzed. Using models as a template, appropriate shape of the plate-rod construct could be created in advance. No troublesome Halo-vests were needed for preoperative adjustment of occipitocervical angle. No patients complained of dysphasia following surgery. Screw entry points and trajectories were simultaneously determined with full-scale dimensions and perspective, proving particularly valuable in cases involving high-riding vertebral artery. Full-scale stereoscopic recognition has never been achieved with any existing imaging modalities. Full-scale 3D models thus appear useful and applicable to all complicated spinal surgeries. The combination of computer-assisted navigation systems and full-scale 3D models appears likely to provide much better surgical results. PMID:18247063

  2. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission's full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  3. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG&G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission`s full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  4. Use of bench-scale digesters to evaluate full-scale digester performance

    SciTech Connect

    Murk, J.S.; Frieling, J.L.; Tortorici, L.D.; Dietrich, C.C.

    1980-11-01

    The use of properly designed laboratory-scale digestion facilities afforded an economical method to investigate the causes(s) of and remedies for a severe operational problem at the Encina wastewater treatment plant located in North San Diego Country, California. These studies resulted in verification that the chronic foaming problems were related to inadequate mixing and heating and led to the implementation of design and operational modifications to optimize digester performance. As a result of this program, subsequent design changes, and the dedicated efforts of the plant operators, a severe operational problem has been eliminated.

  5. 5 CFR 532.233 - Preparation for full-scale wage surveys.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the prevailing rate law for labor and agency representatives to participate in the wage survey process... REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.233 Preparation for full-scale...

  6. Acoustic resonance in tube bundles -- Comparison of full scale and laboratory test results

    SciTech Connect

    Eisinger, F.L.

    1995-12-01

    Full scale operational data from steam generator tube bundles exposed to hot gases in crossflow are compared with small scale laboratory test results with cold air. Vibration thresholds based on input energy, acoustic particle velocity and effective damping are evaluated and compared. It is shown that these parameters play an important role in the development, or suppression of acoustic resonance.

  7. Predictive Ability of the General Ability Index (GAI) versus the Full Scale IQ among Gifted Referrals

    ERIC Educational Resources Information Center

    Rowe, Ellen W.; Kingsley, Jessica M.; Thompson, Dawna F.

    2010-01-01

    The General Ability Index (GAI) is a composite ability score for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) that minimizes the impact of tasks involving working memory and processing speed. The goal of the current study was to compare the degree to which the Full Scale IQ (FSIQ) and the GAI predict academic achievement…

  8. Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering.

    PubMed

    Xu, Zhen; Liu, Yingjun; Zhao, Xiaoli; Peng, Li; Sun, Haiyan; Xu, Yang; Ren, Xibiao; Jin, Chuanhong; Xu, Peng; Wang, Miao; Gao, Chao

    2016-08-01

    Kilometer-scale continuous graphene fibers (GFs) with outstanding mechanical properties and excellent electrical conductivity are produced by high-throughput wet-spinning of graphene oxide liquid crystals followed by graphitization through a full-scale synergetic defect-engineering strategy. GFs with superior performances promise wide applications in functional textiles, lightweight motors, microelectronic devices, and so on. PMID:27184960

  9. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  10. Measurement of {sup 222}Rn flux, {sup 222}Rn emanation and {sup 226}Ra concentration from injection well pipe scale

    SciTech Connect

    Rood, A.S.; Kendrick, D.T.

    1996-02-01

    The presence of Naturally Occurring Radioactive Material (NORM) has been recognized since the early 1930s in petroleum reservoirs and in oil and gas production and processing facilities. NORM was typically observed in barite scale that accumulated on the interior of oil production tubing and in storage tank and heater-treater separation sludge. Recent concern has been expressed over the health impacts from the uncontrolled release of NORM to the public. There are several potential exposure pathways to humans from oil-field NORM. Among these is inhalation of radon gas and its daughter products. For this exposure pathway to be of any significance, radon must first be released from the NORM matrix and diffuse in free air. The radon emanation fraction refers to the fraction of radon atoms produced by the decay of radium, that migrate from the bulk material as free gaseous atoms. The purpose of this investigation was to characterize the radon release rates from NORM-scale contaminated production tubing being stored above ground, characterize the radon emanation fraction of the bulk scale material when removed from the tubing, and characterize the radium concentrations of the scale. Accurate characterization of {sup 222}Rn emanation fractions from pipe scale may dictate the type of disposal options available for this waste. Characterization of radon release from stored pipes will assist in determining if controls are needed for workers or members of the public downwind from the source. Due to the sensitive nature of this data, the location of this facility is not disclosed.

  11. A quality assessment of 3D video analysis for full scale rockfall experiments

    NASA Astrophysics Data System (ADS)

    Volkwein, A.; Glover, J.; Bourrier, F.; Gerber, W.

    2012-04-01

    Main goal of full scale rockfall experiments is to retrieve a 3D trajectory of a boulder along the slope. Such trajectories then can be used to calibrate rockfall simulation models. This contribution presents the application of video analysis techniques capturing rock fall velocity of some free fall full scale rockfall experiments along a rock face with an inclination of about 50 degrees. Different scaling methodologies have been evaluated. They mainly differ in the way the scaling factors between the movie frames and the reality and are determined. For this purpose some scale bars and targets with known dimensions have been distributed in advance along the slope. The single scaling approaches are briefly described as follows: (i) Image raster is scaled to the distant fixed scale bar then recalibrated to the plane of the passing rock boulder by taking the measured position of the nearest impact as the distance to the camera. The distance between the camera, scale bar, and passing boulder are surveyed. (ii) The image raster was scaled using the four nearest targets (identified using frontal video) from the trajectory to be analyzed. The average of the scaling factors was finally taken as scaling factor. (iii) The image raster was scaled using the four nearest targets from the trajectory to be analyzed. The scaling factor for one trajectory was calculated by balancing the mean scaling factors associated with the two nearest and the two farthest targets in relation to their mean distance to the analyzed trajectory. (iv) Same as previous method but with varying scaling factors during along the trajectory. It has shown that a direct measure of the scaling target and nearest impact zone is the most accurate. If constant plane is assumed it doesn't account for the lateral deviations of the rock boulder from the fall line consequently adding error into the analysis. Thus a combination of scaling methods (i) and (iv) are considered to give the best results. For best results

  12. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    SciTech Connect

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  13. Interrelationships between Blended Phosphate Treatment and Scale Formation for a Utility with Lead Pipes

    EPA Science Inventory

    Lead (Pb) in tap water (released from Pb-based plumbing materials) poses a serious public health concern. Water utilities experiencing Pb problems often use orthophosphate treatment, with the theory of forming insoluble Pb(II)-orthophosphate compounds on the pipe wall to inhibit ...

  14. A non-geometrically similar model for predicting the wake field of full-scale ships

    NASA Astrophysics Data System (ADS)

    Guo, Chunyu; Zhang, Qi; Shen, Yu

    2015-07-01

    The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non- geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)'s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.

  15. Development and Validation of a Photographic Scale for Assessment of Lip Fullness

    PubMed Central

    Werschler, W. Philip; Fagien, Steven; Thomas, Jane; Paradkar-Mitragotri, Deepali; Rotunda, Adam; Beddingfield, Frederick C.

    2015-01-01

    Background As lip augmentation becomes more popular, validated measures of lip fullness for quantification of outcomes are needed. Objective Develop a scale for rating lip fullness and establish its reliability and sensitivity for assessing clinically meaningful differences. Methods The initial Allergan Lip Fullness Scale (iLFS; a four-point photographic scale with verbal descriptions) was validated by eight physicians rating 55 live subjects during two rounds, conducted on one day. In addition, subjects performed self-evaluations. The revised Allergan Lip Fullness Scale (LFS), a five-point scale with a broader range of lip presentations, was validated by 21 clinicians in two online image rating sessions, ≥14 days apart, in which they used the LFS to rate overall, upper, and lower lip fullness of 144 3-dimensional (3D) images. Physician inter- and intra-rater agreement, subject intra-rater agreement (iLFS), and subject-physician agreement (iLFS) were evaluated. Additionally, during online rating session 1, raters ranked 38 pairs of 3D images, taken before and after lip augmentation, as “clinically different” or “not clinically different.” The median LFS score difference for clinically different pairs was calculated to determine the clinically meaningful difference. Results Clinician inter- and intra-rater agreement for the iLFS and LFS was substantial to almost perfect. Subject self-assessments (iLFS) had substantial intra-rater reliability and a high level of agreement with physician assessments. Median LFS score differences for overall, upper, and lower lip fullness were 1 (mean: 0.63-0.69) for “clinically different” and 0 (mean: 0.28-0.36) for “not clinically different” image pairs; thus, clinical significance of a 1-point difference in LFS score was established. Conclusions The LFS is a reliable instrument for physician classification of lip fullness. A 1-point score difference can detect clinically meaningful differences in lip fullness. PMID

  16. Blade Motion Correlation for the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Romander, Ethan A.; Meyn, Larry A.; Barrows, Danny; Burner, Alpheus

    2014-01-01

    Testing was successfully completed in May 2010 on a full-scale UH-60A rotor system in the USAF's National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel.[1] The primary objective of this NASA Army sponsored test program was to acquire a comprehensive set of validation-quality measurements ona full-scale pressure-instrumented rotor system at conditions that challenge the most sophisticated modeling andsimulation tools. The test hardware included the same rotor blades used during the UH-60A Airloads flight test.[2] Key measurements included rotor performance, blade loads, blade pressures, blade displacements, and rotorwake measurements using large-field Particle Image Velocimetry (PIV) and Retro-reflective Background Oriented Schlieren (RBOS).

  17. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    SciTech Connect

    Eliasson, B.; Stenflo, L.; Shukla, P. K.

    2008-10-15

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.

  18. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Stenflo, L.; Shukla, P. K.

    2008-10-01

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.

  19. Full-Scale Wind-Tunnel Studies of F/A-18 Tail Buffet

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; James, Kevin D.

    1996-01-01

    Tail buffet studies were conducted on a full-scale, production F/A-18 fighter aircraft in the 80 by 120 ft Wind Tunnel at NASA Ames Research Center. The F/A-18 was tested over an angle-of-attack range of 18-50 deg, and at wind speeds of up to 168 ft/s, corresponding to a Reynolds number of 12.3x10(exp 6) based on mean aerodynamic chord and a Mach number of 0.15. The port, vertical tail fin was instrumented and the aircraft was equipped with a removable leading-edge extension (LEX) fence. Time-averaged, power-spectral analysis results are presented for the tail fin bending moment derived from the integrated pressure field, for the zero side-slip condition, both with and without the LEX fence. The LEX fence significantly reduces the magnitude of the rms pressures and bending moments. Scaling issues are addressed by comparing full-scale results for pressures at the 60%-span and 45%-chord location with small-scale, F/A-18 tail-buffet data. The comparison shows that the tail buffet frequency scales very well with length and velocity. Root-mean-square pressures and power spectra do not scale as well. The LEX fence is shown to reduce tail buffet loads at all model scales.

  20. Optimally Scaled H(sub infinity) Full Information Control Synthesis with Real Uncertainty

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.; Lind, Rick; Packard, Andy

    1996-01-01

    This paper presents an algorithm to synthesize optimal controllers for the scaled H(sub infinity). full information problem with real and complex uncertainty. The control problem is reduced to a linear matrix inequality which can be solved via a finite dimensional convex optimization. This technique is compared with the optimal scaled H(sub infinity). full information with only complex uncertainty and D - K iteration control design to synthesize controllers for a missile autopilot. Directly including real parametric uncertainty into the control design results in improved robust performance of the missile autopilot. The controller synthesized via D - K iteration achieves results similar to the optimal designs.

  1. Propeller propulsion integration, phase 1. [conducted in langley 30 by 60 foot full scale wind tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, G.; Koenig, K.; Miley, S. J.; Mcwhorter, J.; Wells, G.

    1981-01-01

    A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality.

  2. Hybrid airfoil design methods for full-scale ice accretion simulation

    NASA Astrophysics Data System (ADS)

    Saeed, Farooq

    The objective of this thesis is to develop a design method together with a design philosophy that allows the design of "subscale" or "hybrid" airfoils that simulate fullscale ice accretions. These subscale or hybrid airfoils have full-scale leading edges and redesigned aft-sections. A preliminary study to help develop a design philosophy for the design of hybrid airfoils showed that hybrid airfoils could be designed to simulate full-scale airfoil droplet-impingement characteristics and, therefore, ice accretion. The study showed that the primary objective in such a design should be to determine the aft section profile that provides the circulation necessary for simulating full-scale airfoil droplet-impingement characteristics. The outcome of the study, therefore, reveals circulation control as the main design variable. To best utilize this fact, this thesis describes two innovative airfoil design methods for the design of hybrid airfoils. Of the two design methods, one uses a conventional flap system while the other only suggests the use of boundary-layer control through slot-suction on the airfoil upper surface as a possible alternative for circulation control. The formulation of each of the two design methods is described in detail, and the results from each method are validated using wind-tunnel test data. The thesis demonstrates the capabilities of each method with the help of specific design examples highlighting their application potential. In particular, the flap-system based hybrid airfoil design method is used to demonstrate the design of a half-scale hybrid model of a full-scale airfoil that simulates full-scale ice accretion at both the design and off-design conditions. The full-scale airfoil used is representative of a scaled modern business-jet main wing section. The study suggests some useful advantages of using hybrid airfoils as opposed to full-scale airfoils for a better understanding of the ice accretion process and the related issues. Results

  3. Full-Scale Wind Tunnel Studies of F/A-18 Tail Buffet

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; James, Kevin D.

    1993-01-01

    Tail buffet studies were conducted on a full-scale, production, F/A-18, fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center in Moffett Field, California. The F/A-18 was tested over an angle-of-attack range of 18deg to 50deg, a side-slip range of -15deg to 15deg, and at wind speeds of up to 100 knots. The maximum speed corresponds to a Reynolds number of 12.3 x 10(exp 6) based on mean aerodynamic chord and a Mach number of 0.15. The port, vertical tail fin was instrumented with thirty-two surface pressure transducers, arranged in four by four arrays on both sides on the fin. The aircraft was also equipped with a removable Leading Edge eXtension (LEX) fence that is used on F/A-18 aircraft to reduce tail buffet loads. Time-averaged, power-spectral analysis results are presented for the tail fin bending moment derived from the integrated pressure field. The results are only for the zero side-slip condition, both with and without the LEX fence. The LEX fence significantly reduces the magnitude of the root-mean-square pressures and bending moments. Scaling issues are addressed by comparing full-scale results for pressures at the 60%-span and 45%-chord location with published results of small-scale, F/A-18 tail-buffet tests. The comparison shows that the tail buffet frequency scales very well with length and velocity. Root-mean-square pressures and power spectra do not scale as well. The LEX fence is shown to reduce tail buffet loads at all model scales.

  4. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  5. Full-scale high angle-of-attack tests of an F/A-18

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Lanser, Wendy R.; James, Kevin D.

    1992-01-01

    This paper presents an overview of high angle-of-attack tests of a full-scale F/A-18 in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center at Moffett Field, California. A production aircraft was tested over an angle-of-attack range of 18 to 50 deg and at wind speeds of up to 100 knots. These tests had three primary test objectives. Pneumatic and mechanical forebody flow control devices were tested at full-scale and shown to produce significant yawing moments for lateral control of the aircraft at high angles of attack. Mass flow requirements for the pneumatic system were found to scale with freestream density and speed rather than freestream dynamic pressure. Detailed measurements of the pressures buffeting the vertical tail were made and spatial variations in the buffeting frequency were found. The LEX fence was found to have a significant effect on the frequency distribution on the outboard surface of the vertical fin. In addition to the above measurements, an extensive set of data was acquired for the validation of computational fluid dynamics codes and for comparison with flight test and small-scale wind tunnel test results.

  6. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  7. Review of Full-Scale F/A-18 Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    Results of flow visualization and tail buffett studies conducted on a full-scale production F/A-18 fighter aircraft in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex are presented. Test conditions range between 20 degrees and 40 degrees angle of attack, 16 degrees and -16 degrees side-slip angle, and up to a Mach number of 0.15 (corresponding to a Reynolds number of 12.3 x 10(exp 6) based on mean aerodynamic chord). Flow visualization results include both surface and off-surface techniques that examine forebody, canopy, leading-edge extension, and wing flow fields. Unsteady pressures measured at 96 locations on the port tail fin are used to determine the effect of a removable leading-edge extension fence on tail buffet loads at high angle of attack. Analyses and comparisons include tail fin bending moment and wave velocities on the tail surface. Repeatability and scaling issues are assessed through comparison with measurements from previous full-scale tests and several small-scales tests.

  8. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation.

    PubMed

    Bajracharya, Rohan Muni; Manalo, Allan C; Karunasena, Warna; Lau, Kin-Tak

    2016-02-01

    In Australia, the plastic solid waste (PSW) comprises 16% by weight of municipal solid waste but only about one-fourth are recycled. One of the best options to increase the recycling rate of mixed PSW is to convert them into products suitable for construction. However, a comprehensive understanding on the mechanical behaviour of mixed PSW under different loading conditions is important for their widespread use as a construction material. This study focuses on investigating the mechanical behaviour of recycled mixed PSW containing HDPE, LDPE and PP using coupon and full-scale specimens. From coupon test, the strength values were found to be 14.8, 19.8, 20, 5.6MPa in tension, compression, flexure and shear respectively, while the modulus of elasticity are 0.91, 1.03, 0.72GPa in tension, compression and flexure respectively. The coefficient of variance of the measured properties for coupon and fullscale specimens was less than 10% indicating that consistent material properties can be obtained for mixed PSW. More importantly, the strength properties of mixed PSW are comparable to softwood structural timber. The flexural behaviour of full-scale specimens was also predicted using fibre model analysis and finite element modelling. Comparison showed that using coupon specimen's properties, the flexural behaviour of the full-scale specimens can be predicted reliably which can eliminate the costly and time consuming arrangements for full-scale experimental tests. PMID:26597374

  9. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  10. Genetic and Environmental Influences on Conduct Disorder: Symptom, Domain and Full-Scale Analyses

    ERIC Educational Resources Information Center

    Gelhorn, Heather L.; Stallings, Michael C.; Young, Susan E.; Corley, Robin P.; Rhee, Soo Hyun; Hewitt, John K.

    2005-01-01

    Background: We used variable threshold models which accounted for age and gender differences to investigate the genetic and environmental influences on DSM-IV conduct disorder (CD) at the level of symptoms, aggressive versus non-aggressive domains, and full-scale. Method: A community sample of 1100 twin pairs (age 11-18) was interviewed using the…

  11. EVALUATION OF FULL-SCALE SUGAR BEET TRANSPORT WATER SOLIDS DEWATERING SYSTEM

    EPA Science Inventory

    The objectives of this study were to evaluate a full-scale vacuum filtration system for dewatering solids removed from the transport water in an operating beet sugar plant in terms of operational reliability and efficiency, economics, and ultimate disposal of the dewatered solids...

  12. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    EPA Science Inventory

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  13. SCREENING/FLOTATION TREATMENT OF COMBINED SEWER OVERFLOWS. VOLUME II: FULL-SCALE OPERATION, RACINE, WISCONSIN

    EPA Science Inventory

    This study involved the planning, design, construction and operation of a two-year evaluation period, of three full-scale demonstration systems for the treatment of storm generated discharges. As part of the evaluation, the quality of the receiving body was also monitored. Two of...

  14. CHARACTERISTICS OF PILOT- AND FULL-SCALE HAZARDOUS WASTE INCINERATOR ASH

    EPA Science Inventory

    This review encompasses ash characterization data from 16 different hazardous waste incinerators, both pilot- and full-scale, treating a variety of waste streams. Its focus is on 14 volatile organic compounds, 18 semivolatile organics, and 13 metals for which analyses were most f...

  15. Analysis of Unbound Aggregate Layer Deformation Behavior from Full Scale Aircraft Gear Loading with Wander

    ERIC Educational Resources Information Center

    Donovan, Phillip Raymond

    2009-01-01

    This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…

  16. FULL-SCALE DEMONSTRATION OF OPEN TANK OXYGEN ACTIVATED SLUDGE TREATMENT

    EPA Science Inventory

    This report presents an operating summary of a full-scale demonstration of the FMC open tank pure oxygen (FMC O2) activated sludge system, conducted at the facilities of the Metropolitan Denver Sewage Disposal District No. 1 (Metro) in Denver, Colorado. The system was operated ov...

  17. Hydrologic and Pollutant Removal Performance of a Full-Scale, Fully Functional Permeable Pavement Parking Lot

    EPA Science Inventory

    In accordance with the need for full-scale, replicated studies of permeable pavement systems used in their intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditions, and maintenance regimes to evaluate these systems, the EPA’s Urb...

  18. CLOSED-CYCLE TEXTILE DYEING: FULL-SCALE HYPERFILTRATION DEMONSTRATION (DESIGN)

    EPA Science Inventory

    The report describes the first (design) phase of a full-scale demonstration of hyperfiltration for closed-cycle operations of a LaFrance Industries dye house. (The remaining three phases are installation, operation, and maintenance.) The decision to demonstrate the process was ba...

  19. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  20. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  1. FULL-SCALE DUAL ALKALI FGD (FLUE GAS DESULFURIZATION) DEMONSTRATION AT LOUISVILLE GAS AND ELECTRIC COMPANY

    EPA Science Inventory

    The report summarizes the 1-year demonstration of the full-scale dual-alkali flue gas desulfurization (FGD) system at Louisville Gas and Electric Co.'s (LG/E's) Cane Run Unit 6. Systems performance is described in terms of performance guarantees and other parameters that were mon...

  2. CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS

    EPA Science Inventory

    A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...

  3. EVALUATION OF FULL SCALE FABRIC FILTERS ON UTILITY BOILERS: SPS HARRINGTON STATION UNIT 3

    EPA Science Inventory

    The report gives results of total mass and fractional size particulate emission tests at Southwestern Public Service's Harrington Station Unit 3 from July 8 to 11, 1981, as part of a program to evaluate and characterize the performance of full-scale fabric filter units installed ...

  4. Design and fabrication of the NASA HL-20 full scale research model

    NASA Technical Reports Server (NTRS)

    Driver, K. Dean; Vess, Robert J.

    1991-01-01

    A full-scale engineering model of the HL-20 Personnel Launch System (PLS) was constructed for systems and human factors evaluation. Construction techniques were developed to enable the vehicle to be constructed with a minimum of time and cost. The design and construction of the vehicle are described.

  5. Reducing swine farm ammonia emission with a full-scale manure treatment system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new full-scale treatment system in its second-generation was implemented at a 5000-head finishing swine farm in North Carolina to improve treatment lagoon water quality and reduce ammonia emissions. The system combined high-rate solid-liquid separation with nitrogen and phosphorus removal process...

  6. FULL-SCALE VIBRATING PERVAPORATION MEMBRANE UNIT: VOC REMOVAL FROM WATER AND SURFACTANT SOLUTIONS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1440 Vane*, L.M., and Alvarez*, F.R. Full-Scale Vibrating Pervaporation Membrane Unit: VOC Removal from Water and Surfactant Solutions. Journal of Membrane Science (Koros, W.J. (Ed.), Elsevier Science B.V.) 202 (1-2):177-193 (2002). EPA/600/J-02/211, www.elsevier.com/l...

  7. FULL-SCALE STUDIES OF THE TRICKLING FILTER/SOLIDS CONTACT PROCESS

    EPA Science Inventory

    The trickling filter/solids contact (TF/SC) process was first successfully demonstrated in 1979 as an outgrowth of the trickling filter process. In 1984, the U.S. Environmental Protection Agency (EPA) sponsored full-scale studies of the TF/SC process to document the performance o...

  8. Some aspects of the comparison of model and full-scale tests

    NASA Technical Reports Server (NTRS)

    Taylor, D W

    1926-01-01

    This paper was delivered before the Royal Aeronautical Society as the 1925 Wilbur Wright Memorial lecture. It treats the subject of scale effect from the standpoint of the engineer rather than the physicist, in that it shows what compromises are necessary to secure satisfactory engineering model test data and how these test data compare with full scale or with theoretical values. The paper consists essentially of three parts: (1) a brief exposition of the theory of dynamic similarity, (2) application of the theory to airplane model tests, illustrated by test data on airfoils from the National Advisory Committee for Aeronautics variable-density wind tunnel, and (3) application of the theory to propeller testing, illustrated by comparisons of model and full-scale results.

  9. Comparison of scaled model data to full size energy efficient engine test results

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.; Chamberlin, R.

    1984-01-01

    Acoustic tests of a subscale fan and a subscale mixer nozzle were conducted in anechoic chambers over a variety of operating conditions. The subscale fan test was an investigation into the effects of vane/blade ratio and spacing on fan generated noise. A turbulence control structure (TCS) was used to simulate the 'turbulence-free' condition in flight. The subscale mixer nozzle test investigated the acoustic properties of several different forced mixer designs. A tertiary flow was utilized on the mixer model to simulate the forward velocity effects on the jet. The results were scaled up to full size conditions and compared with measured engine data. The comparisons showed good agreement between the component scaled model results and the full scale engine data.

  10. The 5 kWe scale-down of the SPAR/SP-100 heat pipe reactor

    NASA Astrophysics Data System (ADS)

    Adrian, John M.; Benke, Steven M.

    The SPAR/SP-100 heat pipe reactor was designed to operate at 100 kWe. Work done on a 5 kWe scaled-down version of the SPAR/SP-100 is presented. This scale-down was done in order to compare the performance of a small heat pipe reactor to Radioisotope Thermoelectric Generators (RTGs). The work on this design is broken into the following categories: reactor core modeling, control drum modeling, heat rejection modeling, and shadow shield modeling. The reactor core modeling will be completed using the already available computer programs FEMP2D and ORIGEN. The REMP2D will be used to complete the neutronics survey through the core and control drums and it will also be used to ensure the core will be subcritical in case of a water abort. Another safety aspect that will be investigated using FEMP2D is ensuring that a fuel element remains subcritical in the event of reactor break-up during reentry. The ORIGEN wil be used to check the burn-up characteristics of the core design. The reactor control drums will be modeled using a FORTRAN program in order to provide atom density information for use in FEMP2D. The heat rejection system will be modeled in order to determine weight requirements of the radiator. The shadow shield model will also provide information on the weight requirements of the shield with respect to the reactor size. The data obtained from the different categories wil be used to compare the performance of a small heat pipe reactor to the RTG. Comparisons will be made in the following areas: specific power, operating characteristics, and safety.

  11. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGESBeta

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; Bilheux, Hassina Z.

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  12. Anisotropic Storage Medium Development in a Full-Scale, Sodium Alanate-Based, Hydrogen Storage System

    SciTech Connect

    Jorgensen, Scott W; Johnson, Terry A; Payzant, E Andrew; Bilheux, Hassina Z

    2016-01-01

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. Furthermore, the evidence indicates that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.

  13. Icing testing in the large Modane wind-tunnel on full-scale and reduced scale models

    NASA Technical Reports Server (NTRS)

    Charpin, F.; Fasso, G.

    1979-01-01

    Icing tests on full scale models of parts of aircraft (wings, tailplanes, radome) equipped with actual de-icing systems were carried out in the large Modane wind tunnel of ONERA. For studying icing on the Concorde, it was necessary to use a 1/6 scale half model. The equations governing the relevant parameter ratios to obtain reasonably good similitude water catching and ice accretion are recalled. Despite the inherent limitations of this particular kind of testing, i.e., the impossibility of duplicating both the Mach and Reynolds conditions for the main flow pattern, it is possible to obtain on a reduced scale model a reasonably good representation of icing cloud catching and of the shape of resulting ice accretion.

  14. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  15. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  16. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    SciTech Connect

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  17. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  18. The development of a facility for full-scale testing of airfoil performance in simulated rain

    NASA Technical Reports Server (NTRS)

    Taylor, John T.; Moore, Cadd T., III; Campbell, Bryan A.; Melson, W. EDWARD., Jr.

    1988-01-01

    NASA Langley's Aircraft Landing Dynamics Facility has been adapted in order to test the performance of airfoils in a simulated rain environment, at rainfall rates of 2, 10, 30, and 40 inches/hour, and thereby derive the scaling laws associated with simulated rain in wind tunnel testing. A full-scale prototype of the rain-generation system has been constructed and tested for suitable rain intensity, uniformity, effects of crosswinds on uniformity, and drop size range. The results of a wind tunnel test aimed at ascertaining the minimum length of the simulated rain field required to yield an airfoil performance change due to the rain environment are presented.

  19. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. PMID:25222332

  20. Full Scale Software Support on Mobile Lightweight Devices by Utilization of All Types of Wireless Technologies

    NASA Astrophysics Data System (ADS)

    Krejcar, Ondrej

    New kind of mobile lightweight devices can run full scale applications with same comfort as on desktop devices only with several limitations. One of them is insufficient transfer speed on wireless connectivity. Main area of interest is in a model of a radio-frequency based system enhancement for locating and tracking users of a mobile information system. The experimental framework prototype uses a wireless network infrastructure to let a mobile lightweight device determine its indoor or outdoor position. User location is used for data prebuffering and pushing information from server to user’s PDA. All server data is saved as artifacts along with its position information in building or larger area environment. The accessing of prebuffered data on mobile lightweight device can highly improve response time needed to view large multimedia data. This fact can help with design of new full scale applications for mobile lightweight devices.

  1. The practical influence of rapid mixing on coagulation in a full-scale water treatment plant.

    PubMed

    Allerdings, Demitri; Förster, Gerrit; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-01-01

    This study focuses on the effect of rapid mixing on the coagulation efficiency in a full-scale drinking-water treatment plant and discusses the mechanisms involved in the floc-formation process. The results refer to three periods of operation of the waterworks when no mechanical mixing was provided in the tanks for coagulant dosing due to mechanical failure of the rapid mixers. Although a certain deterioration of the subsequent flocculation process was observed, as assessed using the data for suspended solids, turbidity, and chemical oxygen demand, the overall water treatment performance was not affected. This suggests an insignificant role for intense rapid mixing in sweep flocculation during full-scale water treatment and reveals the potential to reduce the required energy costs for mechanical mixers. PMID:25746649

  2. Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Abrego, Anita I.; Olson, Lawrence E.

    2011-01-01

    Blade displacement measurements were acquired during a wind tunnel test of the full-scale UH-60A Airloads rotor. The test was conducted in the 40- by 80-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at NASA Ames Research Center. Multi-camera photogrammetry was used to measure the blade displacements of the four-bladed rotor. These measurements encompass a range of test conditions that include advance ratios from 0.15 to unique slowed-rotor simulations as high as 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective of these measurements is to provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft computational tools. The methodology, system development, measurement techniques, and preliminary sample blade displacement measurements are presented.

  3. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  4. RecoPhos: full-scale fertilizer production from sewage sludge ash.

    PubMed

    Weigand, Harald; Bertau, Martin; Hübner, Wilfried; Bohndick, Fred; Bruckert, Axel

    2013-03-01

    The substitution potential of sewage sludge for German primary phosphate imports has been estimated as 40%. Yet, a marketable option for the full scale recovery has been lacking. This study focuses on a full-scale process for the manufacture of a P-fertilizer from sewage sludge ash (SSA) adapted from the production of Triple Superphosphate. Given (i) conformity of the input with phosphate ores mined from sedimentary deposits, (ii) comparability of the product with a commercially available P-fertilizer regarding contaminant levels, P-fractionation and yield effects, and (iii) compliance of the output with the German Fertilizer Ordinance the RecoPhos P 38 fertilizer was discharged from the waste legislation regime. The fertilizer is currently being produced at a rate of 1000 tonnes per month and sold at a competitive price. PMID:22878049

  5. Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.

    2015-01-01

    This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.

  6. UV/chlorine control of drinking water taste and odour at pilot and full-scale.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-10-01

    Advanced oxidation processes (AOPs) can be used to destroy taste and odour-causing compounds in drinking water. This work investigated both pilot- and full-scale performance of the novel ultraviolet (UV)/chlorine AOP for the destruction of geosmin, 2-methylisoborneol (MIB) and caffeine (as a surrogate) in two different surface waters. The efficiency of the UV/chlorine process at pH 7.5 and 8.5 was comparable to that of the UV/hydrogen peroxide (UV/H2O2) process under parallel conditions, and was superior at pH 6.5. Caffeine was found to be a suitable surrogate for geosmin and MIB, and could be used as a more economical alternative to geosmin or MIB spiking for site-specific full-scale testing. PMID:26025188

  7. Summary of drag clean-up tests in NASA Langley full-scale tunnel

    NASA Technical Reports Server (NTRS)

    Mckinney, M. O.

    1975-01-01

    This summary of drag results presents tabulations on fighter aircraft and light twin general aviation aircraft wind tunnel tests. The figures show that the friction drag for light twins is larger than that for the fighters because of the greater wetted area and the smaller wing area used for reference. Full scale tunnel tests developed the following design features contributing to excessive drag: cooling flow system, engine exhaust stacks, landing gears, control surface gaps, and wing irregularities and leakages.

  8. Static Thrust and Power Characteristics of Six Full-Scale Propellers

    NASA Technical Reports Server (NTRS)

    Hartman, Erwin P; Biermann, David

    1940-01-01

    Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.

  9. Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation

    NASA Technical Reports Server (NTRS)

    Black, Dugald O.

    1952-01-01

    The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described

  10. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  11. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems.

    PubMed

    McIlroy, Simon Jon; Starnawska, Anna; Starnawski, Piotr; Saunders, Aaron Marc; Nierychlo, Marta; Nielsen, Per Halkjaer; Nielsen, Jeppe Lund

    2016-01-01

    Denitrification is essential to the removal of nitrogen from wastewater during treatment, yet an understanding of the diversity of the active denitrifying bacteria responsible in full-scale wastewater treatment plants (WWTPs) is lacking. In this study, stable-isotope probing (SIP) was applied in combination with microautoradiography (MAR)-fluorescence in situ hybridization (FISH) to identify previously unrecognized active denitrifying phylotypes in a full-scale WWTP with biological N and P removal. Acknowledging that different denitrifiers will have specific carbon source preferences, a fully (13)C-labelled complex substrate was used for SIP incubations, under nitrite-reducing conditions, in order to maximize the capture of the potentially metabolically diverse denitrifiers likely present. Members of the Rhodoferax, Dechloromonas, Sulfuritalea, Haliangium and Thermomonas were represented in the 16S rRNA gene clone libraries from DNA enriched in (13)C, with FISH probes optimized here for their in situ characterization. FISH and MAR confirmed that they were all active denitrifiers in the community. The combined approach of SIP and MAR-FISH represents an excellent approach for identifying and characterizing an un-described diversity of active denitrifiers in full-scale systems. PMID:25181571

  12. Selection of the surface water treatment technology - a full-scale technological investigation.

    PubMed

    Pruss, Alina

    2015-01-01

    A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1-1.5 m³/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m³/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration. PMID:25746658

  13. Aperiodicity in the near field of full-scale rotor blade tip vortices

    NASA Astrophysics Data System (ADS)

    Kindler, Kolja; Mulleners, Karen; Richard, Hugues; van der Wall, Berend G.; Raffel, Markus

    2011-06-01

    Blade tip vortices are the dominant vortical structures of the helicopter flow field. The inherent complexity of the vortex dynamics has led to an increasing interest in full-scale in situ experiments, where the near field, closely behind the blade, is of particular interest, since measures of vortex control mostly target this initial stage of development. To examine the near field, three-component particle image velocimetry (PIV) measurements of blade tip vortices of a full-scale helicopter in simulated hover flight in ground effect were conducted. A feasible and robust evaluation procedure was developed to minimise the shortcomings of full-scale PIV applications, such as a moderate spatial resolution and an elevated measurement noise level. At vortex ages ranging from ψ_v=1^{circ} to 30°, a pronounced aperiodicity and asymmetry of the vortex were observed in -sections perpendicular to the vortex axes. At ψ_v=1^{circ}, a preferential orientation of the vortex was observed. For increasing wake age, vortex wandering increased while the asymmetry of the vortex cores decreased. The high level of aperiodicity and core asymmetry must be taken into account when considering phase-averaged vortex characteristics in the near wake region.

  14. Diagnosis and optimization of the composting process in full-scale mechanical-biological treatment plants.

    PubMed

    Baptista, Marco; Antunes, Fernando; Silveira, Ana

    2011-06-01

    The aims of this study were (i) to evaluate the performance of the composting process operation in full-scale mechanical-biological treatment (MBT) plants, (ii) to estimate their performance under optimized conditions and (iii) to propose specific guidelines on how to improve the efficiency of the composting process. To fulfil these objectives, a first-order kinetic model was used. This model was calibrated with experimental data to account for the limitations imposed by less-than-optimal environmental conditions during operation of the composting process. Data treatment and simulation showed that two of the three MBT plants studied were poorly operated. Optimization of process management with measures of simple practical implementation was estimated to be highly significant in these poorly managed plants, increasing performance by 103% in MBT1 and 53% in MBT2. In MBT3, the potential for optimization was estimated at 17%. Similar results were obtained from the analysis of other published data, suggesting that poor process management in MBT composting is widespread. These findings highlight the importance of having programmes for monitoring and optimizing process performance in full-scale composting systems. The procedures developed here are simple to apply and can routinely be implemented in full-scale plants. PMID:21216924

  15. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  16. Full-scale assessment of the nutrient removal capabilities of membrane bioreactors.

    PubMed

    Daigger, Glen T; Crawford, George V; Johnson, Bruce R

    2010-01-01

    Operating results from two full-scale membrane bioreactors (MBRs) practicing biological and chemical phosphorus and biological nitrogen removal to meet stringent effluent nutrient limits are analyzed. Full-scale results and special studies conducted at these facilities resulted in the development of guidelines for the design of MBRs to achieve stringent effluent nutrient concentrations--as low as 0.05 mg/L total phosphorus and 3 mg/L total nitrogen. These guidelines include the following: (1) direct the membrane recirculation flow to the aerobic zone, (2) provide intense mixing at the inlets of the anaerobic and anoxic zones, (3) maintain internal recirculation flowrates to maintain the desired mixed liquor suspended solids distribution, and (4) carefully control supplemental metal salt addition in proportion to the phosphorus remaining after biological removal is complete. Staging the various process zones and providing effective dissolved oxygen control also enhances nutrient removal performance. The results demonstrated that process performance can be characterized by the International Water Association (London, United Kingdom) (IWA) activated sludge model number 2d (ASM2d) and the Water Environment Federation (Alexandria, Virginia) chemical phosphorus removal model. These models subsequently were used to develop unique process configurations that are currently under design and/or construction for several full-scale nutrient removal MBRs. PMID:20942336

  17. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  18. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  19. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    SciTech Connect

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-11-27

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  20. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers

  1. Introducing sequential managed aquifer recharge technology (SMART) - From laboratory to full-scale application.

    PubMed

    Regnery, Julia; Wing, Alexandre D; Kautz, Jessica; Drewes, Jörg E

    2016-07-01

    Previous lab-scale studies demonstrated that stimulating the indigenous soil microbial community of groundwater recharge systems by manipulating the availability of biodegradable organic carbon (BDOC) and establishing sequential redox conditions in the subsurface resulted in enhanced removal of compounds with redox-dependent removal behavior such as trace organic chemicals. The aim of this study is to advance this concept from laboratory to full-scale application by introducing sequential managed aquifer recharge technology (SMART). To validate the concept of SMART, a full-scale managed aquifer recharge (MAR) facility in Colorado was studied for three years that featured the proposed sequential configuration: A short riverbank filtration passage followed by subsequent re-aeration and artificial recharge and recovery. Our findings demonstrate that sequential subsurface treatment zones characterized by carbon-rich (>3 mg/L BDOC) to carbon-depleted (≤1 mg/L BDOC) and predominant oxic redox conditions can be established at full-scale MAR facilities adopting the SMART concept. The sequential configuration resulted in substantially improved trace organic chemical removal (i.e. higher biodegradation rate coefficients) for moderately biodegradable compounds compared to conventional MAR systems with extended travel times in an anoxic aquifer. Furthermore, sorption batch experiments with clay materials dispersed in the subsurface implied that sorptive processes might also play a role in the attenuation and retardation of chlorinated flame retardants during MAR. Hence, understanding key factors controlling trace organic chemical removal performance during SMART allows for systems to be engineered for optimal efficiency, resulting in improved removal of constituents at shorter subsurface travel times and a potentially reduced physical footprint of MAR installations. PMID:27037769

  2. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    PubMed Central

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  3. Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators.

    PubMed

    Van Caneghem, Jo; Block, Chantal; Vandecasteele, Carlo

    2014-01-01

    Destruction and formation of dioxin-like PCBs in full scale waste incinerators is studied by analysing input waste streams and boiler and fly ash of a grate furnace incinerator (GFI) incinerating MSW, of a Fluidised Bed Combustor (FBC) incinerating a mix of 50% sludge, 25% refuse derived fuel (RDF) and 25% automotive shredder residue (ASR) and of a rotary kiln incinerator (RKI) incinerating hazardous waste. The dioxin-like PCB fingerprints of the waste inputs show that PCB oils Aroclor 1242 and Aroclor 1254 late are the major dioxin-like PCB contamination source of sludge, RDF and ASR. The dioxin-like PCB fingerprints of the waste inputs are clearly different from the fingerprints of the outputs, i.e. boiler and fly ash, indicating that in full scale waste incinerators dioxin-like PCBs in the input waste are destroyed and other dioxin-like PCBs are newly formed in the post combustion zone. The dioxin-like PCB fingerprint of boiler and fly ash of all three incinerators corresponds well to the fly ash fingerprint obtained in lab scale de novo synthesis experiments, indicating that dioxin-like PCBs are mainly formed through this mechanism. The high PCB concentration in the input waste mix of the RKI does not promote the formation of dioxin-like PCBs through precursor condensation. PMID:24120013

  4. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  5. Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit

    SciTech Connect

    Not Available

    1992-03-18

    The overall objectives of the full-Scale Low-NO{sub x} Cell{trademark} Burner (LNCB{trademark}) Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the LNCB{trademark} retrofits are the most cost-effective alternative to emerging, or commercially- available NO{sub x} control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NO{sub x} reduction capabilities without adversely impacting plant performance, operation and maintenance. In particular, the prototype evaluations will resolve many technical issues not possible to address fully in the previous pilot-scale work and the single full-scale burner installation.

  6. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy; Perusek, Gail P.; Ibrahim, Mounir

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow paramenter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  7. Use of an approximate similarity principle for the thermal scaling of a full-scale thrust augmenting ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.

    1992-01-01

    Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.

  8. Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations

    SciTech Connect

    Yang, Zhongwei; Lu, Quanming; Gao, Xinliang; Huang, Can; Yang, Huigen; Hu, Hongqiao; Han, Desheng; Liu, Ying

    2013-09-15

    Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regime below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.

  9. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  10. Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.; Bridges, P. D.; Brownlee, J. A.; Livingston, W. W.

    1980-01-01

    The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.