Science.gov

Sample records for full-field laser-doppler imaging

  1. Full-field high-speed laser Doppler imaging system for blood-flow measurements

    NASA Astrophysics Data System (ADS)

    Serov, Alexandre; Lasser, Theo

    2006-02-01

    We describe the design and performance of a new full-field high-speed laser Doppler imaging system developed for mapping and monitoring of blood flow in biological tissue. The total imaging time for 256x256 pixels region of interest is 1.2 seconds. An integrating CMOS image sensor is utilized to detect Doppler signal in a plurality of points simultaneously on the sample illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurement, which results in high-quality flow-images provided by the system. The new technique is real-time, non-invasive and the instrument is easy to use. The wide range of applications is one of the major challenges for a future application of the imager. High-resolution high-speed laser Doppler perfusion imaging is a promising optical technique for diagnostic and assessing the treatment effect of the diseases such as e.g. atherosclerosis, psoriasis, diabetes, skin cancer, allergies, peripheral vascular diseases, skin irritancy and wound healing. We present some biological applications of the new imager and discuss the perspectives for the future implementations of the imager for clinical and physiological applications.

  2. Laser Doppler Velocimetry and full-field soot volume fraction

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    1995-01-01

    Since its introduction in the mid-sixties, Laser Doppler Velocimetry (LDV) has become one of the most widely used methods for the measurement of flows. Its remote and essentially non-intrusive nature provides an invaluable tool for a variety of difficult measurement situations which would be otherwise inaccessible. The high spatial resolution and rapid temporal response afforded by this technique are well suited to the determination of spatial and temporal details of flow fields, as well as characterization of turbulence. Advances in the understanding of the properties of LDV signals, accompanied by technological advances in coherent laser sources, detectors of high sensitivity and low noise, optical fabrication techniques and high-speed digital signal processing architectures have resulted in systems of increased accuracy and flexibility. As will be shown, recent progress in solid-state lasers and photo-detectors has been beneficial insofar as the compatibility of this method with the unique and severe constraints inherent in microgravity combustion science experiments.

  3. Laser Doppler imaging for intraoperative human brain mapping.

    PubMed

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging. PMID:19049824

  4. Low resource processing algorithms for laser Doppler blood flow imaging.

    PubMed

    Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; He, Diwei; Morgan, Stephen P

    2011-07-01

    The emergence of full field laser Doppler blood flow imaging systems based on CMOS camera technology means that a large amount of data from each pixel in the image needs to be processed rapidly and system resources need to be used efficiently. Conventional processing algorithms that are utilized in single point or scanning systems are therefore not an ideal solution as they will consume too much system resource. Two processing algorithms that address this problem are described and efficiently implemented in a field programmable gate array. The algorithms are simple enough to use low system resource but effective enough to produce accurate flow measurements. This enables the processing unit to be integrated entirely in an embedded system, such as in an application-specific integrated circuit. The first algorithm uses a short Fourier transformation length (typically 8) but averages the output multiple times (typically 128). The second method utilizes an infinite impulse response filter with a low number of filter coefficients that operates in the time domain and has a frequency-weighted response. The algorithms compare favorably with the reference standard 1024 point fast Fourier transform in terms of both resource usage and accuracy. The number of data words per pixel that need to be stored for the algorithms is 1024 for the reference standard, 8 for the short length Fourier transform algorithm and 5 for the algorithm based on the infinite impulse response filter. Compared to the reference standard the error in the flow calculation is 1.3% for the short length Fourier transform algorithm and 0.7% for the algorithm based on the infinite impulse response filter. PMID:21316289

  5. Laser Doppler blood flow imaging with a 64×64 pixel full custom CMOS sensor

    NASA Astrophysics Data System (ADS)

    He, D.; Nguyen, H. C.; Hayes-Gill, B. R.; Zhu, Y.; Crowe, J. A.; Morgan, S. P.; Clough, G. F.; Gill, C. A.

    2011-03-01

    Full field laser Doppler perfusion imaging offers advantages over scanning laser Doppler imaging as the effects of movement artifacts are reduced. The increased frame rate allows rapid changes in blood flow to be imaged. A custom made CMOS sensor offers several advantages over commercial cameras as the design can be optimized to the detected signals. For example, laser Doppler signals are known to have a bandwidth from DC up to ~20KHz and be of a low modulation depth. Therefore a design that can amplify the AC component and have a sampling rate and an antialiasing filter appropriate to the signal bandwidth would be beneficial. An additional advantage of custom made sensors is that on-chip processing of blood flow allows the data bottleneck that exists between the photo-detector array and processing electronics to be overcome, as the processed data can be read out from the image sensor to a PC or display at a low data rate. A fully integrated 64x64 pixel array for imaging blood flow is presented. On-chip analog signal processing is used to amplify the AC component, normalize the AC signal by the DC light intensity and provide anti-aliasing. On-chip digital signal processing is used to implement the filters required to calculate blood flow. The imaging array has been incorporated into a device that has been used in a clinical setting. Results are presented demonstrating changes in blood flow in occlusion and release tests.

  6. Laser Doppler imaging of myocardial perfusion during coronary bypass surgery

    NASA Astrophysics Data System (ADS)

    Wardell, Karin; Hermansson, Ulf; Nilsson, Gert E.; Casimir-Ahn, Henrik

    2000-05-01

    Laser Doppler perfusion imaging has been used to assess the myocardium perfusion on the arrested heart during bypass surgery. Twenty-two patients undergoing coronary artery bypass grafting, including usage of the left internal thoracic artery, were included in the study. The anticipated perfusion increase following declamping of the internal thoracic artery was investigated by mapping areas at the size of 10 cm X 11 cm, (n equals 11) and 7 cm X 5 cm (n equals 11). The larger images allowed quantification of blood flow in different regions of the myocardium. The size of the affected area was 32.2 +/- 12.9 cm2 with a total increase of 3.17 +/- 0.75 a.u. (range 0 - 10 a.u.). Corresponding values for areas surrounding the vessels and areas defined as the larger vessels in the myocardium were 29.0 +/- 10.9 cm2 (2.85 +/- 0.57 a.u.) and 3.5 +/- 2.8 cm2 (6.78 +/- 0.18 a.u.). All subjects but two showed a substantial blood flow increase (> 2 a.u.) after release of the clamp. Six subjects had a total increase of at least 4 a.u. Correlation analysis between areas including various number of sites showed an r equals 0.91 (p < 0,0001) or better. In conclusion, laser Doppler perfusion imaging can easily be used intraoperatively in conjunction with bypass surgery. It enables immediate assessment of both the increase and spatial distribution of myocardial perfusion following declamping of an arterial graft.

  7. Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system

    NASA Astrophysics Data System (ADS)

    Sun, Shen; Hayes-Gill, Barrie R.; He, Diwei; Zhu, Yiqun; Huynh, Nam T.; Morgan, Stephen P.

    2016-08-01

    Full field laser Doppler imaging (LDI) and single exposure laser speckle contrast imaging (LSCI) are directly compared using a novel instrument which can concurrently image blood flow using both LDI and LSCI signal processing. Incorporating a commercial CMOS camera chip and a field programmable gate array (FPGA) the flow images of LDI and the contrast maps of LSCI are simultaneously processed by utilizing the same detected optical signals. The comparison was carried out by imaging a rotating diffuser. LDI has a linear response to the velocity. In contrast, LSCI is exposure time dependent and does not provide a linear response in the presence of static speckle. It is also demonstrated that the relationship between LDI and LSCI can be related through a power law which depends on the exposure time of LSCI.

  8. Full-field, nonscanning, optical imaging for perfusion indication

    NASA Astrophysics Data System (ADS)

    Chou, Nee-Yin; Winchester, L. W., Jr.; Naramore, W. J.; Alley, M. S.; Lesnick, A. J.

    2010-04-01

    Laser speckle imaging (LSI) has been gaining popularity for the past few years. Like other optical imaging modalities such as optical coherence tomography (OCT), orthogonal polarization spectroscopy (OPS), and laser Doppler imaging (LDI), LSI utilizes nonionizing radiation. In LSI, blood flow velocity is obtained by analyzing, temporally or spatially, laser speckle (LS) patterns generated when an expanded laser beam illuminates the tissue. The advantages of LSI are that it is fast, does not require scanning, and provides full-field LS images to extract realtime, quantitative hemodynamic information of subtle changes in the tissue vasculature. For medical applications, LSI has been used for obtaining blood velocities in human retina, skin flaps, wounds, and cerebral and sublingual areas. When coupled with optical fibers, LSI can be used for endoscopic measurements for a variety of applications. This paper describes the application of LSI in retinal, sublingual, and skin flap measurements. Evaluation of retinal hemodynamics provides very important diagnostic information, since the human retina offers direct optical access to both the central nervous system (CNS) and afferent and efferent CNS vasculature. The performance of an LSI-based fundus imager for measuring retinal hemodynamics is presented. Sublingual microcirculation may have utility for sepsis indication, since inherent in organ injury caused by sepsis is a profound change in microvascular hemodynamics. Sublingual measurement results using an LSI scope are reported. A wound imager for imaging LS patterns of wounds and skin flaps is described, and results are presented.

  9. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    NASA Astrophysics Data System (ADS)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  10. Seismic imaging in laboratory trough laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Brito, Daniel; Poydenot, Valier; Garambois, Stéphane; Diaz, Julien; Bordes, Clarisse; Rolando, Jean-Paul

    2016-04-01

    Mimic near-surface seismic field measurements at a small scale, in the laboratory, under a well-controlled environment, may lead to a better understanding of wave propagation in complex media such as in geological materials. Laboratory experiments can help in particular to constrain and refine theoretical and numerical modelling of physical phenomena occurring during seismic propagation, in order to make a better use of the complete set of measurements recorded in the field. We have developed a laser Doppler vibrometer (laser interferometry) platform designed to measure non-contact seismic displacements (or velocities) of a surface. This technology enables to measure displacements as small as a tenth of a nanometer on a wide range of frequencies, from a few tenths to a few megahertz. Our experimental set-up is particularly suited to provide high-density spatial and temporal records of displacements on the edge of any vibrating material. We will show in particular a study of MHz wave propagation (excited by piezoelectric transducers) in cylindrical cores of typical diameter size around 10 cm. The laser vibrometer measurements will be first validated in homogeneous materials cylinders by comparing the measurements to a direct numerical simulation. Special attention will be given to the comparison of experimental versus numerical amplitudes of displacements. In a second step, we will conduct the same type of study through heterogeneous carbonate cores, possibly fractured. Tomographic images of velocity in 2D slices of the carbonate core will be derived based upon on the time of first arrival. Preliminary attempts of tomographic attenuation maps will also be presented based on the amplitudes of first arrivals. Experimental records will be confronted to direct numerical simulations and tomographic images will be compared to x-ray scanner imaging of the cylindrical cores.

  11. The critical evaluation of laser Doppler imaging in determining burn depth

    PubMed Central

    Gill, Parneet

    2013-01-01

    This review article discusses the use of laser Doppler imaging as a clinimetric tool to determine burn depth in patients presenting to hospital. Laser Doppler imaging is a very sensitive and specific tool to measure burn depth, easy to use, reliable and acceptable to the patient due to its quick and non-invasive nature. Improvements in validity, cost and reproducibility would improve its use in clinical practice however it is difficult to satisfy the entire evaluation criterion all the time. It remains a widely accepted tool to assess burn depth, with an ever-increasing body of evidence to support its use, as discussed in this review. Close collaboration between clinicians, statisticians, epidemiologists and psychologists is necessary in order to develop the evidence base for the use of laser Doppler imaging as standard in burn depth assessment and therefore act as an influencing factor in management decisions. PMID:23638324

  12. Effects of some anesthetic agents on skin microcirculation evaluated by laser Doppler perfusion imaging in mice

    PubMed Central

    2013-01-01

    Background Anesthetic agents alter microcirculation, influencing tissue oxygenation and delivery of vital substrates. Laser Doppler perfusion imaging is a widespread technique in the field of microvascular research that can evaluate noninvasively and in real time the effects of environmental conditions, physical manipulations, diseases and treatments on peripheral perfusion. This study aims to evaluate laser Doppler perfusion imaging as a means to detect changes in skin microcirculation induced by some popular anesthetic agents in a murine model. Twenty-four age- and gender-matched healthy CD1 mice were examined by laser Doppler perfusion imaging. The skin microcirculatory response was measured at the level of plantar surfaces during isoflurane anesthesia with or without subsequent dexmedetomidine or acepromazine. At the end of the procedure, dexmedetomidine was reversed by atipamezole administration. Results In all mice, skin blood flow under isoflurane anesthesia did not show significant differences over time (P = 0.1). The serial perfusion pattern and values following acepromazine or dexmedetomidine administration differed significantly (P < 0.05). Conclusions We standardized a reliable laser Doppler perfusion imaging protocol to non-invasively assess changes in skin microcirculation induced by anesthesia in mice, considering the advantages and drawbacks of this technique and its translational value. PMID:24341447

  13. Laser Doppler holographic microscopy in transmission: application to fish embryo imaging.

    PubMed

    Verrier, Nicolas; Alexandre, Daniel; Gross, Michel

    2014-04-21

    We have extended Laser Doppler holographic microscopy to transmission geometry. The technique is validated with living fish embryos imaged by a modified upright bio-microcope. By varying the frequency of the holographic reference beam, and the combination of frames used to calculate the hologram, multimodal imaging has been performed. Doppler images of the blood vessels for different Doppler shifts, images where the flow direction is coded in RGB colors or movies showing blood cells individual motion have been obtained as well. The ability to select the Fourier space zone that is used to calculate the signal, makes the method quantitative. PMID:24787825

  14. High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor.

    PubMed

    Serov, Alexandre; Lasser, Theo

    2005-08-22

    This paper describes the design and the performance of a new high-speed laser Doppler imaging system for monitoring blood flow over an area of tissue. The new imager delivers high-resolution flow images (256x256 pixels) every 2 to 10 seconds, depending on the number of points in the acquired time-domain signal (32-512 points). This new imaging modality utilizes a digital integrating CMOS image sensor to detect Doppler signals in a plurality of points over the area illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurements, which results in high-quality flow images. We made a series of measurements in vitro to test the performance of the system in terms of bandwidth, SNR, etc. Subsequently we give some examples of flow-related images measured on human skin, thus demonstrating the performance of the imager in vivo. The perspectives for future implementations of the imager for clinical and physiological applications are discussed. PMID:19498655

  15. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing

    SciTech Connect

    Gu Quan; Hayes-Gill, Barrie R.; Morgan, Stephen P

    2008-04-20

    A 4x4 pixel array with analog on-chip processing has been fabricated within a 0.35 {mu}m complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate {omega}{sup 0.5} filter at the pixel level, this has been approximated using the ''roll off'' of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

  16. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    PubMed

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  17. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    PubMed Central

    He, Diwei; Nguyen, Hoang C.; Hayes-Gill, Barrie R.; Zhu, Yiqun; Crowe, John A.; Gill, Cally; Clough, Geraldine F.; Morgan, Stephen P.

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  18. [Advances in the research of laser Doppler perfusion imaging in burn wounds].

    PubMed

    Liu, Jing; Xu, Longshun; Hu, Dahai; Qu, Yi; Wang, Guodong; Wang, Hongtao

    2014-04-01

    Laser Doppler perfusion imaging (LDPI) works through the Doppler effect of light wave, and it could depict the blood flow value of the entire wound in two-dimensional image without contacting the detection site directly. In resent years, LDPI has been proved to be effective to evaluate healing potential of a wound, and to predict burn depth and scar formation. The accuracy of LDPI is higher than other traditional methods and technique. However, there are still many influencing factors for the clinical application of LDPI scanning. This paper presents a comprehensive overview of advances in the research of LDPI for clinical application in the care of burn wounds and influencing factors for accurate scanning. PMID:24989665

  19. The influence of burn wound dressings on laser Doppler imaging assessment of a standardized cutaneous injury model.

    PubMed

    Holland, Andrew J A; Ward, Diane; Farrell, Bree

    2007-01-01

    The objective of this study was to determine the impact of burn wound dressings on Laser Doppler imaging assessment of a cutaneous injury model. A healthy volunteer was subjected to a standardized mechanical stimulus to produce a triple response. This was scanned under ideal conditions using the moor LDI2 before and after application of the following dressings: GLAD Wrap , Bactigras, Hypafix, Omiderm, DuoDERM, Acticoat, and Avance. The triple response was readily and consistently detected on the LDI blood flow image. Glad Wrap, Bactigras, Hypafix, Omiderm, and DuoDERM all had minimal adverse impact on the Laser Doppler blood flow image. Acticoat and Avance prevented detection of the triple response. In addition, there was a false-positive blood flow image with the Acticoat dressing positioned with the silver colored surface uppermost. Dressings transparent to the near infrared spectrum allowed detection of a standardized cutaneous injury model under ideal conditions. Laser Doppler imaging might therefore be used to assess a burn wound without removal of such a dressing. This would have implications for the selection and use of dressings in the treatment of burn patients, especially in an ambulatory care setting. PMID:17925655

  20. Coma full-field display for freeform imaging systems

    NASA Astrophysics Data System (ADS)

    Bauer, Aaron; Thompson, Kevin P.; Rolland, Jannick P.

    2015-10-01

    With the recent advances in optical fabrication technology, the manufacturing of freeform optical surfaces is no longer prohibitive. To spur the development of freeform systems, however, optical designers must be given the necessary tools to efficiently design, analyze, and tolerance these systems. The process for designing freeform imaging systems is enhanced by the knowledge of the individual aberration contributions across the full field-of-view. As shown in the recent aberration theory for freeform surfaces, identifying the field dependence of the dominant aberrations is critical for a controlled freeform optimization. Coma, an often system-limiting aberration and an aberration that has recently been directly addressed with freeform surfaces, is of specific interest. Currently, a coma full-field display (FFD) of a system can be generated in commercial ray-tracing software by fitting the wavefront at the exit pupil with Zernike polynomials, but this process can involve tracing thousands of rays. Moreover, the circular coma FFDs are inherently separate from the elliptical coma FFDs. In this research, we use nodal aberration theory to develop a method to generate a coma FFD that requires only a few (less than 10) rays per field point to be traced through the optical system. Both the magnitude and orientation of the coma aberrations at the image plane are shown in our FFDs, including the effects of elliptical coma. These coma FFDs save computation time during the design and offer valuable insight to the designer. Examples of the plots will be shown for multiple freeform optical systems.

  1. Laser Doppler perfusion imaging: a method for measuring female sexual response.

    PubMed

    Styles, S J; Maclean, A B; Reid, W M N; Sultana, S R

    2006-05-01

    To develop a new noninvasive technique to measure vulval blood flow changes during sexual arousal; 18 healthy volunteers between the age of 20 and 33 years were studied. Each subject underwent two experimental sessions at least 2 weeks apart to coincide with the proliferative and luteal phases of her menstrual cycle. An initial laser Doppler perfusion imaging (LDPI) scan of the vulva was performed. The subject was then given a chapter of erotic fiction to read and a repeat LDPI scan was performed immediately after. The percentage change in flux were calculated: the clitoral skin blood flow increased by 26.4% (P < 0.05), labial skin blood flow by 24.9% (P < 0.05) and the posterior fourchette skin blood flow by 35.3% (P < 0.05). LDPI can detect changes in vulval perfusion during the sexual arousal response and could be used to compare healthy subjects with female sexual dysfunction patients, as well as for assessing the benefits of any treatment for this condition. PMID:16637901

  2. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  3. Reproducibility and repeatability of peripheral microvascular assessment using iontophoresis in conjunction with laser Doppler imaging.

    PubMed

    Jadhav, Sachin; Sattar, Naveed; Petrie, John R; Cobbe, Stuart M; Ferrell, William R

    2007-09-01

    Interrogation of peripheral vascular function is increasingly recognized as a noninvasive surrogate marker for coronary vascular function and carries with it important prognostic information regarding future cardiovascular risk. Laser Doppler imaging (LDI) is a completely noninvasive method for looking at peripheral microvascular function. We sought to look at reproducibility and repeatability of LDI-derived assessment of peripheral microvascular function between arms and 8 weeks apart. We used LDI in conjunction with iontophoretic application of ACh and SNP to look at endothelium-dependent and -independent microvascular function, respectively, in a mixture of women with cardiac syndrome X and healthy volunteers. We looked at variation between arms (n = 40) and variation at 8 weeks apart (n = 22). When measurements were corrected for skin resistance, there was nonsignificant variation between arms for ACh (2.7%) and SNP (3.8%) and nonsignificant temporal variation for ACh (3.5%) and SNP (4.7%). Construction of Bland-Altman plots reinforce that measurements have good repeatability. Elimination of the baseline perfusion response had deleterious effects on repeatability. LDI can be used to assess peripheral vascular response with good repeatability as long as measurements are corrected for skin resistance, which affects drug delivery. This has important implications for the future use of LDI. PMID:17878765

  4. Terahertz imaging using full-field electrooptic sampling

    NASA Astrophysics Data System (ADS)

    Ayesheshim, Ayesheshim Kebie

    Real time terahertz imaging is emerging as an important non-destructive imaging tool for medical, quality control, security and other industrial applications. In this thesis, we demonstrate real-time full-field terahertz (THz) imaging of still, moving, and concealed objects, and real-time THz images of the field distribution on the imaging plane. A femtosecond laser pulse from an amplified Ti:sapphire laser system with a pulse duration of 100 fs, repetition rate of 1 kHz, and 800 nm center wavelength is used to generate THz pulses via optical rectification in a 15x15 mm2 by 2 mm thick [110] ZnTe crystal. The THz pulses are collimated to a 1" diameter beam using off-axis parabolic reflectors. An object is placed in the collimated THz beam, and a plastic lens is used to form an image of the object on a second ZnTe crystal (detector). The THz image is detected by free-space electro-optic sampling using a large diameter gating beam derived from the laser source. Video or still images are captured by an 8-bit (30 fps) grayscale CCD camera, and objects hidden behind paper or inside Styrofoam can be clearly seen in real-time. We also study the ring-like spatial intensity distribution of the various frequency components of the THz pulse focused in the image plane by varying the time-delay between the THz and probe beams. Methods for improving signal-to-noise such as frame averaging and dynamic subtraction are also studied.

  5. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  6. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2012-01-01

    Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

  7. The impact of laser Doppler imaging on time to grafting decisions in pediatric burns.

    PubMed

    Kim, Lawrence H C; Ward, Diane; Lam, Lawrence; Holland, Andrew J A

    2010-01-01

    Early definitive treatment of burns facilitates optimal results by reducing the risk of subsequent hypertrophic scarring. Laser Doppler imaging (LDI) has been shown to assist in predicting burn wound healing potential. This study sought to determine whether use of LDI in pediatric burn patients has led to earlier decision making for grafting. The study cohort were patients who underwent a skin grafting procedure for a burn wound at a single institution, a state referral center for all major pediatric burns, between June 2006 and December 2007. Patients were divided into two groups: those who underwent LDI scanning and those who were only assessed clinically. Time of burn injury to time of decision making for the grafting procedure was calculated in days. Forty-nine percent of 196 patients underwent LDI. The mean time from the date of injury to decision making for graft procedure was 8.9 days in those patients who had an LDI scan vs 11.6 days in the group assessed by clinical observation alone. This trend for earlier decision for grafting procedure in the LDI group was statistically significant (P = .01). There was no significant difference between those patients who were scanned and those only assessed clinically in relation to gender, age, mechanism of injury, percentage BSA burnt, and wound culture results. There was a significant reduction in time to grafting decision in the LDI group. This would potentially lead to reduced length of stay, reduced number of hospital visits, and streamlined care for the patient and their family. PMID:20182369

  8. Investigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser doppler vibrometric scanning and finite difference modeling.

    PubMed

    Sarens, Bart; Verstraeten, Bert; Glorieux, Christ; Kalogiannakis, Georgios; Van Hemelrijck, Danny

    2010-06-01

    Full-field dynamic shearography and laser Doppler vibrometric scanning are used to investigate the local contact acoustic nonlinear generation of delamination-induced effects on the vibration of a harmonically excited composite plate containing an artificial defect. Nonlinear elastic behavior caused by the stress-dependent boundary conditions at the delamination interfaces of a circular defect is also simulated by a 3-D second-order, finite-difference, staggered-grid model (displacement-stress formulation). Both the experimental and simulated data reveal an asymmetric motion of the layer above the delamination, which acts as a membrane vibrating with enhanced displacement amplitude around a finite offset displacement. The spectrum of the membrane motion is enriched with clapping-induced harmonics of the excitation frequency. In case of a sufficiently thin and soft membrane, the simulations reveal clear modal behavior at sub-harmonic frequencies caused by inelastic clapping. PMID:20529713

  9. ECG-triggering of the laser Doppler signal: an approach for perfusion imaging on the beating calf heart

    NASA Astrophysics Data System (ADS)

    Wardell, Karin; Karlsson, Daniel M.; Loenn, Urban; Traff, Stefan; Casimir-Ahn, Henrik

    2001-06-01

    Laser Doppler perfusion imaging (LDPI) has successfully been used to map the myocardial perfusion on patients undergoing coronary bypass surgery on the arrested heart. The need for intra-operative evaluation of graft function is obvious in routine surgery but even more imperative when adapting new surgical techniques where the procedure is performed on the beating heart. When using LDPI on the beating heart, artifacts originating from the movement of the heart are superimposed on the Doppler signal. We have investigated a method to reduce these artifacts by controlling the sampling sequence with ECG-triggering. The method has been assessed in an animal model on the beating calf heart. After sternotomy, an area covering 1 cm2 was imaged at the anterior wall of the left ventricle. In this area, six perfusion images were captured each of them recorded at fixed, but different time intervals in the cardiac cycle. In addition continuous measurements at one spot was done during 1 - 2 minutes. The signal recorded during pumping action was high compared to measurements performed in the same muscle area during infusion of blood with a syringe pump. Repeated measurements captured at a fixed delay time from the R-peak in the same areas at the same heart frequency showed reproducibility. ECG-triggering of the laser Doppler signal is the first step in our attempts to adapt LDPI to enabling assessment of myocardial perfusion on the beating heart. Further technical achievements and in-vivo investigations are, however, needed and will be performed by our research team in future studies.

  10. Automated registration of laser Doppler perfusion images by an adaptive correlation approach: application to focal cerebral ischemia in the rat.

    PubMed

    Riyamongkol, Panomkhawn; Zhao, Weizhao; Liu, Yitao; Belayev, Ludmila; Busto, Raul; Ginsberg, Myron D

    2002-12-31

    Hemodynamic changes are extremely important in analyzing responses from a brain subjected to a stimulus or treatment. The Laser Doppler technique has emerged as an important tool in neuroscience research. This non-invasive method scans a low-power laser beam in a raster pattern over a tissue surface to generate the time course of images in unit of relative flux changes. Laser Doppler imager (LDI) records cerebral perfusion not only in the temporal but also in the spatial domain. The traditional analysis of LD images has been focused on the region-of-interest (ROI) approach, in which the analytical accuracy in an experiment that necessitates a relative repositioning between the LDI and the scanned tissue area will be weakened due to the operator's subjective decision in data collecting. This report describes a robust image registration method designed to obviate this problem, which is based on the adaptive correlation approach. The assumption in mapping corresponding pixels in two images is to correlate the regions in which these pixels are centered. Based on this assumption, correlation coefficients are calculated between two regions by a method in which one region is moved around over the other in all possible combinations. To avoid ambiguity in distinguishing maximum correlation coefficients, an adaptive algorithm is adopted. Correspondences are then used to estimate the transformation by linear regression. We used a pair of phantom LD images to test this algorithm. A reliability test was also performed on each of the 15 sequential LD images derived from an actual experiment by imposing rotation and translation. The result shows that the calculated transformation parameters (rotation: theta =7.7+/-0.5 degrees; translation: Delta x =2.8+/-0.3, Deltaŷ=4.7+/-0.4) are very close to the prior-set parameters (rotation: theta=8 degrees; translation: Delta x=3, Delta y=5). This result indicates that this approach is a valuable adjunct to LD perfusion monitoring. An

  11. Low-Power CMOS Laser Doppler Imaging Using Non-CDS Pixel Readout and 13.6-bit SAR ADC.

    PubMed

    Chen, Denis Guangyin; Law, Man-Kay; Lian, Yong; Bermak, Amine

    2016-02-01

    Laser Doppler imaging (LDI) measures particle flows such as blood perfusion by sensing their Doppler shift. This paper is the first of its kind in analyzing the effect of circuit noise on LDI precision which is distinctively different from conventional imaging. Based on this result, it presents a non-correlated-double-sampling (non-CDS) pixel readout scheme along with a high-resolution successive-approximation-register (SAR) analog-to-digital-converter (ADC) with 13.6b effective resolution (ER). Measurement results from the prototype chip in 0.18 μm technology confirm the theoretical analysis and show that the two techniques improve LDI sensing precision by 6.9 dB and 4.4 dB (compared to a 10b ADC) respectively without analog pre-amplification. The sensor's ADC occupies 518 μm×84 μm and is suitable for fast column parallel readout. Its differential non-linearity (DNL), integral non-linearity (INL), and input referred noise are +3.0/-2.8 LSB, +24/-17 LSB, and 110 μVrms respectively, leading to a Figure-of-Merit (FoM) of 23 fJ/state which makes it one of the most energy efficient image sensor ADCs and an order of magnitude better than the best reported LDI system using commercial high-speed image sensors. PMID:25532189

  12. Laser Doppler imaging of cutaneous blood flow through transparent face masks: a necessary preamble to computer-controlled rapid prototyping fabrication with submillimeter precision.

    PubMed

    Allely, Rebekah R; Van-Buendia, Lan B; Jeng, James C; White, Patricia; Wu, Jingshu; Niszczak, Jonathan; Jordan, Marion H

    2008-01-01

    A paradigm shift in management of postburn facial scarring is lurking "just beneath the waves" with the widespread availability of two recent technologies: precise three-dimensional scanning/digitizing of complex surfaces and computer-controlled rapid prototyping three-dimensional "printers". Laser Doppler imaging may be the sensible method to track the scar hyperemia that should form the basis of assessing progress and directing incremental changes in the digitized topographical face mask "prescription". The purpose of this study was to establish feasibility of detecting perfusion through transparent face masks using the Laser Doppler Imaging scanner. Laser Doppler images of perfusion were obtained at multiple facial regions on five uninjured staff members. Images were obtained without a mask, followed by images with a loose fitting mask with and without a silicone liner, and then with a tight fitting mask with and without a silicone liner. Right and left oblique images, in addition to the frontal images, were used to overcome unobtainable measurements at the extremes of face mask curvature. General linear model, mixed model, and t tests were used for data analysis. Three hundred seventy-five measurements were used for analysis, with a mean perfusion unit of 299 and pixel validity of 97%. The effect of face mask pressure with and without the silicone liner was readily quantified with significant changes in mean cutaneous blood flow (P < .5). High valid pixel rate laser Doppler imager flow data can be obtained through transparent face masks. Perfusion decreases with the application of pressure and with silicone. Every participant measured differently in perfusion units; however, consistent perfusion patterns in the face were observed. PMID:18182896

  13. Repeatability, Reproducibility and Standardisation of a Laser Doppler Imaging Technique for the Evaluation of Normal Mouse Hindlimb Perfusion

    PubMed Central

    Greco, Adelaide; Ragucci, Monica; Liuzzi, Raffaele; Gargiulo, Sara; Gramanzini, Matteo; Coda, Anna Rita Daniela; Albanese, Sandra; Mancini, Marcello; Salvatore, Marco; Brunetti, Arturo

    2013-01-01

    Background Preclinical perfusion studies are useful for the improvement of diagnosis and therapy in dermatologic, cardiovascular and rheumatic human diseases. The Laser Doppler Perfusion Imaging (LDPI) technique has been used to evaluate superficial alterations of the skin microcirculation in surgically induced murine hindlimb ischemia. We assessed the reproducibility and the accuracy of LDPI acquisitions and identified several critical factors that could affect LDPI measurements in mice. Methods Twenty mice were analysed. Statistical standardisation and a repeatability and reproducibility analysis were performed on mouse perfusion signals with respect to differences in body temperature, the presence or absence of hair, the type of anaesthesia used for LDPI measurements and the position of the mouse body. Results We found excellent correlations among measurements made by the same operator (i.e., repeatability) under the same experimental conditions and by two different operators (i.e., reproducibility). A Bland-Altman analysis showed the absence of bias in repeatability (p = 0.29) or reproducibility (p = 0.89). The limits of agreement for repeatability were –0.357 and –0.033, and for reproducibility, they were –0.270 and 0.238. Significant differences in perfusion values were observed in different experimental groups. Conclusions Different experimental conditions must be considered as a starting point for the evaluation of new drugs and strategic therapies. PMID:23275085

  14. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation.

    PubMed

    Mowla, Alireza; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Wilson, Stephen J; Prow, Tarl W; Soyer, H Peter; Rakić, Aleksandar D

    2016-01-01

    Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy (RCM) is combined with the functional modality of laser Doppler flowmetry, which is capable of quantifying tissue perfusion. To realize the idea, we propose laser feedback interferometry as an implementation of RCM, which is able to detect the Doppler signal in addition to the confocal reflectance signal. Based on the proposed technique, we study numerical models of skin tissue incorporating two optical biomarkers of malignancy: (i) abnormal red blood cell velocities and concentrations and (ii) anomalous optical properties manifested through tissue confocal reflectance, using Monte Carlo simulation. We also conduct a laboratory experiment on a microfluidic channel containing a dynamic turbid medium, to validate the efficacy of the technique. We quantify the performance of the technique by examining a signal to background ratio (SBR) in both the numerical and experimental models, and it is shown that both simulated and experimental SBRs improve consistently using this technique. This work indicates the feasibility of an optical instrument, which may have a role in enhanced imaging of skin malignancies. PMID:27598157

  15. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  16. Early detection of microcirculatory perfusion changes with a high resolution, real time laser doppler imaging camera–frostbite case study

    PubMed Central

    Erba, Paolo; Harbi, Pascal; Thacher, Tyler; Pries, Axel; Ambrosio, Giuseppe; Raffoul, Wassim

    2011-01-01

    A 41-year-old male presented with severe frostbite that was monitored clinically and with a new laser Doppler imaging (LDI) camera that records arbitrary microcirculatory perfusion units (1–256 arbitrary perfusion units (APU’s)). LDI monitoring detected perfusion differences in hand and foot not seen visually. On day 4–5 after injury, LDI showed that while fingers did not experience any significant perfusion change (average of 31±25 APUs on day 5), the patient’s left big toe did (from 17±29 APUs day 4 to 103±55 APUs day 5). These changes in regional perfusion were not detectable by visual examination. On day 53 postinjury, all fingers with reduced perfusion by LDI were amputated, while the toe could be salvaged. This case clearly demonstrates that insufficient microcirculatory perfusion can be identified using LDI in ways which visual examination alone does not permit, allowing prognosis of clinical outcomes. Such information may also be used to develop improved treatment approaches. PMID:22679257

  17. What's behind the mask? A look at blood flow changes with prolonged facial pressure and expression using laser Doppler imaging.

    PubMed

    Van-Buendia, Lan B; Allely, Rebekah R; Lassiter, Ronald; Weinand, Christian; Jordan, Marion H; Jeng, James C

    2010-01-01

    Clinically, the initial blanching in burn scar seen on transparent plastic face mask application seems to diminish with time and movement requiring mask alteration. To date, studies quantifying perfusion with prolonged mask use do not exist. This study used laser Doppler imaging (LDI) to assess perfusion through the transparent face mask and movement in subjects with and without burn over time. Five subjects fitted with transparent face masks were scanned with the LDI on four occasions. The four subjects without burn were scanned in the following manner: 1) no mask, 2) mask on while at rest, 3) mask on with alternating intervals of sustained facial expression and rest, and 4) after mask removal. Images were acquired every 3 minutes throughout the 85-minute study period. The subject with burn underwent a shortened scanning protocol to increase comfort. Each face was divided into five regions of interest for analysis. Compared with baseline, mask application decreased perfusion significantly in all subjects (P < .0001). Perfusion did not change during the rest period. There were no significant differences with changing facial expression in any of the regions of interest. On mask removal, all regions of the face demonstrated a hyperemic effect with the chin (P = .05) and each cheek (P < .0001) reaching statistical significance. Perfusion levels did not return to baseline in the chin and cheeks after 30 minutes of mask removal. Perfusions remain constantly low while wearing the face mask, despite changing facial expressions. Changing facial expressions with the mask on did not alter perfusion. Hyperemic response occurs on removal of the mask. This study exposed methodology and statistical issues worth considering when conducting future research with the face, pressure therapy, and with LDI technology. PMID:20453735

  18. Composite NDE using full-field pulse-echo ultrasonic propagation imaging system

    NASA Astrophysics Data System (ADS)

    Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon

    2016-04-01

    In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is presented. The coincided laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. The system nondestructively inspected targets with two-axis translation stages. Various structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are an aluminum honeycomb sandwich, ailerons and carbon fiber reinforced plastic (CFRP) honeycomb sandwich structures including various defects.

  19. In vivo and ex vivo imaging with ultrahigh resolution full-field OCT

    NASA Astrophysics Data System (ADS)

    Grieve, Kate; Moneron, Gael; Schwartz, Wilfrid; Boccara, Albert C.; Dubois, Arnaud

    2005-08-01

    Imaging of in vivo and ex vivo biological samples using full-field optical coherence tomography is demonstrated. Three variations on the original full-field optical coherence tomography instrument are presented, and evaluated in terms of performance. The instruments are based on the Linnik interferometer illuminated by a white light source. Images in the en face orientation are obtained in real-time without scanning by using a two-dimensional parallel detector array. An isotropic resolution capability better than 1 μm is achieved thanks to the use of a broad spectrum source and high numerical aperture microscope objectives. Detection sensitivity up to 90 dB is demonstrated. Image acquisition times as short as 10 μs per en face image are possible. A variety of in vivo and ex vivo imaging applications is explored, particularly in the fields of embryology, ophthalmology and botany.

  20. Fingerprint imaging from the inside of a finger with full-field optical coherence tomography

    PubMed Central

    Auksorius, Egidijus; Boccara, A. Claude

    2015-01-01

    Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009

  1. Full-field OCT: ex vivo and in vivo biological imaging applications

    NASA Astrophysics Data System (ADS)

    Grieve, Katharine; Dubois, Arnaud; Moneron, Gael; Guyot, Elvire; Boccara, Albert C.

    2005-04-01

    We present results of studies in embryology and ophthalmology performed using our ultrahigh-resolution full-field OCT system. We also discuss recent developments to our ultrashort acquisition time full-field optical coherence tomography system designed to allow in vivo biological imaging. Preliminary results of high-speed imaging in biological samples are presented. The core of the experimental setup is the Linnik interferometer, illuminated by a white light source. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by high-resolution CCD cameras. An isotropic spatial resolution of ~1 μm is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of ~90 dB is obtained by means of image averaging and pixel binning. In ophthalmology, reconstructed xz images from rat ocular tissue are presented, where cellular-level structures in the retina are revealed, demonstrating the unprecedented resolution of our instrument. Three-dimensional reconstructions of the mouse embryo allowing the study of the establishment of the anterior-posterior axis are shown. Finally we present the first results of embryonic imaging using the new rapid acquisition full-field OCT system, which offers an acquisition time of 10 μs per frame.

  2. Three-dimensional cellular-level imaging using full-field optical coherence tomography.

    PubMed

    Dubois, A; Moneron, G; Grieve, K; Boccara, A C

    2004-04-01

    An ultrahigh-resolution full-field optical coherence tomography (OCT) system has been developed for cellular-level imaging of biological media. The system is based on a Linnik interference microscope illuminated with a tungsten halogen lamp, associated with a high-resolution CCD camera. En face tomographic images are produced in real time, with the best spatial resolution ever achieved in OCT (0.7 microm x 0.9 microm, axial x transverse). A shot-noise limited detection sensitivity of 80 dB can be reached with an acquisition time per image of 1 s. Images of animal ophthalmic biopsies and vegetal tissues are shown. PMID:15128200

  3. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  4. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    PubMed

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. PMID:20734414

  5. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  6. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    PubMed Central

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  7. FXI: a full-field imaging beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Lee, Wah-Keat; Reininger, Ruben; Loo, William; Gambella, Richard; O'Hara, Steven; Chu, Yong S.; Zhong, Zhong; Wang, Jun

    2015-09-01

    The Full-field X-ray Imaging (FXI) beamline at the NSLS-II is designed for optimum performance of a transmission x-ray microscope (TXM). When complete, FXI will enable the TXM to obtain individual 2D projection images at 30 nm spatial resolution and up to 40 microns field of view (FOV) with exposure times of < 50 ms per image. A complete 3D nanotomography data set should take less than 1 minute. This will open opportunities for many real-time in-operando studies.

  8. High-resolution imaging of biological tissue with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Gao, Wanrong

    2015-03-01

    A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.

  9. Development of achromatic full-field hard x-ray microscopy with two monolithic imaging mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Kino, H.; Yasuda, S.; Kohmura, Y.; Okada, H.; Ishikawa, T.; Yamauchi, K.

    2015-09-01

    Advanced Kirkpatrick-Baez mirror optics using two monolithic imaging mirrors was developed to realize an achromatic, high-resolution, and a high-stability full-field X-ray microscope. The mirror consists of an elliptical section and a hyperbolic section on a quartz glass substrate, in which the geometry follows the Wolter (type I) optics rules. A preliminary test was performed at SPring-8 using X-rays monochromatized to 9.881 keV. A 100-nm feature on a Siemens star chart could be clearly observed.

  10. Frequency response functions of shape features from full-field vibration measurements using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wang, Weizhuo; Mottershead, John E.; Siebert, Thorsten; Pipino, Andrea

    2012-04-01

    The availability of high speed digital cameras has enabled three-dimensional (3D) vibration measurement by stereography and digital image correlation (DIC). The 3D DIC technique provides non-contact full-field measurements on complex surfaces whereas conventional modal testing methods employ point-wise frequency response functions. It is proposed to identify the modal properties by utilising the domain-wise responses captured by a DIC system. This idea will be illustrated by a case study in the form a car bonnet of 3D irregular shape typical of many engineering structures. The full-field measured data are highly redundant, but the application of image processing using functional transformation enables the extraction of a small number of shape features without any significant loss of information from the raw DIC data. The complex bonnet surface on which the displacement responses are measured is essentially a 2-manifold. It is possible to apply surface parameterisation to 'flatten' the 3D surface to form a 2D planar domain. Well-developed image processing techniques are defined on planar domains and used to extract features from the displacement patterns on the surface of a specimen. An adaptive geometric moment descriptor (AGMD), defined on surface parametric space, is able to extract shape features from a series of full-field transient responses under random excitation. Results show the effectiveness of the AGMD and the obtained shape features are demonstrated to be succinct and efficient. Approximately 14 thousand data points of raw DIC measurement are represented by 20 shape feature terms at each time step. Shape-descriptor frequency response functions (SD-FRFs) of the response field and the loading field are derived in the shape feature space. It is seen that the SD-FRF has a similar format to the conventional receptance FRF. The usual modal identification procedure is applied to determine the natural frequencies, damping factors and eigen-shape-feature vectors

  11. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.

    PubMed

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui

    2015-02-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946

  12. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  13. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging

    PubMed Central

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui

    2015-01-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946

  14. Time domain algorithm for accelerated determination of the first order moment of photo current fluctuations in high speed laser Doppler perfusion imaging.

    PubMed

    Draijer, Matthijs; Hondebrink, Erwin; van Leeuwen, Ton; Steenbergen, Wiendelt

    2009-10-01

    Advances in optical array sensor technology allow for the real time acquisition of dynamic laser speckle patterns generated by tissue perfusion, which, in principle,allows for real time laser Doppler perfusion imaging(LDPI). Exploitation of these developments is enhanced with the introduction of faster algorithms to transform photo currents into perfusion estimates using the first moment of the power spectrum. A time domain (TD)algorithm is presented for determining the first-order spectral moment. Experiments are performed to compare this algorithm with the widely used Fast Fourier Transform(FFT). This study shows that the TD-algorithm is twice as fast as the FFT-algorithm without loss of accuracy.Compared to FFT, the TD-algorithm is efficient in terms of processor time, memory usage and data transport. PMID:19820976

  15. Numerical correction of distorted images in full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha

    2012-03-01

    We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.

  16. Toward 1-mm depth precision with a solid state full-field range imaging system

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Carnegie, Dale A.; Cree, Michael J.

    2006-02-01

    Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome.

  17. Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jinggao; Wang, Rui; Chen, Dieyan; Xue, Ping

    2009-07-01

    Optical coherence tomography (OCT) is a new emerging technique for cross-sectional imaging with high spatial resolution of micrometer scale. It enables in vivo and non-invasive imaging with no need to contact the sample and is widely used in biological and clinic application. In this paper a white-light interference microscope is developed for ultrahigh-resolution full-field optical coherence tomography (Full-Field OCT) to implement 3D imaging of biological tissue. The experimental setup is based on a Linnik-type interferometer illuminated by a tungsten halogen lamp via a bundle of fiber. En-face tomographic images are obtained by demodulation of a combination of interferometric images recorded by a CCD camera. We use a PZT synchronized with the CCD in the reference arm to get the modulated interferometric image and use a programmed precisely controlled electric lift stage in the sample arm to get a 3D image. To fulfill the requirement of in vivo measurement and better match the index of bio-tissue, a pair of high numerical-aperture water immersion microscope objectives is used. Spatial resolution of 1.8μm×1.12μm (transverse×axial) is achieved owing to the extremely short coherence length of the light source and optimized compensation of dispersion mismatch. A shot-noise limited detection sensitivity of 80 dB is obtained at an acquisition time of 5 seconds per image. The development of a mouse embryo is studied layer by layer with our ultrahigh-resolution full-filed OCT. 3D imaging of the embryo can be reconstructed by the OCT images. Information of cell shape, centroid, reflectivity, mitosis period in the development process can be obtained. The variance of the relative reflectivity of an oocyte with time is calculated as well. It is found that the reflectivity of a living oocyte is much lower than that of a dead. Therefore the reflectivity of the cytoplasm can be a signal of the cell activity. In fact, all these parameters above could be very useful for

  18. Full-field velocity imaging of red blood cells in capillaries with spatiotemporal demodulation autocorrelation

    NASA Astrophysics Data System (ADS)

    Wang, Mingyi; Zeng, Yaguang; Dong, Nannan; Liao, Riwei; Yang, Guojian

    2016-03-01

    We propose a full-field optical method for the label-free and quantitative mapping of the velocities of red blood cells (RBCs) in capillaries. It integrates spatiotemporal demodulation and an autocorrelation algorithm, and measures RBC velocity according to the ratio of RBC length to lag time. Conventionally, RBC length is assumed to be a constant and lag time is taken as a variable, while our method treats both of them as variables. We use temporal demodulation and the Butterworth spatial filter to separate RBC signal from background signal, based on which we obtain the RBC length by image segmentation and lag time by autocorrelation analysis. The RBC velocity calculated now is more accurate. The validity of our method is verified by an in vivo experiment on a mouse ear. Owing to its higher image signal-to-noise ratio, our method can be used for mapping RBC velocity in the turbid tissue case.

  19. In vitro retinal imaging with full field swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fergusson, James; Považay, Boris; Hofer, Bernd; Drexler, Wolfgang

    2010-02-01

    Weakly scattering tree shrew retina has been imaged in vitro with full field swept source optical coherence tomography, visualising multiple intraretinal layers. The system utilises a 50nm bandwidth Superlum SLD, to acheive ~8μm of axial resolution and 4μm of transversal resolution. Volumetric images of retinal tissue with dimensions of 1248x936x678μm (horizontal by vertical by axial) were recorded in two second (equivalent of 153,600 A-scans per second) with a measured signal to noise ratio of 75dB. From the 5mW of SLD optical power available, 720μW illuminates the sample, giving a power per pixel of 4.6nW, ten times less power per pixel then standard FDOCT systems. After upgrading the camera and redesigning the optical beam path, 82dB of SNR was realised.

  20. Image restoration method based on Hilbert transform for full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2008-01-01

    A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

  1. High-resolution full-field optical coherence tomography using high dynamic range image processing

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Claveau, R.; Montgomery, P. C.; Serio, B.; Uhring, W.; Anstotz, F.; Flury, M.

    2016-04-01

    Full-field optical coherence tomography (FF-OCT) based on white-light interference microscopy, is an emerging noninvasive imaging technique for characterizing biological tissue or optical scattering media with micrometer resolution. Tomographic images can be obtained by analyzing a sequence of interferograms acquired with a camera. This is achieved by scanning an interferometric microscope objectives along the optical axis and performing appropriate signal processing for fringe envelope extraction, leading to three-dimensional imaging over depth. However, noise contained in the images can hide some important details or induce errors in the size of these details. To firstly reduce temporal and spatial noise from the camera, it is possible to apply basic image post processing methods such as image averaging, dark frame subtraction or flat field division. It has been demonstrate that this can improve the quality of microscopy images by enhancing the signal to noise ratio. In addition, the dynamic range of images can be enhanced to improve the contrast by combining images acquired with different exposure times or light intensity. This can be made possible by applying a hybrid high dynamic range (HDR) technique, which is proposed in this paper. High resolution tomographic analysis is thus performed using a combination of the above-mentioned image processing techniques. As a result, the lateral resolution of the system can be improved so as to approach the diffraction limit of the microscope as well as to increase the power of detection, thus enabling new sub-diffraction sized structures contained in a transparent layer, initially hidden by the noise, to be detected.

  2. Full-Field Imaging of GHz Film Bulk Acoustic Resonator Motion

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, J. D.

    2003-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by using dynamic holography with photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed that is capable of operation at gigahertz frequency and micron length scales. Both acoustic amplitude and phase are recorded, allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies of 800-900 MHz, illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric-to-acoustic coupling of these devices and their performance. Images of 256 /spl times/ 240 pixels are recorded at 18 fps rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level at each pixel calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  3. High resolution in-vivo imaging of skin with full field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  4. Actinic imaging of native and programmed defects on a full-field mask

    SciTech Connect

    Mochi, I.; Goldberg, K. A.; Fontaine, B. La; Tchikoulaeva, A.; Holfeld, C.

    2010-03-12

    We describe the imaging and characterization of native defects on a full field extreme ultraviolet (EUV) mask, using several reticle and wafer inspection modes. Mask defect images recorded with the SEMA TECH Berkeley Actinic Inspection Tool (AIT), an EUV-wavelength (13.4 nm) actinic microscope, are compared with mask and printed-wafer images collected with scanning electron microscopy (SEM) and deep ultraviolet (DUV) inspection tools. We observed that defects that appear to be opaque in the SEM can be highly transparent to EUV light, and inversely, defects that are mostly transparent to the SEM can be highly opaque to EUV. The nature and composition of these defects, whether they appear on the top surface, within the multilayer coating, or on the substrate as buried bumps or pits, influences both their significance when printed, and their detectability with the available techniques. Actinic inspection quantitatively predicts the characteristics of printed defect images in ways that may not be possible with non-EUV techniques. As a quantitative example, we investigate the main structural characteristics of a buried pit defect based on EUV through-focus imaging.

  5. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  6. A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Astley, Susan; Connor, Sophie; Lim, Yit; Tate, Catriona; Entwistle, Helen; Morris, Julie; Whiteside, Sigrid; Sergeant, Jamie; Wilson, Mary; Beetles, Ursula; Boggis, Caroline; Gilbert, Fiona

    2013-03-01

    Digital Breast Tomosynthesis (DBT) provides three-dimensional images of the breast that enable radiologists to discern whether densities are due to overlapping structures or lesions. To aid assessment of the cost-effectiveness of DBT for screening, we have compared the time taken to interpret DBT images and the corresponding two-dimensional Full Field Digital Mammography (FFDM) images. Four Consultant Radiologists experienced in reading FFDM images (4 years 8 months to 8 years) with training in DBT interpretation but more limited experience (137-407 cases in the past 6 months) were timed reading between 24 and 32 two view FFDM and DBT cases. The images were of women recalled from screening for further assessment and women under surveillance because of a family history of breast cancer. FFDM images were read before DBT, according to local practice. The median time for readers to interpret FFDM images was 17.0 seconds, with an interquartile range of 12.3-23.6 seconds. For DBT, the median time was 66.0 seconds, and the interquartile range was 51.1-80.5 seconds. The difference was statistically significant (p<0.001). Reading times were significantly longer in family history clinics (p<0.01). Although it took approximately four times as long to interpret DBT than FFDM images, the cases were more complex than would be expected for routine screening, and with higher mammographic density. The readers were relatively inexperienced in DBT interpretation and may increase their speed over time. The difference in times between clinics may be due to increased throughput at assessment, or decreased density.

  7. Localization-based full-field microscopy: how to attain super-resolved images

    PubMed Central

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2015-01-01

    In this study, we have investigated localization-based microscopy to achieve full-field super-resolution. For localized sampling, we have considered combs consisting of unit pulses and near-fields localized by surface nanoapertures. Achievable images after reconstruction were assessed in terms of peak signal-to-noise ratio (PSNR). It was found that spatial switching of individual pulses may be needed to break the diffraction limit. Among the parameters, the resolution was largely determined by sampling period while the effect of width of a sampling pulse on PSNR was relatively limited. For the range of sampling parameters that we considered, the highest resolution achievable is estimated to be 70 nm, which can further be enhanced by optimizing the localization parameters. PMID:26201451

  8. Three-dimensional Breast Imaging with Full Field Digital Mammography Tomosynthesis

    NASA Astrophysics Data System (ADS)

    Eberhard, Jeffrey W.

    2003-03-01

    Although conventional film-screen mammography is the clinical modality of choice for early detection of breast cancer, many cancers are missed because they are masked by radiographically dense fibroglandular breast tissue which may be overlying or surrounding the tumor. The superposition of 3D breast anatomy in a standard 2D x-ray projection is perhaps the most significant problem in mammography today. GE Global Research has developed a new 3D full field digital mammography tomosynthesis prototype system that directly addresses the superimposed tissue problem by enabling volumetric imaging of the breast. High performance digital detectors with low electronic noise and fast read-out times, new reconstruction algorithms customized for tomosynthesis acquisitions, and application of volume rendering methods to enable rapid, effective review of 3D data are among the key enabling technologies for tomosynthesis. Phantom studies have demonstrated significantly enhanced performance of tomosynthesis compared to standard digital mammography exams. Over 200 patients have been imaged with a prototype system. Typical patient images will be shown.

  9. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  10. Full-field inspection of a wind turbine blade using three-dimensional digital image correlation

    NASA Astrophysics Data System (ADS)

    LeBlanc, Bruce; Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Hughes, Scott

    2011-04-01

    Increasing demand and deployment of wind power has led to a significant increase in the number of wind-turbine blades manufactured globally. As the physical size and number of turbines deployed grows, the probability of manufacturing defects being present in composite turbine blade fleets also increases. As both capital blade costs, and operational and maintenance costs, increase for larger turbine systems the need for large-scale inspection and monitoring of the state of structural health of turbine blades during manufacturing and operation critically increase. One method for locating and quantifying manufacturing defects, while also allowing for the in-situ measurement of the structural health of blades, is through the observation of the full-field state of deformation and strain of the blade. Static tests were performed on a nine-meter CX-100 composite turbine blade to extract full-field displacement and strain measurements using threedimensional digital image correlation (3D DIC). Measurements were taken at several angles near the blade root, including along the high-pressure surface, low-pressure surface, and along the trailing edge of the blade. The overall results indicate that the measurement approach can clearly identify failure locations and discontinuities in the blade curvature under load. Post-processing of the data using a stitching technique enables the shape and curvature of the entire blade to be observed for a large-scale wind turbine blade for the first time. The experiment demonstrates the feasibility of the approach and reveals that the technique readily can be scaled up to accommodate utility-scale blades. As long as a trackable pattern is applied to the surface of the blade, measurements can be made in-situ when a blade is on a manufacturing floor, installed in a test fixture, or installed on a rotating turbine. The results demonstrate the great potential of the optical measurement technique and its capability for use in the wind industry for

  11. Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL

    SciTech Connect

    Andrews, Joy C.; Pianetta, Piero; Meirer, Florian; Chen Jie; Almeida, Eduardo; Meulen, Marjolein C. H. van der; Alwood, Joshua S.; Lee, Cathy; Zhu Jia; Cui Yi

    2010-06-23

    A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.

  12. Laser Doppler imager (LDI) scanner and intradermal injection for in vivo pharmacology in human skin microcirculation: responses to acetylcholine, endothelin-1 and their repeatability

    PubMed Central

    Saez, Anabelle M Opazo; Mosel, Frank; Nürnberger, Jens; Rushentsova, U; Gössl, Mario; Mitchell, Anna; Schäfers, Rafael F; Philipp, Thomas; Wenzel, René R

    2005-01-01

    Aims The purpose of this study was to evaluate the repeatability of forearm skin blood flow responses to intradermal injections of acetylcholine (ACh) and endothelin-1 (ET-1) using a double injection technique (DIT) and a laser Doppler imager (LDI) scanner in the human skin microcirculation. Methods We used a laser Doppler imager (Moor LDI V3.01) to continuously monitor the change in skin blood flow during intradermal administration of physiological saline (0.9% NaCl), acetylcholine (ACh 10−7, 10−8, 10−9 M) and endothelin-1 (ET-1 10−14, 10−16, 10−18 M) in 10 healthy male subjects. Subjects were examined on 3 different days for assessment of interday and interobserver repeatability. Injections of either drug were randomly placed on different sites of the forearm. Laser Doppler images were collected before and after injection at 2.5 min intervals for 30 min. Data were analysed after the completion of each experiment using Moor Software V.3.01. Results are expressed as changes from baseline in arbitrary perfusion units (PU). Results ACh caused a significant vasodilation (P< 0.0001 anova, mean ± SE: 766 ± 152 PU, ACh 10−9 M; 1868 ± 360 PU, ACh 10−8 M; 4188 ± 848 PU, ACh 10−7 M; mean of days 1 and 2, n = 10), and ET-1 induced a significant vasoconstrictive response (P< 0.0001 anova, −421 ± 83 PU, ET-1 10−18 M; −553 ± 66 PU, ET-1 10−16 M; −936 ± 90 PU, ET-1 10−14 M; mean of days 1 and 2, n = 10). There was no difference on the response to either drug on repeated days. Bland-Altman analyses showed a close agreement of responses between days with repeatability coefficients of 1625.4 PU for ACh, and 386.0 PU for ET-1 (95% CI: ACh, −1438 to 1747 PU, ET-1, −399 to 358 PU) and between observers with repeatability coefficients of 1057.2 PU for ACh and 255.8 PU for ET-1 (95% CI: ACh, −1024 to 1048 PU, ET-1, −252 to 249 PU). The variability between these responses was independent of average flux values for both ACh and ET-1. There was

  13. Correlative analysis of breast lesions on full-field digital mammography and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Yading

    Multi-modality imaging techniques are increasingly being applied in clinical practice to improve the accuracy with which breast cancer can be diagnosed. However, interpreting images from different modalities is not trivial as different images of the same lesion may exhibit different physical lesion attributes, and currently the various image modality acquisitions are performed under different breast positioning protocols. The general objective of this research is to investigate computerized correlative feature analysis (CFA) methods for integrating information from full-field digital mammographic (FFDM) images and dynamic contrast-enhanced magnetic resonance (DCE-MR) images by taking advantage of the information from different imaging modalities, and thus improving the diagnostic ability of computer-aided diagnosis (CADx) in breast cancer workup. The main hypothesis to be tested is that by incorporating correlative feature analysis in CADx, one can achieve an accurate and efficient discrimination between corresponding and non-corresponding lesion pairs, and subsequently improve performance in the estimation of computer-estimated probabilities of malignancy. The main contributions of this research work are summarized as follows. (1) A novel active-contour model based algorithm was developed for lesion segmentation on mammograms. This new algorithm yielded a statistically improved segmentation performance as compared to previously developed methods: a region-growing method and a radial gradient index (RGI) based method. (2) A computerized feature-based, supervised-learning driven CFA method was investigated to identify corresponding lesions in different mammographic views. The performance obtained by combining multiple features was found to be statistically better than the use of a distance feature alone, and robust across different mammographic view combinations. (3) A multi-modality CADx method that automatically selects and combines discriminative information from

  14. Ultrafast Full-Field X-ray Imaging and its Applications in Fluid Dynamics.

    NASA Astrophysics Data System (ADS)

    Fezzaa, Kamel; Wang, Yujie

    2007-11-01

    The x-ray beam afforded by third-generation synchrotrons, such as the Advanced Photon Source (APS), has unique properties: extremely high intensity, wide energy tunability, high coherence, and flexible lattice timing structure. To take full advantage of these properties, we are developing a novel x-ray research tool, involving ultrafast phase-enhanced full-field x-ray imaging, with both micrometer-spatial and sub-nanosecond temporal resolutions. Such capability has never been realized before, and will make tremendous impact on numerous fields, both scientifically and technologically. We will present some examples of our work, ranging from our first high-quality phase-enhanced radiographs through a few-millimeters-thick stainless steel fuel injector nozzle, where the exposure time was a few seconds, to our first successful use of a single bunch from the APS ring to take 150 ps snapshots of the internal structure of a high-speed fuel spray. We will present highlights from ongoing research such as droplets pinch-off, coalescence and collision. We will also show how velocity field distribution of dense liquid jets can readily be measured with this technique.

  15. A comparison between objective and subjective image quality measurements for a full field digital mammography system.

    PubMed

    Marshall, N W

    2006-05-21

    This paper presents pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) results for an amorphous selenium (a-Se) full field digital mammography system. MTF was calculated from the image of an angled 0.5 mm thick Cu edge, acquired without additional beam filtration. NNPS data were acquired at detector air-kerma levels ranging from 9.1 microGy to 331 microGy, using a standard mammography x-ray spectrum of 28 kV, Mo/Mo target/filter combination and 4 cm of PMMA additional filtration. Prior to NNPS estimation, the image statistics were assessed using a variance image. This method was able to easily identify a detector artefact and should prove useful in routine quality assurance (QA) measurements. Detector DQE, calculated from the NNPS and MTF data, dropped to 0.3 for low detector air-kerma settings but reached an approximately constant value of 0.6 above 50 microGy at the detector. Subjective image quality data were also obtained at these detector air-kerma settings using the CDMAM contrast-detail (c-d) test object. The c-d data reflected the trend seen in DQE, with threshold contrast increasing at low detector air-kerma values. The c-d data were then compared against predictions made using two established models, the Rose model and a standard signal detection theory model. Using DQE(0), the Rose model gave results within approximately 15% on average for all the detector air-kerma values studied and for detail diameters down to 0.2 mm. Similar agreement was also found between the measured c-d data and the signal detection theory results, which were calculated using an ideal human visual response function and a system magnification of unity. The use of full spatial frequency DQE improved the agreement between the calculated and observer results for detail sizes below 0.13 mm. PMID:16675862

  16. Widefield laser doppler velocimeter: development and theory.

    SciTech Connect

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  17. Nickel-Related Intestinal Mucositis in IBS-Like Patients: Laser Doppler Perfusion Imaging and Oral Mucosa Patch Test in Use.

    PubMed

    Borghini, Raffaele; Puzzono, Marta; Rosato, Edoardo; Di Tola, Marco; Marino, Mariacatia; Greco, Francesca; Picarelli, Antonio

    2016-09-01

    Nickel (Ni) is often the trigger of irritable bowel syndrome (IBS)-like gastrointestinal disorders: its ingestion may cause allergic contact mucositis, identifiable by means of oral mucosa patch test (omPT). OmPT effectiveness has been proven, but it is still an operator-dependent method. Laser Doppler perfusion imaging (LDPI) was tested to support omPT in Ni allergic contact mucositis diagnosis. Group A: 22 patients with intestinal/systemic symptoms related to the ingestion of Ni-containing foods. Group B: 12 asymptomatic volunteers. Ni-related symptoms and their severity were tested by a questionnaire. All patients underwent Ni omPT with clinical evaluation at baseline (T0), after 30 min (T1), after 2 h (T2), and after 24-48 h (T3). LDPI was performed to evaluate the mean mucosal perfusion at T0, T1, and T2. Statistical analysis was performed by ANOVA test and Bonferroni multiple-comparison test. All 22 Ni-sensitive patients (group A) presented oral mucosa hyperemia and/or edema at T2. Eight out of the same 22 patients presented a local delayed vesicular reaction at T3 (group A1), unlike the remaining 14 out of 22 patients (group A2). All 12 patients belonging to control group B did not show any alteration. The mean mucosal perfusion calculated with LDPI showed an increase in both subgroups A1 and A2. In group B, no significant perfusion variations were observed. LDPI may support omPT for diagnostic purposes in Ni allergic contact mucositis. This also applies to symptomatic Ni-sensitive patients without aphthous stomatitis after 24-48 h from omPT and that could risk to miss the diagnosis. PMID:26899317

  18. Confocal full-field X-ray microscope for novel three-dimensional X-ray imaging.

    PubMed

    Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio; Uesugi, Kentaro; Aoki, Sadao

    2009-09-01

    A confocal full-field X-ray microscope has been developed for use as a novel three-dimensional X-ray imaging method. The system consists of an X-ray illuminating ;sheet-beam' whose beam shape is micrified only in one dimension, and an X-ray full-field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross-sectional region of the object is irradiated by the sheet-beam, and secondary X-ray emission such as fluorescent X-rays from this region is imaged simultaneously using the full-field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two-dimensional magnified image, and three-dimensional observation is available only by a linear translation of the object along the optical axis of the full-field microscope. A feasibility test has been carried out at beamline 37XU of SPring-8. Observation of the three-dimensional distribution of metallic inclusions in an artificial diamond was performed. PMID:19713634

  19. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  20. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values. PMID:24788075

  1. Periodic artifact reduction in Fourier transforms of full field atomic resolution images.

    PubMed

    Hovden, Robert; Jiang, Yi; Xin, Huolin L; Kourkoutis, Lena F

    2015-04-01

    The discrete Fourier transform is among the most routine tools used in high-resolution scanning/transmission electron microscopy (S/TEM). However, when calculating a Fourier transform, periodic boundary conditions are imposed and sharp discontinuities between the edges of an image cause a cross patterned artifact along the reciprocal space axes. This artifact can interfere with the analysis of reciprocal lattice peaks of an atomic resolution image. Here we demonstrate that the recently developed Periodic Plus Smooth Decomposition technique provides a simple, efficient method for reliable removal of artifacts caused by edge discontinuities. In this method, edge artifacts are reduced by subtracting a smooth background that solves Poisson's equation with boundary conditions set by the image's edges. Unlike the traditional windowed Fourier transforms, Periodic Plus Smooth Decomposition maintains sharp reciprocal lattice peaks from the image's entire field of view. PMID:25597865

  2. Real-time full-field photoacoustic imaging using an ultrasonic camera

    NASA Astrophysics Data System (ADS)

    Balogun, Oluwaseyi; Regez, Brad; Zhang, Hao F.; Krishnaswamy, Sridhar

    2010-03-01

    A photoacoustic imaging system that incorporates a commercial ultrasonic camera for real-time imaging of two-dimensional (2-D) projection planes in tissue at video rate (30 Hz) is presented. The system uses a Q-switched frequency-doubled Nd:YAG pulsed laser for photoacoustic generation. The ultrasonic camera consists of a 2-D 12×12 mm CCD chip with 120×120 piezoelectric sensing elements used for detecting the photoacoustic pressure distribution radiated from the target. An ultrasonic lens system is placed in front of the chip to collect the incoming photoacoustic waves, providing the ability for focusing and imaging at different depths. Compared with other existing photoacoustic imaging techniques, the camera-based system is attractive because it is relatively inexpensive and compact, and it can be tailored for real-time clinical imaging applications. Experimental results detailing the real-time photoacoustic imaging of rubber strings and buried absorbing targets in chicken breast tissue are presented, and the spatial resolution of the system is quantified.

  3. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  4. Real-Time THz Imaging Using Full-Field Electro-Optic Sampling

    NASA Astrophysics Data System (ADS)

    Ayesheshim, A.; Bushfield, I.; Hegmann, F. A.

    2010-03-01

    Real time terahertz imaging offers diverse opportunities and applications for non-destructive imaging applications [1,2]. In this paper, we demonstrate real-time THz imaging of still, moving, and concealed objects. Using a Ti: sapphire amplifier laser system, a THz beam is generated and detected via optical rectification and EO sampling respectively using [110] ZnTe wafers. Real time THz video rate imaging of metal objects and dripping water within a cardboard cylinder are clearly seen by an 8-bit grayscale CCD camera. The ring-like temporal and spatial intensity distribution of the various frequency components of the THz signal on the focal plane is also studied. To improve SNR, we use frame averaging and dynamic subtraction methods [3]. [4pt] [1] B .B. Hu and M. C. Nuss, Opt.Lett. 20, 1716(1995). [0pt] [2] K.Kawase, Y.Ogawa, Y.Watanabe, Opt. Express 11, 2546(2003). [0pt] [3] Z.Jiang, X.G.Xu, and X. -C. Zhang, Appl.Opt.39, 2982-2987(2000).

  5. Full field spatially-variant image-based resolution modelling reconstruction for the HRRT.

    PubMed

    Angelis, Georgios I; Kotasidis, Fotis A; Matthews, Julian C; Markiewicz, Pawel J; Lionheart, William R; Reader, Andrew J

    2015-03-01

    Accurate characterisation of the scanner's point spread function across the entire field of view (FOV) is crucial in order to account for spatially dependent factors that degrade the resolution of the reconstructed images. The HRRT users' community resolution modelling reconstruction software includes a shift-invariant resolution kernel, which leads to transaxially non-uniform resolution in the reconstructed images. Unlike previous work to date in this field, this work is the first to model the spatially variant resolution across the entire FOV of the HRRT, which is the highest resolution human brain PET scanner in the world. In this paper we developed a spatially variant image-based resolution modelling reconstruction dedicated to the HRRT, using an experimentally measured shift-variant resolution kernel. Previously, the system response was measured and characterised in detail across the entire FOV of the HRRT, using a printed point source array. The newly developed resolution modelling reconstruction was applied on measured phantom, as well as clinical data and was compared against the HRRT users' community resolution modelling reconstruction, which is currently in use. Results demonstrated improvements both in contrast and resolution recovery, particularly for regions close to the edges of the FOV, with almost uniform resolution recovery across the entire transverse FOV. In addition, because the newly measured resolution kernel is slightly broader with wider tails, compared to the deliberately conservative kernel employed in the HRRT users' community software, the reconstructed images appear to have not only improved contrast recovery (up to 20% for small regions), but also better noise characteristics. PMID:25596999

  6. Improving chemical mapping algorithm and visualization in full-field hard x-ray spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Chang, Cheng; Xu, Wei; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Yu, Dantong

    2013-12-01

    X-ray Absorption Near Edge Structure (XANES) imaging, an advanced absorption spectroscopy technique, at the Transmission X-ray Microscopy (TXM) Beamline X8C of NSLS enables high-resolution chemical mapping (a.k.a. chemical composition identification or chemical spectra fitting). Two-Dimensional (2D) chemical mapping has been successfully applied to study many functional materials to decide the percentages of chemical components at each pixel position of the material images. In chemical mapping, the attenuation coefficient spectrum of the material (sample) can be fitted with the weighted sum of standard spectra of individual chemical compositions, where the weights are the percentages to be calculated. In this paper, we first implemented and compared two fitting approaches: (i) a brute force enumeration method, and (ii) a constrained least square minimization algorithm proposed by us. Next, as 2D spectra fitting can be conducted pixel by pixel, so theoretically, both methods can be implemented in parallel. In order to demonstrate the feasibility of parallel computing in the chemical mapping problem and investigate how much efficiency improvement can be achieved, we used the second approach as an example and implemented a parallel version for a multi-core computer cluster. Finally we used a novel way to visualize the calculated chemical compositions, by which domain scientists could grasp the percentage difference easily without looking into the real data.

  7. Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.

    PubMed

    Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme

    2014-03-01

    Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets. PMID:24562570

  8. Redox and speciation mapping of rock thin sections using high spatial resolution full-field imaging technique

    NASA Astrophysics Data System (ADS)

    de Andrade, V.; Susini, J.; Salomé, M.; Beraldin, O.; Heymes, T.; Lewin, E.

    2009-04-01

    Because of their complex genesis, natural rocks are the most often heterogeneous systems, with various scale-level heterogeneities for both chemistry and structure. In the last decade, the dramatic improvements of hyperspectral imaging techniques provided new tools for accurate material characterisation. Most of these micro- and nano- analytical techniques rely on scanning instruments, which offer high spatial resolution but suffer from long acquisition times imposing practical limits on the field of view. Conversely, full-field imaging techniques rely on a fast parallel acquisition but have limited resolution. Although soft X-ray full-field microscopes based on Fresnel zone plates are commonly used for high resolution imaging, its combination with spectroscopy is challenging and 2D chemical mapping still difficult. For harder X-rays, lensless X-ray microscope based on simple propagation geometry is easier and can be readily used for 2D spectro-microscopy. A full-field experimental setup was optimized at the ESRF-ID21 beamline to image iron redox and speciation distributions in rocks thin sections. The setup comprises a Si111 or Si220 (E = 0.4 eV) monochromator, a special sample stage and a sensitive camera associated with a brand new GGG:Eu light conversion scintillator and high magnification visible light optics. The pixel size ranges from 1.6 to 0.16 m according to the optic used. This instrument was used to analyse phyllosilicates and oxides of metamorphic sediments coming from the Aspromonte nappes-pile in Calabria. Iron chemical state distributions were derived - from images of 1000 Ã- 2000 Ã- 30 m3 rock thin sections - by subtraction of absorption images above and below the Fe K-edge. Using an automatic stitching reconstruction, a wide field image (4Ã-3 mm2 with a 1 m2 resolution for a total of about 12 millions pixels) of Fetotal elemental distribution was produced. Moreover, -XANES analyses (more than 1 million individual -XANES spectra) were performed

  9. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  10. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    SciTech Connect

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  11. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    NASA Astrophysics Data System (ADS)

    Kalyanov, A. L.; Lychagov, V. V.; Smirnov, I. V.; Ryabukho, V. P.

    2013-08-01

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector.

  12. Application of Vibration Pattern Imaging to modal analysis; a comparison with full-field and point measurement techniques

    NASA Astrophysics Data System (ADS)

    Bream, R. G.; Gasper, B. C.; Lloyd, Brian E.; Everett, G. M.

    1989-07-01

    The application of structural dynamics principles and procedures to power station plant integrity assessment and condition monitoring encompasses both theoretical and experimental methods. In recent years structural dynamic response measurement has been developed to include non-contacting full-field measurement techniques such as laser holography, Stress Pattern Analysis by measurement of Thermal Emission (SPATE), and more recently Vibration Pattern Imaging (VPI). These full-field techniques have complemented the conventional point measurement methods with a degree of structural dynamic visualisation which was historically felt to be unachievable. This paper presents an assessment of one of the latest techniques, Vibration Pattern Imaging, applied to modal testing utilising a specially designed 'T' section plate as the test specimen. A comparison of the dynamic behaviour of the plate was performed using the following techniques: (i) Vibration Pattern Imaging, (ii) finite element modelling, (iii) frequency response function measurement, (iv) pulsed holography, and (v) Stress Pattern Analysis by measurement of Thermal Emission. In addition, the capability of the VPI to operate as a non-contacting vibration transducer for use in a standard modal analysis is compared with the performance of a conventional piezoelectric accelerometer.

  13. High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography.

    PubMed

    Leong-Hoi, Audrey; Montgomery, Paul C; Serio, Bruno; Twardowski, Patrice; Uhring, Wilfried

    2016-04-01

    By applying the proposed high-dynamic-range (HDR) technique based on exposure bracketing, we demonstrate a meaningful reduction in the spatial noise in image frames acquired with a CCD camera so as to improve the fringe contrast in full-field optical coherence tomography (FF-OCT). This new signal processing method thus allows improved probing within transparent or semitransparent samples. The proposed method is demonstrated on 3 μm thick transparent polymer films of Mylar, which, due to their transparency, produce low contrast fringe patterns in white-light interference microscopy. High-resolution tomographic analysis is performed using the technique. After performing appropriate signal processing, resulting XZ sections are observed. Submicrometer-sized defects can be lost in the noise that is present in the CCD images. With the proposed method, we show that by increasing the signal-to-noise ratio of the images, submicrometer-sized defect structures can thus be detected. PMID:27192224

  14. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique.

    PubMed

    Zhang, Zonghua; Huang, Shujun; Xu, Yongjia; Chen, Chao; Zhao, Yan; Gao, Nan; Xiao, Yanjun

    2013-09-01

    Palmprint and hand shape, as two kinds of important biometric characteristics, have been widely studied and applied to human identity recognition. The existing research is based mainly on 2D images, which lose the third-dimensional information. The biological features extracted from 2D images are distorted by pressure and rolling, so the subsequent feature matching and recognition are inaccurate. This paper presents a method to acquire accurate 3D shapes of palmprint and hand by projecting full-field composite color sinusoidal fringe patterns and the corresponding color texture information. A 3D imaging system is designed to capture and process the full-field composite color fringe patterns on hand surface. Composite color fringe patterns having the optimum three fringe numbers are generated by software and projected onto the surface of human hand by a digital light processing projector. From another viewpoint, a color CCD camera captures the deformed fringe patterns and saves them for postprocessing. After compensating for the cross talk and chromatic aberration between color channels, three fringe patterns are extracted from three color channels of a captured composite color image. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. At the same time, the absolute phase of each pixel is determined by the optimum three-fringe selection method. After building up the relationship between absolute phase map and 3D shape data, the 3D palmprint and hand are obtained. Color texture information can be directly captured or demodulated from the captured composite fringe pattern images. Experimental results show that the proposed method and system can yield accurate 3D shape and color texture information of the palmprint and hand shape. PMID:24085070

  15. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  16. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  17. In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hrebesh, Molly Subhash; Dabu, Razvan; Sato, Manabu

    2009-02-01

    We demonstrate the feasibility of a compact single-shot full-field time domain optical coherence tomography (OCT) for imaging dynamic biological sample in real-time. The system is based on a Linnik type polarization Michelson interferometer and a four-quadrature phase-stepper optics, which can simultaneously capture four quadraturely phase-stepped interferograms on a single CCD. Using a superluminescent diode as light source with center wavelength of 842 nm and spectral width of 16.2 nm, the system yields an axial resolution of 19.8 μm, and covers a field of view of 280 × 320 μm2 (220 × 250 pixels) with a transverse resolution of 4.4 μm by using a 10× microscope objective (0.3 NA). Three-dimensional OCT images of biological samples such as an onion slice and a diaptomus were obtained without any image averaging or pixel binning. In addition, in vivo depth resolved dynamic imaging was demonstrated to show the beating internal structure of a diaptomus with a fame rate of 5 fps.

  18. Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Lei-Gang; Liang, Jin; Guo, Xiang; Guo, Cheng; Hu, Hao; Tang, Zheng-Zong

    2014-06-01

    In this paper, a new non-contact scheme, based on 3D digital image correlation technology, is presented to measure the full-field wing deformation of in-flight cantilever monoplanes. Because of the special structure of the cantilever wing, two conjugated camera groups, which are rigidly connected and calibrated to an ensemble respectively, are installed onto the vertical fin of the aircraft and record the whole measurement. First, a type of pre-stretched target and speckle pattern are designed to adapt the oblique camera view for accurate detection and correlation. Then, because the measurement cameras are swinging with the aircraft vertical trail all the time, a camera position self-correction method (using control targets sprayed on the back of the aircraft), is designed to orientate all the cameras’ exterior parameters to a unified coordinate system in real time. Besides, for the excessively inclined camera axis and the vertical camera arrangement, a weak correlation between the high position image and low position image occurs. In this paper, a new dual-temporal efficient matching method, combining the principle of seed point spreading, is proposed to achieve the matching of weak correlated images. A novel system is developed and a simulation test in the laboratory was carried out to verify the proposed scheme.

  19. Imaging vascular dynamics in human retina using full-field swept-source optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spahr, Hendrik; Hillmann, Dierck; Hain, Carola; Pfäffle, Clara; Sudkamp, Helge; Franke, Gesa; Hüttmann, Gereon

    2016-03-01

    We demonstrate a new non-invasive method to assess the functional condition of the retinal vascular system. Phase-sensitive full-field swept-source optical coherence tomography (PhS-FF-SS-OCT) is used to investigate retinal vascular dynamics at unprecedented temporal resolution. Motion of retinal tissue, that is induced by expansion of the vessels therein, is measured with an accuracy of about 10 nm. The pulse shape of arterial and venous pulsation, their temporal delay as well as the frequency dependent pulse propagation through the capillary bed are determined. For the first time, imaging speed and motion sensitivity are sufficient for a direct measurement of pulse waves propagating with more than 600 mm/s in retinal vessels of a healthy young subject.

  20. A Full-Field KB-FZP Microscope for Hard X-Ray Imaging with Sub 100 nm Resolution

    SciTech Connect

    Rau, C.; Crecea, V.; Peterson, K.M.; Jemian, P.R.; Richter, C.-P.; Neuhausler, U.; Schmeider, G.; Yu, X.; Braun, P.V.; Robinson, I.K.

    2007-06-28

    A full-field hard X-ray microscope has been built at the UNICAT/APS beamline 34ID-C. A Kirkpatrick-Baez mirror is used for the condenser and a micro-Fresnel Zone Plate (FZP) as the objective lens. The zone plates available give access to 50-85 nm spatial resolution operating the microscope between 6-12keV photon energy. The first tomography experiments have been performed with this device. A KB-FZP microscope has been built for sub-100 nm imaging and tomography. Features of 50 nm have been visualized at 9 keV photon energy. A 40 x 20 microns field of view of can be imaged in a minute. The first tomography experiments have been performed with this device. Further, it is planned to apply phase contrast techniques, such as the Zernike method. Both the efficiency and the resolution of the instrument can be further improved. A more efficient zone plate and an improved detector will reduce the exposure times and the use of the 50x100 times more intense so called 'pink-beam' is possible. To improve the resolution, the zone plates deliver in their third order a resolution of 15 nm. A KB-FZP microscope has been built for sub-100 nm imaging and tomography. Features of 50 nm have been visualized at 9 keV photon energy. A 40 x 20 microns field of view of can be imaged in seconds. Tomography experiments have been performed with this device. Phase objects have been visualized taking image series. Phase contrast techniques, such as the Zernike method will be tested in the future. Both the efficiency and the resolution of the instrument can be further improved. Together with the instrument for In-line phase contrast imaging the nano- and micrometer lenghtscale is covered.

  1. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy.

    PubMed

    Meirer, Florian; Cabana, Jordi; Liu, Yijin; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2011-09-01

    The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano- and micrometer-scale factors at the origin of macroscopic behavior. While different electron- and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields. PMID:21862859

  2. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy

    PubMed Central

    Meirer, Florian; Cabana, Jordi; Liu, Yijin; Mehta, Apurva; Andrews, Joy C.; Pianetta, Piero

    2011-01-01

    The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano- and micrometer-scale factors at the origin of macroscopic behavior. While different electron- and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields. PMID:21862859

  3. Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Gao, Wanrong; Zhou, Yuan; Guo, Yingcheng; Guo, Feng; He, Yong

    2015-11-01

    We report rapid and high-resolution tomographic en face imaging of human liver specimens by full-field optical coherence tomography (FF-OCT). First, the arrangement of the FF-OCT system was described and the performance of the system was measured. The measured axial and lateral resolutions of the system are 0.8 and 0.9 μm, respectively. The system has a sensitivity of ˜60 dB and can achieve an imaging rate of 7 fps and a penetration depth of ˜80 μm. The histological structures of normal liver can be seen clearly in the en face tomographic images, including central veins, cords of hepatocytes separated by sinusoidal spaces, and portal area (portal vein, the hepatic arteriole, and the bile duct). A wide variety of histological subtypes of hepatocellular carcinoma was observed in en face tomographic images, revealing notable cancerous features, including the nuclear atypia (enlarged convoluted nuclei), the polygonal tumor cells with obvious resemblance to hepatocytes with enlarged nuclei. In addition, thicker fibrous bands, which make the cytoplasmic plump vesicular nuclei indistinct, were also seen in the images. Finally, comparison between the portal vein in a normal specimen versus that seen in the rare type of cholangiocarcinoma was made. The results show that the cholangiocarcinoma presents with a blurred pattern of portal vein in the lateral direction and an aggregated distribution in the axial direction; the surrounding sinusoidal spaces and nuclei of cholangiocarcinoma are absent. The findings in this work may be used as additional signs of liver cancer or cholangiocarcinoma, demonstrating capacity of FF-OCT device for early cancer diagnosis and many other tumor-related studies in biopsy.

  4. Multi-beam Laser Doppler Vibrometer with fiber sensing head

    NASA Astrophysics Data System (ADS)

    Phua, P. B.; Fu, Y.; Guo, M.; Liu, H.

    2012-06-01

    Laser Doppler vibrometry (LDV) is a well known technique to measure the motions, vibrations and mode shapes of structures and machine components. Photodetector-based LDV can only offer a point-wise measurement. However, it is possible to scan the laser beam to build up a vibrometric image. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new method of generating multiple laser beams with different frequency shifts. The laser beams are projected on different points, and the reflected beams interfere with a common reference beam. The cross-talk among object beams can be bypassed with a proper selection of frequency shifts. A simultaneous vibration measurement on multiple points is realized using a single photodetector. Based on the proposed spatial-encoding technology, a self-synchronized prototype of fiber-based multipoint laser Doppler vibrometer at 1550nm wavelength is developed. An addition red pilot laser is used for aiming purpose. It has the flexibility to measure the vibration of different points on various surfaces. The prototype is used to measure the vibration of different points on a cantilever beam and a plate. The measured results match well with simulation results using finite element method (FEM).

  5. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ewald, J.; Wessels, P.; Wieland, M.; Nisius, T.; Vogel, A.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Viefhaus, J.; Meier, G.; Wilhein, T.; Drescher, M.

    2016-01-01

    Sub-nanosecond magnetization dynamics of small permalloy (Ni80Fe20) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in the storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.

  6. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  7. Atmospheric laser Doppler velocimetry - An overview

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.

    1980-01-01

    Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.

  8. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    SciTech Connect

    Fowler, E. E.; Sellers, T. A.; Lu, B.; Heine, J. J.

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these measures

  9. Directional acoustic measurements by laser Doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) are used as velocity microphones to measure sound pressure level in the range from 90 to 130 dB, spectral components, and two-point correlation functions for acoustic-noise source identification. Close agreement between LDV and microphone data is observed. Directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet noise.

  10. Anti-Stokes effect CCD camera and SLD based optical coherence tomography for full-field imaging in the 1550nm region

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2012-06-01

    Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.

  11. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-06-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  12. Comparison of Image Quality Criteria between Digital Storage Phosphor Plate in Mammography and Full-Field Digital Mammography in the Detection of Breast Cancer

    PubMed Central

    Thevi Rajendran, Pushpa; Krishnapillai, Vijayalakshmi; Tamanang, Sulaiman; Kumari Chelliah, Kanaga

    2012-01-01

    Background: Digital mammography is slowly replacing screen film mammography. In digital mammography, 2 methods are available in acquiring images: digital storage phosphor plate and full-field digital mammography. The aim of this study was to compare the image quality acquired from the 2 methods of digital mammography in the detection of breast cancer. Methods: The study took place at the National Cancer Society, Kuala Lumpur, and followed 150 asymptomatic women for the duration of 1 year. Participating women gave informed consent and were exposed to 4 views from each system. Two radiologists independently evaluated the printed images based on the image quality criteria in mammography. McNemar’s test was used to compare the image quality criteria between the systems. Results: The agreement between the radiologists for the digital storage phosphor plate was к = 0.551 and for full-field digital mammography was к = 0.523. Full-field digital mammography was significantly better compared with the digital storage phosphor plate in right and left mediolateral oblique views (P < 0.05) in the detection of microcalcifications, which are early signs of breast cancer. However, both systems were comparable in all other aspects of image quality. Conclusion: Digital mammography is a useful screening tool for the detection of early breast cancer and ensures better prognosis and quality of life. PMID:22977375

  13. Breast imaging using an amorphous silicon-based full-field digital mammographic system: stability of a clinical prototype.

    PubMed

    Vedantham, S; Karellas, A; Suryanarayanan, S; D'Orsi, C J; Hendrick, R E

    2000-11-01

    An amorphous silicon-based full-breast imager for digital mammography was evaluated for detector stability over a period of 1 year. This imager uses a structured CsI:TI scintillator coupled to an amorphous silicon layer with a 100-micron pixel pitch and read out by special purpose electronics. The stability of the system was characterized using the following quantifiable metrics: conversion factor (mean number of electrons generated per incident x-ray), presampling modulation transfer function (MTF), detector linearity and sensitivity, detector signal-to-noise ratio (SNR), and American College of Radiology (ACR) accreditation phantom scores. Qualitative metrics such as flat field uniformity, geometric distortion, and Society of Motion Picture and Television Engineers (SMPTE) test pattern image quality were also used to study the stability of the system. Observations made over this 1-year period indicated that the maximum variation from the average of the measurements were less than 0.5% for conversion factor, 3% for presampling MTF over all spatial frequencies, 5% for signal response, linearity and sensitivity, 12% for SNR over seven locations for all 3 target-filter combinations, and 0% for ACR accreditation phantom scores. ACR mammographic accreditation phantom images indicated the ability to resolve 5 fibers, 4 speck groups, and 5 masses at a mean glandular dose of 1.23 mGy. The SMPTE pattern image quality test for the display monitors used for image viewing indicated ability to discern all contrast steps and ability to distinguish line-pair images at the center and corners of the image. No bleeding effects were observed in the image. Flat field uniformity for all 3 target-filter combinations displayed no artifacts such as gridlines, bad detector rows or columns, horizontal or vertical streaks, or bad pixels. Wire mesh screen images indicated uniform resolution and no geometric distortion. PMID:11110258

  14. High-Power Terahertz Source Opens the Door for Full-Field Video-Rate Terahertz Imaging

    SciTech Connect

    Klopf, John; Coppinger, Matthew; Sustersic, Nathan; Kolodzey, James; Williams, Gwyn

    2008-07-01

    Terahertz (THz) light, at wavelengths between electronics and photonics, promises novel imaging applications such as revealing epithelial carcinomas 1 or identifying objects hidden in clothing and packages 2. But THz imaging has been little exploited because generating source power high enough for adequate signal detection is difficult -- and because even more power is needed for most applications that require detecting scattered light rather than light transmitted straight through the target 3. The ability to image movement in real time would aid medicine by allowing the rapid viewing of multiple perspectives and larger areas for detecting skin cancer. Real-time imaging is also essential for the efficient detection, with sufficient resolution, of hidden, and possibly moving, objects. Here, in work building on our earlier demonstration that relativistic electrons can yield tens of watts of broadband THz light 4, 5, we report the first video-rate THz movies of objects observed in real t

  15. An improved instantaneous laser Doppler velocity system

    NASA Astrophysics Data System (ADS)

    Desio, Charles V.; Olcmen, Semih; Schinetsky, Philip

    2016-02-01

    In this paper, improvements made on a single velocity component instantaneous laser Doppler velocimetry (ILDV) system are detailed. The ILDV system developed in this research effort is capable of measuring a single velocity component at a rate as high as two megahertz. The current system accounts for the effects of the laser intensity variation on the measured velocity and eliminates the use of a Pockels cell used in previous ILDV systems. The system developed in the current effort was tested using compressible, subsonic jet flows. The ILDV system developed would be most beneficial where a high data capture rate is needed such as in shock tubes, and high-speed wind tunnels.

  16. Laser Doppler Velocimeter particle velocity measurement system

    SciTech Connect

    Wilson, W.W.; Srikantaiah, D.V.; Philip, T.; George, A.

    1993-10-01

    This report gives a detailed description of the operation of the Laser Doppler Velocimeter (LDV) system maintained by DIAL at MSU. LDV is used for the measurement of flow velocities and turbulence levels in various fluid flow settings. Ills report details the operation and maintenance of the LDV system and provides a first-time user with pertinent information regarding the system`s setup for a particular application. Particular attention has been given to the use of the Doppler signal analyzer (DSA) and the burst spectrum analyzer (BSA) signal processors and data analysis.

  17. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  18. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  19. Comparison of full-field digital mammography workstation and conventional picture archiving and communication system in image quality and diagnostic performance.

    PubMed

    Kang, Bong Joo; Kim, Sung Hun; Choi, Byung Gil

    2011-01-01

    The object of this study was to compare of full-field digital mammography (FFDM) workstation and conventional picture archiving and communication systems (PACS) in image quality and diagnostic performance. We assembled 80 masses and 80 microcalcifications. Images were displayed on workstation, 5M, and 3M PACS monitors. The image quality for mammograms on workstation was significantly better than that for mammograms on PACS monitors. The sensitivity and NPV for microcalcifications on workstation were higher than those on PACS monitors. The conventional PACS cannot substitute for a FFDM workstation for mammographic evaluation. PMID:21872121

  20. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  1. Assessment of the metrological performance of an in situ storage image sensor ultra-high speed camera for full-field deformation measurements

    NASA Astrophysics Data System (ADS)

    Rossi, Marco; Pierron, Fabrice; Forquin, Pascal

    2014-02-01

    Ultra-high speed (UHS) cameras allow us to acquire images typically up to about 1 million frames s-1 for a full spatial resolution of the order of 1 Mpixel. Different technologies are available nowadays to achieve these performances, an interesting one is the so-called in situ storage image sensor architecture where the image storage is incorporated into the sensor chip. Such an architecture is all solid state and does not contain movable devices as occurs, for instance, in the rotating mirror UHS cameras. One of the disadvantages of this system is the low fill factor (around 76% in the vertical direction and 14% in the horizontal direction) since most of the space in the sensor is occupied by memory. This peculiarity introduces a series of systematic errors when the camera is used to perform full-field strain measurements. The aim of this paper is to develop an experimental procedure to thoroughly characterize the performance of such kinds of cameras in full-field deformation measurement and identify the best operative conditions which minimize the measurement errors. A series of tests was performed on a Shimadzu HPV-1 UHS camera first using uniform scenes and then grids under rigid movements. The grid method was used as full-field measurement optical technique here. From these tests, it has been possible to appropriately identify the camera behaviour and utilize this information to improve actual measurements.

  2. Trace Element Mapping of a Biological Specimen by a Full-Field X-ray Fluorescence Imaging Microscope with a Wolter Mirror

    SciTech Connect

    Hoshino, Masato; Yamada, Norimitsu; Ishino, Toyoaki; Namiki, Takashi; Watanabe, Norio; Aoki, Sadao

    2007-01-19

    A full-field X-ray fluorescence imaging microscope with a Wolter mirror was applied to the element mapping of alfalfa seeds. The X-ray fluorescence microscope was built at the Photon Factory BL3C2 (KEK). X-ray fluorescence images of several growing stages of the alfalfa seeds were obtained. X-ray fluorescence energy spectra were measured with either a solid state detector or a CCD photon counting method. The element distributions of iron and zinc which were included in the seeds were obtained using a photon counting method.

  3. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  4. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging.

    PubMed

    Baumbach, S; Kanngießer, B; Malzer, W; Stiel, H; Wilhein, T

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns. PMID:26329204

  5. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  6. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  7. Parallax effects in laser Doppler spectroscopy

    SciTech Connect

    Smirnov, V I

    1999-12-31

    Parallax effects in laser Doppler spectroscopy, associated with the variation of the scattering angle during motion of a particle through the probed volume, were investigated by a numerical simulation method based on the Mie scattering theory. It was found that, in general, the shifts of the spectral profile parameters (the average frequency, broadening, asymmetry, and kurtosis) become significant as the parallax number N{sub {psi}{alpha}=}(2/{pi}){psi}{alpha} ({psi} is the angular size of the probed volume, {alpha} = {pi}d/{lambda} is the relative particle diameter) increases. The anomalous ranges of the parameters of the particle and of the optical system, in which marked distortions (such as the polymodal nature and the splitting of the spectral profile) are observed even for a low parallax number (N{sub {psi}{alpha}} || 1), were discovered. (laser applications and other topics in quantum electronics)

  8. Using digital image correlation and three dimensional point tracking in conjunction with real time operating data expansion techniques to predict full-field dynamic strain

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; Baqersad, Javad; Niezrecki, Christopher

    2014-05-01

    Large structures pose unique difficulties in the acquisition of measured dynamic data with conventional techniques that are further complicated when the structure also has rotating members such as wind turbine blades and helicopter blades. Optical techniques (digital image correlation and dynamic point tracking) are used to measure line of sight data without the need to contact the structure, eliminating cumbersome cabling issues. The data acquired from these optical approaches are used in conjunction with a unique real time operating data expansion process to obtain full-field dynamic displacement and dynamic strain. The measurement approaches are described in this paper along with the expansion procedures. The data is collected for a single blade from a wind turbine and also for a three bladed assembled wind turbine configuration. Measured strains are compared to results from a limited set of optical measurements used to perform the expansion to obtain full-field strain results including locations that are not available from the line of sight measurements acquired. The success of the approach clearly shows that there are some very extraordinary possibilities that exist to provide very desperately needed full field displacement and strain information that can be used to help identify the structural health of structures.

  9. Micrometer scale resolution images of human corneal graft using full-field optical coherence tomography (FF-OCT)-link to polarimetric study of scattered field

    NASA Astrophysics Data System (ADS)

    Georges, Ga"lle; Siozade-Lamoine, Laure; Casadessus, Olivier; Deumié, Carole; Hoffart, Louis; Conrath, John

    2011-10-01

    The suitability of a corneal graft for transplant surgery is based on different criteria. It may be rejected in particular due to a loss of transparency, directly linked to its scattering properties. Then, these become an important parameter. The aim of this paper is to quantify the influence of the cornea thickness and of the epithelial layer on scattering properties. The origin of scattering is discussed based on polarimetric analysis of scattered field (surface and/or bulk) and on full-field optical coherence tomography imaging (structural information).

  10. A full-field and real-time 3D surface imaging augmented DOT system for in-vivo small animal studies

    NASA Astrophysics Data System (ADS)

    Yi, Steven X.; Yang, Bingcheng; Yin, Gongjie

    2010-02-01

    A crucial parameter in Diffuse Optical Tomography (DOT) is the construction of an accurate forward model, which greatly depends on tissue boundary. Since photon propagation is a three-dimensional volumetric problem, extraction and subsequent modeling of three-dimensional boundaries is essential. Original experimental demonstration of the feasibility of DOT to reconstruct absorbers, scatterers and fluorochromes used phantoms or tissues confined appropriately to conform to easily modeled geometries such as a slab or a cylinder. In later years several methods have been developed to model photon propagation through diffuse media with complex boundaries using numerical solutions of the diffusion or transport equation (finite elements or differences) or more recently analytical methods based on the tangent-plane method . While optical examinations performed simultaneously with anatomical imaging modalities such as MRI provide well-defined boundaries, very limited progress has been done so far in extracting full-field (360 degree) boundaries for in-vivo three-dimensional DOT stand-alone imaging. In this paper, we present a desktop multi-spectrum in-vivo 3D DOT system for small animal imaging. This system is augmented with Technest's full-field 3D cameras. The built system has the capability of acquiring 3D object surface profiles in real time and registering 3D boundary with diffuse tomography. Extensive experiments are performed on phantoms and small animals by our collaborators at the Center for Molecular Imaging Research (CMIR) at Massachusetts General Hospital (MGH) and Harvard Medical School. Data has shown successful reconstructed DOT data with improved accuracy.

  11. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  12. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  13. Evaluating microcirculation by pulsatile laser Doppler signal

    NASA Astrophysics Data System (ADS)

    Chao, P. T.; Jan, M. Y.; Hsiu, H.; Hsu, T. L.; Wang, W. K.; Wang, Y. Y. Lin

    2006-02-01

    Laser Doppler flowmetry (LDF) is a popular method for monitoring the microcirculation, but it does not provide absolute measurements. Instead, the mean flux response or energy distribution in the frequency domain is generally compared before and after stimulus. Using the heartbeat as a trigger, we investigated whether the relation between pressure and flux can be used to discriminate different microcirculatory conditions. We propose the following three pulsatile indices for evaluating the microcirculation condition from the normalized pressure and flux segment with a synchronized-averaging method: peak delay time (PDT), pressure rise time and flux rise time (FRT). The abdominal aortic blood pressure and renal cortex flux (RCF) signals were measured in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The mean value of the RCF did not differ between SHR and WKY. However, the PDT was longer in SHR (87.14 ± 5.54 ms, mean ± SD) than in WKY (76.92 ± 2.62 ms; p < 0.001). The FRT was also longer in SHR (66.56 ± 1.98 ms) than in WKY (58.02 ± 1.77 ms; p < 0.001). We propose that a new dimension for comparing the LDF signals, which the results from the present study show, can be used to discriminate RCF signals that cannot be discriminated using traditional methods.

  14. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

    PubMed Central

    Hitchock, Adam P; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris P; Guttmann, Peter

    2012-01-01

    Summary We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV. PMID:23016137

  15. Which Phantom Is Better for Assessing the Image Quality in Full-Field Digital Mammography?: American College of Radiology Accreditation Phantom versus Digital Mammography Accreditation Phantom

    PubMed Central

    Song, Sung Eun; Yie, An; Ku, Bon Kyung; Kim, Hee-Young; Cho, Kyu Ran; Chung, Hwan Hoon; Lee, Seung Hwa; Hwang, Kyu-Won

    2012-01-01

    Objective To compare between the American College of Radiology (ACR) accreditation phantom and digital mammography accreditation phantom in assessing the image quality in full-field digital mammography (FFDM). Materials and Methods In each week throughout the 42-week study, we obtained phantom images using both the ACR accreditation phantom and the digital mammography accreditation phantom, and a total of 42 pairs of images were included in this study. We assessed the signal-to-noise ratio (SNR) in each phantom image. A radiologist drew a square-shaped region of interest on the phantom and then the mean value of the SNR and the standard deviation were automatically provided on a monitor. SNR was calculated by an equation, measured mean value of SNR-constant coefficient of FFDM/standard deviation. Two breast radiologists scored visible objects (fibers, specks, and masses) with soft-copy images and calculated the visible rate (number of visible objects/total number of objects). We compared SNR and the visible rate of objects between the two phantoms and calculated the k-coefficient for interobserver agreement. Results The SNR of the ACR accreditation phantom ranged from 42.0 to 52.9 (Mean, 47.3 ± 2.79) and that of Digital Phantom ranged from 24.8 to 54.0 (Mean, 44.1 ± 9.93) (p = 0.028). The visible rates of all three types of objects were much higher in the ACR accreditation phantom than those in the digital mammography accreditation phantom (p < 0.05). Interobserver agreement for visible rates of objects on phantom images was fair to moderate agreement (k-coefficients: 0.34-0.57). Conclusion The ACR accreditation phantom is superior to the digital mammography accreditation phantom in terms of SNR and visibility of phantom objects. Thus, ACR accreditation phantom appears to be satisfactory for assessing the image quality in FFDM. PMID:23118577

  16. A Systematic Review of the Evolution of Laser Doppler Techniques in Burn Depth Assessment

    PubMed Central

    Fitzgerald O'Connor, Edmund; Philp, Bruce

    2014-01-01

    Aims. The introduction of laser Doppler (LD) techniques to assess burn depth has revolutionized the treatment of burns of indeterminate depth. This paper will systematically review studies related to these two techniques and trace their evolution. At the same time we hope to highlight current controversies and areas where further research is necessary with regard to LD imaging (LDI) techniques. Methods. A systematic search for relevant literature was carried out on PubMed, Medline, EMBASE, and Google Scholar. Key search terms included the following: “Laser Doppler imaging,” “laser Doppler flow,” and “burn depth.” Results. A total of 53 studies were identified. Twenty-six studies which met the inclusion/exclusion criteria were included in the review. Conclusions. The numerous advantages of LDI over those of LD flowmetry have resulted in the former technique superseding the latter one. Despite the presence of alternative burn depth assessment techniques, LDI remains the most favoured. Various newer LDI machines with increasingly sophisticated methods of assessing burn depth have been introduced throughout the years. However, factors such as cost effectiveness, scanning of topographically inconsistent areas of the body, and skewing of results due to tattoos, peripheral vascular disease, and anaemia continue to be sighted as obstacles to LDI which require further research. PMID:25180087

  17. Developments in laser Doppler accelerometry (LDAc) and comparison with laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Rothberg, Steve; Hocknell, Alan; Coupland, Jeremy

    This paper outlines the principles and early development of an interferometric technique for remote measurement of vibration acceleration — laser Doppler accelerometry (LDAc). One of the key advantages of LDAc over laser Doppler velocimetry (LDV) is its ability to measure extremely high vibration accelerations and shocks, effectively without limit, and this point is expanded upon in the paper. Early LDAc development showed how unwanted, velocity-dependent optical beats could occur on the photodetector but novel use of a frequency shifting device, whose primary purpose was for direction discrimination, was successful in isolating the required acceleration-dependent beat. A problem remained in the rate at which the velocity-dependent and acceleration-dependent beats broadened during target motion. In a further development, it was possible to 'select' a back reflection to produce a velocity-dependent beat that was NOT modulated in the presence of target motion. The acceleration-dependent beat could then be demodulated and preliminary results are given to demonstrate this outcome.

  18. Developments in laser Doppler accelerometry (LDAc) and comparison with laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Rothberg, Steve; Hocknell, Alan; Coupland, Jeremy

    1999-12-01

    This paper outlines the principles and early development of an interferometric technique for remote measurement of vibration acceleration - laser Doppler accelerometry (LDAc). One of the key advantages of LDAc over laser Doppler velocimetry (LDV) is its ability to measure extremely high vibration accelerations and shocks, effectively without limit, and this point is expanded upon in the paper. Early LDAc development showed how unwanted, velocity-dependent optical beats could occur on the photodetector but novel use of a frequency shifting device, whose primary purpose was for direction discrimination, was successful in isolating the required acceleration-dependent beat. A problem remained in the rate at which the velocity-dependent and acceleration-dependent beats broadened during target motion. In a further development, it was possible to 'select' a back reflection to produce a velocity-dependent beat that was NOT modulated in the presence of target motion. The acceleration-dependent beat could then be demodulated and preliminary results are given to demonstrate this outcome.

  19. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    SciTech Connect

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    2014-06-15

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm{sup 2} and 50 J/cm{sup 2} on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the

  20. Laser Doppler and Pulsed Laser Velocimetry in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Coupland, Jeremy M.

    Since the introduction of the laser in the late 1960s, optical metrology has made a major impact in many branches of engineering. This is nowhere more apparent than in the field of fluid mechanics where laser technology has revolutionised the way in which fluid flows are studied. The light scattered from small seeding particles following the flow contains information relating to the particle position and velocity. The coherence characteristics and high power densities achievable with a laser source allow well-defined regions of flow to be investigated in a largely non-intrusive manner and on a spatial and temporal scale commensurate with he flow field of interest. This review outlines the laser-based methods of velocimetry that are now available to the fluid dynamicist and discusses their practical application. Laser Doppler velocimetry provides a means to produce time-resolved measurements of fluid velocity at a single point in the flow. The optical design of instruments of this type is addressed with reference to spatial resolution and light gathering performance. Typical Doppler signals produced at both high and low particle concentrations are analysed and signal processing techniques are briefly discussed. Pulsed laser velocimeters use imaging optics to record the position of seeding particles at two or more instants and provide information concerning the instantaneous structure of the flow field. The optical configurations and analysis procedures used for planar velocity measurements are described and whole-field three-dimensional velocity measurements using holographic techniques are introduced.

  1. Laser Doppler flowmetry: reproducibility, reliability, and diurnal blood flow variations.

    PubMed

    Roeykens, Herman J J; Deschepper, Ellen; De Moor, Roeland J G

    2016-08-01

    The aim of this investigation was (1) to evaluate the reliability of laser Doppler flowmetry (LDF) taking into consideration the use of a silicone splint and the inclination of the probe towards the buccal surface of a human tooth and (2) to determine whether diurnal variations of pulpal blood flow can be registered by means of LDF. Forty-one splints were made by one and the same principal investigator for the registration of pulpal blood flow in vivo in a maxillary right central incisor. Thirty dentists, without experience in LDF recording, were then asked to drill a right-angled shaft in a pre-manufactured splint with a referral point at 2 mm from the enamel-cement border central on the buccal surface of the right central upper incisor. The remaining 11 splints were handled by the principal investigator. The shafts in the 30 splints were analysed using Cone Beam CT imaging of the axial and sagittal angles and compared these to the 11 shafts prepared by the trained principal investigator. LDF was recorded for 90 s in each splint and statistically analysed. LDF values without the use of a splint were statistically significantly different (p < 0.05) and the variance was greater, indicating the superiority of splint use. Significant diurnal variations on LDF values were observed, indicating that special attention should be paid to registration during the day, especially when multiple measurements are to be compared. PMID:27184153

  2. Full-field optical deformation measurement in biomechanics: digital speckle pattern interferometry and 3D digital image correlation applied to bird beaks.

    PubMed

    Soons, Joris; Lava, Pascal; Debruyne, Dimitri; Dirckx, Joris

    2012-10-01

    In this paper two easy-to-use optical setups for the validation of biomechanical finite element (FE) models are presented. First, we show an easy-to-build Michelson digital speckle pattern interferometer (DSPI) setup, yielding the out-of-plane displacement. We also introduce three-dimensional digital image correlation (3D-DIC), a stereo photogrammetric technique. Both techniques are non-contact and full field, but they differ in nature and have different magnitudes of sensitivity. In this paper we successfully apply both techniques to validate a multi-layered FE model of a small bird beak, a strong but very light biological composite. DSPI can measure very small deformations, with potentially high signal-to-noise ratios. Its high sensitivity, however, results in high stability requirements and makes it hard to use it outside an optical laboratory and on living samples. In addition, large loads have to be divided into small incremental load steps to avoid phase unwrapping errors and speckle de-correlation. 3D-DIC needs much larger displacements, but automatically yields the strains. It is more flexible, does not have stability requirements, and can easily be used as an optical strain gage. PMID:23026697

  3. Boosting classification performance in computer aided diagnosis of breast masses in raw full-field digital mammography using processed and screen film images

    NASA Astrophysics Data System (ADS)

    Kooi, Thijs; Karssemeijer, Nico

    2014-03-01

    The introduction of Full-Field Digital Mammography (FFDM) in breast screening has brought with it several advantages in terms and processing facilities and image quality and Computer Aided Detection (CAD) systems are now sprouting that make use of this modality. A major drawback however, is that FFDM data is still relatively scarce and therefore, CAD system's performance are inhibited by a lack of training examples. In this paper, we explore the incorporation of more ubiquitous Screen Film Mammograms (SFM) and FFDM processed by the manufacturer, in training a system for the detection of tumour masses. We compute a small set of additional quantitative features in the raw data, that make explicit use of the log-linearity of the energy imparted on the detector in raw FFDM. We explore four di erent fusion methods: a weighted average, a majority vote, a convex combination of classi er outputs, based on the training error and an additional classi er, that combines the output of the three individual label estimates. Results are evaluated based on the Partial Area Under the Curve (PAUC) around a clinically relevant operating point. All fusion methods perform signi cantly better than any of the individual classi ers but we nd no signi cant di erence between the fusion techniques.

  4. Non-intrusive Shock Measurements Using Laser Doppler Vibrometers

    NASA Technical Reports Server (NTRS)

    Statham, Shannon M.; Kolaini, Ali R.

    2012-01-01

    Stud mount accelerometers are widely used by the aerospace industry to measure shock environments during hardware qualification. The commonly used contact-based sensors, however, interfere with the shock waves and distort the acquired signature, which is a concern not actively discussed in the community. To alleviate these interference issues, engineers at the Jet Propulsion Laboratory are investigating the use of non-intrusive sensors, specifically Laser Doppler Vibrometers, as alternatives to the stud mounted accelerometers. This paper will describe shock simulation tests completed at the Jet Propulsion Laboratory, compare the measurements from stud mounted accelerometers and Laser Doppler Vibrometers, and discuss the advantages and disadvantages of introducing Laser Doppler Vibrometers as alternative sensors for measuring shock environments.

  5. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  6. Miniature Laser Doppler Velocimeter for Measuring Wall Shear

    NASA Technical Reports Server (NTRS)

    Gharib, Morteza; Modarress, Darius; Forouhar, Siamak; Fourguette, Dominique; Taugwalder, Federic; Wilson, Daniel

    2005-01-01

    A miniature optoelectronic instrument has been invented as a nonintrusive means of measuring a velocity gradient proportional to a shear stress in a flow near a wall. The instrument, which can be mounted flush with the wall, is a variant of a basic laser Doppler velocimeter. The laser Doppler probe volume can be located close enough to the wall (as little as 100 micron from the surface) to lie within the viscosity-dominated sublayer of a turbulent boundary layer. The instrument includes a diode laser, the output of which is shaped by a diffractive optical element (DOE) into two beams that have elliptical cross sections with very high aspect ratios.

  7. Paraxial Full-Field Cloaking

    NASA Astrophysics Data System (ADS)

    Choi, Joseph; Howell, John

    2015-05-01

    Broadband, omnidirectional invisibility cloaking has been a goal of scientists since coordinate transformations were suggested for cloaking. The requirements for realizing such a cloak can be simplified by considering only the paraxial (`small-angle') regime. We recap the experimental demonstration of paraxial ray optics cloaking and theoretically complete its formalism, by extending it to the full-field of light. We then show how to build a full-field paraxial cloaking system.

  8. Three-dimensional shear wave imaging based on full-field laser speckle contrast imaging with one-dimensional mechanical scanning.

    PubMed

    Chao, Pei-Yu; Li, Pai-Chi

    2016-08-22

    The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms. PMID:27557169

  9. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems.

    PubMed

    Marshall, N W

    2007-09-21

    Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 microGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm(-1) for a target DAK of 100 microGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 microGy when compared to DQE data acquired at 100 microGy. For the CsI based systems, DQE at 1 mm

  10. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  11. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  12. Wing tip vortex measurements with laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Fuller, C. E., III

    1973-01-01

    The vortex velocity field produced by a rectangular wing in a subsonic wind tunnel was measured using two laser Doppler velocimeter systems. One system made three dimensional mean velocity measurements and the other made one dimensional turbulence measurements. The systems and test procedures are described and comparisons of the measurements are made. The data defined a strong spiral motion in the vortex formation process.

  13. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    SciTech Connect

    Hernandez, Carlos A.

    2015-09-29

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  14. Pulsating blood-flow monitoring in developing fish embryos and rat mesentery by laser Doppler microscopy

    NASA Astrophysics Data System (ADS)

    Bikkulova, K. F.; Lapteva, N. B.; Levenko, Borislav A.; Polyakova, Marina S.; Priezzhev, Alexander V.; Proskurin, Sergei G.; Romanovsky, Yuri A.; Sokolova, Irina A.

    1993-07-01

    Laser Doppler (LD) microscopy is a technique, providing high-resolution noninvasive measurements of microstructures dynamics. It can be used in different fields of biophysics and biomedicine. This technique yields quantitative information on diffusion coefficients, velocities, and velocity profiles of dynamic microstructures in vivo and in vitro. LD microscopy is an alternative method of velocity measurement to such methods as computer- aided microphotography and imaging, diffraction grating microscopy, FRAP, etc. In this paper we describe the results of our LDM measurements of one of the main hemodynamic parameters -- the blood-flow velocities in the microvessels of Salmo salar and Danio rerio fish embryos, as well as of the rat mesentery.

  15. Evaluation of skin vasomotor reflexes by using laser Doppler velocimetry.

    PubMed

    Low, P A; Neumann, C; Dyck, P J; Fealey, R D; Tuck, R R

    1983-09-01

    We used a laser Doppler velocimeter for measurement of skin blood flow in 63 healthy control subjects and in patients with dysautonomias. We measured vasoconstrictor responses to inspiratory gasp, standing, Valsalva maneuver, and cold stimulus. An abnormal profile was defined in terms of the percentage of abnormal test results, the results of individual tests, and the alterations in the shape of the recorded response. These measurements of vasomotor function may permit the diagnosis of focal abnormalities of peripheral nerve sympathetic failure. PMID:6310277

  16. New signal analysis methods for laser doppler flowmetric recordings

    NASA Astrophysics Data System (ADS)

    ǎgǎnescu, G. E., Dr; Todea, Carmen

    2014-01-01

    The laser Doppler flowmetry devices give a series of information like the blood flux and some statistical parameters, automatically estimated. There are also new important attempts based on the Fourier transform of the flow flux signal which gather more information from the laser Doppler flowmetry. The amplitude spectra estimated in these articles, exhibit a series of peaks corresponding to the cardiac variation of the blood flow and noise components of the flow flux signals, dependent on the state of the tooth. The aim of our investigations is to introduce new signal processing methods, based on wavelet continuous tranform, which express in a more sensitive manner the modifications of the flow flux signal with the state of the tooth, and to introduce new quantitative parameters, defined in a previous paper. These parameters express, in a more sensitive manner the modifications of the pulp flow flux signal in relation with the pulp tooth healt, and to introduce new quantitative parameters, defined in a previous paper. These parameters express, in a sensitive way the changes of the blood flux. For practical investigations we used a series of signals recorded with the aid of a Laser Doppler Blood Flow Monitoring device (Moor Instruments) and processed with the computer.

  17. Intrasulcular laser Doppler readings before and after root planing.

    PubMed

    Hinrichs, J E; Jarzembinski, C; Hardie, N; Aeppli, D

    1995-11-01

    A reproducible and sensitive laser Doppler periodontal probe has recently been developed for intrasulcular measurement of gingival blood flow. The specific aims of this investigation were to determine the relation between intrasulcular laser Doppler readings (LDR) and traditional diagnostic criteria as well as to evaluate the response to root planning in terms of LDR and traditional criteria. LDR and clinical measurements (bleeding on probing (BOP), probing depth (PD) and clinical attachment loss (CAL) were obtained from 2 healthy and 2 diseased sites in 30 systemically healthy adult volunteers with localized moderate to advanced periodontitis. All 30 subjects were re-examined 1 month following root planing while 10 subjects were re-examined at approximately 1 year after treatment. Subject-adjusted correlations between pretreatment LDR and PD as well as LDR and CAL were 0.74 and 0.71, respectively. 1 month following root planing, the diseased sites had undergone a significant reduction in LDR and PD with an accompanying gain in CAL. Prior to treatment, 95 of 120 sites (79%) agreed on an ordinal classification (high, low) for LDR and BOP. Mantel-Haenszel common odds ratios for agreement between LDR and BOP were 9.6 pre-treatment and 4.3 one month after treatment. A slight rebound of all measurements was noted in a group of 10 subjects followed for 1 year. It was concluded that the laser Doppler periodontal probe is an unbiased non-invasive method of monitoring the response to periodontal therapy. PMID:8550856

  18. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    SciTech Connect

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng

    2011-01-15

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full-field

  19. Catadioptric Optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    In the design of a laser velocimeter system, attention must be given to the performance of the optical elements in their two principal tasks: focusing laser radiation into the probe volume, and collecting the scattered light. For large aperture applications, custom lens design and fabrication costs, long optical path requirements, and chromatic aberration (for two color operation) can be problematic. The adaptation of low cost Schmidt-Cassegrain astronomical telescopes to perform these laser beam manipulation and scattered light collection tasks is examined. A generic telescope design is analyzed using ray tracing and Gaussian beam propagation theory, and a simple modification procedure for converting from infinite to near unity conjugate ratio operation with image quality near the diffraction limit was identified. Modification requirements and performance are predicted for a range of geometries. Finally, a 200-mm-aperture telescope was modified for f/10 operation; performance data for this modified optic for both laser beam focusing and scattered light collection tasks agree well with predictions.

  20. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    SciTech Connect

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then

  1. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  2. Development of in-situ full-field spectroscopic imaging analysis and application on Li-ion battery using transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen K.; Wang, Jiajun; Wang, Jun

    2013-09-01

    This paper presents the advance in spectroscopic imaging technique and analysis method from the newly developed transmission x-ray microscopy (TXM) at the beamline X8C of National Synchrotron Light Source. Through leastsquares linear combination fitting we developed on the in situ spectroscopic images, a time-dependent and spatially resolved chemical composition mapping can be obtained and quantitatively analyzed undergone chemical/electrochemical reactions. A correlation of morphological evolution, chemical state distribution changes and reaction conditions can be revealed. We successfully applied this method to study the electrochemical evolution of CuO, an anode material of Li-ion battery, during the lithiation-delitiation cycling.

  3. Compensation for refractive-index variations in laser Doppler anemometry.

    PubMed

    Kehoe, A B; Desai, P V

    1987-07-01

    Techniques to compensate for index of refraction variations in the application of a laser Doppler anemometer are examined. For discontinuous plane-layered media a method of discrete elements is employed. An alternative set of equations is derived for continuous cylindrically layered media and simplified to make comparisons with available results for a single cylinder. Results of velocity measurements in a Plexiglas model of a cylindrically layered nuclear fuel assembly are presented to establish a positioning accuracy of the method to within 0.025 cm. PMID:20489924

  4. Laser Doppler Vibrometry measurement of the mechanical myogram

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.

    2012-06-01

    Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle was shown under conditions of elastic loading to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.

  5. Compact laser Doppler flowmeter for application in dentistry

    NASA Astrophysics Data System (ADS)

    Fedosov, Ivan V.; Mareew, Gleb O.; Finokhina, Olga A.; Lepilin, Alexander V.; Tuchin, Valery V.

    2005-06-01

    Lightweight handheld laser Doppler instrument is designed for blood flow assessment in soft tissues of oral cavity. Laser light source, fiber optic probe detector and amplifier circuitry are mounted inside the compact hand held probe assembly to minimize noise and to exclude optical fiber motion artifacts. Both the instrument and data processing software are optimized for the using of the standard PC sound interface as the data acquisition device that provides low cost and effective solution for clinical use. The instrument is suitable for quantitative diagnostics of gingivitis and other disorders in dentistry.

  6. Spinning disk calibration method and apparatus for laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Snyder, P. K. (Inventor)

    1986-01-01

    A method and apparatus for calibrating laser Doppler velocimeters having one or more intersecting beam pairs are described. These velocimeters measure fluid velocity by observing the light scattered by particles in the fluid stream. Moving fluid particulates are simulated by fine taut wires that are radially mounted on a disk that is rotated at a known velocity. The laser beam intersection locus is first aimed at the very center of the disk and then the disk is translated so that the locus is swept by the rotating wires. The radial distance traversed is precisely measured so that the velocity of the wires (pseudo particles) may be calculated.

  7. A relative performance analysis of atmospheric Laser Doppler Velocimeter methods.

    NASA Technical Reports Server (NTRS)

    Farmer, W. M.; Hornkohl, J. O.; Brayton, D. B.

    1971-01-01

    Evaluation of the effectiveness of atmospheric applications of a Laser Doppler Velocimeter (LDV) at a wavelength of about 0.5 micrometer in conjunction with dual scatter LDV illuminating techniques, or at a wavelength of 10.6 micrometer with local oscillator LDV illuminating techniques. Equations and examples are given to provide a quantitative basis for LDV system selection and performance criteria in atmospheric research. The comparative study shows that specific ranges and conditions exist where performance of one of the methods is superior to that of the other. It is also pointed out that great care must be exercised in choosing system parameters that optimize a particular LDV designed for atmospheric applications.

  8. Fiber optic laser Doppler anemometry in swirling jets

    NASA Technical Reports Server (NTRS)

    Taghavi, R.; Rice, E. J.

    1991-01-01

    Time-averaged and fluctuating quantities are measured in a free turbulent swirling jet. Data from a two-component laser Doppler anemometry (LDA) are compared to the measurements via hot-wire and 5-hole pitot probes. To acquire the proper seeding density near the axis of a swirling jet for LDA measurements proved difficult. This is due to an imbalance of the centrifugal force and radial pressure gradient, which throws the seeding material off the axis. Despite this problem, close agreement between various measurement techniques is obtained.

  9. Noninvasive In-vivo Measurements of Microvessels by Reflection-Type Micro Multipoint Laser Doppler Velocimeter

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Andoh, Tsugunobu; Akiguchi, Shunsuke; Hachiga, Tadashi; Ishizuka, Masaru; Shimizu, Tadamichi; Shirakawa, Hiroki; Kuraishi, Yasushi

    2012-03-01

    We have developed a micro multipoint laser Doppler velocimeter (µ-MLDV) that enables selective collection of Doppler interference photons. In previous report [H. Ishida et al.: Rev. Sci. Instrum. 82 (2011) 076104], developed the reflection-type µ-MLDV, and showed the results of demonstrations performed on transparent artificial flow channels. In this study, we attempted to perform in-vivo experiments using animals. It can measure absolute velocity and generate tomographs of blood vessels courses. The present system can perform noninvasive in-vivo measurements with a detection limit of about 0.5 mm/s and a spatial resolution in the x-y plane of 125 µm. It is thus able to image venulae. It was used to image venulae in a mouse ear and a subcutaneous blood vessel in a mouse abdomen at a depth of about 1.0 mm below the skin.

  10. Laser Doppler velocity measurements of swirling flows with upstream influence

    NASA Technical Reports Server (NTRS)

    Rloff, K. L.; Bossel, H. H.

    1973-01-01

    Swirling flow in a rotating tube is studied by flow visualization at a moderate Reynolds number, and its velocity field is measured by laser-Doppler anemometry. The tube has constant diameter, and approximately uniform initial rigid rotation of the flow is assured by passing the flow through a rotating plug of porous metal before it enters the test section. At moderate swirl values, an object mounted on the tube centerline causes a closed bubble to form upstream of the obstacle, with a clearly defined stagnation point on the axis, and recirculating flow inside the bubble. The bubble length grows upstream as the swirl is increased, until it breaks up into a Taylor column reaching all the way upstream and downstream at swirl values above a certain critical value. A vortex jump (in the sense of Benjamin) occurs downstream of the obstacle except when the Taylor column is present. Using a laser-Doppler anemometer, axial and swirl velocity profiles are obtained at several stations upstream and downstream of the bubble, and in and around the bubble.

  11. Evaluation of gingival vascularisation using laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Vitez, B.; Todea, C.; Velescu, A.; Şipoş, C.

    2016-03-01

    Aim: The present study aims to assess the level of vascularisation of the lower frontal gingiva of smoker patients, in comparison with non-smokers by using Laser Doppler Flowmetry (LDF), in order to determine the changes in gingival microcirculation. Material & methods: 16 volunteers were included in this study and separated into 2 equal groups: non-smoker subjects in Group I and smoker subjects in Group II. All patients were submitted to a visual examination and professional cleaning The gingival bloodflow of each patient was recorded in 5 zones using LDF, resulting in a total of 80 recordings. LDF was done with the Moor Instruments Ltd. "moorLAB" Laser Doppler. All data were collected as graphs, raw values and statistically analyzed. Results: After strict analysis results show that Group II presents a steady level of gingival microcirculation with even patterns in the graph, while Group I shows many signs of damage to it`s microvascular system through many irregularities in the microcirculation level and graph patterns. Conclusion: The results suggest that prolonged smoking has a definitive effect on the gingival vascularisation making it a key factor in periodontal pathology.

  12. Full-field optical micro-angiography

    NASA Astrophysics Data System (ADS)

    Wang, Mingyi; Zeng, Yaguang; Liang, Xianjun; Lu, Xuanlong; Feng, Guanping; Han, Dingan; Yang, Guojian

    2014-02-01

    We present a detailed description of full-field optical micro-angiography on the basis of frequency-domain laser speckle imaging with intensity fluctuation modulation (LSI-IFM). The imaging approach works based on the instantaneous local intensity fluctuation realized via the combination of short exposure and low sampling rate of a camera and appropriate magnification of a microscope. In vivo experiments on mouse ear verify the theoretical description we made for the imaging mechanism and demonstrate the ability of LSI-IFM as optical micro-angiography. By introducing a fundus camera into LSI-IFM system, our approach has a potential application in label-free retina optical micro-angiography.

  13. Wavelet analysis of the Laser Doppler signal to assess skin perfusion.

    PubMed

    Bagno, Andrea; Martini, Romeo

    2015-08-01

    The hemodynamics of skin microcirculation can be clinically assessed by means of Laser Doppler Fluxmetry. Laser Doppler signals show periodic oscillations because of fluctuations of microvascular perfusion (flowmotion), which are sustained by contractions and relaxations of arteriolar walls rhythmically changing vessels diameter (vasomotion). The wavelet analysis applied to Laser Doppler signals displays six characteristic frequency intervals, from 0.005 to 2 Hz. Each interval is assigned to a specific structure of the cardiovascular system: heart, respiration, vascular myocites, sympathetic terminations, and endothelial cells (dependent and independent on nitric oxide). Therefore, mechanisms of skin perfusion can be investigated through wavelet analysis. In the present work, examples of methods and results of wavelet analysis applied to Laser Doppler signals are reported. Laser Doppler signals were acquired in two groups of patients to check possible changes in vascular activities, before and after occlusive reactive hyperaemia, and before and after revascularization. PMID:26737995

  14. Laser Doppler vibrometer for efficient structural health monitoring

    NASA Astrophysics Data System (ADS)

    Sharma, Vinod K.

    The research effort in this thesis is devoted to develop techniques to accurately and rapidly identify the location, orientation, and magnitude of the defects by using structural health monitoring concepts that use Laser Doppler Vibrometer as a non-contact sensor with multi-point sensing capability. The first research area addresses the formulation and validation of an innovative Damage Measure that is based on the ratios of the strain energy distributions of the damaged and undamaged structure. The innovations include use of a single set of actuator/sensor pair to excite and detect the responses of a structure for low frequency vibrations as well as guided wave propagation studies. A second new capability is the estimation of the Damage Measure without requiring any knowledge of the undamaged baseline structure. This method is made possible because of the development of these new technologies: Spatial Decimation and Wavenumber/Frequency filtering. The third contribution is to develop analytical models for the structural dynamics of damaged structure and seek solutions that use perturbation methods to detect damage in a plate structure. The fourth contribution is the development of a comprehensive damage detection technique over a wide frequency dynamic range. The fifth topic of research involves automation in Structural Health Monitoring based on the comprehensive Damage Measure formulation. Under the control of software the Scanning Laser Doppler Vibrometer is used to acquire the low frequency vibration mode data for a coarse identification of all the suspect regions of damage using a threshold criterion on the Damage Measure. Each suspect region of damage is further investigated using the high frequency elastic wave propagation to clearly identify the location, orientation, and extent of the damage. The computer control of the Laser Doppler Vibrometer and a quantitative assessment of the damage provide the enabling technologies for the automation proof of

  15. Fuel droplet size measurements with a laser Doppler interferometer

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1985-07-01

    It is pointed out that the injection and atomization of liquid fuel into a gas turbine combustion system plays a major role in many key aspects of combustion system performance. Fuel droplet diameters represent one of the parameters which determine the burning rate. The present investigation is concerned with a commercially available laser Doppler interferometer which has been used by an American manufacturer of aircraft engines to measure fuel droplet size distributions downstream of several different fuel injectors and combinations of fuel injectors and combustor dome swirl cups. The considered instrument has a very small sample volume, which permits measurements of droplet size distributions and droplet Sauter Mean Diameters (SMD) at a large number of discrete points in the spray pattern. The design and the principles of operation of the droplet sizing interferometer (DSI) are discussed along with alignment procedures, test configurations, and test results.

  16. A laser Doppler system for monitoring of intracerebral microcirculation.

    PubMed

    Rejmstad, Peter; Åkesson, Gustav; Hillman, Jan; Wårdell, Karin

    2012-01-01

    A two-channel standard laser Doppler perfusion monitor has been adapted for intracerebral measurements. Software developed in Labview makes it possible to present the microvascular perfusion, total light intensity (TLI), heart rate and trend curves in real-time during surgery. A custom-made optical probe was designed in order to enable easy fixation during brain surgery. The constructed brain probe was evaluated and compared to a standard probe. Both probes presented similar feasibility when used for the skin recordings. In addition, evaluation was done in one patient in relation to tumor resection. Stable perfusion and TLI signals were immediately recorded when the probe was positioned in cerebral tissue. Movement artifacts were clearly seen when the probe was moved to a new site. Recordings in cortex and tumor border showed higher perfusion and lower TLI compared to measurements in subcortical white matter. The calculated heart rate estimate agreed well with the noted value from the electrocardiographic patient monitoring system. PMID:23366307

  17. Cantilever spring constant calibration using laser Doppler vibrometry

    SciTech Connect

    Ohler, Benjamin

    2007-06-15

    Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offers considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.

  18. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  19. Remote intensity fluctuation measurements with a laser Doppler radar

    NASA Technical Reports Server (NTRS)

    Kennedy, L. Z.; Bilbro, J. W.

    1976-01-01

    A coaxial focused CW scanning laser Doppler velocimeter (SLDV) radar equipment applying heterodyne detection at 10.6 microns can measure intensity fluctuations under field conditions. The set includes a 20 W CO2 laser, a coaxial Cassegrainian telescope, standard heterodyne equipment, and a SAW spectrum analyzer with 100 kHz signal resolution. Operation of the equipment and techniques for taking remote measurements are described briefly. Applications to remote measurements of transverse component of wind speed, as a complement to the traditional Doppler method of determining axial velocity, are under study. SLDV equipment has been used in detection, tracking, and measurements of atmospheric turbulence associated with aircraft wing-tip vortices or with dust devils, and in measurement of general atmospheric wind profiles.

  20. Measurements of enlarged blood pump models using Laser Doppler Anemometer.

    PubMed

    Chua, L P; Yu, S C; Leo, H L

    2000-01-01

    In an earlier study (Chua et al., 1998, 1999a), a 5:1 enlarged model of the Kyoto-NTN Magnetically Suspended Centrifugal Blood Pump (Akamatsu et al., 1995) with five different impeller blade profiles was designed and constructed. Their respective flow characteristics with respect to (1) the three different blade profile designs: forward, radial, and backward, (2) the number of blades used, and (3) the rotating speed were investigated. Among the five impeller designs, the results obtained suggested that impellers A and C designs should be adopted if higher head is required. Impellers A and C therefore were selected for the flow in between their blades to be measured using Laser Doppler Anemometer (LDA), so as to have a better understanding of the flow physics with respect to the design parameters. PMID:10999377

  1. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  2. Laser Doppler vibrometry measurement of the mechanical myogram

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.

    2013-12-01

    Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle (the first dorsal interosseous) was studied under conditions of elastic loading applied to the tip of the abducted index finger. The LDV signal was shown to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.

  3. Application of Laser Doppler Vibrometery for human heart auscultation.

    PubMed

    Koegelenberg, S; Scheffer, C; Blanckenberg, M M; Doubell, A F

    2014-01-01

    In this study the potential of a Laser Doppler Vibrometer (LDV) was tested as a non-contact sensor for the classification of heart sounds. Of the twenty participants recorded using the LDV, five presented with Aortic Stenosis (AS), three were healthy and twelve presented with other pathologies. The recorded heart sounds were denoised and segmented using a combination of the Electrocardiogram (ECG) data and the complexity of the signal. Frequency domain features were extracted from the segmented heart sound cycles and used to train a K-nearest neighbor classifier. Due to the small number of participants, the classifier could not be trained to differentiate between normal and abnormal participants, but could successfully distinguish between participants who presented with AS and those who did not. A sensitivity of 80 % and a specificity of 100 % were achieved a test dataset. PMID:25570986

  4. Fiber-optic laser Doppler turbine tip clearance probe

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 μm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  5. Fiber-optic laser Doppler turbine tip clearance probe.

    PubMed

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades. PMID:16642064

  6. Novel laser Doppler flowmeter for pulpal blood flow measurements

    NASA Astrophysics Data System (ADS)

    Zang, De Yu; Millerd, James E.; Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.

    1996-04-01

    We have proposed and experimentally demonstrated a new configuration of laser Doppler flowmetry for dental pulpal blood flow measurements. To date, the vitality of a tooth can be determined only by subjective thermal or electric tests, which are of questionable reliability and may induced pain in patient. Non-invasive techniques for determining pulpal vascular reactions to injury, treatment, and medication are in great demand. The laser Doppler flowmetry technique is non-invasive; however, clinical studies have shown that when used to measure pulpal blood flow the conventional back-scattering Doppler method suffers from low signal-to-noise ratio (SNR) and unreliable flux readings rendering it impossible to calibrate. A simplified theoretical model indicates that by using a forward scattered geometry the detected signal has a much higher SNR and can be calibrated. The forward scattered signal is readily detectable due to the fact that teeth are relatively thin organs with moderate optical loss. A preliminary experiment comparing forward scattered detection with conventional back- scattered detection was carried out using an extracted human molar. The results validated the findings of the simple theoretical model and clearly showed the utility of the forward scattering geometry. The back-scattering method had readings that fluctuated by as much as 187% in response to small changes in sensor position relative to the tooth. The forward scattered method had consistent readings (within 10%) that were independent of the sensor position, a signal-to-noise ratio that was at least 5.6 times higher than the back-scattering method, and a linear response to flow rate.

  7. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    NASA Technical Reports Server (NTRS)

    Krause, M. C.; Wilson, D. J.; Howle, R. E.; Edwards, B. B.; Craven, C. E.; Jetton, J. L.

    1976-01-01

    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week.

  8. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope

    SciTech Connect

    Hoshino, Masato; Ishino, Toyoaki; Namiki, Takashi; Yamada, Norimitsu; Watanabe, Norio; Aoki, Sadao

    2007-07-15

    A full-field x-ray fluorescence imaging microscope using a Wolter mirror was constructed at Photon Factory BL3C2. White x rays from a bending magnet were used to excite x-ray fluorescence and to enhance the x-ray fluorescence intensity. A photon-counting method using a charge-coupled device was applied to obtain an x-ray fluorescence spectrum at the image plane. The spatial distributions of some specific atoms such as Fe and Zn were obtained from photon-counting calculations. An energy resolution of 220 eV at the Fe K{alpha} line was obtained from the x-ray fluorescence spectrum by the photon-counting method. The newly developed three-dimensional element mappings of the specific atoms were accomplished by the photon-counting method and a reconstruction technique using computed tomography.

  9. Data processing and display of laser Doppler experimental results, volume 1

    NASA Technical Reports Server (NTRS)

    Ashmore, B. R.; Kimura, A.; Skeith, R. W.

    1976-01-01

    Contract activities performed in developing a laser Doppler system for detecting, tracking, and measuring aircraft wake vortices are summarized. The computer program for processing and displaying the Dust Devil experimental data is presented. Program listings are included in the appendix.

  10. A comparison of a coaxial focused laser Doppler system in atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Karaki, S.

    1973-01-01

    Measurements of atmospheric velocities and turbulence with the laser Doppler system were obtained, and the results compared with cup anemometer and hot-wire measurements in the same wind field. The laser Doppler velocimeter (LDV) is described along with the test procedures. It was found that mean values determined from the LDV data are within 5% of other anemometer data for long time periods, and the LDV measures higher velocities.

  11. Standoff photoacoustic sensing of trace chemicals by laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu, Q.; Liu, H.

    2016-05-01

    Photoacoustic spectroscopy (PAS) is a useful technique that suitable for trace detection of chemicals and explosives. Normally a high-sensitive microphone or a quartz tuning fork is used to detect the signal in photoacoustic cell. In recent years, laser Doppler vibrometer (LDV) is proposed to remote-sense photoacoustic signal on various substrates. It is a high-sensitivity sensor with a displacement resolution of <10pm. In this research, the photoacoustic effect of various chemicals is excited by a quantum cascade laser (QCL) with a scanning wavelength range of 6.89μm to 8.5 μm. A home-developed LDV at 1550nm wavelength is applied to detect the vibration signal. After normalize the vibration amplitude with QCL power, the photoacoustic spectrum of various chemicals can be obtained. Different factors that affect the detection accuracy and sensitivity have also been discussed. The results show the potential of the proposed technique for standoff detection of trace chemicals and explosives.

  12. Progress in the development of the laser Doppler accelerometer

    NASA Astrophysics Data System (ADS)

    Hocknell, Alan; Coupland, Jeremy M.; Rothberg, Steve J.

    1998-06-01

    This paper outlines the principles and early development of an interferometric technique for remote measurements of vibration acceleration--laser doppler accelerometry (LDAc). The LDAc principle is not only suited to use of an inexpensive laser source but it also simplifies use for the inexpert user by removal of the requirement to match optical paths to maintain coherence. One of the most important advantages of LDAc over existing technology will be its ability to measure extremely high vibration accelerations and shocks, effectively without limit. Early development has shown how back reflections within the optical geometry are responsible for creating unwanted, velocity-dependent optical beats on the photodetector as well as the unsuitability of coherence and polarization to isolate the required acceleration-dependent beat. Novel use of a frequency shifting device, whose primary purpose is for direction discrimination, was successful in isolating the acceleration-dependent beat from the velocity-dependent beats but a problem remained in the rate at which the two beats broadened during target motion. In a further development, based again on the location of the frequency- shifting device, it was possible to 'select' a back reflection to produce a beat that was NOT modulated in the presence of target motion. The acceleration-dependent beat could then be demodulated and preliminary result are given to demonstrate this outcome.

  13. Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry.

    PubMed

    Sirevaag, Erik J; Casaccia, Sara; Richter, Edward A; O'Sullivan, Joseph A; Scalise, Lorenzo; Rohrbaugh, John W

    2016-06-01

    The application of a noncontact physiological recording technique, based on the method of laser Doppler vibrometry (LDV), is described. The effectiveness of the LDV method as a physiological recording modality lies in the ability to detect very small movements of the skin, associated with internal mechanophysiological activities. The method is validated for a range of cardiovascular variables, extracted from the contour of the carotid pulse waveform as a function of phase of the respiration cycle. Data were obtained from 32 young healthy participants, while resting and breathing spontaneously. Individual beats were assigned to four segments, corresponding with inspiration and expiration peaks and transitional periods. Measures relating to cardiac and vascular dynamics are shown to agree with the pattern of effects seen in the substantial body of literature based on human and animal experiments, and with selected signals recorded simultaneously with conventional sensors. These effects include changes in heart rate, systolic time intervals, and stroke volume. There was also some evidence for vascular adjustments over the respiration cycle. The effectiveness of custom algorithmic approaches for extracting the key signal features was confirmed. The advantages of the LDV method are discussed in terms of the metrological properties and utility in psychophysiological research. Although used here within a suite of conventional sensors and electrodes, the LDV method can be used on a stand-alone, noncontact basis, with no requirement for skin preparation, and can be used in harsh environments including the MR scanner. PMID:26970208

  14. Vocal fold vibration measurements using laser Doppler vibrometry

    PubMed Central

    Chan, Alfred; Mongeau, Luc; Kost, Karen

    2013-01-01

    The objective of this study was to measure the velocity of the superior surface of human vocal folds during phonation using laser Doppler vibrometry (LDV). A custom-made endoscopic laser beam deflection unit was designed and fabricated. An in vivo clinical experimental procedure was developed to simultaneously collect LDV velocity and video from videolaryngoscopy. The velocity along the direction of the laser beam, i.e., the inferior-superior direction, was captured. The velocity was synchronous with electroglottograph and sound level meter data. The vibration energy of the vocal folds was determined to be significant up to a frequency of 3 kHz. Three characteristic vibrational waveforms were identified which may indicate bifurcations between vibrational modes of the mucosal wave. No relationship was found between the velocity amplitude and phonation frequency or sound pressure level. A correlation was found between the peak-to-peak displacement amplitude and phonation frequency. A sparse map of the velocity amplitudes on the vocal fold surface was obtained. PMID:23464036

  15. Novel measure for the calibration of laser Doppler flowmetry devices

    NASA Astrophysics Data System (ADS)

    Dunaev, Andrey V.; Zherebtsov, Evgeny A.; Rogatkin, Dmitrii A.; Stewart, Neil A.; Sokolovski, Sergei G.; Rafailov, Edik U.

    2014-03-01

    The metrological basis for optical non-invasive diagnostic devices is an unresolved issue. A major challenge for laser Doppler flowmetry (LDF) is the need to compare the outputs from individual devices and various manufacturers to identify variations useful in clinical diagnostics. The most common methods for instrument calibration are simulants or phantoms composed of colloids of light-scattering particles which simulate the motion of red blood cells based on Brownian motion. However, such systems have limited accuracy or stability and cannot calibrate for the known rhythmic components of perfusion (0.0095-1.6 Hz). To solve this problem, we propose the design of a novel technique based on the simulation of moving particles using an electromechanical transducer, in which a precision piezoelectric actuator is used (e.g., P-602.8SL with maximum movement less than 1 mm). In this system, Doppler shift is generated in the layered structure of different solid materials with different optical light diffusing properties. This comprises a fixed, light transparent upper plane-parallel plate and an oscillating fluoroplastic (PTFE) disk. Preliminary studies on this experimental setup using the LDF-channel of a "LAKK-M" system demonstrated the detection of the linear portion (0-10 Hz with a maximum signal corresponding to Doppler shift of about 20 kHz) of the LDF-signal from the oscillating frequency of the moving layer. The results suggest the possibility of applying this technique for the calibration of LDF devices.

  16. Application of the laser Doppler velocimeter in aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Yanta, W. J.; Ausherman, D. W.

    1982-01-01

    Applications of the laser doppler velocimeter (LDV) are discussed. Measurements were made of the flowfield around a tangent-ogive model in a low turbulent, incompressible flow at an incidence of 45 deg. The free-stream velocity was 80 ft per second. The flowfield velocities in several cross-flow planes were measured with a 2-D, two-color LDC operated in a backscatter mode. Measurements were concentrated in the secondary separation region. A typical survey is given. The survey was taken at a model location where the maximum side force occurs. The overall character of the leeward flowfield with the influence of the two body vorticles are shown. Measurements of the velocity and density flowfields in the shock-layer region of a reentry-vehicle indented nose configuration were carried out at Mach 5. The velocity flowfield was measured with a 2-color, 2-D, forward-scatter LDV system. Because of the need to minimize particle lag in the shock-layer region, polystyrene particles with a mean diameter of 0.312 microns were used for the scattering particles. The model diameter was 6 inches.

  17. Arterial compliance measurement using a noninvasive laser Doppler measurement system

    NASA Astrophysics Data System (ADS)

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.

    2000-11-01

    The aim of this study was to study the elasticity of the arterial wall using a non-invasive laser Doppler measurement system. The elasticity of the arterial wall is described by its compliance factor, which can be determined when both blood pressure and the radial velocity of the arterial wall are known. To measure radical velocity we used a self- mixing interferometer. The compliance factors were measured from six healthy volunteers, whose ages were varied from 21 to 32. Although a single volunteer's compliance factor is presented as an example, this paper treated the volunteers as a group. First, the elastic modulus, which is inversely proportional to the compliance factor, was determined. Then, an exponential curve was fitted into the measured data and a characteristic equation for the elastic modulus of the arterial wall was determined. The elastic modulus was calculated at different pressures and the results were compared to the static incremental modulus of a dog's femoral artery. The results indicate that there is a correlation between human elastic and canine static incremental modulus for blood pressures varying from 60 to 110 mmHg.

  18. Particle sizing experiments with the laser Doppler velocimeter: Final report

    SciTech Connect

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  19. Detrended fluctuation analysis of laser Doppler flowmetry time series.

    PubMed

    Esen, Ferhan; Aydin, Gülsün Sönmez; Esen, Hamza

    2009-12-01

    Detrended fluctuation analysis (DFA) of laser Doppler flow (LDF) time series appears to yield improved prognostic power in microvascular dysfunction, through calculation of the scaling exponent, alpha. In the present study the long lasting strenuous activity-induced change in microvascular function was evaluated by DFA in basketball players compared with sedentary control. Forearm skin blood flow was measured at rest and during local heating. Three scaling exponents, the slopes of the three regression lines, were identified corresponding to cardiac, cardio-respiratory and local factors. Local scaling exponent was always approximately one, alpha=1.01+/-0.15, in the control group and did not change with local heating. However, we found a broken line with two scaling exponents (alpha(1)=1.06+/-0.01 and alpha(2)=0.75+/-0.01) in basketball players. The broken line became a single line having one scaling exponent (alpha(T)=0.94+/-0.01) with local heating. The scaling exponents, alpha(2) and alpha(T), smaller than 1 indicate reduced long-range correlation in blood flow due to a loss of integration in local mechanisms and suggest endothelial dysfunction as the most likely candidate. Evaluation of microvascular function from a baseline LDF signal at rest is the superiority of DFA to other methods, spectral or not, that use the amplitude changes of evoked relative signal. PMID:19660479

  20. Fractal dimensions of laser doppler flowmetry time series.

    PubMed

    Carolan-Rees, G; Tweddel, A C; Naka, K K; Griffith, T M

    2002-01-01

    Laser Doppler flowmetry (LDF) provides a non-invasive method of assessing cutaneous perfusion. As the microvasculature under the probe is not defined the measured flux cannot be given absolute units, but the technique has nevertheless proved valuable for assessing relative changes in perfusion in response to physiological stress. LDF signals normally show pronounced temporal variability, both as a consequence of the pulsatile nature of blood flow and local changes in dynamic vasomotor activity. The aim of the present study was to investigate the use of methods of nonlinear analysis in characterizing temporal fluctuations in LDF signals. Data were collected under standardised conditions from the forearm of 16 normal subjects at rest, during exercise and on recovery. Surrogate data was then generated from the original time series by phase randomization. Dispersional analysis demonstrated that the LDF data was fractal with two distinct scaling regions, thus allowing the calculation of a fractal dimension which decreased significantly from 1.23 +/- 0.09 to 1.04 +/- 0.02 during exercise. By contrast, dispersional analysis of the surrogate data showed no scaling region. PMID:11891142

  1. Vocal fold vibration measurements using laser Doppler vibrometry.

    PubMed

    Chan, Alfred; Mongeau, Luc; Kost, Karen

    2013-03-01

    The objective of this study was to measure the velocity of the superior surface of human vocal folds during phonation using laser Doppler vibrometry (LDV). A custom-made endoscopic laser beam deflection unit was designed and fabricated. An in vivo clinical experimental procedure was developed to simultaneously collect LDV velocity and video from videolaryngoscopy. The velocity along the direction of the laser beam, i.e., the inferior-superior direction, was captured. The velocity was synchronous with electroglottograph and sound level meter data. The vibration energy of the vocal folds was determined to be significant up to a frequency of 3 kHz. Three characteristic vibrational waveforms were identified which may indicate bifurcations between vibrational modes of the mucosal wave. No relationship was found between the velocity amplitude and phonation frequency or sound pressure level. A correlation was found between the peak-to-peak displacement amplitude and phonation frequency. A sparse map of the velocity amplitudes on the vocal fold surface was obtained. PMID:23464036

  2. Self-mixing dual-frequency laser Doppler velocimeter.

    PubMed

    Cheng, Chih-Hao; Lin, Lyu-Chih; Lin, Fan-Yi

    2014-02-10

    A self-mixing (SM) dual-frequency (DF) laser Doppler velocimeter (LDV) (SM DF-LDV) is proposed and studied, which integrates the advantages of both the SM-LDV and the DF-LDV. An optically injected semiconductor laser operated in a dual-frequency period-one (P1) dynamical state is used as the light source. By probing the target with the light-carried microwave generated from the beat of the two optical frequency components, the spectral broadening in the Doppler signal due to the speckle noise can be significantly reduced. Together with an SM configuration, the SM DF-LDV has the advantages of direction discriminability, self-alignment, high sensitivity, and compact setup. In this study, speckle noise reduction and direction discriminability with an SM DF-LDV are demonstrated. The signal-to-noise ratios (SNRs) at different feedback powers are investigated. Benefiting from the high sensitivity of the SM configuration, an SNR of 23 dB is achieved without employing an avalanched photodetector or photomultiplier tube. The velocity resolution and the SNR under different speckle noise conditions are studied. Average velocity resolution of 0.42 mm/s and SNR of 22.1 dB are achieved when a piece of paper is rotating at a transverse velocity of 5 m/s. Compared with a conventional single-frequency LDV (SF-LDV), the SM DF-LDV shows improvements of 20-fold in the velocity resolution and 8 dB in the SNR. PMID:24663651

  3. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  4. Spatial filtering and proper orthogonal decomposition of scanning laser Doppler vibrometry data for the nondestructive evaluation of frescoes

    NASA Astrophysics Data System (ADS)

    Prazenica, Richard J.; Kurdila, Andrew J.; Vignola, Joseph F.

    2007-07-01

    Recently, scanning laser Doppler vibrometry experiments have been conducted in order to identify structural faults in frescoes at the US Capitol. In these experiments, the artwork is subjected to force excitations over a range of frequencies and a laser vibrometer is used to measure the velocity response of the structure over an array of spatial locations. At each frequency, a two-dimensional spatial image of the force-velocity transfer function is obtained. Spatial locations that consistently exhibit large responses are indicative of potential regions of delamination. In this paper the use of proper orthogonal decomposition, also known as principle component analysis, to identify coherent features in the structural response and obtain a succinct representation of the data is described. It is shown that, for the fresco studied in this paper, the response can be characterized in terms of only a few proper orthogonal decomposition modes. Unfortunately, these modes are corrupted by spatially varying noise. This noise is a result of surface irregularities that affect the direction in which the incident laser beam is reflected, which in turn corrupts the measured response at those locations. Therefore, the use of spatial filtering techniques is also explored for removing this "speckle noise" from the measured force-velocity transfer functions prior to performing the proper orthogonal decomposition analysis. Wavelets are particularly well suited for this application because they decompose images into functions that are localized in the spatial and frequency domains. In this paper, several wavelet bases with differing properties are used to filter the scanning laser Doppler vibrometry images. In addition, wavenumber filters, which essentially act as low-pass filters, are also employed. While the results do not definitively show which filtering technique is most effective for this application, it is clear that both wavelet processing and wavenumber filtering can reduce

  5. Single fiber laser-Doppler flowmetry--dependence on wavelength and tip optics

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Larsson, Sven-Erik; Oberg, P. Ake

    1998-07-01

    Single fiber, laser-Doppler flowmetry can be used for blood flow measurement in deeply located tissue structures by the insertion of optical fibers into the tissue. The geometry of the monitored volume has been estimated at two different wavelengths and when using two types of fiber tips, one of which has been modified with a lens formed at the fiber end surface. Physical models as well as intramuscular measurements have been used in the experiments. The scattering image was studied in latex solutions of three different scatterer concentrations. The wavelengths 632.8 and 750 nm were used. At higher concentrations of scatterers, the near infrared (NIR) wavelength gave a larger scattering area. At the lower concentration, the difference between the areas was smaller or nonexistent. The NIR wavelength also showed an increased monitoring depth than that of the He-Ne laser in an experimental model study. The properties of the tip optics were evaluated in a flow- through model where the distance between the fiber tips and the flow channel was varied. The flat tip fiber has a sensitivity maximum close to its end surface, whereas the modified fiber (`pear' tip) showed a sensitivity maximum 1.5 mm from the end surface. This property may decrease the influence caused by the insertion trauma in intramuscular measurements.

  6. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid

    SciTech Connect

    Nishida, Shuhei; Kobayashi, Dai; Sakurada, Takeo; Nakazawa, Tomonori; Hoshi, Yasuo; Kawakatsu, Hideki

    2008-12-15

    The authors present an optically based method combining photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid. The frequency spectrum of a silicon cantilever measured in water over frequencies ranging up to 10 MHz shows that the method allows us to excite and detect higher modes, from fundamental to fifth flexural, without enhancing spurious resonances. By reducing the tip oscillation amplitude using higher modes, the average tip-sample force gradient due to chemical bonds is effectively increased to achieve high-spatial-resolution imaging in liquid. The method's performance is demonstrated by atomic resolution imaging of a mica surface in water obtained using the second flexural mode with a small tip amplitude of 99 pm; individual atoms on the surface with small height differences of up to 60 pm are clearly resolved.

  7. In operando study of the high voltage spinel cathode material LiNi(0.5)Mn(1.5)O4 using two dimensional full-field spectroscopic imaging of Ni and Mn.

    PubMed

    Bauer, Sondes; de Biasi, Lea; Glatthaar, Sven; Toukam, Leonel; Gesswein, Holger; Baumbach, Tilo

    2015-07-01

    LiNi0.5Mn1.5O4 spinel cathode was studied during the first discharge cycle using combined full field Transmission X-ray Microscopy (TXM) and X-ray Absorption Near Edge Structure Spectroscopy (XANES) techniques to follow the chemical phase transformation as well as the microstructural evolution of cathode materials upon operation within an electrochemical cell. The spatial distribution and electrochemical process of the spinel material with spherical granules of 30 μm and 3 μm crystallite size was investigated. The spectroscopic imaging of the cathode within field of view of 40 × 32 μm(2) and spatial resolution of 40 nm has revealed an increase of the LiNi0.5Mn1.5O4 granule size during lithiation providing an insight into the effect of the particle size and morphology on the electrochemical process. The chemical elemental distribution and the content of the different oxidation states of the two absorbing elements (Ni and Mn) have been determined in operando from the XANES imaging. A gradual increase in the content of the oxidation state Mn(3+) from 8% up to 64% has been recorded during the discharge from 5 V to 2.7 V. The study of the local oxidation reduction behavior of Mn(3+) reveals a reversibility aspect in the local electrochemical reaction of Mn(4+) toward Mn(3+) in areas located in the center of the aggregate as well as in areas closed to the electrolyte. During the discharge process, a mixture of Mn(3+) and Mn(4+) has been detected while only single electron valence states have been found in the case of Ni. Probing the chemical changes during the discharge using two-dimensional XANES reveals spatial differences in the electrochemical activities of the two absorbing elements Ni and Mn. PMID:26051380

  8. Laser Resurfacing: Full Field and Fractional.

    PubMed

    Pozner, Jason N; DiBernardo, Barry E

    2016-07-01

    Laser resurfacing is a very popular procedure worldwide. Full field and fractional lasers are used in many aesthetic practices. There have been significant advances in laser resurfacing in the past few years, which make patient treatments more efficacious and with less downtime. Erbium and carbon dioxide and ablative, nonablative, and hybrid fractional lasers are all extremely effective and popular tools that have a place in plastic surgery and dermatology offices. PMID:27363765

  9. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  10. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 1

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Modification, construction, test and operation of an advanced airborne carbon dioxide laser Doppler system for detecting clear air turbulence are described. The second generation CAT program and those auxiliary activities required to support and verify such a first-of-a-kind system are detailed: aircraft interface; ground and flight verification tests; data analysis; and laboratory examinations.

  11. The flaws of laser Doppler in negative-pressure wound therapy research.

    PubMed

    Kairinos, Nicolas; McKune, Andrew; Solomons, Michael; Hudson, Donald A; Kahn, Delawir

    2014-01-01

    Recent studies, using modalities other than laser Doppler, have indicated that perfusion during negative-pressure wound therapy (NPWT) is reduced, contrary to world literature. The aim of the present study was to evaluate whether the measuring technique of the laser Doppler could be influenced by the compressive nature of NPWT dressings and whether this could explain the conflicting findings. A hypothesis that it may be possible for laser Doppler to record similar readings to those obtained during NPWT by merely compressing tissues manually was tested on 12 NPWT dressings, with each undergoing an alternating series of manual compressive forces and NPWT (-125 mmHg). During the periods of NPWT (n = 12), the mean perfusion recording increased in five experiments, reduced in six, and remained unchanged in one. During the period when manual pressure was applied (n = 12), there was a mean increase in perfusion in six experiments and a reduction in six. The type of change in perfusion (increase or decrease) was the same for both NPWT and manual pressure in 10 of the 12 experiments. In conclusion, laser Doppler can incorrectly record increased perfusion when tissues are compressed, implying that it is flawed in the field of NPWT research as tissues are always compressed to some degree by the NPWT dressing. PMID:24844341

  12. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.

    PubMed

    Taylor, Joshua O; Good, Bryan C; Paterno, Anthony V; Hariharan, Prasanna; Deutsch, Steven; Malinauskas, Richard A; Manning, Keefe B

    2016-09-01

    Transitional and turbulent flow through a simplified medical device model is analyzed as part of the FDA's Critical Path Initiative, designed to improve the process of bringing medical products to market. Computational predictions are often used in the development of devices and reliable in vitro data is needed to validate computational results, particularly estimations of the Reynolds stresses that could play a role in damaging blood elements. The high spatial resolution of laser Doppler velocimetry (LDV) is used to collect two component velocity data within the FDA benchmark nozzle model. Two flow conditions are used to produce flow encompassing laminar, transitional, and turbulent regimes, and viscous stresses, principal Reynolds stresses, and turbulence intensities are calculated from the measured LDV velocities. Axial velocities and viscous stresses are compared to data from a prior inter-laboratory study conducted with particle image velocimetry. Large velocity gradients are observed near the wall in the nozzle throat and in the jet shear layer located in the expansion downstream of the throat, with axial velocity changing as much as 4.5 m/s over 200 μm. Additionally, maximum Reynolds shear stresses of 1000-2000 Pa are calculated in the high shear regions, which are an order of magnitude higher than the peak viscous shear stresses (<100 Pa). It is important to consider the effects of both viscous and turbulent stresses when simulating flow through medical devices. Reynolds stresses above commonly accepted hemolysis thresholds are measured in the nozzle model, indicating that hemolysis may occur under certain flow conditions. As such, the presented turbulence quantities from LDV, which are also available for download at https://fdacfd.nci.nih.gov/ , provide an ideal validation test for computational simulations that seek to characterize the flow field and to predict hemolysis within the FDA nozzle geometry. PMID:27350137

  13. Functionalization and characterization of persistent luminescence nanoparticles by dynamic light scattering, laser Doppler and capillary electrophoresis.

    PubMed

    Ramírez-García, Gonzalo; d'Orlyé, Fanny; Gutiérrez-Granados, Silvia; Martínez-Alfaro, Minerva; Mignet, Nathalie; Richard, Cyrille; Varenne, Anne

    2015-12-01

    Zinc gallate nanoparticles doped with chromium (III) (ZnGa1.995O4:Cr0.005) are innovative persistent luminescence materials with particular optical properties allowing their use for in vivo imaging. They can be excited in the tissue transparency window by visible photons and emit light for hours after the end of the excitation. This allows to observe the probe without any time constraints and without autofluorescence signals produced by biological tissues. Modification of the surface of these nanoparticles is essential to be colloidally stable not only for cell targeting applications but also for proper distribution in living organisms. The use of different methods for controlling and characterizing the functionalization process is imperative to better understand the subsequent interactions with biological elements. This work explores for the first time the characterization and optimization of a classic functionalization sequence, starting with hydroxyl groups (ZGO-OH) at the nanoparticle surface, followed by an aminosilane-functionalization intermediate stage (ZGO-NH2) before PEGylation (ZGO-PEG). Dynamic light scattering and laser doppler electrophoresis were used in combination with capillary electrophoresis to characterize the nanoparticle functionalization processes and control their colloidal and chemical stability. The hydrodynamic diameter, zeta potential, electrophoretic mobility, stability over time and aggregation state of persistent luminescence nanoparticles under physiological-based solution conditions have been studied for each functional state. Additionally, a new protocol to improve ZGO-NH2 stability based on a thermal treatment to complete covalent binding of (3-aminopropyl) triethoxysilane onto the particle surface has been optimized. This thorough control increases our knowledge on these nanoparticles for subsequent toxicological studies and ultimately medical application. PMID:26409685

  14. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  15. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 2: Scanner operations manual

    NASA Technical Reports Server (NTRS)

    Edwards, B. B.; Coffey, E. W.

    1974-01-01

    The theory and operation of the scanner portion of the laser Doppler system for detecting and monitoring aircraft trailing vortices in an airport environment are discussed. Schematics, wiring diagrams, component values, and operation and checkout procedures are included.

  16. Multiple delay lines full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Dainty, Christopher; Podoleanu, Adrian G.

    2008-09-01

    Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique using a 2D detector array. This technique avoids mechanical scanning in imaging optics. Therefore, it can speed up the imaging process and enhance the imaging quality. We present a FF-OCT instrument to be used in conjunction with the principle of multiple delays (MD) OCT to evaluate the topography of curved objects in a single-shot imaging. We evaluate the optimum combination of the MD principle with the FF-OCT method and measure the radius of a metal ball with this method. We managed to obtain 2n-1 contour lines using an MDE with n delays in a single en-face OCT image to evaluate the curvature of the object surface.

  17. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  18. Comparative laser Doppler measurement on tooth pulp blood flow at 632 and 750 nm

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Pettersson, Hans; Rohman, Hakan

    1993-12-01

    Laser-Doppler flowmetry has been used for the assessment of pulp blood flow in health and disease. General purpose laser Doppler instruments working at the Helium-Neon (632,8 nm) as well as IR (750 - 810 nm) wavelengths have been used in this application. Specially designed handheld equipment has also been used to assess blood supply to the tooth. A considerable difference in the measurement results have been noticed when using different wavelengths and probe designs. In this study some of the problems related to the use of various wavelengths and probe designs are studied in human teeth and in a physical model of a tooth. Our results support the early observation that measurements at different wavelengths and with different probe designs cannot be directly compared.

  19. Model studies of blood flow in basilar artery with 3D laser Doppler anemometer

    NASA Astrophysics Data System (ADS)

    Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.

    2015-03-01

    It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.

  20. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  1. An automated method for analysis and visualization of laser Doppler velocimetry data.

    PubMed

    Healy, T M; Ellis, J T; Fontaine, A A; Jarrett, C A; Yoganathan, A P

    1997-01-01

    The analysis and visualization of large data sets collected by use of laser Doppler velocimetry has presented a challenge to researchers using this technique to investigate complex flow fields. This paper describes an automated procedure for analysis and animation of two- and three-dimensional laser Doppler velocimetry data. The procedure consists of a suite of FORTRAN programs for calculating phase window averages of velocity and the Reynolds stress tensor, calculating the principal normal stresses, maximum shear stresses, and preparation of data files for input into Plot-3D compatible data visualization software. An example application of these techniques to data collected from an in vitro investigation of the retrograde flow field associated with a bileaflet mechanical heart valve is also presented. PMID:9084838

  2. Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe.

    PubMed

    Abdollahi, Zahra; Phillips, Justin P; Kyriacou, Panayiotis A

    2013-01-01

    This study presents evaluation of a system combining laser Doppler flowmetry and photoplethysmography (PPG) in a single probe for the simultaneous measurement of perfusion and blood flow in the finger. A cuff sphygmomanometer was used to partially occlude the arteries supplying the hand to investigate the effect of low pressure on photoplethysmographic and laser Doppler signals and also on calculated arterial blood oxygen saturation values (SpO2). Red and infrared PPG and Doppler signals were recorded from six healthy volunteers at various pressures. Good quality signals were recorded in all subjects at low cuff pressures; however both PPG and Doppler signals showed a gradual decrease in amplitude at higher pressures. SpO2 values calculated from the PPG signals showed higher deviation from measurements made on the contralateral hand using a commercial pulse oximeter at higher cuff pressures. PMID:24110040

  3. Cutaneous microcirculation and blood rheology following cardiopulmonary bypass. Laser Doppler flowmetric and blood cell rheologic studies.

    PubMed

    al-Khaja, N; Belboul, A; Bergman, P; Roberts, D; William-Olsson, G

    1988-01-01

    In 23 patients undergoing coronary artery bypass grafting, measurements of cutaneous blood flow were made with laser doppler flowmetry. Simultaneously blood was sampled for measurement of red cell filtration rate (RFR) and plasma-white cell filtration rate (P-WFR). The cutaneous blood flow showed significant overall reduction postoperatively. When the saphenous vein or internal mammary artery was used as bypass graft, the reduction in skin blood flow at the sites from which the vessels were taken was significantly greater than in contralateral, undisturbed sites. RFR and P-WFR were also significantly reduced postoperatively, and these changes showed significant concomitance with the fall in laser doppler flow (LDF%). On postoperative day 6 there was some improvement in LDF% and RFR but further slight deterioration in P-WFR. The study indicated that surgical trauma locally reduces cutaneous blood flow and that trauma to blood cells following cardiopulmonary bypass can contribute to this reduction. PMID:2970114

  4. Laser-Doppler flowmetry--a non-invasive and continuous method for blood flow evaluation in microvascular studies.

    PubMed

    Oberg, P A; Tenland, T; Nilsson, G E

    1984-01-01

    Skin viability has during the last decades been studied by a number of different techniques. Some of these are briefly presented in this paper. One method, based on the laser-Doppler principle, makes possible continuous and noninvasive measurement of blood flow in the outermost layer (1 mm) of the skin. The basic physical principles and the properties of this flowmeter are presented. Some clinical and research applications of laser-Doppler flowmetry in a number of medical disciplines are discussed. PMID:6236674

  5. Pulp blood flow assessment in human teeth by laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Pettersson, Hans; Oberg, P. Ake

    1991-05-01

    A laser Doppler instrument has been designed for blood flow measurements in the human pulp. By using infrared laser light from a laser diode the penetration into the tooth is considerably improved in comparison with earlier He-Ne measurements. A hand-held, pen-shaped probe facilitates the clinical use of the instrument. Restricted blood flow conditions in trauma patients, as well as the heart-rate synchronous pulsating nature of pulp blood in normal subjects, have been investigated.

  6. Directional acoustic measurements by laser Doppler velocimeters. [for jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise.

  7. Laser Doppler flowmetry: an aid in differential diagnosis of apical radiolucencies.

    PubMed

    Chandler, N P; Love, R M; Sundqvist, G

    1999-05-01

    The case of a patient having 2 teeth with associated apical radiolucencies that responded to conventional pulp tests is presented. A decision was made to reexamine the patient at intervals rather than perform root canal treatment. During a recall visit, use of an available laser Doppler flowmeter allowed detection of blood flow within the affected teeth. A diagnosis of periapical cemental dysplasia (cementoma) was made. PMID:10348523

  8. Laser Doppler, velocimeter system for turbine stator cascade studies and analysis of statistical biasing errors

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.

    1977-01-01

    A laser Doppler velocimeter (LDV) built for use in the Lewis Research Center's turbine stator cascade facilities is described. The signal processing and self contained data processing are based on a computing counter. A procedure is given for mode matching the laser to the probe volume. An analysis is presented of biasing errors that were observed in turbulent flow when the mean flow was not normal to the fringes.

  9. Diagnosis of arterial occlusive disease of the lower extremities by laser Doppler flowmetry.

    PubMed

    Van den Brande, P; Welch, W

    1988-01-01

    Laser Doppler Flowmetry offers the possibility of non-invasive and continuous recording of tissue blood flow. Skin blood flux in resting state and during postocclusive reactive hyperemia was measured at the pulpa of the toe in 21 normal lower limbs and in 58 limbs with arterial occlusive disease. Proper assessment of postischemic flux- and time- parameters (beginning of reactive hyperemia, peak flux, time of peak flux and duration of hyperemic flux) permits accurate separation of healthy and diseased limbs. PMID:3058833

  10. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    NASA Astrophysics Data System (ADS)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  11. Laser Doppler vibrometry experiment on a piezo-driven slot synthetic jet in water

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Vít, Tomáš; Trávníček, Zdeněk

    2015-05-01

    The present study deals with a slot synthetic jet (SJ) issuing from an actuator into quiescent surroundings and driven by a piezoceramic transducer. The actuator slot width was 0.36 mm, with a drive frequency proposed near the theoretical natural frequency of the actuator. The working fluid was water at room temperature. The present experiments used flow visualization (a laser-induced fluorescence technique) and laser Doppler vibrometry methods. Flow visualization was used to identify SJ formation, to demonstrate its function, and to estimate SJ velocity. Laser Doppler vibrometry was used to quantify diaphragm displacement and refine operating parameters. Phase averaging yielded a spatial and temporal diaphragm deflection during the actuation period. Taking incompressibility and continuity into consideration, the velocity in the actuator slot and the Reynolds number of the SJ were evaluated as 0.21 m/s and 157, respectively. The present results confirmed a SJ actuator function at the resonance frequency of approximately 46 Hz, which corresponds closely with the theoretical evaluation. The laser Doppler vibrometry results corresponded closely with an estimation of SJ velocity by the present flow visualization.

  12. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    NASA Astrophysics Data System (ADS)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  13. Full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ford, H. D.; Tatam, R. P.

    2005-08-01

    To eliminate mechanical scanning in the probe head of an endoscopic OCT system, we propose the use of an imaging fibre bundle for probe beam delivery. Each fibre in the bundle addresses a Fizeau interferometer formed between the bundle end and the sample, allowing acquisition of information across a plane with a single measurement. Depth scanning components are now contained within a processing interferometer external to a completely passive endoscope probe. The technique has been evaluated in our laboratory for non-biological samples, including glass/air and mirrored/air interfaces. Images resulting from these experiments are presented. The potential of the system is assessed, with reference to SNR performance and acquisition speed.

  14. Effect of Stress and Saturation on Shear Wave Anisotropy: Laboratory Observations Using Laser Doppler Interferometry

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.

    2015-12-01

    Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in

  15. Large Field, High Resolution Full-Field Optical Coherence Tomography

    PubMed Central

    Assayag, Osnath; Antoine, Martine; Sigal-Zafrani, Brigitte; Riben, Michael; Harms, Fabrice; Burcheri, Adriano; Grieve, Kate; Dalimier, Eugénie; Le Conte de Poly, Bertrand; Boccara, Claude

    2014-01-01

    We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist’s management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 µm3 resolution and 200 µm imaging depth, and a 2.25 cm2 specimen is scanned in about 7 minutes. 75 breast specimens were imaged from 22 patients (21 women, 1 man) with a mean age of 58 (range: 25-83). Pathologists blind diagnosed normal/benign or malignant tissue based on FF-OCT images alone, diagnosis from histopathology followed for comparison. The contrast in the FF-OCT images is generated by intrinsic tissue scattering properties, meaning that no tissue staining or preparation is required. Major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts were characterized. Subsequently, features resulting from pathological modification were characterized and a diagnosis decision tree was developed. Using FF-OCT images, two breast pathologists were able to distinguish normal/benign tissue from lesional with a sensitivity of 94% and 90%, and specificity of 75% and 79% respectively. PMID:24000981

  16. Full-field interferometry using infinity corrected optics

    NASA Astrophysics Data System (ADS)

    Charrett, T. O. H.; Tatam, R. P.

    2016-01-01

    In this paper the construction of full-field (imaging) interferometers using infinity corrected optics commonly used in microscopy is discussed, with an emphasis on self-mixing interferometry configurations where the imaged light field is mixed with itself rather than a reference wave. Such configurations are used in speckle shearing interferometry, flow visualisation and quantitative flow measurement. The critical considerations for constructing path-length imbalanced full-field interferometers for these and similar applications are discussed, expressions are derived for key calculations and interferograms from example interferometers are presented. These include the concept of balancing the infinity-spaces of the two arms via the use of a glass block to minimise the optical path difference variation across the interferogram and ensure adequate sampling of the fringes on the detector. Further, the use of tilted glass blocks in single-pass and double-pass arrangements is detailed for the generation and control of spatial carrier fringes without extensive realignment of the interferometer, and for phase shifting.

  17. Full field gas phase velocity measurements in microgravity

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  18. Normalized Noise Power Spectrum of Full Field Digital Mammography System

    SciTech Connect

    Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan

    2010-01-05

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.

  19. Laser Doppler flowmetry evaluation of gingival recovery response after laser treatment

    NASA Astrophysics Data System (ADS)

    Todea, Carmen; Cânjǎu, Silvana; Dodenciu, Dorin; Miron, Mariana I.; Tudor, Anca; Bǎlǎbuc, Cosmin

    2013-06-01

    This study was performed in order to evaluate in vivo the applicability of Laser Doppler Flowmetry (LDF) in recording the gingival blood flow and to assess the changes of gingival blood flow following gingival reshaping performed with Er:YAG and 980 nm diode lasers. The LDF evaluation was performed on 20 anterior teeth, which underwent reshaping of gingiva, corresponding to 5 female patients (4 anterior teeth/patient), aged between 20 and 35. One part of the mouth was treated with Er:YAG laser (LP, VLP modes, 140 - 250 mJ, 10 - 20 Hz, using cylindrical sapphire tips) and other part with 980 nm diode laser (CW, 4 W, contact mode and saline solution cooling). The gingival blood flow was monitored using a MoorLab laser Doppler equipment (Moor Instruments Ltd., Axminster, UK) with a straight optical probe, MP3b, 10 mm. The data were processed using statistical analysis software SPSS v16.0.1. The investigation showed an evident decrease in perfusion for both areas in comparison with the baseline values 24 hours after treatment. The microvascular blood flow increased significantly after 7 days in both areas but mostly in diode area (p<0.001). After 14 days for the Er:YAG area the blood perfusion returned to the initial value. The results in diode area remained at a high level after 14 days. Both lasers proved efficiency in the surgical treatment of gingival tissue. Moreover, Laser Doppler Flowmetry is adequate for recording changes in gingival blood flow following periodontal surgery.

  20. The remote measurement of tornado-like flows employing a scanning laser Doppler system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.

    1977-01-01

    The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.

  1. Modal analysis of rotating plate using tracking laser Doppler vibrometer: algorithm modification

    NASA Astrophysics Data System (ADS)

    Khalil, Hossam; Kim, Dongkyu; Nam, Joonsik; Park, Kyihwan

    2015-07-01

    A modified algorithm for tracking laser Doppler vibrometer (TLDV) is introduced to measure the vibration of rotating objects. The proposed algorithm unlike the old algorithm for TLDV can be used when the speed of the object to be tracked varies continuously or alternating in a small range. The proposed algorithm is to use encoder only as a position sensor. The position from the encoder is used to calculate the driving signals to the galvanometers. To verify the proposed method, experimental modal analysis of the circular plate in stationary and rotating cases are made.

  2. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L.; Inomata, Hiroshi

    2007-11-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673K and 40MPa with an uncertainty of 0.009g /cm3.

  3. Optical design for laser Doppler angular encoder with sub-nanoradian sensitivity

    SciTech Connect

    Shu, D.; Alp, E.E.; Barraza, J.; Kuzay, T.M.; Mooney, T.

    1997-09-01

    A novel laser angular encoder system has been developed based on the principles of radar, the Doppler effect, optical heterodyning, and self aligning multiple reflection optics. Using this novel three dimensional multiple reflection optical path, a 10 to 20 times better resolution has been reached compared to commercially available laser Doppler displacement meters or laser interferometer systems. With the new angular encoder, sub-nanoradian resolution has been attained in the 8 degree measuring range in a compact setup about 60 mm (H) x 150 mm (W) x 370 mm (L) in size for high energy resolution applications at the Advanced Photon Source undulator beamline 3-ID.

  4. Influence of laser coherence on reference-matched laser Doppler velocimetry.

    PubMed

    Beuth, Thorsten; Fox, Maik; Stork, Wilhelm

    2016-03-10

    The probe length is investigated under the influence of the coherence length of Gaussian and Lorentzian spectra for the case that the focal point and the point of highest interference are matched in a strongly focused laser Doppler velocimetry setup (LDV). Isosurfaces of a -3  dB drop of the intensity maximum are estimated and suggested as an alternative, comprehensible way to define probe volumes. In the end, the equations are applied for an exemplary lidar setup to show the reduction of requirements for the coherence length of the laser source in comparison to unmatched cases. PMID:26974809

  5. Incident beam polarization for laser Doppler velocimetry employing a sapphire cylindrical window

    NASA Technical Reports Server (NTRS)

    Lock, J. A.; Schock, H. J.

    1985-01-01

    For laser Doppler velocimetry studies employing sapphire windows as optical access ports, the birefringency of sapphire produces an extra beam intersection volume which serves to effectively smear the acquired velocity flow field data. It is shown that for a cylindrical window geometry, the extra beam intersection volume may be eliminated with minimal decrease in the fringe visibility of the remaining intersection volume by suitably orienting the polarizations of the initial laser beams. For horizontally incident beams, these polarizations were measured at three intersection locations within the cylinder. It was found that the measured polarization angles agreed with the theoretical predictions.

  6. Laser Doppler microscopy of blood flows in fish embryos at different stages of ontogenesis

    NASA Astrophysics Data System (ADS)

    Savchenko, Natalia B.; Priezzhev, Alexander V.; Levenko, Borislav A.

    1995-02-01

    Laser Doppler microscopy is an efficient method of in vivo measurements of flow velocities in different biological objects. It is based on the registration of frequency shifts in light quasielastically scattered from particles moving in the flows. To study the embryonic development of the cardiac-vascular system in embryos of warm water fishes, embryos of Macropodus opercularis have been used. Doppler spectra from pulsatile blood flows in selected vessels and their changes in the process of ontogenesis have been registered. The recording of the successive spectra and their computer processing yield the varying dynamics of blood flows. Typical age dependencies of velocity patterns in the embryos are presented.

  7. The application of laser Doppler velocimetry to trailing vortex definition and alleviation

    NASA Technical Reports Server (NTRS)

    Orloff, K. L.; Grant, G. R.

    1973-01-01

    A laser Doppler velocimeter whose focal volume can be rapidly traversed through a flowfield has been used to overcome the problem introduced by excursions of the central vortex filament within a wind tunnel test section. The basic concepts of operation of the instrument are reviewed and data are presented which accurately define the trailing vortex from a square-tipped rectangular wing. Measured axial and tangential velocity distributions are given, both with and without a vortex dissipator panel installed at the wing tip. From the experimental data, circulation and vorticity distributions are obtained and the effect of turbulence injection into the vortex structure is discussed.

  8. Adaptive Model-Based Mine Detection/Localization using Noisy Laser Doppler Vibration Measurements

    SciTech Connect

    Sullivan, E J; Xiang, N; Candy, J V

    2009-04-06

    The acoustic detection of buried mines is hampered by the fact that at the frequencies required for obtaining useful penetration, the energy is quickly absorbed by the ground. A recent approach which avoids this problem, is to excite the ground with a high-level low frequency sound, which excites low frequency resonances in the mine. These resonances cause a low-level vibration on the surface which can be detected by a Laser Doppler Vibrometer. This paper presents a method of quickly and efficiently detecting these vibrations by sensing a change in the statistics of the signal when the mine is present. Results based on real data are shown.

  9. Use of a laser doppler vibrometer for high frequency accelerometer characterizations

    SciTech Connect

    Bateman, V.I.; Hansche, B.D.; Solomon, O.M.

    1995-12-31

    A laser doppler vibrometer (LDV) is being used for high frequency characterizations of accelerometers at Sandia National Laboratories (SNL). A LDV with high frequency (up to 1.5 MHz) and high velocity (10 M/s) capability was purchased from a commercial source and has been certified by the Primary Electrical Standards Department at SNL. The method used for this certification and the certification results are presented. Use of the LDV for characterization of accelerometers at high frequencies and of accelerometer sensitivity to cross-axis shocks on a Hopkinson bar apparatus is discussed.

  10. Integrated laser Doppler blood flowmeter designed to enable wafer-level packaging.

    PubMed

    Kimura, Yoshinori; Goma, Masaki; Onoe, Atsushi; Higurashi, Eiji; Sawada, Renshi

    2010-08-01

    The authors propose a new sensor structure for an integrated laser Doppler blood flowmeter that consists of two silicon cavities with a PD and laser diode inside each cavity. A silicon lid formed with a converging microlens completes the package. This structure, which was achieved using micromachining techniques, features reduced optical power loss in the sensor, resulting in its small size and significantly low power consumption. Measurements using a model tissue blood flow system confirmed that the new sensor had high linearity and a wide dynamic range for measuring tissue blood flow. PMID:20199932

  11. Scanning Laser Doppler Vibrometry Application to Artworks: New Acoustic and Mechanical Exciters for Structural Diagnostics

    NASA Astrophysics Data System (ADS)

    Agnani, A.; Esposito, E.

    After first attempts some years ago, the scanning laser Doppler vibrometer has become an effective way of diagnosing different types of artworks; successful applications regard frescoes, icons, mosaics, ceramic artefacts and wood inlays. Also application to historical bridges has been successfully developed and a recently approved European Commission project will see the employment of scanning laser Doppler Vibrometry (SLDV) for the dynamical characterization of ancient buildings. However, a critical issue consists in the adequate excitation of the structure under test. Moreover different types of defects and different kinds of artworks require different types of excitation, so this topic needs a deep consideration. In this work we will present two new types of exciters developed at our Department, namely an acoustic exciter and a mechanical one. Acoustic exciters allow remote non-invasive loading but are limited in the lower frequency range and in the amount of vibrational energy input into the structure. The proposed automatic tapping device based on a commercial impact hammer overcomes these problems. Also another acoustic exciter, a HyperSonic Sound (HSS) source has been evaluated, showing interesting features as regards sound radiation.

  12. Pilot Study of Laser Doppler Measurement of Flow Variability in the Microcirculation of the Palatal Mucosa

    PubMed Central

    Le Bars, Pierre; Niagha, Gaston; Kouadio, Ayepa Alain; Demoersman, Julien; Roy, Elisabeth; Armengol, Valérie; Soueidan, Assem

    2016-01-01

    Background. Histopathological alterations can arise when the denture-supporting mucosa experiences microbial and mechanical stress through the denture base and diagnosis of these diseases usually follows microvascular changes. Microcirculation measurement could allow for detection of such dysfunction and aid in the early diagnosis of palatal mucosa pathologies. Materials and Methods. We tested the sensitivity of laser Doppler for measuring the microcirculation of the palatal mucosa, assessing the median raphe (MR), Schroeder area (SA), and retroincisive papilla (RP). A Doppler PeriFlux 5000 System, containing a laser diode, was used. 54 healthy participants were recruited. We compare the measurements of PU (perfusion unit) using ANOVA test. Results. The numerical values for palatal mucosa blood flow differed significantly among the anatomical areas (p = 0.0167). The mean value of Schroeder area was 92.6 (SD: 38.4) and was significantly higher than the retroincisive papilla (51.9) (SD: 20.2) (p < 0.05), which in turn was higher than that of median raphe (31.9) (SD: 24.2) (p < 0.0001). Conclusion. Schroeder area appeared to have the greatest sensitivity, and vascular flow variability among individuals was also greatest in this region. We suggest that analysis of blood stream modification with laser Doppler of the palatal mucosa can help to detect onset signs of pathological alterations. PMID:27340663

  13. Assesment of gingival microcirculation in anterior teeth using laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Canjau, Silvana; Miron, Mariana I.; Todea, Carmen D.

    2016-03-01

    Introduction: Evaluating the health status of the gingival tissue represents an important objective in the daily practice. Inflammation changes the microcirculatory and micromorphological dynamics of human gingiva. Aim: The purpose of this study was to evaluate the microcirculation in subjects with moderate gingivitis and healthy gingiva by using laser Doppler flowmetry (LDF). Material and Methods: Recordings of the gingival microcirculation (GM) were taken from 20 healthy gingival sites and from 20 sites with moderate gingivitis. The gingival blood flows in the gingivitis group before treatment was significantly different from those in the healthy gingiva group. Signals were recorded with the aid of a laser Doppler MoorLab instrument VMS-LDF2 probe VP3 10 mm S/N 2482. Three consecutive determinations of the GM were registered for each site, as follows: before the initial therapy, at 24 hours after the initial therapy and then, 7 days after the initial therapy. The data were processed using the statistical analysis software SPSS v16.0.1. Results: The results of this preliminary study showed statistically significant differences among the GM values recorded before and after the initial therapy. Conclusions: LDF could be a useful, noninvasive, sensitive, reproducible, and harmless method for measuring gingival blood flow (gingival microcirculation) in humans.

  14. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    PubMed Central

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  15. Using a laser-Doppler flowmetry to measure pulsatile microcirculation on the kidney in rats

    NASA Astrophysics Data System (ADS)

    Jan, Ming-Yie; Chao, Pin-Tsun; Hsu, Tse-Lin; Wang, Yuh-Yin L.; Wang, Wei-Kung

    2001-10-01

    Although Laser Doppler flowmetery (LDF) been extensively used in measurement of microvascular blood flow of different tissues. However, due to some physiological vibrations, fast oscillations of the renal cortical flux (RCF) are hard to be measured. In the study, a commercial 3mW 780nm Laser Doppler flowmetery, with a single fiber and a de-vibration holder, was used to measure the pulsatile RCF in rats. Considering the fast response due to the heart rate of rats, the time constant (TC) was set to 0.05 second and thus the frequency response is up to 20Hz. Furthermore, a calibration standard and a static blood sample were also measured as the references without the pulsatile driving force. In order not to perturb the RCF with tiny momentum, the applying force that the fiber exerted on the renal surface was controlled below 100 dyne. To enhance the signal to noise ratio (SNR), an averaged periodogram was used to estimate the frequency components of the pulsatile microcirculation. It is found that the dominating fast oscillation of RCF is pulsatile and its harmonic components are directly correlated with those of the heartbeat (correlation coefficient =0.999, P<0.001, n=17). The result shows that, in the kidney, the pulsatile RCF is the dominating component of microcirculation oscillation and driven by the fast propagating blood pressure. This technique could be further utilized to analyze the pharmacological effect and hemodynamic parameters on renal function.

  16. Pilot Study of Laser Doppler Measurement of Flow Variability in the Microcirculation of the Palatal Mucosa.

    PubMed

    Le Bars, Pierre; Niagha, Gaston; Kouadio, Ayepa Alain; Demoersman, Julien; Roy, Elisabeth; Armengol, Valérie; Soueidan, Assem

    2016-01-01

    Background. Histopathological alterations can arise when the denture-supporting mucosa experiences microbial and mechanical stress through the denture base and diagnosis of these diseases usually follows microvascular changes. Microcirculation measurement could allow for detection of such dysfunction and aid in the early diagnosis of palatal mucosa pathologies. Materials and Methods. We tested the sensitivity of laser Doppler for measuring the microcirculation of the palatal mucosa, assessing the median raphe (MR), Schroeder area (SA), and retroincisive papilla (RP). A Doppler PeriFlux 5000 System, containing a laser diode, was used. 54 healthy participants were recruited. We compare the measurements of PU (perfusion unit) using ANOVA test. Results. The numerical values for palatal mucosa blood flow differed significantly among the anatomical areas (p = 0.0167). The mean value of Schroeder area was 92.6 (SD: 38.4) and was significantly higher than the retroincisive papilla (51.9) (SD: 20.2) (p < 0.05), which in turn was higher than that of median raphe (31.9) (SD: 24.2) (p < 0.0001). Conclusion. Schroeder area appeared to have the greatest sensitivity, and vascular flow variability among individuals was also greatest in this region. We suggest that analysis of blood stream modification with laser Doppler of the palatal mucosa can help to detect onset signs of pathological alterations. PMID:27340663

  17. Noninvasive and nonocclusive determination of blood pressure using laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Elter, Peter; Stork, Wilhelm; Mueller-Glaser, Klaus-Dieter; Lutter, Norbert O.

    1999-04-01

    This report describes an approach determining blood pressure noninvasively without cuff. Regarding an elastic, fluid-filled tube as a model of an arterial segment, the solution of the Navier Stokes differential equations delivers a relation between the pressure and velocity pulse. There, simulations prove a minimal sensitivity of blood pressure concerning blood density, blood viscosity and damping. Hence, these parameters can be regarded interindividually as constants. Blood pressure is essentially sensitive on the pulse wave velocity, the velocity pulse, the arterial diameter and the reflection coefficient. To perform measurements, a system was built up comprising at least one laser Doppler blood flow sensor, a high performance DSP hardware and a PC. After individual initial Riva Rocci calibration, arterial diameter and reflection coefficient can be determined. Flow and pulse wave velocity and thus blood pressure can be calculated measuring continuously at least one velocity pulse with the laser Doppler flow sensor at a superficial artery like the a. radialis and simultaneously another cardiovascular signal like an ECG or another flow pulse at a different site of the artery. As a first result, high linear correlations between systolic blood pressure and pulse transit time were obtained.

  18. Dynamic characterization of an industrial burner in working conditions by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Paone, Nicola; Revel, Gian M.

    1998-06-01

    The paper presents the application of a laser Doppler vibrometer in order to characterize the dynamic behavior of a burner during normal working conditions. The burner is a 1:4 scale model of a real CH4 industrial burner for gas turbines, with a 120 kW power. A first series of test has been performed in order to determine the resonance frequencies of burner components, in such a way as to correlate the results achieved in working conditions with the characteristics of the structure. In a second series of tests the burner has been tested in exercise, firstly with only a cold jet of air flowing from the nozzle, then in real working conditions. In each test both vibration and acoustic measurements have been performed, in order to find correlation between combustion noise and structural vibrations. The laser Doppler vibrometer has been chosen to carry out measurements on the burner because of its capability of 'remotely' and non-intrusively determine vibrations. In order to assess the accuracy of vibrometer measurements through the flame, a theoretical model previously developed by the authors has been employed, which describes the interactions between laser interferometer and refractive index variations induced by the flame, in such a way as to estimate interfering and modifying inputs of the measurements system.

  19. Eulerian laser Doppler vibrometry: Online blade damage identification on a multi-blade test rotor

    NASA Astrophysics Data System (ADS)

    Oberholster, A. J.; Heyns, P. S.

    2011-01-01

    Laser Doppler vibrometry enables the telemetry-free measurement of online turbomachinery blade vibration. Specifically, the Eulerian or fixed reference frame implementation of laser vibrometry provides a practical solution to the condition monitoring of rotating blades. The short data samples that are characteristic of this measurement approach do however negate the use of traditional frequency domain signal processing techniques. It is therefore necessary to employ techniques such as time domain analysis and non-harmonic Fourier analysis to obtain useful information from the blade vibration signatures. The latter analysis technique allows the calculation of phase angle trends which can be used as indicators of blade health deterioration, as has been shown in previous work for a single-blade rotor. This article presents the results from tests conducted on a five-blade axial-flow test rotor at different rotor speeds and measurement positions. With the aid of artificial neural networks, it is demonstrated that the parameters obtained from non-harmonic Fourier analysis and time domain signal processing on Eulerian laser Doppler vibrometry signals can successfully be used to identify and quantify blade damage from among healthy blades. It is also shown that the natural frequencies of individual blades can be approximated from the Eulerian signatures recorded during rotor run-up and run-down.

  20. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  1. New method of laser doppler flowmetry signal processing in pulp vitality evaluation after teeth cosmetic treatment

    NASA Astrophysics Data System (ADS)

    Todea, Carmen; Sarpe, Amalia; Vitez, Bogdan; Draganescu, Gheorghe

    2014-01-01

    The present study aims to assess the pulp vitality before and after different tooth bleaching procedures, in order to determine the changes in pulpal microcirculation and whether they are reversible or not. Twelve volunteers were included in this study. For each volunteer, the pulpal blood flow of maxillary teeth was assessed prior to treatment using Laser Doppler Flowmetry. The "in office" bleaching technique was used 6 anterior teeth, with two different gels, a conventional one chemically activated (Group I 3teeth) and another one activated using Nd:YAG laser (Group II-3 teeth). The bleaching agents were applied on counterpart teeth and, after obtaining a esthetic results for each tooth, the pulpal blood flow was assessed using Laser Doppler Flowmetry immediately after treatment and then after one day and one week. All data were collected and statistically analyzed. Immediately after treatment, the assessment showed an increase of pulpal blood flow, for both study groups, but higher in Group I as compared to Group II (p<0.005). The subsequent assessments showed a reduction of the pulpal blood flow with non - significant differences between the study groups (p<0.005).The results suggest that the tooth bleaching procedurere presents a safe treatment method, which does not lead to irreversible damage to the dental pulp, when used correctly.

  2. Simultaneous measurement of respiration and cardiac period in preterm infants by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Marchionni, Paolo; Ercoli, Ilaria; Tomasini, Enrico Primo

    2012-06-01

    The paper presents an optical non-contact method for simultaneous measurement of the heart beat and respiration period, based on the assessment of the chest wall movements induced by the pumping action of the heart, and by inspiration/expiration acts of the lungs. The measurement method is applied on 40 patients recovered in a Neonatal Intensive Care Unit (NICU), where the operating conditions are often critical and the contact with the patient's skin needs to be minimized. The method proposed is based on optical recording of the movements of chest wall by means of a laser Doppler vibrometer directly pointed onto the left, frontal part of the thoracic surface. Data measured were compared with reference instrumentation; to reach this goal, the ECG and Laser Doppler Vibrometer (LDV) signals were simultaneously acquired to monitor the heart period (HP), while to measure respiration period (RP) signals from a spirometer and a LDV were collected simultaneously. After LDV signals decomposition, heart and respiration acts were detected and compared in term of beat per minute (bpm). HPs measured by the proposed method showed an uncertainty <6% (respect to ECG), while for RPs data an uncertainty of 3% (respect to spirometer data) was estimated. The proposed method has the intrinsic advantage to be totally without contact and to allow the simultaneous measurement of heart and respiration rate also in critical, clinical environments such as the NICU.

  3. Surface wave measurements using a single continuously scanning laser Doppler vibrometer: application to elastography.

    PubMed

    Salman, Muhammad; Sabra, Karim G

    2013-03-01

    A continuous scanning laser Doppler vibrometry (CSLDV) obtained sweeping a single laser beam along a periodic scan pattern allows measuring surface vibrations at many points simultaneously by demultiplexing the CSLDV signal. This known method fundamentally differs from conventional scanning laser vibrometry techniques in which the laser beam is kept at a fixed point during each measurement and then moved to a new position prior to the next measurement. This article demonstrates the use of a CSLDV for measuring in a non-contact fashion the velocity of low-frequency surface waves (f < 100 Hz) propagating over soft materials, namely here gel surfaces-mimicking human body soft tissues-and skeletal muscles, to develop an affordable and noninvasive elastography modality. The CSLDV vibration measurements obtained with a single laser beam, linearly scanned over the test surface at 200 Hz over lengths up to 6 cm, were validated using an array of three fixed laser Doppler vibrometers distributed along the same scan line. Furthermore, this CSLDV setup was used to measure the increase in surface wave velocity over the biceps brachii muscle which was directly correlated to the actual stiffening of the biceps occurring while a subject was performing voluntary contractions at an increasing level. PMID:23463997

  4. A novel laser doppler linear encoder using multiple-reflection optical design for high-resolution linear actuator.

    SciTech Connect

    Shu, D.

    1998-07-16

    A novel laser Doppler linear encoder system (LDLE) has been developed at the Advanced Photon Source, Argonne National Laboratory. A self-aligning 3-D multiple-reflection optical design was used for the laser Doppler displacement meter (LDDM) to extend the encoder system resolution. The encoder is compact [about 70 mm(H) x 100 mm(W) x 250 mm(L)] and it has sub-Angstrom resolution, 100 mm/sec measuring speed, and 300 mm measuring range. Because the new device affords higher resolution, as compared with commercial laser interferometer systems, and yet cost less, it will have good potential for use in scientific and industrial applications.

  5. Quantification of breast arterial calcification using full field digital mammography

    SciTech Connect

    Molloi, Sabee; Xu Tong; Ducote, Justin; Iribarren, Carlos

    2008-04-15

    Breast arterial calcification is commonly detected on some mammograms. Previous studies indicate that breast arterial calcification is evidence of general atherosclerotic vascular disease and it may be a useful marker of coronary artery disease. It can potentially be a useful tool for assessment of coronary artery disease in women since mammography is widely used as a screening tool for early detection of breast cancer. However, there are currently no available techniques for quantification of calcium mass using mammography. The purpose of this study was to determine whether it is possible to quantify breast arterial calcium mass using standard digital mammography. An anthropomorphic breast phantom along with a vessel calcification phantom was imaged using a full field digital mammography system. Densitometry was used to quantify calcium mass. A calcium calibration measurement was performed at each phantom thickness and beam energy. The known (K) and measured (M) calcium mass on 5 and 9 cm thickness phantoms were related by M=0.964K-0.288 mg (r=0.997 and SEE=0.878 mg) and M=1.004K+0.324 mg (r=0.994 and SEE=1.32 mg), respectively. The results indicate that accurate calcium mass measurements can be made without correction for scatter glare as long as careful calcium calibration is made for each breast thickness. The results also indicate that composition variations and differences of approximately 1 cm between calibration phantom and breast thickness introduce only minimal error in calcium measurement. The uncertainty in magnification is expected to cause up to 5% and 15% error in calcium mass for 5 and 9 cm breast thicknesses, respectively. In conclusion, a densitometry technique for quantification of breast arterial calcium mass was validated using standard full field digital mammography. The results demonstrated the feasibility and potential utility of the densitometry technique for accurate quantification of breast arterial calcium mass using standard digital

  6. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  7. Full-field characterization of mechanical behavior of polyurethane foams.

    SciTech Connect

    Lu, Wei-Yang; Neilsen, Michael K.; Hinnerichs, Terry Dean; Scheffel, Simon; Jin, Huiqing

    2006-02-01

    The foam material of interest in this investigation is a rigid closed-cell polyurethane foam PMDI with a nominal density of 20 pcf (320 kg/m{sup 3}). Three separate types of compression experiments were conducted on foam specimens. The heterogeneous deformation of foam specimens and strain concentration at the foam-steel interface were obtained using the 3-dimensional digital image correlation (3D-DIC) technique. These experiments demonstrated that the 3D-DIC technique is able to obtain accurate and full-field large deformation of foam specimens, including strain concentrations. The experiments also showed the effects of loading configurations on deformation and strain concentration in foam specimens. These DIC results provided experimental data to validate the previously developed viscoplastic foam model (VFM). In the first experiment, cubic foam specimens were compressed uniaxially up to 60%. The full-field surface displacement and strain distributions obtained using the 3D-DIC technique provided detailed information about the inhomogeneous deformation over the area of interest during compression. In the second experiment, compression tests were conducted for cubic foam specimens with a steel cylinder inclusion, which imitate the deformation of foam components in a package under crush conditions. The strain concentration at the interface between the steel cylinder and the foam specimen was studied in detail. In the third experiment, the foam specimens were loaded by a steel cylinder passing through the center of the specimens rather than from its end surface, which created a loading condition of the foam components similar to a package that has been dropped. To study the effects of confinement, the strain concentration and displacement distribution over the defined sections were compared for cases with and without a confinement fixture.

  8. Eye-tracking laser Doppler velocimeter stabilized in two dimensions: principle, design, and construction.

    PubMed

    Mendel, M J; Toi, V V; Riva, C E; Petrig, B L

    1993-07-01

    We developed an eye-tracking laser Doppler velocimeter to minimize eye-movement artifacts in the study of ocular hemodynamics in humans. The instrument compensates for both horizontal and vertical eye motions by using galvanometer mirrors controlled by a dual-Purkinje eye tracker. The performance of the instrument is demonstrated in a preliminary study of retinal arterial blood velocity in a normal subject. The subject's fixation point was adjusted manually to oscillate through a 2.3-deg span at 0.3 Hz. In spite of this motion the pulsatile velocity waveform of the heart cycle could be continuously recorded. Without eye tracking the velocity waveform was lost after the initiation of movement. PMID:8350156

  9. Quantitative measurement of blood flow dynamics in chorioallantoic membrane of chicken embryo using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Borozdova, M. A.; Stiukhina, E. S.; Sdobnov, A. A.; Fedosov, I. V.; Postnov, D. E.; Tuchin, V. V.

    2016-04-01

    We report the results on in ovo application of developed Laser Doppler Anemometer (LDA) device. The chorioallantoic membrane (CAM) of 9-13 days chicken embryos was used as a biological model that allows an easy access to both arterial and venous vessels of different size. The key point of our study was to find out how the periodic and aperiodic pulsations of blood flow (which are inevitable in living organism) will affect the LDA functions and measuring capability. Specifically, we (i) developed the technique to extract and refine the pulse rhythm from the signal received from a vessel, and (ii) analyzed the changes in power spectra of LDA signal that are caused by heart beating and considerably complicate the reliable measurement of Doppler shift. Our main conclusion is that the algorithm of LDA data processing need to be improved, and this possibly can be done by counting the information on current phase of cardiac cycle.

  10. Measurement of a counter rotation propeller flowfield using a Laser Doppler Velocimeter

    NASA Technical Reports Server (NTRS)

    Harrison, G. L.; Sullivan, J. P.

    1987-01-01

    This paper is a summary of the results of the experimental investigation of the flow field about a counter-rotating propeller (CRP) system using a Laser Doppler Velocimeter (LDV). The number of configurations available for the CRP system is limitless, thus only a small portion of the number of possible cases were examined. Measurements were made upstream, in between and downstream of the propeller system. The abundance of data readily available from the LDV system clearly identifies the tip vortices and wake regions. The recovery by the downstream propeller of the swirl velocity imparted to the flow by the upstream propeller is very evident. The coefficients of thrust and power were determined using momentum and energy analysis of the data and compared to theory.

  11. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement

    PubMed Central

    Li, Yanlu; Segers, Patrick; Dirckx, Joris; Baets, Roel

    2013-01-01

    Pulse wave velocity (PWV) is an important marker for cardiovascular risk. The Laser Doppler vibrometry has been suggested as a potential technique to measure the local carotid PWV by measuring the transit time of the pulse wave between two locations along the common carotid artery (CCA) from skin surface vibrations. However, the present LDV setups are still bulky and difficult to handle. We present in this paper a more compact LDV system integrated on a CMOS-compatible silicon-on-insulator substrate. In this system, a chip with two homodyne LDVs is utilized to simultaneously measure the pulse wave at two different locations along the CCA. Measurement results show that the dual-LDV chip can successfully conduct the PWV measurement. PMID:23847745

  12. A technique to measure the size of particles in laser Doppler velocimetry applications

    NASA Technical Reports Server (NTRS)

    Hess, C. F.

    1985-01-01

    A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.

  13. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-01-01

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design. PMID:26287197

  14. Elasticity Evaluation of Regenerating Cartilage Sample Based on Laser Doppler Measurement of Ultrasonic Particle Velocity

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Misawa, Masaki; Homma, Kazuhiro; Shiina, Tsuyoshi

    2012-07-01

    It is important for regenerative medicine to evaluate the maturity of regenerating tissue. In the maturity evaluation of regenerating cartilage, it is useful to measure the temporal change of elasticity because the maturity of regenerating tissue is closely related to its elasticity. In this study, an elasticity evaluation method for the extracted regenerating cartilage sample, which is based on the laser Doppler measurement of ultrasonic particle velocity, was experimentally investigated using agar-based phantoms with different elastic moduli and the regenerating cartilage samples extracted from beagles in animal experiments. In addition, the experimentally-obtained elasticity was compared with the result of a static compression test. These results verified the feasibility of the proposed method in the elasticity evaluation of regenerating cartilage samples.

  15. Barriers to the management of Diabetes Mellitus - is there a future role for Laser Doppler Flowmetry?

    PubMed

    Au, Minnie; Rattigan, Stephen

    2012-01-01

    Diabetes Mellitus (DM) is a chronic disease that carries a significant disease burden in Australia and worldwide. The aim of this paper is to identify current barriers in the management of diabetes, ascertain whether there is a benefit from early detection and determine whether LDF has the potential to reduce the disease burden of DM by reviewing the literature relating to its current uses and development. In this literature review search terms included; laser Doppler flowmetry, diabetes mellitus, barriers to management, uses, future, applications, vasomotion, subcutaneous, cost. Databases used included Google Scholar, Scopus, Science Direct and Medline. Publications from the Australian government and textbooks were also utilised. Articles reviewed had access to the full text and were in English. PMID:23382766

  16. Measurement of blood velocity using laser Doppler method for the designing module

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Liang; Lee, Jen-Ai; Lu, Tung-Wu; Chen, Zhao-Cheng; Chen, Chien-Ming

    2005-04-01

    We built the Dual Beam Mode of the LDA (Laser Doppler Anemometry) frame, set the photodetector at the same side with light source which collect the scattering light of blood cell. It's proper to reduce LDA optical path and convenient for our designing module. The concentration of chicken blood in this study is about 1% and we measured the relations actually between flood velocity and the angle of beams cross on particles, temperature, and the diameter of aqueduct. We found better results while the cross angle was less than 38.8 degree, diameter of aqueduct was 6 mm, and temperature of blood was set to 36 . These parameters can also provide important basis for the LDA module kit that we are designing.

  17. Aircraft wake vortex velocity measurements using a scanning CO2 laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Sonnenschein, C. M.; Jeffreys, H. B.

    1975-01-01

    A CO2 laser Doppler velocimeter was employed in the study of pairs of counterrotating vortices trailing aircraft in an airport air space. A laser positioned on an extended runway centerline scans a vertical plane perpendicular to the centerline. Vortex location, measurement of vortex transport, and measurement of the properties of aircraft wake vortex flow fields are achieved via spectral analysis of the data. Highest amplitude in the spectrum, the associated maximum velocity, the highest velocity above the amplitude threshold, and the total number of frequency (velocity) cells above thresholds are studied as parameters in analysis of the vortex-associated flow field. The profile of the radial variation of tangential velocity is studied, and two special problems are examined: location of the vortex center and error introduced by crosswind.

  18. Laser Doppler velocimeter measurement in the tip region of a compressor rotor

    NASA Technical Reports Server (NTRS)

    Murthy, K. N. S.; Lakshminarayana, B.

    1984-01-01

    The axial and tangential velocity components near the tip region of a compressor rotor were measured by a laser Doppler velocimeter. The measurements were taken at 25 radial locations in the outer twenty percent of the blade span and at 10 axial locations upstream, inside and at the exit of the rotor. The results are interpreted to derive the behavior of the leakage flow, annulus wall boundary layer growth, inviscid effects and the rotor wake decay characteristics in the tip region. The inviscid and annulus wall boundary layer effects dominate up to quarter chord, beyond which the leakage phenomena has a major influence in altering the flow characteristics in the outer ten percent of the blade span. The annulus wall boundary layer undergoes drastic change through the passage. The velocity field measured near the leading edge reveals the effects of rapid acceleration near the suction surface and the stagnation point on the pressure surface.

  19. Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Lee, Ja H.

    1991-01-01

    A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.

  20. Studies on the dynamics of vacuum encapsulated 2D MEMS scanners by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Janes, Joachim; Hofmann, Ulrich

    2014-03-01

    2D MEMS scanners are used for e.g. Laser projection purposes or Lidar applications. Electrostatically driven resonant torsional oscillations of both axes of the scanners lead to Lissajous trajectories for Laser beams reflected from the micro mirror. Wafer level vacuum encapsulation with tilt glass capping ensures high angular amplitudes at low driving voltages additionally preventing environmental impacts. Applying Laser Doppler Vibrometry, the effect of residual gas friction, squeezed film damping and internal friction on 2D MEMS scanners is analyzed by measuring the Q-values associated with the torsional oscillations. Vibrometry is also used to analyze the oscillatory motion of the micro mirror and the gimbal of the scanners. Excited modes of the scanner structures are identified giving rise to coupling effects influencing the scanning performance of the 2D MEMS mirrors.

  1. A note on the compartmental analysis and related issues in laser Doppler flowmetry.

    PubMed

    Zhong, J; Nilsson, G E; Salerud, G E; Seifalian, A M

    1998-04-01

    Compartmental analysis (CA) in laser Doppler flowmetry (LDF) means deciphering the nutritional and thermoregulating flows from the measured perfusion flux. Based on the new theories proposed in [1] and [2], the CA is formulated here as an optimal approximation without directly involving the geometric information of the vessel network. It is seen that this approximation approach could also solve the biological zero (BZ) problem simultaneously, therefore, it actually provides a systematic solution to the BZ problem without estimating the BZ flux experimentally. In addition, the BZ problem with compartmental differences is reformulated, and the condition under which multiple compartments can be treated as a single one is investigated. The result, together with some computer simulations, showed that the theory in [2] is still an easy and useful approximation in practice. This note serves as an useful supplement to [1] and [2] and may help to solve and clarify some critical problems in LDF. PMID:9556971

  2. Numerical solutions and laser-Doppler measurements of spin-up

    NASA Technical Reports Server (NTRS)

    Warn-Varnas, A.; Piacsek, S.; Fowlis, W. W.; Lee, S. M.

    1978-01-01

    The spin-up flow in a cylinder of homogeneous fluid has been examined both experimentally and numerically. A series of laser-Doppler measurements was made of the zonal flow over a range of Ekman numbers and Rossby numbers at various locations in the interior of the flow. These measurements exceed previous ones in accuracy. The weak inertial modes excited by the impulsive start are detectable. The numerical simulations used the primitive equations in axisymmetric form and employed finite-difference techniques on both constant and variable grids. The number of grid points necessary to resolve the Ekman layers was determined. A thorough comparison of the simulations and the experimental measurements is made which includes the details of the amplitude and frequency of the inertial modes. Agreement to within the experimental tolerance is achieved. Analytical results for conditions identical to those in the experiments are not available but some similar linear and nonlinear theories are also compared with the experiments.

  3. The Use of a Laser Doppler Velocimeter in a Standard Flammability Tube

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Flynn, E. M.

    1985-01-01

    The use of the Laser Doppler Velocimeter, (LDV), to measure the flow associated with the passage of a flame through a standard flammability limit tube (SFLT) was studied. Four major results are presented: (1) it is shown that by using standard ray tracing calculations, the displacement of the LDV volume and the fringe rotation within the experimental error of measurement can be predicted; (2) the flow velocity vector field associated with passage of an upward propagating flame in an SFLT is determined; (3) it is determined that the use of a light interruption technique to track particles is not feasible; and (4) it is shown that a 25 mW laser is adequate for LDV measurements in the Shuttle or Spacelab.

  4. Endoscopic laser Doppler flowmetry in the experiment and in the bleeding gastric and duodenal ulcer clinic

    NASA Astrophysics Data System (ADS)

    Kapralov, S. V.; Shapkin, Y. G.; Lychagov, V. V.; Tuchin, V. V.

    2007-05-01

    One of the most complex problems of emergency surgery is the choice of surgical tactics to deal with bleeding peptic ulcer. Endoscopic hemostasis is prescribed to patients with continuing bleedings and prerelapse syndrome. But till nowdays the objective verification of the prerelapse condition had not been worked out. What is more there are no objective criteria to judge the effectiveness of the carried endohemostasis. The aim of the study was to work out a new objective diagnostic method of pre-recurrence syndrome that can be able to make prognosis for possible gastroduodenal ulcer bleeding recurrence more precise. Laser Doppler flowmetry was the method of studies the regional perfusion. The device used in this work was made at the Optics and Biophysics Department of Saratov State University.

  5. An endoscopic laser Doppler flowmetry of a gastroduodenal mucosa at bleeding ulcer

    NASA Astrophysics Data System (ADS)

    Shapkin, U. G.; Kapralov, C. V.; Gogolev, A. A.; Lychagov, V. V.; Tuchin, V. V.

    2006-08-01

    One of the important problems of a bleeding gastroduodenal ulcer surgery is a prognosis of the recurrent hemorrhage and appraisal of endoscopic hemostasis quality. Endoscopic Laser Doppler Flowmetry of a mucous coat of stomach and a duodenum was made on 34 patients for the purpose of investigation of features of microcirculation. Analogous researches are made on 30 patients with a peptic ulcer and on 28 practically healthy people. Analysis of LDF-grams has shown certain differences in regional microcirculations in stomach and duodenal at normal and at a pathology. Increase of regional perfusion in periulcerose zone with its pathology disbalance can serve as a criterion for activities of an alteration processes in gastroduodenal ulcer defining the risk of possible hemorrhage.

  6. Conformal scanning laser Doppler vibrometer measurement of tenor steelpan response to impulse excitation.

    PubMed

    Ryan, Teresa; O'Malley, Patrick; Glean, Aldo; Vignola, Joseph; Judge, John

    2012-11-01

    A conformal scanning laser Doppler vibrometer system is used in conjunction with a mechanical pannist to measure the surface normal vibration of the entire playing surface of a C-lead tenor steelpan. The mechanical pannist is a device designed to deliver controlled, repeatable strikes that mimic a mallet during authentic use. A description of the measurement system is followed by select examples of behavior common to the results from three different excitation notes. A summary of observed response shapes and associated frequencies demonstrates the concerted placement of note overtones by the craftsmen who manufacture and tune the instruments. The measurements provide a rich mechanical snapshot of the complex motion that generates the distinctive sound of a steelpan. PMID:23145629

  7. Droplet sizes and velocities in vaporizing sprays. [using laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Ereaut, P. R.; Ungut, A.

    1983-01-01

    A pulse height laser Doppler anemometer particle sizing technique has been refined to permit simultaneous particle size and velocity measurements in sprays. The improvements include (1) the use of a specially tailored 'top hat' light distribution, to provide unambiguous particle diameter-signal amplitude relations, (2) the use of back scattered light collection, and (3) the utilization of Mie theory to compute the relations between signal amplitude and particle diameter, in the backscatter mode. Twin-fluid atomized kerosene sprays have been investigated using the new technique. In these sprays distributions have been mapped of mean droplet diameters, droplet size distributions, and the local correlations between droplet diameters and velocities. The data show the variation of spray structure with atomizer input parameters, the preferential vaporization of smaller droplets, and the differing trajectories of the large and small droplets.

  8. Development of a new laser Doppler velocimeter for the Ames High Reynolds Channel No. 2

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. L.; Bader, J. B.; Cooney, J. P.; Deyoung, A.; Donaldson, R. W., Jr.; Gunter, W. D., Jr.; Harrison, D. R.

    1985-01-01

    A new two-channel laser Doppler velocimeter developed for the Ames High Reynolds Channel No. 2 is described. Design features required for the satisfactory operation of the optical system in the channel environment are discussed. Fiber optics are used to transmit the megahertz Doppler signal to the photodetectors located outside the channel pressure vessel, and provision is made to isolate the optical system from pressure and thermal strain effects. Computer-controlled scanning mirrors are used to position the laser beams in the channel flow. Techniques used to seed the flow with 0.5-micron-diam polystyrene spheres avoiding deposition on the test-section windows and porous boundary-layer removal panels are described. Preliminary results are presented with a discussion of several of the factors affecting accuracy.

  9. Effect of timolol on sub-foveal choroidal blood flow using laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Palanisamy, Nithiyanantham; Rovati, Luigi; Cellini, Mauro; Gizzi, Corrado; Strobbe, Ernesto; Campos, Emilio; Riva, Charles E.

    2011-03-01

    Laser Doppler flowmetry (LDF) is a technique used to measure relative average velocity, number and flux (number times velocity) of red blood cells in vessels or capillaries. In this study, the effect of topical timolol on the choroidal circulation was investigated in 12 healthy subjects. Maximum velocity of red blood cells and volumetric blood flow rate in sub-foveal choroids are determined in each eye just before instillation of drops and then every 30 min upto 2 hours. Average intraocular pressure (IOP) decreased significantly in the timolol-treated eyes compared to that of placebo-treated eyes. Nevertheless no significant differences in choroidal blood hemodynamic between timolol and placebo-treated eyes were observed.

  10. Composite Characterization Using Laser Doppler Vibrometry and Multi-Frequency Wavenumber Analysis

    NASA Technical Reports Server (NTRS)

    Juarez, Peter; Leckey, Cara

    2015-01-01

    NASA has recognized the need for better characterization of composite materials to support advances in aeronautics and the next generation of space exploration vehicles. An area of related research is the evaluation of impact induced delaminations. Presented is a non-contact method of measuring the ply depth of impact delamination damage in a composite through use of a Scanning Laser Doppler Vibrometer (SLDV), multi-frequency wavenumber analysis, and a wavenumber-ply correlation algorithm. A single acquisition of a chirp excited lamb wavefield in an impacted composite is post-processed into a numerous single frequency excitation wavefields through a deconvolution process. A spatially windowed wavenumber analysis then extracts local wavenumbers from the wavefield, which are then correlated to theoretical dispersion curves for ply depth determination. SLDV based methods to characterize as-manufactured composite variation using wavefield analysis will also be discussed.

  11. An experimental study of a three-dimensional thrust augmenting ejector using laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Storms, Bruce Lowell

    1989-01-01

    Flow field measurements were obtained in a three-dimensional thrust augmenting ejector using laser Doppler velocimetry and hot wire anemometry. The primary nozzle, segmented into twelve slots of aspect ratio 3.0, was tested at a pressure ratio of 1.15. Results are presented on the mean velocity, turbulence intensity, and Reynolds stress progressions in the mixing chamber of the constant area ejector. The segmented nozzle was found to produce streamwise vortices that may increase the mixing efficiency of the ejector flow field. Compared to free jet results, the jet development is reduced by the presence of the ejector walls. The resulting thrust augmentation ratio of this ejector was also calculated to be 1.34.

  12. Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Revel, G. M.; Martarelli, M.

    2015-11-01

    The present paper proposes a novel non-destructive testing procedure based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capabilities of wavelet-based processing. Two criteria for selecting in an objective way the mother-wavelet to be used in the decomposition procedure, the Relative Wavelet Energy and Energy to Shannon Entropy Ratio, are compared in terms of capability of best locating the damage. The paper demonstrates the applicability of the procedure for the identification of superficial and in-depth defects in simulated and real test cases when an area scan is performed over the test sample. The method shows promising results, since defects are identified in different severity conditions.

  13. Laser Doppler instrumentation for the measurement of retinal blood flow: theory and practice.

    PubMed

    Feke, G T

    2006-01-01

    The theory underlying the development of laser Doppler instrumentation for the measurement of retinal blood flow is framed in terms of (a) the enunciation of the Doppler principle; (b) the invention of the laser; and (c) the invention of the technique known as optical mixing spectroscopy. The features of the instrumentation, beginning with the first prototype in 1972 and culminating with the introduction of the Canon Laser Blood Flowmeter in 1998 are presented in detail. Results from seven separate studies reporting on the reproducibility of retinal blood flow measurements using the Canon instrument, as well as a review of 12 separate presentations made at the 2004 annual meeting of the Association for Research in Vision and Ophthalmology (ARVO) using the Canon instrument in studies involving retinal circulatory physiology and associated clinical research are also presented. PMID:17265797

  14. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1985-01-01

    A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  15. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1986-01-01

    This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  16. Laser Doppler anemometry measurements in the near-wake of an isolated Formula One wheel

    NASA Astrophysics Data System (ADS)

    Saddington, A. J.; Knowles, R. D.; Knowles, K.

    2007-05-01

    An experimental investigation was conducted to identify the main structures in the near wake of an isolated Formula One wheel rotating in ground contact. A 50 percent-scale isolated wheel assembly, geometrically similar to the configuration mounted on a Formula One racing car, was tested in a closed-return three-quarter open-jet wind tunnel. The test Reynolds number, based on wheel diameter was 6.8 × 105. Using laser doppler anemometry, three velocity components were measured with a total of 1966 data points across four planes and within one diameter downstream of the wheel axis. Based on analysis of these data, the main characteristics of the near-wake of an isolated wheel rotating in ground contact are presented. A revised model of the trailing vortex system induced in the wake of such a wheel is proposed, which clarifies the contradictory ones published in the literature to date.

  17. A laser Doppler velocimeter approach for near-wall three-dimensional turbulence measurements

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Brown, J. D.

    1990-01-01

    A near-wall laser Doppler velocimeter approach is described that relies on a beam-turning probe which makes possible the direct measurement of the crossflow velocity at a grazing incident and the placement of optical components close to the flow region of interest regardless of test facility size. Other important elements of the approach are the use of digital frequency processing, an optically smooth measurement surface, and observation of the sensing volume at 90 degrees. The combination was found to dramatically reduce noise-in-signal effects caused by surface light scattering. Turbulent boundary-layer data to within 20 microns (y(sup+) approximately equal to 1) of the surface are presented which illustrate the potential of the approach.

  18. Regional variations of skin blood flow response to histamine: evaluation by spectrophotometry and laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Tur, Ethel; Aviram, Guy; Zeltser, D.; Brenner, Sarah; Maibach, Howard I.

    1996-01-01

    To study inherent differences in skin function related to regional variation, we tested the hypothesis that different reactivities of small blood vessels via their direct and indirect activation by histamine play an important role in the observed regional variation of processes. Histamine was administered to three cutaneous regions in 20 volunteers, and the induced response was quantified utilizing spectrophotometry and laser Doppler flowmetry. The back exhibited the greatest response, followed by the forearm and ankle in decreasing order of responsiveness. We suggest that the intensity of the wheal and flare response may partly be related to the local reactivity of the blood vessels once the histamine actually reached them, and to their indirect dilatation via the axonal reflex. These blood vessel response observations may provide initial insight into inherent functional differences influencing cutaneous manifestations of endogenous and exogenous diseases.

  19. Perfusion assessment in rat spinal cord tissue using photoplethysmography and laser Doppler flux measurements

    NASA Astrophysics Data System (ADS)

    Phillips, Justin P.; Cibert-Goton, Vincent; Langford, Richard M.; Shortland, Peter J.

    2013-03-01

    Animal models are widely used to investigate the pathological mechanisms of spinal cord injury (SCI), most commonly in rats. It is well known that compromised blood flow caused by mechanical disruption of the vasculature can produce irreversible damage and cell death in hypoperfused tissue regions and spinal cord tissue is particularly susceptible to such damage. A fiberoptic photoplethysmography (PPG) probe and instrumentation system were used to investigate the practical considerations of making measurements from rat spinal cord and to assess its suitability for use in SCI models. Experiments to assess the regional perfusion of exposed spinal cord in anesthetized adult rats using both PPG and laser Doppler flowmetry (LDF) were performed. It was found that signals could be obtained reliably from all subjects, although considerable intersite and intersubject variability was seen in the PPG signal amplitude compared to LDF. We present results from 30 measurements in five subjects, the two methods are compared, and practical application to SCI animal models is discussed.

  20. Laser Doppler vibrometer measurement on spiders in moving-coil loudspeakers

    NASA Astrophysics Data System (ADS)

    Kong, Xiaopeng; Zeng, Xinwu; Tian, Zhangfu

    2014-12-01

    The spider is the dominate stiffness to suspend the cone for a moving-coil loudspeaker unit, and is most commonly a concentrically corrugated fabric disk. A subwoofer closed box is designed to excite the tested spiders pneumatically, and the Laser Doppler Vibrometer (LDV) is used to measure the velocity of the moving spiders. The effective stiffness, loss factor and some viscoelastic behaviors such as level dependent stiffness have been investigated. The results find that, this pneumatic non-contact dynamic technique successfully measured the viscoelastic behaviors of spiders from extremely low frequency 5 Hz to 200 Hz, and the effective stiffness of spiders is dependent on the input voltage level, which is higher level with lower stiffness.

  1. A microcomputer based frequency-domain processor for laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Adair, Desmond

    1988-01-01

    A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.

  2. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers

    PubMed Central

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-01-01

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design. PMID:26287197

  3. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports,...

  4. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports,...

  5. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports,...

  6. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports,...

  7. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    SciTech Connect

    Campo, Adriaan; Dirckx, Joris

    2014-05-27

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/III patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.

  8. Rotating blade vibration analysis using photogrammetry and tracking laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gwashavanhu, Benjamin; Oberholster, Abrie J.; Heyns, P. Stephan

    2016-08-01

    Online structural dynamic analysis of turbomachinery blades is conventionally done using contact techniques such as strain gauges for the collection of data. To transfer the captured data from the sensor to the data logging system, installation of telemetry systems is required. This is usually complicated, time consuming and may introduce electrical noise into the data. In addition, contact techniques are intrusive by definition and can introduce significant local mass loading. This affects the integrity of the captured measurements. Advances in technology now allow for the use of optical non-contact methods to analyse the dynamics of rotating structures. These include photogrammetry and tracking laser Doppler vibrometry (TLDV). Various investigations to establish the integrity of photogrammetry measurements for rotating structures involved a comparison to data captured using accelerometers. Discrepancies that were noticed were attributed to the intrusive nature of the contact measurement technique. As an extended investigation, the presented work focuses on the validation of photogrammetry applied to online turbomachinery blade measurements, using TLDV measurements. Through a frequency based characterisation approach of the dynamics of the two scanning mirrors inside the scanning head of a scanning laser Doppler vibrometer (SLDV), TLDV is employed in developing a system that can be used to achieve a perfect circular scan with a Polytec SLDV, (PSV 300). Photogrammetry out-of-plane displacements of a laser dot focused on a specific point on a rotating blade are compared to displacements captured by the laser scanning system. It is shown that there is good correlation between the two measurement techniques when applied to rotating structures, both in the time and frequency domains. The presence of slight discrepancies between the two techniques after elimination of accelerometer based errors illustrated that the optical system noise floor of photogrammetry does

  9. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Dirckx, Joris

    2014-05-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/III patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.

  10. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    NASA Astrophysics Data System (ADS)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  11. Optimization of exposure parameters in full field digital mammography

    SciTech Connect

    Williams, Mark B.; Raghunathan, Priya; More, Mitali J.; Seibert, J. Anthony; Kwan, Alexander; Lo, Joseph Y.; Samei, Ehsan; Ranger, Nicole T.; Fajardo, Laurie L.; McGruder, Allen; McGruder, Sandra M.; Maidment, Andrew D. A.; Yaffe, Martin J.; Bloomquist, Aili; Mawdsley, Gordon E.

    2008-06-15

    Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and

  12. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography

    PubMed Central

    Dobrev, Ivo; Furlong, Cosme; Cheng, Jeffrey T.; Rosowski, John J.

    2014-01-01

    Abstract. Understanding the human hearing process would be helped by quantification of the transient mechanical response of the human ear, including the human tympanic membrane (TM or eardrum). We propose a new hybrid high-speed holographic system (HHS) for acquisition and quantification of the full-field nanometer transient (i.e., >10  kHz) displacement of the human TM. We have optimized and implemented a 2+1 frame local correlation (LC) based phase sampling method in combination with a high-speed (i.e., >40  K fps) camera acquisition system. To our knowledge, there is currently no existing system that provides such capabilities for the study of the human TM. The LC sampling method has a displacement difference of <11  nm relative to measurements obtained by a four-phase step algorithm. Comparisons between our high-speed acquisition system and a laser Doppler vibrometer indicate differences of <10  μs. The high temporal (i.e., >40  kHz) and spatial (i.e., >100  k data points) resolution of our HHS enables parallel measurements of all points on the surface of the TM, which allows quantification of spatially dependent motion parameters, such as modal frequencies and acoustic delays. Such capabilities could allow inferring local material properties across the surface of the TM. PMID:25191832

  13. Measurements in the Turbulent Boundary Layer at Constant Pressure in Subsonic and Supersonic Flow. Part 2: Laser-Doppler Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Dimotakis, P. E.; Collins, D. J.; Lang, D. B.

    1979-01-01

    A description of both the mean and the fluctuating components of the flow, and of the Reynolds stress as observed using a dual forward scattering laser-Doppler velocimeter is presented. A detailed description of the instrument and of the data analysis techniques were included in order to fully document the data. A detailed comparison was made between the laser-Doppler results and those presented in Part 1, and an assessment was made of the ability of the laser-Doppler velocimeter to measure the details of the flows involved.

  14. Experimental Validation of Simulations Using Full-field Measurement Techniques

    SciTech Connect

    Hack, Erwin

    2010-05-28

    The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

  15. Development status of a 157-nm full-field scanner

    NASA Astrophysics Data System (ADS)

    Nakano, Hitoshi; Hata, Hideo; Nogawa, Hideki; Deguchi, Nobuyoshi; Kohno, Michio; Chiba, Yuji

    2003-06-01

    157 nm lithography has made further progress over the past year, steadily advancing towards the realization of the 65 nm era. In particular, exposure tools have moved on to the assembly phase, with new functions and performance now under evaluation. This paper presents our technical progress in our 157nm full field exposure tool, focusing on two key technologies: projection optics and environmental control with highly purified gasses. The high NA projection optics were designed to meet accelerating demands for smaller geometries. A catadioptric system with a line-selected laser was chosen to solve the problem of chromatic aberrations. The birefringence effect caused by CaF2 has been reduced to acceptable levels by clocking and combining <111> and <100> oriented crystals. Polishing and optical coatings consisting of glass materials were completed at targeted accuracy. At the present time, assembly and tuning of the projection optics is being performed. A simulation based on the inspection data from each production step predicts that the desired image performance will be attained. The total efficiency of the exposure system is expected to be higher than previously announced, due to the improvement of both CaF2 transmittance and AR/HR coatings. One of two keys issues in environmental control is to purge the projection optics which are permanently sealed. Purging performance was tested using a mockup of the projection optics. The second issue is to purge the areas around reticles and wafers which are continually carried into and out of the exposure system. Using the actual platform, the wafer and reticle purging performance was evaluated. It has been demonstrated that both of our purging systems are effective in keeping the environment at minimum contamination levels. This contributes to the increase of throughput.

  16. Observation of a critically refracted converted SP wave using laser Doppler interferometer

    NASA Astrophysics Data System (ADS)

    Gurevich, Boris; Lebedev, Maxim; Madadi, Mahyar; Bona, Andrej; Pevzner, Roman

    2015-04-01

    Laboratory measurements of elastic properties of rocks are important for calibration of seismic data and for corroboration of theoretical models of rocks. The most common way of determining the elastic properties of rock samples in laboratory settings is to estimate the velocities of ultrasonic waves propagating in different directions. The wave velocities are usually obtained from the travel times of waves generated and recorded by ultrasonic piezoelectric transducers. This approach has a large uncertainty associated with shear-wave travel time estimation and separation of differently polarised shear waves, as well as uncertainty as to whether phase or group velocity is measured. The problems are caused by the relatively large size and small number of transducers. One way to address some of these issues is by using laser Doppler interferometer, which records a particle like movement that can serve to separate the waves and to pick the travel times from which the ray velocities cab be estimated reliably, and with a huge data redundancy. In this paper, laser Doppler interferometer is used to record wave propagation in an anisotropic rock sample by measuring three orthogonal components of particle velocity on the sample surface. These measurements allow a clear separation of different wave types. The travel time of these waves are used for estimation of anisotropy parameters of the sample. A key observation is the very strong wave which at small offsets has traveltimes equal to those of the S-wave, but at large offsets travels with a velocity close to that of the P-wave. We interpret this wave as a converted SP wave critically refracted at the free surface. The nature and characteristics of this wave are confirmed by numerical simulations in both isotropic and anisotropic media. These simulations show the same traveltimes as measured in the experiment, but the amplitude of the converted SP wave is much stronger in the measured data. Analysis of this inconsistency is

  17. Comparison of temporal response to cerebral blood flow measured by laser speckle flowgraphy and laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Kusano, Masashi; Nakayama, Haruka; Takuwa, Hiroyuki; Masamoto, Kazuto; Kanno, Iwao; Okada, Eiji

    2011-07-01

    Cerebral blood flow (CBF) change of mice during whisker stimulation is measured by laser speckle flowgraphy (LSFG) and laser Doppler flowmetry (LDF). Laser speckle flowgraphy (LSFG) has been used to obtain the two-dimensional distribution of the blood flow in tissue as well as scanning laser Doppler flowmetry (LDF). There are several parameters of LSFG to obtain the blood flow maps and the distribution change of blood flow. In this study, we calculate four parameters from the speckle pattern to measure CBF in awake mice. The temporal resolution of LSFG is likely to be less than that of LDF. The temporal changes in CBF obtained from the four parameters calculated from the speckle pattern detected by a common CCD camera are compared with those measured by LDF. The time courses of CBF change measured by LSFG highly correlate with those by LDF. The results indicate that the temporal response of LSFG is sufficient to measure CBF change evoked by brain activations.

  18. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    SciTech Connect

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-05-24

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  19. Development of a laser-Doppler system for measurement of velocity fields in PVT crystal growth systems

    NASA Technical Reports Server (NTRS)

    Jones, O. C.; Glicksman, M. E.; Lin, J. T.; Kim, G. T.; Singh, N. B.

    1991-01-01

    A laser-Doppler velocimetry (LDV) system capable of measuring velocities as low as 10 exp -5 m/s is presented, and a calibration system for determining the accuracy of the LDV system at these velocities is described. The results obtained in mercurous chloride crystal grown in cylindrical ampoules at 300 C, using physical vapor transport (PVT) methods, are presented. It is concluded that the overall flow pattern observed is a unicellular, asymmetric pattern between Rayleigh number of 125 and 250.

  20. Full-field vibrometry with digital Fresnel holography

    SciTech Connect

    Leval, Julien; Picart, Pascal; Boileau, Jean Pierre; Pascal, Jean Claude

    2005-09-20

    A setup that permits full-field vibration amplitude and phase retrieval with digital Fresnel holography is presented. Full reconstruction of the vibration is achieved with a three-step stroboscopic holographic recording, and an extraction algorithm is proposed. The finite temporal width of the illuminating light is considered in an investigation of the distortion of the measured amplitude and phase. In particular, a theoretical analysis is proposed and compared with numerical simulations that show good agreement. Experimental results are presented for a loudspeaker under sinusoidal excitation; the mean quadratic velocity extracted from amplitude evaluation under two different measuring conditions is presented. Comparison with time averaging validates the full-field vibrometer.

  1. Laser Doppler velocimetry measurements in coaxial, co- and counter-swirling, isothermal jets

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Cusworth, R. A.; Sislian, J. P.

    1986-05-01

    Measured values of the three components of mean velocity and the six components of the turbulent stress tensor are reported in free, co-axial, isothermal, co- and counter-swirling jet flows representative of combustor flows. The effects of specific radial distributions of mean swirl velocity, and co- and counter-swirling annular flows on the flow field are investigated. A one-dimensional laser Doppler velocimeter is used to obtain the measurements. It consists of a 15mW He-Ne laser, DISA 55x modular optics with a Bragg cell and electronic frequency shifting to handle high turbulence intensities and reverse flow regions, and a TSI model 1980A counter processor. Measured values are presented for two tangential velocity profiles in co- and counter-swirling annular flows, in all, for four different cases. A central recirculation zone occurs in each case. Streamlines are calculated from the measured velocity distribution, and contours of turbulent kinetic energy are presented. The former show the structure of the CRZ, and the latter indicate the zones of high turbulence intensity. Experimental data indicate that the flows are more affected by the direction of rotation of the annular flow than by altering the radial distribution of mean swirl velocity. Counter-swirl tends to increase the turbulent stresses with the maxima occuring near the boundary of the CRZ.

  2. Modal parameter determination of a lightweight aerospace panel using laser Doppler vibrometer measurements

    NASA Astrophysics Data System (ADS)

    de Sousa, Kleverson C.; Domingues, Allan C.; Pereira, Pedro P. de S.; Carneiro, Sergio H.; de Morais, Marcus V. G.; Fabro, Adriano T.

    2016-06-01

    The experimental determination of modal parameters, i.e. natural frequencies, mode shapes and damping ratio, are key in characterizing the dynamic behaviour of structures. Typically, such parameters are obtained from dynamic measurements using one or a set of accelerometers, for response measurements, along with force transducers from an impact hammer or an electrodynamic actuator, i.e. a shaker. However, lightweight structures, commonly applied in the aerospace industry, can be significantly affected by the added mass from accelerometers. Therefore, non-contact measurement techniques, like Laser Doppler Vibrometer (LDV), are a more suitable approach in determining the dynamic characteristics of such structures. In this article, the procedures and results of a modal test for a honeycomb sandwich panel for aerospace applications are presented and discussed. The main objectives of the test are the identification of natural frequencies and mode shapes in order to validate a numerical model, as well as the identification of the damping characteristics of the panel. A validated numerical model will be necessary for future detailed response analysis of the satellite, including vibroacoustic investigations to account for acoustic excitations encountered during launching. The numerical model using homogenised material properties is updated to fit the experimental results and very good agreement between experimental and numerically obtained natural frequencies and mode shapes.

  3. Microcirculation assessment using an individualized model for diffuse reflectance spectroscopy and conventional laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Strömberg, Tomas; Karlsson, Hanna; Fredriksson, Ingemar; Nyström, Fredrik H.; Larsson, Marcus

    2014-05-01

    Microvascular assessment would benefit from co-registration of blood flow and hemoglobin oxygenation dynamics during stimulus response tests. We used a fiber-optic probe for simultaneous recording of white light diffuse reflectance (DRS; 475-850 nm) and laser Doppler flowmetry (LDF; 780 nm) spectra at two source-detector distances (0.4 and 1.2 mm). An inverse Monte Carlo algorithm, based on a multiparameter three-layer adaptive skin model, was used for analyzing DRS data. LDF spectra were conventionally processed for perfusion. The system was evaluated on volar forearm recordings of 33 healthy subjects during a 5-min systolic occlusion protocol. The calibration scheme and the optimal adaptive skin model fitted DRS spectra at both distances within 10%. During occlusion, perfusion decreased within 5 s while oxygenation decreased slowly (mean time constant 61 s dissociation of oxygen from hemoglobin). After occlusion release, perfusion and oxygenation increased within 3 s (inflow of oxygenized blood). The increased perfusion was due to increased blood tissue fraction and speed. The supranormal hemoglobin oxygenation indicates a blood flow in excess of metabolic demands. In conclusion, by integrating DRS and LDF in a fiber-optic probe, a powerful tool for assessment of blood flow and oxygenation in the same microvascular bed has been presented.

  4. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry.

    PubMed

    Serafini, S; Paone, N; Castellini, P

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control. PMID:24387408

  5. Photo-vibrational spectroscopy of solid and liquid chemicals using laser Doppler vibrometer.

    PubMed

    Hu, Qi; Lim, Jacob Song Kiat; Liu, Huan; Fu, Yu

    2016-08-22

    Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity microphone or a piezo sensor coupled with a lock-in amplifier, limiting the technique to applications in a laboratory environment. Due to the aforementioned requirements, traditionally this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms (membrane, powder and liquid) were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) based on the Mach-Zehnder interferometer was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment demonstrated that the LDV is a capable sensor for applications in photoacoustic/photothermal spectroscopy, with potential to enable the detection of chemicals in open environment at safe standoff distance. PMID:27557194

  6. Pulse transit times to the capillary bed evaluated by laser Doppler flowmetry.

    PubMed

    Bernjak, Alan; Stefanovska, Aneta

    2009-03-01

    The pulse transit time (PTT) of a wave over a specified distance along a blood vessel provides a simple non-invasive index that can be used for the evaluation of arterial distensibility. Current methods of measuring the PTT determine the propagation times of pulses only in the larger arteries. We have evaluated the pulse arrival time (PAT) to the capillary bed, through the microcirculation, and have investigated its relationship to the arterial PAT to a fingertip. To do so, we detected cardiac-induced pulse waves in skin microcirculation using laser Doppler flowmetry (LDF). Using the ECG as a reference, PATs to the microcirculation were measured on the four extremities of 108 healthy subjects. Simultaneously, PATs to the radial artery of the left index finger were obtained from blood pressure recordings using a piezoelectric sensor. Both PATs correlate in similar ways with heart rate and age. That to the microcirculation is shown to be sensitive to local changes in skin perfusion induced by cooling. We introduce a measure for the PTT through the microcirculation. We conclude that a combination of LDF and pressure measurements enables simultaneous characterization of the states of the macro and microvasculature. Information about the microcirculation, including an assessment of endothelial function, may be obtained from the responses to perturbations in skin perfusion, such as temperature stress or vasoactive substances. PMID:19202235

  7. Particle flow within a transonic compressor rotor passage with application to laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.

    1975-01-01

    A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.

  8. Population pharmacokinetic/pharmacodynamic modeling of histamine response measured by histamine iontophoresis laser Doppler.

    PubMed

    Liu, Xiaoxi; Jones, Bridgette L; Roberts, Jessica K; Sherwin, Catherine M

    2016-08-01

    The epicutaneous histamine (EH) test is the current gold standard method for the clinical evaluation of allergic conditions. However, the EH method is limited in providing an objective and qualitative assessment of histamine pharmacodynamic response. The histamine iontophoresis with laser Doppler (HILD) monitoring method, an alternative method, allows a fixed dose of histamine to be delivered and provides an objective, continuous, and dynamic measurement of histamine epicutaneous response in children and adults. However, due to the high sampling frequency (up to 40 Hz), the output files are usually too cumbersome to be directly used for further analysis. In this study, we developed an averaging algorithm that efficiently reduces the HILD data in size. The reduced data was further analyzed and a population linked effect pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the local histamine response. The model consisted of a one-compartment PK model and a direct-response fractional maximum effect (Emax) model. The parameter estimates were obtained as follows: absorption rate constant (ka), 0.094/min; absorption lag time (Tlag), 2.72 min; partitioning clearance from local depot to systemic circulation (CLpar), 0.0006 L/min; baseline effect (E0), 13.1 flux unit; Emax, 13.4; concentration at half maximum effect (EC50) 31.1 mg/L. Covariate analysis indicated that age and race had significant influence on Tlag and EC50, respectively. PMID:27307292

  9. Microcirculation in healing and healthy Achilles tendon assessed with invasive laser doppler flowmetry

    PubMed Central

    Arverud, Erica Domeij; Persson-Lindell, Olof; Sundquist, Fredrik; Labruto, Fausto; Edman, Gunnar; Ackermann, Paul W.

    2016-01-01

    Summary Introduction Achilles tendon (AT) rupture exhibits a prolonged healing process with varying clinical outcome. Reduced blood flow to the AT has been considered an underlying factor to AT rupture (ATR) and impaired healing. In vivo measurements using laser Doppler flowmetry (LDF) may be a viable method to assess blood flow in healthy and healing AT. Methods 29 persons were included in the study; 9 being ATR patients and 20 healthy subjects without any prior symptoms from the AT. Invasive LDF was used to determine the post-occlusive reactive hyperemia (PORH) in the paratenon after 15 minutes of occlusion of the lower extremities. ATR patients were examined two weeks post-operatively. Results LDF-assessments demonstrated a significantly different (p < 0.001) PORH response in the healing- versus intact- and control AT. In the healing AT, a slow, flattened PORH was observed compared to a fast, high peak PORH in intact, healthy AT. Conclusion in vivo LDF appears to be a feasible method to assess alterations in blood flow in healing and intact AT. The healing ATs capability to react to an ischemic period is clearly impaired, which may be due to the trauma at injury and/or surgery or degenerative changes in the tendon. PMID:27331035

  10. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Serafini, S.; Paone, N.; Castellini, P.

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  11. Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

    PubMed

    Salman, Muhammad; Sabra, Karim G

    2012-09-01

    A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f < 100 Hz) by continuously varying the orientation of laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues. PMID:22978867

  12. Frescoes diagnostic using laser Doppler vibrometry and infrared thermography: experimental and numerical approaches

    NASA Astrophysics Data System (ADS)

    Agnani, Alexia; De Andrade, Roberto M.; Esposito, Enrico; Feligiotti, Mara; Tavares, Sinthya G.

    2006-06-01

    In this work laser Doppler vibrometry has been used for damage detection in frescoes. Results were compared with the ones obtained through infrared thermography, and, for both techniques, mathematical models were implemented to simulate the physical domains and conditions of the employed test sample. The limitations of each methodology are also discussed. The numerical model of the vibrometric investigations has been constructed using Finite Elements Method modeling. A new procedure based on the observation of Rayleigh waves propagation velocities allowed to acquire sample mechanical parameters. Comparison of experimental and simulated data and independent defect diameter measurement by echographic equipment, allowed to establish the confidence level and the discrepancies in the developed model. Also operational limits of the vibrometric technique have been studied by acquisition of Signal-to-Noise ratio on different areas of a sample. The Fourier equation has been used for the mathematical model employed for the numerical simulation of the thermographic investigations. Numerical technique with formularization in finite volumes has been employed and a FORTRAN code has been developed to solve the thermal problem.

  13. Reproducibility of transcutaneous oximetry and laser Doppler flowmetry in facial skin and gingival tissue.

    PubMed

    Svalestad, J; Hellem, S; Vaagbø, G; Irgens, A; Thorsen, E

    2010-01-01

    Laser Doppler flowmetry (LDF) and transcutaneous oximetry (TcPO(2)) are non-invasive techniques, widely used in the clinical setting, for assessing microvascular blood flow and tissue oxygen tension, e.g. recording vascular changes after radiotherapy and hyperbaric oxygen therapy. With standardized procedures and improved reproducibility, these methods might also be applicable in longitudinal studies. The aim of this study was to evaluate the reproducibility of facial skin and gingival LDF and facial skin TcPO(2). The subjects comprised ten healthy volunteers, 5 men, aged 31-68 years. Gingival perfusion was recorded with the LDF probe fixed to a custom made, tooth-supported acrylic splint. Skin perfusion was recorded on the cheek. TcPO(2) was recorded on the forehead and cheek and in the second intercostal space. The reproducibility of LDF measurements taken after vasodilation by heat provocation was greater than for basal flow in both facial skin and mandibular gingiva. Pronounced intraday variations were observed. Interweek reproducibility assessed by intraclass correlation coefficient ranged from 0.74 to 0.96 for LDF and from 0.44 to 0.75 for TcPO(2). The results confirm acceptable reproducibility of LDF and TcPO(2) in longitudinal studies in a vascular laboratory where subjects serve as their own controls. The use of thermoprobes is recommended. Repeat measurements should be taken at the same time of day. PMID:19837098

  14. A multi-point laser Doppler vibrometer with fiber-based configuration

    NASA Astrophysics Data System (ADS)

    Yang, C.; Guo, M.; Liu, H.; Yan, K.; Xu, Y. J.; Miao, H.; Fu, Y.

    2013-12-01

    Laser Doppler vibrometer (LDV) is a non-contact optical interferometric system to measure vibrations of structures and machines with a high precision. Normal LDV can only offer a single-point measurement. Scanning LDV is usually impractical to do measurement on transient events. In this paper, a fiber-based self-synchronized multi-point LDV is proposed. The multiple laser beams with different frequency shifts are generated from one laser source. The beams are projected onto a vibrating object, reflected and interfered with a common reference beam. The signal including vibration information of multiple spatial points is captured by one single-pixel photodetector. The optical system is mainly integrated by fiber components for flexibility in measurement. Two experiments are conducted to measure a steady-state simple harmonic vibration of a cantilever beam and a transient vibration of a beam clamped at both ends. In the first measurement, a numerical interpolation is applied to reconstruct the mode shape with increased number of data points. The vibration mode obtained is compared with that from FEM simulation. In transient vibration measurement, the first five resonant frequencies are obtained. The results show the new-reported fiber-based multipoint LDV can offer a vibration measurement on various spatial points simultaneously. With the flexibility of fiber configuration, it becomes more practical for dynamic structural evaluation in industrial areas.

  15. Verification and validation of a patient simulator for test and evaluation of a laser doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Byrd, Kenneth A.; Yauger, Sunny

    2012-06-01

    In the medical community, patient simulators are used to educate and train nurses, medics and doctors in rendering dierent levels of treatment and care to various patient populations. Students have the opportunity to perform real-world medical procedures without putting any patients at risk. A new thrust for the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), is the use of remote sensing technologies to detect human vital signs at stando distances. This capability will provide medics with the ability to diagnose while under re in addition to helping them to prioritize the care and evacuation of battleeld casualties. A potential alternative (or precursor) to human subject testing is the use of patient simulators. This substitution (or augmenting) provides a safe and cost eective means to develop, test, and evaluate sensors without putting any human subjects at risk. In this paper, we present a generalized framework that can be used to accredit patient simulator technologies as human simulants for remote physiological monitoring (RPM). Results indicate that we were successful in using a commercial Laser Doppler Vibrometer (LDV) to exploit pulse and respiration signals from a SimMan 3G patient simulator at stando (8 meters).

  16. Reproducibility of measuring cerebral blood flow by laser-Doppler flowmetry in mice.

    PubMed

    Tajima, Yosuke; Takuwa, Hiroyuki; Kawaguchi, Hiroshi; Masamoto, Kazuto; Ikoma, Yoko; Seki, Chie; Taniguchi, Junko; Kanno, Iwao; Saeki, Naokatsu; Ito, Hiroshi

    2014-01-01

    Laser-Doppler flowmetry has been widely used to trace hemodynamic changes in experimental stroke research. The purpose of the present study was to evaluate the day-to-day test-retest reproducibility of measuring cerebral blood flow by LDF in awake mice. The flux indicating cerebral blood flow (CBF), red blood cell (RBC) velocity, and RBC concentration were measured with LDF via cranial windows for the bilateral somatosensory cortex in awake mice. LDF measurements were performed three times, at baseline, 1 hour after, and 7 days after the baseline measurement. Moreover, breathing rate (BR) and partial pressure of transcutaneous CO₂ (PtCO₂) were measured simultaneously with LDF measurement. Intraclass correlation coefficient (ICC) and within-subject coefficient of variation (CVw) were calculated. CBF, RBC velocity, and RBC concentration showed good day-to-day test-retest reproducibility (ICC: 0.61 - 0.95, CVw: 8.3% - 15.4%). BR and PtCO₂ in awake mice were stable during the course of the experiments. The evaluation of cerebral microcirculation using LDF appears to be applicable to long-term studies. PMID:24389142

  17. V-belt transverse vibration measurement by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Agnani, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    The dynamic behaviour of a power transmission V-belt system with two fixed pulleys has been analysed by applying the theory of the forced non-linear response of a moving string driven harmonically by eccentrically mounted pulleys. The model has been validated experimentally with reference data obtained by measuring out-of plane components of the belt vibration. The experimental data have been acquired by means of a single-point laser Doppler vibrometer (LDV), measuring the transverse vibration of the belt. Another experimentally technique applied here, for transverse vibration acquisition, was the continuous scanning LDV (CSLDV) that has been used for the first time in translating objects. From the model and the measurements, it has been found that the frequency crossing diagrams, analogous to the so-called Campbell plot used in rotating machinery, perfectly agree. Essentially, this plot demonstrates that the natural frequencies are strongly dependent on the belt's transport speed. Consequently, the model can be employed as useful tool for identifying the transport speeds at which resonances are expected.

  18. Laser Doppler measurement of relative blood velocity in the human optic nerve head

    SciTech Connect

    Riva, C.E.; Grunwald, J.E.; Sinclair, S.H.

    1982-02-01

    The Doppler shift frequency spectrum (DSFS) of laser light scattered from red blood cells (RBCs) moving in the microcirculation of the optic nerve head has been recorded in normal volunteers by means of a fundus camera laser Doppler velocimeter. The width of the DSFS, which varies in proportion to the speed of the RBCs, has been characterized by a parameter alpha. With the use of a model for the scattering of light by tissue and RBCs and for the RBC velocity distribution, values of alpha recorded at normal intraocular pressure (IOP) suggest that the RBCs that contribute to the Doppler signal are flowing in capillaries. The parameter alpha was found to vary markedly with the IOP and with the phase of the ocular pressure pulse at elevated IOP. The return of the speed of RBCs toward normal, which is observed after a step increase of IOP above normal and after a step decrease below normal, has been attributed to an autoregulatory response of the optic nerve circulation.

  19. Three-dimensional laser Doppler anemometer measurements of a jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Snyder, P.; Orloff, K. L.

    1984-01-01

    A three-dimensional laser Doppler anemometer (3D-LDA) was used in a wind tunnel to measure a jet in a crossflow. Measurements were made in the vicinity of a 5-cm-diam jet which issued normally into a 10.65 m/sec wind tunnel crossflow; the velocity ratio Vjet/Vinf was 8. Detailed lateral surveys were made at two elevations (z = cm and 2 cm); both elevations were within the region affected by the boundary layer on the plate. The results are believed to provide reliable velocity field information in the boundary layer of the jet in a crossflow. Turbulence information also is available and believed to be roughly correct, although it may be subject to broadening effects for the lower values of turbulence. A weak vortex pair was observed in the wake at the plate surface. This structure existed in the boundary layer and built confidence because the 3D-LDA was, indeed, able to resolve fine detail in the wake. The capabilities of the 3D-LDA not only allow the making of the velocity surveys, but can be utilized to follow mean streamlines in the flow.

  20. Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces

    NASA Astrophysics Data System (ADS)

    Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga

    2015-05-01

    In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.

  1. Multiscale analysis of microvascular blood flow: a multiscale entropy study of laser Doppler flowmetry time series.

    PubMed

    Humeau, Anne; Mahé, Guillaume; Chapeau-Blondeau, François; Rousseau, David; Abraham, Pierre

    2011-10-01

    Processes regulating the cardiovascular system (CVS) are numerous. Each possesses several temporal scales. Their interactions lead to interdependences across multiple scales. For the CVS analysis, different multiscale studies have been proposed, mostly performed on heart rate variability signals (HRV) reflecting the central CVS; only few were dedicated to data from the peripheral CVS, such as laser Doppler flowmetry (LDF) signals. Very recently, a study implemented the first computation of multiscale entropy for LDF signals. A nonmonotonic evolution of multiscale entropy with two distinctive scales was reported, leading to a markedly different behavior from the one of HRV. Our goal herein is to confirm these results and to go forward in the investigations on origins of this behavior. For this purpose, 12 LDF signals recorded simultaneously on the two forearms of six healthy subjects are processed. This is performed before and after application of physiological scales-based filters aiming at isolating previously found frequency bands linked to physiological activities. The results obtained with signals recorded simultaneously on two different sites of each subject show a probable central origin for the nonmonotonic behavior. The filtering results lead to the suggestion that origins of the distinctive scales could be dominated by the cardiac activity. PMID:21712149

  2. Beam pointing angle optimization and experiments for vehicle laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Fan, Zhe; Hu, Shuling; Zhang, Chunxi; Nie, Yanju; Li, Jun

    2015-10-01

    Beam pointing angle (BPA) is one of the key parameters that affects the operation performance of the laser Doppler velocimetry (LDV) system. By considering velocity sensitivity and echo power, for the first time, the optimized BPA of vehicle LDV is analyzed. Assuming mounting error is within ±1.0 deg, the reflectivity and roughness are variable for different scenarios, the optimized BPA is obtained in the range from 29 to 43 deg. Therefore, velocity sensitivity is in the range of 1.25 to 1.76 MHz/(m/s), and the percentage of normalized echo power at optimized BPA with respect to that at 0 deg is greater than 53.49%. Laboratory experiments with a rotating table are done with different BPAs of 10, 35, and 66 deg, and the results coincide with the theoretical analysis. Further, vehicle experiment with optimized BPA of 35 deg is conducted by comparison with microwave radar (accuracy of ±0.5% full scale output). The root-mean-square error of LDV's results is smaller than the Microstar II's, 0.0202 and 0.1495 m/s, corresponding to LDV and Microstar II, respectively, and the mean velocity discrepancy is 0.032 m/s. It is also proven that with the optimized BPA both high velocity sensitivity and acceptable echo power can simultaneously be guaranteed.

  3. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  4. Identification of pavement material properties using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Navid; Vuye, Cedric; Van den Bergh, Wim; Dirckx, Joris; Leysen, Jari; Sels, Seppe; Vanlanduit, Steve

    2016-06-01

    This paper presents an inverse modeling approach to estimate mechanical properties of asphalt concrete (i.e. Young's modulus E, Poisson ratio ν and damping coefficients). Modal analysis was performed on an asphalt slab using a shaker to excite the specimen and an optical measurement system (a Scanning Laser Doppler Vibrometer or SLDV) to measure the velocity of a measurement grid on the surface of the slab. The SLDV has the ability to measure the vibration pattern of an object with high accuracy, short testing time and without making any contact. The measured data were used as inputs for a frequency domain model parameter estimation method (the Polymax estimator). Meanwhile, natural frequencies and damping ratios of the system were calculated using a Finite Element Modeling (FEM) method. Then, the Modal Assurance Criterion (MAC) was used to pair the mode shapes of the structure determined by measurements and estimated by FEM. By changing the inputs of the FEM analysis (E, ν and damping coefficients of the material) iteratively and minimizing the discrepancy between paired natural frequencies and damping ratios of the system estimated using the Polymax estimator and calculated by FEM, the Young's modulus, Poisson ratio and damping coefficients of the asphalt slab were estimated.

  5. Laser Doppler technique for nondestructive evaluation of mechanical heart valves kinematics

    NASA Astrophysics Data System (ADS)

    Grigioni, Mauro; Daniele, Carla; Morbiducci, U.; Del Gaudio, C.; D'Avenio, Giuseppe; Di Meo, D.; Barbaro, Vincenzo

    2004-06-01

    Laser techniques for vibration measurement, due to their non-contact nature, represents an interesting alternative investigational tool to be tested in biomedical and clinic fields. A particular application could be as evaluation method in design and quality control of artificial organs. Aim of this study is to investigate the application of laser vibrometry to the study of mechanical heart valves in-vitro, with an ad hoc set-up. A heterodyne laser Doppler vibrometry system, which allows the measurement of both vibrational velocity and displacement was used. Three different approaches have been carried out, in order to stress the limits of the laser vibrometry technique for testing heart valve prostheses. Critical points and difficulties to build up experimental studies in this field were clearly pointed out. In the present study only one laser head was used, the aim of the authors being to test the feasibility of a simplified approach on mechanical cardiac valves. Starting from that analysis a comparison could be made to assess the capability to discriminate between normal and malfunctioning devices. The advantage of the proposed test bench is that it could provide a non-contact, non-destructive analysis of the valve under the same working conditions as those upon implantation. The proposed method could furnish a typical "fingerprint" characterizing each valve behavior in repeatable experimental conditions.

  6. Quantification of sympathetic vascular responses in skin by laser Doppler flowmetry.

    PubMed

    Khan, F; Spence, V A; Wilson, S B; Abbot, N C

    1991-05-01

    An improved physiological test of focal sympathetic nervous function using a laser Doppler flowmeter is presented. The test evaluates rapid reflex changes in skin blood flow at the finger tip where there are abundant arteriovenous anastomoses with dense sympathetic innervation. Indirect body heating was employed in all subjects to induce central vasodilation and to obtain stable comparable finger tip blood flows prior to stimulus. The reflex vasoconstriction which occurs following inspiratory gasp and contralateral hand cold challenge was quantified and its reproducibility investigated on three separate occasions in 20 young subjects. The variability in responses both within and between young subjects was small. The test was applied to 10 diabetic patients with autonomic neuropathy and to 10 age-matched control subjects. Vasoconstrictor reflexes were significantly lower in the diabetic group (p less than 0.005) with responses lower than 2 SD from the mean for age-matched controls. In conclusion, the test provides an assessment of focal autonomic damage which can be applied to other regions of the body rich in arteriovenous anastomoses and may have application in clinical studies investigating autonomic activity. PMID:2060997

  7. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  8. A multi-point laser Doppler vibrometer with fiber-based configuration.

    PubMed

    Yang, C; Guo, M; Liu, H; Yan, K; Xu, Y J; Miao, H; Fu, Y

    2013-12-01

    Laser Doppler vibrometer (LDV) is a non-contact optical interferometric system to measure vibrations of structures and machines with a high precision. Normal LDV can only offer a single-point measurement. Scanning LDV is usually impractical to do measurement on transient events. In this paper, a fiber-based self-synchronized multi-point LDV is proposed. The multiple laser beams with different frequency shifts are generated from one laser source. The beams are projected onto a vibrating object, reflected and interfered with a common reference beam. The signal including vibration information of multiple spatial points is captured by one single-pixel photodetector. The optical system is mainly integrated by fiber components for flexibility in measurement. Two experiments are conducted to measure a steady-state simple harmonic vibration of a cantilever beam and a transient vibration of a beam clamped at both ends. In the first measurement, a numerical interpolation is applied to reconstruct the mode shape with increased number of data points. The vibration mode obtained is compared with that from FEM simulation. In transient vibration measurement, the first five resonant frequencies are obtained. The results show the new-reported fiber-based multipoint LDV can offer a vibration measurement on various spatial points simultaneously. With the flexibility of fiber configuration, it becomes more practical for dynamic structural evaluation in industrial areas. PMID:24387407

  9. A multi-point laser Doppler vibrometer with fiber-based configuration

    SciTech Connect

    Yang, C.; Guo, M.; Liu, H.; Yan, K.; Xu, Y. J.; Fu, Y.; Miao, H.

    2013-12-15

    Laser Doppler vibrometer (LDV) is a non-contact optical interferometric system to measure vibrations of structures and machines with a high precision. Normal LDV can only offer a single-point measurement. Scanning LDV is usually impractical to do measurement on transient events. In this paper, a fiber-based self-synchronized multi-point LDV is proposed. The multiple laser beams with different frequency shifts are generated from one laser source. The beams are projected onto a vibrating object, reflected and interfered with a common reference beam. The signal including vibration information of multiple spatial points is captured by one single-pixel photodetector. The optical system is mainly integrated by fiber components for flexibility in measurement. Two experiments are conducted to measure a steady-state simple harmonic vibration of a cantilever beam and a transient vibration of a beam clamped at both ends. In the first measurement, a numerical interpolation is applied to reconstruct the mode shape with increased number of data points. The vibration mode obtained is compared with that from FEM simulation. In transient vibration measurement, the first five resonant frequencies are obtained. The results show the new-reported fiber-based multipoint LDV can offer a vibration measurement on various spatial points simultaneously. With the flexibility of fiber configuration, it becomes more practical for dynamic structural evaluation in industrial areas.

  10. In-field use of laser Doppler vibrometer on a wind turbine blade

    SciTech Connect

    Rumsey, M.; Hurtado, J.; Hansche, B.

    1998-12-31

    One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

  11. Laser Doppler velocity measurements in a transferred-arc plasma torch

    SciTech Connect

    Norton, O.P.; Okhuysen, W.P.

    1995-12-31

    Laser Doppler velocimetry (LDV) is a nonintrusive method of measuring velocity. The measurement volume formed by the intersection of the two laser beams is compact, thus the method provides excellent spatial resolution. Furthermore, aside from the requirement that the flow contain scattering particles, the method is nonintrusive. Thus, no probe disturbs the flow and measurements can be made in extremely high temperature and hostile environments. Here, the LDV technique has been used to map the velocity field in the plasma jet issuing from a transferred-arc, reverse polarity plasma torch. This gas flow field is important in understanding the physics of the plasma torch. The torch was operated with nitrogen at a fixed distance of 5 inches from the graphite billet. Velocity measurements were made for combinations of current at 125 and 175 A and pressure at 22 and 55 psig. Results are presented for the high current/high pressure condition. Since the test procedure involves reestablishing the same flow conditions after swapping graphite billets, it is instructive to see how closely the torch operating variables were reproduced. The average current varied from 175.2 to 175.8 A over the eight separate time periods. The nitrogen supply pressure varied from 52.5 to 53.9 psi. The torch voltage drop ranged from 430.6 to 436.1 V, and the nitrogen flow rate from 4.8 to 5.4 scfm.

  12. Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Weekes, Ben; Ewins, David

    2015-06-01

    Continuous scan laser Doppler vibrometry (CSLDV) is a technique which has been described and explored in the literature for over two decades, but remains niche compared to SLDV inspection by a series of discrete-point measurements. This is in part because of the unavoidable phenomenon of laser speckle, which deteriorates signal quality when velocity data is captured from a moving spot measurement. Further, applicability of CSLDV has typically been limited to line scans and rectangular areas by the application of sine, step, or ramp functions to the scanning mirrors which control the location of the measurement laser spot. In this paper it is shown that arbitrary functions to scan any area can easily be derived from a basic calibration routine, equivalent to the calibration performed in conventional discrete-point laser vibrometry. This is extended by performing the same scan path upon a test surface from three independent locations of the laser head, and decomposing the three sets of one-dimensional deflection shapes into a single set of three-dimensional deflection shapes. The test was performed with multi-sine excitation, yielding 34 operating deflection shapes from each scan.

  13. A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery.

    PubMed

    Rejmstad, Peter; Åkesson, Gustav; Åneman, Oscar; Wårdell, Karin

    2016-01-01

    The aim of this study was to adapt and evaluate laser Doppler perfusion monitoring (LDPM) together with custom-designed brain probes and software for continuous recording of cerebral microcirculation in patients undergoing neurosurgery. The LDPM system was used to record perfusion and backscattered light (TLI). These parameters were displayed together with the extracted heart rate (HR), pulsatility index (PI) and signal trends from adjustable time intervals. Technical evaluation was done on skin during thermal provocation. Clinical measurements were performed on ten patients undergoing brain tumour surgery. Data from 76 tissue sites were captured with a length varying between 10 s to 15 min. Statistical comparisons were done using Mann-Whitney tests. Grey and tumour tissue could be separated from white matter using the TLI signal (p < 0.05). The perfusion was significantly higher in grey and tumour tissue compared to white matter (p < 0.005). LDPM was successfully used as an intraoperative tool for monitoring local blood flow and additional parameters linked to cerebral microcirculation (perfusion, TLI, HR and PI) during tumour resection. The systems stability opens up for studies in the postoperative care of patients with, for example, traumatic brain injury or subarachnoid haemorrhage. PMID:26105147

  14. Multifractal spectra of laser Doppler flowmetry signals in healthy and sleep apnea syndrome subjects

    NASA Astrophysics Data System (ADS)

    Buard, Benjamin; Trzepizur, Wojciech; Mahe, Guillaume; Chapeau-Blondeau, François; Rousseau, David; Gagnadoux, Frédéric; Abraham, Pierre; Humeau, Anne

    2009-07-01

    Laser Doppler flowmetry (LDF) signals give a peripheral view of the cardiovascular system. To better understand the possible modifications brought by sleep apnea syndrome (SAS) in LDF signals, we herein propose to analyze the complexity of such signals in obstructive SAS subjects, and to compare the results with those obtained in healthy subjects. SAS is a pathology that leads to a drop in the parasympathetic tone associated with an increase in the sympathetic tone in awakens SAS patients. Nine men with obstructive SAS and nine healthy men participated awaken in our study and LDF signals were recorded in the forearm. In our work, complexity of LDF signals is analyzed through the computation and analysis of their multifractal spectra. The multifractal spectra are estimated by first estimating the discrete partition function of the signals, then by determining their Renyi exponents with a linear regression, and finally by computing their Legendre transform. The results show that, at rest, obstructive SAS has no or little impact on the multifractal spectra of LDF signals recorded in the forearm. This study shows that the physiological modifications brought by obstructive SAS do not modify the complexity of LDF signals when recorded in the forearm.

  15. Atmospheric transmission of CO2 laser radiation with application to laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1975-01-01

    The molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated at the P16, P18, P20, P22, and P24 lines of the CO2 laser for temperatures from 200 to 300 K and for pressures from 100 to 1100 mb. The temperature variation of the continuum absorption coefficient of water vapor is taken into account semi-empirically from Burch's data. The total absorption coefficient from the present calculations falls within + or - 20 percent of the results of McClatchey and Selby. The transmission loss which the CO2 pulsed laser Doppler system experiences was calculated for flight test conditions for the five P-lines. The total transmission loss is approximately 7 percent higher at the P16 line and 10 percent lower at the P24 line compared to the P20 line. Comparison of the CO2 laser with HF and DF laser transmission reveals the P2(8) line at 3.8 micrometers of the DF laser is much better from the transmission point of view for altitudes below 10 km.

  16. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  17. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges.

    PubMed

    Abay, T Y; Kyriacou, P A

    2016-04-01

    Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p  <  0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG. PMID:26963349

  18. Serial assessment of laser Doppler flow during acute pain crises in sickle cell disease

    PubMed Central

    Shi, Patricia Ann; Manwani, Deepa; Olowokure, Olugbenga; Nandi, Vijay

    2014-01-01

    Changes in basal laser Doppler flowmetry (LDF) of skin blood flow in sickle cell disease are reported to have pathophysiologic relevance in pain crisis. This is the first study to strictly control for LDF variability in determining the value of serial, basal (unprovoked) skin LDF as a practical method to assess resolution of acute pain crisis in sickle cell patients. Daily LDF measurements were repeated on the exact same skin areas of the calf and forehead throughout each of 12 hospital admissions for uncomplicated acute pain crisis. A progressive increase in perfusion was observed in the calf throughout hospitalization as pain crisis resolved, but measurement reproducibility in the calf was poor. Reproducibility in the forehead was better, but no significant trend over time in perfusion was seen. There was no significant correlation between perfusion and pain scores over time. There was also no significant pattern of LDF oscillations over time. In conclusion, only perfusion units and not oscillatory pattern of LDF has probable pathophysiological significance in sickle cell disease vaso-occlusion. The reproducibility of basal skin LDF specifically in sickle cell disease needs to be confirmed. PMID:24857171

  19. Impact of 10 Sessions of Whole Body Cryostimulation on Cutaneous Microcirculation Measured by Laser Doppler Flowmetry

    PubMed Central

    Renata, Szyguła; Tomasz, Dybek; Andrzej, Klimek; Sławomir, Tubek

    2011-01-01

    The aim of the present study was to evaluate the basic and evoked blood flow in the skin microcirculation of the hand, one day and ten days after a series of 10 whole body cryostimulation sessions, in healthy individuals. The study group included 32 volunteers – 16 women and 16 men. The volunteers underwent 10 sessions of cryotherapy in a cryogenic chamber. The variables were recorded before the series of 10 whole body cryostimulation sessions (first measurement), one day after the last session (second measurement) and ten days later (third measurement). Rest flow, post-occlusive hyperaemic reaction, reaction to temperature and arterio–venous reflex index were evaluated by laser Doppler flowmetry. The values recorded for rest flow, a post-occlusive hyperaemic reaction, a reaction to temperature and arterio – venous reflex index were significantly higher both in the second and third measurement compared to the initial one. Differences were recorded both in men and women. The values of frequency in the range of 0,01 Hz to 2 Hz (heart frequency dependent) were significantly lower after whole-body cryostimulation in both men and women. In the range of myogenic frequency significantly higher values were recorded in the second and third measurement compared to the first one. Recorded data suggest improved response of the cutaneous microcirculation to applied stimuli in both women and men. Positive effects of cryostimulation persist in the tested group for 10 consecutive days. PMID:23487007

  20. Schlieren laser Doppler flowmeter for the human optical nerve head with the flicker stimuli.

    PubMed

    Geiser, Martial H; Truffer, Frederic; Evequoz, Hugo; Khayi, Hafid; Mottet, Benjamin; Chiquet, Christophe

    2013-12-01

    We describe a device to measure blood perfusion for the human optic nerve head (ONH) based on laser Doppler flowmetry (LDF) with a flicker stimuli of the fovea region. This device is self-aligned for LDF measurements and includes near-infrared pupil observation, green illumination, and observation of the ONH. The optical system of the flowmeter is based on a Schlieren arrangement which collects only photons that encounter multiple scattering and are back-scattered out of the illumination point. LDF measurements are based on heterodyne detection of Doppler shifted back-scattered light. We also describe an automated analysis of the LDF signals which rejects artifacts and false signals such as blinks. By using a Doppler simulator consisting of a lens and a rotating diffusing wheel, we demonstrate that velocity and flow vary linearly with the speed of the wheel. A cohort of 12 healthy subjects demonstrated that flicker stimulation induces an increase of 17.8% of blood flow in the ONH. PMID:24296999

  1. Measurement of velocities in gas-liquid two-phase flow using Laser Doppler Velocimetry

    SciTech Connect

    Vassallo, P.F.; Trabold, T.A.; Moore, W.E.; Kirouac, G.J.

    1992-09-01

    Measurements of bubble and liquid velocities in two-phase flow have been made using a new forward/backward scattering Laser Doppler Velocimetry (LDV) technique. This work was performed in a 6.4 by 11.1 mm vertical duct using known air/water mixtures. A standard LDV fiber optic probe was used to measure the bubble velocity, using direct backscattered light. A novel retro-reflector and lens assembly permitted the same probe to measure the liquid velocity with direct forward-scattered light. The bubble velocity was confirmed by independent measurements with a high-speed video system. The liquid velocity was confirmed by demonstrating the dominance of the liquid seed data rate in the forward-scatter measurement. Experimental data are presented to demonstrate the accuracy of the technique for a wide range of flow conditions, from bubbles as small as 0.75-mm-diam to slugs as large as 10-mm wide by 30-mm long. In the slug regime, the LDV technique performed velocity measurements for both phases, for void fractions up to 50%, which was the upper limit of our experimental investigation.

  2. Physiological effects of indomethacin and celecobix: an S-transform laser Doppler flowmetry signal analysis

    NASA Astrophysics Data System (ADS)

    Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L'Huillier, J. P.

    2005-05-01

    Conventional signal processing typically involves frequency selective techniques which are highly inadequate for nonstationary signals. In this paper, we present an approach to perform time-frequency selective processing of laser Doppler flowmetry (LDF) signals using the S-transform. The approach is motivated by the excellent localization, in both time and frequency, afforded by the wavelet basis functions. Suitably chosen Gaussian wavelet functions are used to characterize the subspace of signals that have a given localized time-frequency support, thus enabling a time-frequency partitioning of signals. In this paper, the goal is to study the influence of various pharmacological substances taken by the oral way (celecobix (Celebrex®), indomethacin (Indocid®) and placebo) on the physiological activity behaviour. The results show that no statistical differences are observed in the energy computed from the time-frequency representation of LDF signals, for the myogenic, neurogenic and endothelial related metabolic activities between Celebrex and placebo, and Indocid and placebo. The work therefore proves that these drugs do not affect these physiological activities. For future physiological studies, there will therefore be no need to exclude patients having taken cyclo-oxygenase 1 inhibitions.

  3. Dynamic Rotor Deformation and Vibration Monitoring Using a Non-Incremental Laser Doppler Distance Sensor

    SciTech Connect

    Pfister, Thorsten; Guenther, Philipp; Dreier, Florian; Czarske, Juergen

    2010-05-28

    Monitoring rotor deformations and vibrations dynamically is an important task for improving the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently a high measurement rate and high accuracy, which can not be fulfilled by most commercially available sensors. To solve this problem, we developed a non-incremental laser Doppler distance sensor (LDDS), which is able to measure simultaneously the in-plane velocity and the out-of-plane position of moving rough solid objects with micrometer precision. In addition, this sensor concurrently offers a high temporal resolution in the microsecond range, because its position uncertainty is in principle independent of the object velocity in contrast to conventional distance sensors, which is a unique feature of the LDDS. Consequently, this novel sensor enables precise and dynamic in-process deformation and vibration measurements on rotating objects, such as turbo machine rotors, even at very high speed. In order to evidence the capability of the LDDS, measurements of rotor deformations (radial expansion), vibrations and wobbling motions are presented at up to 50,000 rpm rotor speed.

  4. Measurement of subcutaneous adipose tissue blood flow in the morbidly obese using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Klassen, Gerald A.; Paton, Barry E.; Maksym, Geoff; Janigan, David; Perey, Bernard

    1992-08-01

    Using a laser Doppler velocimeter (LDV) subcutaneous adipose tissue blood flow (AF) was recorded in the upright and supine positions in the upper and lower abdomen in 22 morbidly obese patients before gastroplasty. Age was 42 +/- 3 (mean +/- SEM), weight 135 +/- 7 kg, and body mass index (BMI) 51 +/- 3. Adipose flow expressed as mV was: supine, upper abdomen 647 +/- 23, lower abdomen 604 +/- 24; upright, upper abdomen 621 +/- 27, lower abdomen 607 +/- 29. AF was significantly more in the upper than lower abdomen (supine position) and AF was significantly lower in the lower abdomen upright than the upper abdomen supine. Regression analysis of age indicates that blood flow decreases in the lower abdomen so that in the supine position the difference between upper and lower abdomen AF increases. Similar analysis of BMI did not indicate significant trends. These data indicate that with morbid obesity there is lower tissue blood flow to the lower abdomen. This may explain why such patients may develop areas of painful ischemic necrosis in the dependent region of their anterior abdominal pannus.

  5. Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia.

    PubMed

    Bogaert, L; Scheller, D; Moonen, J; Sarre, S; Smolders, I; Ebinger, G; Michotte, Y

    2000-12-29

    Generalized neurotransmitter overflow into the extracellular space, after cerebral ischemia, has been suggested to contribute to subsequent neuronal death. This study aims to investigate the striatal release of the neurotransmitters dopamine (DA), glutamate (Glu) and gamma-aminobutyric acid (GABA) by means of microdialysis, in a rat model for focal transient cerebral ischemia. Ischemia was induced by the application of 120 pmol endothelin-1 (Et-1), adjacent to the middle cerebral artery (MCA) in freely moving rats. Ischemia produced a large increase in extracellular striatal DA concentrations (2400%), Glu (5500%) and GABA (800%) concentrations. Laser Doppler flowmetry in anaesthetized rats, indicated that the blood flow within the striatum decreased by 75+/-11%. The period of sustained drop of blood flow, was dose-dependently related to the concentration Et-1 injected. Histological analysis of brain slices, taken from anaesthetized and conscious animals, indicated a 500 pmol dose of Et-1 was required to produce a similar infarct in anaesthetized rats to a 120 pmol dose of Et-1 in freely moving rats. The immediate drop in striatal blood flow, and the prompt increase of extracellular DA, after the micro-application of Et-1, were quite striking. This suggests that the DA release, rather than the Glu overflow may be the primary event initiating the cascade of processes ultimately leading to cell death and neurological deficits. PMID:11134615

  6. Estimation of parameters of a laser Doppler velocimeter and their Cramer--Rao lower bounds

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Long, Xingwu

    2011-08-01

    Considering the influence of acceleration and the Gaussian envelope for a laser Doppler velocimeter (LDV), parameter estimation of a Doppler signal with a Gaussian envelope was investigated based on introducing acceleration. According to the theory of mathematics statistics, the Cramer--Rao lower bounds (CRLBs) of Doppler circular frequency and its first order rate were analyzed, formulas of CRLBs were given, and the power spectrum estimation with adjustment was discussed. The results of theory and the simulation show that the CRLBs are related to the data length, the signal-to-noise ratio (SNR), and the width of the Gaussian envelope, and they can be decreased by increasing the data length or improving the SNR; the larger the acceleration is and the narrower the Gaussian envelope is, the larger the CRLBs of Doppler circular frequency and its first order rate are; the gap between the variances of the measuring results and the CRLBs narrows when the SNR of the signal is improved, and is almost eliminated when the SNR is higher than 6dB. It is concluded that the model presented is much more suitable for a LDV than that acquired by Rife and Boorstyn [IEEE Trans. Inform. Theory 20, 591 (1974)].

  7. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    PubMed Central

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills. PMID:26579054

  8. STIS MAMA Full-Field Sensitivity Monitor C18

    NASA Astrophysics Data System (ADS)

    Dixon, W.

    2010-09-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 18. The data can be directly compared with similar data obtained in Cycles 7, 8, 9, 10, 11, 12, and 17.

  9. STIS MAMA Full-Field Sensitivity Monitor C20

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia

    2012-10-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 19. The data can be directly compared with similar data obtained in Cycles 7, 8, 9, 10, 11, 12, 17, and 18.

  10. STIS MAMA Full-Field Sensitivity Monitor C21

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia

    2013-10-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 21. The data can be directly compared with similar data obtained in previous cycles.

  11. STIS MAMA Full-Field Sensitivity Monitor C19

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia

    2011-10-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 19. The data can be directly compared with similar data obtained in Cycles 7, 8, 9, 10, 11, 12, 17, and 18.

  12. Inspection 13.2 nm table-top full-field microscope

    SciTech Connect

    Brizuela, F.; Wang, Y.; Brewer, C. A.; Pedaci, F.; Chao, W.; Anderson, E. H.; Liu, Y.; Goldberg, K. A.; Naulleau, P.; Wachulak, P.; Marconi, M. C.; Attwood, D. T.; Rocca, J. J.; Menoni, C. S.

    2009-02-23

    We present results on a table-top microscope that uses an EUV stepper geometry to capture full-field images with a halfpitch spatial resolution of 55 nm. This microscope uses a 13.2 nm wavelength table-top laser for illumination and acquires images of reflective masks with exposures of 20 seconds. These experiments open the path to the realization of high resolution table-top imaging systems for actinic defect characterization.

  13. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... FR 31040), FDA issued a proposed rule to reclassify the device, full-field digital mammography system... discussed in the preamble to the proposed rule (73 FR 31040) and comments on the proposed rule and draft... controls). The device type is intended to produce planar digital x-ray images of the entire breast;...

  14. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    NASA Astrophysics Data System (ADS)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  15. Full-field optical coherence tomography (FFOCT) for evaluation of endometrial cancer

    NASA Astrophysics Data System (ADS)

    Bruhat, Alexis; Combrinck, Marais; Dalimier, Eugénie; Harms, Fabrice; Fine, Jeffrey L.

    2015-02-01

    Full-field optical coherence tomography (FFOCT) quickly produces images that resemble conventional pathology images. We examined endometrium in an intra-operative like fashion (more than forty samples). FFOCT-imaged endometrium was recognizable to pathologists and compared favorably with microscopy of the same samples. Additional image enhancements and acquisition techniques were explored and may improve interpretation accuracy. Wider evaluation of images is ongoing, using more pathologist subjects. FFOCT may revolutionize pathology practice in the future by permitting rapid diagnosis and in vivo diagnosis; this is potentially a disruptive new diagnostic technique in pathology.

  16. Does tropicamide affect choroidal blood flow in humans? a laser Doppler flowmetry study

    NASA Astrophysics Data System (ADS)

    Palanisamy, Nithiyanantham; Riva, Charles E.; Rovati, Luigi; Cellini, Mauro; Gizzi, Corrado; Strobbe, Ernesto; Campos, Emilio C.

    2012-03-01

    The measurement of blood flow in the ocular fundus is of scientific and clinical interest. Investigating ocular blood flow in the choroid may be important to understand the pathogenesis of numerous ocular diseases, such as glaucoma or agerelated macular degeneration (AMD). Laser Doppler flowmetry (LDF) was applied to measure relative velocity, volume and flux of red blood cells in the tissues of human eye. Its main application lies in the possibility of assessing alterations in blood flow early in the course of diseases. The purpose of the present study was to investigate the effect of pupil dilatation with one drop of 1% tropicamide on blood flow in the foveal region of the choroid of the human fundus. The blood flow parameters were measured in 24 eyes during 30 minutes (one measurement in every 3 minutes) after the application of the drop. Since the Doppler parameters depend on the scattering geometry, which may change as the pupil dilates; an artificial pupil of 4mm in diameter was placed directly in front the eye. Following the administration of tropicamide the mean pupil diameter was increased from 3.29 mm to 8.25 mm (P<0.0001, Paired student t-test). In comparison to the baseline values, the data shows no significant increases were observed in velocity, volume, and flow with 4 mm artificial pupil (0.2%, 1.3%, 0.8% respectively) and a statistically significant increases were observed without artificial pupil (10.7%, 13.9%, 12.8% respectively) following the application of tropicamide.

  17. Laser-tissue interaction with fs pulses: measurement of the recoil momentum by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Sessa, Gaetano; Travaglini, Michele; Mittnacht, Dirk; Foth, Hans-Jochen

    2003-07-01

    Currently ultra short pulses with pluse duration close to 100 fs are investigated for tissue ablation to perform laser surgery in a microscopic scale without any damage to the remaining tissue. Several groups showed already that the risk of thermal damage can be avoided; however the ablated material leaves the surface with a high velocity which leads to significant recoil momentum to the tissue. This paper focuses on the experimental set-up to measure this momentum transfer. Various set-ups had been developd over the last years like a pendulum that is highly senstive but cannot ensure that in a train of pulses each pulse will impact at exactly the same spot. A sliding rod in a glass tube ensured the constant impact point but is sensitive to several environmental conditions, which are hard to control. Recently, special swing plates were designed as vibration disks. The small sample was mounted in the center of this plate and exposed by fs pulses of a TiSa laser. The beam of a laser Doppler vibrometer was focused onto the backside of the plate monitored its motion. This set-up enabled us to measure the recoil momentum. While the total momentum transfer could be well determined to Δp=6 10-3 g mm/s, the question about a mechanical damage, for example for hair cells in the inner ear is much more difficult to answer, since this depends on the time in which the ablated materials leaves the surface. Evaporation times of 40 ps would lead to serious risk ofhar cell damage.

  18. Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measurement of Local Blood Velocity

    NASA Astrophysics Data System (ADS)

    Tajikawa, Tsutomu; Takeshige, Mitsuhiko; Ishihara, Wataru; Kohri, Shimpei; Ohba, Kenkichi

    A new miniaturized fiber-optic laser Doppler velocimetry (LDV) sensor has been developed, which is capable of measuring the local velocity in various semi-opaque and opaque fluid flows, particularly whole blood velocity in vessels. The sensor has a convex lens-like fiber tip as a pickup and an improved optical transmission system with markedly decreased stray light. This paper describes methods for fabricating fiber tips like concave and convex lens and the characteristics of the optical sensor system equipped with the fabricated fiber tip. Conventional fiber-optic LDV sensors developed up to now have not been capable of measuring such opaque fluids because scattered light from scattering particles as erythrocytes has very low intensity, which makes signal-to-noise ratio of Doppler signal received by a sensor pickup significantly decreased. To overcome these problems, convex lens-like fiber tips have been fabricated by chemical etching, in which quartz fibers of multimode graded refractive index have been etched in aqueous solutions of hydrogen fluoride and ammonium fluoride under the appropriately controlled condition of the concentration of the solution, the etching duration time and the etchant temperature to obtain the desired curvature radius of the lens-like surface of the fiber tip. In this fiber-optic sensor, a laser beam emitted from the fiber tip can be focused at any position from about 0.1 to 0.5 mm distant from the fiber tip according to its curvature radius. The convex lens-like etched tip totally reduced the intensity of undesired reflecting light at the fiber end by 1/2 to 1/6 compared with normal cut fiber tip. Consequently, this fiber-optic LDV sensor system is capable of measuring the local flow velocity in semi-opaque and opaque fluids, whose turbidity was about five times higher than by any kinds of previous sensors.

  19. Two-component dual-scatter laser Doppler velocimeter with frequency burst signal readout.

    PubMed

    Brayton, D B; Kalb, H T; Crosswy, F L

    1973-06-01

    A dual-scatter laser Doppler velocimeter (LDV) system designed for measuring wind tunnel flow velocity is described. The system simultaneously measures two orthogonal velocity components of a flowing fluid at a common point in the flow. Essential single-velocity component dual-scatter concepts are presented to simplify the description of the more sophisticated two-component system. To implement the two-component system three laser beams with a 0 degrees , 45 degrees , and 90 degrees polarization plane relationship are focused to a common point in the flow by the system-transmitting optics. The beams interfere to form two perpendicular sets of interference fringe planes that are orthogonally polarized. The system-receiving optics collect and separate the orthogonally polarized components of laser radiation scattered from micron-size particles moving with the flowing fluid through the ringes. The system requires no artificial seeding, since intrinsic test section aerosols are utilized for radiation scattering. The passage of each scatter particle through the interference fringes simultaneously produces two frequency-burst-type photodetected signals, the frequencies of which are directly proportional to two perpendicular components of particle velocity. The system photodetection, signal-conditioning, and data acquisition instrumentation is specifically designed to process the frequency burst information in the time domain as opposed to spectrum analysis or frequency domain processing. The system was initially evaluated in an AEDC wind tunnel operating over a Mach number range from 0.6 to 1.5. The LDV and calculated wind tunnel mean velocity data agreed to within 1.25%; flow direction deviations of a few milliradians were resolved. PMID:20125494

  20. Temperature-dependent laser Doppler fluxmetry in healthy and patients with peripheral arterial occlusive disease.

    PubMed

    Creutzig, A; Caspary, L; Hertel, R F; Alexander, K

    1987-12-01

    Laser Doppler flux (LDF) was determined at the forefoot in 17 healthy volunteers and 16 patients with mild peripheral arterial occlusive disease. LDF was assessed simultaneously by two probes, one was unheated and the other was run with a probe holder temperature of 37 degrees C. During occlusion of the venous circulation a decrease between 43 and 61% was recorded in both groups and at both temperatures. When the leg was elevated there was an increase of about 60% in unheated skin; at 37 degrees C LDF was impaired significantly in patients. During leg dependency LDF decreased in 15 of the volunteers by 44 and 50% which is the result of the physiological vasoconstrictor response. In patients there was a decrease in unheated skin in 12 cases, in heated skin only in 8 cases. When pure oxygen was inhaled, LDF was unchanged in probands, but increased in patients when measured at 37 degrees C. Reactive hyperaemia flow was about three times higher in unheated skin than in heated skin. Reproducibility was best during leg elevation and was more reliable for measurements at 37 degrees C. Rhythmical variations had a frequency of about 4 cycles/min in healthy subjects and 2.6 cycles/min in patients. As a rule, in both groups frequencies at 37 degrees C were higher as compared with unheated skin. Patients had lower frequencies than probands at both temperatures. During intraarterial application of two differently acting drugs quite different reactions of LDF could be recorded. Measurements of LDF at 37 degrees C made differences between patients with PAOD and healthy volunteers more obvious. Moreover, vasomotional changes in skin blood flow could better be studied at this temperature. PMID:2962961

  1. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  2. A mathematical analysis on the biological zero problem in laser Doppler flowmetry.

    PubMed

    Zhong, J; Seifalian, A M; Salerud, G E; Nilsson, G E

    1998-03-01

    The biological zero (BZ) problem is a critical issue inherent in laser Doppler flowmetry (LDF). It causes confusion when measuring low tissue blood flows. Many experimental studies have been done on the question of whether the BZ flux should be subtracted from the normally measured flux in various situations. However this problem can only be solved after a proper mathematical analysis. Only then can we clearly define and formulate what flux is truly meaningful in blood perfusion measurement and what movement generates the BZ flux and how can we correctly remove it. Following this motivation, the movement of moving blood cells (MBC's) is decomposed into a net translation and a random wondering based on in vivo observations. This important step leads to a clear definition of the BZ and net perfusion flux and reveals that subtraction of BZ flux from the normal flux will certainly cause an underestimation of the net flux. Using this decomposition, the relationship between the net, BZ and normal flux is established which leads to the correct formula to recover the net flux from the BZ and normal fluxes. This recovered net flux is shown to be bounded by the normal flux and the normal flux minus the BZ flux. Numerical studies, preliminary phantom model and clinical evaluations manifest that the new approach is more accurate and reasonable at measuring low net fluxes. In contrast, subtracting BZ flux causes a systematic underestimation of perfusion and is apparently inappropriate even from a methodological point of view. In addition to the novel BZ solution, a general density function of the speed of MBC's is given which is more faithful than the Maxwell density used in [4]. This general density function offers new possibilities for further theoretical developments in LDF. PMID:9509751

  3. Vibration transmissibility on rifle shooter: A comparison between accelerometer and laser Doppler vibrometer data

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.

    2014-05-01

    The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.

  4. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Chan, V. S. S.; Turner, J. T.

    2000-10-01

    A three-component laser Doppler anemometry (LDA) system has been employed to investigate the structure of the flow inside the cylinder of a motored internal combustion engine. This model engine was reasonably representative of a typical, single cylinder, spark ignition engine although it did not permit firing. It was equipped with overhead valve gear and optical access was provided in the top and side walls of the cylinder. A principal objective was to study the influence of the inlet port design on the flow within the cylinder during the induction and compression strokes of the engine. Here, it can be noted that results obtained in an unfired engine are believed to be representative of the flow behaviour before combustion occurs in a fired engine (see P.O. Witze, Measurements of the spatial distribution and engine speed dependence of turbulent air motion in an i.c. engine, SAE Paper No. 770220, 1977; Witze, Sandia Laboratory Energy Report, SAND 79-8685, Sandia Laboratories, USA, 1979). Experimental data presented for an inclined inlet port configuration reveal the complex three-dimensional nature of the flow inside the model engine cylinder. Not surprisingly, the results also show that the inclined inlet port created flow conditions more favourable to mixing in the cylinder. Specifically, the inclined inlet flow was found to generate a region with a relatively high shear and strong recirculation zones in the cylinder. Inclining the inlet port also produced a more nearly homogeneous flow structure at top dead centre during the compression stroke. The paper identifies the special difficulties encountered in making the LDA measurements. The experimental findings are examined and the problems that arise in presenting time-varying three-dimensional data of this type are discussed. Finally, the future potential of this experimental approach is explored.

  5. A performance study of a laser Doppler vibrometer for measuring waveforms from piezoelectric transducers.

    PubMed

    Fukushima, Yo; Nishizawa, Osamu; Sato, Haruo

    2009-07-01

    The stresses at transducer contacts were estimated from accurate particle velocity measurements by using a laser Doppler vibrometer (LDV). We then evaluated the performance of LDV for ultrasonic waveform measurements in physical model experiments that are employed for modeling seismic observations. For such experiments, the characteristics of the source and detector should be exactly known. Disc-shaped compression and shear-mode piezoelectric transducers were attached on a flat surface of a steel semicircular column, and ultrasonic waves were excited by single-shot sine waves with 0.25, 0.5, and 1 MHz frequencies. Radial and transverse components were measured by LDV at a distance of 150 mm from the source. The maximum amplitudes of waves with respect to radiation angle give a radiation pattern of a transducer. Each observed radiation pattern was fitted to the calculated radiation pattern by assuming a harmonically oscillating stress distributed uniformly on a flat circular area. The observed radiation patterns show fairly good agreement with the calculated radiation patterns for both radial and transverse components when the source frequencies are 0.25 and 0.5 MHz. Because the best-fit stress values were independently estimated from the radial and the transverse radiation patterns, the 2 stress values should be equal for each source and frequency. The discrepancy between the estimated radial and transverse stress values becomes larger as the source frequency increases. Provided that coincidence of the 2 stress values indicates the validity of waveform measurements, the results suggest that LDV is applicable for measuring the 3-D particle-velocity at frequencies up to 0.5 MHz. PMID:19574154

  6. Fractal scaling of laser Doppler flowmetry time series in patients with essential hypertension.

    PubMed

    Esen, Ferhan; Cağlar, Sayin; Ata, Necmi; Ulus, Taner; Birdane, Alpaslan; Esen, Hamza

    2011-11-01

    The full diagnostic potential of the fractal complexity measure, α, of detrended fluctuation analysis (DFA) has not been realized yet. To reveal the impaired mechanisms in the blood flow regulation in patients with essential hypertension (EHT), we studied the laser Doppler flowmetry (LDF) time series by applying DFA. Forearm microvascular blood flow was measured by LDF during supine rest. After a 15 min baseline recording, microvascular response to thermal hyperemia was measured over 30 min. We found three distinct scaling regions; corresponding to the integration of local mechanisms, cardiac effect on local blood flow, and the coupling of extrinsic factors (cardiac and respiratory) to local blood flow by myogenic mechanism. In the control group, local scaling exponent, α(L)=0.96 ± 0.08, did not change but cardiac scaling exponent, α(C)=1.53 ± 0.05, for baseline signal was increased to α(CT)=1.73 ± 0.10 and cardio-respiratory scaling exponent, α(CR)=0.73 ± 0.19, was decreased to α(CRT)=0.24 ± 0.06 during vasodilatation in response to local heating. However, we found significantly different scaling exponents, α(LT)<1, α(CT) ≥ α(C)<1.5 and α(CR) ≈ α(CRT)>0.5 in patients with EHT. Our findings suggest that the local regulatory and the cushioning peripheral vascular functions are impaired in patients with EHT, and vascular/microvascular pathology can be evaluated by applying DFA to LDF signal. PMID:21854788

  7. Correlation of laser-Doppler-velocity measurements and endothelial cell shape in a stenosed dog aorta.

    PubMed

    Liepsch, D W; Levesque, M; Nerem, R M; Moravec, S T

    1988-01-01

    Laser-Doppler-velocity measurements were carried out in an elastic 1:1 true-to-scale silicone rubber model of a dog aorta with stenosis. The model was constructed from a cast of a severely stenosed dog aorta (71% of its area). The stenosis in the dog aorta was prepared by wrapping a cotton band around the aorta. This band was tightened until the presence of a thrill or a bruit was felt distal to the band. Twelve weeks later the animal was sacrificed and a cast was prepared from the aorta. From this vascular cast, the cross-sectional area was calculated. Endothelial cell geometry and orientation was studied using computerized analysis to determine the cell area and shape index. An elastic silicone rubber model was prepared from the cast to measure the velocity profiles and to estimate the local wall shear stress. Velocity measurements were done at steady and pulsatile flow using a Newtonian aqueous-glycerol solution and a non-Newtonian blood-like fluid. From those velocity measurements the velocity gradients near the wall were determined and the shear stress calculated. The flow distal to the stenosis separates from the wall at physiological conditions. The endothelial cells are smaller and more elongated in the throat; distal to the stenosis they are larger and rounder. The shape index distribution along the stenosed aorta is correlated with the level of wall shear stress. It is shown that even low changes in the wall shear stress have an influence on the orientation of the endothelial cells. PMID:2977525

  8. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  9. Methodology for Intraoperative Laser Doppler Vibrometry Measurements of Ossicular Chain Reconstruction

    PubMed Central

    Sokołowski, Jacek; Lachowska, Magdalena; Bartoszewicz, Robert; Niemczyk, Kazimierz

    2016-01-01

    Objectives Despite the increasing number of research concerning the applications of the Laser Doppler Vibrometry (LDV) in medicine, its usefulness is still under discussion. The aim of this study is to present a methodology developed in our Department for the LDV intraoperative assessment of ossicular chain reconstruction. Methods Ten patients who underwent “second look” tympanoplasty were involved in the study. The measurements of the acoustic conductivity of the middle ear were performed using the LDV system. Tone bursts with carrier frequencies of 500, 1,000, 2,000, and 4,000 Hz set in motion the ossicular chain. The study was divided into four experiments that examined the intra- and interindividual reproducibility, the utility of the posterior tympanotomy, the impact of changes in the laser beam angle, and the influence of reflective tape presence on measurements. Results There were no statistically significant differences between the two measurements performed in the same patient. However, interindividual differences were significant. In all cases, posterior tympanotomy proved to be useful for LDV measurements of the ossicular prosthesis vibrations. In most cases, changing the laser beam angle decreased signal amplitude about 1.5% (not significant change). The reflective tape was necessary to achieve adequate reflection of the laser beam. Conclusion LDV showed to be a valuable noncontact intraoperative tool for measurements of the middle ear conductive system mobility with a very good intraindividual repeatability. Neither a small change in the angle of the laser beam nor performing the measurements through posterior tympanotomy showed a significant influence on the results. Reflective tape was necessary to obtain good quality responses in LDV measurements. PMID:27090282

  10. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-09-01

    We show that with spatially incoherent illumination, the point spread function width of an imaging interferometer like that used in full-field optical coherence tomography (FFOCT) is almost insensitive to aberrations that mostly induce a reduction of the signal level without broadening. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis, numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such result has been demonstrated.

  11. Partially coherent illumination in full-field interferometric synthetic aperture microscopy.

    PubMed

    Marks, Daniel L; Davis, Brynmor J; Boppart, Stephen A; Scott Carney, P

    2009-02-01

    A model is developed for optical coherence tomography and interferometric synthetic aperture microscopy (ISAM) systems employing full-field frequency-scanned illumination with partial spatial coherence. This model is used to derive efficient ISAM inverse scattering algorithms that give diffraction-limited resolution in regions typically regarded as out of focus. Partial spatial coherence of the source is shown to have the advantage of mitigating multiple-scattering effects that can otherwise produce significant artifacts in full-field coherent imaging. PMID:19183692

  12. The Use Of Full-Field XRF For Simultaneous Elemental Mapping

    SciTech Connect

    Alfeld, M.; Janssens, K.; Sasov, A.; Liu, X.; Kostenko, A.; Rickers-Appel, K.; Falkenberg, G.

    2010-04-06

    The characteristics of a Full-Field X-ray Fluorescence (FF-XRF) set-up for element-specific imaging, installed at the HASYLAB synchrotron radiation source, were determined. A lateral resolution of 10 {mu}m and limits of detection in the percentage range were found. Further potential developments in CCDs available for FF-XRF are discussed and the use of polycapillary lenses as image transfer optics is illustrated in some explorative experiments.

  13. Integration of a laser doppler vibrometer and adaptive optics system for acoustic-optical detection in the presence of random water wave distortions

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.

    2016-05-01

    A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.

  14. Early Venous Occlusion Detection in a Free Flap Using Real-time Laser Doppler Imaging

    PubMed Central

    Alkhashnam, Héba; Sarfati, Benjamin; Kolb, Frédéric

    2013-01-01

    Summary: Early detection of venous occlusion in free flaps is particularly difficult to identify, and its duration is known to be directly proportional to flap mortality. Here, we report a case of deep inferior epigastric perforator based breast reconstruction in which the intraoperative use of a perfusion camera enabled identifying a venous occlusion based on microcirculatory pulsation dynamics in real time. The sensitivity of our proposed method suggests that in certain cases in which the onset of venous occlusion begins in the operating room we can detect and treat occlusion before sending the patient to recovery. Further development of this technique will allow for earlier and more objective decision making with regard to venous occlusion detection in free tissue transfer. PMID:25289200

  15. Three-channel three-dimensional self-mixing thin-slice solid-state laser-Doppler measurements

    SciTech Connect

    Ohtomo, Takayuki; Sudo, Seiichi; Otsuka, Kenju

    2009-01-20

    We report successful real-time three-channel self-mixing laser-Doppler measurements with extreme optical sensitivity using a laser-diode-pumped thin-slice Nd:GdVO4 laser in the carrier-frequency-division-multiplexing scheme with three pairs of acoustic optical modulators (i.e., frequency shifters) and a three-channel FM-wave demodulation circuit. We demonstrate (1) simultaneous independent measurement of three different nanometer-vibrating targets, (2) simultaneous measurements of small particles in Brownian motion from three directions, and (3) identification of the velocity vector of small particles moving in water flowing in a small-diameter glass pipe.

  16. Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring.

    PubMed

    Kuwabara, K; Higuchi, Y; Ogasawara, T; Koizumi, H; Haga, T

    2014-01-01

    A new appcessory for monitoring peripheral blood flow in daily life consists of a wearable laser Doppler sensor device and a cooperating smart phone application. Bluetooth Low Energy connects them wirelessly. The sensor device features ultralight weight of 15 g and an intermittent signal processing technique that reduces power consumption to only 7 mW at measurement intervals of 0.1 s. These features enable more than 24-h continuous monitoring of peripheral blood flow in daily life, which can provide valuable vital-sign information for healthcare services. PMID:25571431

  17. Effect of clenbuterol on cardiopulmonary parameters and intramuscular blood flow by laser Doppler flowmetry in anesthetized ponies

    NASA Astrophysics Data System (ADS)

    Lee, Yong H.; Clarke, Kathleen W.; Alibhai, Hatim I. K.

    1994-09-01

    The cardiopulmonary affects and the affects on muscular microperfusion of the beta adrenergic agonist, clenbuterol (0.8 mcg/kg intravenously), were investigated in dorsally recumbent anesthetized ponies. Muscle microcirculation was measured by laser Doppler flowmetry, utilizing fine optical fiber probes. Other measurements included heart rate, cardiac output, arterial blood pressure, and arterial blood gas tensions. Clenbuterol injection caused a regular, but transitory rise in muscle microcirculation, an increase in heart rate, and cardiac output and a decrease in mean arterial blood pressure. Clenbuterol did appear to prevent the continuing fall in arterial blood oxygen tensions seen in the treatment groups, but had only minimal affects in reversing the hypoxia already present.

  18. Velocity surveys in a turbine stator annular-cascade facility using laser Doppler techniques. [flow measurement and flow characteristics

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Seasholtz, R. G.; Mclallin, K. L.

    1976-01-01

    A laser Doppler velocimeter (LDV) was used to determine the flow conditions downstream of an annular cascade of stator blades operating at an exit critical velocity ratio of 0.87. Two modes of LDV operation (continuous scan and discrete point) were investigated. Conventional pressure probe measurements were also made for comparison with the LDV results. Biasing errors that occur in the LDV measurement of velocity components were also studied. In addition, the effect of pressure probe blockage on the flow conditions was determined with the LDV. Photographs and descriptions of the test equipment used are given.

  19. Evaluation of a dual beam laser Doppler displacement meter retrofitted to a coordinate measuring machine. Final report

    SciTech Connect

    Ramsdale, S.J.; Hanshaw, R.A.

    1997-05-01

    A dual beam laser Doppler displacement measuring system was mounted to a fixed-table, cantilever-type coordinate measuring machine (CMM) to establish the feasibility of real time angular error correction for each CMM axis. The performance improvement was evaluated relative to the CMM`s standard scales. The dual beam system proved to have no advantage over a single beam laser due to an inability to measure the actual angular errors at the probe location, but showed potential for substantial accuracy improvement over the standard CMM scales when geometry errors were software corrected.

  20. Non-mechanical scanning laser Doppler velocimetry with sensitivity to direction of transverse velocity component using optical serrodyne frequency shifting

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Watanabe, Kento

    2014-05-01

    This paper proposes a non-mechanical axial scanning laser Doppler velocimeter (LDV) with sensitivity to the direction of the transverse velocity component using optical serrodyne frequency shifting. Serrodyne modulation via the electro-optic effect of a LiNbO3 (LN) phase shifter is employed to discriminate the direction of the transverse velocity component. The measurement position is scanned without any moving mechanism in the probe by changing the wavelength of the light input to the probe. The experimental results using a sensor probe setup indicate that both the scan of the measurement position and the introduction of directional sensitivity are successfully demonstrated.

  1. Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing

    NASA Astrophysics Data System (ADS)

    Casaccia, Sara; Sirevaag, Erik J.; Richter, Edward; O'Sullivan, Joseph A.; Scalise, Lorenzo; Rohrbaugh, John W.

    2014-05-01

    The principal goal of this study was to assess the capability of the laser Doppler vibrometry (LDV) method for assessing cardiovascular activity. A rebreathing task was used to provoke changes within individuals in cardiac and vascular performance. The rebreathing task is known to produce multiple effects, associated with changes in autonomic drive as well as alterations in blood gases. The rise in CO2 (hypercapnia), in particular, produces changes in the cerebral and systemic circulation. The results from a rebreathing task (involving rebreathing the same air in a rubber bag) are presented for 35 individuals. The LDV pulse was measured from a site overlying the carotid artery. For comparison and validation purposes, several conventional measures of cardiovascular function were also obtained, with an emphasis on the electrocardiogram (ECG), continuous blood pressure (BP) from the radial artery, and measures of myocardial performance using impedance cardiography (ICG). During periods of active rebreathing, ventilation increased. The conventional cardiovascular effects included increased mean arterial BP and systemic vascular resistance, and decreased cardiac stroke volume (SV) and pulse transit time (PTT). These effects were consistent with a pattern of α-adrenergic stimulation. During the immediate post-rebreathing segments, in contrast, mean BP was largely unaffected but pulse BP increased, as did PTT and SV, whereas systemic vascular resistance decreased-a pattern consistent with β-adrenergic effects in combination with the direct effects of hypercapnia on the vascular system. Measures of cardiovascular activity derived from the LDV pulse velocity and displacement waveforms revealed patterns of changes that mirrored the results obtained using conventional measures. In particular, the ratio of the maximum early peak in the LDV velocity pulse to the maximum amplitude of the LDV displacement pulse (in an early systolic interval) closely mirrored the conventional

  2. Investigation of laser Doppler anemometry in developing a velocity-based measurement technique

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won

    2009-12-01

    Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple

  3. Laser Doppler vibrometer: unique use of DOE/Taguchi methodologies in the arena of pyroshock (10 to 100,000 HZ) response spectrum

    NASA Astrophysics Data System (ADS)

    Litz, C. J., Jr.

    1994-09-01

    Discussed is the unique application of design of experiment (DOE) to structure and test a Taguchi L9 (32) factorial experimental matrix (nine tests to study two factors, each factor at three levels), utilizing an HeNe laser Doppler vibrometer and piezocrystal accelerometers to monitor the explosively induced vibrations through the frequency range of 10 to 105 Hz on a flat steel plate (96 X 48 X 0.25 in.). An initial discussion is presented of pyrotechnic shock, or pyroshock, which is a short-duration, high-amplitude, high-frequency transient structural response in aerospace vehicle structures following firing of an ordnance item to separate, sever missile skin, or release a structural member. The development of the shock response spectra (SRS) is detailed. The use of a laser doppler for generating velocity- acceleration-time histories near and at a separation distance from the explosive and the resulting generated shock response spectra plots is detailed together with the laser doppler vibrometer setup as used. The use of DOE/Taguchi as a means of generating performance metrics, prediction equations, and response surface plots is presented as a means to statistically compare and rate the performance of the NeHe laser Doppler vibrometer with respect to two different piezoelectric crystal accelerometers of the contact type mounted directly to the test plate at the frequencies in the 300, 3000, and 10,000 Hz range. Specific constructive conclusions and recommendations are presented on the totally new dimension of understanding the pyroshock phenomenon with respect to the effects and interrelationships of explosive charge weight, location, and the laser Doppler recording system. The use of these valuable statistical tools on other experiments can be cost-effective and provide valuable insight to aid understanding of testing or process control by the engineering community. The superiority of the HeNe laser Doppler vibrometer performance is demonstrated.

  4. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    SciTech Connect

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  5. [The value of laser Doppler examination of differential diagnosis of the Sudeck syndrome with local osteoporosis after tibia fracture].

    PubMed

    Grys, Grzegorz; Orłowski, Jan; Pomianowski, Stanisław; Sawicki, Grzegorz

    2003-01-01

    The fractures of the shaft of the tibia were analyzed in 120 cases. The level of the osteoporosis in the radiological examination was assessed in comparison to the healthy limb. Osteoporosis was recorded in 60.6% of the cases. The clinical symptoms of the Sudeck syndrome was recorded in 11.25% of the cases. The Laser-Doppler examination was carried out in 120 cases. A standard 3 points measurement was employed: the apex of the toe, the flexion-dorsal part of the foot, and the medial part of the mid tibia length. The examination was done comparatively on both limbs. The pressure used in the occlusion, was 100 mm Hg higher than the pressure on the humeral artery. A faster and higher amplitude post-occlusion circulation reaction in the affected limb, among the patients with an early stage of the clinically diagnosed Sudeck syndrome had been recorded. The outcome is significant statistically. The Laser-Doppler measurement of the microcirculation is a new method and definite conclusions must be draw with caution. However, these results encourage further research. PMID:15052726

  6. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    NASA Astrophysics Data System (ADS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  7. New applications of scanning laser Doppler vibrometry (SLDV) to nondestructive diagnosis of artwork: mosaics, ceramics, inlaid wood, and easel painting

    NASA Astrophysics Data System (ADS)

    Castellini, Paolo; Esposito, Enrico; Marchetti, Barbara; Paone, Nicola; Tomasini, Enrico P.

    2001-10-01

    During the last years the growing importance of the correct determination of the state of conservation of artworks has been stated by all personalities in care of Cultural Heritage. There exist many analytical methodologies and techniques to individuate the physical and chemical characteristics of artworks, but at present their structural diagnostics mainly rely on the expertise of the restorer and the typical diagnostic process is accomplished mainly through manual and visual inspection of the object surface. The basic idea behind the proposed technique is to substitute human senses with measurement instruments: surfaces are very slightly vibrated by mechanical actuators, while a laser Doppler vibrometer scans the objects measuring surface velocity and producing 2D or 3D maps. Where a defect occurs velocity is higher than neighboring areas so defects can be easily spotted. Laser vibrometers also identify structural resonance frequencies thus leading to a complete characterization of defects. This work will present the most recent results coming out of the application of Scanning Laser Doppler Vibrometers (SLDV) to different types of artworks: mosaics, ceramics, inlaid wood and easel painting. Real artworks and samples realized on purpose have been studied using the proposed technique and different measuring issues resulting from each artwork category will be described.

  8. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    SciTech Connect

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than MWNTs

  9. Full field frequency domain common path optical coherence tomography with annular aperture

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.; Friedman, Ron; Liraz, Lior; Dadon, Ronen

    2007-07-01

    Theoretical and experimental results are presented using the common path Mirau interference microscope and using the Linnik microscope with annular masks to increase the depth of field. The competence between the spatial and temporal coherence was investigated theoretically and confirmed experimentally. Phase imaging of onion epidermis cells was presented showing the possibility of obtaining profiles of the cells. Frequency domain OCT was shown to be possible using full field setup.

  10. Full-field interferometric confocal microscopy using a VCSEL array

    PubMed Central

    Redding, Brandon; Bromberg, Yaron; Choma, Michael A.; Cao, Hui

    2014-01-01

    We present an interferometric confocal microscope using an array of 1200 VCSELs coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while the high power of the VCSEL array (~5 mW per laser) enables high-speed image acquisition with integration times as short as 100 µs. Interferometric detection also recovers the phase of the image, enabling quantitative phase measurements and improving the contrast when imaging phase objects. PMID:25078199

  11. Stroboscopic ultrahigh-resolution full-field optical coherence tomography.

    PubMed

    Moneron, G; Boccara, A C; Dubois, A

    2005-06-01

    We present a new technique that produces en face tomographic images with a 10-micros acquisition time per image. The setup consists of an interference microscope with stroboscopic illumination provided by a xenon arc flash lamp (10-micros flashes at 15 Hz). The tomographic images are obtained from two phase-opposed interferometric images recorded simultaneously by two synchronized CCD cameras. Transverse resolution better than 1.0 microm is achieved by use of high-numerical-aperture microscope objectives. The short coherence length of the source yields an axial resolution of 0.9 microm. 3 x 3 pixel binning leads to a detection sensitivity of 71 dB. Our system is suitable for various applications, particularly in biology for in vivo cellular-level imaging. PMID:15981530

  12. Evaluation of the Compressive Response of Notched Composite Panels using a Full-Field Displacement Measurement System

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.; Hanna, T. Glen; McNeill, Stephen R.

    1999-01-01

    An experimental and analytical evaluation of the compressive response of two composite, notched stiffened panels representative of primary composite wing structure is presented. A three-dimensional full-field image correlation technique is used to measure all three displacement components over global and local areas of the test panels. Point-wise and full-field results obtained using the image correlation technique are presented and compared to experimental results and analytical results obtained using nonlinear finite element analysis. Both global and global-local image correlation results are presented and discussed. Results of a simple calibration test of this image correlation technique are also presented.

  13. Halo suppression in full-field x-ray Zernike phase contrast microscopy.

    PubMed

    Vartiainen, Ismo; Mokso, Rajmund; Stampanoni, Marco; David, Christian

    2014-03-15

    Visible light Zernike phase contrast (ZPC) microscopy is a well established method for imaging weakly absorbing samples. The method is also used with hard x-ray photon energies for structural evaluation of material science and biological applications. However, the method suffers from artifacts that are inherent for the Zernike image formation. In this Letter, we investigate their origin and experimentally show how to suppress them in x-ray full-field ZPC microscopy based on diffractive x-ray optics. PMID:24690848

  14. Laser Doppler vibrometry on rotating structures in coast-down: resonance frequencies and operational deflection shape characterization

    NASA Astrophysics Data System (ADS)

    Martarelli, M.; Castellini, P.; Santolini, C.; Tomasini, E. P.

    2011-11-01

    In rotating machinery, variations of modal parameters with rotation speed may be extremely important in particular for very light and undamped structures, such as helicopter rotors or wind turbines. The natural frequency dependence on rotation speed is conventionally measured by varying the rotor velocity and plotting natural frequencies versus speed in the so-called Campbell diagram. However, this kind of analysis does not give any information about the vibration spatial distribution i.e. the mode shape variation with the rotation speed must be investigated with dedicated procedures. In several cases it is not possible to fully control the rotating speed of the machine and only coast-down tests can be performed. Due to the reduced inertia of rotors, the coast-down process is usually an abrupt transient and therefore an experimental technique, able to determine operational deflection shapes (ODSs) in short time, with high spatial density and accuracy, appears very promising. Moreover coast-down processes are very difficult to control, causing unsteady vibrations. Hence, a very efficient approach for the rotation control and synchronous acquisition must be developed. In this paper a continuous scanning system able to measure ODSs and natural frequencies excited during rotor coast-down is shown. The method is based on a laser Doppler vibrometer (LDV) whose laser beam is driven to scan continuously over the rotor surface, in order to measure the ODS, and to follow the rotation of the rotor itself even in coast-down. With a single measurement the ODSs can be recovered from the LDV output time history in short time and with huge data saving. This technique has been tested on a laboratory test bench, i.e. a rotating two-blade fan, and compared with a series of non-contact approaches based on LDV: traditional experimental modal analysis (EMA) results obtained under non-rotating conditions by measuring on a sequence of points on the blade surface excited by an impact

  15. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations.

    PubMed

    Xiao, Peng; Fink, Mathias; Boccara, A Claude

    2016-09-01

    We show that with spatially incoherent illumination, the point spread function (PSF) width/spatial resolution of an imaging interferometer like that used in full-field optical coherence tomography (OCT) is almost insensitive to aberrations. In these systems, aberrations mostly induce a reduction of the signal level that leads to a loss of the signal-to-noise ratio without broadening the system PSF. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis and numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such a result has been demonstrated. PMID:27607937

  16. Laser Doppler velocimetry investigation and numerical prediction of the flowfield in an annular reverse-flow combustor sector

    NASA Astrophysics Data System (ADS)

    Hu, J. T. C.; Cusworth, R. A.; Sislian, J. P.

    A two-component argon-ion laser Doppler velocimetry system operating in the dual-beam, forward scatter mode, was used to measure the mean velocity components and the corresponding normal/shear stresses of a toroidal vortex reverse-flow annular combustor sector. Measurements were obtained for cold flow with or without fuel injection, and for hot flow conditions. The effects of heat addition by combustion on the flow field and the viability of the developed two-dimensional computer code for steady, turbulent compressible flows are discussed, using a two-equation turbulence model for predicting complex combustor flow field. The measured data are useful for further evaluation of combustor modeling computer codes and mathematical modeling of processes inside a practical combustor.

  17. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    SciTech Connect

    Lee, Teaghee; Choi, Jong Woon; Kim, Yong Pyung

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  18. A feasibility study for the detection of upper atmospheric winds using a ground based laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1975-01-01

    A possible measurement program designed to obtain the information requisite to determining the feasibility of airborne and/or satellite-borne LDV (Laser Doppler Velocimeter) systems is discussed. Measurements made from the ground are favored over an airborne measurement as far as for the purpose of determining feasibility is concerned. The expected signal strengths for scattering at various altitude and elevation angles are examined; it appears that both molecular absorption and ambient turbulence degrade the signal at low elevation angles and effectively constrain the ground based measurement of elevation angles exceeding a critical value. The nature of the wind shear and turbulence to be expected are treated from a linear hydrodynamic model - a mountain lee wave model. The spatial and temporal correlation distances establish requirements on the range resolution, the maximum detectable range and the allowable integration time.

  19. Laser Doppler Blood-Flow Signals from Human Teeth during an Alignment and Leveling Movement Using a Superelastic Archwire

    PubMed Central

    Nogueira, Gessé Eduardo Calvo

    2013-01-01

    Objective. The purpose of this study was to examine alterations in blood-flow signals (BFS) from human teeth during an alignment and leveling phase (superelastic wire 0.014′′) in a clinical orthodontic treatment using laser doppler flowmetry (LDF). Materials and Methods. Recordings were made in 12 maxillary left central incisors. The basal value of the BFS from each tooth (without orthodontic forces) was compared with the corresponding values of BFS during four periods of observation: 20 minutes, 48 hours, 72 hours, and one month after the activation of the orthodontic appliance. Results. Statistically significant decrease of BFS was observed at 20 minutes, 48 hours, and 72 hours (P < 0.05). No differences were found comparing BFS on day 30 and the corresponding basal values. Conclusion. Under real clinical conditions, a significant decrease in BFS was verified during the initial phase of the treatment, followed by a recovery on day 30. PMID:24171115

  20. Three-dimensional ray tracing through curvilinear interfaces with application to laser Doppler anemometry in a blood analogue fluid.

    PubMed

    Nugent, Allen H; Bertram, Christopher D

    2010-02-01

    Prediction of the effects of refractive index (RI) mismatch on laser Doppler anemometer (LDA) measurements within a curvilinear cavity (an artificial ventricle) was achieved by developing a general technique for modelling the paths of the convergent beams of the LDA system using 3D vector geometry. Validated by ray tracing through CAD drawings, the predicted maximum tolerance in RI between the solid model and the working fluid was +/- 0.0005, equivalent to focusing errors commensurate with the geometric and alignment uncertainties associated with the flow model and the LDA arrangement. This technique supports predictions of the effects of refraction within a complex geometry. Where the RI mismatch is unavoidable but known, it is possible not only to calculate the true position of the measuring volume (using the probe location and model geometry), but also to estimate degradation in signal quality arising from differential displacement and refraction of the laser beams. PMID:19669821

  1. A low frequency, high amplitude rhythmic fluctuation of laser-Doppler skin blood flow after subarachnoid phenol block.

    PubMed

    Kano, T; Shimoda, O; Gotou, K; Morioka, T

    1993-07-01

    A 51-year-old male with a huge chondrosarcoma received subarachnoid dorsal root blocks with 10% phenol in glycerine to treat severe pain along the left leg. The dermatomes below the Th9 lost all somatic sensation on the left side after the nerve blocks, but the patient was not completely relieved from the pain. Laser-Doppler flowmetry on the toe of the left foot disclosed an increased blood flow and an abnormal fluctuation of the cutaneous capillary blood flow, i.e. a high amplitude rhythmic (HAR) wave with 2.5 to 3 cycles.min-1. The low frequency HAR wave persisted for the subsequent 3 months until a tingling sensation returned to the left leg. It would seem that some travelling roots of the sympathetic nerve were preserved from the chemical neurolysis and the remaining efferent and afferent nerve fibers were responsible for the persisting low frequency HAR wave and pain in the left leg. PMID:8409217

  2. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  3. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  4. Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report

    NASA Technical Reports Server (NTRS)

    Harvey, W. B.; Hobbs, D. E.; Lee, D.; Williams, M. C.; Williams, K. F.

    1982-01-01

    Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency.

  5. Investigations of slip in capillary flow by laser-Doppler velocimetry and their relations to melt fracture

    NASA Astrophysics Data System (ADS)

    Münstedt, Helmut

    2015-04-01

    Flow profiles within a slit capillary are measured by laser-Doppler velocimetry. They allow the direct determination of the slip velocity at the wall. It is demonstrated that the flow profile of the melt of a high density polyethylene (HDPE) already shows slip components at small shear rates. At high shear rates the slip is dominant and a plug flow is found. Furthermore, it is shown that the surface irregularity called "shark skin" is generated at the slit exit by the stretching of surface layers at pronounced elongational rates. These elongational rates are due to the differences between the flow velocities at the wall of the slit and those of the extruded strand. It is shown how "shark skin" may be avoided when the elongational rate is reduced by introducing slip of the melt in the slit using special additives.

  6. Optical biopsy on head and neck tissue using full-field OCT: a pilot study

    NASA Astrophysics Data System (ADS)

    De Leeuw, Frédéric; Latrive, Anne; Casiraghi, Odile; Ferchiou, Malek; Harms, Fabrice; Boccara, Claude; Laplace-Builhé, Corinne

    2014-03-01

    Here we evaluate the clinical value of Full-Field OCT imaging in the management of patients with Head and Neck cancers by making a reliable histological diagnosis on FFOCT images produced during preoperative procedure. FFOCT performs a true "virtual extemporaneous exam" that we want to compare to the gold standard (extemporaneous and conventional histology with H and E staining). This new optical technology could be useful when diagnosing a lesion, cancerous or precancerous, or at the time of its surgical management. Full-Field Optical Coherence Tomography virtually slices the tissue using white light interferometry to produce in-depth 2D images with an isotropic resolution around 1 micrometer. With such a high resolution FFOCT systems produce "optical biopsy" images that are similar to that obtained with classical histology procedures, but without any staining and in only a few minutes. We imaged freshly excised samples from patients, of mouth, tongue, epiglottis and larynx tissues, both healthy and cancerous. FFOCT images were acquired and later compared with histology of the same samples. Common features were identified and characteristics of each tissue type were matched in order to form an image atlas for pathologist training. We were able to identify indicators of tumors such as heterogeneities in cell distribution, surrounding stroma, anomalous keratinization… In conclusion, FFOCT is a fast, non-invasive, non-destructive imaging tool that can be inserted into the pathology lab workflow and can provide a quick assessment of microscopic tissue architecture and content. Furthermore we are developing a similar system with a rigid endoscopic probe in order to do in vivo and in situ high-resolution imaging. Our probe could thus guide the surgeon in real time before and during excision and ensure a more precise gesture.

  7. Intraoperative prediction of ischaemic injury of the bowel: a comparison of laser Doppler flowmetry and tissue oximetry to histological analysis.

    PubMed

    Krohg-Sørensen, K; Line, P D; Haaland, T; Horn, R S; Kvernebo, K

    1992-09-01

    Intraoperative diagnosis of inadequate colonic perfusion would contribute to prevention of ischaemic colitis after abdominal aortic reconstructions. The aim of this study was to evaluate laser Doppler flowmetry (LDF) and tissue oximetry (TpO2) as predictors of the development of bowel necrosis. Devascularised loops of colon and ileum in anaesthetised pigs were divided into 10-20 mm segments and measurements of laser Doppler flux and TpO2 were performed in each segment. After 7 h of ischaemia the segments were resected for histological and biochemical analysis. In 65 colonic and 58 ileal segments a significantly lower flux was found in segments with necrosis of greater than or equal to 30% of the mucosal thickness compared to segments with necrosis of less than or equal to 10% (p less than 0.01). The discriminant flux value was 50 perfusion units, confirming a previous clinical study. The specificity was 0.96 and the sensitivity 0.94. Flux was inversely correlated to tissue lactate concentration. Significantly lower TpO2 was found in 19 colonic segments with necrosis of greater than or equal to 30% of mucosa compared to 19 colonic segments with necrosis of less than or equal to 10% (p less than 0.01). Using a discriminant value of 5kPa, a specificity of 0.79, and a sensitivity of 0.95 were calculated. In 27 ileum segments no significant difference in TpO2 between different histological groups was found (p greater than 0.30). The results show that LDF and TpO2 can predict ischaemic injury of the colon, and LDF also of the small bowel. PMID:1397347

  8. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chen, Defu; Ren, Jie; Wang, Ying; Gu, Ying

    2014-11-01

    Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.

  9. The SLcam: a full-field energy dispersive X-ray camera

    NASA Astrophysics Data System (ADS)

    Bjeoumikhov, A.; Buzanich, G.; Langhoff, N.; Ordavo, I.; Radtke, M.; Reinholz, U.; Riesemeier, H.; Scharf, O.; Soltau, H.; Wedell, R.

    2012-11-01

    The color X-ray camera (SLcam®) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 μm and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 μm. We present a measurement with a laboratory source showing the camera capability to perform fast full-field X-ray Fluorescence (FF-XRF) imaging with an easy, portable and modular setup.

  10. En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition

    NASA Astrophysics Data System (ADS)

    Harms, Fabrice; Dalimier, Eugénie; Boccara, A. Claude

    2014-05-01

    Optical coherence tomography (OCT) has been recently proposed by a number of laboratories as a promising tool for fingerprints acquisitions and for fakes discrimination. Indeed OCT being a non-contact, non-destructive optical method that virtually sections the volume of biological tissues that strongly scatter light it appears obvious to use it for fingerprints. Nevertheless most of the OCT setups have to go through the long acquisition of a full 3D image to isolate an "en-face" image suitable for fingerprint analysis. A few "en-face" OCT approaches have been proposed that use either a complex 2D scanning setup and image processing, or a full-field illumination using a camera and a spatially coherent source that induces crosstalks and degrades the image quality. We show here that Full Field OCT (FFOCT) using a spatially incoherent source is able to provide "en-face" high quality optical sectioning of the fingers skin. Indeed such approach shows a unique spatial resolution able to reveal a number of morphological details of fingerprints that are not seen with competing OCT setups. In particular the cellular structure of the stratum corneum and the epidermis-dermis interface appear clearly. We describe our high-resolution (1 micrometer, isotropic) setup and show our first design to get a large field of view while keeping a good sectioning ability of about 3 micrometers. We display the results obtained using these two setups for fingerprints examination.

  11. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  12. Application of full field optical studies for pulsatile flow in a carotid artery phantom

    PubMed Central

    Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.

    2015-01-01

    A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652

  13. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  14. High-resolution full-field optical coherence microscopy using a broadband light-emitting diode.

    PubMed

    Ogien, Jonas; Dubois, Arnaud

    2016-05-01

    High-resolution full-field optical coherence microscopy (FF-OCM) is demonstrated using a single broadband light-emitting diode (LED). The characteristics of the LED-illumination FF-OCM system are measured and compared to those obtained using a halogen lamp, the light source of reference in FF-OCM. Both light sources yield identical performance in terms of spatial resolution and detection sensitivity, using the same setup and camera. In particular, an axial resolution of 0.7 μm (in water) is reached. A Xenopus laevis tadpole and ex-vivo human skin have been imaged using both sources, resulting in similar images, showing for the first time that LEDs could favorably replace halogen lamps in high-resolution FF-OCM for biomedical imaging. PMID:27137603

  15. Automatic exposure control for a slot scanning full field digital mammography system

    SciTech Connect

    Elbakri, Idris A.; Lakshminarayanan, A.V.; Tesic, Mike M.

    2005-09-15

    Automatic exposure control (AEC) is an important feature in mammography. It enables consistently optimal image exposure despite variations in tissue density and thickness, and user skill level. Full field digital mammography systems cannot employ conventional AEC methods because digital receptors fully absorb the x-ray beam. In this paper we describe an AEC procedure for slot scanning mammography. With slot scanning detectors, our approach uses a fast low-resolution and low-exposure prescan to acquire an image of the breast. Tube potential depends on breast thickness, and the prescan histogram provides the necessary information to calculate the required tube current. We validate our approach with simulated prescan images and phantom measurements. We achieve accurate exposure tracking with thickness and density, and expect this method of AEC to reduce retakes and improve workflow.

  16. Full-field OCT for fast diagnostic of head and neck cancer

    NASA Astrophysics Data System (ADS)

    De Leeuw, Frederic; Casiraghi, Odile; Ben Lakhdar, Aïcha; Abbaci, Muriel; Laplace-Builhé, Corinne

    2015-02-01

    Full-Field OCT (FFOCT) produces optical slices of tissue using white light interferometry providing in-depth 2D images, with an isotropic resolution around 1 micrometer. These optical biopsy images are similar to those obtained with established histological procedures, but without tissue preparation and within few minutes. This technology could be useful when diagnosing a lesion or at the time of its surgical management. Here we evaluate the clinical value of FFOCT imaging in the management of patients with Head and Neck cancers by assessing the accuracy of the diagnosis done on FFOCT images from resected specimen. FFOCT images from Head and Neck samples were first compared to the gold standard (HES-conventional histology). An image atlas dedicated to the training of pathologists was built and diagnosis criteria were identified. Then, we performed a morphological correlative study: both healthy and cancerous samples from patients who undergo Head and Neck surgery of oral cavity, pharynx, and larynx were imaged. Images were interpreted in a random way by two pathologists and the FFOCT based diagnostics were compared with HES (gold standard) of the same samples. Here we present preliminary results showing that FFOCT provides a quick assessment of tissue architecture at microscopic level that could guide surgeons for tumor margin delineation during intraoperative procedure.

  17. Scatter radiation intensities around full-field digital mammography units.

    PubMed

    Judge, M A; Keavey, E; Phelan, N

    2013-01-01

    The aim of this study was to investigate the scatter radiation intensity around digital mammography systems and apply these data to standard shielding calculations to reveal whether shielding design of existing breast screening rooms is adequate for the use of digital mammography systems. Three digital mammography systems from GE Healthcare, Hologic and Philips were employed in the study. A breast-equivalent phantom was imaged under clinical workload conditions and scatter radiation intensities around the digital mammography systems were measured for a range of angles in three planes using an ionisation chamber. The results were compared with those from previous studies of film-screen systems. It may be deduced from the results that scattering in the backward direction is significant for all three systems, while scattering in the forward direction can be significant for some planes around the GE and Hologic systems. Measurements at typical clinical settings on each system revealed the Philips system to have markedly lower scatter radiation intensities than the other systems. Substituting the measured scattered radiation intensity into shielding calculations yielded barrier requirements similar to those already in place at the screening centres operating these systems. Current radiation protection requirements based on film-screen technology remain sufficient when applied to rooms with digital mammography installations and no alteration is required to the structural shielding. PMID:23239693

  18. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology

    NASA Astrophysics Data System (ADS)

    Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.

    2012-03-01

    Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.

  19. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    SciTech Connect

    Norton, D.L.; Glass, R.J.

    1992-12-31

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media.

  20. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  1. Investigation of a laser Doppler velocimeter system to measure the flow field of a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    An experimental research program for measuring the flow field around a 70 percent scale V/STOL aircraft model in ground effect is described. The velocity measurements were conducted with a ground-based laser Doppler velocimeter at an outdoor test pad. The remote sensing instrumentation, experimental tests, and results of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain, the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft heights above ground. The study shows that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  2. Accurate Full-Field Thermochromic Liquid Crystal Thermography for the Study of Instantaneous Turbulent Heat Transfer

    NASA Astrophysics Data System (ADS)

    Sabatino, D. R.; Praisner, T. J.; Smith, C. R.

    1998-11-01

    The color change of thermochromic liquid crystals with temperature can be effectively utilized as full-field surface temperature sensors to investigate the fundamental structure of wall turbulence. In order to accurately quantify turbulent heat transfer behavior, a new technique has been developed for the calibration of wide-band micro-encapsulated thermochromic liquid crystals. Lighting/viewing arrangements are described and evaluated for ease of implementation and accuracy of the displayed color. This new technique employs images recorded in-situ with the test surface systematically exposed to a series of uniform temperature conditions spanning the bandwidth of the liquid crystals. This sequence of images is used to generate point-wise color/temperature calibration curves for the entire surface. Experimental results will be presented illustrating the application of the technique for assessment of spatial/temporal surface heat transfer behavior due to selected turbulent flows in a water channel

  3. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    SciTech Connect

    Liu, Y.; Andrews, J. C.; Mehta, A.; Pianetta, P.; Meirer, F.; Gil, S. Carrasco; Sciau, P.; Mester, Z.

    2011-09-09

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  4. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  5. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography

    SciTech Connect

    Safrani, Avner; Abdulhalim, Ibrahim

    2011-06-20

    Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

  6. A High Resolution Full Field Transmission X-ray Microscope at SSRL

    SciTech Connect

    Luening, Katharina; Pianetta, Piero; Yun Wenbing; Almeida, Eduardo; Meulen, Marjolein van der

    2007-01-19

    The Stanford Synchrotron Radiation Laboratory (SSRL) in collaboration with Xradia Inc., the NASA Ames Research Center and Cornell University is implementing a commercial hard x-ray full field imaging microscope based on zone plate optics on a wiggler beam line on SPEAR3. This facility will provide unprecedented analytical capabilities for a broad range of scientific areas and will enable research on nanoscale phenomena and structures in biology as well as materials science and environmental science. This instrument will provide high resolution x-ray microscopy, tomography, and spectromicroscopy capabilities in a photon energy range between 5-14 keV. The spatial resolution of the TXM microscope is specified as 20 nm exploiting imaging in third diffraction order. This imaging facility will optimally combine the latest imaging technology developed by Xradia Inc. with the wiggler source characteristics at beam line 6-2 at SSRL. This will result in an instrument capable of high speed and high resolution imaging with spectral tunability for spectromicroscopy, element specific and Zernike phase contrast imaging. Furthermore, a scanning microprobe capability will be integral to the system thus allowing elemental mapping and fluorescence yield XANES to be performed with a spatial resolution of about 1 {mu}m without introducing any changes to the optical configuration of the instrument.

  7. A High Resolution Full Field Transmission X-ray Microscope at SSRL

    NASA Astrophysics Data System (ADS)

    Lüning, Katharina; Pianetta, Piero; Yun, Wenbing; Almeida, Eduardo; van der Meulen, Marjolein

    2007-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) in collaboration with Xradia Inc., the NASA Ames Research Center and Cornell University is implementing a commercial hard x-ray full field imaging microscope based on zone plate optics on a wiggler beam line on SPEAR3. This facility will provide unprecedented analytical capabilities for a broad range of scientific areas and will enable research on nanoscale phenomena and structures in biology as well as materials science and environmental science. This instrument will provide high resolution x-ray microscopy, tomography, and spectromicroscopy capabilities in a photon energy range between 5-14 keV. The spatial resolution of the TXM microscope is specified as 20 nm exploiting imaging in third diffraction order. This imaging facility will optimally combine the latest imaging technology developed by Xradia Inc. with the wiggler source characteristics at beam line 6-2 at SSRL. This will result in an instrument capable of high speed and high resolution imaging with spectral tunability for spectromicroscopy, element specific and Zernike phase contrast imaging. Furthermore, a scanning microprobe capability will be integral to the system thus allowing elemental mapping and fluorescence yield XANES to be performed with a spatial resolution of about 1 μm without introducing any changes to the optical configuration of the instrument.

  8. High efficiency for prostate biopsy qualification with full-field OCT after training

    NASA Astrophysics Data System (ADS)

    Yang, C.; Ricco, R.; Sisk, A.; Duc, A.; Sibony, M.; Beuvon, F.; Dalimier, E.; Delongchamps, N. B.

    2016-02-01

    Full-field optical coherence tomography (FFOCT) offers a fast and non-destructive method of obtaining images of biological tissues at ultrahigh resolution, approaching traditional histological sections. In the context of prostate cancer diagnosis involving multiple biopsies, FFOCT could be used to validate the cores just after they are obtained in order to guide the number of biopsies to be performed. The aim of the study was to define and test a training protocol for efficient FFOCT prostate biopsy assessment. Three readers (a pathologist with previous experience with FFOCT, a pathologist new to FFOCT, and a urologist new to FFOCT) were trained to read FFOCT images of prostate biopsies on a set of 20 commented zooms (1 mm field of view) and 25 complete images. They were later tested on a set of 115 anonymized and randomized images of prostate biopsies. The results showed that an extra 30 images were necessary for more complete training as compared to prior studies. After training, pathologists obtained 100% sensitivity on high-grade cancer detection and 96% overall specificity; the urologist obtained 88% sensitivity on high-grade cancer and 89% overall specificity. Overall, the readers obtained a mean of 93% accuracy of qualifying malignancy on prostate biopsies. Moreover, the two pathologists showed a steeper learning curve than the urologist. This study demonstrates that a training protocol for such a new imaging modality may be implemented and yield very high efficiency for the pre-histologic detection of malignancy on prostate biopsies.

  9. Fast full-field OCT assessment of clinical tissue specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dalimier, Eugénie; Harms, Fabrice; Brossolet, Charles; Benoit, Emilie; Martins, Franck; Boccara, Claude

    2016-03-01

    Full-field optical coherence tomography (FFOCT) offers a non-invasive method of obtaining images of biological tissues at ultrahigh resolution (1µm in all 3 directions) approaching traditional histological sections. Previous clinical studies have shown the high efficiency of this imaging technique for the detection of cancer on various organs. This promises great potential of the technique for an ex-vivo quick analysis of surgical resections or biopsy specimens, in the aim to help the surgeon/radiologist decide on the course of action. Here we will present some of the latest technical developments on a FFOCT system which can produce 1cm2 images with 1 µm resolution in 1 minute. Larger samples, up to 50mm diameter, can also be imaged. Details on the large sample handling, high-speed image acquisition, optimized scanning, and accelerated GPU tiles stitching will be given. Results on the clinical applications for breast, urology, and digestive tissues will also be given. They highlight the relevance of the system characteristics for the detection of cancer on ex-vivo specimens. FFOCT now appears clearly as a very fast and non-destructive imaging technique that provides a quick assessment of the tissue morphology. With the benefit of both new technical developments and clinical validation, it turned into a mature technique to be implemented in the clinical environment. In particular, the technique holds potential for the fast ex-vivo analysis of excision margins or biopsies in the operating room.

  10. Spontaneous laser doppler flux distribution in ischemic ulcers and the effect of prostanoids: a crossover study comparing the acute action of prostaglandin E1 and iloprost vs saline.

    PubMed

    Gschwandtner, M E; Koppensteiner, R; Maca, T; Minar, E; Schneider, B; Schnürer, G; Ehringer, H

    1996-01-01

    The flux distribution within ischemic ulcers and adjacent skin and its change by prostanoids was investigated using laser Doppler flux scanning. A prostanoid-induced increase in ulcer flux could be a rationale for the improved wound healing. In a single-blind prospective study 18 patients received prostaglandin E1 (PGE1) (333.3 ng/min.), iloprost (41.7 ng/min final dose), and 0.9% saline in a randomized order. The average laser Doppler flux within the ulcer (LFU, x +/- SEM, arbitrary units) or in the adjacent skin (LFS) was evaluated before and 30, 60, 90, and 120 min after prostanoid/saline infusion. LFU increased with PGE1 from 2.30 +/- 0.27 to 3.08 +/- 0.31 (+33.9%; P < 0.001) and with iloprost from 2.37 +/- 0.26 to 3.03 +/- 0.27 (+27.8%; P < 0.001) after 120 min, respectively. Saline did not change LFU significantly: 2.19 +/- 0.18 vs 2.55 +/- 0.26 (+16.4%; P > 0.05). Simultaneously, LFS was not significantly changed when pretreatment values were compared with mean flux at 120 min: PGE1 2.13 +/- 0.27 vs 2.54 +/- 0.34, iloprost 2.03 +/- 0.26 vs 1.94 +/- 0.21, and saline 1.74 +/- 0.27 vs 1.92 +/- 0.30 (P > 0.05, each), respectively. The laser Doppler flux scanning technique might be a tool to study the distribution of laser Doppler flux within ischemic ulcers. This might be useful to study the physiological or pathophysiological control of flux within ischemic ulcers as well as possible therapeutic approaches. PMID:8812752

  11. Fabrication of defect-free full-field pixelated phase mask

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hao; Farnsworth, Jeff; Kwok, Wai; Jamieson, Andrew; Wilcox, Nathan; Vernon, Matt; Yung, Karmen; Liu, Yi-Ping; Kim, Jun; Frendberg, Eric; Chegwidden, Scott; Schenker, Richard; Borodovsky, Yan

    2008-03-01

    Pixelated phase masks rendered from computational lithography techniques demand one generation-ahead mask technology development. In this paper, we reveal the accomplishment of fabricating Cr-less, full field, defect-free pixilated phase masks, including integration of tapeout, front-end patterning and backend defect inspection, repair, disposition and clean. This work was part of a comprehensive program within Intel which demonstrated microprocessor device yield. To pattern mask pixels with lateral sizes <100nm and vertical depth of 170nm, tapeout data management, ebeam write time management, aggressive pattern resolution scaling, etch improvement, new tool insertion and process integration were co-optimized to ensure good linearity of lateral, vertical dimensions and sidewall angle of glass pixels of arbitrary pixelated layout, including singlets, doublets, triplets, touch-corners and larger scale features of structural tones including pit/trench and pillar/mesa. The final residual systematic mask patterning imperfections were corrected and integrated upstream in the optical model and design layout. The volume of 100nm phase pixels on a full field reticle is on the order tera-scale magnitude. Multiple breakthroughs in backend mask technology were required to achieve a defect free full field mask. Specifically, integration of aerial image-based defect inspection, 3D optical model-based high resolution ebeam repair and disposition were introduced. Significant reduction of pixel mask specific defect modes, such as electro static discharge and glass pattern collapse, were executed to drive defect level down to single digit before attempt of repair. The defect printability and repair yield were verified downstream through silicon wafer print test to validate defect free mask performance.

  12. Scanning Laser Doppler Vibrometer Measurements Inside Helicopter Cabins in Running Conditions: Problems and Mock-up Testing

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Castellini, P.; Chiariotti, P.; Tomasini, E. P.; Cenedese, F.; Perazzolo, A.

    2010-05-01

    The present work deals with the analysis of problems and potentials of laser vibrometer measurements inside helicopter cabins in running conditions. The paper describes the results of a systematic measurement campaign performed on an Agusta A109MKII mock-up. The aim is to evaluate the applicability of Scanning Laser Doppler Vibrometer (SLDV) for tests in simulated flying conditions and to understand how performances of the technique are affected when the laser head is placed inside the cabin, thus being subjected to interfering inputs. Firstly a brief description of the performed test cases and the used measuring set-ups are given. Comparative tests between SLDV and accelerometers are presented, analyzing the achievable performances for the specific application. Results obtained measuring with SLDV placed inside the helicopter cabin during operative excitation conditions are compared with those performed with the laser lying outside the mock-up, these last being considered as "reference measurements". Finally, in order to give an estimate of the uncertainty level on measured signals, a study linking the admitted percentage of noise content on vibrometer signals due to laser head vibration levels will be introduced.

  13. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    NASA Astrophysics Data System (ADS)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  14. Correlation between fluorescein flowmetry and laser Doppler flowmetry. A study in the intestine (ileoanal pouch) in man.

    PubMed

    Perbeck, L; Lindquist, K; Proano, E; Liljeqvist, L

    1990-05-01

    A study was undertaken to compare two new methods of capillary blood flow measurement, namely fluorescein flowmetry (FF) and laser Doppler flowmetry (LDF). The blood flow was measured in a pelvic pouch during its construction and in the completed ileoanal anastomosis in 12 patients. There was a high correlation between the two methods (correlation coefficient, 0.78) (p less than 0.01) when the blood flow was measured in the pelvic pouch. The correlation coefficient between the two methods for the difference between the blood flow in the pelvic pouch at the site of the planned anastomosis when the pouch resided in the abdomen and that in the completed ileoanal anastomosis was r = 0.99 (n = 12, p less than 0.001); the reduction amounted to 25% as measured by FF and 27% as measured by LDF (n = 12, p less than 0.01). All ileoanal anastomoses healed perfectly, the lowest FF and LDF values being 0.004 density units/sec and 0.3 V, respectively. The results indicate that either method can be considered for measuring capillary blood flow. PMID:2163097

  15. Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations:comparison of results from different numerical methods

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Buard, Benjamin; Mahé, Guillaume; Chapeau-Blondeau, François; Rousseau, David; Abraham, Pierre

    2010-10-01

    To contribute to the understanding of the complex dynamics in the cardiovascular system (CVS), the central CVS has previously been analyzed through multifractal analyses of heart rate variability (HRV) signals that were shown to bring useful contributions. Similar approaches for the peripheral CVS through the analysis of laser Doppler flowmetry (LDF) signals are comparatively very recent. In this direction, we propose here a study of the peripheral CVS through a multifractal analysis of LDF fluctuations, together with a comparison of the results with those obtained on HRV fluctuations simultaneously recorded. To perform these investigations concerning the biophysics of the CVS, first we have to address the problem of selecting a suitable methodology for multifractal analysis, allowing us to extract meaningful interpretations on biophysical signals. For this purpose, we test four existing methodologies of multifractal analysis. We also present a comparison of their applicability and interpretability when implemented on both simulated multifractal signals of reference and on experimental signals from the CVS. One essential outcome of the study is that the multifractal properties observed from both the LDF fluctuations (peripheral CVS) and the HRV fluctuations (central CVS) appear very close and similar over the studied range of scales relevant to physiology.

  16. Comparison between Hilbert Huang transform and scalogram methods on non-stationary biomedical signals: application to laser Doppler flowmetry recordings

    NASA Astrophysics Data System (ADS)

    Roulier, Rémy; Humeau, Anne; Flatley, Thomas P.; Abraham, Pierre

    2005-11-01

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application on healthy subjects. This reflex may be impaired in diabetic patients. The work presents a comparison between two signal processing methods that provide a clarification of this phenomenon. Analyses by the scalogram and the Hilbert-Huang transform (HHT) of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied at different time intervals in order to take into account the dynamics of the phenomenon. The results show that both the scalogram and the HHT methods lead to the same conclusions concerning the comparisons of the myogenic, neurogenic and endothelial related metabolic activities—during the progressive pressure and at rest—in healthy and diabetic subjects. However, the HHT shows more details that may be obscured by the scalogram. Indeed, the non-locally adaptative limitations of the scalogram can remove some definition from the data. These results may improve knowledge on the above-mentioned reflex as well as on non-stationary biomedical signal processing methods.

  17. Laser doppler velocimeter system for subsonic jet mixer nozzle testing at the NASA Lewis Aeroacoustic Propulsion Lab

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Saiyed, Naseem H.; Krupar, Martin J.

    1995-01-01

    A laser Doppler velocimeter (LDV) system developed for the Aeroacoustic Propulsion Laboratory (APL) at the NASA Lewis Research Center is described. This system was developed to acquire detailed flow field data which could be used to quantify the effectiveness of internal exhaust gas mixers (IEGM's) and to verify and calibrate computational codes. The LDV was used as an orthogonal, three component system to measure the flow field downstream of the exit of a series of IEGM's and a reference axisymmetric splitter configuration. The LDV system was also used as a one component system to measure the internal axial flow within the nozzle tailpipe downstream of the mixers. These IEGM's were designed for low-bypass ratio turbofan engines. The data were obtained at a simulated low flight speed, high-power operating condition. The optical, seeding, and data acquisition systems of the LDV are described in detail. Sample flow field measurements are provided to illustrate the capabilities of the system at the time of this test, which represented the first use of LDV at the APL. A discussion of planned improvements to the LDV is also included.

  18. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating.

    PubMed

    Uribe-Patarroyo, Néstor; Bouma, Brett E

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  19. Scanning Laser Doppler Vibrometer Measurements Inside Helicopter Cabins in Running Conditions: Problems and Mock-up Testing

    SciTech Connect

    Revel, G. M.; Castellini, P.; Chiariotti, P.; Tomasini, E. P.; Cenedese, F.; Perazzolo, A.

    2010-05-28

    The present work deals with the analysis of problems and potentials of laser vibrometer measurements inside helicopter cabins in running conditions. The paper describes the results of a systematic measurement campaign performed on an Agusta A109MKII mock-up. The aim is to evaluate the applicability of Scanning Laser Doppler Vibrometer (SLDV) for tests in simulated flying conditions and to understand how performances of the technique are affected when the laser head is placed inside the cabin, thus being subjected to interfering inputs. Firstly a brief description of the performed test cases and the used measuring set-ups are given. Comparative tests between SLDV and accelerometers are presented, analyzing the achievable performances for the specific application. Results obtained measuring with SLDV placed inside the helicopter cabin during operative excitation conditions are compared with those performed with the laser lying outside the mock-up, these last being considered as 'reference measurements'. Finally, in order to give an estimate of the uncertainty level on measured signals, a study linking the admitted percentage of noise content on vibrometer signals due to laser head vibration levels will be introduced.

  20. Vortex information display system program description manual. [data acquisition from laser Doppler velocimeters and real time operation

    NASA Technical Reports Server (NTRS)

    Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.

    1975-01-01

    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.

  1. Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan

    2012-04-01

    Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

  2. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  3. Autonomic nervous system regulation of epicardial coronary vein systolic and diastolic blood velocity as measured by a laser Doppler velocimeter.

    PubMed

    Hellenbrand, W K; Klassen, G A; Armour, J A; Sezerman, O; Paton, B

    1986-12-01

    The velocity of blood in a major epicardial coronary vein accompanying the left anterior descending coronary artery of dogs was measured by means of a 140-micron fiber optic probe connected to a laser Doppler velocimeter. Right atrial pressure, left ventricular intramyocardial and cavity pressures, aortic pressure, as well as peripheral and central coronary venous pressures were compared with the velocity of blood measured in the epicardial coronary vein midway between the sites of the catheters measuring proximal and distal coronary vein pressures. During control conditions, coronary vein velocity was 14-18 cm/s during systole and 1.0-2.1 cm/s during diastole. Right stellate ganglion stimulation, norepinephrine or isoproterenol increased diastolic coronary vein velocity significantly, whereas left stellate ganglion stimulation did not. Average peak systolic velocity was not affected by these interventions. During these positive inotropic interventions, the peak coronary vein velocity usually occurred later in the cardiac cycle than during control conditions. Positive inotropic interventions appeared to decrease coronary vein velocity during systole and increase it during diastole. Left vagosympathetic trunk stimulation decreased diastolic but not systolic coronary vein velocity and usually caused peak coronary vein velocity to occur earlier in the cardiac cycle than during control states. Changes induced by vagosympathetic trunk stimulation usually occurred within one cardiac cycle. It is concluded that coronary vein blood velocity can be influenced by the autonomic nervous system. PMID:2435386

  4. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-01-01

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise. PMID:26445047

  5. An experimental investigation of throughflow velocities in two-dimensional fluidized bed bubbles: Laser Doppler anemometer measurements

    SciTech Connect

    Gautam, M. . Dept. of Mechanical and Aerospace Engineering); Jurewicz, J.T. ); Kale, S.R. . Dept. of Mechanical Engineering)

    1994-09-01

    Detailed nonintrusive measurements have been made to determine the throughflow velocity in isolated fluidized bed bubbles. In air-fluidized beds, the throughflow component has been rather neglected and measurements of the visible bubbleflow alone have, therefore, failed to clarify the overall distribution of gas flow between the phases. A single component fiber optic laser Doppler anemometer was used to map the fluid flow through a bubble rising in a two-dimensional bed. The bed was fluidized at a superficial velocity slightly than incipient. The conditioned sampling technique developed to characterize the periodic nature of the bubble phase flow revealed that the throughflow velocity in two-dimensional beds increases linearly with increasing distance from the distributor, thereby enhancing the convective component in the interphase mass transfer process. Bubble growth was accounted for and the end-effects were minimized. Dependence of the bubble throughflow on the elongation of the bubble was observed thus confirming the theoretical analysis of some previous investigators. However, experimental evidence presented in this paper showed that the existing models fail to accurately predict the convective component in the bubble phase of two-dimensional fluidized beds.

  6. Simultaneous recording of fingertip skin blood flow changes by multiprobe laser Doppler flowmetry and frequency-corrected thermal clearance.

    PubMed

    Raamat, Rein; Jagomägi, Kersti; Kingisepp, Peet

    2002-09-01

    We compared the results of skin blood flow (SBF) measurements, obtained simultaneously in adjacent fingertips by laser Doppler flowmetry (LDF) and thermal clearance (TC) probes, having approximately the same spatial and temporal characteristics. Experiments were performed in nine healthy volunteers during rest at room temperature (26-28 degrees C). A time resolution equal to about a second was achieved by speeding up the response of the thermal measurement circuit by applying the computer simulation software of the MATLAB package. The comparison revealed that the frequency-corrected TC signal correlated well with the multiprobe LDF signal (median correlation coefficient = 0.90, range = 0.84 to 0.96). At the same time the individual slope values of the regression equation ranged from 0.58 to 1.61, revealing the difficulties encountered in obtaining the invariant scaling factor between the TC and LDF measurements. The relationship between the frequency-corrected TC signal and the multiprobe LDF signal was found to be linear in the range of SBF changes of about three- to fourfold. In the case of larger fluctuations in SBF, excessive acceleration at high SBF rates was noted. PMID:12204645

  7. Wavelet analysis of Laser Doppler Flux time series of tumor and inflammatory associated neoangiogenesis. Differences in rhythmical behavior.

    PubMed

    Häfner, Hans-Martin; Bräuer, Kurt; Radke, Carolin; Eichner, Martin; Strölin, Anke

    2009-01-01

    We use continuous wavelet analysis (WA) of Laser Doppler Flux (LDF) time series measured in basal cell carcinomas (BCC) and plaque psoriasis (PP) in order to investigate the rhythmical behavior of blood flow in tumor or inflammatory associated neoangiogenesis.A total of 68 patients with primary BCCs and 40 patients with PP were included in the study. LDF time series were separated in four scaling levels corresponding to the influences of sympathetic activity (SL1), myogenic activity in the vessel wall (SL2), respiration (SL3) and heart beat (SL4).In BCC, SL1 decreased compared to healthy skin. In all other scaling levels, we found a statistically significant increase of the SLs compared to healthy skin. These increases were not found in PP.Rhythmical behavior of blood flow in malignant tumors is totally different from that in regions with inflammation. In BCCs, thermoregulatory processes, ascribed to sympathetic activity, decrease statistically significant. In contrast, inflammatory processes in PP do not substantially change sympathetic activity. WA of tumor perfusion could open a new noninvasive monitor system for controlling tumor therapy. PMID:19847053

  8. Erythema-inducing effects of solvents following epicutaneous administration to man--studied by laser Doppler flowmetry.

    PubMed

    Wahlberg, J E

    1984-06-01

    Skin exposure to solvents can cause erythema, edema, scaling, and, eventually, irritant contact dermatitis. The irritant potential of chemicals is usually assessed by visual scoring, but in recent years a more objective measuring technique, laser Doppler flowmetry (LDF), has been introduced for the assessment of erythema. The method is noninvasive and allows continuous recording. In the present study 11 solvents were applied for 5 min or less to the volar forearms of a man and the kinetics of the response is shown. For seven solvents (dimethyl sulfoxide, trichloroethylene, n-hexane, carbon tetrachloride, toluene, 1,1,1-trichloroethane, 1,1,2-trichloroethane) an increase was found over the pretreatment values, whereas four solvents (methyl ethyl ketone, ethanol, propylene glycol, distilled water) did not influence blood flow. The findings are discussed in relation to the macroscopic picture (whitening and erythema) and in relation to previous studies of the edema-inducing effects of the same solvents on man and experimental animals. It is concluded that LDF is well worth trying in cases of marginal irritancy and for predictive testing, since it seems to be more sensitive and reliable than the naked eye. PMID:6236553

  9. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter

    PubMed Central

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-01-01

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise. PMID:26445047

  10. Full-field sensitivity and its time-dependence for the STIS CCD and MAMAs

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Proffitt, Charles

    2013-07-01

    The three STIS detectors - CCD, NUV-MAMA, FUV-MAMA - are subject to temperature- and time-dependent sensitivity changes. These temporal sensitivity variations are cal- ibrated as part of routine calibration monitoring programs, and corrected for in the standard CALSTIS pipeline. In order to determine whether the correction algorithms, developed based on spectroscopic observations prior to the 2004 failure of STIS, are adequate for pre- and post-SM4 STIS imaging data, we examine the photometry of stan- dard stellar fields (NGC5139 for the CCD, NGC6681 for the MAMAs) obtained between 1997 and 2012 as part of the routine full-field sensitivity calibration programs. For the CCD, we include a correction for CTE effects. We find statistically significant residual temporal variations in the full-field sensitivity of 0.5 mmag/year, 0.04 mmag/year, and 0.54 mmag/year for the CCD, NUV-MAMA, and FUV-MAMA respectively. However, these residual trends are small: they do not incur flux changes exceeding 1% over a 15 year time period.

  11. Sensitivity to full-field visual movement compatible with head rotation: variations among axes of rotation.

    PubMed

    Harris, L R; Lott, L A

    1995-01-01

    Movement detection thresholds for full-field visual motion about various axes were measured in three subjects using a two-alternative forced-choice staircase method. Thresholds for 1-s exposures to rotation about different rotation axes varied significantly over the range 0.139 +/- 0.05 deg/s to 0.463 +/- 0.166 deg/s. The highest thresholds were found in response to rotation about axes closely aligned to the line of sight. Variations among the thresholds for different axes could not be explained by different movement patterns in the fovea or variations in motion sensitivity with eccentricity. The variations can be well simulated by a three-channel model for coding the axis and velocity of full-field visual motion. A three-channel visual coding system would be well suited for extracting information about self-rotation from a complex pattern of retinal image motion containing components due to both rotation and translation. A three-channel visual motion system would also be readily compatible with vestibular information concerning self-rotation arising from the semicircular canals. PMID:8527373

  12. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis

    PubMed Central

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, A. Claude

    2016-01-01

    We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other OCT-based techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellular features. We used this time dependence to identify different dynamics at the millisecond scale on a wide range of organs in normal or pathological conditions. PMID:27446672

  13. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography.

    PubMed

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 m under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment. PMID:26857471

  14. Labview programming for swept-source full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Flueraru, Costel

    2011-08-01

    Full-field optical coherence tomography (FFOCT) acquires image data in parallel. It has a big advantage in high-speed imaging because 2-dimensional mechanical raster scanning in the sample arm, which is essentially needed in a common fiber-based OCT system, does not exist anymore. Swept-source FFOCT (SSFFOCT) further makes the system free of depth scanning that significantly increases the operation speed. National Instrument's LabVIEW is a powerful tool to fast develop optical-electronic systems which have motion/vision units, signal processing functions and easy-to-generate Graphic User Interface (GUI). In this paper, we describe the design and implementation of Labview program prepared for an SSFFOCT system. Basically, there are four modules of Labview programming in such a system: 1. Wavelength sweeping control; 2. Synchronized image grabbing; 3. SSFFOCT signal processing; 4. 3-dimensional tomogram displaying mode selection. A general graphic user interface is used to input the parameters and monitor all necessary data and curves. The tomographic images can be displayed at any given cutting direction. More details and examples are provided and discussed.

  15. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  16. Rapid full-field OCT assessment of clinical tissue specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dalimier, Eugénie; Harms, Fabrice; Brossollet, Charles; Benoit, Emilie; Martins, Franck; Boccara, Claude A.

    2016-03-01

    FFOCT (Full Field Optical Coherence Tomography) is a novel optical technology that gives access to very high resolution tomography images of biological tissues within minutes, non-invasively. This makes it an attractive tool to bridge the gap between medical imaging modalities (MRI, ultrasound, CT) used for cancer lesion identification or targeting and histological diagnosis. Clinical tissue specimens, such as surgical cancer margins or biopsies, can potentially be assessed rapidly, by the clinician, in the aim to help him decide on the course of action. A fast FFOCT prototype was built, that provides 1cm2 images with 1 µm resolution in 1 minute, and can accommodate samples up to 50mm diameter. Specific work was carried out to implement a large sample holder, high-speed image acquisition system, optimized scanning, and accelerated GPU tiles stitching. Results obtained on breast, urology, and digestive tissues show the efficiency of the technique for the detection of cancer on clinical tissue specimens, and reinforce the clinical relevance of the technique. The technical and clinical results show that the fast FFOCT system can successfully be used for a fast assessment of cancer excision margins or biopsies providing a very valuable tool in the clinical environment.

  17. Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique.

    PubMed

    Kim, Jin-Hwan; Avril, Stéphane; Duprey, Ambroise; Favre, Jean-Pierre

    2012-07-01

    The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image correlation. Then, an appropriate constitutive model derived from histological structure of arteries is adopted to retrieve the Cauchy stress. The virtual fields method is used as an inverse procedure to identify material parameters. Next, the Cauchy stress components are calculated from the identified parameters and the measured Lagrange strain fields. Finally, an important stress parameter which can quantify the strength of aneurismal tissues is derived from the failure stress of aneurismal tissues. PMID:22048330

  18. Design and initial performance evaluation of a full field digital mammography upgrade cassette

    PubMed Central

    Nguyen, D; Baysal, MA; Toker, E; Wang, JM

    2008-01-01

    This paper discusses the criteria underlying the design of an innovative X-ray active pixel sensor in CMOS technology. This X-ray detector is used in a Full Field-of-view Digital Mammography (FFDM) camera. The CMOS imager is a three-side buttable 29mm × 119mm, 48 μm active pixel CMOS sensor in 0.18 μm technology. The 1st silicon FFDM devices were fabricated at the end of June, 2007. The device suffers a common failure mode of high current and currently is in failure analysis at Bioptics foundry. Current target for revision A1 tape out is at the end of August, 2007. PMID:18958298

  19. Design and initial performance evaluation of a full field digital mammography upgrade cassette.

    PubMed

    Nguyen, D; Baysal, Ma; Toker, E; Wang, Jm

    2007-09-01

    This paper discusses the criteria underlying the design of an innovative X-ray active pixel sensor in CMOS technology. This X-ray detector is used in a Full Field-of-view Digital Mammography (FFDM) camera. The CMOS imager is a three-side buttable 29mm x 119mm, 48 mum active pixel CMOS sensor in 0.18 mum technology. The 1(st) silicon FFDM devices were fabricated at the end of June, 2007. The device suffers a common failure mode of high current and currently is in failure analysis at Bioptics foundry. Current target for revision A1 tape out is at the end of August, 2007. PMID:18958298

  20. The new ID21 XANES full-field end-station at ESRF

    NASA Astrophysics Data System (ADS)

    Fayard, B.; Pouyet, E.; Berruyer, G.; Bugnazet, D.; Cornu, C.; Cotte, M.; De Andrade, V.; Di Chiaro, F.; Hignette, O.; Kieffer, J.; Martin, T.; Papillon, E.; Salomé, M.; Sole, V. A.

    2013-03-01

    A new X-ray absorption near-edge spectroscopy (XANES) full-field imaging station has been developed, installed and tested on beamline ID21 at the European Synchrotron Radiation Facility (ESRF). The set-up operates in the 2-9 keV energy range and allows for the simultaneous acquisition of up to 4.106 XANES spectra over large sample areas with preserved sub-micron spatial resolution. The versatile set-up is compatible with various types of cameras and magnifying objectives. It accommodates spatial resolutions ranging from 0.3 μm to 1.4 μm and fields of view from 600 μm up to 2 mm. The range of potential applications is broad: from geology, cultural heritage, environmental sciences to medicine.

  1. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  2. Comparison of Soft-copy and Hard-copy Reading for Full-Field Digital Mammography

    PubMed Central

    Nishikawa, Robert M.; Acharyya, Suddhasatta; Gatsonis, Constantine; Pisano, Etta D.; Cole, Elodia B.; Marques, Helga S.; D'Orsi, Carl J.; Farria, Dione M.; Kanal, Kalpana M.; Mahoney, Mary C.; Rebner, Murray; Staiger, Melinda J.

    2009-01-01

    Purpose: To compare radiologists' performance in detecting breast cancer when reading full-field digital mammographic (FFDM) images either displayed on monitors or printed on film. Materials and Methods: This study received investigational review board approval and was HIPAA compliant, with waiver of informed consent. A reader study was conducted in which 26 radiologists read screening FFDM images displayed on high-resolution monitors (soft-copy digital) and printed on film (hard-copy digital). Three hundred thirty-three cases were selected from the Digital Mammography Image Screening Trial screening study (n = 49 528). Of these, 117 were from patients who received a diagnosis of breast cancer within 15 months of undergoing screening mammography. The digital mammograms were displayed on mammographic workstations and printed on film according to the manufacturer's specifications. Readers read both hard-copy and soft-copy images 6 weeks apart. Each radiologist read a subset of the total images. Twenty-two readers were assigned to evaluate images from one of three FFDM systems, and four readers were assigned to evaluate images from two mammographic systems. Each radiologist assigned a malignancy score on the basis of overall impression by using a seven-point scale, where 1 = definitely not malignant and 7 = definitely malignant. Results: There were no significant differences in the areas under the receiver operating characteristic curves (AUCs) for the primary comparison. The AUCs for soft-copy and hard-copy were 0.75 and 0.76, respectively (95% confidence interval: −0.04, 0.01; P = .36). Secondary analyses showed no significant differences in AUCs on the basis of manufacturer type, lesion type, or breast density. Conclusion: Soft-copy reading does not provide an advantage in the interpretation of digital mammograms. However, the display formats were not optimized and display software remains an evolving process, particularly for soft-copy reading. © RSNA, 2009

  3. Full-field and scanning microtomography based on parabolic refractive x-ray lenses

    NASA Astrophysics Data System (ADS)

    Schroer, C. G.; Kuhlmann, M.; Günzler, T. F.; Benner, B.; Kurapova, O.; Patommel, J.; Lengeler, B.; Roth, S. V.; Gehrke, R.; Snigirev, A.; Snigireva, I.; Stribeck, N.; Almendarez-Camarillo, A.; Beckmann, F.

    2006-08-01

    Hard x-ray full field and scanning microscopy both greatly benefit from recent advances in x-ray optics. In full field microscopy, for instance, rotationally parabolic refractive x-ray lenses can be used as objective lens in a hard x-ray microscope, magnifying an object onto a detector free of distortion. Using beryllium as lens material, a hard x-ray optical resolution of about 100 nm has been obtained in a field of view of more than 500 micrometers. Further improvement of the spatial resolution to below 50 nm is expected. By reconstructing the sample from a series of micrographs recorded from different perspectives, tomographic imaging with a resolution well below one micrometer was achieved. The technique is demonstrated using a microchip as test sample. In scanning microscopy and tomography, the sample is scanned through a hard x-ray microbeam. Different hard x-ray analytical techniques can be exploited as contrast mechanism, such as x-ray fluorescence, absorption, or scattering. In tomographic scanning mode, they yield for example local elemental, chemical, or structural information from inside a specimen. At synchrotron radiation sources, a small and intensive microbeam can be generated by imaging the source onto the sample position in a strongly reducing geometry, e.g., by parabolic refractive x-ray lenses. With nanofocusing refractive x-ray lenses, a lateral beam size of 50 nm was reached. As an example for scanning tomography, we consider tomographic small angle x-ray scattering (SAXS-tomography), reconstructing a series of SAXS patterns related to small volume elements inside a polymer rod made by injection moulding.

  4. Characterization of the effects of the FineView algorithm for full field digital mammography.

    PubMed

    Urbanczyk, H; McDonagh, E; Marshall, N W; Castellano, I

    2012-04-01

    The aim of this study was to characterize the effect of an image processing algorithm (FineView) on both quantitative image quality parameters and the threshold contrast detail response of the GE Senographe DS full-field digital mammography system. The system was characterized using signal transfer property, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of the system. An algorithmic modulation transfer function (MTF(a)) was calculated from images acquired at a reduced detector air kerma (DAK) and with the FineView algorithm enabled. Two sets of beam conditions were used: Mo/Mo/28 kV and Rh/Rh/29 kV, both with 2 mm added Al filtration at the x-ray tube. Images were acquired with and without FineView at four DAK levels from 14 to 378 µGy. The threshold contrast detail response was assessed using the CDMAM contrast-detail test object which was imaged under standard clinical conditions with and without FineView at three DAK levels from 24 to 243 µGy. The images were scored by both human observers and by automated scoring software. Results indicated an improvement of up to 125% at 5 mm⁻¹ in MTF(a) when FineView was activated, particularly at high DAK levels. A corresponding increase of up to 425% at 5 mm⁻¹ was also seen in the NNPS, again with the same DAK dependence. FineView did not influence DQE, an indication that the signal to noise ratio transfer of the system remained unchanged. FineView did not affect the threshold contrast detectability of the system, a result that is consistent with the DQE results. PMID:22429938

  5. Characterization of the effects of the FineView algorithm for full field digital mammography

    NASA Astrophysics Data System (ADS)

    Urbanczyk, H.; McDonagh, E.; Marshall, N. W.; Castellano, I.

    2012-04-01

    The aim of this study was to characterize the effect of an image processing algorithm (FineView) on both quantitative image quality parameters and the threshold contrast detail response of the GE Senographe DS full-field digital mammography system. The system was characterized using signal transfer property, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of the system. An algorithmic modulation transfer function (MTFa) was calculated from images acquired at a reduced detector air kerma (DAK) and with the FineView algorithm enabled. Two sets of beam conditions were used: Mo/Mo/28 kV and Rh/Rh/29 kV, both with 2 mm added Al filtration at the x-ray tube. Images were acquired with and without FineView at four DAK levels from 14 to 378 µGy. The threshold contrast detail response was assessed using the CDMAM contrast-detail test object which was imaged under standard clinical conditions with and without FineView at three DAK levels from 24 to 243 µGy. The images were scored by both human observers and by automated scoring software. Results indicated an improvement of up to 125% at 5 mm-1 in MTFa when FineView was activated, particularly at high DAK levels. A corresponding increase of up to 425% at 5 mm-1 was also seen in the NNPS, again with the same DAK dependence. FineView did not influence DQE, an indication that the signal to noise ratio transfer of the system remained unchanged. FineView did not affect the threshold contrast detectability of the system, a result that is consistent with the DQE results.

  6. A critical comparison of three full field digital mammography systems using figure of merit.

    PubMed

    Kanaga, K C; Yap, H H; Laila, S E; Sulaiman, T; Zaharah, M; Shantini, A A

    2010-06-01

    Full field digital mammography (FFDM) has been progressively introduced in medical centers in recent years. However, it is questionable which exposure parameters are suitable in order to reduce the glandular breast doses as they are related to induced carcinogenesis. The goal of this study was to compare the average glandular doses (AGD) and image quality of three FFDM systems namely Siemens Mammomat NovationDR, Hologic Lorad Selenia and General Electric Senographe Essential using a Figure of Merit. A Computerized Imaging Reference Systems (CIRS) tissue equivalent breast phantom which consists of phototimer compensation plate with different thickness and glandularity was exposed in fully automatic exposure control mode in the cranio-caudal projection similar to clinical settings. Thermoluminescent dosimeter 100H (TLD- 100H) was used to measure the entrance surface air kerma (ESAK), the AGD was calculated using European protocol whilst the image quality was assessed quantitatively by measuring the contrast to noise ratio (CNR) value. The obtained values were used to calculate the Figure of Merit (FOM) to analyze the effectiveness of the system. Repeated Measures ANOVA analysis showed that there is a significant difference (p<0.05) in the mean value of AGD and CNR between the three FFDM systems. Hologic Lorad Selenia system contrbuted the highest AGD value while General Electric Senographe Essential had the highest CNR and FOM value. In conclusion, this study may provide an objective criterion during the selection of a mammography unit by using the figure of merit for screening or diagnostic purpose. PMID:23756795

  7. Single-shot full-field OCT based on four quadrature phase-stepped interferometer

    NASA Astrophysics Data System (ADS)

    Hrebesh, Molly Subhash; Watanabe, Yuuki; Dabu, Razvan; Sato, Manabu

    2008-02-01

    We demonstrate a compact single-shot full-field optical coherence tomography (OCT) system for obtaining real-time high-resolution depth resolved en-face OCT images from weakly scattering specimens. The experimental setup is based on a Linnik type polarization Michelson interferometer and a four-channel compact polarization phase stepper optics. The four-channel phase-stepper optics comprise of a dual channel beam splitter, a Wollaston prism and a pair of wave plate for simultaneously capturing four quadratually phase-stepped images on a single CCD. The interferometer is illuminated using a SLD source with a central wavelength of 842 nm and a bandwidth of 16.2 nm, yielding an axial resolution of 19.8 μm. Using a 10 × (0.25-NA) microscope objective and a CCD camera with 400 × 400 pixels, the system covers an area of 225 μm × 225 μm with a transverse resolution of 4.4 μm. The en-face OCT images of an onion is measured with an exposure time of 7ms and a frame rate of 28 fps.

  8. Comparison of full field digital (FFD) and computed radiography (CR) mammography systems in Greece.

    PubMed

    Kalathaki, M; Hourdakis, C J; Economides, S; Tritakis, P; Kalyvas, N; Simantirakis, G; Manousaridis, G; Kaisas, I; Kamenopoulou, V

    2011-09-01

    The purpose of this study is to evaluate and compare the performance of 52 full field digital (FFD) and computed radiography (CR) mammography systems checked by the Greek Atomic Energy Commission with respect to dose and image quality. Entrance surface air kerma (ESAK) was measured and average glandular dose (AGD) was calculated according to the European protocol on dosimetry in mammography. The exposures were performed using the clinical protocol of each laboratory. The image quality was assessed by the total score of resolved phantom structures incorporated in an American College of Radiology accreditation phantom. The mean ESAK values for FFD and CR systems were 4.59 ± 1.93 and 5.0 ± 1.78 mGy, respectively, whereas the AGD yielded a mean value of 1.06 ± 0.36 mGy for the FFD and 1.04 ± 0.35 mGy for the CR systems. Considering image quality, FFD systems indicated a mean total score of 13.04 ± 0.89, whereas CR systems a mean total score of 11.54 ± 1.06. PMID:21821614

  9. Compact Laser Doppler Flowmeter (LDF) Fundus Camera for the Assessment of Retinal Blood Perfusion in Small Animals

    PubMed Central

    Chiquet, Christophe; Godin-Ribuot, Diane; Amoos, Serge; Loeuillet, Corinne; Bernabei, Mario; Geiser, Martial

    2015-01-01

    Purpose Noninvasive techniques for ocular blood perfusion assessment are of crucial importance for exploring microvascular alterations related to systemic and ocular diseases. However, few techniques adapted to rodents are available and most are invasive or not specifically focused on the optic nerve head (ONH), choroid or retinal circulation. Here we present the results obtained with a new rodent-adapted compact fundus camera based on laser Doppler flowmetry (LDF). Methods A confocal miniature flowmeter was fixed to a specially designed 3D rotating mechanical arm and adjusted on a rodent stereotaxic table in order to accurately point the laser beam at the retinal region of interest. The linearity of the LDF measurements was assessed using a rotating Teflon wheel and a flow of microspheres in a glass capillary. In vivo reproducibility was assessed in Wistar rats with repeated measurements (inter-session and inter-day) of retinal arteries and ONH blood velocity in six and ten rats, respectively. These parameters were also recorded during an acute intraocular pressure increase to 150 mmHg and after heart arrest (n = 5 rats). Results The perfusion measurements showed perfect linearity between LDF velocity and Teflon wheel or microsphere speed. Intraclass correlation coefficients for retinal arteries and ONH velocity (0.82 and 0.86, respectively) indicated strong inter-session repeatability and stability. Inter-day reproducibility was good (0.79 and 0.7, respectively). Upon ocular blood flow cessation, the retinal artery velocity signal substantially decreased, whereas the ONH signal did not significantly vary, suggesting that it could mostly be attributed to tissue light scattering. Conclusion We have demonstrated that, while not adapted for ONH blood perfusion assessment, this device allows pertinent, stable and repeatable measurements of retinal blood perfusion in rats. PMID:26226150

  10. Three-dimensional full-field X-ray orientation microscopy.

    PubMed

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  11. Numerical focusing methods for full field OCT: a comparison based on a common signal model.

    PubMed

    Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A

    2014-06-30

    In this paper a theoretical model of the full field swept source (FF SS) OCT signal is presented based on the angular spectrum wave propagation approach which accounts for the defocus error with imaging depth. It is shown that using the same theoretical model of the signal, numerical defocus correction methods based on a simple forward model (FM) and inverse scattering (IS), the latter being similar to interferometric synthetic aperture microscopy (ISAM), can be derived. Both FM and IS are compared quantitatively with sub-aperture based digital adaptive optics (DAO). FM has the least numerical complexity, and is the fastest in terms of computational speed among the three. SNR improvement of more than 10 dB is shown for all the three methods over a sample depth of 1.5 mm. For a sample with non-uniform refractive index with depth, FM and IS both improved the depth of focus (DOF) by a factor of 7x for an imaging NA of 0.1. DAO performs the best in case of non-uniform refractive index with respect to DOF improvement by 11x. PMID:24977860

  12. Low coherence full field interference microscopy or optical coherence tomography: recent advances, limitations and future trends

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    2013-04-01

    Although low coherence microscopy (LCM) has been known for long time in the context of interference microscopy, coherence radar and white light interferometry, the whole subject has attracted a wide interest in the last two decades particularly accelerated by the entrance of OCT, as a noninvasive powerful technique for biomedical imaging. Today LCM can be classified into two types, both acts as three-dimensional imaging tool. The first is low temporal coherence microscopy; also known as optical coherence tomography (OCT), which is being used for medical diagnostics. The second is full field OCT in various modes and applied to various applications. FF-OCT uses low spatial and temporal coherence similar to the well-known coherence probe microscope (CPM) that have been in use for long time in optical metrology. The CPM has many advantages over conventional microscopy in its ability to discriminate between different transparent layers in a scattering medium thus allowing for precise noninvasive optical probing of dense tissue and other turbid media. In this paper the status of this technology in optical metrology applications will be discussed, on which we have been working to improve its performance, as well as its limitations and future prospective.

  13. Three-dimensional full-field X-ray orientation microscopy

    PubMed Central

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  14. Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues

    PubMed Central

    Jain, Manu; Shukla, Nidhi; Manzoor, Maryem; Nadolny, Sylvie; Mukherjee, Sushmita

    2011-01-01

    Background: Here, we report the first use of a commercial prototype of full-field optical coherence tomography called Light-CT™. Based on the principle of white light interferometry, Light-CT™ generates quick high-resolution three-dimensional tomographic images from unprocessed tissues. Its advantage over the current intra-surgical diagnostic standard, i.e. frozen section analysis, lies in the absence of freezing artifacts, which allows real-time diagnostic impressions, and/or for the tissues to be triaged for subsequent conventional histopathology. Materials and Methods: In this study, we recapitulate known normal histology in nine formalin fixed ex vivo rat organs (skin, heart, lung, liver, stomach, kidney, prostate, urinary bladder, and testis). Large surface and virtually sectioned stacks of images at varying depths were acquired by a pair of 10×/0.3 numerical aperture water immersion objectives, processed and visualized in real time. Results: Normal histology of the following organs was recapitulated by identifying various tissue microstructures. Skin: epidermis, dermal-epidermal junction and hair follicles with surrounding sebaceous glands in the dermis. Stomach: mucosa with surface pits, submucosa, muscularis propria and serosa. Liver: hepatocytes separated by sinusoidal spaces, central veins and portal triad. Kidney: convoluted tubules, medullary rays (straight tubules) and collecting ducts. Prostate: acini and fibro-muscular stroma. Lung: bronchi, bronchioles, alveolar ducts, alveoli and pleura. Urinary bladder: urothelium, lamina propria, muscularis propria, and serosa. Testis: seminiferous tubules with intra-tubular sperms. Conclusion: Light-CT™ is a powerful imaging tool to perform fast histology on fresh and fixed tissues, without introducing artifacts. Its compact size, ease of handling, fast image acquisition and safe incident light levels makes it well-suited for various intra-operative and intra-procedural triaging and decision making

  15. Comparison of slot scanning digital mammography system with full-field digital mammography system

    SciTech Connect

    Lai, C.-J.; Shaw, Chris C.; Geiser, William; Chen, Lingyun; Arribas, Elsa; Stephens, Tanya; Davis, Paul L.; Ayyar, Geetha P.; Dogan, Basak E.; Nguyen, Victoria A.; Whitman, Gary J.; Yang, Wei T.

    2008-06-15

    The purpose of this study was to evaluate and compare microcalcification detectability of two commercial full-field digital mammography (DM) systems. The first unit was a flat panel based DM system (FFDM) which employed an anti-scatter grid method to reject scatter, and the second unit was a charge-coupled device-based DM system (SSDM) which used scanning slot imaging geometry to reduce scatter radiation. Both systems have comparable scatter-to-primary ratios. In this study, 125-160 and 200-250 {mu}m calcium carbonate grains were used to simulate microcalcifications and imaged by both DM systems. The calcium carbonate grains were overlapped with a 5-cm-thick 50% adipose/50% glandular simulated breast tissue slab and an anthropomorphic breast phantom (RMI 165, Gammex) for imaging at two different mean glandular dose levels: 0.87 and 1.74 mGy. A reading study was conducted with seven board certified mammographers with images displayed on review workstations. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (A{sub z}) was used to quantify and compare the performances of these two systems. The results showed that with the simulated breast tissue slab (uniform background), the SSDM system resulted in higher A{sub z}'s than the FFDM system at both MGD levels with the difference statistically significant at 0.87 mGy only. With the anthropomorphic breast phantom (tissue structure background), the SSDM system performed better than the FFDM system at 0.87 mGy but worse at 1.74 mGy. However, the differences were not found to be statistically significant.

  16. Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography

    PubMed Central

    Jain, Manu; Robinson, Brian D.; Salamoon, Bekheit; Thouvenin, Olivier; Boccara, Claude; Mukherjee, Sushmita

    2015-01-01

    Background: Full-field optical coherence tomography (FFOCT) is a real-time imaging technique that rapidly generates images reminiscent of histology without any tissue processing, warranting its exploration for evaluation of ex vivo kidney tissue. Methods: Fresh tissue sections from tumor and adjacent nonneoplastic kidney (n = 25 nephrectomy specimens; clear cell renal cell carcinoma (CCRCC) = 12, papillary RCC (PRCC) = 4, chromophobe RCC (ChRCC) = 4, papillary urothelial carcinoma (PUC) = 1, angiomyolipoma (AML) = 2 and cystic nephroma = 2) were imaged with a commercial FFOCT device. Sections were submitted for routine histopathological diagnosis. Results: Glomeruli, tubules, interstitium, and blood vessels were identified in nonneoplastic tissue. In tumor sections, the normal architecture was completely replaced by either sheets of cells/trabeculae or papillary structures. The former pattern was seen predominantly in CCRCC/ChRCC and the latter in PRCC/PUC (as confirmed on H&E). Although the cellular details were not very prominent at this resolution, we could identify unique cytoplasmic signatures in some kidney tumors. For example, the hyper-intense punctate signal in the cytoplasm of CRCC represents glycogen/lipid, large cells with abundant hyper-intense cytoplasm representing histiocytes in PRCC, and signal-void large polygonal cell representing adipocytes in AML. According to a blinded analysis was performed by an uropathologist, all nonneoplastic tissues were differentiated from neoplastic tissues. Further, all benign tumors were called benign and malignant were called malignant. A diagnostic accuracy of 80% was obtained in subtyping the tumors. Conclusion: The ability of FFOCT to reliably differentiate nonneoplastic from neoplastic tissue and identify some tumor types makes it a valuable tool for rapid evaluation of ex vivo kidney tissue e.g. for intraoperative margin assessment and kidney biopsy adequacy. Recently, higher resolution images were achieved

  17. Comparison of slot scanning digital mammography system with full-field digital mammography system

    PubMed Central

    Lai, Chao-Jen; Shaw, Chris C.; Geiser, William; Chen, Lingyun; Arribas, Elsa; Stephens, Tanya; Davis, Paul L.; Ayyar, Geetha P.; Dogan, Basak E.; Nguyen, Victoria A.; Whitman, Gary J.; Yang, Wei T.

    2008-01-01

    The purpose of this study was to evaluate and compare microcalcification detectability of two commercial full-field digital mammography (DM) systems. The first unit was a flat panel based DM system (FFDM) which employed an anti-scatter grid method to reject scatter, and the second unit was a charge-coupled device-based DM system (SSDM) which used scanning slot imaging geometry to reduce scatter radiation. Both systems have comparable scatter-to-primary ratios. In this study, 125–160 and 200–250 μm calcium carbonate grains were used to simulate microcalcifications and imaged by both DM systems. The calcium carbonate grains were overlapped with a 5-cm-thick 50% adipose∕50% glandular simulated breast tissue slab and an anthropomorphic breast phantom (RMI 165, Gammex) for imaging at two different mean glandular dose levels: 0.87 and 1.74 mGy. A reading study was conducted with seven board certified mammographers with images displayed on review workstations. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (Az) was used to quantify and compare the performances of these two systems. The results showed that with the simulated breast tissue slab (uniform background), the SSDM system resulted in higher Az’s than the FFDM system at both MGD levels with the difference statistically significant at 0.87 mGy only. With the anthropomorphic breast phantom (tissue structure background), the SSDM system performed better than the FFDM system at 0.87 mGy but worse at 1.74 mGy. However, the differences were not found to be statistically significant. PMID:18649467

  18. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    NASA Astrophysics Data System (ADS)

    Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.

    2010-06-01

    A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is

  19. Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution

    SciTech Connect

    Wang Jun; Karen Chen Yuchen; Yuan Qingxi; Tkachuk, Andrei; Hornberger, Benjamin; Feser, Michael; Erdonmez, Can

    2012-04-02

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.

  20. Automated markerless full field hard x-ray microscopic tomography at sub-50nm 3-dimension spatial resolution

    SciTech Connect

    Wang J.; Yu-chen Chen, K.; Yuan, W.; Tkachuk, A.; Erdonmez, C.

    2012-04-04

    A full field transmission x-ray microscope (TXM) has been developed and commissioned at the National Synchrotron Light Source at Brookhaven National Laboratory. The capabilities we developed in auto-tomography, local tomography, and spectroscopic imaging that overcome many of the limitations and difficulties in existing transmission x-ray microscopes are described and experimentally demonstrated. Sub-50 nm resolution in 3-dimension (3D) with markerless automated tomography has been achieved. These capabilities open up scientific opportunities in many research fields.