Science.gov

Sample records for fully anisotropic trap

  1. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Muruganandam, P.; Adhikari, S. K.

    2009-10-01

    Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data

  2. C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Vudragović, Dušan; Vidanović, Ivana; Balaž, Antun; Muruganandam, Paulsamy; Adhikari, Sadhan K.

    2012-09-01

    We present C programming language versions of earlier published Fortran programs (Muruganandam and Adhikari (2009) [1]) for calculating both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation. The GP equation describes the properties of dilute Bose-Einstein condensates at ultra-cold temperatures. C versions of programs use the same algorithms as the Fortran ones, involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation, we consider the one-dimensional, two-dimensional, circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form, we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. In addition to these twelve programs, for six algorithms that involve two and three space variables, we have also developed threaded (OpenMP parallelized) programs, which allow numerical simulations to use all available CPU cores on a computer. All 18 programs are optimized and accompanied by makefiles for several popular C compilers. We present typical results for scalability of threaded codes and demonstrate almost linear speedup obtained with the new programs, allowing a decrease in execution times by an order of magnitude on modern multi-core computers. New version program summary Program title: GP-SCL package, consisting of: (i) imagtime1d, (ii) imagtime2d, (iii) imagtime2d-th, (iv) imagtimecir, (v) imagtime3d, (vi) imagtime3d-th, (vii) imagtimeaxial, (viii) imagtimeaxial-th, (ix) imagtimesph, (x) realtime1d, (xi) realtime2d, (xii) realtime2d-th, (xiii) realtimecir, (xiv) realtime3d, (xv) realtime3d-th, (xvi) realtimeaxial, (xvii) realtimeaxial-th, (xviii) realtimesph. Catalogue identifier: AEDU_v2_0. Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v2_0.html

  3. Vortex dynamics in anisotropic traps

    SciTech Connect

    McEndoo, S.; Busch, Th.

    2010-07-15

    We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.

  4. Hybrid OpenMP/MPI programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Satarić, Bogdan; Slavnić, Vladimir; Belić, Aleksandar; Balaž, Antun; Muruganandam, Paulsamy; Adhikari, Sadhan K.

    2016-03-01

    We present hybrid OpenMP/MPI (Open Multi-Processing/Message Passing Interface) parallelized versions of earlier published C programs (Vudragović et al. 2012) for calculating both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation in three spatial dimensions. The GP equation describes the properties of dilute Bose-Einstein condensates at ultra-cold temperatures. Hybrid versions of programs use the same algorithms as the C ones, involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method, but consider only a fully-anisotropic three-dimensional GP equation, where algorithmic complexity for large grid sizes necessitates parallelization in order to reduce execution time and/or memory requirements per node. Since distributed memory approach is required to address the latter, we combine MPI programming paradigm with existing OpenMP codes, thus creating fully flexible parallelism within a combined distributed/shared memory model, suitable for different modern computer architectures. The two presented C/OpenMP/MPI programs for real- and imaginary-time propagation are optimized and accompanied by a customizable makefile. We present typical scalability results for the provided OpenMP/MPI codes and demonstrate almost linear speedup until inter-process communication time starts to dominate over calculation time per iteration. Such a scalability study is necessary for large grid sizes in order to determine optimal number of MPI nodes and OpenMP threads per node.

  5. Optical trapping of the anisotropic crystal nanorod.

    PubMed

    Bareil, Paul B; Sheng, Yunlong

    2015-05-18

    We observed in the optical tweezers experiment that some anisotropic nanorod was stably trapped in an orientation tiled to the beam axis. We explain this trapping with the T-matrix calculation. As the vector spherical wave functions do not individually satisfy the anisotropic vector wave equation, we expand the incident and scattered fields in the isotropic buffer in terms of E→, and the internal field in the anisotropic nanoparticle in terms of D→, and use the boundary condition for the normal components of D→ to compute the T-matrix. We found that when the optical axes of an anisotropic nanorod are not aligned to the nanorod axis, the nanorod may be trapped stably at a tilted angle, under which the lateral torque equals to zero and the derivative of the torque is negative. PMID:26074566

  6. Anisotropic optical trapping of ultracold erbium atoms

    NASA Astrophysics Data System (ADS)

    Dulieu, Olivier; Lepers, Maxence; Wyart, Jean-Francois

    2014-05-01

    We calculate the complex dynamic dipole polarizability of ground-state erbium, a rare-earth atom that was recently Bose-condensed. This quantity determines the trapping conditions of cold atoms in an optical trap. The polarizability is calculated with the sum-over-state formula inherent to second-order perturbation theory. The summation is performed on transition energies and transition dipole moments from ground-state erbium, which are computed using the Racah-Slater least-square fitting procedure provided by the Cowan codes. This allows us to predict several yet unobserved energy levels in the range 25000-31000 cm-1 above the ground state. Regarding the trapping potential, we find that ground-state erbium essentially behaves like a spherically-symmetric atom, in spite of its large electronic angular momentum. We find a mostly isotropic van der Waals interaction between two ground-state erbium atoms, with a coefficient C6iso= 1760 a.u.. On the contrary, the photon-scattering rate is strongly anisotropic with respect to the polarization of the trapping light. also at LERMA, UMR8112, Observatoire de Paris-Meudon, Univ. Pierre et Marie Curie, Meudon, France.

  7. Seismic wave propagation in fully anisotropic axisymmetric media

    NASA Astrophysics Data System (ADS)

    van Driel, Martin; Nissen-Meyer, Tarje

    2014-11-01

    We present a numerical method to compute 3-D elastic waves in fully anisotropic axisymmetric media. This method is based on a decomposition of the wave equation into a series of uncoupled 2-D equations for which the dependence of the wavefield on the azimuth can be solved analytically. Four independent equations up to quadrupole order appear as solutions for moment-tensor sources located on the symmetry axis while single forces can be accommodated by two separate solutions up to dipole order. This decomposition gives rise to an efficient solution of the 3-D wave equation in a 2-D axisymmetric medium. First, we prove the validity of the decomposition of the wavefield in the presence of general anisotropy. Then we use it to derive the reduced 2-D equations of motions and discretize them using the spectral element method. Finally, we benchmark the numerical implementation for global wave propagation at 1 Hz and consider inner core anisotropy as an application for high-frequency wave propagation in anisotropic media at frequencies up to 2 Hz.

  8. Anisotropic optical trapping of ultracold erbium atoms

    NASA Astrophysics Data System (ADS)

    Lepers, M.; Wyart, J.-F.; Dulieu, O.

    2014-02-01

    Ultracold atoms confined in a dipole trap are submitted to a potential whose depth is proportional to the real part of their dynamic dipole polarizability. The atoms also experience photon scattering whose rate is proportional to the imaginary part of their dynamic dipole polarizability. In this article we calculate the complex dynamic dipole polarizability of ground-state erbium, a rare-earth atom that was recently Bose condensed. The polarizability is calculated with the sum-over-state formula inherent to second-order perturbation theory. The summation is performed on transition energies and transition dipole moments from ground-state erbium, which are computed using the Racah-Slater least-squares fitting procedure provided by the cowan codes. This allows us to predict nine unobserved odd-parity energy levels of total angular momentum J =5, 6, and 7, in the range 25 000-31 000 cm-1 above the ground state. Regarding the trapping potential, we find that ground-state erbium essentially behaves like a spherically symmetric atom, in spite of its large electronic angular momentum. We also find a mostly isotropic van der Waals interaction between two ground-state erbium atoms, characterized by a coefficient C6iso=1760 a.u. To the contrary, the photon-scattering rate shows a pronounced anisotropy since it strongly depends on the polarization of the trapping light.

  9. Global sound modes in mirror traps with anisotropic pressure

    SciTech Connect

    Skovorodin, D. I.; Zaytsev, K. V.; Beklemishev, A. D.

    2013-10-15

    Global oscillations of inhomogeneous plasma with frequencies close to the bounce frequency of ions in mirror traps have been studied. It has been shown that, in some cases, the sound can be reflected from the axial plasma inhomogeneity. The ideal magnetohydrodynamic (MHD) model with Chew-Goldberger-Low approximation has been utilized to determine conditions of existence of the standing waves in the mirror-confined plasma. Linearized wave equation for the longitudinal plasma oscillations in thin anisotropic inhomogeneous plasma with finite β has been derived. The wave equation has been treated numerically. The oscillations are studied for the case of the trap with partially filled loss-cone and the trap with sloshing ions. It has been shown that in cells of the multiple-mirror trap standing waves can exist. The frequency of the wave is of the order of the mean bounce-frequency of ions. In the trap with sloshing ions, the mode supported by the pressure of fast ions could exist. The results of oscillations observation in the experiment on the Gas Dynamic Trap have been presented.

  10. Method of making fully dense anisotropic high energy magnets

    SciTech Connect

    Chatterjee, D.K.

    1990-01-09

    This patent describes a method of making anisotropic permanent magnets. It comprises extruding a rare earth, transition metal, magnetic alloy together with an oxygen-getter material at a temperature of from about 600{degrees} C to about 1000{degrees} C at an extrusion ratio of from about 10:1 to about 26:1 the rare earth, transition metal, magnetic alloy and the oxygen-getter material being disposed within an extrusion zone in Separate and discrete locations.

  11. Collective Excitations of Bose-Einstein Condensates In Isotropic and Slightly Anisotropic Traps

    NASA Astrophysics Data System (ADS)

    Barentine, Andrew; Lobser, Dan; Lewandowski, Heather; Cornell, Eric

    2014-05-01

    Boltzmann proved that the monopole mode of a thermal gas in an isotropic, harmonic and 3D trap is undamped. Bose-Einstein Condensates (BECs) are not classical gases and their weakly interacting nature causes damping at finite temperature in a 3D monopole mode. The large parameter space of the TOP (Time-averaged Orbiting Potential) trap allows for precise control of the trap geometry. Exciting a monopole mode in a BEC as well as its canonical thermal cloud in the hydrodynamic regime will allow us to investigate damping effects in isotropic and slightly anisotropic traps. Funding : NSF,NIST,ONR

  12. Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.

    2015-12-01

    We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.

  13. Autoionization of spin-polarized metastable helium in tight anisotropic harmonic traps

    SciTech Connect

    Beams, Timothy J.; Whittingham, Ian B.; Peach, Gillian

    2007-12-15

    Spin-dipole mediated interactions between tightly confined metastable helium atoms couple the spin-polarized quintet {sup 5}{sigma}{sub g}{sup +} state to the singlet {sup 1}{sigma}{sub g}{sup +} state from which autoionization is highly probable, resulting in finite lifetimes for the trap eigenstates. We extend our earlier study on spherically symmetric harmonic traps to the interesting cases of axially symmetric anisotropic harmonic traps and report results for the lowest 10 states in 'cigarlike' and 'pancakelike' traps with average frequencies of 100 kHz and 1 MHz. We find that there is a significant suppression of ionization, and subsequent increase in lifetimes, at trap aspect ratios A=p/q, where p and q are integers, for those states that are degenerate in the absence of collisions or spin-dipole interactions.

  14. Collective Excitations of Bose­-Einstein Condensates In Isotropic and Slightly Anisotropic Traps

    NASA Astrophysics Data System (ADS)

    Barentine, Andrew; Lobser, Dan; Lewandowski, Heather; Cornell, Eric

    2014-03-01

    Boltzmann proved that the monopole mode of a thermal gas in an isotropic, harmonic and 3D trap is undamped. Bose-Einstein Condensates (BECs) are not classical gases and their weakly interacting nature causes damping in a 3D monopole mode. The large parameter space of the TOP (Time-averaged Orbiting Potential) trap allows for precise control of the trap geometry. Exciting a monopole mode in a BEC as well as its canonical thermal cloud allows us to investigate damping effects in isotropic and slightly anisotropic traps for both hydrodynamic and collisionless regimes. We also hope to achieve a greater understanding of the frequency shifts due to anharmonicity in the trap in order to apply this to our research on quasi-2D monopole modes. Funding: NSF, NIST, ONR

  15. Fully ElectroStatic Ion Traps for β-decay Studies

    NASA Astrophysics Data System (ADS)

    Ron, Guy

    2010-11-01

    Using principles analogous to those of conventional optics it is possible to construct fully electrostatic ion traps which act as a resonant cavity for ion beams. Such traps exhibit an unexpected phenomenon of self-bunching which allows for long lifetimes of trapped ion bunches. Such a trap was originally conceived and developed at the Weimann Institute of Science. Based on this design we are constructing such a trap for use with the LBL IRIS beamline. I will present the principles and design of such a trap. I will further discuss the experimental possibilities afforded, with emphasis on mass spectroscopy and possible measurements of β decay correlations of trapped radioactive ions. Such measurements allow the study of possible standard model extensions affecting the structure of the weak interaction.

  16. Stability and structure of an anisotropically trapped dipolar Bose-Einstein condensate: Angular and linear rotons

    NASA Astrophysics Data System (ADS)

    Martin, A. D.; Blakie, P. B.

    2012-11-01

    We study theoretically Bose-Einstein condensates with polarized dipolar interactions in anisotropic traps. We map the parameter space by varying the trap frequencies and dipolar interaction strengths and find an irregular-shaped region of parameter space in which density-oscillating condensate states occur, with maximum density away from the trap center. These density-oscillating states may be biconcave (red-blood-cell-shaped), or have two or four peaks. For all trap frequencies, the condensate becomes unstable to collapse for sufficiently large dipole interaction strength. The collapse coincides with the softening of an elementary excitation. When the condensate mode is density oscillating, the character of the softening excitation is related to the structure of the condensate. We classify these excitations by linear and angular characteristics. We also find excited solutions to the Gross-Pitaevskii equation, which are always unstable.

  17. Seismic Wave Propagation in Fully Anisotropic Axisymmetric Media: Applications and Practical Considerations

    NASA Astrophysics Data System (ADS)

    van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen

    2014-05-01

    We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.

  18. Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2003-01-01

    An approach for synthesizing buckling results and behavior for thin, balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and which are fully-restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived and used to determine critical temperature changes in terms of physically intuitive mechanical buckling coefficients. The effects of membrane orthotropy and anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into buckling response and provide useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general, unifying manner.

  19. A GENERALIZED DIFFUSION TENSOR FOR FULLY ANISOTROPIC DIFFUSION OF ENERGETIC PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.

    2012-05-10

    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.

  20. Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2001-01-01

    An approach for synthesizing buckling results and behavior for thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and fully restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived that are used to determine critical temperatures in terms of physically intuitive mechanical buckling coefficients, and the effects of membrane orthotropy and membrane anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of the generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general and unifying manner.

  1. Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor's channel layer

    NASA Astrophysics Data System (ADS)

    Yin, Huaxiang; Kim, Sunil; Kim, Chang Jung; Song, Ihun; Park, Jaechul; Kim, Sangwook; Park, Youngsoo

    2008-10-01

    A fully transparent nonvolatile memory with the conventional sandwich gate insulator structure was demonstrated. Wide band gap amorphous GaInZnO (a-GIZO) thin films were employed as both the charge trap layer and the transistor channel layer. An excellent program window of 3.5 V with a stressing time of 100 ms was achieved through the well-known Fowler-Nordheim tunneling method. Due to the similar energy levels extracted from the experimental data, the asymmetrical program/erase characteristics are believed to be the result of the strong trapping of the injected negative charges in the shallow donor levels of the GIZO film.

  2. Buckling analysis of fully anisotropic plates containing cutouts and elastically restrained edges

    NASA Technical Reports Server (NTRS)

    Jones, Kevin M.; Klang, Eric C.

    1992-01-01

    An analysis is developed which combines the Ritz and collocation methods for the stability solution of an anisotropic plate with a cutout and elastically restrained edges. Results are presented which agree closely with experiment for isotropic and orthotropic materials. Results are also given for restrained anisotropic plates with circular holes loaded in compression and shear. Difference is noted in the critical buckling loads between displacement and stress loaded panels as hole size is increased. Clamping is also seen to affect the trends in buckling associated with hole size.

  3. Anisotropic sub-Doppler laser cooling in dysprosium magneto-optical traps

    SciTech Connect

    Youn, Seo Ho; Lu, Mingwu; Lev, Benjamin L.

    2010-10-15

    Magneto-optical traps (MOTs) of Er and Dy have recently been shown to exhibit populationwide sub-Doppler cooling due to their near degeneracy of excited- and ground-state Landeg factors. We discuss here an additional, unusual intra-MOT sub-Doppler cooling mechanism that appears when the total Dy MOT cooling laser intensity and magnetic quadrupole gradient increase beyond critical values. Specifically, anisotropically sub-Doppler-cooled cores appear, and their orientation with respect to the quadrupole axis flips at a critical ratio of the MOT laser intensity along the quadrupole axis versus that in the plane of symmetry. This phenomenon can be traced to a loss of the velocity-selective resonance at zero velocity in the cooling force along directions in which the atomic polarization is oriented by the quadrupole field. We present data characterizing this anisotropic laser cooling phenomenon and discuss a qualitative model for its origin based on the extraordinarily large Dy magnetic moment and Dy's near degenerate g factors.

  4. Lowest-Landau-level description of a Bose-Einstein condensate in a rapidly rotating anisotropic trap

    NASA Astrophysics Data System (ADS)

    Fetter, Alexander L.

    2007-01-01

    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional trap can be described with the lowest Landau-level set of states. In this case, the condensate wave function ψ(x,y) is a Gaussian function of r2=x2+y2 , multiplied by an analytic function P(z) of the single complex variable z=x+iy ; the zeros of P(z) denote the positions of the vortices. Here, a similar description is used for a rapidly rotating anisotropic two-dimensional trap with arbitrary anisotropy (ωx/ωy⩽1) . The corresponding condensate wave function ψ(x,y) has the form of a complex anisotropic Gaussian with a phase proportional to xy , multiplied by an analytic function P(ζ) , where ζ∝x+iβ-y and 0⩽β-⩽1 is a real parameter that depends on the trap anisotropy and the rotation frequency. The zeros of P(ζ) again fix the locations of the vortices. Within the set of lowest Landau-level states at zero temperature, an anisotropic parabolic density profile provides an absolute minimum for the energy, with the vortex density decreasing slowly and anisotropically away from the trap center.

  5. Lifshitz transitions and crystallization of fully polarized dipolar fermions in an anisotropic two-dimensional lattice

    SciTech Connect

    Carr, Sam T.; Quintanilla, Jorge; Betouras, Joseph J.

    2010-07-15

    We consider a two-dimensional model of noninteracting chains of spinless fermions weakly coupled via a small interchain hopping and a repulsive interchain interaction. The phase diagram of this model has a surprising feature: an abrupt change in the Fermi surface as the interaction is increased. We study in detail this metanematic transition and show that the well-known 2(1/2)-order Lifshitz transition is the critical end point of this first-order quantum phase transition. Furthermore, in the vicinity of the end point, the order parameter has a nonperturbative BCS-type form. We also study a competing crystallization transition in this model and derive the full phase diagram. This physics can be demonstrated experimentally in dipolar ultracold atomic or molecular gases. In the presence of a harmonic trap, it manifests itself as a sharp jump in the density profile.

  6. Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap

    SciTech Connect

    Chin, Siu A.; Krotscheck, Eckhard

    2005-09-01

    By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth-order algorithms are possible only with the use of forward, positive time step factorization schemes. These fourth-order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.

  7. Phase separation in the trapped spinor gases with anisotropic spin-spin interaction

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Zhang, Y.; Liang, J. Q.; Chen, S.

    2007-09-01

    We investigate the effect of the anisotropic spin-spin interaction on the ground state density distribution of the one dimensional spin-1 bosonic gases within a modified Gross-Pitaevskii theory both in the weakly interaction regime and in the Tonks-Girardeau (TG) regime. We find that for ferromagnetic spinor gas the phase separation occurs even for weak anisotropy of the spin-spin interaction, which becomes more and more obvious and the component of mF=0 diminishes as the anisotropy increases. However, no phase separation is found for anti-ferromagnetic spinor gas in both regimes.

  8. High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well

    NASA Astrophysics Data System (ADS)

    Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando

    2016-05-01

    An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.

  9. ISS Observations of the Trapped Proton Anisotropic Effect: A Comparison with Model Calculations

    NASA Astrophysics Data System (ADS)

    Dachev, T.; Atwell, W.; Semones, E.; Tomov, B.; Reddell, B.

    Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Unit (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during 2001. Four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). Space radiation flight measurements were obtained during the time period May 11 - July 26, 2001. In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the development of a shielding model using combinatorial geometry and 3-D visualization and the orientation and placement of the five detectors at the locations within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton anisotropy (East-West effect) was computed for the individual passes through the South Atlantic Anomaly based on the Badhwar-Konradi anisotropy model.

  10. The Low Earth Orbit validation of a dynamic and anisotropic trapped radiation model through ISS measurements

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Nealy, John E.; Wilson, John W.

    2011-10-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo-Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate six degree of freedom (DOF) description of ISS trajectory and orientation. It is imperative that we understand ISS exposures dynamically for crew career planning, and insure that the regulatory requirements of keeping exposure as low as reasonably achievable (ALARA) are adequately implemented. This is especially true as ISS nears some form of completion with increasing complexity, resulting in a larger drag coefficient, and requiring operation at higher altitudes with increased exposure rates. In this paper ISS environmental model is configured for 11A (circa mid 2005), and uses non-isotropic and dynamic geomagnetic transmission and trapped proton models. ISS 11A and LEO model validations are important steps in preparation for the design and validation for the next generation manned vehicles. While the described cutoff rigidity, trapped proton and electron formalisms as coded in a package named GEORAD (GEOmagnetic RADiation) and a web interface named OLTARIS (On-line Tool for the Assessment of Radiation in Space) are applicable to the LEO, Medium Earth Orbit (MEO) and

  11. Structure of fully liganded Hb ζ2β2 s trapped in a tense conformation

    PubMed Central

    Safo, Martin K.; Ko, Tzu-Ping; Abdulmalik, Osheiza; He, Zhenning; Wang, Andrew H.-J.; Schreiter, Eric R.; Russell, J. Eric

    2013-01-01

    A variant Hb ζ2β2 s that is formed from sickle hemoglobin (Hb S; α2β2 s) by exchanging adult α-globin with embryonic ζ-globin subunits shows promise as a therapeutic agent for sickle-cell disease (SCD). Hb ζ2β2 s inhibits the polymerization of deoxy­genated Hb S in vitro and reverses characteristic features of SCD in vivo in mouse models of the disorder. When compared with either Hb S or with normal human adult Hb A (α2β2), Hb ζ2β2 s exhibits atypical properties that include a high oxygen affinity, reduced cooperativity, a weak Bohr effect and blunted 2,3-­diphosphoglycerate allostery. Here, the 1.95 Å resolution crystal structure of human Hb ζ2β2 s that was expressed in complex transgenic knockout mice and purified from their erythrocytes is presented. When fully liganded with carbon monoxide, Hb ζ2β2 s displays a central water cavity, a ζ1–βs2 (or ζ2–βs1) interface, intersubunit salt-bridge/hydrogen-bond interactions, C-terminal βHis146 salt-bridge interactions, and a β-cleft, that are highly unusual for a relaxed hemoglobin structure and are more typical of a tense conformation. These quaternary tense-like features contrast with the tertiary relaxed-like conformations of the ζ1βs1 dimer and the CD and FG corners, as well as the overall structures of the heme cavities. This crystallographic study provides insights into the altered oxygen-transport properties of Hb ζ2β2 s and, moreover, decouples tertiary- and quaternary-structural events that are critical to Hb ligand binding and allosteric function. PMID:24100324

  12. Extended molecular Ornstein-Zernike integral equation for fully anisotropic solute molecules: Formulation in a rectangular coordinate system

    NASA Astrophysics Data System (ADS)

    Ishizuka, Ryosuke; Yoshida, Norio

    2013-08-01

    An extended molecular Ornstein-Zernike (XMOZ) integral equation is formulated to calculate the spatial distribution of solvent around a solute of arbitrary shape and solid surfaces. The conventional MOZ theory employs spherical harmonic expansion technique to treat the molecular orientation of components of solution. Although the MOZ formalism is fully exact analytically, the truncation of the spherical harmonic expansion requires at a finite order for numerical calculation and causes the significant error for complex molecules. The XMOZ integral equation is the natural extension of the conventional MOZ theory to a rectangular coordinate system, which is free from the truncation of spherical harmonic expansion with respect to solute orientation. In order to show its applicability, we applied the XMOZ theory to several systems using the hypernetted-chain (HNC) and Kovalenko-Hirata approximations. The quality of results obtained within our theory is discussed by comparison with values from the conventional MOZ theory, molecular dynamics simulation, and three-dimensional reference interaction site model theory. The spatial distributions of water around the complex of non-charged sphere and dumbbell were calculated. Using this system, the approximation level of the XMOZ and other methods are discussed. To assess our theory, we also computed the excess chemical potentials for three realistic molecules (water, methane, and alanine dipeptide). We obtained the qualitatively reasonable results by using the XMOZ/HNC theory. The XMOZ theory covers a wide variety of applications in solution chemistry as a useful tool to calculate solvation thermodynamics.

  13. Extended molecular Ornstein-Zernike integral equation for fully anisotropic solute molecules: formulation in a rectangular coordinate system.

    PubMed

    Ishizuka, Ryosuke; Yoshida, Norio

    2013-08-28

    An extended molecular Ornstein-Zernike (XMOZ) integral equation is formulated to calculate the spatial distribution of solvent around a solute of arbitrary shape and solid surfaces. The conventional MOZ theory employs spherical harmonic expansion technique to treat the molecular orientation of components of solution. Although the MOZ formalism is fully exact analytically, the truncation of the spherical harmonic expansion requires at a finite order for numerical calculation and causes the significant error for complex molecules. The XMOZ integral equation is the natural extension of the conventional MOZ theory to a rectangular coordinate system, which is free from the truncation of spherical harmonic expansion with respect to solute orientation. In order to show its applicability, we applied the XMOZ theory to several systems using the hypernetted-chain (HNC) and Kovalenko-Hirata approximations. The quality of results obtained within our theory is discussed by comparison with values from the conventional MOZ theory, molecular dynamics simulation, and three-dimensional reference interaction site model theory. The spatial distributions of water around the complex of non-charged sphere and dumbbell were calculated. Using this system, the approximation level of the XMOZ and other methods are discussed. To assess our theory, we also computed the excess chemical potentials for three realistic molecules (water, methane, and alanine dipeptide). We obtained the qualitatively reasonable results by using the XMOZ/HNC theory. The XMOZ theory covers a wide variety of applications in solution chemistry as a useful tool to calculate solvation thermodynamics. PMID:24006986

  14. Effect of Aging on the NOx Storage and Regeneration Characteristics of Fully Formulated Lean NOx Trap Catalysts

    SciTech Connect

    Ji, Yaying; Easterling, Vencon; Graham, Uschi; Fisk, Courtney; Crocker, Mark; Choi, Jae-Soon

    2011-01-01

    In order to elucidate the effect of washcoat composition on lean NO{sub x} trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of Pt, Rh and BaO were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that in all cases aging resulted in deterioration of the NO{sub x} conversion as a consequence of impaired NO{sub x} storage and NO{sub x} reduction functions, while increased selectivity to NH{sub 3} was observed in the temperature range 250--450 C. Elemental analysis, H{sub 2} chemisorption and TEM data revealed two main changes which account for the degradation in LNT performance. First, residual sulfur in the catalysts, associated with the Ba phase, decreased catalyst NO{sub x} storage capacity. Second, sintering of the precious metals in the washcoat occurred, resulting in decreased contact between the Pt and Ba, and hence in less efficient NO{sub x} spillover from Pt to Ba during NO{sub x} adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NO{sub x} spillover during catalyst regeneration. For the aged catalysts, halving the Pt loading from 100 to 50 g/ft{sup 3} was found to result in a significant decrease in overall NO{sub x} conversion, while for catalysts with the same 100 g/ft{sup 3} Pt loading, increasing the relative amount of Pt on the NO{sub x} storage components (BaO and La-stabilized CeO{sub 2}), as opposed to an Al{sub 2}O{sub 3} support material (where it was co-located with Rh), was found to be beneficial. The effect of Rh loading on aged catalyst performance was found to be marginal within the range studied (10--20 g/ft{sup 3}), as was the effect of BaO loading in the range 30--45 g/L.

  15. Fully subthreshold current-based characterization of interface traps and surface potential in III–V-on-insulator MOSFETs

    NASA Astrophysics Data System (ADS)

    Kim, Seong Kwang; Lee, Jungmin; Geum, Dae-Myeong; Park, Min-Su; Choi, Won Jun; Choi, Sung-Jin; Kim, Dae Hwan; Kim, Sanghyeon; Kim, Dong Myong

    2016-08-01

    We report characterization of the interface trap distribution (Dit(E)) over the bandgap in III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) on insulator. Based only on the experimental subthreshold current data and differential coupling factor, we simultaneously obtained Dit(E) and a nonlinear mapping of the gate bias (VGS) to the trap level (Et) via the effective surface potential (ψS,eff). The proposed technique allows direct extraction of the interface traps at the In0.53Ga0.47As-on insulator (-OI) MOSFETs only from the experimental subthreshold current data. Applying the technique to the In0.53Ga0.47As channel III-V-OI MOSFETs with the gate width/length W/L = 100/50, 100/25, and 100/10 μm/μm, we obtained Dit(E) ≅ 1011-1012 eV-1 cm-2 over the bandgap without the dimension dependence.

  16. Contributed Review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology

    NASA Astrophysics Data System (ADS)

    Rushton, J. A.; Aldous, M.; Himsworth, M. D.

    2014-12-01

    Experiments using laser cooled atoms and ions show real promise for practical applications in quantum-enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking, and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniaturized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro-litre system capable of maintaining 10-10 mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materials.

  17. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  18. Contributed Review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology

    SciTech Connect

    Rushton, J. A.; Aldous, M.; Himsworth, M. D.

    2014-12-15

    Experiments using laser cooled atoms and ions show real promise for practical applications in quantum-enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking, and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniaturized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro-litre system capable of maintaining 10{sup −10} mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materials.

  19. First measurements of D(α) spectrum produced by anisotropic fast ions in the gas dynamic trap.

    PubMed

    Lizunov, A; Anikeev, A

    2014-11-01

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies

  20. First measurements of D{sub α} spectrum produced by anisotropic fast ions in the gas dynamic trap

    SciTech Connect

    Lizunov, A.; Anikeev, A.

    2014-11-15

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies

  1. Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC) fluxes between the ocean and atmosphere

    NASA Astrophysics Data System (ADS)

    Andrews, S. J.; Hackenberg, S. C.; Carpenter, L. J.

    2015-04-01

    The oceans are a key source of a number of atmospherically important volatile gases. The accurate and robust determination of trace gases in seawater is a significant analytical challenge, requiring reproducible and ideally automated sample handling, a high efficiency of seawater-air transfer, removal of water vapour from the sample stream, and high sensitivity and selectivity of the analysis. Here we describe a system that was developed for the fully automated analysis of dissolved very short-lived halogenated species (VSLS) sampled from an under-way seawater supply. The system can also be used for semi-automated batch sampling from Niskin bottles filled during CTD (conductivity, temperature, depth) profiles. The essential components comprise a bespoke, automated purge and trap (AutoP & T) unit coupled to a commercial thermal desorption and gas chromatograph mass spectrometer (TD-GC-MS). The AutoP & T system has completed five research cruises, from the tropics to the poles, and collected over 2500 oceanic samples to date. It is able to quantify >25 species over a boiling point range of 34-180 °C with Henry's law coefficients of 0.018 and greater (CH22l, kHcc dimensionless gas/aqueous) and has been used to measure organic sulfurs, hydrocarbons, halocarbons and terpenes. In the eastern tropical Pacific, the high sensitivity and sampling frequency provided new information regarding the distribution of VSLS, including novel measurements of a photolytically driven diurnal cycle of CH22l within the surface ocean water.

  2. Technical Note: A fully automated purge and trap-GC-MS system for quantification of volatile organic compound (VOC) fluxes between the ocean and atmosphere

    NASA Astrophysics Data System (ADS)

    Andrews, S. J.; Hackenberg, S. C.; Carpenter, L. J.

    2014-12-01

    The oceans are a key source of a number of atmospherically important volatile gases. The accurate and robust determination of trace gases in seawater is a significant analytical challenge, requiring reproducible and ideally automated sample handling, a high efficiency of seawater-air transfer, removal of water vapour from the sample stream, and high sensitivity and selectivity of the analysis. Here we describe a system that was developed for the fully automated analysis of dissolved very short-lived halogenated species (VSLS) sampled from an under-way seawater supply. The system can also be used for semi-automated batch sampling from Niskin bottles filled during CTD (Conductivity, Temperature, Depth) profiles. The essential components comprise of a bespoke, automated purge and trap (AutoP & T) unit coupled to a commercial thermal desorption and gas chromatograph-mass spectrometer (TD-GC-MS). The AutoP & T system has completed five research cruises, from the tropics to the poles, and collected over 2500 oceanic samples to date. It is able to quantify >25 species over a boiling point range of 34-180 °C with Henry's Law coefficients of 0.018 and greater (CH2I2, kHcc dimensionless gas/aqueous) and has been used to measure organic sulfurs, hydrocarbons, halocarbons and terpenes. In the east tropical Pacific, the high sensitivity and sampling frequency provided new information regarding the distribution of VSLS, including novel measurements of a photolytically driven diurnal cycle of CH2I2 within the surface ocean water.

  3. OpenMP Fortran and C programs for solving the time-dependent Gross-Pitaevskii equation in an anisotropic trap

    NASA Astrophysics Data System (ADS)

    Young-S., Luis E.; Vudragović, Dušan; Muruganandam, Paulsamy; Adhikari, Sadhan K.; Balaž, Antun

    2016-07-01

    We present new version of previously published Fortran and C programs for solving the Gross-Pitaevskii equation for a Bose-Einstein condensate with contact interaction in one, two and three spatial dimensions in imaginary and real time, yielding both stationary and non-stationary solutions. To reduce the execution time on multicore processors, new versions of parallelized programs are developed using Open Multi-Processing (OpenMP) interface. The input in the previous versions of programs was the mathematical quantity nonlinearity for dimensionless form of Gross-Pitaevskii equation, whereas in the present programs the inputs are quantities of experimental interest, such as, number of atoms, scattering length, oscillator length for the trap, etc. New output files for some integrated one- and two-dimensional densities of experimental interest are given. We also present speedup test results for the new programs.

  4. Anisotropic universe with anisotropic sources

    SciTech Connect

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha E-mail: sukanta@iiserb.ac.in E-mail: snigdha@iiserb.ac.in

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  5. Controllable underwater anisotropic oil-wetting

    SciTech Connect

    Yong, Jiale; Chen, Feng Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  6. Energy shift due to anisotropic blackbody radiation

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.; Porsev, S. G.; Safronova, M. S.

    2016-02-01

    In many applications a source of the blackbody radiation (BBR) can be highly anisotropic. This leads to the BBR shift that depends on tensor polarizability and on the projection of the total angular momentum of ions and atoms in a trap. We derived a formula for the anisotropic BBR shift and performed numerical calculations of this effect for Ca+and Yb+ transitions of experimental interest. These ions were used for a design of high-precision atomic clocks, fundamental physics tests such as the search for the Lorentz invariance violation and space-time variation of the fundamental constants, and quantum information. Anisotropic BBR shift may be one of the major systematic effects in these experiments.

  7. Trapped Surfaces

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are shown, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are discussed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of the region with closed trapped surfaces. Finally, the core of a trapped region is introduced, and its importance discussed.

  8. Trapped Surfaces

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    2013-03-01

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are pointed out, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are analyzed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of the region with closed trapped surfaces. Finally, the core of a trapped region is introduced, and its importance briefly discussed.

  9. Fully dynamic multiple-beam optical tweezers.

    PubMed

    Eriksen, Rene; Daria, Vincent; Gluckstad, Jesper

    2002-07-15

    We demonstrate a technique for obtaining fully dynamic multiple-beam optical tweezers using the generalized phase contrast (GPC) method and a phase-only spatial light modulator (SLM). The GPC method facilitates the direct transformation of an input phase pattern to an array of high-intensity beams, which can function as efficient multiple optical traps. This straightforward process enables an adjustable number of traps and realtime control of the position, size, shape and intensity of each individual tweezer-beam in arbitrary arrays by encoding the appropriate phase pattern on the SLM. Experimental results show trapping and dynamic manipulation of multiple micro-spheres in a liquid solution. PMID:19436404

  10. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  11. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  12. An engineered anisotropic nanofilm with unidirectional wetting properties.

    PubMed

    Malvadkar, Niranjan A; Hancock, Matthew J; Sekeroglu, Koray; Dressick, Walter J; Demirel, Melik C

    2010-12-01

    Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters. PMID:20935657

  13. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  14. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-01

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v∥,v⊥) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe∞, the pressure anisotropy becomes large with p∥≫p⊥ and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for

  15. Shortcut to Adiabaticity for an Anisotropic Gas Containing Quantum Defects.

    PubMed

    Papoular, D J; Stringari, S

    2015-07-10

    We present a shortcut to adiabaticity (STA) protocol applicable to 3D unitary Fermi gases and 2D weakly interacting Bose gases containing defects such as vortices or solitons. Our protocol relies on a new class of exact scaling solutions in the presence of anisotropic time-dependent harmonic traps. It connects stationary states in initial and final traps having the same frequency ratios. The resulting scaling laws exhibit a universal form and also apply to the classical Boltzmann gas. The duration of the STA can be made very short so as to realize a quantum quench from one stationary state to another. When applied to an anisotropically trapped superfluid gas, the STA conserves the shape of the quantum defects hosted by the cloud, thereby acting like a perfect microscope, which sharply contrasts with their strong distortion occurring during the free expansion of the cloud. PMID:26207476

  16. Anisotropic metamaterial optical fibers.

    PubMed

    Pratap, Dheeraj; Anantha Ramakrishna, S; Pollock, Justin G; Iyer, Ashwin K

    2015-04-01

    Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in such anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders. PMID:25968741

  17. Anisotropic eddy viscosity models

    NASA Technical Reports Server (NTRS)

    Carati, D.; Cabot, W.

    1996-01-01

    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

  18. Dynamics of Anisotropic Universes

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme

    2006-11-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  19. Hybrid Anisotropic Micromesh

    NASA Astrophysics Data System (ADS)

    Gutzov, S.; Danchova, N.; Tsekov, R.; Barreno, I.; Ruiz del Portal, X.; Ulbikas, J.

    2015-10-01

    A new hybrid woven micromesh containing metal and polyester wires with a 2D porosity of about 30% has been created. The anisotropic microcomposite is developed as a new material with wide applications in thermal and electrical engineering. The mesh material is carefully characterized using electron microscopy, fluorescence microscopy, chemical analysis, thermal conductivity measurements and differential scanning calorimetry.

  20. Anisotropic Ambient Volume Shading.

    PubMed

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  1. Unitary Penning traps

    NASA Astrophysics Data System (ADS)

    Tan, Joseph; Brewer, Samuel; Guise, Nicholas

    2012-06-01

    We have constructed Penning traps in extremely compact forms, with unitary architectures that fully integrate NdFeB magnets (1.2 Tesla remnant magnetic field) within the electrode structure (occupying < 150 cm^3 assembled). A room-temperature apparatus has proven to be very useful in slowing and capturing ions extracted from an electron beam ion trap (EBIT).ootnotetextJ. N. Tan, S. M. Brewer, and N. D. Guise, to appear in Review of Scientific Instruments Here we present a two-magnet Penning trap designed to facilitate ion manipulation and optical experiments with stored ions. Some test results are presented. Experiments using this novel system are discussed in two presentations at this meeting.ootnotetextN.D. Guise, et al., ``Charge exchange and spectroscopy with isolated highly-charged ions,'' at this meeting.^,ootnotetextS. M. Brewer, et al., ``Observing forbidden radiative decay of highly-charged ions in a compact Penning trap,'' at this meeting. Unitary architecture can be particularly advantageous in small-instrument development (e.g., mass spectrometers) and in facilities or missions that have severe space constraints.

  2. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  3. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  4. Energy shift due to anisotropic black body radiation

    NASA Astrophysics Data System (ADS)

    Porsev, Sergey; Flambaum, Victor; Safronova, Marianna

    2016-05-01

    In many applications a source of the black-body radiation (BBR) can be highly anisotropic. This leads to the black-body radiation shift that depends on tensor polarizability and on the projection of the total angular momentum of ions and atoms in a trap. We derived formula for the anisotropic BBR shift and performed numerical calculations of this effect for Ca+ and Yb+ transitions of experimental interest. These ions are used for a design of high-precision atomic clocks, fundamental physics tests such as search for the Lorentz invariance violation and space-time variation of the fundamental constants, and quantum information. Anisotropic BBR shift may be one of the major systematic effects in these experiments. This work was supported by U.S. NSF grants and the Australian Research Council.

  5. Anisotropic Total Variation Filtering

    SciTech Connect

    Grasmair, Markus; Lenzen, Frank

    2010-12-15

    Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.

  6. Combined acoustic and optical trapping

    PubMed Central

    Thalhammer, G.; Steiger, R.; Meinschad, M.; Hill, M.; Bernet, S.; Ritsch-Marte, M.

    2011-01-01

    Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting. PMID:22025990

  7. HWVP Iodine Trap Evaluation

    SciTech Connect

    Burger, Leland L.; Scheele, Randall D.

    2004-09-24

    This report details our assessment of the chemistry of the planned Hanford Waste Vitrification Plant (HWVP) off-gas system and its impact on the applicability of known iodine removal and control methods. To predict the gaseous species in the off-gas system, we completed thermodynamic calculations to determine theoretical equilibrium concentrations of the various potential chemical species. In addition, we found that HWVP pilot-plant experiments were generally consistent with the known chemistry of the individual elements present in the off gas. Of the known trapping techniques for radioiodine, caustic scrubbing and silver-containing sorbents are, in our opinion, the most attractive methods to reduce the iodine concentration in the HWVP melter off gas (MOG) after it has passed through the high-efficiency particulate air (HEPA) filter. These two methods were selected because they (1) have demonstrated retention factors (RFs), ratio of amount in and amount out, of 10 to 1000, which would be sufficient to reduce the iodine concentration in the MOG to below regulatory limits; (2) are simple to apply; (3) are resistant to oxidizing gases such as NOx; (4) do not employ highly hazardous or highly corrosive agents; (5) require containment vessels constructed or common materials; (6) have received extensive laboratory development; (7) and the radioactive wastes produced should be easy to handle. On the basis of iodine trapping efficiency, simplicity of operation, and waste management, silver sorbents are superior to caustic scrubbing, and, or these sorbents, we prefer the silver zeolites. No method has been fully demonstrated, from laboratory-scale through pilot-plant testing, to be an effective iodine trap at the low iodine concentration (2 x 10-11 mol I/L) expected in the MOG of the HWVP in the presence of the other gaseous off gas components. In terms of compatibility of the trapping technology with the components in the MOG, there is some question about the resistance of

  8. Ripple Trap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image.

    Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  9. Feshbach resonances of harmonically trapped atoms

    SciTech Connect

    Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2011-03-15

    Employing a short-range two-channel description, we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a parametrization of the energy-dependent scattering length that differs from the one previously employed. We validate the model by comparison to full numerical calculations for {sup 6}Li-{sup 87}Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.

  10. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    PubMed Central

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  11. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  12. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  13. Salisbury hospital's steam trap success.

    PubMed

    Baillie, Jonathan

    2011-03-01

    With the Carbon Reduction Commitment now fully in force, and the NHS tasked with achieving tough carbon emission reduction targets in line with both UK and EU mandates, healthcare estates teams across the country are seeking cost-effective ways to reduce energy consumption. Against this backdrop, Salisbury District Hospital has implemented a concerted energy-saving programme, key elements of which include replacing existing bucket steam traps with higher performing, lower maintenance, and more effective GEM venturi steam traps from Thermal Energy International (TEI), installing a new gas CHP engine, and looking into fitting a TEI condensate economiser system. PMID:21485315

  14. Relativistic heavy quark spectrum on anisotropic lattices

    NASA Astrophysics Data System (ADS)

    Liao, Xiaodong

    We report a fully relativistic quenched calculation of the heavy quark spectrum, including both charmonium and bottomonium, using anisotropic lattice QCD. We demonstrate that a fully relativistic treatment of a heavy quark system is well-suited to address the large systematic errors in non-relativistic calculations. In addition, the anisotropic lattice formulation is a very efficient framework for calculations requiring high temporal resolutions. A detailed excited charmonium spectrum is obtained, including both the exotic hybrids (with JPC = 1-+ , 0+-, 2+-) and orbitally excited mesons (with orbital angular momentum up to 3). Using three different lattice spacings (0.197, 0.131, and 0.092 fm), we perform a continuum extrapolation of the spectrum. The lowest lying exotic hybrid 1-+ lies at 4.428(41) GeV, slightly above the D**D (S + P wave) threshold of 4.287 GeV. Another two exotic hybrids 0+- and 2 +- are determined to be 4.70(17) GeV and 4.895(88) GeV, respectively. Our finite volume analysis confirms that our lattices are large enough to accommodate all the excited states reported here. We did the first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices. Using a very fine discretization in the temporal direction we were able to go beyond the non-relativistic approximation and perform a continuum extrapolation of our results from five different lattice spacings (0.04--0.17 fm) and two anisotropies (4 and 5). We investigate several systematic errors within the quenched approximation and compare our results with those from non-relativistic simulations.

  15. Anisotropic spinfoam cosmology

    NASA Astrophysics Data System (ADS)

    Rennert, Julian; Sloan, David

    2014-01-01

    The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.

  16. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-01

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen. PMID:21085118

  17. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  18. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  19. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  20. Optics of anisotropic nanostructures

    NASA Astrophysics Data System (ADS)

    Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo

    2006-07-01

    The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

  1. Tunable anisotropic superfluidity in optical Kagome superlattice

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian

    2015-03-01

    We study the extended Bose-Hubbard model for the optical Kagome superlattice which is generated by enhancing the long wavelength laser in one direction. By combining Quantum Monte Carlo simulations with the Generalized Effective Potential Landau Theory, we find not only the Mott insulator-superfluid quantum phase transition, but also striped solid phases with non-integer filling factors. Furthermore, we determine with high accuracy the quantum phase diagram for different trap potential offsets. Due to the delicate interplay between onsite repulsion and artificial symmetry breaking, the superfluid density turns out to be anisotropic which reveals its tensorial property. Counterintuitively, the bias of the anisotropy is alternating between x- and y-direction while tuning the particle number or the hopping strength. Finally, we discuss how to observe such phenomenon experimentally, in particular via time-of-flight absorption measurements. Supported by OPTIMAS and the Deutsche Forschungsgemeinschaft via the SFB/TR49

  2. A hybrid-stress finite element for linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Fly, Gerald W.; Oden, J. Tinsley; Pearson, Mark L.

    1988-01-01

    Standard assumed displacement finite elements with anisotropic material properties perform poorly in complex stress fields such as combined bending and shear and combined bending and torsion. A set of three dimensional hybrid-stress brick elements were developed with fully anisotropic material properties. Both eight-node and twenty-node bricks were developed based on the symmetry group theory of Punch and Atluri. An eight-node brick was also developed using complete polynomials and stress basis functions and reducing the order of the resulting stress parameter matrix by applying equilibrium constraints and stress compatibility constraints. Here the stress compatibility constraints must be formulated assuming anisotropic material properties. The performance of these elements was examined in numerical examples covering a broad range of stress distributions. The stress predictions show significant improvement over the assumed displacement elements but the calculation time is increased.

  3. Simple types of anisotropic inflation

    SciTech Connect

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-15

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  4. Multipartite Fully Entangled Fraction

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei

    2016-06-01

    Fully entangled fraction is a definition for bipartite states, which is tightly related to bipartite maximally entangled states, and has clear experimental and theoretical significance. In this work, we generalize it to multipartite case, we call the generalized version multipartite fully entangled fraction (MFEF). MFEF measures the closeness of a state to GHZ states. The analytical expressions of MFEF are very difficult to obtain except for very special states, however, we show that, the MFEF of any state is determined by a system of finite-order polynomial equations. Therefore, the MFEF can be efficiently numerically computed.

  5. An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2011-01-01

    An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.

  6. Anisotropic inflation with general potentials

    NASA Astrophysics Data System (ADS)

    Shi, JiaMing; Huang, XiaoTian; Qiu, TaoTao

    2016-04-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  7. Anisotropic microsrheology of self-assembling collagen networks

    NASA Astrophysics Data System (ADS)

    Dutov, Pavel

    Collagen is the main component of human connective tissue and extracellular matrix. Here we report multiple novel methods for utilizing optical tweezers to measure mechanical properties of different hierarchical levels of collagenous materials. First, we introduce a method for optical trap calibration that is suitable for viscoelastic material. The method is designed for use on experimental setups with two optical tweezers and is based on pulling a trapped particle with one trap while holding it with the other. The method combines advantages of commonly known PSD-fitting and fast-sweeping methods, allowing calibration of a completely fixed trap in a fluid of unknown viscosity/viscoelasticity without additional expensive equipment. Then we report an approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. The approach also avoids the traditional drying-soaking cycle, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. Lastly, we report a new method for characterizing anisotropic viscoelastic response of collagenous matrices. Anisotropic collagenous extracellular matrices are used in biomedicine to enhance the wound healing process by directing fibroblast proliferation. We utilize an optical trap to monitor the thermal fluctuations of microspheres embedded into collagenous network to extract a viscoelastic response function of the network along the principal axes of anisotropy.

  8. Decorrelation of anisotropic flow along the longitudinal direction

    NASA Astrophysics Data System (ADS)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-04-01

    The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity ( η . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.

  9. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  10. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    SciTech Connect

    Armstrong, T.W.; Colborn, B.L.; Watts, J.W.

    1990-10-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt averages out the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent (vector) trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases.

  11. Superlens from complementary anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.

    2007-12-01

    Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.

  12. Dynamical analysis of anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  13. Anisotropic inflation with the nonvacuum initial state

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Firouzjahi, Hassan; Zarei, Moslem

    2014-07-01

    In this work we study models of anisotropic inflation with the generalized nonvacuum initial states for the inflaton field and the gauge field. The effects of the non-Bunch-Davies initial condition on the anisotropic power spectrum and bispectrum are calculated. We show that the non-Bunch-Davies initial state can help to reduce the fine-tuning on the anisotropic power spectrum while reducing the level of anisotropic bispectrum.

  14. Polarization-dependent fluorescence from an anisotropic gold/polymer hybrid nano-emitter

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Deeb, C.; Vincent, R.; Lerond, T.; Adam, P.-M.; Plain, J.; Wiederrecht, G. P.; Charra, F.; Fiorini, C.; Colas des Francs, G.; Soppera, O.; Bachelot, R.

    2014-01-01

    Based on nanoscale photopolymerization triggered by the dipolar surface plasmon mode, we developed a light-emitting gold nanoparticle/Eosin Y-doped polymer hybrid nanostructure. Due to the anisotropic spatial distribution of the dipolar surface plasmon mode during photopolymerization, this nano-emitter is anisotropic in both geometry and emission. The trapped dye molecules in the hybrid nanostructure display fluorescence intensity that is dependent upon the polarization of the incident excitation light. This nano-emitter further allows the photo-selection of fluorescence configuration (i.e., molecule concentration and refractive index of active medium) by controlling the incident polarization.

  15. Velocity of Light in Anisotropic Spacetime

    NASA Astrophysics Data System (ADS)

    Fomin, I. V.

    2016-05-01

    The task of the present study is to describe local anisotropic spacetime and to discuss the possibility of its experimental detection. Anisotropic spacetime is treated as the flat isotropic Minkowski space with anisotropic perturbations. A determination of the components of the metric tensor is bound up with measurements of the velocity of light in different directions.

  16. Fracture toughness of anisotropic graphites

    SciTech Connect

    Kennedy, C.R.; Kehne, M.T.

    1985-01-01

    Fracture toughness measurements have been made at 0, 30, 45, 60, and 90/sup 0/ from the extrusion axis on a reasonably anisotropic graphite, grade AGOT. It was found that the fracture toughness did not vary appreciably with orientation. An observed variation in strength was found to be the result of defect orientation.

  17. PP/PS anisotropic stereotomography

    NASA Astrophysics Data System (ADS)

    Nag, Steinar; Alerini, Mathias; Ursin, Bjørn

    2010-04-01

    Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.

  18. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  19. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  20. Ion trap simulation tools.

    SciTech Connect

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  1. Anisotropic models for compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Dayanandan, Baiju

    2015-05-01

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor with the help of both metric potentials and . Here we consider the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model.

  2. Ultra-fast underwater suction traps

    PubMed Central

    Vincent, Olivier; Weißkopf, Carmen; Poppinga, Simon; Masselter, Tom; Speck, Thomas; Joyeux, Marc; Quilliet, Catherine; Marmottant, Philippe

    2011-01-01

    Carnivorous aquatic Utricularia species catch small prey animals using millimetre-sized underwater suction traps, which have fascinated scientists since Darwin's early work on carnivorous plants. Suction takes place after mechanical triggering and is owing to a release of stored elastic energy in the trap body accompanied by a very fast opening and closing of a trapdoor, which otherwise closes the trap entrance watertight. The exceptional trapping speed—far above human visual perception—impeded profound investigations until now. Using high-speed video imaging and special microscopy techniques, we obtained fully time-resolved recordings of the door movement. We found that this unique trapping mechanism conducts suction in less than a millisecond and therefore ranks among the fastest plant movements known. Fluid acceleration reaches very high values, leaving little chance for prey animals to escape. We discovered that the door deformation is morphologically predetermined, and actually performs a buckling/unbuckling process, including a complete trapdoor curvature inversion. This process, which we predict using dynamical simulations and simple theoretical models, is highly reproducible: the traps are autonomously repetitive as they fire spontaneously after 5–20 h and reset actively to their ready-to-catch condition. PMID:21325323

  3. Anisotropic Turbulence Modeling for Accurate Rod Bundle Simulations

    SciTech Connect

    Baglietto, Emilio

    2006-07-01

    An improved anisotropic eddy viscosity model has been developed for accurate predictions of the thermal hydraulic performances of nuclear reactor fuel assemblies. The proposed model adopts a non-linear formulation of the stress-strain relationship in order to include the reproduction of the anisotropic phenomena, and in combination with an optimized low-Reynolds-number formulation based on Direct Numerical Simulation (DNS) to produce correct damping of the turbulent viscosity in the near wall region. This work underlines the importance of accurate anisotropic modeling to faithfully reproduce the scale of the turbulence driven secondary flows inside the bundle subchannels, by comparison with various isothermal and heated experimental cases. The very low scale secondary motion is responsible for the increased turbulence transport which produces a noticeable homogenization of the velocity distribution and consequently of the circumferential cladding temperature distribution, which is of main interest in bundle design. Various fully developed bare bundles test cases are shown for different geometrical and flow conditions, where the proposed model shows clearly improved predictions, in close agreement with experimental findings, for regular as well as distorted geometries. Finally the applicability of the model for practical bundle calculations is evaluated through its application in the high-Reynolds form on coarse grids, with excellent results. (author)

  4. Polarization dynamics in nonlinear anisotropic fibers

    SciTech Connect

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-07-15

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  5. Details of tetrahedral anisotropic mesh adaptation

    NASA Astrophysics Data System (ADS)

    Jensen, Kristian Ejlebjerg; Gorman, Gerard

    2016-04-01

    We have implemented tetrahedral anisotropic mesh adaptation using the local operations of coarsening, swapping, refinement and smoothing in MATLAB without the use of any for- N loops, i.e. the script is fully vectorised. In the process of doing so, we have made three observations related to details of the implementation: 1. restricting refinement to a single edge split per element not only simplifies the code, it also improves mesh quality, 2. face to edge swapping is unnecessary, and 3. optimising for the Vassilevski functional tends to give a little higher value for the mean condition number functional than optimising for the condition number functional directly. These observations have been made for a uniform and a radial shock metric field, both starting from a structured mesh in a cube. Finally, we compare two coarsening techniques and demonstrate the importance of applying smoothing in the mesh adaptation loop. The results pertain to a unit cube geometry, but we also show the effect of corners and edges by applying the implementation in a spherical geometry.

  6. Trap style influences wild pig behavior and trapping success

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  7. Bose-Einstein condensate in a rapidly rotating nonsymmetric trap

    SciTech Connect

    Fetter, Alexander L.

    2010-03-15

    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function {psi}(x,y) is a Gaussian {proportional_to}exp(-r{sup 2}/2), multiplied by an analytic function f(z) of the complex variable z=x+iy. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here a similar description applies to a rapidly rotating nonsymmetric two-dimensional trap with arbitrary quadratic anisotropy ({omega}{sub x}{sup 2}<{omega}{sub y}{sup 2}). The corresponding condensate wave function {psi}(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z=x+i{beta}{sub -}y is a stretched complex variable and 0{<=}{beta}{sub -{<=}}1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L{sub z}, which suggests that a nonsymmetric trap should make it easier to observe this transition, or (2) in terms of a 'fragmented' correlated state, which suggests that a nonsymmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).

  8. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  9. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  10. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  11. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  12. Shielding distribution for anisotropic radiation in low earth orbit

    SciTech Connect

    Henley, M.W.

    1986-02-01

    The highly directional nature of radiation encountered in low earth orbit (LEO) can be a basis for distributing mass for spacecraft radiation shielding. Trapped (Van Allen) radiation at low altitudes is concentrated within a plane perpendicular to the local geometric field lines. Trapped high-energy protons (which penetrate the relatively thin shielding required for electrons) have a pronounced east-west asymmetry at low altitudes, with the flux from the west much higher than that from the east. By distributing radition shielding mass in response to these anisotropies, spacecraft mass can be reduced, the altitude limits of LEO extended, and the exposure of men and sensitive materials decreased. Geophysical behavior of trapped radiation is reviewed with particular emphasis on the factors responsible for radiation anisotropy. Shielding distribution in response to anisotropic radiation is then explored for consistently oriented spherical and cylindrical spacecraft. The 28.5-deg orbital inclination is considered in detail, with a brief extension of the concepts to other inclinations. These radiation shielding concepts may find near-term application in Space Station design. 21 references.

  13. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Qian Chen

    2008-08-18

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  14. Anomalous optical forces on radially anisotropic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Gao, L.

    2015-11-01

    Full-wave electromagnetic scattering theory and Maxwell stress tensor integration techniques have been established to study the optical force on the radially anisotropic nanowires. The optical forces on the isotropic nanowires are dependent on the size of the nanowire and the wave vector in the media with the Rayleigh's law. However, the optical forces on the anisotropic nanowires have the anomalous behaviors under non-Rayleigh vanishing condition and non-Rayleigh diverging condition. Therefore, the optical forces on the anisotropic nanowires may be enhanced or reduced by tuning the anisotropic parameters. These results may promote the potential applications in the field of nanotechnology.

  15. Effect of trapping in degenerate quantum plasmas

    SciTech Connect

    Shah, H. A.; Qureshi, M. N. S.; Tsintsadze, N.

    2010-03-15

    In the present work we consider the effect of trapping as a microscopic process in a plasma consisting of quantum electrons and nondegenerate ions. The formation of solitary structures is investigated in two cases: first when the electrons are fully degenerate and second when small temperature effects are taken into account. It is seen that not only rarefactive but coupled rarefactive and compressive solitons are obtained under different temperature conditions.

  16. Fully automatic telemetry data processor

    NASA Technical Reports Server (NTRS)

    Cox, F. B.; Keipert, F. A.; Lee, R. C.

    1968-01-01

    Satellite Telemetry Automatic Reduction System /STARS 2/, a fully automatic computer-controlled telemetry data processor, maximizes data recovery, reduces turnaround time, increases flexibility, and improves operational efficiency. The system incorporates a CDC 3200 computer as its central element.

  17. Remarks on inhomogeneous anisotropic cosmology

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  18. Tunneling spectroscopy of anisotropic superconductors

    SciTech Connect

    Kashiwaya, Satoshi; Koyanagi, Masao; Kajimura, Koji; Tanaka, Yukio

    1996-12-31

    Tunneling spectroscopy of normal-insulator-superconductor junction is investigated theoretically. In anisotropic superconductors, differently from the case of isotropic superconductor, the effective pair potentials felt by quasiparticles depend on the direction of their motion. By taking this effect into account, it is shown that the conductance spectra strongly depend on the crystal orientation. Using Green`s function method, local density of states (LDOS) in superconductor is also calculated. The close relation between conductance spectra and LDOS is presented. The calculation is compared with experimental spectra of high-{Tc} superconductors.

  19. Spin precession in anisotropic cosmologies

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2016-05-01

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter.

  20. Granular Segregation with Anisotropic Particles

    NASA Astrophysics Data System (ADS)

    Sykes, Tim

    2005-11-01

    The results from experimental investigations of horizontally vibrated mixtures of anisotropic poppy seeds and long chains of linked spheres will be presented. A critical packing fraction was observed to be required to initiate a transition to segregation. The average size of the resulting patterns was measured and the concentration ratio of the mixtures was varied by changing the number of chains present in the mixtures. A change in the order of the transition, from second to first order with associated hysteresis, was observed as the chain number was reduced. This gave rise to three distinct regions of behaviour: segregated, mixed and a bi-stable state.

  1. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  2. Anisotropic fractional diffusion tensor imaging

    PubMed Central

    Meerschaert, Mark M; Magin, Richard L; Ye, Allen Q

    2015-01-01

    Traditional diffusion tensor imaging (DTI) maps brain structure by fitting a diffusion model to the magnitude of the electrical signal acquired in magnetic resonance imaging (MRI). Fractional DTI employs anomalous diffusion models to obtain a better fit to real MRI data, which can exhibit anomalous diffusion in both time and space. In this paper, we describe the challenge of developing and employing anisotropic fractional diffusion models for DTI. Since anisotropy is clearly present in the three-dimensional MRI signal response, such models hold great promise for improving brain imaging. We then propose some candidate models, based on stochastic theory.

  3. Planetary spectra for anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1975-01-01

    Some of the effects on planetary spectra that would be produced by departures from isotropic scattering are examined. The phase function is the simplest departure to handle analytically and the only phase function, other than the isotropic one, that can be incorporated into a Chandrasekhar first approximation. This approach has the advantage of illustrating trends resulting from anisotropies while retaining the simplicity that yields physical insight. An algebraic solution to the two sets of anisotropic H functions is developed in the appendix. It is readily adaptable to progammable desk calculators and gives emergent intensities accurate to 0.3 percent, which is sufficient even for spectroscopic analysis.

  4. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  5. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  6. Optical Trapping of Nanoparticles

    PubMed Central

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-01

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam1. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles1. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec1, which has serious implications for biological matter2,3. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime4. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement5,6. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres7 and 3.4 nm

  7. Optical trapping of nanoparticles.

    PubMed

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-01

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec, which has serious implications for biological matter. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres and 3.4 nm hydrodynamic radius

  8. Pairing correlations in a trapped one-dimensional Fermi gas

    NASA Astrophysics Data System (ADS)

    Kudla, Stephen; Gautreau, Dominique M.; Sheehy, Daniel E.

    2015-04-01

    We use a BCS-type variational wave function to study attractively interacting quasi-one-dimensional fermionic atomic gases, motivated by cold-atom experiments that access the one-dimensional regime using an anisotropic harmonic trapping potential (with trapping frequencies ωx=ωy≫ωz ) that confines the gas to a cigar-shaped geometry. To handle the presence of the trap along the z direction, we construct our variational wave function from the harmonic oscillator Hermite functions, which are the eigenstates of the single-particle problem. Using an analytic determination of the effective interaction among harmonic oscillator states along with a numerical solution of the resulting variational equations, we make specific experimental predictions for how pairing correlations would be revealed in experimental probes, such as the local density and the momentum correlation function.

  9. Nonlinear integrable ion traps

    SciTech Connect

    Nagaitsev, S.; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  10. Optically programmable excitonic traps

    PubMed Central

    Alloing, Mathieu; Lemaître, Aristide; Galopin, Elisabeth; Dubin, François

    2013-01-01

    With atomic systems, optically programmed trapping potentials have led to remarkable progress in quantum optics and quantum information science. Programmable trapping potentials could have a similar impact on studies of semiconductor quasi-particles, particularly excitons. However, engineering such potentials inside a semiconductor heterostructure remains an outstanding challenge and optical techniques have not yet achieved a high degree of control. Here, we synthesize optically programmable trapping potentials for indirect excitons of bilayer heterostructures. Our approach relies on the injection and spatial patterning of charges trapped in a field-effect device. We thereby imprint in-situ and on-demand electrostatic traps into which we optically inject cold and dense ensembles of excitons. This technique creates new opportunities to improve state-of-the-art technologies for the study of collective quantum behavior of excitons and also for the functionalisation of emerging exciton-based opto-electronic circuits. PMID:23546532

  11. Optical trapping and binding

    NASA Astrophysics Data System (ADS)

    Bowman, Richard W.; Padgett, Miles J.

    2013-02-01

    The phenomenon of light's momentum was first observed in the laboratory at the beginning of the twentieth century, and its potential for manipulating microscopic particles was demonstrated by Ashkin some 70 years later. Since that initial demonstration, and the seminal 1986 paper where a single-beam gradient-force trap was realized, optical trapping has been exploited as both a rich example of physical phenomena and a powerful tool for sensitive measurement. This review outlines the underlying theory of optical traps, and explores many of the physical observations that have been made in such systems. These phenomena include ‘optical binding’, where trapped objects interact with one another through the trapping light field. We also discuss a number of the applications of ‘optical tweezers’ across the physical and life sciences, as well as covering some of the issues involved in constructing and using such a tool.

  12. Postbuckling of laminated anisotropic panels

    NASA Technical Reports Server (NTRS)

    Jeffrey, Glenda L.

    1987-01-01

    A two-part study of the buckling and postbuckling of laminated anisotropic plates with bending-extensional coupling is presented. The first part involves the development and application of a modified Rayleigh-Ritz analysis technique. Modifications made to the classical technique can be grouped into three areas. First, known symmetries of anisotropic panels are exploited in the selection of approximation functions. Second, a reduced basis technique based on these same symmetries is applied in the linear range. Finally, geometric boundary conditions are enforced via an exterior penalty function approach, rather than relying on choice of approximation functions to satisfy these boundary conditions. Numerical results are presented for both the linear and nonlinear range, with additional studies made to determine the effect of variation in penalty parameter and number of basis vectors. In the second part, six panels possessing anisotropy and bending-extensional coupling are tested. Detailed comparisons are made between experiment and finite element results in order to gain insight into the postbuckling and failure characteristics of such panels. The panels are constructed using two different lamination sequences, and panels with three different aspect ratios were constructed for each lamination sequence.

  13. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  14. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  15. Effects of anisotropic dynamics on cosmic strings

    SciTech Connect

    Kunze, Kerstin E.

    2011-08-01

    The dynamics of cosmic strings is considered in anisotropic backgrounds. In particular, the behaviour of infinitely long straight cosmic strings and of cosmic string loops is determined. Small perturbations of a straight cosmic string are calculated. The relevance of these results is discussed with respect to the possible observational imprints of an anisotropic phase on the behaviour of a cosmic string network.

  16. Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media

    NASA Astrophysics Data System (ADS)

    Galindo-Torres, S. A.; Scheuermann, A.; Li, L.

    2012-10-01

    Pore-scale flow simulations were conducted to investigate the permeability tensor of anisotropic porous media constructed using the Voronoi tessellation method. This construction method enabled the introduction of anisotropy to the media at the particle level in a random and yet controllable way. Simulations were carried out for media with different degrees of anisotropy through varying the mean aspect ratio of grain particles. The simulation results were then analyzed using the Kozeny-Carman (KC) model. The KC model describes the permeability of the anisotropic media in a tensor form with the anisotropy represented by different tortuosities along the three principal directions. The tortuosity tensor was found to be a complex function of the particle morphology, which is yet to be fully determined. However, the results presented have established the starting point for further theoretical development to formulate such a function and to build closed-form analytical permeability models for anisotropic porous media based on first principles.

  17. Anisotropic rheology of a polycrystalline aggregate and convection in planetary mantles

    NASA Astrophysics Data System (ADS)

    Pouilloux, L. S.; Labrosse, S.; Kaminski, E.

    2011-12-01

    Observations of seismic anisotropy in the Earth mantle is often related to the crystal preferred orientation of polycrystalline aggregates. In this case, the physical properties depends on the direction and require the use of tensors to be fully described. In particular, the viscosity must be defined as a fourth order tensor whereas the thermal conductivity is a 2nd order tensor. However, the dynamical implications of such physical properties have received little attention until now. In this work, we present the mathematical formulation for an anisotropic medium and the relationship with dislocation creep deformation. We explore extensively the problem of the onset of Rayleigh-Bénard convection with such anisotropic properties. We finally presents some numerical results on the time-dependent problem using an orthotropic law for an ice polycrystal. Geophysical implications of this work related to the dynamics of planetary mantles are discussed, especially the potential of anisotropic rheology to localize deformation.

  18. Phonon heat conduction in layered anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Minnich, A. J.

    2015-02-01

    The thermal properties of anisotropic crystals are of both fundamental and practical interest, but transport phenomena in anisotropic materials such as graphite remain poorly understood because solutions of the Boltzmann equation often assume isotropy. Here, we extend an analytic solution of the transient, frequency-dependent Boltzmann equation to highly anisotropic solids and examine its predictions for graphite. We show that this simple model predicts key results, such as long c -axis phonon mean free paths and a negative correlation of cross-plane thermal conductivity with in-plane group velocity, that were previously observed with computationally expensive molecular-dynamics simulations. Further, using our analytic solution, we demonstrate a method to reconstruct the anisotropic mean free path spectrum of crystals with arbitrary dispersion relations without any prior knowledge of their harmonic or anharmonic properties using observations of quasiballistic heat conduction. These results provide a useful analytic framework to understand thermal transport in anisotropic crystals.

  19. Designing anisotropic inflation with form fields

    NASA Astrophysics Data System (ADS)

    Ito, Asuka; Soda, Jiro

    2015-12-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  20. Trapping deuterium atoms

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Lambillotte, B.; Andrist, M.; Schmutz, H.; Agner, J.; Salathe, Y.; Merkt, F.

    2010-02-15

    Cold deuterium atoms in a supersonic beam have been decelerated from an initial velocity of 475 m/s to zero velocity in the laboratory frame using a 24-stage Zeeman decelerator. The atoms have been loaded in a magnetic quadrupole trap at a temperature of {approx}100 mK and an initial density of {approx}10{sup 6} cm{sup -3}. Efficient deceleration was achieved by pulsing the magnetic fields in the decelerator solenoids using irregular sequences of phase angles. Trap loading was optimized by monitoring and suppressing the observed reflection of the atoms by the field gradient of the back solenoid of the trap.

  1. Stratigraphic traps 2

    SciTech Connect

    Not Available

    1991-01-01

    This volume contains studies of fields with traps that are mainly stratigraphic in nature. Structure plays a role in the traps of several fields, but overall, it is clear that the main trapping features with the group of fields in this volume are stratigraphic. The first six fields in this volume, Alabama Ferry, Rospo Mare, Walker Creek, Bindley, Lexington, and Newburg/South Westhope, have carbonate reservoirs. The latter two of these, Lexington and Newburg/South Westhope, also have sandstone reservoirs. The remaining fields, East Texas, East Clinton, Stockholm Southwest, Sorrento, Port Acres, and Lagoa Parda, have only sandstone reservoirs.

  2. The nature of the TRAP-Anti-TRAP complex.

    PubMed

    Watanabe, Masahiro; Heddle, Jonathan G; Kikuchi, Kenichi; Unzai, Satoru; Akashi, Satoko; Park, Sam-Yong; Tame, Jeremy R H

    2009-02-17

    Tryptophan biosynthesis is subject to exquisite control in species of Bacillus and has become one of the best-studied model systems in gene regulation. The protein TRAP (trp RNA-binding attenuation protein) predominantly forms a ring-shaped 11-mer, which binds cognate RNA in the presence of tryptophan to suppress expression of the trp operon. TRAP is itself regulated by the protein Anti-TRAP, which binds to TRAP and prevents RNA binding. To date, the nature of this interaction has proved elusive. Here, we describe mass spectrometry and analytical centrifugation studies of the complex, and 2 crystal structures of the TRAP-Anti-TRAP complex. These crystal structures, both refined to 3.2-A resolution, show that Anti-TRAP binds to TRAP as a trimer, sterically blocking RNA binding. Mass spectrometry shows that 11-mer TRAP may bind up to 5 AT trimers, and an artificial 12-mer TRAP may bind 6. Both forms of TRAP make the same interactions with Anti-TRAP. Crystallization of wild-type TRAP with Anti-TRAP selectively pulls the 12-mer TRAP form out of solution, so the crystal structure of wild-type TRAP-Anti-TRAP complex reflects a minor species from a mixed population. PMID:19164760

  3. Vortex structures of rotating Bose-Einstein condensates in an anisotropic harmonic potential

    SciTech Connect

    Matveenko, S. I.

    2010-09-15

    We found an analytical solution for the vortex structure in a rapidly rotating trapped Bose-Einstein condensate in the lowest Landau level approximation. This solution is exact in the limit of a large number of vortices and is obtained for the case of a condensate in a anisotropic harmonic potential. The solution describes as limiting cases both a triangle vortex lattice in the symmetric potential trap and a quasi-one-dimensional structure of vortex rows in an asymmetric case, when the rotation frequency is very close to the lower trapping potential frequency. The shape of the density profile is found to be close to the Thomas-Fermi inverted paraboloid form, except in the vicinity of edges of a condensate cloud.

  4. Spatially anisotropic Heisenberg kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  5. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  6. Anisotropic scaling of magnetohydrodynamic turbulence.

    PubMed

    Horbury, Timothy S; Forman, Miriam; Oughton, Sean

    2008-10-24

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3. PMID:18999759

  7. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  8. Gravitational baryogenesis after anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  9. The Anisotropic Geometrodynamics For Cosmology

    NASA Astrophysics Data System (ADS)

    Siparov, Sergey V.

    2009-05-01

    The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.

  10. Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    SciTech Connect

    Beau, Mathieu; Savoie, Baptiste

    2014-05-15

    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.

  11. Fully Massive Six Dimensional Box

    NASA Astrophysics Data System (ADS)

    Glosser, Chris; Ward, B. F. L.; Yost, Scott

    2004-05-01

    In this work, we present a fully analytic calculation of the six dimensional scalar four-point function, which is necessary for calculations using the amplitude decomposition of Bern, Dixon, and Kosower. The calculation proceeds along the lines of the calculation of the 3-point function by Vermaseren and Oldenburg.

  12. Optically trapped fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Horowitz, Viva R.; Alemán, Benjamin J.; Christle, David; Cleland, Andrew N.; Awschalom, David D.

    2012-02-01

    The electronic spin state of the nitrogen-vacancy (NV) center in diamond has gained considerable interest because it can be optically initialized, coherently manipulated, and optically read out at room temperature. In addition, nanoparticle diamonds containing NV centers can be integrated with biological and microfluidic systems. We have constructed and characterized an optical tweezers apparatus to trap fluorescent nanodiamonds in a fluid and measure their fluorescence. Particles are held and moved in three dimensions using an infrared trapping laser. Fluorescent detection of these optically trapped nanodiamonds enables us to observe nanoparticle dynamics and to measure electron spin resonance of NV centers. We will discuss applications using the electron spin resonance of trapped NV centers in nanodiamonds for magnetic field imaging in fluidic environments.

  13. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  14. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  15. Structural traps 5

    SciTech Connect

    Foster, N.H.; Beaumont, E.A.

    1991-01-01

    This book contains studies of oil and gas fields that are mainly structural in nature. Stratigraphy controls the extend of the reservoir in the traps of several fields, but overall, the main trapping features within the group of fields in this volume are structural. Fields covered in this volume include: Endicott Field, Point Arguello Field, West Puerto Chiquito Field, Dukhan Field, Sendji Field, Ruston Field, Raudhatain Field, Hassi Messaoud Field, Snapper Field, Tirrawarra Field, and Sacha Field.

  16. Optical trapping of nanoshells

    NASA Astrophysics Data System (ADS)

    Hester, Brooke C.; Crawford, Alice; Kishore, Rani B.; Helmerson, Kristian; Halas, Naomi J.; Levin, Carly

    2007-09-01

    We investigate near-resonant trapping of Rayleigh particles in optical tweezers. Although optical forces due to a near-resonant laser beam have been extensively studied for atoms, the situation for larger particles is that the laser wavelength is far from any absorption resonance. Theory predicts, however, that the trapping force exerted on a Rayleigh particle is enhanced, and may be three to fifty times larger for frequencies near resonance than for frequencies far off resonance. The ability to selectively trap only particles with a given absorption peak may have many practical applications. In order to investigate near-resonant trapping we are using nanoshells, particles with a dielectric core and metallic coating that can exhibit plasmon resonances. The resonances of the nanoshells can be tuned by adjusting the ratio of the radius of the dielectric core, r I, to the overall radius, r II, which includes the thickness of the metallic coating. Our nanoshells, fabricated at Rice University, consist of a silica core with a gold coating. Using back focal plane detection, we measure the trap stiffness of a single focus optical trap (optical tweezers), from a diode laser at 853 nm for nanoshells with several different r I/r II ratios.

  17. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  18. Anisotropic optical film embedded with cellulose nanowhisker.

    PubMed

    Kim, Dah Hee; Song, Young Seok

    2015-10-01

    We investigated anisotropic optical behaviors of composite films embedded with CNWs. To control the orientation of CNWs, elongation was applied to the composite film. Morphological and mechanical analyses of the specimens were carried out to examine the influence of the applied extension. The CNWs were found to be aligned in the elongated direction, yielding remarkable anisotropic microstructure and optical properties. As the applied elongation and CNW loading increased, the resulting degree of polarization and birefringence increased due to increased interactions between the embedded particles. This study suggests a way to prepare an anisotropic optical component with nanoparticles of which the microstructures, such as orientation and filler content, can be controlled. PMID:26076646

  19. Finite-volume scheme for anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    van Es, Bram; Koren, Barry; de Blank, Hugo J.

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  20. Can cosmic parallax distinguish between anisotropic cosmologies?

    SciTech Connect

    Fontanini, Michele; West, Eric J.; Trodden, Mark

    2009-12-15

    In an anisotropic universe, observers not positioned at a point of special symmetry should observe cosmic parallax--the relative angular motion of test galaxies over cosmic time. It was recently argued that the nonobservance of this effect in upcoming precision astrometry missions such as GAIA may be used to place strong bounds on the position of off-center observers in a void-model universe described by the Lemaitre-Tolman-Bondi metric. We consider the analogous effect in anisotropic cosmological models described by an axisymmetric homogeneous Bianchi type I metric and discuss whether any observation of cosmic parallax would distinguish between different anisotropic evolutions.

  1. Composite strings in (2+1)-dimensional anisotropic weakly coupled Yang-Mills theory

    SciTech Connect

    Orland, Peter

    2008-01-15

    The small-scale structure of a string connecting a pair of static sources is explored for the weakly coupled anisotropic SU(2) Yang-Mills theory in (2+1) dimensions. A crucial ingredient in the formulation of the string Hamiltonian is the phenomenon of color smearing of the string constituents. The quark-antiquark potential is determined. We close with some discussion of the standard, fully Lorentz-invariant Yang-Mills theory.

  2. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  3. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, Eric B.; Muller, Albert C.

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  4. Fully synthetic taped insulation cables

    SciTech Connect

    Forsyth, E. B.; Muller, A. C.

    1984-12-11

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  5. Fully automated urban traffic system

    NASA Technical Reports Server (NTRS)

    Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.

    1977-01-01

    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.

  6. Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Liu, Yan; Zhang, Qiang; Shi, Yuhan; Pang, Wei; Li, Yongyao

    2016-05-01

    We numerically demonstrate two-dimensional (2D) matter-wave solitons in the disk-shaped dipolar Bose-Einstein condensates (BECs) trapped in strongly anisotropic optical lattices (OLs) in a disk's plane. The considered OLs are square lattices which can be formed by interfering two pairs of plane waves with different intensities. The hopping rates of the condensates between two adjacent lattices in the orthogonal directions are different, which gives rise to a linearly anisotropic system. We find that when the polarized orientation of the dipoles is parallel to disk's plane with the same direction, the combined effects of the linearly anisotropy and the nonlocal nonlinear anisotropy strongly influence the formations, as well as the dynamics of the lattice solitons. Particularly, the isotropy-pattern solitons (IPSs) are found when these combined effects reach a balance. Motion, collision, and rotation of the IPSs are also studied in detail by means of systematic simulations. We further find that these IPSs can move freely in the 2D anisotropic discrete system, hence giving rise to an anisotropic effective mass. Four types of collisions between the IPSs are identified. By rotating an external magnetic field up to a critical angular velocity, the IPSs can still remain localized and play as a breather. Finally, the influences from the combined effects between the linear and the nonlocal nonlinear anisotropy with consideration of the contact and/or local nonlinearity are discussed too.

  7. Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background

    SciTech Connect

    Noh, Hyerim

    2014-07-01

    We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.

  8. Taming the degeneration of Bessel beams at an anisotropic-isotropic interface: Toward three-dimensional control of confined vortical waves

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Baudoin, Michael; Bou Matar, Olivier

    2015-12-01

    Despite their self-reconstruction properties in heterogeneous media, Bessel beams are known to degenerate when they are refracted from an isotropic to an anisotropic medium. In this paper, we study the converse situation wherein an anisotropic Bessel beam is refracted into an isotropic medium. It is shown that these anisotropic Bessel beams also degenerate, leading to confined vortical waves that may serve as localized particle trap for acoustical tweezers. The linear nature of this degeneration allows the three-dimensional control of this trap position by wavefront correction. Theory is confronted to experiments performed in the field of acoustics. A swirling surface acoustic wave is synthesized at the surface of a piezoelectric crystal by a microelectromechanical integrated system and radiated inside a miniature liquid vessel. The wavefront correction is operated with inverse filter technique. This work opens perspectives for contactless on-chip manipulation devices.

  9. Taming the degeneration of Bessel beams at an anisotropic-isotropic interface: Toward three-dimensional control of confined vortical waves.

    PubMed

    Riaud, Antoine; Thomas, Jean-Louis; Baudoin, Michael; Bou Matar, Olivier

    2015-12-01

    Despite their self-reconstruction properties in heterogeneous media, Bessel beams are known to degenerate when they are refracted from an isotropic to an anisotropic medium. In this paper, we study the converse situation wherein an anisotropic Bessel beam is refracted into an isotropic medium. It is shown that these anisotropic Bessel beams also degenerate, leading to confined vortical waves that may serve as localized particle trap for acoustical tweezers. The linear nature of this degeneration allows the three-dimensional control of this trap position by wavefront correction. Theory is confronted to experiments performed in the field of acoustics. A swirling surface acoustic wave is synthesized at the surface of a piezoelectric crystal by a microelectromechanical integrated system and radiated inside a miniature liquid vessel. The wavefront correction is operated with inverse filter technique. This work opens perspectives for contactless on-chip manipulation devices. PMID:26764844

  10. An optical apparatus for rotation and trapping

    PubMed Central

    Gutiérrez-Medina, Braulio; Andreasson, Johan O. L.; Greenleaf, William J.; LaPorta, Arthur; Block, Steven M.

    2010-01-01

    We present details of the design, construction and testing of a single-beam optical tweezers apparatus capable of measuring and exerting torque, as well as force, on microfabricated, optically anisotropic particles (an ‘optical torque wrench’). The control of angular orientation is achieved by rotating the linear polarization of a trapping laser with an electro-optic modulator (EOM), which affords improved performance over previous designs. The torque imparted to the trapped particle is assessed by measuring the difference between left- and right-circular components of the transmitted light, and constant torque is maintained by feeding this difference signal back into a custom-designed electronic servo loop. The limited angular range of the EOM (±180°) is extended by rapidly reversing the polarization once a threshold angle is reached, enabling the torque clamp to function over unlimited, continuous rotations at high bandwidth. In addition, we developed particles suitable for rotation in this apparatus using microfabrication techniques. Altogether, the system allows for the simultaneous application of forces (~0.1–100 pN) and torques (~1–10,000 pN nm) in the study of biomolecules. As a proof of principle, we demonstrate how our instrument can be used to study the supercoiling of single DNA molecules. PMID:20627165

  11. Spatial interpolation approach based on IDW with anisotropic spatial structures

    NASA Astrophysics Data System (ADS)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  12. Sound field distribution influenced by anisotropic materials

    SciTech Connect

    Erhard, A.; Boehm, R.; Wuestenberg, H.

    1993-12-31

    Sound wave distributions in isotropic materials are often described using analytical or numerical solutions of the wave equation. In opposition to this, it is more difficult to find a solution for anisotropic mediums. One possible method is the elastic finite integration technique (EFIT). With this method, scalar and vectorial calculations of the sound distribution from a line source in anisotropic materials were carried out. This method needs a powerful computer in order to keep the computation time short. In the present paper another theoretical model was used -- the pulse integration model -- with which sound field distributions for scalar waves were calculated in the sound field distribution of longitudinal waves in anisotropic materials. The principle of the model is described briefly. Different sound field pattern generated with a phased array longitudinal wave probe were calculated during the propagation in a homogeneous isotropic material and in a homogeneous anisotropic material (single crystal).

  13. Accurately simulating anisotropic thermal conduction on a moving mesh

    NASA Astrophysics Data System (ADS)

    Kannan, Rahul; Springel, Volker; Pakmor, Rüdiger; Marinacci, Federico; Vogelsberger, Mark

    2016-05-01

    We present a novel implementation of an extremum preserving anisotropic diffusion solver for thermal conduction on the unstructured moving Voronoi mesh of the AREPO code. The method relies on splitting the one-sided facet fluxes into normal and oblique components, with the oblique fluxes being limited such that the total flux is both locally conservative and extremum preserving. The approach makes use of harmonic averaging points and a simple, robust interpolation scheme that works well for strong heterogeneous and anisotropic diffusion problems. Moreover, the required discretization stencil is small. Efficient fully implicit and semi-implicit time integration schemes are also implemented. We perform several numerical tests that evaluate the stability and accuracy of the scheme, including applications such as point explosions with heat conduction and calculations of convective instabilities in conducting plasmas. The new implementation is suitable for studying important astrophysical phenomena, such as the conductive heat transport in galaxy clusters, the evolution of supernova remnants, or the distribution of heat from black hole-driven jets into the intracluster medium.

  14. Switching Oxide Traps

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    We consider radiation-induced charge trapping in SiO2 dielectric layers, primarily from the point of view of CMOS devices. However, SiO2 insulators are used in many other ways, and the same defects occur in other contexts. The key studies, which determined the nature of the oxide charge traps, were done primarily on gate oxides in CMOS devices, because that was the main radiation problem in CMOS at one time. There are two major reviews of radiation-induced oxide charge trapping already in the literature, which discuss the subject in far greater detail than is possible here. The first of these was by McLean et al. in 1989, and the second, ten years later, was intended as an update, because of additional, new work that had been reported. Basically, the picture that has emerged is that ionizing radiation creates electron-hole pairs in the oxide, and the electrons have much higher mobility than the holes. Therefore, the electrons are swept out of the oxide very rapidly by any field that is present, leaving behind any holes that escape the initial recombination process. These holes then undergo a polaron hopping transport toward the Si/SiO2 interface (under positive bias). Near the interface, some fraction of them fall into deep, relatively stable, long-lived hole traps. The nature and annealing behavior of these hole traps is the main focus of this paper.

  15. Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Walker, Steven A.; Santos Koos, Lindsey M.

    2015-04-01

    The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS. At LEO, ISS encounters exposure from trapped electrons, protons and geomagnetically attenuated galactic cosmic rays (GCR). For short duration studies at LEO, one can ignore trapped electrons and ever present GCR exposure contributions during quiet times. However, within the trapped proton field, a challenge arises from properly estimating the amount of proton exposure acquired. There exist a number of models to define the intensity of trapped particles. Among the established trapped models are the historic AE8/AP8, dating back to the 1980s and the recently released AE9/AP9/SPM. Since at LEO electrons have minimal exposure contribution to ISS, this work ignores the AE8 and AE9 components of the models and couples a measurement derived anisotropic trapped proton formalism to omnidirectional output from the AP8 and AP9 models, allowing the assessment of the differences between the two proton models. The assessment is done at a target point within the ISS-11A configuration (circa 2003) crew quarter (CQ) of Russian Zvezda service module (SM), during its ascending and descending nodes passes through the south Atlantic anomaly (SAA). The anisotropic formalism incorporates the contributions of proton narrow

  16. Low Earth orbit assessment of proton anisotropy using AP8 and AP9 trapped proton models.

    PubMed

    Badavi, Francis F; Walker, Steven A; Santos Koos, Lindsey M

    2015-04-01

    The completion of the International Space Station (ISS) in 2011 has provided the space research community with an ideal evaluation and testing facility for future long duration human activities in space. Ionized and secondary neutral particles radiation measurements inside ISS form the ideal tool for validation of radiation environmental models, nuclear reaction cross sections and transport codes. Studies using thermo-luminescent detectors (TLD), tissue equivalent proportional counter (TPEC), and computer aided design (CAD) models of early ISS configurations confirmed that, as input, computational dosimetry at low Earth orbit (LEO) requires an environmental model with directional (anisotropic) capability to properly describe the exposure of trapped protons within ISS. At LEO, ISS encounters exposure from trapped electrons, protons and geomagnetically attenuated galactic cosmic rays (GCR). For short duration studies at LEO, one can ignore trapped electrons and ever present GCR exposure contributions during quiet times. However, within the trapped proton field, a challenge arises from properly estimating the amount of proton exposure acquired. There exist a number of models to define the intensity of trapped particles. Among the established trapped models are the historic AE8/AP8, dating back to the 1980s and the recently released AE9/AP9/SPM. Since at LEO electrons have minimal exposure contribution to ISS, this work ignores the AE8 and AE9 components of the models and couples a measurement derived anisotropic trapped proton formalism to omnidirectional output from the AP8 and AP9 models, allowing the assessment of the differences between the two proton models. The assessment is done at a target point within the ISS-11A configuration (circa 2003) crew quarter (CQ) of Russian Zvezda service module (SM), during its ascending and descending nodes passes through the south Atlantic anomaly (SAA). The anisotropic formalism incorporates the contributions of proton narrow

  17. Phase space analysis in anisotropic optical systems

    NASA Technical Reports Server (NTRS)

    Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.

  18. Inflation in anisotropic scalar-tensor theories

    NASA Technical Reports Server (NTRS)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  19. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  20. Modelling Coulomb Collisions in Anisotropic Plasmas

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  1. Overview of anisotropic flow measurements from ALICE

    NASA Astrophysics Data System (ADS)

    Zhou, You

    2016-05-01

    Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP), created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb-Pb, p-Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.

  2. Anisotropic System of Quasiparticles in Superfluid Helium

    SciTech Connect

    Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Wyatt, A.F.G.

    2006-02-17

    The thermodynamic properties of anisotropic quasiparticle systems of He II are considered for all degrees of anisotropy. It is shown that the thermodynamic functions of a strongly anisotropic phonon-roton system are mainly determined by rotons at all temperatures. Analytical expressions for the roton thermodynamic functions are obtained for all degrees of anisotropy. The maximum anisotropy is limited by the criterion for thermodynamic stability, which is here derived for the whole temperature range.

  3. Soft particles with anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Schurtenberger, Peter

    Responsive colloids such as thermo- or pH-sensitive microgels are ideal model systems to investigate the relationship between the nature of interparticle interactions and the plethora of self-assembled structures that can form in colloidal suspensions. They allow for a variation of the form, strength and range of the interaction potential almost at will. While microgels have extensively been used as model systems to investigate various condensed matter problems such as glass formation, jamming or crystallization, they can also be used to study systems with anisotropic interactions. Here we show results from a systematic investigation of the influence of softness and anisotropy on the structural and dynamic properties of strongly interacting suspensions. We focus first on ionic microgels. Due to their large number of internal counterions they possess very large polarisabilities, and we can thus use external electrical ac fields to generate large dipolar contributions to the interparticle interaction potential. This leads to a number of new crystal phases, and we can trigger crystal-crystal phase transitions through the appropriate choice of the field strength. We then show that this approach can be extended to more complex particle shapes in an attempt to copy nature's well documented success in fabricating complex nanostructures such as virus shells via self assembly. European Research Council (ERC-339678-COMPASS).

  4. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  5. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z. )

    1992-02-01

    Self-consistent magnetospheric equilibria with anisotropic pressure are obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distributions or particle distributions measured along a satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibria including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator owing to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has a significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling the dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the taillike flux surface.

  6. Anisotropic diffusion-limited aggregation.

    PubMed

    Popescu, M N; Hentschel, H G E; Family, F

    2004-06-01

    Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map m preferred directions for growth to a distribution on the unit circle, which is a periodic function with m peaks in [-pi,pi) such that the angular width sigma of the peak defines the "strength" of anisotropy kappa= sigma(-1) along any of the m chosen directions. The two parameters (m,kappa) map out a parameter space of perturbations that allows a continuous transition from DLA (for small enough kappa ) to m needlelike fingers as kappa--> infinity. We show that at fixed m the effective fractal dimension of the clusters D(m,kappa) obtained from mass-radius scaling decreases with increasing kappa from D(DLA) approximately 1.71 to a value bounded from below by D(min) = 3 / 2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,kappa) on kappa for large kappa which compares favorably with numerical results. PMID:15244564

  7. Modeling of anisotropic wound healing

    NASA Astrophysics Data System (ADS)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  8. Interlayer transverse magnetoresistance in the presence of an anisotropic pseudogap

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; McKenzie, Ross H.

    2009-12-01

    The interlayer magnetoresistance of a quasi-two-dimensional layered metal with a d -wave pseudogap is calculated semiclassically. An expression for the interlayer resistivity as a function of the strength and direction of the magnetic field, the magnitude of the pseudogap, temperature, and scattering rate is obtained. We find that the pseudogap, by introducing low-energy nodal quasiparticle contours, smooths the dependence on field direction in a manner characteristic of its anisotropy. We thus propose that interlayer resistance measurements under a strong field of variable orientation can be used to fully characterize an anisotropic pseudogap. The general result is applied to the case of a magnetic field parallel to the conducting layers using a model band structure appropriate for overdoped Tℓ2201 .

  9. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  10. The effect of an anisotropic pressure of thermal particles on resistive wall mode stability

    SciTech Connect

    Berkery, J. W. Sabbagh, S. A.; Betti, R.; Guazzotto, L.; Manickam, J.

    2014-11-15

    The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu et al., Phys. Plasmas 12, 0 57301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution function. A complete stability treatment without an assumption of high frequency mode rotation leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to the fluid terms. With the density and the average pressure kept constant, when thermal particles have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive wall mode stability.

  11. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  12. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  13. Measurement of Trap Length for an Optical Trap

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.

    2009-01-01

    The trap length along the beam axis for an optical trap formed with an upright, oil-immersion microscope was measured. The goals for this effort were twofold. It was deemed useful to understand the depth to which an optical trap can reach for purposes of developing a tool to assist in the fabrication of miniature devices. Additionally, it was desired to know whether the measured trap length favored one or the other of two competing theories to model an optical trap. The approach was to trap a microsphere of known size and mass and raise it from its initial trap position. The microsphere was then dropped by blocking the laser beam for a pre-determined amount of time. Dropping the microsphere in a free-fall mode from various heights relative to the coverslip provides an estimate of how the trapping length changes with depth in water in a sample chamber on a microscope slide. While it was not possible to measure the trap length with sufficient precision to support any particular theory of optical trap formation, it was possible to find regions where the presence of physical boundaries influenced optical traps, and determine that the trap length, for the apparatus studied, is between 6 and 7 m. These results allow more precise control using optical micromanipulation to assemble miniature devices by providing information about the distance over which an optical trap is effective.

  14. Practical axial optical trapping

    PubMed Central

    Mack, A. H.; Schlingman, D. J.; Regan, L.; Mochrie, S. G. J.

    2012-01-01

    We describe a new method for calibrating optical trapping measurements in which tension is applied in the direction of the laser beam to a molecule tethered between a surface and an optically trapped bead. Specifically, we present a generally-applicable procedure for converting from the measured scattering intensity and the measured stage displacement to applied tension and bead-coverslip separation, using measurements of the light intensity scattered from an untethered, trapped bead. Our calibration accounts for a number of effects, including aberrations and the interference of forward-reflected bead-scattered light with the trapping beam. To demonstrate the accuracy of our method, we show measurements of the DNA force-versus-extension relation using a range of laser intensities, and show that these measurements match the expected extensible wormlike-chain (WLC) behavior. Finally, we also demonstrate a force-clamp, in which the tension in a tether is held fixed while the extension varies as a result of molecular events. PMID:23126750

  15. Steam trap monitor

    DOEpatents

    Ryan, Michael J.

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  16. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  17. The Universal Trap.

    ERIC Educational Resources Information Center

    Goodman, Paul

    The compulsory system of education is criticized on the grounds that it has become a regimented "universal trap" antithetical to democracy. In contrast to the Jeffersonian concept of education in the service of citizen initiative for the preservation of freedom, current compulsory education is a tool of industrialism and of a rigidly stratified…

  18. WATER-TRAPPED WORLDS

    SciTech Connect

    Menou, Kristen

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  19. Traps and trapping techniques for adult mosquito control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview is presented of the recent advancements in research activities conducted to evaluate mosquito traps, insecticide-impregnated targets baited with combinations of attractants, and strategies for using mass trapping techniques for adult mosquito population management. Technologies that use...

  20. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  1. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    NASA Astrophysics Data System (ADS)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  2. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  3. Singularities in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen K.

    2015-09-01

    Phenomenological arguments are used to explore finite-time singularity (FTS) development in different physical fully-developed turbulence (FDT) situations. Effects of spatial intermittency and fluid compressibility in three-dimensional (3D) FDT and the role of the divorticity amplification mechanism in two-dimensional (2D) FDT and quasi-geostrophic FDT and the advection-diffusion mechanism in magnetohydrodynamic turbulence are considered to provide physical insights into the FTS development in variant cascade physics situations. The quasi-geostrophic FDT results connect with the 2D FDT results in the barotropic limit while they connect with 3D FDT results in the baroclinic limit and hence apparently provide a bridge between 2D and 3D.

  4. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  5. Fully integrated, fully automated generation of short tandem repeat profiles

    PubMed Central

    2013-01-01

    Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow as well as to enable short tandem repeat profile generation to be performed in police stations and in field-forward military, intelligence, and homeland security settings. Results An integrated system was developed consisting of an injection-molded microfluidic BioChipSet cassette, a ruggedized instrument, and expert system software. For each of five buccal swabs, the system purifies DNA using guanidinium-based lysis and silica binding, amplifies 15 short tandem repeat loci and the amelogenin locus, electrophoretically separates the resulting amplicons, and generates a profile. No operator processing of the samples is required, and the time from swab insertion to profile generation is 84 minutes. All required reagents are contained within the BioChipSet cassette; these consist of a lyophilized polymerase chain reaction mix and liquids for purification and electrophoretic separation. Profiles obtained from fully automated runs demonstrate that the integrated system generates concordant short tandem repeat profiles. The system exhibits single-base resolution from 100 to greater than 500 bases, with inter-run precision with a standard deviation of ±0.05 - 0.10 bases for most alleles. The reagents are stable for at least 6 months at 22°C, and the instrument has been designed and tested to Military Standard 810F for shock and vibration ruggedization. A nontechnical user can operate the system within or outside the laboratory. Conclusions The integrated system represents the

  6. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  7. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  8. Effective medium theory for anisotropic metamaterials

    PubMed Central

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated. PMID:25599847

  9. Charged-Particle Bean Transport for Ion Trapping Experiments.

    NASA Astrophysics Data System (ADS)

    Raichle, Brian W.; Wingfield, Love M.

    2001-11-01

    Electrostatic Einsel lenses are being developed for beam transport for use in two distinct metastable atomic lifetime experiments using two separate rf-ion traps. Each system has been modeled using Simion software, and the lenses have been designed from commercially available eV-parts. The first application is part of an electron gun source. Electrons are produced by a conventional dispenser cathode and are transported 25 cm to the trap. The design goal is to create a beam divergence to fully illuminate the active trap volume, and to provide tunable electron energies from 50 to 500 eV. The second application is to transport ions 1 m from a laser ablation ion source to an rf ion trap. Laser ablation involves essentially boiling ions from a solid target with intense laser pulses. Here, the design goal is to maximize flux by maximizing the solid angle of acceptance to the trap, minimize radial velocity, and minimize the spread in axial velocity. Development of a laser ablation ion source external to the trap volume will allow a very low base pressure in the trap region, which will make possible the study of species with lifetimes approaching 1 s. In addition, laser ablation will produce intermediately-charged ions from non-conductive solid targets.

  10. Phase slippage and self-trapping in a self-induced bosonic Josephson junction

    SciTech Connect

    Abad, M.; Guilleumas, M.; Mayol, R.; Pi, M.; Jezek, D. M.

    2011-09-15

    A dipolar condensate confined in a toroidal trap constitutes a self-induced Josephson junction when the dipoles are oriented perpendicularly to the trap symmetry axis and the s-wave scattering length is small enough. The ring-shaped double-well potential coming from the anisotropic character of the mean-field dipolar interaction is robust enough to sustain self-trapping dynamics, which takes place when the initial population imbalance between the two wells is large. We show that, in this system, the self-trapping regime is directly related to a vortex-induced phase-slip dynamics. A vortex and antivortex are spontaneously nucleated in the low-density regions before a minimum of the population imbalance is reached and then cross the toroidal section in opposite directions through the junctions. This vortex dynamics yields a phase slip between the two weakly linked condensates causing an inversion of the particle flux.

  11. Engineering quantum magnetism in one-dimensional trapped Fermi gases with p -wave interactions

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Guan, Xiwen; Cui, Xiaoling

    2016-05-01

    The highly controllable ultracold atoms in a one-dimensional (1D) trap provide a new platform for the ultimate simulation of quantum magnetism. In this regard, the Néel antiferromagnetism and the itinerant ferromagnetism are of central importance and great interest. Here we show that these magnetic orders can be achieved in the strongly interacting spin-1/2 trapped Fermi gases with additional p -wave interactions. In this strong-coupling limit, the 1D trapped Fermi gas exhibits an effective Heisenberg spin X X Z chain in the anisotropic p -wave scattering channels. For a particular p -wave attraction or repulsion within the same species of fermionic atoms, the system displays ferromagnetic domains with full spin segregation or the antiferromagnetic spin configuration in the ground state. Such engineered magnetisms are likely to be probed in a quasi-1D trapped Fermi gas of 40K atoms with very close s -wave and p -wave Feshbach resonances.

  12. MODIFICATION OF CC WHITEFLY TRAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modifications of CC whitefly traps are in progress to improve their potential for adult whitefly control in greenhouses. Adult catches in the modified CC traps have been increased by 50% by coating trap tops with Tanglefoot and removing the deflector plates. In laboratory studies, installation of ...

  13. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  14. Magnetization of anisotropic Type II superconductors

    SciTech Connect

    Mints, R.G.

    1989-04-10

    Peculiarities of magnetization of anisotropic type II superconductors are of considerable interest in view of the discovery of high-T/sub c/ superconductors characterized by strongly asymmetric layered structure. Specifics of the penetration of magnetic flux into an anisotropic type II superconductor were discussed in the literature. This analysis gave the distribution of induction in an isolated vortex, its energy, and critical magnetic field H/sub c1/. However, the magnetization curve of anisotropic superconductors was not considered. This paper deals with the magnetic moment of uniaxial London superconductor in the interval H/sub c1/ /le/ H/sub 0/ << H/sub c2/, where H/sub 0/ is the external magnetic field strength.

  15. Infrared properties of an anisotropically stirred fluid

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1987-01-01

    A renormalization group is developed for the Navier-Stokes equations driven by an anisotropically correlated random stirring force. The stirring force generates homogeneous turbulence with a preferred direction. The force correlation is the sum of a small anisotropic perturbation and an isotropic correlation chosen, so that the fixed point of renormalization group has a k exp -5/3 energy spectrum. Fixed points for the anisotropic correlation are found near this isotropic fixed point. Two types of anisotropy are analyzed. when the additional stirring is in the plane perpendicular to the preferred direction, the renormalized viscosity is increased. When it is aligned with the preferred direction, the viscosity is decreased. A possible connection with the inverse energy cascade of two-dimensional turbulence is discussed.

  16. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  17. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  18. Breathing dynamics of a trapped impurity in a dipolar Bose gas

    NASA Astrophysics Data System (ADS)

    Hu, Fang-Qi; Xue, Ju-Kui

    2014-09-01

    With the consideration of impurity-bosons coupling and dipole-dipole interactions (DDI), we study the breathing dynamics of a harmonically trapped impurity interacting with a separately trapped background of dipolar Bose gas. By using the variational approach, the breathing equations, the breathing frequencies and the effective potentials governing the breathing dynamics of the impurity in dipolar gas are obtained. The effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are discussed. We find that, because of the anisotropic and long-range characters of DDI, the effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are strongly coupled. DDI has significant modification on dynamics, which depends on the external trapping potentials. For spherically symmetric external trapping, DDI makes the impurity more cigar-shaped along axial direction and the breathing oscillation in radial direction is suppressed by DDI. However, the effect of DDI on the breathing dynamics is weakened for cigar-shaped external trapping. Interestingly, for strong external pancake-shaped trapping, the symmetries of the breathing dynamics with respect to attractive and repulsive impurity-bosons coupling recover. Especially, for some critical value of impurity-bosons coupling, the breathing dynamics undergo a sudden quench.

  19. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles.

    SciTech Connect

    Toussaint, K. C.; Liu, M.; Pelton, M.; Pesic, J.; Guffey, M.; Guyot-Sionnest, P.; Scherer, N. F.; Univ. of Chicago

    2007-01-01

    The plasmon resonance-based optical trapping (PREBOT) method is used to achieve stable trapping of metallic nanoparticles of different shapes and composition, including Au bipyramids and Au/Ag core/shell nanorods. In all cases the longitudinal plasmon mode of these anisotropic particles is used to enhance the gradient force of an optical trap, thereby increasing the strength of the trap potential. Specifically, the trapping laser is slightly detuned to the long-wavelength side of the longitudinal plasmon resonance where the sign of the real component of the polarizability leads to an attractive gradient force. A second (femtosecond pulsed) laser is used to excite two-photon fluorescence for detection of the trapped nanoparticles. Two-photon fluorescence time trajectories are recorded for up to 20 minutes for single and multiple particles in the trap. In the latter case, a stepwise increase reflects sequential loading of single Au bipyramids. The nonlinearity of the amplitude and noise with step number are interpreted as arising from interactions or enhanced local fields among the trapped particles and fluctuations in the arrangements thereof.

  20. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does. PMID:27090239

  1. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  2. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  3. Phosphorous trapped within buckminsterfullerene

    NASA Astrophysics Data System (ADS)

    Larsson, J. A.; Greer, J. C.; Harneit, W.; Weidinger, A.

    2002-05-01

    Under normal circumstances, when covalent molecules form, electrons are exchanged between atoms to form bonds. However, experiment and theoretical computations reveal exactly the opposite effect for the formation of group V elements nitrogen and phosphorous encapsulated within a buckminsterfullerene molecule. The C60 carbon cage remains intact upon encapsulation of the atom, whereas the electronic charge cloud of the N or P atom contracts. We have studied the chemical, spin, and thermodynamic properties of endohedral phosphorous (P@C60) and have compared our results with earlier findings for N@C60. From a combined experimental and theoretical vantage, we are able to elucidate a model for the interaction between the trapped group V atom and the fullerene cage. A picture emerges for the electronic structure of these complexes, whereby an atom is trapped within a fullerene, and interacts weakly with the molecular orbitals of the C60 cage.

  4. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  5. Evolution of multidimensional flat anisotropic cosmological models

    SciTech Connect

    Beloborodov, A. ); Demianski, M. Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw International Center for Relativistic Astrophysics , Universita di Roma I, La Sapienza, Rome ); Ivanov, P.; Polnarev, A.G. )

    1993-07-15

    We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means.

  6. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  7. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  8. Directional wetting in anisotropic inverse opals.

    PubMed

    Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna

    2014-07-01

    Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy. PMID:24941308

  9. Bouncing anisotropic universes with varying constants

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Sloan, David

    2013-07-01

    We examine the evolution of a closed, homogeneous and anisotropic cosmology subject to a variation of the fine structure “constant” α within the context of the theory introduced by Bekenstein and Sandvik et al. which generalizes Maxwell’s equations and general relativity The variation of α permits an effective ghost scalar field, whose negative energy density becomes dominant at small length scales, leading to a bouncing cosmology. A thermodynamically motivated coupling that describes energy exchange between the effective ghost field and the radiation field leads to an expanding, isotropizing sequence of bounces. In the absence of entropy production, we also find solutions with stable anisotropic oscillations around a static universe.

  10. Inhomogeneous and anisotropic Universe and apparent acceleration

    NASA Astrophysics Data System (ADS)

    Fanizza, G.; Tedesco, L.

    2015-01-01

    In this paper, we introduce a Lemaître-Tolman-Bondi (LTB) Bianchi type I (plane symmetric) model of the Universe. We study and solve Einstein field equations. We investigate the effects of such a model of the Universe; in particular, these results are important in understanding the effect of the combined presence of an inhomogeneous and anisotropic universe. The observational magnitude-redshift data deviated from the UNION 2 catalog have been analyzed in the framework of this LTB anisotropic universe, and the fit has been achieved without the inclusion of any dark energy.

  11. Ballooning stability of anisotropic, rotating plasmas

    NASA Technical Reports Server (NTRS)

    Wang, X.-H.; Bhattacharjee, A.

    1990-01-01

    The linearized equation of motion is given in a Lagrangian representation for a rotating plasma with anisotropic pressure. A WKB theory is developed for large-n ballooning modes in an axisymmetric configuration with field-aligned and rigid toroidal flows. In the presence of field-aligned flows, it is shown that a resonance occurs which is strongly suggestive of a generalized mirror instability. In the presence of toroidal rotation, a possible stabilizing effect is identified for P(normal) greater than P(parallel). Finally, as a special case of the theory, the necessary and sufficient conditions for stability in a static, anisotropic plasma are obtained.

  12. Fully Employing Software Inspections Data

    NASA Technical Reports Server (NTRS)

    Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally

    2009-01-01

    Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.

  13. Measurement of Lamellipodial Protrusion by Optical Trapping

    NASA Astrophysics Data System (ADS)

    Sakai, Ken'ichi; Kohmoto, Sogo; Nobezawa, Daisuke; Ikeda, Sho-ichi; Miyata, Hidetake

    2015-02-01

    Lamellipodial protrusion is a fundamental step in cell locomotion. This important process is driven by actin polymerization, but its physical aspect has not yet been fully investigated. We previously studied the lamellipodial protrusion of Swiss 3T3 fibroblast cells at 33 ms temporal resolution and 10 nm accuracy by probing the motion of the cell edge with a 1 µm bead held in an optical trap. In that study, we found a transient mode of protrusion and analyzed the time variation of the protrusion velocity. In this study, we analyzed the power spectra of the fluctuations of a trap-held bead during the protrusion and found cell-specific fluctuations. The maximal amplitude of the fluctuations was 23 nm, which was estimated from the power of the fluctuations accumulated over 1.9 and 7.6 Hz. This value was significantly larger than that of the fluctuations of the trap-held bead that is not in contact with the cell edge (14 nm). The amplitude of the fluctuation of the probing bead showed a positive correlation with the cell edge velocity, suggesting that the cell-specific fluctuations play an important role in the lamellipodial protrusion.

  14. δN formalism in anisotropic inflation and large anisotropic bispectrum and trispectrum

    SciTech Connect

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjaee, Javad T.; Firouzjahi, Hassan E-mail: emami@ipm.ir E-mail: firouz@mail.ipm.ir

    2013-08-01

    We present the consistent δN formalism for curvature perturbations in anisotropic cosmological backgrounds. We employ our δN formalism to calculate the power spectrum, the bispectrum and the trispectrum in models of anisotropic inflation with the background gauge fields in Bianchi I universe. Our results coincide exactly with the recent results obtained from in-in formalism. To satisfy the observational constraints the anisotropies generated on power spectrum are kept small but large orientation-dependent non-Gaussianities can be generated. We study the Suyama-Yamaguchi inequality for the amplitudes of the bispectrum and the trispectrum in the presence of anisotropic shapes.

  15. Magnetic trap for thulium atoms

    SciTech Connect

    Sukachev, D D; Sokolov, A V; Chebakov, K A; Akimov, A V; Kolachevskii, N N; Sorokin, Vadim N

    2011-08-31

    For the first time ultra-cold thulium atoms were trapped in a magnetic quadrupole trap with a small field gradient (20 Gs cm{sup -1}). The atoms were loaded from a cloud containing 4x10{sup 5} atoms that were preliminarily cooled in a magneto-optical trap to the sub-Doppler temperature of 80 {mu}K. As many as 4x10{sup 4} atoms were trapped in the magnetic trap at the temperature of 40 {mu}K. By the character of trap population decay the lifetime of atoms was determined (0.5 s) and an upper estimate was obtained for the rate constant of inelastic binary collisions for spin-polarised thulium atoms in the ground state (g{sub in} < 10{sup -11}cm{sup 3} s{sup -1}). (magnetic traps)

  16. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    Rectangular waveguide methods are appealing for measuring isotropic and anisotropic materials because of high signal strength due to field confinement, and the ability to control the polarization of the applied electric field. As a stepping stone to developing methods for characterizing materials with fully-populated anisotropic tensor characteristics, techniques are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials. Two characterization techniques are investigated for each material, and thus six different techniques are described. Additionally, a waveguide standard is introduced which may be used to validate the measurement of the permittivity and permeability of materials at microwave frequencies. The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique for the extraction of isotropic parameters of a sample completely filling the cross-section of a rectangular waveguide. A second technique is proposed for the characterization of an isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample is conductor-backed, and occupies the entire cross-section, a transmission measurement is not available, and thus a method must be found for providing two sufficiently different reflection measurements.The technique proposed here is to place a waveguide iris in front of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the reflection coefficient with and without an iris, the necessary two data may be obtained to determine the material parameters. A mode-matching approach is used to determine the theoretical response of a sample placed behind the waveguide iris. This response is used in a root-searching algorithm to determine permittivity and permeability by comparing to measurements of the reflection coefficient. For the characterization of biaxially anisotropic materials, the first method considers an extension of the NRW technique

  17. Gabor-based anisotropic diffusion for speckle noise reduction in medical ultrasonography.

    PubMed

    Zhang, Qi; Han, Hong; Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Wang, Wenping

    2014-06-01

    In ultrasound (US), optical coherence tomography, synthetic aperture radar, and other coherent imaging systems, images are corrupted by multiplicative speckle noise that obscures image interpretation. An anisotropic diffusion (AD) method based on the Gabor transform, named Gabor-based anisotropic diffusion (GAD), is presented to suppress speckle in medical ultrasonography. First, an edge detector using the Gabor transform is proposed to capture directionality of tissue edges and discriminate edges from noise. Then the edge detector is embedded into the partial differential equation of AD to guide the diffusion process and iteratively denoise images. To enhance GAD's adaptability, parameters controlling diffusion are determined from a fully formed speckle region that is automatically detected. We evaluate the GAD on synthetic US images simulated with three models and clinical images acquired in vivo. Compared with seven existing speckle reduction methods, the GAD is superior to other methods in terms of noise reduction and detail preservation. PMID:24977366

  18. Modeling anisotropic sensitivity in pentaerythritol tetranitrate using strain rate dependent reactive flow model

    NASA Astrophysics Data System (ADS)

    Kim, Kihong; Fried, Laurence; Yoh, Jack

    2013-06-01

    Initiation of detonation in some high explosives has shown strong anisotropic sensitivity under mechanical impact. Preferred directions of crystal orientation on shock initiation have been experimentally observed in pentaerythritol tetranitrate (PETN), which resulted in dramatic difference in the detonation sensitivity upon shock compression in different directions. The ignition and growth model based on empirical observation on the pressure-dependent initiation of detonation has been widely used to date. Since the model is independent of direction of compression, it is impossible to address sensitivity associated with preferred crystal orientation for establishing the go/no-go criteria. In this paper, we have proposed a new reaction flow model that is consistent with avaialble PETN experiments and atomistic calculations. A general tensor notation is utilized to fully address three-dimensional effect of the strain rate dependence to anisotropic detonation of PETN. K. Kim was supported by post-doctoral research fellowship from the National Research Foundation of Korea.

  19. Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals.

    PubMed

    Asoubar, Daniel; Zhang, Site; Wyrowski, Frank

    2015-06-01

    Birefringence effects can have a significant influence on the polarization state as well as on the transversal mode structure of laser resonators. This work introduces a flexible, fast and fully vectorial algorithm for the analysis of resonators containing homogeneous, anisotropic optical components. It is based on a generalization of the Fox and Li algorithm by field tracing, enabling the calculation of the dominant transversal resonator eigenmode. For the simulation of light propagation through the anisotropic media, a fast Fourier Transformation (FFT) based angular spectrum of plane waves approach is introduced. Besides birefringence effects, this technique includes intra-crystal diffraction and interface refraction at crystal surfaces. The combination with numerically efficient eigenvalue solvers, namely vector extrapolation methods, ensures the fast convergence of the method. Furthermore a numerical example is presented which is in good agreement to experimental measurements. PMID:26072756

  20. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics. PMID:16243703

  1. Quantifying the Nonlinear, Anisotropic Material Response of Spinal Ligaments

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel J.

    Spinal ligaments may be a significant source of chronic back pain, yet they are often disregarded by the clinical community due to a lack of information with regards to their material response, and innervation characteristics. The purpose of this dissertation was to characterize the material response of spinal ligaments and to review their innervation characteristics. Review of relevant literature revealed that all of the major spinal ligaments are innervated. They cause painful sensations when irritated and provide reflexive control of the deep spinal musculature. As such, including the neurologic implications of iatrogenic ligament damage in the evaluation of surgical procedures aimed at relieving back pain will likely result in more effective long-term solutions. The material response of spinal ligaments has not previously been fully quantified due to limitations associated with standard soft tissue testing techniques. The present work presents and validates a novel testing methodology capable of overcoming these limitations. In particular, the anisotropic, inhomogeneous material constitutive properties of the human supraspinous ligament are quantified and methods for determining the response of the other spinal ligaments are presented. In addition, a method for determining the anisotropic, inhomogeneous pre-strain distribution of the spinal ligaments is presented. The multi-axial pre-strain distributions of the human anterior longitudinal ligament, ligamentum flavum and supraspinous ligament were determined using this methodology. Results from this work clearly demonstrate that spinal ligaments are not uniaxial structures, and that finite element models which account for pre-strain and incorporate ligament's complex material properties may provide increased fidelity to the in vivo condition.

  2. Wave simulation in anisotropic, saturated porous media

    SciTech Connect

    Carcione, J.M.

    1995-12-31

    Porous media are anisotropic due to bedding, compaction and the presence of aligned microcracks and fractures. Here, I assume that the skeleton (and not the solid itself) is anisotropic. The rheological model also includes anisotropic tortuosity and permeability. The poroelastic equations are based on a transversely isotropic extension of Biot`s theory, and the problem is of plane strain type, i.e., two dimensional, and describes qP - qS propagation. In the high-frequency case, the (two) viscodynamic operators are approximated by Zener relaxation functions, that allow a close differential formulation of Biot`s equation of motion. The propagation is solved numerically, with a direct grid method and a time splitting integration algorithm, allowing the solution of the stiff part of the differential equations in closed analytical form. Snapshots in sandstone show that three waves propagate when the fluid is ideal (zero viscosity): the fast compressional and shear waves and the slow compressional wave. Anisotropic tortuosity has not a major influence on the faster modes, but significantly affects the slow wavefront. On the other hand, when the fluid is viscous, the slow wave becomes diffusive and appears as a static mode at the source location.

  3. A generalized anisotropic deformation formulation for geomaterials

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  4. Data-driven imaging in anisotropic media

    SciTech Connect

    Volker, Arno; Hunter, Alan

    2012-05-17

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.

  5. On anisotropic black branes with Lifshitz scaling

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.

  6. Highly Anisotropic, Highly Transparent Wood Composites.

    PubMed

    Zhu, Mingwei; Song, Jianwei; Li, Tian; Gong, Amy; Wang, Yanbin; Dai, Jiaqi; Yao, Yonggang; Luo, Wei; Henderson, Doug; Hu, Liangbing

    2016-07-01

    For the first time, two types of highly anisotropic, highly transparent wood composites are demonstrated by taking advantage of the macro-structures in original wood. These wood composites are highly transparent with a total transmittance up to 90% but exhibit dramatically different optical and mechanical properties. PMID:27147136

  7. Vibrations and stresses in layered anisotropic cylinders

    NASA Technical Reports Server (NTRS)

    Mulholland, G. P.; Gupta, B. P.

    1976-01-01

    An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.

  8. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE PAGESBeta

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  9. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    SciTech Connect

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.

  10. Anisotropic Tomography of Portugal (West Iberia) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Silveira, Graça; Stutzmann, Éléonore; Schimmel, Martin; Dias, Nuno; Kiselev, Sergey; Custódio, Susana; Dundar, Suleyman

    2016-04-01

    Located on the western Iberian Peninsula, Portugal constitutes a key area for accretionary terrane and basin research, providing the best opportunity to probe a crustal formation shaped by the Paleozoic Variscan orogeny followed by the Mesozoic-Cenozoic extensions. The geology of Portugal documents a protracted history from Paleozoic basement formation to the Mesozoic opening of the North Atlantic Ocean. The inheritance of such complex geologic history is yet to be fully determined, playing an important role in the current geodynamic framework influencing, for example, the observed regional seismicity. The physical properties of its crust have largely remained undetermined so far, with unevenly distributed knowledge on the spatial distributions of a detailed crustal structure. Also, the deep seismic reflection/refraction surveys conducted in Western Iberia do not provide a clear picture of the regional characteristics of the crust. Using Seismic Broad Band observations from a dense temporary deployment, conducted between 2010 and 2012 in the scope of the WILAS project and covering the entire Portuguese mainland, we computed a 3D anisotropic model from ambient seismic noise. The dispersion measurements were computed for each station pair using empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. After dispersion analysis, group velocity measurements were regionalized to obtain 2D anisotropic tomographic images. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave anisotropic model, using a bayesian approach. A simulated annealing method, in which the number of splines that describes the model, is adapted within the inversion. The models are jointly interpreted with the models gathered from Ps receiver functions as well as with the regional seismicity, enabling to obtain a more detailed picture of the crustal

  11. Fully transparent and rollable electronics.

    PubMed

    Mativenga, Mallory; Geng, Di; Kim, Byungsoon; Jang, Jin

    2015-01-28

    Major obstacles toward the manufacture of transparent and flexible display screens include the difficulty of finding transparent and flexible semiconductors and electrodes, temperature restrictions of flexible plastic substrates, and bulging or warping of the flexible electronics during processing. Here we report the fabrication and performance of fully transparent and rollable thin-film transistor (TFT) circuits for display applications. The TFTs employ an amorphous indium-gallium-zinc oxide semiconductor (with optical band gap of 3.1 eV) and amorphous indium-zinc oxide transparent conductive electrodes, and are built on 15-μm-thick solution-processed colorless polyimide (CPI), resulting in optical transmittance >70% in the visible range. As the CPI supports processing temperatures >300 °C, TFT performance on plastic is similar to that on glass, with typical field-effect mobility, turn-on voltage, and subthreshold voltage swing of 12.7 ± 0.5 cm(2)/V·s, -1.7 ± 0.2 V, and 160 ± 29 mV/dec, respectively. There is no significant degradation after rolling the TFTs 100 times on a cylinder with a radius of 4 mm or when shift registers, each consisting of 40 TFTs, are operated while bent to a radius of 2 mm. For handling purposes, carrier glass is used during fabrication, together with a very thin (∼1 nm) solution-processed carbon nanotube (CNT)/graphene oxide (GO) backbone that is first spin-coated on the glass to decrease adhesion of the CPI to the glass; peel strength of the CPI from glass decreases from 0.43 to 0.10 N/cm, which eases the process of detachment performed after device fabrication. Given that the CNT/GO remains embedded under the CPI after detachment, it minimizes wrinkling and decreases the substrate's tensile elongation from 8.0% to 4.6%. Device performance is also stable under electrostatic discharge exposures up to 10 kV, as electrostatic charge can be released via the conducting CNTs. PMID:25526282

  12. Diesel particulate trap mounting system

    SciTech Connect

    Miller, P.R.

    1992-01-21

    This patent describes a particulate trap assembly. It comprises an outer housing having a gas inlet and a gas outlet and a passageway interconnecting the gas inlet and the gas outlet; a particulate trapping means located within the passageway of the housing for trapping particles entrained in gas passing through the passageway, the passageway and the particulate trapping means having circumferential extents which fall within relatively large predetermined manufacturing tolerances respectively; tourniquet means surrounding the particulate trapping means for applying a predetermined radial pressure to the trapping means which is substantially independent of the circumferential extents of the passageway and the including an encircling element having a selectably adjustable circumferential extent for permitting the tourniquet means to conform to the circumferential extent of the particulate trapping means when mounted in compressive relationship about the particulate trapping means, and mounting means for retaining the particulate trapping means radially and axially within the passageway in a manner which imposes no further substantial radial compressive force to the particulate trapping means.

  13. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  14. Cryogenic resonator design for trapped ion experiments in Paul traps

    NASA Astrophysics Data System (ADS)

    Brandl, M. F.; Schindler, P.; Monz, T.; Blatt, R.

    2016-06-01

    Trapping ions in Paul traps require high radio frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  15. Ability of TiO2(110) Surface to Be Fully Hydroxylated and Fully Reduced

    SciTech Connect

    Wang, Zhitao; Garcia, Juan C.; Deskins, N. A.; Lyubinetsky, Igor

    2015-08-06

    Many TiO2 applications (e.g., in heterogeneous catalysis) involve contact with ambient atmosphere and/or water. The resulting hydroxylation can significantly alter its surface properties. While behavior of single, isolated OH species on the model metal oxide surface of rutile TiO2(110) is relatively well understood, much less is known regarding highly-hydroxylated surfaces and/or whether TiO2(110) could be fully-hydroxylated under ultra-high vacuum conditions. Here we report in situ formation of a well-ordered, fully-hydroxylated TiO2(110)-(1 x 1) surface using an enhanced photochemical approach, key parts of which are pre-dosing of water and multi-step dissociative adsorption and subsequent photolysis of the carboxylic (trimethyl acetic) acid. Combining scanning tunneling microscopy, ultra-violet photoelectron spectroscopy and density functional theory results, we show that the attained “super OH” surface is also fully-reduced, as a result of the photochemical trapping of electrons at the OH groups.

  16. The trap line as a measure of small mammal populations

    USGS Publications Warehouse

    Stickel, L.F.

    1948-01-01

    SUMMARY: The value of a line of traps as a measure of relative abundance of small mammals was studied by field trials on Peromyscus leucopus populations. Comparisons were made between the numbers of mice captured by a line of live traps and the numbers captured in intensive live trapping of a larger area surrounding the line. Trials were made in bottomland woods where mice were numerous and in upland woods where mice were less common. It was found that wood mice living in upland woods had significantly larger cruising ranges than those living in bottomland woods. Consequently, a line of traps in the bottomlands captured mice from a smaller surrounding territory than in the uplands. Therefore, comparisons of relative size of the mouse population in these two areas on the basis of line-trapping showed an erroneously large number for the upland woods. As a result of these trials and the studies of other workers, it is concluded that lines of traps are not fully reliable means of measuring relative abundance of small mammals.

  17. Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

    NASA Astrophysics Data System (ADS)

    Sotoudeh, Zahra

    2011-07-01

    Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

  18. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  19. Gated charged-particle trap

    DOEpatents

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  20. Trapping of interstitials in metals

    SciTech Connect

    Wert, C.A.; Frank, R.C.

    1983-01-01

    The term trapping is used extensively to refer to the fact that interstitial atoms often find interstices associated with lattice imperfections to be energetically preferable to normal sites. This preference results in a delay of diffusion of interstitial atoms near these sites. As understanding of the details of lattice imperfections has improved, understanding of the effect of traps on the diffusion process has increased. Trapping is often illustrated by the use of a potential energy diagram. This simple model is characterized by a potential energy well deeper than those of surrounding interstitial sites. The energy required for the interstitial to jump into the trap is the same as that required for jumping into other adjacent interstitial sites, but that required for jumping out is greater. The additional energy required to leave the site is often designated as the trap binding energy, E/sub B/. Potential energy diagrams appropriate for most traps in metals are likely to be more complicated, but this simple model is a starting point for more sophisticated models of trapping. Imperfections may occasionally produce interstitial sites less favorable than normal sites and thus be less preferred. Little experimental exploration of this anti-trapping phenomenon has been carried out, however. Developments in understanding at various levels of trapping of interstitial impurities by lattice imperfections are examined.

  1. Halo ion trap mass spectrometer.

    PubMed

    Austin, Daniel E; Wang, Miao; Tolley, Samuel E; Maas, Jeffrey D; Hawkins, Aaron R; Rockwood, Alan L; Tolley, H Dennis; Lee, Edgar D; Lee, Milton L

    2007-04-01

    We describe a novel radio frequency ion trap mass analyzer based on toroidal trapping geometry and microfabrication technology. The device, called the halo ion trap, consists of two parallel ceramic plates, the facing surfaces of which are imprinted with sets of concentric ring electrodes. Radii of the imprinted rings range from 5 to 12 mm, and the spacing between the plates is 4 mm. Unlike conventional ion traps, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo ion trap are established by applying different radio frequency potentials to each ring. The potential on each ring can be independently optimized to provide the best trapping field. The halo ion trap features an open structure, allowing easy access for in situ ionization. The toroidal geometry provides a large trapping and analyzing volume, increasing the number of ions that can be stored and reducing the effects of space-charge on mass analysis. Preliminary mass spectra show resolution (m/Deltam) of 60-75 when the trap is operated at 1.9 MHz and 500 Vp-p. PMID:17335180

  2. DNA Separation Using Photoelectrophoretic Traps

    SciTech Connect

    Braiman, Avital; Thundat, Thomas George; Rudakov, Fedor M

    2011-01-01

    In our recent publications we presented a design that allows formation of highly localized and optically controlled electrophoretic traps. 1,2 We demonstrated that electrophoretic traps can be utilized for biomolecule photoconcentration, optically directed transport, and separation by size. 1,2 In the current publication we suggest a hybrid design for biomolecule separation which implements electrophoretic traps in tandem with well-established electrophoretic techniques. We perform Monte Carlo simulations that demonstrate that the resolution of well-established electrophoretic techniques can be greatly enhanced by introducing photoelectrophoretic traps.

  3. Trapped-electron runaway effect

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Fisch, N. J.; Peysson, Y.

    2015-08-01

    In a tokamak, trapped electrons subject to a strong electric field cannot run away immediately, because their parallel velocity does not increase over a bounce period. However, they do pinch toward the tokamak center. As they pinch toward the center, the trapping cone becomes more narrow, so eventually they can be detrapped and run away. When they run away, trapped electrons will have a very different signature from circulating electrons subject to the Dreicer mechanism. The characteristics of what are called trapped-electron runaways are identified and quantified, including their distinguishable perpendicular velocity spectrum and radial extent.

  4. Solar Cell light trapping beyond the ray optic limit.

    PubMed

    Callahan, Dennis M; Munday, Jeremy N; Atwater, Harry A

    2012-01-11

    In 1982, Yablonovitch proposed a thermodynamic limit on light trapping within homogeneous semiconductor slabs, which implied a minimum thickness needed to fully absorb the solar spectrum. However, this limit is valid for geometrical optics but not for a new generation of subwavelength solar absorbers such as ultrathin or inhomogeneously structured cells, wire-based cells, photonic crystal-based cells, and plasmonic cells. Here we show that the key to exceeding the conventional ray optic or so-called ergodic light trapping limit is in designing an elevated local density of optical states (LDOS) for the absorber. Moreover, for any semiconductor we show that it is always possible to exceed the ray optic light trapping limit and use these principles to design a number of new solar absorbers with the key feature of having an elevated LDOS within the absorbing region of the device, opening new avenues for solar cell design and cost reduction. PMID:22149061

  5. Traps and seals II. Stratigraphic/capillary traps

    SciTech Connect

    Foster, N.H.; Beaumont, E.A.

    1988-01-01

    This text is a reprint belonging to a series of reprint volumes which in turn are part of the Treatise of Petroleum Geology. This volume contains papers that describe different stratigraphically controlled trap types, the preservation of porosity, and the importance of capillarity in trapping hydrocarbons.

  6. Fully localized two-dimensional embedded solitons

    SciTech Connect

    Yang Jianke

    2010-11-15

    We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.

  7. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Area 1 trap limits. The Area 1 trap limit is 800 traps. Federally permitted lobster fishing vessels shall not fish with, deploy in, possess in, or haul back...

  8. A single trapped ion in a finite range trap

    SciTech Connect

    Bagheri Harouni, M.; Davoudi Darareh, M.

    2011-04-15

    Research Highlights: > We present a method to describe dynamics of an ion confined in a finite size trap. > The trap is modeled with a potential in the context of an f-deformed oscillator. > The ion exhibits nonclassical properties such as squeezing and quantum interference. > . > Also this system can be used to generate highly excited motional Fock state. > The Hilbert space size effects and nano traps can be investigated by this model. - Abstract: This paper presents a method to describe dynamics of an ion confined in a realistic finite range trap. We model this realistic potential with a solvable one and we obtain dynamical variables (raising and lowering operators) of this potential. We consider coherent interaction of this confined ion in a finite range trap and we show that its center-of-mass motion steady state is a special kind of nonlinear coherent states. Physical properties of this state and their dependence on the finite range of potential are studied.

  9. Cryogenic ion trapping systems with surface-electrode traps

    NASA Astrophysics Data System (ADS)

    Antohi, P. B.; Schuster, D.; Akselrod, G. M.; Labaziewicz, J.; Ge, Y.; Lin, Z.; Bakr, W. S.; Chuang, I. L.

    2009-01-01

    We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with S88r+ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

  10. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  11. Cosmological signatures of anisotropic spatial curvature

    NASA Astrophysics Data System (ADS)

    Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  12. Transverse shear stiffness of laminated anisotropic shells

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.

  13. Anisotropic flow in transport + hydrodynamics hybrid approaches

    NASA Astrophysics Data System (ADS)

    Petersen, Hannah

    2014-12-01

    This contribution to the focus issue covers anisotropic flow in hybrid approaches. The historical development of hybrid approaches and their impact on the interpretation of flow measurements is reviewed. The major ingredients of a hybrid approach and the transition criteria between transport and hydrodynamics are discussed. The results for anisotropic flow in (event-by-event) hybrid approaches are presented. Some hybrid approaches rely on hadronic transport for the late stages for the reaction (so called afterburner) and others employ transport approaches for the early non-equilibrium evolution. In addition, there are ‘full’ hybrid calculations where a fluid evolution is dynamically embedded in a transport simulation. After demonstrating the success of hybrid approaches at high Relativistic Heavy Ion Collider and Large Hadron Collider energies, existing hybrid caluclations for collective flow observables at lower beam energies are discussed and remaining challenges outlined.

  14. Modeling of anisotropic hardening of sheet metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-12-01

    To describe the evolution of anisotropy of sheet metals, in terms of both r-values and stresses, the present paper proposes anisotropic hardening models, where the shape of yield surface changes with increasing plastic strain. In this framework of modeling, any types of yield functions are able to be used. The evolution of anisotropy is expressed by updating the yield function as an interpolation between two yield functions defined at two different effective plastic strains. In this paper, two types of interpolation models, i.e., nonlinear interpolation model and piecewise interpolation model are presented. These models are validated by comparing the experimental data on 3003-O aluminum sheet (after Hu, Int J Plasticity 23, 620-639, 2007). To describe the Bauschinger effect, the combined anisotropic-kinematic hardening model is formulated based on Yoshida-Uemori kinematic hardening model.

  15. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  16. Optimal traps in graphene

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Pearce, A. R.; Churchill, R. J.; Portnoi, M. E.

    2015-10-01

    We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a nonlinear first-order differential equation for scattering phase shift, using the so-called variable-phase method. This allows us to utilize the Levinson theorem, relating scattering phase shifts of a slow particle to its bound states, to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads us to posit the use of "optimal traps" to combat the chiral tunneling found in graphene: this could be explored experimentally with an artificial network of point charges held above the graphene layer. We also discuss scattering on these states and find that the s states create a dominant peak in the scattering cross section as the energy tends towards the Dirac point energy, suggesting a dominant contribution to the resistivity.

  17. Equatorially trapped plasma populations

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1981-01-01

    The SCATHA observations of the equatorially trapped plasmas are presented in order to emphasize the importance of making measurements at the equator. The UCSD plasma detector and the GSFC electric field experiment are described, as are the pertinent characteristics of the magnetometer and mass spectrometers. The electron distribution reveals a width of 20 deg to 60 deg, narrowing with increasing energy. The 20- to 100-eV ion fluxes typically exhibit temperatures in the 20to 50-eV range and densities of 1-10 per cu cm. The electron population typically ranges from 50 to 500 eV, with temperatures of 100-200 eV and densities also in the 1-10 per cu cm range. Field-aligned populations of lower energy are occasionally found in both ions and electrons at the same location.

  18. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  19. Anisotropic resonant scattering from polymer photonic crystals.

    PubMed

    Haines, Andrew I; Finlayson, Chris E; Snoswell, David R E; Spahn, Peter; Hellmann, G Peter; Baumberg, Jeremy J

    2012-11-20

    Hyperspectral goniometry reveals anisotropic scattering which dominates the visual appearance of self-assembled polymer opals. The technique allows reconstruction of the reciprocal-space of nanostructures, and indicates that chain defects formed during shear-ordering are responsible for the anisotropy in these samples. Enhanced scattering with improving order is shown to arise from increased effective refractive index contrast, while broadband background scatter is suppressed by absorptive dopants. PMID:22915079

  20. Improved Beam Theory for Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The behavior of beams made of anisotropic material was investigated in order to develop an appropriate model of such behavior. Closed form solutions of the problem were derived using two alternative approaches. In the first approach, the axial displacements are expanded as a series of eigenwarpings. In the second approach, the axial stresses are expanded as a series of eigenwarpings. A finite element solution was also derived using the same displacement field as in the first approach.

  1. A viscoplastic theory for anisotropic materials

    NASA Technical Reports Server (NTRS)

    Nouailhas, D.; Freed, A. D.

    1992-01-01

    The purpose of this work is the development of a unified, cyclic, viscoplastic model for anisotropic materials. The first part of the paper presents the foundations of the model in the framework of thermodynamics with internal variables. The second part considers the particular case of cubic symmetry, and addresses the cyclic behavior of a nickel-base single-crystal superalloy, CMSX-2, at high temperature (950 C).

  2. Determining the Orientation of Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    Sugg, F. E.; Hodgetts, P. J.

    1983-01-01

    Ultrasonics probe direction of tile fibers. Hand-held acoustic transducer determines fiber orientation of heat resistant tiles. Transducers head placed on outer surface of painted tile. Signals from receiving transducers displayed on two-channel oscilloscope. Application suggests extending technique to inspection of other anisotropic materials. Plywood and fiber/epoxy composites examined to determine fiber direction; ultrasonics used to find direction of roll in sheet metal and other rolled products.

  3. Nonparaxial solitary waves in anisotropic dielectrics

    SciTech Connect

    Alberucci, Alessandro; Assanto, Gaetano

    2011-03-15

    We account for the vectorial character of electromagnetic waves in the study of nonlinear self-action and transverse localization in dielectric anisotropic media. With reference to uniaxials, we address spatial solitons propagating in the nonparaxial regime in the presence of an arbitrary degree of nonlocality, going from the standard Kerr response to the highly nonlocal case, unveiling various effects, including transverse profile asymmetry and bending of the trajectory, as well as a weak effective nonlocality even in local media.

  4. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    NASA Astrophysics Data System (ADS)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  5. Multidimensional reaction rate theory with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang

    2014-11-01

    An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.

  6. Modelling Fracture Propagation in Anisotropic Rock Mass

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Siren, Topias; Rinne, Mikael

    2015-05-01

    Anisotropic rock mass is often encountered in rock engineering, and cannot be simplified as an isotropic problem in numerical models. A good understanding of rock fracturing processes and the ability to predict fracture initiation and propagation in anisotropic rock masses are required for many rock engineering problems. This paper describes the development of the anisotropic function in FRACOD—a specialized fracture propagation modelling software—and its recent applications to rock engineering issues. Rock anisotropy includes strength anisotropy and modulus anisotropy. The level of complexity in developing the anisotropic function for strength anisotropy and modulus anisotropy in FRACOD is significantly different. The strength anisotropy function alone does not require any alteration in the way that FRACOD calculates rock stress and displacement, and therefore is relatively straightforward. The modulus anisotropy function, on the other hand, requires modification of the fundamental equations of stress and displacement in FRACOD, a boundary element code, and hence is more complex and difficult. In actual rock engineering, the strength anisotropy is often considered to be more pronounced and important than the modulus anisotropy, and dominates the stability and failure pattern of the rock mass. The modulus anisotropy will not be considered in this study. This paper discusses work related to the development of the strength anisotropy in FRACOD. The anisotropy function has been tested using numerical examples. The predicted failure surfaces are mostly along the weakest planes. Predictive modelling of the Posiva's Olkiluoto Spalling Experiment was made. The model suggests that spalling is very sensitive to the direction of anisotropy. Recent observations from the in situ experiment showed that shear fractures rather than tensile fractures occur in the holes. According to the simulation, the maximum tensile stress is well below the tensile strength, but the maximum

  7. Symmetry analysis for anisotropic field theories

    SciTech Connect

    Parra, Lorena; Vergara, J. David

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  8. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction. PMID:26516073

  9. Highly anisotropic Dirac fermions in square graphynes

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhi; Wang, Zhengfei; Rao, Jiansheng; Li, Ziheng; Huang, Wulin; Wang, Zhiming; Du, Shixuan; Gao, Hongjun; Liu, Feng

    Recently, there have been intense search of new 2D materials, and one especially appealing class of 2D materials is the all-carbon allotropes of Dirac materials. Here, we predict a new family of 2D carbon allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac Fermions, using first-principle calculations within density functional theory. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 x 105 to 7.2 x 105 m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. Our findings enrich the Dirac physics founded in other 2D Dirac systems, and offer a new design mechanism for creating Dirac band by tuning the interaction range. We envision that the highly anisotropic Dirac crescent may be exploited in all-carbon-based electronic devices for manipulating anisotropic electron propagation.

  10. Highly anisotropic Dirac fermions in square graphynes

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhi; Wang, Zhengfei; Rao, Jiansheng; Li, Ziheng; Huang, Wulin; Wang, Zhiming; Du, Shixuan; Gao, Hongjun; Liu, Feng

    Recently, there have been intense search of new 2D materials, and one especially appealing class of 2D materials is the all-carbon allotropes of Dirac materials. Here, we predict a new family of 2D carbon allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac Fermions, using first-principle calculations within density functional theory. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 ×105 to 7.2 ×105 m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. Our findings enrich the Dirac physics founded in other 2D Dirac systems, and offer a new design mechanism for creating Dirac band by tuning the interaction range. We envision that the highly anisotropic Dirac crescent may be exploited in all-carbon-based electronic devices for manipulating anisotropic electron propagation.

  11. Anisotropic Hydraulic Permeability Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Weiss, Jeffrey A.

    2011-01-01

    The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor. Formulations are presented which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and non-affine reorientation of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations. PMID:21034145

  12. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  13. Anisotropic materials appearance analysis using ellipsoidal mirror

    NASA Astrophysics Data System (ADS)

    Filip, Jiří; Vávra, Radomír.

    2015-03-01

    Many real-world materials exhibit significant changes in appearance when rotated along a surface normal. The presence of this behavior is often referred to as visual anisotropy. Anisotropic appearance of spatially homogeneous materials is commonly characterized by a four-dimensional BRDF. Unfortunately, due to simplicity most past research has been devoted to three dimensional isotropic BRDFs. In this paper, we introduce an innovative, fast, and inexpensive image-based approach to detect the extent of anisotropy, its main axes and width of corresponding anisotropic highlights. The method does not rely on any moving parts and uses only an off-the-shelf ellipsoidal reflector with a compact camera. We analyze our findings with a material microgeometry scan, and present how results correspond to the microstructure of individual threads in a particular fabric. We show that knowledge of a material's anisotropic behavior can be effectively used in order to design a material-dependent sampling pattern so as the material's BRDF could be measured much more precisely in the same amount of time using a common gonioreflectometer.

  14. Efficient Anisotropic Filtering of Diffusion Tensor Images

    PubMed Central

    Xu, Qing; Anderson, Adam W.; Gore, John C.; Ding, Zhaohua

    2009-01-01

    To improve the accuracy of structural and architectural characterization of living tissue with diffusion tensor imaging, an efficient smoothing algorithm is presented for reducing noise in diffusion tensor images. The algorithm is based on anisotropic diffusion filtering, which allows both image detail preservation and noise reduction. However, traditional numerical schemes for anisotropic filtering have the drawback of inefficiency and inaccuracy due to their poor stability and first order time accuracy. To address this, an unconditionally stable and second order time accuracy semi-implicit Craig-Sneyd scheme is adapted in our anisotropic filtering. By using large step size, unconditional stability allows this scheme to take much fewer iterations and thus less computation time than the explicit scheme to achieve a certain degree of smoothing. Second order time accuracy makes the algorithm reduce noise more effectively than a first order scheme with the same total iteration time. Both the efficiency and effectiveness are quantitatively evaluated based on synthetic and in vivo human brain diffusion tensor images, and these tests demonstrate that our algorithm is an efficient and effective tool for denoising diffusion tensor images. PMID:20061113

  15. ARTc: Anisotropic reflectivity and transmissivity calculator

    NASA Astrophysics Data System (ADS)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  16. Monotonic solution of heterogeneous anisotropic diffusion problems

    NASA Astrophysics Data System (ADS)

    Aricò, Costanza; Tucciarelli, Tullio

    2013-11-01

    Anisotropic problems arise in various areas of science and engineering, for example groundwater transport and petroleum reservoir simulations. The pure diffusive anisotropic time-dependent transport problem is solved on a finite number of nodes, that are selected inside and on the boundary of the given domain, along with possible internal boundaries connecting some of the nodes. An unstructured triangular mesh, that attains the Generalized Anisotropic Delaunay condition for all the triangle sides, is automatically generated by properly connecting all the nodes, starting from an arbitrary initial one. The control volume of each node is the closed polygon given by the union of the midpoint of each side with the “anisotropic” circumcentre of each final triangle. A structure of the flux across the control volume sides similar to the standard Galerkin Finite Element scheme is derived. A special treatment of the flux computation, mainly based on edge swaps of the initial mesh triangles, is proposed in order to obtain a stiffness M-matrix system that guarantees the monotonicity of the solution. The proposed scheme is tested using several literature tests and the results are compared with analytical solutions, as well as with the results of other algorithms, in terms of convergence order. Computational costs are also investigated.

  17. Nontoxic Antifreeze for Insect Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propylene glycol in water is a safe and effective alternative to ethylene glycol as a capture liquid in insect traps (pitfalls, flight intercepts, pan traps). Propylene glycol formulations are readily available because it is the primary (95%) ingredient in certain automotive antifreeze formulations...

  18. Mass trapping for Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass trapping has been found to be highly effective for control of pest fruit flies when populations are low and a highly effective lure is available for the target species. Successful population control through mass trapping is an indicator that attract-and-kill bait stations may be equally succes...

  19. Quantum computing with trapped ions

    SciTech Connect

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  20. [Trapping techniques for Solenopsis invicta].

    PubMed

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward. PMID:17763750

  1. Magnetostatic traps for charged and neutral particles

    NASA Astrophysics Data System (ADS)

    Gomer, V.; Harms, O.; Haubrich, D.; Schadwinkel, H.; Strauch, F.; Ueberholz, B.; Aus der Wiesche, S.; Meschede, D.

    1997-08-01

    We have constructed magnetostatic traps from permanent magnets for trapping charged and neutral atoms. Two storage experiments are presented: a compact Penning trap for light ions and magnetic trapping of single neutral atoms. The dynamics of cold neutral atoms and their loss mechanisms in a quadrupole magnetostatic trap are discussed.

  2. Anisotropic hyperfine interactions limit the efficiency of spin-exchange optical pumping of ³He nuclei.

    PubMed

    Tscherbul, T V; Zhang, P; Sadeghpour, H R; Dalgarno, A

    2011-07-01

    We use accurate ab initio and quantum scattering calculations to demonstrate that the maximum ³He spin polarization that can be achieved in spin-exchange collisions with potassium (³⁹K) and silver (¹⁰⁷Ag) atoms is limited by the anisotropic hyperfine interaction. We find that spin exchange in Ag-He collisions occurs much faster than in K-He collisions over a wide range of temperatures (10-600 K). Our analysis indicates that measurements of trap loss rates of ²S atoms in the presence of cold ³He gas may be used to probe anisotropic spin-dependent interactions in atom-He collisions. PMID:21797604

  3. Self-trapping of a dipolar Bose-Einstein condensate in a double well

    NASA Astrophysics Data System (ADS)

    Adhikari, S. K.

    2014-04-01

    We study the Josephson oscillation and self-trapping dynamics of a cigar-shaped dipolar Bose-Einstein condensate of 52Cr atoms polarized along the symmetry axis of an axially symmetric double-well potential using the numerical solution of a mean-field model, for dominating repulsive contact interaction (large positive scattering length a) over an anisotropic dipolar interaction. Josephson-type oscillation emerges for small and very large numbers of atoms, whereas self-trapping is noted for an intermediate number of atoms. The dipolar interaction pushes the system away from self-trapping towards Josephson oscillation. We consider a simple two-mode description for a qualitative understanding of the dynamics.

  4. Hydrodynamic Modes in a Trapped Bose Gas above the Bose-Einstein Transition

    SciTech Connect

    Griffin, A.; Wu, W.; Stringari, S.

    1997-03-01

    We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes above the transition have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0 within the Thomas-Fermi approximation. Results are also given for the monopole {open_quotes}breathing{close_quote}{close_quote} mode as well as for the m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well. {copyright} {ital 1997} {ital The American Physical Society}

  5. Formation of van der Waals molecules in buffer-gas-cooled magnetic traps [corrected].

    PubMed

    Brahms, N; Tscherbul, T V; Zhang, P; Kłos, J; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-07-16

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10(12)  cm(-3). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T(-6) thermal dependence of the spin-change rate of silver (Ag) trapped in dense (3)He is accounted for by the formation and spin change of Ag(3)He van der Waals molecules, thus providing indirect evidence for molecular formation in a buffer-gas trap. PMID:20867761

  6. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  7. Quantitative Permeability Prediction for Anisotropic Porous Media

    NASA Astrophysics Data System (ADS)

    Sheng, Q.; Thompson, K. E.

    2012-12-01

    Pore-scale modeling as a predictive tool has become an integral to both research and commercial simulation in recent years. Permeability is one of the most important of the many properties that can be simulated. Traditionally, permeability is determined using Darcy's law, based on the assumption that the pressure gradient is aligned with the principal flow direction. However, a wide variety of porous media exhibit anisotropic permeability due to particle orientation or laminated structure. In these types of materials, the direction of fluid flow is not aligned with the pressure gradient (except along the principal directions). Thus, it is desirable to predict the full permeability tensor for anisotropic materials using a first-principles pore-scale approach. In this work, we present a fast method to determine the full permeability tensor and the principal directions using a novel network modeling algorithm. We also test the ability of network modeling (which is an approximate method) to detect anisotropy in various structures. Both computational fluid dynamics (CFD) methods and network modeling have emerged as effective techniques to predict rock properties. CFD models are more rigorous but computationally expensive. Network modeling involves significant approximations but can be orders-of-magnitude more efficient computationally, which is important for both speed and the ability to model larger scales. This work uses network modeling, with simulations performed on two types of anisotropic materials: laminated packings (with layers of different sized particles) and oriented packings (containing particles with preferential orientation). Pore network models are created from the porous media data, and a novel method is used to determine the permeability tensor and principal flow direction using pore network modeling. The method is verified by comparing the calculated principal directions with the known anisotropy and also by comparing permeability with values from CFD

  8. Understanding conoscopic interference patterns in anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Olorunsola, Oluwatobi Gabriel

    The interference patterns observed in conoscopy are important in studying the optical and geometrical properties of anisotropic materials. They have also been used to identify minerals and to explore the structure of biological tissues. In a conoscopic interferometer, an optically anisotropic specimen is placed between two crossed linear polarizers and illuminated by a convergent light beam. The interference patterns are produced because in an anisotropic material an incident light is split into two eigenwaves, namely the ordinary and the extraordinary waves. We report our work on the theoretical simulation and experimental observation of the conoscopic interference patterns in anisotropic crystals. In our simulation, the interference patterns are decomposed into fringes of isogyres and isochromates. For each light propagation direction inside the crystal there exist two eigenwaves that have their own characteristic velocities and vibration directions. The isogyres are obtained by computing the angle between the polarization of the incident light and the vibration directions of the two eigenwaves. The isochromates are obtained by computing the phase retardance between the two eigenwaves inside the crystal. The interference patterns are experimentally observed in several crystals, with their optic axes either parallel or perpendicular to their surfaces. An external electric field is applied to deform the crystals from uniaxial to biaxial. The results of our experimental observation agree well with our computer simulation. In conventional interferometers the isochromatic interference fringes are observed by using a circular polarizer and a circular analyzer, both constructed by a linear polarizer and a quarter wave plate. However, due to the dispersion of the quarter wave plates, the phase-retardance between the two light waves inside the quarter wave plates is wavelength-dependent, which results in different conoscopic interference patterns for different colors of

  9. Poroelastic measurement schemes resulting in complete data sets for granular and other anisotropic porous media

    SciTech Connect

    Berryman, J.G.

    2009-11-20

    Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the experimental situation is often incompatible with these assumptions, especially when field data (from hydrological or oil/gas reservoirs) are involved. The present work considers several different experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or drained constants are normally unknown. Drained constants for such a poroelastic system can be deduced for isotropic systems from available data if a complete set of undrained compliance data for the principal stresses are available - together with a few other commonly measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e., composed of solid grains assembled into a solid matrix, either by a cementation process or by applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type), but still isotropic, grains - as well as for uniform collections of anisotropic grains as long as their axes of symmetry are either perfectly aligned or perfectly random.

  10. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sevilla, Paloma; Labrador-Páez, Lucía; Wawrzyńczyk, Dominika; Nyk, Marcin; Samoć, Marek; Kar, Ajoy Kumar; MacKenzie, Mark D.; Paterson, Lynn; Jaque, Daniel; Haro-González, Patricia

    2015-12-01

    An approach to unequivocally determine the three-dimensional orientation of optically manipulated NaYF4:Er3+,Yb3+ upconverting nanorods (UCNRs) is demonstrated. Long-term immobilization of individual UCNRs inside single and multiple resonant optical traps allow for stable single UCNR spectroscopy studies. Based on the strong polarization dependent upconverted luminescence of UCNRs it is possible to unequivocally determine, in real time, their three-dimensional orientation when optically trapped. In single-beam traps, polarized single particle spectroscopy has concluded that UCNRs orientate parallel to the propagation axis of the trapping beam. On the other hand, when multiple-beam optical tweezers are used, single particle polarization spectroscopy demonstrated how full spatial control over UCNR orientation can be achieved by changing the trap-to-trap distance as well as the relative orientation between optical traps. All these results show the possibility of real time three-dimensional manipulation and tracking of anisotropic nanoparticles with wide potential application in modern nanobiophotonics.An approach to unequivocally determine the three-dimensional orientation of optically manipulated NaYF4:Er3+,Yb3+ upconverting nanorods (UCNRs) is demonstrated. Long-term immobilization of individual UCNRs inside single and multiple resonant optical traps allow for stable single UCNR spectroscopy studies. Based on the strong polarization dependent upconverted luminescence of UCNRs it is possible to unequivocally determine, in real time, their three-dimensional orientation when optically trapped. In single-beam traps, polarized single particle spectroscopy has concluded that UCNRs orientate parallel to the propagation axis of the trapping beam. On the other hand, when multiple-beam optical tweezers are used, single particle polarization spectroscopy demonstrated how full spatial control over UCNR orientation can be achieved by changing the trap-to-trap distance as well as

  11. Track and trap in 3D

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Rodrigo, Peter J.; Nielsen, Ivan P.; Alonzo, Carlo A.

    2007-04-01

    Three-dimensional light structures can be created by modulating the spatial phase and polarization properties of an an expanded laser beam. A particularly promising technique is the Generalized Phase Contrast (GPC) method invented and patented at Risø National Laboratory. Based on the combination of programmable spatial light modulator devices and an advanced graphical user-interface the GPC method enables real-time, interactive and arbitrary control over the dynamics and geometry of synthesized light patterns. Recent experiments have shown that GPC-driven micro-manipulation provides a unique technology platform for fully user-guided assembly of a plurality of particles in a plane, control of particle stacking along the beam axis, manipulation of multiple hollow beads, and the organization of living cells into three-dimensional colloidal structures. Here we present GPC-based optical micromanipulation in a microfluidic system where trapping experiments are computer-automated and thereby capable of running with only limited supervision. The system is able to dynamically detect living yeast cells using a computer-interfaced CCD camera, and respond to this by instantly creating traps at positions of the spotted cells streaming at flow velocities that would be difficult for a human operator to handle.

  12. The trapped human experiment.

    PubMed

    Huo, R; Agapiou, A; Bocos-Bintintan, V; Brown, L J; Burns, C; Creaser, C S; Devenport, N A; Gao-Lau, B; Guallar-Hoyas, C; Hildebrand, L; Malkar, A; Martin, H J; Moll, V H; Patel, P; Ratiu, A; Reynolds, J C; Sielemann, S; Slodzynski, R; Statheropoulos, M; Turner, M A; Vautz, W; Wright, V E; Thomas, C L P

    2011-12-01

    This experiment observed the evolution of metabolite plumes from a human trapped in a simulation of a collapsed building. Ten participants took it in turns over five days to lie in a simulation of a collapsed building and eight of them completed the 6 h protocol while their breath, sweat and skin metabolites were passed through a simulation of a collapsed glass-clad reinforced-concrete building. Safety, welfare and environmental parameters were monitored continuously, and active adsorbent sampling for thermal desorption GC-MS, on-line and embedded CO, CO(2) and O(2) monitoring, aspirating ion mobility spectrometry with integrated semiconductor gas sensors, direct injection GC-ion mobility spectrometry, active sampling thermal desorption GC-differential mobility spectrometry and a prototype remote early detection system for survivor location were used to monitor the evolution of the metabolite plumes that were generated. Oxygen levels within the void simulator were allowed to fall no lower than 19.1% (v). Concurrent levels of carbon dioxide built up to an average level of 1.6% (v) in the breathing zone of the participants. Temperature, humidity, carbon dioxide levels and the physiological measurements were consistent with a reproducible methodology that enabled the metabolite plumes to be sampled and characterized from the different parts of the experiment. Welfare and safety data were satisfactory with pulse rates, blood pressures and oxygenation, all within levels consistent with healthy adults. Up to 12 in-test welfare assessments per participant and a six-week follow-up Stanford Acute Stress Response Questionnaire indicated that the researchers and participants did not experience any adverse effects from their involvement in the study. Preliminary observations confirmed that CO(2), NH(3) and acetone were effective markers for trapped humans, although interactions with water absorbed in building debris needed further study. An unexpected observation from the NH(3

  13. Ground Band and Excited Band of Spin-1 BEC in Cigar Shaped Laser Trap

    NASA Astrophysics Data System (ADS)

    Pang, Wei; Li, Zhi-Bing; Bao, Cheng-Guang

    2007-10-01

    The wavefunctions that conserve the total spin are constructed for the fully condensed states and the states with one particle excited. A set of equations are deduced for the spatial longitudinal wavefunctions and the chemical potentials. These equations are solved numerically for 23Na and 87Rb condensates. The deformed trap shows significant effects on the spectrum. This implies that the spin effect of the spinor BEC are more easily detected in an optical trap of larger aspect ratio.

  14. Kinematic MHD Models of Collapsing Magnetic Traps: Extension to 3D

    SciTech Connect

    Grady, Keith J.; Neukirch, Thomas

    2009-02-16

    We show how fully 3D kinematic MHD models of collapsing magnetic traps (CMTs) can be constructed, thus extending previous work on 2D trap models. CMTs are thought to form in the relaxing magnetic field lines in solar flares and it has been proposed that they play an important role in the acceleration of high-energy particles. This work is a first step to understanding the physics of CMTs better.

  15. Testing different formulations of leading-order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael

    2016-02-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.

  16. Transport of anisotropic chiral particles in a confined structure

    NASA Astrophysics Data System (ADS)

    Hu, Cai-tian; Ou, Ya-li; Wu, Jian-chun; Ai, Bao-quan

    2016-03-01

    Directed transport of anisotropic chiral particles is numerically investigated in the presence of the regular arrays of rigid half-circle obstacles. It is found that due to the rotational-translational coupling, the transport of anisotropic particles is considerably more complicated compared to the isotropic case. For isotropic chiral particles, the transport direction is completely determined by the chirality of particles. However, for anisotropic chiral particles, the competition between the chirality and the anisotropic degree determines the transport direction. For a given chirality, by suitably tailoring parameters (the anisotropic degree and the self-propulsion speed), particles with different anisotropic degrees (or self-propulsion speed) can move in different directions and can be separated.

  17. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    PubMed

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles. PMID:21293517

  18. Model-Independent Determination of the Shear Viscosity of a Trapped Unitary Fermi gas: Application to High-Temperature Data

    NASA Astrophysics Data System (ADS)

    Bluhm, M.; Schäfer, T.

    2016-03-01

    Determinations of the shear viscosity of trapped ultracold gases suffer from systematic, uncontrolled uncertainties related to the treatment of the dilute part of the gas cloud. In this work we present an analysis of expansion experiments based on a new method, anisotropic fluid dynamics, that interpolates between Navier-Stokes fluid dynamics at the center of the cloud and ballistic behavior in the dilute corona. We validate the method using a comparison between anisotropic fluid dynamics and numerical solutions of the Boltzmann equation. We then apply anisotropic fluid dynamics to the expansion data reported by Cao et al. In the high-temperature limit we find η =0.282 (m T )3 /2 , which agrees within about 5% with the theoretical prediction η =0.269 (m T )3/2.

  19. Trap-mulching Argentine ants.

    PubMed

    Silverman, Jules; Sorenson, Clyde E; Waldvogel, Michael G

    2006-10-01

    Argentine ant, Linepithema humile (Mayr), management is constrained, in large part, by polydomy where nestmates are distributed extensively across urban landscapes, particularly within mulch. Management with trap-mulching is a novel approach derived from trap-cropping where ants are repelled from a broad domain of nest sites to smaller defined areas, which are subsequently treated with insecticide. This concept was field-tested with mulch surrounding ornamental trees replaced with a narrow band of pine (Pinus spp.) needle mulch (trap) within a much larger patch of repellent aromatic cedar (Juniperus spp.) mulch. After ants reestablished around the trees, the pine needle mulch band was treated with 0.06% fipronil (Termidor). Poor results were obtained when the trap extended from the tree trunk to the edge of the mulched area. When the trap was applied as a circular band around the tree trunk reductions in the number of foraging ants were recorded through 14 d compared with an untreated mulch control, but not for longer periods. Reductions in the number of ant nests within mulch were no different between the trap mulch and any of the other treatments. We conclude that trap-mulching offers limited benefits, and that successful management of Argentine ants will require implementation of complementary or perhaps alternative strategies. PMID:17066809

  20. Relativistic Modelling of Stable Anisotropic Super-Dense Star

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Jasim, M. K.

    2015-08-01

    In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al. [1] algorithm. The anisotropic fluid solutions so obtained join continuously to the Schwarzschild exterior solution across the pressure-free boundary. It is observed that most of the new anisotropic solutions are well-behaved and are used to construct the super-dense star models such as neutron stars and pulsars.

  1. First Attempts at Antihydrogen Trapping in ALPHA

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-08-08

    The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

  2. Characterizing single atom optical dipole traps

    NASA Astrophysics Data System (ADS)

    Shih, Chung-Yu; Gibbons, Michael; Chapman, Michael

    2012-06-01

    Trapping and manipulating individual neutral atoms in far off-resonant traps (FORTs) is a promising approach for quantum information processing. It is important to characterize the trapping environment of the atom and the atomic level shifts due to the trapping fields. Using non-destructive measurement techniques,ootnotetextM. J. Gibbons et al., Phys. Rev. Lett 106, 133002 (2011). we have measured the level dependent AC Stark shifts, trap frequencies, and temperature of single rubidium atoms confined in optical dipole trap.

  3. Mechanism of DNA Trapping in Nanoporous Structures during Asymmetric Pulsed-Field Electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Harrison, D. Jed

    2014-03-01

    DNA molecules (>100kbp) are trapped in separation sieves when high electric fields are applied in pulsed field electrophoresis, seriously limiting the speed of separation. Using crystalline particle arrays, to generate interstitial pores for molecular sieving, allows higher electric fields than in gels, (e.g 40 vs 5 V/cm), however trapping still limits the field strength. Using reverse pulses, which release DNA from being fully-stretched, allows higher fields (140 V/cm). We investigate the trapping mechanism of individual DNA molecules in ordered nanoporous structures. Two prerequisites for trapping are revealed by the dynamics of single trapped DNA, hernia formation and fully-stretched U/J shapes. Fully stretched DNA has longer unhooking times than expected by simple models. We propose a dielectrophoretic (DEP) force reduces the mobility of segments at the apex of the U or J, where field gradients are highest, based on simulations. A modified model for unhooking time is obtained after the DEP force is introduced. The new model explains the unhooking time data by predicting an infinite trapping time when the ratio of arm length differences (of the U or J) to molecule length Δx / L < β . β is a DEP parameter that is found to strongly increase with electric field. The work was supported by grant from Natural Sciences and Engineering Research Council of Canada (NSERC) and the National Institute for Nanotechnology (NINT).

  4. Stability conditions for the Bianchi type II anisotropically inflating universes

    SciTech Connect

    Kao, W.F.; Lin, Ing-Chen E-mail: g9522528@oz.nthu.edu.tw

    2009-01-15

    Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space.

  5. On uniqueness and non-degeneracy of anisotropic polarons

    NASA Astrophysics Data System (ADS)

    Ricaud, Julien

    2016-05-01

    We study the anisotropic Choquard-Pekar equation which describes a polaron in an anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we derive the symmetry properties of minimizers and prove that the kernel of the associated linearized operator is reduced, apart from three functions coming from the translation invariance, to the kernel on the subspace of functions that are even in each of the three principal directions of the medium.

  6. Anisotropic mechanosensing by mesenchymal stem cells

    PubMed Central

    Kurpinski, Kyle; Chu, Julia; Hashi, Craig; Li, Song

    2006-01-01

    Mesenchymal stem cells (MSCs) are a potential source for the construction of tissue-engineered vascular grafts. However, how vascular mechanical forces regulate the genetic reprogramming in MSCs is not well understood. Mechanical strain in the vascular wall is anisotropic and mainly in the circumferential direction. We have shown that cyclic uniaxial strain on elastic substrates causes the cells to align perpendicularly to the strain axis, which is different from that in the vascular wall. To simulate the vascular cell alignment and investigate the anisotropic mechanical sensing by MSCs, we used soft lithography to create elastomeric membranes with parallel microgrooves. This topographic pattern kept MSCs aligned parallel to the strain axis, and the cells were subjected to 5% cyclic uniaxial strain (1 Hz) for 2–4 days. DNA microarray analysis revealed global gene expression changes, including an increase in the smooth muscle marker calponin 1, decreases in cartilage matrix markers, and alterations in cell signaling (e.g., down-regulation of the Jagged1 signaling pathway). In addition, uniaxial strain increased MSC proliferation. However, when micropatterning was used to align cells perpendicularly to the axis of mechanical strain, the changes of some genes were diminished, and MSC proliferation was not affected. This study suggests that mechanical strain plays an important role in MSC differentiation and proliferation, and that the effects of mechanotransduction depend on the orientation of cells with respect to the strain axis. The differential cellular responses to the anisotropic mechanical environment have important implications in cardiovascular development, tissue remodeling, and tissue engineering. PMID:17060641

  7. Anisotropic Tribological Properties of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.

  8. Multichannel image regularization using anisotropic geodesic filtering

    SciTech Connect

    Grazzini, Jacopo A

    2010-01-01

    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  9. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, A.L.; Mondy, L.A.; Guell, D.C.

    1993-11-16

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic. 5 figures.

  10. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, Alan L.; Mondy, Lisa A.; Guell, David C.

    1993-01-01

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

  11. Glueball spectrum from an anisotropic lattice study

    SciTech Connect

    Morningstar, C.J.; Peardon, M.

    1999-08-01

    The spectrum of glueballs below 4 GeV in the SU(3) pure-gauge theory is investigated using Monte Carlo simulations of gluons on several anisotropic lattices with spatial grid separations ranging from 0.1 to 0.4 fm. Systematic errors from discretization and finite volume are studied, and the continuum spin quantum numbers are identified. Care is taken to distinguish single glueball states from two-glueball and torelon-pair states. Our determination of the spectrum significantly improves upon previous Wilson action calculations. {copyright} {ital 1999} {ital The American Physical Society}

  12. Watertight Anisotropic Surface Meshing Using Quadrilateral Patches

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Aftosmis, Michael J.

    2004-01-01

    This paper presents a simple technique for generating anisotropic surface triangulations using unstructured quadrilaterals when the CAD entity can be mapped to a logical rectangle. Watertightness and geometric quality measures are maintained and are consistent with the CAPRI default tessellator. These triangulations can match user specified criteria for chord-height tolerance, neighbor triangle dihedral angle, and maximum triangle side length. This discrete representation has hooks back to the owning geometry and therefore can be used in conjunction with these entities to allow for easy enhancement or modification of the tessellation suitable for grid generation or other downstream applications.

  13. Anisotropic perturbations due to dark energy

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Moss, Adam

    2006-08-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  14. Some analytical models of anisotropic strange stars

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan

    2016-01-01

    Over the years of the concept of local isotropy has become a too stringent condition in modeling relativistic self-gravitating objects. Taking local anisotropy into consideration, in this work, some analytical models of relativistic anisotropic charged strange stars have been developed. The Einstein-Maxwell gravitational field equations have been solved with a particular form of one of the metric potentials. The radial pressure and the energy density have been assumed to follow the usual linear equation of state of strange quark matter, the MIT bag model.

  15. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  16. Anisotropic de Gennes Narrowing in Confined Fluids

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2016-04-01

    The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries.

  17. Vector anisotropic filter for multispectral image denoising

    NASA Astrophysics Data System (ADS)

    Ben Said, Ahmed; Foufou, Sebti; Hadjidj, Rachid

    2015-04-01

    In this paper, we propose an approach to extend the application of anisotropic Gaussian filtering for multi- spectral image denoising. We study the case of images corrupted with additive Gaussian noise and use sparse matrix transform for noise covariance matrix estimation. Specifically we show that if an image has a low local variability, we can make the assumption that in the noisy image, the local variability originates from the noise variance only. We apply the proposed approach for the denoising of multispectral images corrupted by noise and compare the proposed method with some existing methods. Results demonstrate an improvement in the denoising performance.

  18. Chromo-natural model in anisotropic background

    SciTech Connect

    Maleknejad, Azadeh; Erfani, Encieh E-mail: eerfani@ipm.ir

    2014-03-01

    In this work we study the chromo-natural inflation model in the anisotropic setup. Initiating inflation from Bianchi type-I cosmology, we analyze the system thoroughly during the slow-roll inflation, from both analytical and numerical points of view. We show that the isotropic FRW inflation is an attractor of the system. In other words, anisotropies are damped within few e-folds and the chromo-natural model respects the cosmic no-hair conjecture. Furthermore, we demonstrate that in the slow-roll limit, the anisotropies in both chromo-natural and gauge-flation models share the same dynamics.

  19. Coarsening dynamics in elastically anisotropic alloys

    SciTech Connect

    Pfau, B.; Stadler, L.-M.; Sepiol, B.; Vogl, G.; Weinkamer, R.; Kantelhardt, J. W.; Zontone, F.

    2006-05-01

    We study in situ the coarsening dynamics in elastically anisotropic phase-separating alloys, taking advantage of coherent x rays. Temporally fluctuating speckle intensities are analyzed for two different Ni-Al-Mo samples with different lattice misfits between precipitates and matrix. The detected long-term correlations depend not only on the norm but strongly on the direction of the scattering vector--an unambiguous proof of direction-dependent coarsening dynamics. For strong lattice misfits, our results indicate coalescence of precipitates in the {l_brace}100{r_brace} planes.

  20. Local thermodynamics of a magnetized, anisotropic plasma

    SciTech Connect

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-02-15

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  1. A transitioning universe with anisotropic dark energy

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar

    2016-08-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  2. Generalized anisotropic turbulence spectra and applications in the optical waves' propagation through anisotropic turbulence.

    PubMed

    Cui, Linyan; Xue, Bindang; Zhou, Fugen

    2015-11-16

    Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations. PMID:26698490

  3. FDA Approves First Fully Dissolvable Stent

    MedlinePlus

    ... fullstory_159721.html FDA Approves First Fully Dissolvable Stent Device is absorbed by the body after about ... July 5, 2016 (HealthDay News) -- The first coronary stent to be gradually absorbed by the body has ...

  4. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  5. Trapping Protoplanets at the Snowlines.

    NASA Astrophysics Data System (ADS)

    Baillié, K.; Charnoz, S.; Pantin, E.

    2015-12-01

    We follow the viscous evolution of protoplanetary disks by modeling self-consistently their dynamics, thermodynamics, photosphere geometry and composition (Baillié & Charnoz., 2014, ApJ and Baillié et al., 2015, A&A). Our hydrodynamical numerical code allows us to estimate the local gradients in temperature and density that drive the type I migration of planetary embryos. In particular, we identify irregular structures in the disk: shadowed regions that are not directly irradiated by the star, temperature plateaux at the sublimation temperature of the main dust components of the disk. These icelines appear to be related with planetary traps. Though planetary embryos can be trapped temporarily in some early transient traps, the other traps (more permanent) will allow protoplanets to survive and favor their growth by collisions between embryos at some specific orbits.

  6. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  8. The earth's trapped radiation belts

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Mcelroy, M. B.

    1975-01-01

    The near-earth charged particle environment is discussed in terms of spacecraft design criteria. Models are presented of the trapped radiation belts and based on in-situ data obtained from spacecraft.

  9. Acoustic trapping of active matter

    NASA Astrophysics Data System (ADS)

    Takatori, Sho C.; de Dier, Raf; Vermant, Jan; Brady, John F.

    2016-03-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently `explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies.

  10. Acoustic trapping of active matter.

    PubMed

    Takatori, Sho C; De Dier, Raf; Vermant, Jan; Brady, John F

    2016-01-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently 'explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies. PMID:26961816

  11. Hole-trapping in molecularly doped polymers

    NASA Astrophysics Data System (ADS)

    Borsenberger, Paul M.; Gruenbaum, William T.; Lin, Liang-Bih; Visser, Susan A.

    1998-04-01

    Hole mobilities have been measured in tri-p-tolylamine (TTA) doped poly(styrene) containing different concentrations of di- p-tolyl-p-anisylamine (DTA) or tri-p-anisylamine (TAA). DTA and TAA are traps with depths of 0.08 and 0.22 eV, respectively. For low concentrations of DTA or TAA, the transport processes are trap controlled and the mobilities decrease with increasing trap concentration. For high TAA concentrations, however, the transport processes are dominated by trap-to-trap hopping and the mobilities increase with increasing trap concentrations. The threshold concentration for the transition from trap controlled to trap-to-trap transport is approximately 10-1. A transition to trap- to-trap hopping is not observed for TTA containing DTA. The results are discussed within the framework of the Hoesterey- Letson formalism and the recent simulations of Wolf et al. and Borsenberger et al.

  12. Experimental investigation of planar ion traps

    SciTech Connect

    Pearson, C. E.; Leibrandt, D. R.; Bakr, W. S.; Mallard, W. J.; Brown, K. R.; Chuang, I. L.

    2006-03-15

    Chiaverini et al. [Quantum Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion-trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many-zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of charged particles of 0.44 {mu}m diameter in a vacuum of 15 Pa (10{sup -1} torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion-trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four-rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through intersections. We further propose an additional dc-biased electrode above the trap which increases the trap depth dramatically, and a planar ion-trap geometry that generates a two-dimensional lattice of point Paul traps.

  13. Anisotropic texture of ice sheet surfaces

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin E.; Raymond, Charles F.; Scambos, Theodore

    2006-03-01

    In this paper we analyze the magnitude and spatial organization of small-scale surface features (the surface texture) of the Greenland and Antarctic ice sheets. The texture is revealed in shaded relief maps of digital elevation models because surface slopes emphasize short-wavelength topography. We show that the surface slope components parallel to and perpendicular to the ice flow direction of ice sheets are both qualitatively and quantitatively different from one another. The parallel component variations are larger in magnitude than the perpendicular component variations, and features in maps of the parallel component are elongated perpendicular to the ice flow direction, while features in maps of the perpendicular component are elongated at a diagonal to the ice flow direction. These properties may be explained by a simple model of glacier dynamics in which a linearly viscous slab of ice flows over a random, isotropic, red noise bed. In this model an anisotropic surface results from an isotropic bed because the surface anisotropy derives from the anisotropic transfer of bed topography to the surface by viscous flow dynamics. The modeling results suggest that analysis of surface texture magnitude and anisotropy can be used to identify areas of sliding ice from surface topography data alone and can be used to roughly estimate sliding rates where bed topography is known.

  14. New formulation of leading order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo

    2015-05-01

    Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)- dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)-dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, the new form of anisotropic hydrodynamics leads to better agreement with known solutions of the Boltzmann equation than the previous formulations, especially when we consider massive particles.

  15. Gravitomagnetic Instabilities in Anisotropically Expanding Fluids

    NASA Astrophysics Data System (ADS)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas

    Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.

  16. Anisotropic interpolation of sparse generalized image samples.

    PubMed

    Bourquard, Aurélien; Unser, Michael

    2013-02-01

    Practical image-acquisition systems are often modeled as a continuous-domain prefilter followed by an ideal sampler, where generalized samples are obtained after convolution with the impulse response of the device. In this paper, our goal is to interpolate images from a given subset of such samples. We express our solution in the continuous domain, considering consistent resampling as a data-fidelity constraint. To make the problem well posed and ensure edge-preserving solutions, we develop an efficient anisotropic regularization approach that is based on an improved version of the edge-enhancing anisotropic diffusion equation. Following variational principles, our reconstruction algorithm minimizes successive quadratic cost functionals. To ensure fast convergence, we solve the corresponding sequence of linear problems by using multigrid iterations that are specifically tailored to their sparse structure. We conduct illustrative experiments and discuss the potential of our approach both in terms of algorithmic design and reconstruction quality. In particular, we present results that use as little as 2% of the image samples. PMID:22968212

  17. Real ray tracing in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Vavryčuk, Václav

    2008-11-01

    Ray tracing equations applicable to smoothly inhomogeneous anisotropic viscoelastic media are derived. The equations produce real rays, in contrast to previous ray-theoretical approaches, which deal with complex rays. The real rays are defined as the solutions of the Hamilton equations, with the Hamiltonian modified for viscoelastic media, and physically correspond to trajectories of high-frequency waves characterized by a real stationary phase. As a consequence, the complex eikonal equation is satisfied only approximately. The ray tracing equations are valid for weakly and moderately attenuating media. The rays are frequency-dependent and must be calculated for each frequency, separately. Solving the ray tracing equations in viscoelastic anisotropy is more time consuming than in elastic anisotropy. The main difficulty is with determining the stationary slowness vector, which is generally complex-valued and inhomogeneous and must be computed at each time step of the ray tracing procedure. In viscoelastic isotropy, the ray tracing equations considerably simplify, because the stationary slowness vector is homogeneous. The computational time for tracing rays in isotropic elastic and viscoelastic media is the same. Using numerical examples, it is shown that ray fields in weakly attenuating media (Q higher than about 30) are almost indistinguishable from those in elastic media. For moderately attenuating anisotropic media (Q between 5-20), the differences in ray fields can be visible and significant.

  18. Electromagnetic properties of anisotropic plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Elser, Justin Lee

    In this dissertation we study the electromagnetic properties of plasmonic metamaterials. We develop an analytical description to solve the fundamental problem of free-space scattering in planar plasmonic systems by utilizing anisotropic metamaterials. We show with exact numerical simulations that these manufactured materials do completely eliminate the scattering, and even in the case of fabrication defects the scattering is greatly minimized. We further show that the standard effective medium theory calculations for the cases of anisotropic metamaterials constructed of metal-dielectric layers fails to account for nonlocal effects in the cases where the constituent materials have large differences in permittivity. We show how it is possible to construct a plasmon waveguide out of such a structure and describe a new naming scheme based on the bulk plasmon modes that are supported. Finally, we study the effective medium theory applied to the case of plasmonic wires embedded in a dielectric host. We describe the effect the geometric properties of the structure has on effective permittivities. For example, we show that a 10% stretching/compression of the distance between nanowires can change the sign of elements of the permittivity tensor. These results can be applied to high-performance optical sensing, optical polarizers, novel lenses including the hyper- and superlenses, and subdiffraction imaging.

  19. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  20. Anisotropic artificial substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Shahvarpour, Attieh

    The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle

  1. Anisotropic superfluidity in a dipolar Bose gas

    SciTech Connect

    Ticknor, Christopher; Wilson, Ryan M; Bohn, John L

    2010-11-04

    so that the in-plane interaction is anisotropic. By induding repulsive contact interactions to ensure a stable system, we perform direct numeric simulations of an obstacle moving through the system in directions parallel and perpendicular to the tilt of the dipoles. We observe a distinct anisotropic superfluid response in these cases, both for dissipation into quasipartides and topological excitations (vortices), in the form of an anisotropic critical velocity that is larger in the direction of the dipole tilt than in the perpendicular direction. Interestingly, we find that, while the roton displays an anisotropic character, the speed of sound in the systrm is isotropic. Thus, we characterize the DBEC as an fmisotropic superfluid while illuminating the crucial role that the roton plays in this anisotropic behavior.

  2. Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Yang, Tao; Du, Xiu-Juan

    2012-11-01

    We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.

  3. Control of anisotropic interactions with microwaves in ultracold NaK molecules

    NASA Astrophysics Data System (ADS)

    Yan, Zoe; Loh, Huanqian; Park, Jee Woo; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold polar molecules offer long range anisotropic interactions, which can provide access to novel phases of condensed matter physics. The recent creation of fermionic NaK polar molecules in the ground hyperfine-rovibronic state, which is chemically stable, demonstrates an important step towards the study of new dipolar physics. To engineer dipolar interactions between molecules with large electric dipole moments, one can apply microwaves to mix the lowest and first excited rotational states. Hyperfine interaction in the first excited rotational state mixes nuclear spin and rotation, leading to states with rich character, which we map out by performing microwave spectroscopy. The admixed hyperfine character serves as a tool to engineer wide ranges of ``magic'' trap polarization angles, at which the lowest and first excited rotational states have matching polarizabilities. Finally, we demonstrate that we can access large dipole moments by coherently dressing the molecules with microwaves.

  4. Low cost anisotropic etching of monocrystalline Si (1 0 0): Optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ali, Khuram; Khan, Sohail Aziz; Jafri, Mohd Zubir Mat

    2012-10-01

    Reduced surface reflectance and enhanced light trapping is required by any high efficiency solar cell. Anisotropic etching was done on silicon (1 0 0) by using tetramethyl ammonium hydroxide TMAH, (CH3)4NOH, solution at 85 °C. Process variables considered were solution concentration and time proposed by response surface methodology (RSM). An effective surface texture was resulted with reflectance less than 8% without antireflection coating. The antireflection mechanism was also co-related with the etch rate of Si. Optimized values predicted by RSM for time and TMAH concentration were 5 min and 3.50% respectively. The technique and optimization of parameters by using response surface methodology (RSM) could be valuable in the texturization process for high-efficiency Si solar cells.

  5. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  6. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  7. Optical isotropy at terahertz frequencies using anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook

    2016-07-01

    We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.

  8. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  9. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  10. Long-Range Surface Plasmons on Highly Anisotropic Dielectric Substrates

    NASA Astrophysics Data System (ADS)

    Gumen, L.; Nagaraj; Neogi, A.; Krokhin, A.

    We calculate the propagation length of surface plasmons in metal-dielectric structures with anisotropic substrates. We show that the Joule losses can be minimized by appropriate orientation of the optical axis of a birefringent substrate and that the favorable orientation of the axis depends on ω. A simple Kronig-Penney model for anisotropic plasmonic crystal is also proposed.

  11. Progress at the Penning Trap Mass Spectrometer ``THe-Trap''

    NASA Astrophysics Data System (ADS)

    Hoecker, Martin; Eronen, Tommi; Ketter, Jochen; Streubel, Sebastian; Blaum, Klaus; van Dyck, Robert S.

    2012-03-01

    In 2008, the ``University of Washington Penning-Trap Mass Spectrometer'' (UW-PTMS), originally designed and built by the Van Dyck group, was moved to the Max-Planck-Insitute for Nuclear Physics in Heidelberg, Germany. It was set up in a dedicated laboratory that meets both the radiation-safety requirements, and the environment-stabilization demands for a high-precision measurement of the tritium/helium-3 mass ratio. Our goal is to measure this mass ratio with a relative uncertainty of 10-11, which would be more than an order of magnitude better than the previous best measurement. It would decrease the uncertainty in the tritium beta decay Q-value (an important parameter in the ongoing search for the neutrino mass by experiments such as KATRIN) by the same factor. In order to emphasize the specialization of our experiment with regard to Tritium and ^3Helium, it was renamed to ``THe-Trap''. THe-Trap features a double Penning-trap for rapid ion exchange, an external ion source to minimize trap contamination, a novel Zener-based voltage source, and active as well as passive stabilization of temperature, pressure and the magnetic field of the superconducting magnet. An overview of the project and a report on the recent progress will be given.

  12. The experience trap.

    PubMed

    Sengupta, Kishore; Abdel-Hamid, Tarek K; Van Wassenhove, Luk N

    2008-02-01

    When companies put seasoned managers in charge of important projects, they don't expect missed deadlines, budget overruns, and rampant defects. However, that's what researchers found when they tested hundreds of experienced project managers with computer games that simulated software development projects. The study, conducted by two professors from Insead and one from Naval Postgraduate School, strongly suggests that veterans in complex environments suffer a breakdown in the learning process. The research reveals three reasons for the breakdowns: Time lags between causes and effects make it difficult to see how they're connected; fallible estimates color the chain of decisions that determine a project's outcome; and a bias toward the initial goals prevents managers from setting revised, more appropriate, targets when project circumstances change. Sticking to an initial low budget goal after a project grew in scope, for instance, led subjects to ignore quality assurance, which led to soaring defect rates--and costs. Companies can take practical steps to fix the learning cycle. They can provide feedback that shows the relationships between important variables in the environment. Such feedback might reveal, say, the 20-day ramp-up that a new quality assurance team needs before becoming fully effective. Tools that apply formal models to calculate such things as the effect of turnover on team productivity also help. Setting goals for behavior, instead of targets for performance, is critical as well. Finally, firms can create project "flight simulators" that mimic actual learning environments but don't let complexity overwhelm trainees. Managers can continue learning only if they get decision support tailored to the challenges they face. Firms would do well to focus more on training people higher up in the organization and stop leaving them to fend for themselves. PMID:18314637

  13. Optimal low-order fully integrated solid-shell elements

    NASA Astrophysics Data System (ADS)

    Rah, K.; Paepegem, W. Van; Habraken, A. M.; Degrieck, J.; de Sousa, R. J. Alves; Valente, R. A. F.

    2013-03-01

    This paper presents three optimal low-order fully integrated geometrically nonlinear solid-shell elements based on the enhanced assumed strain (EAS) method and the assumed natural strain method for different types of structural analyses, e.g. analysis of thin homogeneous isotropic and multilayer anisotropic composite shell-like structures and the analysis of (near) incompressible materials. The proposed solid-shell elements possess eight nodes with only displacement degrees of freedom and a few internal EAS parameters. Due to the 3D geometric description of the proposed elements, 3D constitutive laws can directly be employed in these formulations. The present formulations are based on the well-known Fraeijs de Veubeke-Hu-Washizu multifield variational principle. In terms of accuracy as well as efficiency point of view, the choice of the optimal EAS parameters plays a very critical role in the EAS method, therefore a systematic numerical study has been carried out to find out the optimal EAS parameters to alleviate different locking phenomena for the proposed solid-shell formulations. To assess the accuracy of the proposed solid-shell elements, a variety of popular numerical benchmark examples related to element convergence, mesh distortions, element aspect ratios and different locking phenomena are investigated and the results are compared with the well-known solid-shell formulations available in the literature. The results of our numerical assessment show that the proposed solid-shell formulations provide very accurate results, without showing any numerical problems, for a variety of geometrically linear and nonlinear structural problems.

  14. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  15. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  16. Effect of bait in live trapping Peromyscus

    USGS Publications Warehouse

    Stickel, L.F.

    1948-01-01

    SUMMARY: Evidence from live trapping tests indicated that Peromyscus leucopus did not leave their home ranges because of the attraction of trap bait in nearby areas. A trap line down the center of a heavily live-trapped area caught as many mice before the area trapping as afterward. Thus, there was reason to believe that the area trapping did not serve to pre-bait the mice. Two unbaited lines of live traps caught an equal number of Peromyscus. When one line was baited with rolled oats and peanut butter the efficiency of the traps was improved to the extent that the baited line captured more than twice as many mice as the unbaited line. It is concluded that for the species and habitat tested it is safe to make population calculations based on the assumption that the animals remain within their home ranges and do not tend to move into the trapped area because of the attraction of the trap bait.

  17. Live trapping of hawks and owls

    USGS Publications Warehouse

    Stewart, R.E.; Cope, J.B.; Robbins, C.S.

    1945-01-01

    1. Hawks of six species (80 individuals) and owls of five species (37 individuals) were trapped for banding from November 1, 1943, to. May 26,1944. 2. In general, pole traps proved better than hand-operated traps or automatic traps using live bait. 3. Verbail pole traps proved very efficient, and were much more humane than padded steel traps because they rarely injured a captured bird. 4: Unbaited Verbail traps took a variety of raptors, in rough proportion to their local abundance, although slightly more of beneficial species were caught than of harmful types. 5. Hawks and owls were retrapped more readily in Verbail traps than in other types tried. 6. The number of song birds caught in Verbail traps was negligible. 7. Crows and vultures were not taken in Verbail traps, but possibly could be caught with bait.

  18. Comparison of emergence traps of different shape and translucency in the trapping of Culicoides (Diptera: Ceratopogonidae).

    PubMed

    Steinke, S; Lühken, R; Kroischke, F; Timmermann, E; Kiel, E

    2016-06-15

    Various types of emergence traps are available for investigations of the breeding habitats of Culicoides (Diptera: Ceratopogonidae). In order to assess the potential impact of the trap design on the trapping success, we compared the efficiency of opaque and white (more translucent) emergence traps and two trap shapes (cone-shaped and quadratic), to sample Culicoides emerging from cowpats. Significantly higher numbers of Culicoides chiopterus and Culicoides dewulfi were trapped with opaque traps, while there was no obvious effect of the trap shape. There were no distinct differences in the microclimate among different trap types. PMID:27198792

  19. New Insights into Fully-Depleted SOI Transistor Response During Total-Dose Irradiation

    SciTech Connect

    BURNS,J.A.; DODD,PAUL E.; KEAST,C.L.; SCHWANK,JAMES R.; SHANEYFELT,MARTY R.; WYATT,P.W.

    1999-09-14

    Previous work showed the possible existence of a total-dose latch effect in fully-depleted SOI transistors that could severely limit the radiation hardness of SOI devices. Other work showed that worst-case bias configuration during irradiation was the transmission gate bias configuration. In this work we further explore the effects of total-dose ionizing irradiation on fully-depleted SOI transistors. Closed-geometry and standard transistors fabricated in two fully-depleted processes were irradiated with 10-keV x rays. Our results show no evidence for a total-dose latch effect as proposed by others. Instead, in absence of parasitic trench sidewall leakage, our data suggests that the increase in radiation-induced leakage current is caused by positive charge trapping in the buried oxide inverting the back-channel interface. At moderate levels of trapped charge, the back-channel interface is slightly inverted causing a small leakage current to flow. This leakage current is amplified to considerably higher levels by impact ionization. Because the back-channel interface is in weak inversion, the top-gate bias can modulate the back-channel interface and turn the leakage current off at large, negative voltage levels. At high levels of trapped charge, the back-channel interface is fully inverted and the gate bias has little effect on leakage current. However, it is likely that this current also is amplified by impact ionization. For these transistors, the worst-case bias configuration was determined to be the ''ON'' bias configuration. These results have important implication on hardness assurance.

  20. A comparison of pitfall traps with bait traps for studying leaf litter ant communities.

    PubMed

    Wang, C; Strazanac, J; Butler, L

    2001-06-01

    A comparison of pitfall traps with bait traps for sampling leaf litter ants was studied in oak-dominated mixed forests during 1995-1997. A total of 31,732 ants were collected from pitfall traps and 54,694 ants were collected from bait traps. They belonged to four subfamilies, 17 genera, and 32 species. Bait traps caught 29 species, whereas pitfall traps caught 31 species. Bait traps attracted one species not found in pitfall traps, but missed three of the species collected with pitfall traps. Collections from the two sampling methods showed differences in species richness, relative abundance, diversity, and species accumulation curves. Pitfall traps caught significantly more ant species per plot than did bait traps. The ant species diversity obtained from pitfall traps was higher than that from bait traps. Bait traps took a much longer time to complete an estimate of species richness than did pitfall traps. Little information was added to pitfall trapping results by the bait trapping method. The results suggested that the pitfall trapping method is superior to the bait trapping method for leaf litter ant studies. Species accumulation curves showed that sampling of 2,192+/-532 ants from six plots by pitfall traps provided a good estimation of ant species richness under the conditions of this study. PMID:11425034

  1. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.

    PubMed

    Rodríguez-Sevilla, Paloma; Labrador-Páez, Lucía; Wawrzyńczyk, Dominika; Nyk, Marcin; Samoć, Marek; Kar, Ajoy Kumar; Mackenzie, Mark D; Paterson, Lynn; Jaque, Daniel; Haro-González, Patricia

    2016-01-01

    An approach to unequivocally determine the three-dimensional orientation of optically manipulated NaYF4:Er(3+),Yb(3+) upconverting nanorods (UCNRs) is demonstrated. Long-term immobilization of individual UCNRs inside single and multiple resonant optical traps allow for stable single UCNR spectroscopy studies. Based on the strong polarization dependent upconverted luminescence of UCNRs it is possible to unequivocally determine, in real time, their three-dimensional orientation when optically trapped. In single-beam traps, polarized single particle spectroscopy has concluded that UCNRs orientate parallel to the propagation axis of the trapping beam. On the other hand, when multiple-beam optical tweezers are used, single particle polarization spectroscopy demonstrated how full spatial control over UCNR orientation can be achieved by changing the trap-to-trap distance as well as the relative orientation between optical traps. All these results show the possibility of real time three-dimensional manipulation and tracking of anisotropic nanoparticles with wide potential application in modern nanobiophotonics. PMID:26607763

  2. Dissipative trapped-electron instability in quasihelically symmetric stellarators

    SciTech Connect

    Rafiq, T.; Hegna, C.C.

    2006-05-15

    The linear electrostatic dissipative trapped-electron mode is investigated in a quasihelically symmetric (QHS) stellarator and a configuration whose symmetry is spoiled by the addition of a mirror contribution to the magnetic spectrum. The effect of the trapped electrons is accounted for using the drift kinetic equation with an energy-dependent Krook collision operator and an effective collision frequency giving the rate of detrapping. The ballooning mode formalism and Wentzel-Kramers-Brillouin type boundary conditions are used to solve an eigenvalue problem for a drift wave equation with nearly adiabatic electrons in a fully three-dimensional magnetohydrodynamic equilibria. The trapped-electron growth rate is calculated using a perturbative approach. Multiple classes of helically localized and toroidally localized eigenfunctions in the ballooning space are calculated. The results of the QHS configuration is compared and contrasted with the results of the mirror configuration. The helically trapped modes are found to be most destabilizing. In both configurations the magnitude of the linear growth rates are comparable, crudely indicating the same level of anomalous flux as has also been observed in the edge region of experiments.

  3. Optimization geological sequestration of CO2 by capillary trapping mechanisms

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Harper, E.; Herring, A. L.; Armstrong, R. T.

    2012-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity, and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Alterations to the viscosity of the non-wetting and wetting fluid phases were made during experimentation; results indicate that the viscosity of the non-wetting fluid is the parameter of interest as residual saturations increased with increasing viscosity. These observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  4. Inversion of anisotropic inner core structure from three dimensional ray tracing

    NASA Astrophysics Data System (ADS)

    Sun, X.; Song, X.

    2005-12-01

    Seismological studies have generally suggest that the Earth's inner core is anisotropic and the anisotropic structure change significantly both laterally and with depth. Previous body-wave studies of the inner core have relied on 1-D ray tracing or waveform modeling, which do not account fully the 3D anisotropic structure. Here we adopt a pseudo-bending ray tracing (PBR) method in spherical coordinates (Koketsu and Sekine, 1998) for seismic rays that traverse the inner core (PKP-DF phase). The method iteratively perturbs each discontinuity points and continuous segment of the ray through 3D (but isotropic) earth structure so that its travel time is minimum. Our implementation also includes a flexible scheme in calculating the velocity gradient needed to perturb the ray. A large volume is included in calculating the velocity gradient initially to find the global minimum, but a small volume surrounding the ray is used eventually to obtain the precise local velocity gradient that is sampled by the ray. Tests show that our implementation is very stable, reliable, and fast. We have traced the rays for over 3000 event-station pairs that we have differential PKP travel-time measurements using both the PBR method and a shooting method for a 1D model (AK135). The travel-time difference from the two methods is generally within 0.05 s with a few up to 0.07 s and the largest path difference is within 24 km; Even with a model of strong velocity gradient, the travel time difference is still less than 0.08s and the largest path difference is within 40km. Because the ray direction in the inner core does not change much (within 10 degrees even with a strong velocity gradient in the inner core), the 3D anisotropic structure of the inner core can be approximated to the first order as 3D heterogeneous (but isotropic) structure for a given ray, assuming the inner core anisotropy is axisymmetric. We are implementing the PBR method and B-spline interpolation to invert for 3D anisotropic

  5. Fully exponentially correlated wavefunctions for small atoms

    SciTech Connect

    Harris, Frank E.

    2015-01-22

    Fully exponentially correlated atomic wavefunctions are constructed from exponentials in all the interparticle coordinates, in contrast to correlated wavefunctions of the Hylleraas form, in which only the electron-nuclear distances occur exponentially, with electron-electron distances entering only as integer powers. The full exponential correlation causes many-configuration wavefunctions to converge with expansion length more rapidly than either orbital formulations or correlated wavefunctions of the Hylleraas type. The present contribution surveys the effectiveness of fully exponentially correlated functions for the three-body system (the He isoelectronic series) and reports their application to a four-body system (the Li atom)

  6. Semi- and Fully Self-Organised Teams

    NASA Astrophysics Data System (ADS)

    Kumlander, Deniss

    Most modern companies realise that the best way to improve stability and earning in the global, rapidly changing world is to be innovating and produce software that will be fully used and appreciated by customers. The key aspect on this road is personnel and processes. In the paper we review self-organised teams proposing several new approaches and constraints ensuring such teams' stability and efficiency. The paper also introduce a semi-self organised teams, which are in the shortterm time perspective as the same reliable as fully self-organised teams and much simpler to organise and support.

  7. Optimality of a Fully Stressed Design

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    1998-01-01

    For a truss a fully stressed state is reached and when all its members are utilized to their full strength capacity. Historically, engineers considered such a design optimum. But recently this optimality has been questioned, especially since the weight of the structure is not explicitly used in fully stressed design calculations. This paper examines optimality of the full stressed design (FSD) with analytical and graphical illustrations. Solutions for a set of examples obtained by using the FSD method and optimization methods numerically confirm the optimality of the FSD. The FSD, which can be obtained with a small amount of calculation, can be extended to displacement constraints and to nontruss-type structures.

  8. 76 FR 35086 - Proposed Information Collection (Fully Developed Claim (Fully Developed Claims-Applications for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits)) Activity: Comment Request AGENCY: Veterans... Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension,...

  9. Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor

    NASA Astrophysics Data System (ADS)

    Placidi, Luca; Greve, Ralf; Seddik, Hakime; Faria, Sérgio H.

    2010-03-01

    A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen’s flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors.

  10. Trapping biases of Culex torrentium and Culex pipiens revealed by comparison of captures in CDC traps, ovitraps, and gravid traps.

    PubMed

    Hesson, Jenny C; Ignell, Rickard; Hill, Sharon R; Östman, Örjan; Lundström, Jan O

    2015-06-01

    We evaluate three trapping methods for their effectiveness at capturing Culex pipiens and Culex torrentium, both enzootic vectors of bird-associated viruses in Europe. The comparisons, performed in two regions in Sweden, were among CDC traps baited with carbon dioxide, gravid traps, and ovitraps baited with hay infusion. The proportions of the two Culex species in a catch differed between trap types, with CDC traps catching a lower proportion of Cx. torrentium than both gravid traps and ovitraps. Between gravid traps and ovitraps, there was no difference in the proportions of the two species. The results indicate that Cx. torrentium may go undetected or underestimated compared to Cx. pipiens when using carbon dioxide baited CDC traps. The new insight of trap bias presented here adds an important dimension to consider when investigating these vectors of bird-associated viruses in the field. PMID:26047196

  11. Anisotropic de Gennes Narrowing in Confined Fluids.

    PubMed

    Nygård, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2016-04-22

    The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries. PMID:27152823

  12. Translation correlations in anisotropically scattering media

    NASA Astrophysics Data System (ADS)

    Judkewitz, Benjamin; Horstmeyer, Roarke; Vellekoop, Ivo M.; Papadopoulos, Ioannis N.; Yang, Changhuei

    2015-08-01

    Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.

  13. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  14. Spin liquids on an anisotropic kagome lattice

    NASA Astrophysics Data System (ADS)

    Schaffer, Robert; Hwang, Kyusung; Huh, Yejin; Kim, Yong Baek

    Much recent theoretical and experimental effort has been devoted to the search for quantum spin liquids, which arise in the presence of strong frustration of magnetic interactions. Motivated by recent experiments on the vanadium oxyfluoride material DQVOF, we examine possible spin liquid phases on an anisotropic kagome lattice of S = 1 / 2 spins, in which the C6 symmetry is broken to C3. Using the projective symmetry group analysis, we determine the possible phases for both bosonic and fermionic Z2 spin liquids on this lattice. Using VMC, we study the Heisenberg model on this lattice, and show that a Z2 spin liquid emerges as the ground state in the presence of this anisotropy.

  15. Anisotropic thermal conductivity of semiconducting graphene monoxide

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-06-01

    The intrinsic thermal conductivity of monolayer graphene monoxide is determined via first-principles calculations. The phonon transport in graphene monoxide is anisotropic, with the lattice thermal conductivity along the armchair direction (…C-2O-C…) about five times higher than that along the zigzag (…C-C…) direction. The predicted thermal conductivity (>3000 Wm-1K-1 at 300 K) of graphene monoxide is 80% of that of graphene along the armchair direction for large sample lateral sizes (>5 μm). In addition, heat is predominantly carried by longitudinal acoustic phonons along the armchair direction, while the contribution from the transverse acoustic phonon mode is prevalent along the zigzag direction.

  16. Surface phonon polaritons on anisotropic piezoelectric superlattices

    NASA Astrophysics Data System (ADS)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon A.; Shaffer, James P.

    2016-01-01

    A theoretical study of surface phonon polaritons (SPhPs) on periodically poled lithium niobate and periodically poled lithium tantalate surfaces is presented. We calculate the dielectric response for six different superlattice orientations and the associated SPhP dispersion relations. Our study of SPhPs accounts for the anisotropic nature of the dielectric response of the semi-infinite piezoelectric superlattices. We find that two different types of SPhPs can be supported. The first type consists of real surface dipole oscillations coupled to photons. The second type consists of virtual surface dipole oscillations driven by the incident photons. The dependence of the SPhPs on temperature and superlattice geometry is addressed. The use of these metamaterial excitations is discussed in the context of hybrid quantum systems.

  17. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  18. Gauge field optics with anisotropic media.

    PubMed

    Liu, Fu; Li, Jensen

    2015-03-13

    By considering gauge transformations on the macroscopic Maxwell's equations, a two-dimensional gauge field, with its pseudomagnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that the optical spin Hall effect with broadband response and one-way edge states become possible simply by using anisotropic media. The proposed gauge field also allows us to obtain unidirectional propagation for a particular pseudospin based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices. PMID:25815934

  19. Long-range interaction of anisotropic systems

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Y.; Schwingenschlögl, U.

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, \\varepsilon(D) \\propto -D-3-O(D-4) , is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form \\varepsilon(D) \\propto -D-4 .

  20. The anisotropic nanomovement of azo-polymers.

    PubMed

    Ishitobi, H; Tanabe, M; Sekkat, Z; Kawata, S

    2007-01-22

    Nanoscale polymer movement is induced by a tightly focused laser beam in an azo-polymer film just at the diffraction limit of light. The deformation pattern that is produced by photoisomerization of the azo dye is strongly dependent on the incident laser polarization and the longitudinal focus position of the laser beam along the optical axis. The anisotropic photo-fluidity of the polymer film and the optical gradient force played important roles in the light induced polymer movement. We also explored the limits of the size of the photo-induced deformation, and we found that the deformation depends on the laser intensity and the exposure time. The smallest deformation size achieved was 200 nm in full width of half maximum; a value which is nearly equal to the size of the diffraction limited laser spot. PMID:19532288

  1. Current collection in an anisotropic collisionless plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1992-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  2. Constitutive modeling of inelastic anisotropic material response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.

    1984-01-01

    A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.

  3. Transient motion of thick anisotropic plates

    NASA Technical Reports Server (NTRS)

    Nayfeh, Adnan H.; Taylor, Timothy W.

    1991-01-01

    Analyses are developed for the response of anisotropic plate strips to a transient load. The load is taken in the form of a line load of normal stress on the surface or within the body of the strip. The characteristic free vibrational modes of the strip are derived and used to derive the secular equation for this case in closed form and to isolate the mathematical conditions for symmetric and antisymmetric wave mode propagation in completely separate terms. The applied loads are expanded in terms of these normal modes and the response of the plate is obtained by superposition of the appropriate components. Material systems of higher symmetry are contained implicitly in the analysis.

  4. Current collection in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  5. Effects of anisotropic heat conduction on solidification

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

  6. Quarkonium states in an anisotropic QCD plasma

    SciTech Connect

    Dumitru, Adrian; Guo Yun; Mocsy, Agnes; Strickland, Michael

    2009-03-01

    We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.

  7. Anisotropic acoustic metafluid for underwater operation.

    PubMed

    Popa, Bogdan-Ioan; Wang, Wenqi; Konneker, Adam; Cummer, Steven A; Rohde, Charles A; Martin, Theodore P; Orris, Gregory J; Guild, Matthew D

    2016-06-01

    The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers. The spacers are very effective at reducing the effective shear modulus of the structure, and therefore effective at minimizing the ensuing coupling between the shear and pressure waves inside the solid effective medium. Inertial anisotropy together with fluid-like acoustic behavior are key properties that bring transformation acoustics in dense fluids closer to reality. PMID:27369158

  8. Anisotropic Absorption of Pure Spin Currents

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; Love, C. J.; Cavill, S. A.; Hesjedal, T.; van der Laan, G.

    2016-01-01

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α , in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co50 Fe50 layer leads to an anisotropic α in a polycrystalline Ni81 Fe19 layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.

  9. Anisotropic Absorption of Pure Spin Currents.

    PubMed

    Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G

    2016-01-29

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353

  10. Adiabatic theory for anisotropic cold molecule collisions.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122

  11. Thermodynamics of anisotropic fluids using isotropic potentials

    SciTech Connect

    Bastea, S; Ree, F H

    1999-08-16

    We study the effectiveness and limitations of the median potential recipe for mixtures such as N{sub 2} + O{sub 2} and N{sub 2} + CO{sub 2}, that are important in detonation applications. Conversely, we treat effective spherical potentials extracted from Hugoniot experiments (e.g., N{sub 2} and O{sub 2}) as median potentials and invert them to extract atom-atom potentials. The resulting non-spherical potentials compare remarkably well with the atom - atom potentials used in studies of solid state properties. Finally, we propose a method to improve the median potential for stronger anisotropic fluids such as CO{sub 2} and its mixtures.

  12. Primordial power spectra from anisotropic inflation

    SciTech Connect

    Dulaney, Timothy R.; Gresham, Moira I.

    2010-05-15

    We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Wald's no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the ''in-in'' formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.

  13. A realizable EDQNM model for anisotropic scalars

    NASA Astrophysics Data System (ADS)

    Collins, Lance; Ulitsky, Mark

    1999-11-01

    As noted in the previous talk and abstract, the direct application of the edqnm formalism to two scalars with different diffusivities leads to a scalar covariance spectrum that violates the Cauchy-Schwartz inequality. This can be remedied by eliminating the explicit dependence of the eddy damping time scales on the molecular diffusivities, which can be shown to be unphysical at short times. Here we present an extension of this idea to anisotropic scalars. Anisotropy in this case results from uniform mean gradients of the scalar concentration in one direction. The approach we take is similar to the one described in Herr, Wang and Collins (Phys. Fluids 8:1588, 1996), except we substitute the modified eddy damping coefficients derived earlier for the isotropic scalar. The resulting edqnm model yields a realizable covariance spectrum for all times and for all combinations of the scalar diffusivities we considered. Several example calculations will be presented.

  14. Anisotropic star on pseudo-spheroidal spacetime

    NASA Astrophysics Data System (ADS)

    Ratanpal, B. S.; Thomas, V. O.; Pandya, D. M.

    2016-02-01

    A new class of exact solutions of Einstein's field equations representing anisotropic distribution of matter on pseudo-spheroidal spacetime is obtained. The parameters appearing in the model are restricted through physical requirements of the model. It is found that the models given in the present work is compatible with observational data of a wide variety of compact objects like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4, Cen X-3. A particular model of pulsar PSR J1614-2230 is studied in detail and found that it satisfies all physical requirements needed for physically acceptable model.

  15. Anisotropic Cloth Modeling for Material Fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  16. Isotropic and anisotropic surface wave cloaking techniques

    NASA Astrophysics Data System (ADS)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  17. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  18. Standing shear waves in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Krit, T.; Golubkova, I.; Andreev, V.

    2015-10-01

    We studied standing shear waves in anisotropic resonator represented by a rectangular parallelepiped (layer) fixed without slipping between two wooden plates of finite mass. The viscoelastic layer with edges of 70 mm × 40 mm × 15 mm was made of a rubber-like polymer plastisol with rubber bands inside. The bands were placed vertical between the top and the bottom plate. Mechanical properties of the plastisol itself were carefully measured previously. It was found that plastisol shows a cubic nonlinear behavior, i.e. the stress-strain curve could be represented as: σ = μɛ + βμɛ3, where ɛ stands for shear strain and σ is an applied shear stress. The value of shear modulus μ depends on frequency and was found to be several kilopascals which is common for such soft solids. Nonlinear parameter β is frequency dependent too and varies in range from tenths to unity at 1-100 Hz frequency range, decreasing with frequency growth. Stretching the rubber bands inside the layer leads to change of elastic properties in resonator. Such effect could be noticed due to frequency response of the resonator. The numerical model of the resonator was based on finite elements method (FEM) and performed in MatLab. The resonator was cut in hundreds of right triangular prisms. Each prism was provided with viscoelastic properties of the layer except for the top prisms provided with the wooden plate properties and the prisms at the site of the rubber bands provided with the rubber properties. The boundary conditions on each prism satisfied the requirements that resonator is inseparable and all its boundaries but bottom are free. The bottom boundary was set to move horizontally with constant acceleration amplitude. It was shown numerically that the resonator shows anisotropic behavior expressed in different frequency response to oscillations applied to a bottom boundary in different directions.

  19. Simple Models for Polymeric and Anisotropic Liquids

    NASA Astrophysics Data System (ADS)

    Kröger, Martin

    We hope that the complexity of the world is neither in contrast with the simplicity of the basic laws of physics [1] nor with the simple physical models to be reviewed or proposed in the following. However, physical phenomena occurring in complex materials cannot be encapsulated within a single numerical paradigm. In fact, they should be described within hierarchical, multi-level numerical models in which each sub-model is responsible for different spatio-temporal behavior and passes out the averaged parameters to the model, which is next in the hierarchy (Fig. 1.1). Polymeric liquids far from equilibrium belong to the class of anisotropic liquids.1 This monograph is devoted to the understanding of the anisotropic properties of polymeric and complex fluids such as viscoelastic and orientational behavior of polymeric liquids, the rheological properties of ferrofluids and liquid crystals subjected to external fields, based on the architecture of their molecular constituents. The topic is of considerable concern in basic research for which models should be as simple as possible, but not simpler. Certainly, it is also of technological relevance. Statistical physics and nonequilibrium thermodynamics are challenged by the desired structure-property relationships. Experiments such as static and dynamic light and neutron scattering, particle tracking, flow birefringence etc. together with rheological measurements have been essential to adjust or test basic theoretical concepts, such as a ‘linear stressoptic rule’ which connects orientation and stress, or the effect of molecular weight, solvent conditions, and external field parameters on shape, diffusion, degradation, and alignment of molecules.

  20. Highly anisotropic conductivity in organosiloxane liquid crystals

    NASA Astrophysics Data System (ADS)

    Gardiner, D. J.; Coles, H. J.

    2006-12-01

    In this paper, we present the conductivity and dielectric characterization of three homologous series of smectic A siloxane containing liquid crystals. The materials studied include one monomesogenic series, which consists of a 4-(ω-alkyloxy)-4'-cyanobiphenyl unit terminated by pentamethyldisiloxane, and two bimesogenic series, which consist of twin 4-(ω-alkyloxy)-4'-cyanobiphenyls joined via tetramethyldisiloxane or decamethylpentasiloxane. All of the compounds exhibit wide temperature range enantiotropic smectic A phases; the effect of the siloxane moiety is to suppress nematic morphology even in the short chain homologs. We find that these compounds exhibit a highly anisotropic conductivity: the value perpendicular to the director is to up to 200 times that parallel to the director. For the nonsiloxane analog 4-(ω-octyl)-4'-cyanobiphenyl (8CB), this value is approximately 2. It is also found that the dielectric anisotropy is reduced significantly; a typical value is ˜1 compared to 8.4 for 8CB. We propose that the origin of these unusual properties is in the smectic structure; the microphase separation of the bulky, globular siloxane moieties into liquidlike regions severely inhibits the mobility parallel to the director and across the smectic layers. Further, the inclusion of this unit acts to increase the antiparallel correlations of molecular dipoles in the aromatic and alkyloxy sublayers, reducing the dielectric anisotropy significantly compared to nonsiloxane analogs. The highly anisotropic conductivity suggests that these materials are particularly suitable for application in electro-optic effects which exploit this property, e.g., the bistable electro-optic effect in smectic A liquid crystals.

  1. Optomechanical cooling and trapping in a three-mirror cavity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.; Uys, H.; Meystre, P.

    2008-05-01

    We present a theoretical analysis of optomechanical cooling and trapping of a moving mirror located inside a cavity with two fixed end mirrors, substantiating recent experiment and theory [1]. This three-mirror configuration turns out to have technological as well as physical advantages over the usual two-mirror set-up. We consider fully as well as partially reflective middle mirrors [2,3]. In the latter case we find two regimes, one dissipative and the other dispersive, depending on the placement of the middle mirror. This allows us to propose a two-color cooling and trapping scheme that improves on current configurations. [1] J. D. Thompson et. al, arXiv:0707.1724v2[quant-ph](2007). [2] M. Bhattacharya and P. Meystre, Phys. Rev. Lett. 99,073601 (2007). [3] M. Bhattacharya, H. Uys and P. Meystre, arXiv:0708.4078v1 [quant-ph] (2007).

  2. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-09-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  3. Surface recombination statistics at traps

    NASA Astrophysics Data System (ADS)

    Landsberg, P. T.; Abrahams, M. S.

    1983-09-01

    The Shockley-Read-Hall recombination statistics was recently generalised by Dhariwal, Kothari and Jain to include the effect of a finite time of relaxation before the captured carrier settles into its ground state, and by Landsberg to allow for Auger effects and so-called "extra" carriers supplied to the semiconductor from the outside. The combined result of these effects is studied here theoretically, together with the consideration of a simple distribution of trap states. It is found that the surface recombination velocity s has the usual minimum in the near intrinsic state and that s passes through a maximum as a function of excess electron concentration. Both extrema are enhanced if the trap states are distributed over an energy range. Experimental plots of s as a function of excess electron and hole concentrations should yield insight concerning the numerical importance of (a) Auger effects with the participation of traps and (b) relaxation times.

  4. Surface etching for light trapping in encapsulated InP solar cells

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.

    1991-01-01

    Reducing the reflection from the surface of InP is important for increasing the efficiency of solar cells and photodetectors. In this paper a new technique for reducing reflectance of glass-encapsulated InP is reported. Low-angle grooves are produced on the surface by a maskless anisotropic etch. Light reflected from the low angle grooves is trapped by total internal reflection at the glass/air interface and directed back to the InP surface. A significant decrease in surface reflection is measured.

  5. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  6. Red discoloration of fully cooked poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red or bloody appearance of fully cooked poultry meat is a severe defect. Methods for inducing discoloration for further study, including control of and causes of red discoloration were determined. Cooked retail parts (n=274) showed approximately 11% discoloration and 0.4% bloodiness. To induce r...

  7. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1974-01-01

    Electron transport is considered in high-density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere-correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  8. Fully integrated biochip platforms for advanced healthcare.

    PubMed

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  9. Learner Perspectives on Fully Online Language Learning

    ERIC Educational Resources Information Center

    Sun, Susan Y. H.

    2014-01-01

    This study builds on this author's 2011 article in which the author reflects on the pedagogical challenges and resultant changes made while teaching two fully online foreign language papers over a four-year period (Y. H. S. Sun (2011). Online language teaching: The pedagogical challenges. "Knowledge Management & E-Learning: An…

  10. Fully Integrated Biochip Platforms for Advanced Healthcare

    PubMed Central

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  11. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  12. Steps toward Creating Fully Accessible Reading Assessments

    ERIC Educational Resources Information Center

    Thurlow, Martha L.

    2010-01-01

    The National Accessible Reading Assessment Projects (NARAP) have been conducting research and engaging in other activities to pull together a full view of the issues and potential solutions for developing reading assessments that are fully accessible and produce valid results for students with disabilities. To introduce this topic, the assumptions…

  13. Trapping Single Molecules by Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Hölzel, Ralph; Calander, Nils; Chiragwandi, Zackary; Willander, Magnus; Bier, Frank F.

    2005-09-01

    We have trapped single protein molecules of R-phycoerythrin in an aqueous solution by an alternating electric field. A radio frequency voltage is applied to sharp nanoelectrodes and hence produces a strong electric field gradient. The resulting dielectrophoretic forces attract freely diffusing protein molecules. Trapping takes place at the electrode tips. Switching off the field immediately releases the molecules. The electric field distribution is computed, and from this the dielectrophoretic response of the molecules is calculated using a standard polarization model. The resulting forces are compared to the impact of Brownian motion. Finally, we discuss the experimental observations on the basis of the model calculations.

  14. Dysprosium magneto-optical traps

    SciTech Connect

    Youn, Seo Ho; Lu Mingwu; Ray, Ushnish; Lev, Benjamin L.

    2010-10-15

    Magneto-optical traps (MOTs) of highly magnetic lanthanides open the door to explorations of novel phases of strongly correlated matter such as lattice supersolids and quantum liquid crystals. We recently reported the first MOTs of the five high-abundance isotopes of the most magnetic atom, dysprosium. Described here are details of the experimental technique employed for repumper-free Dy MOTs containing up to half a billion atoms. Extensive characterization of the MOTs' properties--population, temperature, loading, metastable decay dynamics, and trap dynamics--is provided.

  15. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    SciTech Connect

    Takezawa, Akihiro Kitamura, Mitsuru

    2014-01-15

    Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

  16. Anisotropic structures of some microorganisms studied by polarization microscopy.

    PubMed

    Žižka, Zdeněk

    2014-09-01

    Polarization microscopy has been used to study the internal structures of microbial cells and in terms of the birefringence of these structures and its possible relation to the cell function and composition. Cyanobacteria of the genus Phormidium were found to contain no anisotropic structures, while other microorganisms were found to contain them, albeit to a different extent, size, and number. The flagellate Euglena was found to contain two large anisotropic bodies, whereas the flagellate of the genus Phacus belonging to the same systematic group Euglenales was observed to contain only one large anisotropic body (storage substances--paramylon). On the other hand, green algae of the genus Scenedesmus, whose cells form four--celled coenobia, contained clusters of small anisotropic granules composed also of storage substances (volutin). Minute anisotropic granules (storage substances) in two smaller clusters were found also in diatoms of the genus Navicula, whereas the green alga of the genus Mougeotia was revealed to contain, in addition to minute anisotropic granules (storage substances) occurring in low numbers in the cytoplasm, also a strongly birefringent cell wall (shape birefringence). Cells of the amoeba of the genus Naegleria and heliozoans of the genus Heterophrys were observed to contain only isolated tiny anisotropic granules (storage substances). PMID:24557733

  17. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kitamura, Mitsuru

    2014-01-01

    Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

  18. 76 FR 36176 - Fully Developed Claim (Fully Developed Claims-Applications for Compensation, Pension, DIC, Death...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ..., NW., Washington, DC 20420, at 202-461-7485. Correction In FR Doc. 2011-14760, published on June 15... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC,...

  19. A model study on a pair of trapped particles interacting with an arbitrary effective range

    NASA Astrophysics Data System (ADS)

    Goswami, Partha; Deb, Bimalendu

    2016-08-01

    We study the effects of the effective range of interaction on the eigenvalues and eigenstates of two particles confined in a three-dimensional (3D) isotropic as well as one- or quasi-one dimensional harmonic (1D) traps. For this we employ model potentials which mimic finite-range s-wave interactions over a wide range of s-wave scattering length a s including the unitarity limits {a}s\\to +/- ∞ . Our results show that when the range is larger than the 3D or 1D harmonic oscillator length scale, the eigenvalues and eigenstates are nearly similar to those of noninteracting two particles in the 3D or 1D trap, respectively. In case of 3D, we find that when the range goes to zero, the results of contact potential as derived by Busch et al (1998 Foundations of Physics 28 549) are reproduced. However, in the case of 1D, such reproducibility does not occur as the range goes to zero. We have calculated the eigenvalues and eigenstates in a 1D harmonic trap taking one dimensional finite-range model potential. We have also calculated the bound state properties of two particles confined in a highly anisotropic quasi-1D trap taking three-dimensional finite-range model potential, and examined whether these quasi-1D results approach towards 1D ones as the aspect ratio η of the radial to axial frequency of the trap increases. We find that if the range is very small compared to the axial size of the trap, then one can reach 1D regime for η ≥slant 10000. However, for a large range, one can almost get 1D results for smaller values of η. This study will be important for the exploration of two-body or many body physics of trapped ultracold atoms interacting with narrow Feshbach resonance for which the effective range can be large.

  20. Raman scattering study of spin-density-wave-induced anisotropic electronic properties in A Fe2As2 (A =Ca , Eu)

    NASA Astrophysics Data System (ADS)

    Zhang, W.-L.; Yin, Z. P.; Ignatov, A.; Bukowski, Z.; Karpinski, Janusz; Sefat, Athena S.; Ding, H.; Richard, P.; Blumberg, G.

    2016-05-01

    We present a polarization-resolved and temperature-dependent Raman scattering study of A Fe2As2 (A =Ca , Eu). In the spin-density-wave phase, spectral weight redistribution is observed in the fully symmetric and nonsymmetric scattering channels at different energies. An anisotropic Raman response is observed in the fully symmetric channel in spontaneously detwinned CaFe2As2 samples. We calculate the orbital-resolved electronic structures using a combination of density functional theory and dynamical mean field theory. We identify the electronic transitions corresponding to these two spectral features and find that the anisotropic Raman response originates from the lifted degeneracy of the dx z /y z orbitals in the broken-symmetry phase.

  1. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    SciTech Connect

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  2. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  3. Trilinear hamiltonian with trapped ions and its applications

    NASA Astrophysics Data System (ADS)

    Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry

    2016-05-01

    The model of three harmonic oscillators coupled by the trilinear Hamiltonian of the form a† bc + ab†c† can describe wide range of physical processes. We experimentally realize such interaction between three modes of motion in the system of 3 trapped Yb ions. We discuss several application of this coupling, including implementation of the quantum absorption refrigerator, simulation of the interaction between light and atoms described by a Tavis-Cummings model, simulation of the non-degenerate parametric down conversion process in the fully quantum regime and studies of a simple model of Hawking radiation.

  4. Cold atoms in videotape micro-traps

    NASA Astrophysics Data System (ADS)

    Sinclair, C. D. J.; Retter, J. A.; Curtis, E. A.; Hall, B. V.; Llorente Garcia, I.; Eriksson, S.; Sauer, B. E.; Hinds, E. A.

    2005-08-01

    We describe an array of microscopic atom traps formed by a pattern of magnetisation on a piece of videotape. We describe the way in which cold atoms are loaded into one of these micro-traps and how the trapped atom cloud is used to explore the properties of the trap. Evaporative cooling in the micro-trap down to a temperature of 1~μK allows us to probe the smoothness of the trapping potential and reveals some inhomogeneity produced by the magnetic film. We discuss future prospects for atom chips based on microscopic permanent-magnet structures.

  5. Microfabricated linear Paul-Straubel ion trap

    DOEpatents

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  6. Programmable trap geometries with superconducting atom chips

    SciTech Connect

    Mueller, T.; Fermani, R.; Zhang, B.; Chan, K. S.; Dumke, R.; Lim, M. J.

    2010-05-15

    We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultracold atoms. The trap geometry can be programed by externally applied fields. This approach for atom optics is demonstrated by three different trap types realized on a single microstructure: a Z-type trap, a double trap, and a bias-field-free trap. Our studies show that superconductors in the remanent state provide a versatile platform for atom optics and applications in ultracold quantum gases.

  7. Pairing correlations in a trapped quasi one-dimensional Fermi gas

    NASA Astrophysics Data System (ADS)

    Kudla, Stephen; Gautreau, Dominique; Sheehy, Daniel

    2014-03-01

    We utilize a BCS-type variational wavefunction to study attractively-interacting quasi one-dimensional fermionic atomic gases, motivated by cold-atom experiments that access this regime using a anisotropic harmonic trapping potential (characterized by ωx =ωy >>ωz) that confines the gas to a cigar-shaped geometry. To handle the presence of the trap along the z direction, we construct our variational wavefunction from the harmonic oscillator Hermite functions that are the eigenfunctions of the single-particle problem. Using an analytic determination of the effective interaction among Hermite function states along with a numerical calculation of the resulting variational equations, we make specific experimental predictions for how local pairing correlations will be revealed in experimental probes like the local density, the momentum distribution, and the momentum correlation function. This work was supported by the National Science Foundation Grant No. DMR-1151717.

  8. Mass Trapping for Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABSTRACT In field tests conducted in south Florida to test grape juice as an alternative inexpensive bait for Anastrepha suspensa Loew, high numbers of Zaprionus indianus Gupta were captured in traps baited with aqueous grape juice. These experiments included comparisons of grape juice with standard...

  9. Acoustic trapping of active matter

    PubMed Central

    Takatori, Sho C.; De Dier, Raf; Vermant, Jan; Brady, John F.

    2016-01-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently ‘explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies. PMID:26961816

  10. Optical trapping in liquid crystals

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.; Criante, L.; Bracalente, F.; Aieta, F.

    2010-08-01

    Optical trapping and manipulation of micrometric silica particles dispersed in a nematic liquid crystal is reported. Several kind of samples are considered: homeotropic and planar undoped cells and homeotropic and planar cells doped by a small amount of the azo-dye Methyl-Red. The incident light intensity is over the threshold for optical reorientation of the molecular director. The refractive index of the dispersed particles is lower than the ones of the liquid crystal therefore the usual conditions for laser trapping and manipulation are not fulfilled. Nevertheless optical trapping is possible and is closely related to the optical nonlinearity of the hosting liquid crystal1. Trapping in doped and undoped cells are compared and it is shown that in the first case intensity lower by more than one order of magnitude is required as compared to the one needed in undoped samples. The effect is faster and the structural forces are of longer range. The formation of bubble-gum like defects in doped samples under certain experimental conditions is also reported and discussed.

  11. A Death Trap for Microglia.

    PubMed

    Du, Xu-Fei; Du, Jiu-Lin

    2016-07-25

    Microglia, immune cells of the brain, originate from erythromyeloid precursors, far from the central nervous system. Xu et al. (2016) in this issue of Developmental Cell and Casano et al. (2016) recently in Cell Reports show that apoptotic neurons act as bait to "trap" microglia into colonizing the developing brain. PMID:27459061

  12. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  13. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  14. Wave packet dynamics of an atomic ion in a Paul trap

    NASA Astrophysics Data System (ADS)

    Hashemloo, A.; Dion, C. M.; Rahali, G.

    2016-07-01

    Using numerical simulations of the time-dependent Schrödinger equation, we study the full quantum dynamics of the motion of an atomic ion in a linear Paul trap. Such a trap is based on a time-varying, periodic electric field and hence corresponds to a time-dependent potential for the ion, which we model exactly. We compare the center-of-mass motion with that obtained from classical equations of motion, as well as to results based on a time-independent effective potential. We also study the oscillations of the width of the ion’s wave packet, including close to the border between stable (bounded) and unstable (unbounded) trajectories. Our results confirm that the center-of-mass motion always follows the classical trajectory, that the width of the wave packet is bounded for trapping within the stability region, and therefore that the classical trapping criterion is fully applicable to quantum motion.

  15. Local detection of deep carrier traps in the pn-junction of silicon solar cells

    NASA Astrophysics Data System (ADS)

    Mchedlidze, T.; Scheffler, L.; Weber, J.; Herms, M.; Neusel, J.; Osinniy, V.; Möller, C.; Lauer, K.

    2013-07-01

    Mesa-diodes, with fully preserved solar cell structure, were fabricated at various locations of silicon solar cell. Deep level transient spectroscopy was applied for detection of carrier traps in the mesa-diodes. The parameters of the traps suggest their relation to interstitial iron and/or iron-related complexes. The density of the traps sharply falls with the distance from the pn-junction. Measurements using Schottky-diodes fabricated on top of the bulk substrate material of the cell, after etching off of the solar-cell structure, did not show the presence of the traps. The results suggest that defects, influencing the performance of solar cells, were formed in/near to the pn-junctions during their fabrication. The possible origin of the defects will be discussed.

  16. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, T.; Derevianko, A.

    2016-07-01

    We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.

  17. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    SciTech Connect

    Park, Jae Hyun; Krstic, Predrag S.

    2011-06-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at much heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement.

  18. Measurement of ion motional heating rates over a range of trap frequencies and temperatures

    NASA Astrophysics Data System (ADS)

    Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2015-04-01

    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between ˜0.6 and 1.5 MHz and ˜4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below ˜105 ∘C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  19. A lithological classification method from fully polarimetric SAR data using Cloude-Pottier decomposition and SVM

    NASA Astrophysics Data System (ADS)

    Xie, Minghui; Zhang, Qi; Chen, Shengbo; Zha, Fengli

    2015-10-01

    This article puts forward a kind of lithological classification method to take advantage of the fully polarimetric SAR data for lithological classification by the combination of cloude-pottier decomposition and support vector machine(SVM). Cloude-pottier target decomposition method is used to extract three characteristic parameters from the fully polarimetric SAR data as polarization entropy(H), scattering Angle(α), and the anisotropic(A) in xingcheng region, Liaoning province. And these parameters are taken as a sample vector and selected as the radial basis function for the SVM classifier. Thus the lithological classification from the fully polarimetric SAR images is implemented for the study area. By the comparation to the geological map, the classification results can consist with the actual rock distribution very well, and the overall classification precision reaches 80.0871%. But wishart supervised classification precision reaches 73.3837% , It shows that the method is feasible and effective for full polarization SAR image classification. Compared with the conventional classification method, it greatly improves the accuracy of interpretation.

  20. Anisotropic nature of radially strained metal tubes

    NASA Astrophysics Data System (ADS)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw

  1. The Trapped Medial Meniscus Tear

    PubMed Central

    Herschmiller, Thomas A.; Anderson, John A.; Garrett, William E.; Taylor, Dean C.

    2015-01-01

    Background: Numerous clinical examination maneuvers have been developed to identify meniscus tears of the knee. While meniscus injuries vary significantly in type and severity, no maneuvers have been developed that help to distinguish particular tear characteristics. Purpose: This nonconsecutive case series highlights a distinctive clinical finding that correlates with inferiorly displaced flap tears of the medial meniscus that become trapped in the medial gutter of the knee, as identified through magnetic resonance imaging (MRI) and arthroscopy. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: Eight patients with trapped medial meniscus tears were identified from a single surgeon’s academic orthopaedic sports medicine practice between January 2009 and January 2012. Each patient underwent clinical evaluation, MRI, and arthroscopic treatment for meniscus injury. Clinical notes, MRI images, radiology reports, and operative findings were reviewed and compared in a descriptive fashion. Results: Each patient displayed a positive clinical examination finding of medial knee pain inferior to the joint line with flexion and the application of valgus stress in the setting of a torn medial meniscus and intact medial collateral ligament (MCL). Preoperative MRI revealed a distinctive flap tear of the medial meniscus flipped inferiorly to lay trapped between the tibia and deep fibers of the MCL. On arthroscopy, flap tears were found displaced inferiorly and trapped in the medial gutter in 6 of the 8 patients. Displaced meniscal fragments in the remaining 2 patients were found within the medial compartment. Conclusion: Inferiorly displaced flap tears of the meniscus that have been displaced to the medial gutter can be localized through a careful examination technique. Clinical Relevance: Early identification of this injury pattern may help reduce the likelihood that the trapped fragment will be missed during arthroscopy. PMID:26675499

  2. Phenomenology of fully polarimetric imaging radars

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2011-06-01

    We have previously reported on the analysis of fully polarimetric single look and multilook SIR-C data. We have reported that the Stokes(Kennaugh) matrices for each pixel have one and only one eigenvector that satisfies the property of a Stokes Vector. We now report on new analysis of fully polarimetric SIR-C data and ISAR data from the Submillimeter-Wave Technology Laboratory at the University of Massachussetts Lowell which shows that the remaining three eigenvectors of the Stokes matrix are quaternions which represent rotations. Furthermore, the three direction vectors of these quaternions form an orthogonal cartesian set of axes. We also discuss relationships between the angles of the Stokes Vector with the Euler parameters initially proposed by Huynen.

  3. Error Threshold of Fully Random Eigen Model

    NASA Astrophysics Data System (ADS)

    Li, Duo-Fang; Cao, Tian-Guang; Geng, Jin-Peng; Qiao, Li-Hua; Gu, Jian-Zhong; Zhan, Yong

    2015-01-01

    Species evolution is essentially a random process of interaction between biological populations and their environments. As a result, some physical parameters in evolution models are subject to statistical fluctuations. In this work, two important parameters in the Eigen model, the fitness and mutation rate, are treated as Gaussian distributed random variables simultaneously to examine the property of the error threshold. Numerical simulation results show that the error threshold in the fully random model appears as a crossover region instead of a phase transition point, and as the fluctuation strength increases the crossover region becomes smoother and smoother. Furthermore, it is shown that the randomization of the mutation rate plays a dominant role in changing the error threshold in the fully random model, which is consistent with the existing experimental data. The implication of the threshold change due to the randomization for antiviral strategies is discussed.

  4. Fully nonlinear dynamics of parallel wakes

    NASA Astrophysics Data System (ADS)

    Chomaz, Jean-Marc

    2003-11-01

    The fully nonlinear theory of global modes in open flows, proposed in recent analyses of amplitude equations, is extended to the case of Navier Stokes equations using direct numerical simulations. The basic flow under consideration is a parallel wake in a finite domain generated by imposing the wake profile at the inlet boundary and by adding a body force to compensate the basic flow diffusion. The link between the global bifurcation, the absolute or convective nature of the local linear instability, and the theory of speed selection for the front separating an unperturbed domain of the flow from a fully saturated solution is elucidated. In particular, thanks to the parallelism of the flow, the bifurcation scenario and the associated scaling laws for the frequency, the healing length, and the slope at the origin predicted by a previous analysis of amplitude equations are recovered with great precision.

  5. Fully overheated single-electron transistor.

    PubMed

    Laakso, M A; Heikkilä, T T; Nazarov, Yuli V

    2010-05-14

    We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise. PMID:20866990

  6. Approximation by fully complex multilayer perceptrons.

    PubMed

    Kim, Taehwan; Adali, Tülay

    2003-07-01

    We investigate the approximation ability of a multilayer perceptron (MLP) network when it is extended to the complex domain. The main challenge for processing complex data with neural networks has been the lack of bounded and analytic complex nonlinear activation functions in the complex domain, as stated by Liouville's theorem. To avoid the conflict between the boundedness and the analyticity of a nonlinear complex function in the complex domain, a number of ad hoc MLPs that include using two real-valued MLPs, one processing the real part and the other processing the imaginary part, have been traditionally employed. However, since nonanalytic functions do not meet the Cauchy-Riemann conditions, they render themselves into degenerative backpropagation algorithms that compromise the efficiency of nonlinear approximation and learning in the complex vector field. A number of elementary transcendental functions (ETFs) derivable from the entire exponential function e(z) that are analytic are defined as fully complex activation functions and are shown to provide a parsimonious structure for processing data in the complex domain and address most of the shortcomings of the traditional approach. The introduction of ETFs, however, raises a new question in the approximation capability of this fully complex MLP. In this letter, three proofs of the approximation capability of the fully complex MLP are provided based on the characteristics of singularity among ETFs. First, the fully complex MLPs with continuous ETFs over a compact set in the complex vector field are shown to be the universal approximator of any continuous complex mappings. The complex universal approximation theorem extends to bounded measurable ETFs possessing a removable singularity. Finally, it is shown that the output of complex MLPs using ETFs with isolated and essential singularities uniformly converges to any nonlinear mapping in the deleted annulus of singularity nearest to the origin. PMID:12816570

  7. Fabrication of anisotropic multifunctional colloidal carriers

    NASA Astrophysics Data System (ADS)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  8. Fully implicit kinetic modelling of collisional plasmas

    SciTech Connect

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.

  9. Fully implicit particle-in-cell algorithm.

    NASA Astrophysics Data System (ADS)

    Kim, Hyung; Chacon, Luis

    2005-10-01

    Most current particle-in-cell (PIC) algorithms employ an explicit approach. Explicit PIC approaches are not only time-step limited for numerical stability, but also grid-intensive due to the so-called finite-grid instability.ootnotetextC. Birdsall and A. Langdon, Plasma physics via computer simulation, McGraw-Hill, New York, 1985 As a result, explicit PIC methods are very hardware-intensive, and become prohibitive for system scale simulations even with modern supercomputers. To avoid such stringent time-step and grid-size requirements, the implicit moment method PIC approach (IM-PIC) was developed.ootnotetextJ. Brackbill and D. Forslund, J. Comput. Phys. 46, 271 (1982). IM-PIC advances the required moments (density, current) using Chapman-Enskop-based fluid equations, and then advances the particles with such moments. While being able to employ much larger time steps and grid spacings than explicit PIC methods, IM-PIC is limited in that the time-advanced moments and the particle moments are inconsistent, resulting in lack of energy conservation. To remedy this, we propose here a fully implicit, fully nonlinear PIC approach (FI-PIC) where the particles and the moments are converged simultaneously using Newton-Krylov techniques. This guarantees the consistency of moments and particles upon convergence. We will demonstrate the feasibility of the concept using a purely electrostatic Vlasov-Poisson model, and will show its effectiveness with several fully kinetic examples.

  10. Funnel traps capture a higher proportion of juvenile Great Tits Parus major than automatic traps

    USGS Publications Warehouse

    Senar, J.C.; Domenech, J.; Conroy, M.J.

    1999-01-01

    We compared capture rates of Great Tits at funnel traps, where several birds can be captured at once so that some decoy effect may appear, to those obtained at automatic traps, where only one bird can be trapped at a time, at trapping stations in northeastern Spain. Juvenile birds were mainly captured at funnel traps (79% of juvenile captures), whereas adult plumaged birds were captured at both types of traps (51% of captures were at the funnel traps) (test between ages, P<0.001). Juvenile Great Tits had lower body condition as measured by ptilochronology (P<0.01). These birds are more easily trapped in funnel traps, which may be acting as decoy traps, and thus are vulnerable to the same kinds of biases (eg age or body condition) that have been previously documented for decoy traps.

  11. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one...

  12. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one...

  13. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one...

  14. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one...

  15. Phonon anomaly and anisotropic superconducting gap in noncentrosymmetric Li2(Pd1-xPtx)3B

    NASA Astrophysics Data System (ADS)

    Eguchi, G.; Peets, D. C.; Kriener, M.; Yonezawa, S.; Bao, G.; Harada, S.; Inada, Y.; Zheng, G.-q.; Maeno, Y.

    2013-04-01

    We report the systematic investigation of the specific heat of the noncentrosymmetric superconductor Li2(Pd1-xPtx)3B as a function of x. There is a large deviation of the phononic specific heat from the conventional Debye specific heat for Pt-rich samples. In contrast with the fully gapped conventional behavior for small x, a power-law temperature dependence of the electronic specific heat is observed even at x=0.5. These results manifest a strongly anisotropic or nodal superconducting gap even at x=0.5 and a nodal superconducting gap for x≳0.9.

  16. Anisotropic stress and stability in modified gravity models

    SciTech Connect

    Saltas, Ippocratis D.; Kunz, Martin

    2011-03-15

    The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.

  17. Autofocus imaging: Experimental results in an anisotropic austenitic weld

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.

    2012-05-01

    The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.

  18. Simple recurrence matrix relations for multilayer anisotropic thin films.

    PubMed

    Cojocaru, E

    2000-01-01

    Generalized Abelès relations for one anisotropic thin film [E. Cojocaru, Appl. Opt. 36, 2825-2829 (1997)] are developed for light propagation from an isotropic medium of incidence (with refractive index n(0)) within a multilayer anisotropic thin film coated onto an anisotropic substrate. An immersion model is used for which it is assumed that each layer is imaginatively embedded between isotropic gaps of zero thickness and refractive index n(0). This model leads to simple expressions for the resultant transmitted and reflected electric field amplitudes at interfaces. They parallel the Abelès recurrence relations for layered isotropic media. These matrix relations include multiple reflections while they deal with total fields. They can be applied directly to complex stacks of isotropic and anisotropic thin films. PMID:18337882

  19. Telecentric suppression of diffuse light in imaging of highly anisotropic scattering media.

    PubMed

    Visbal Onufrak, Michelle A; Konger, Raymond L; Kim, Young L

    2016-01-01

    The telecentric lens, which was originally used in the machine vision industry, has often been utilized in biomedical imaging systems due to its commonly known properties, such as large transverse field of view, constant magnification, and long working distance. However, its potential advantages in optical imaging of biological tissue, which is highly diffusive, have not been fully explored. We revisit the idea that a telecentric lens system can bring an alternative yet simple method for reducing unwanted scattering or diffuse light in biological tissue, owing to its highly anisotropic scattering properties. Using biological tissue and tissue phantoms, we demonstrate advantages attributed to the use of telecentric lens in tissue imaging compared with imaging using conventional nontelecentric optics. Directional or angular gating (or filtering) using a telecentric lens is beneficial for removing a portion of diffuse light in highly anisotropic scattering media with high values of the scattering anisotropy factor. We envision that a telecentric lens could be potentially incorporated into an instrument of modest design and cost, increasing rapid practical adoption. PMID:26696179

  20. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    SciTech Connect

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the {rvec B} field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field {delta}B{sub {parallel}} and electrostatic potential {Phi} along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric {delta}B{sub {parallel}}, and {Phi} structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta ({beta}{sub {parallel}} {ge} O(1)) and pressure anisotropy (P{sub {perpendicular}}/P{sub {parallel}} > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values.

  1. On the electrodynamics of Josephson effect in anisotropic superconductors

    SciTech Connect

    Mints, R.G.

    1989-01-01

    Specificities of Josephson effect electrodynamics in anisotropic superconductors are of considerable interest for the study of high temperature superconductors with strongly anisotropic layered structure. In this paper the authors give the calculation for the tunnel Josephson contact of an isolated vortex, the law of dispersion of its low-amplitude oscillations, the critical field H/sub cl/ for the penetration of magnetic flux, and the maximum current across a rectangular contact.

  2. Schwarz alternating methods for anisotropic problems with prolate spheroid boundaries.

    PubMed

    Dai, Zhenlong; Du, Qikui; Liu, Baoqing

    2016-01-01

    The Schwarz alternating algorithm, which is based on natural boundary element method, is constructed for solving the exterior anisotropic problem in the three-dimension domain. The anisotropic problem is transformed into harmonic problem by using the coordinate transformation. Correspondingly, the algorithm is also changed. Continually, we analysis the convergence and the error estimate of the algorithm. Meanwhile, we give the contraction factor for the convergence. Finally, some numerical examples are computed to show the efficiency of this algorithm. PMID:27625977

  3. Effective Dirac Hamiltonian for anisotropic honeycomb lattices: Optical properties

    NASA Astrophysics Data System (ADS)

    Oliva-Leyva, M.; Naumis, Gerardo G.

    2016-01-01

    We derive the low-energy Hamiltonian for a honeycomb lattice with anisotropy in the hopping parameters. Taking the reported Dirac Hamiltonian for the anisotropic honeycomb lattice, we obtain its optical conductivity tensor and its transmittance for normal incidence of linearly polarized light. Also, we characterize its dichroic character due to the anisotropic optical absorption. As an application of our general findings, which reproduce the previous case of uniformly strained graphene, we study the optical properties of graphene under a nonmechanical distortion.

  4. Anisotropic Bianchi types VIII and IX locally rotationally symmetric cosmologies

    SciTech Connect

    Assad, M.J.D.; Soares, I.D.

    1983-10-15

    We present a class of exact cosmological solutions of Einstein-Maxwell equations, which are anisotropic and spatially homogeneous of Bianchi types VIII and IX, and class IIIb in the Stewart-Ellis classification of locally rotationally symmetric models. If we take the electromagnetic field equal to zero, a class of Bianchi types VIII/IX spatially homogeneous anisotropic cosmological solutions with perfect fluid is obtained.

  5. Anisotropic distributions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhou, You; Xiao, Kai; Feng, Zhao; Liu, Feng; Snellings, Raimond

    2016-03-01

    With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations, and correlations of the initial state spatial anisotropy ɛn and the final state anisotropic flow coefficients vn in Au+Au collisions at √{s NN}=200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying probability density function of the event-by-event distributions of ɛn as well as vn. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Nonzero values of these correlations have been observed. The comparison between our calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon plasma produced in heavy ion collisions.

  6. Polar motion under anisotropic random load

    NASA Astrophysics Data System (ADS)

    Tsurkis, I. Ya.; Kuchai, M. S.; Sinyukhina, S. V.

    2014-01-01

    The probabilistic approach to the description of the Chandler wobble is expanded to the case of anisotropic random load. The polar motion is treated as a two-dimensional (2D) Markov process—the solution of the Liouville equation—with discrete time. It is shown that with a sufficiently large time step Δ, the polar motion can be considered as an isotropic process irrespective of the particular ratio between the eigenvalues of the diffusion matrix, which characterizes the right-hand side of this equation (random load). The problem of reaching the boundary of the domain [ E min, E max] by the energy of the pole E( t) = x {1/2}+ x {2/2} is considered. With a time step Δ of 1 year and the length of the time series of the observations N = 150, the correction for anisotropy to the total probability P* of a drop by a factor of five in the amplitude of the Chandler wobble A = √ E does not exceed 10-2, and the probability P* is above 0.3 (if the Q-factor of the mantle is below 500). Thus, it is demonstrated that the observed variations in amplitude A( t) can be explained in the context of the probabilistic approach without hypothesizing the isotropy of the random load.

  7. Dislocation dynamics in an anisotropic stripe pattern.

    PubMed

    Kamaga, Carina; Ibrahim, Fatima; Dennin, Michael

    2004-06-01

    The dynamics of dislocations confined to grain boundaries in a striped system are studied using electroconvection in the nematic liquid crystal N4. In electroconvection, a striped pattern of convection rolls forms for sufficiently high driving voltages. We consider the case of a rapid change in the voltage that takes the system from a uniform state to a state consisting of striped domains with two different wave vectors. The domains are separated by domain walls along one axis and a grain boundary of dislocations in the perpendicular direction. The pattern evolves through dislocation motion parallel to the domain walls. We report on features of the dislocation dynamics. The kinetics of the domain motion is quantified using three measures: dislocation density, average domain wall length, and total domain wall length per area. All three quantities exhibit behavior consistent with power-law evolution in time, with the defect density decaying as t(-1/3), the average domain wall length growing as t(1/3), and the total domain wall length decaying as t(-1/5). The two different exponents are indicative of the anisotropic growth of domains in the system. PMID:15244714

  8. Neutron star recoils from anisotropic supernovae.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1994-10-01

    Refering to recent hydrodynamical computations (Herant et al. 1992; Janka & Mueller 1993a) it is argued that neutron star kicks up to a few hundred km/s might be caused by a turbulent overturn of the matter between proto-neutron star and supernova shock during the early phase of the supernova explosion. These recoil speeds ("kick velocities") may be of the right size to explain the measured proper motions of most pulsars and do not require the presence of magnetic fields in the star. It is also possible that anisotropic neutrino emission associated with convective processes in the surface layers of the nascent neutron star (Burrows & Fryxell 1992; Janka & Mueller 1993b; Mueller 1993) provides an acceleration mechanism (Woosley 1987), although our estimates indicate that the maximum attainable velocities are around 200km/s. Yet, it turns out to be very unlikely that the considered stochastic asymmetries of supernova explosions are able to produce large enough recoils to account for pulsar velocities in excess of about 500km/s, which can be found in the samples of Harrison et al. (1993) and Taylor et al. (1993). It is concluded that other acceleration mechanisms have to be devised to explain the fast motion of PSR 2224+65 (transverse speed >=800km/s Cordes et al. 1993) and the high-velocities deduced from associations between supernova remnants and nearby young pulsars (e.g., Frail & Kulkarni 1991; Stewart et al. 1993; Caraveo 1993).

  9. The anisotropic microwave electrodynamics of YBCO

    NASA Astrophysics Data System (ADS)

    Hosseini-Gheinani, Ahmad Reza

    The anisotropic microwave surface impedance of the high temperature superconductor, YBa2Cu3O7-delta, has been investigated. Microwave spectroscopy using five microwave cavities has been used to show clearly the development of long lived quasiparticles (QP) in the ab-plane of YBa2Cu3O6.99. Two regimes of transport are found, one below 20 K where the quasiparticle (QP) dynamics is with residual impurities, and above 20 K where umklapp QP-QP interactions dictate the temperature dependence of the transport lifetimes. The C-axis microwave surface impedance of YBa2Cu 3O6.95 has been studied into the superconducting state. The long QP lifetimes found in the planes of this material are found to be absent in the conductivity observed along the c-axis, indicating that the confinement of carriers to the planes is an inherent feature of the cuprates. The highly underdoped superconducting state has also been investigated with microwave techniques. The temperature dependence of the c -axis superfluid stiffness is found to scale over a range of hole dopings, corresponding to Tc's in the range 9--19 K. We further find that the magnitude of the zero temperature c -axis superfluid stiffness grows rapidly with doping, initially as fast as T2c .

  10. Anisotropic multicluster model in light nuclei

    NASA Astrophysics Data System (ADS)

    Gijón, A.; Gálvez, F. J.; Arias de Saavedra, F.; Buendía, E.

    2016-06-01

    Multicluster models consider that the nucleons can be moving around different centers in the nuclei. These models have been widely used to describe light nuclei but always considering that the mean field is composed of isotropic harmonic oscillators with different centers. In this work, we propose an extension of these models by using anisotropic harmonic oscillators. The strengths of these oscillators, the distance among the different centers and the disposition of the nucleons inside every cluster are free parameters which have been fixed using the variational criterion. All the one-body and two-body matrix elements have been analytically calculated. Only a numerical integration on the Euler angles is needed to carry out the projection on the values of the total spin of the state and its third component. We have studied the ground state and the first excited states of 8Be, 12C and 10Be getting good results for the energies. The disposition of the nucleons in the different clusters have also been analyzed by using projection on the different Cartesian planes getting much more information than when the radial one-body density is used.

  11. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  12. Self assembly of anisotropic colloidal particles

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Wyss, Hans

    2012-02-01

    Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.

  13. Anisotropic universe with magnetized dark energy

    NASA Astrophysics Data System (ADS)

    Goswami, G. K.; Dewangan, R. N.; Yadav, Anil Kumar

    2016-04-01

    In the present work we have searched the existence of the late time acceleration of the Universe filled with cosmic fluid and uniform magnetic field as source of matter in anisotropic Heckmann-Schucking space-time. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to vacuum energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ωm)0 & (Ω_{Λ})0 are estimated in view of the latest 287 high red shift (0.3 ≤ z ≤1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (Ω_{Λ})0 are 0.2820 & 0.7177 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP [2001-2013], Planck [latest 2015] & BOSS. Various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (Ω_{Λ})0. Also we have estimated that the acceleration would have begun in the past at z = 0.71131 ˜6.2334 Gyrs before from present.

  14. Anisotropic Expansion of the Black Hole Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2009-01-01

    Recently, Zhang proposed a new cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and grew up through a supermassive black hole with billion solar masses to the present state of temperature and density with hundred billion-trillion solar masses due to continuously inhaling matter from its outside. The structure of the entire space is similarly hierarchical or layered and the evolution is iterative. In each of iteration a universe passes through birth, growth, and death. The entire life of a universe roughly divides into three periods with different rates of expansion: slowly growing child universe, fast expanding adult universe, and gradually dying aged universe. When one universe expands to die out, a new universe grows up from its inside. On the AAS 211th meeting, the black hole universe model was shown to be consistent with Mach's principle, observations, and Einstein's general relativity. This new cosmological model can explain the cosmic microwave background radiation, quasars, and element abundances with the well-developed physics. Dark energy is not required for the universe to accelerate. Inflation is not necessary because the black hole universe does not have the horizon problem. In this presentation, the author will explain why the expansion of the universe is anisotropic as shown by the observed anisotropy of the Hubble constant. He will also compare the significant differences between the black hole universe and the big bang cosmology.

  15. Coefficient adaptive triangulation for strongly anisotropic problems

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  16. Colloidal aggregation and dynamics in anisotropic fluids

    PubMed Central

    Mondiot, Frédéric; Botet, Robert; Snabre, Patrick; Mondain-Monval, Olivier; Loudet, Jean-Christophe

    2014-01-01

    We present experiments and numerical simulations to investigate the collective behavior of submicrometer-sized particles immersed in a nematic micellar solution. We use latex spheres with diameters ranging from 190 to 780 nm and study their aggregation properties due to the interplay of the various colloidal forces at work in the system. We found that the morphology of aggregates strongly depends on the particle size, with evidence for two distinct regimes: the biggest inclusions clump together within minutes into either compact clusters or V-like structures that are completely consistent with attractive elastic interactions. On the contrary, the smallest particles form chains elongated along the nematic axis, within comparable timescales. In this regime, Monte Carlo simulations, based on a modified diffusion-limited cluster aggregation model, strongly suggest that the anisotropic rotational Brownian motion of the clusters combined with short-range depletion interactions dominate the system coarsening; elastic interactions no longer prevail. The simulations reproduce the sharp transition between the two regimes on increasing the particle size. We provide reasonable estimates to interpret our data and propose a likely scenario for colloidal aggregation. These results emphasize the growing importance of the diffusion of species at suboptical-wavelength scales and raise a number of fundamental issues. PMID:24715727

  17. Dynamic wetting on anisotropic patterned surfaces

    NASA Astrophysics Data System (ADS)

    Do-Quang, Minh; Wang, Jiayu; Nita, Satoshi; Shiomi, Junichiro; Amberg, Gustav; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team

    2014-11-01

    Dynamic wetting, as occurs when a droplet of a wetting liquid is brought in contact with a dry solid, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. We have recently quantified the hindering effect of fairly isotropic micron-sized patterns on the substrate. Here we will study highly anisotropic surfaces, such as parallel grooves, either perpendicular or parallel to an advancing contact line. This is done by detailed phase field simulations and experiments on structured silicon surfaces. The dynamic wetting behavior of drops on the grooved surfaces is governed by the combined interplay of the wetting line friction and the internal viscous dissipation. Influence of roughness is quantified in terms of the energy dissipation rate at the contact line using the experiment-simulation combined analysis. The energy dissipation of the contact line at the different part of the groove will be discussed. The performance of the model is assessed by comparing its predictions with the experimental data. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., S.N., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  18. Anisotropic model-based SAR processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Gunther, Jake; Moon, Todd

    2013-05-01

    Synthetic aperture radar (SAR) collections that integrate over a wide range of aspect angles hold the potentional for improved resolution and fosters improved scene interpretability and target detection. However, in practice it is difficult to realize the potential due to the anisotropic scattering of objects in the scene. The radar cross section (RCS) of most objects changes as a function of aspect angle. The isotropic assumption is tacitly made for most common image formation algorithms (IFA). For wide aspect scenarios one way to account for anistropy would be to employ a piecewise linear model. This paper focuses on such a model but it incorporates aspect and spatial magnitude filters in the image formation process. This is advantageous when prior knowledge is available regarding the desired targets' RCS signature spatially and in aspect. The appropriate filters can be incorporated into the image formation processing so that specific targets are emphasized while other targets are suppressed. This is demonstrated on the Air Force Research Laboratory (AFRL) GOTCHA1 data set to demonstrate the utility of the proposed approach.

  19. Minkowski tensors of anisotropic spatial structure

    NASA Astrophysics Data System (ADS)

    Schröder-Turk, G. E.; Mickel, W.; Kapfer, S. C.; Schaller, F. M.; Breidenbach, B.; Hug, D.; Mecke, K.

    2013-08-01

    This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalizations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The paper further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic formalism more readily accessible for future application in the physical sciences.

  20. Nonlinear Eulerian thermoelasticity for anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.

    2013-10-01

    A complete continuum thermoelastic theory for large deformation of crystals of arbitrary symmetry is developed. The theory incorporates as a fundamental state variable in the thermodynamic potentials what is termed an Eulerian strain tensor (in material coordinates) constructed from the inverse of the deformation gradient. Thermodynamic identities and relationships among Eulerian and the usual Lagrangian material coefficients are derived, significantly extending previous literature that focused on materials with cubic or hexagonal symmetry and hydrostatic loading conditions. Analytical solutions for homogeneous deformations of ideal cubic crystals are studied over a prescribed range of elastic coefficients; stress states and intrinsic stability measures are compared. For realistic coefficients, Eulerian theory is shown to predict more physically realistic behavior than Lagrangian theory under large compression and shear. Analytical solutions for shock compression of anisotropic single crystals are derived for internal energy functions quartic in Lagrangian or Eulerian strain and linear in entropy; results are analyzed for quartz, sapphire, and diamond. When elastic constants of up to order four are included, both Lagrangian and Eulerian theories are capable of matching Hugoniot data. When only the second-order elastic constant is known, an alternative theory incorporating a mixed Eulerian-Lagrangian strain tensor provides a reasonable approximation of experimental data.