Science.gov

Sample records for function prediction involved

  1. Predicting the Academic Functioning of Youth Involved in Residential Care

    ERIC Educational Resources Information Center

    Griffith, Annette K.; Trout, Alexandra L.; Epstein, Michael H.; Garbin, Calvin P.; Pick, Robert; Wright, Tanya

    2010-01-01

    Youth involved in residential care programs present with significant difficulties across behavioral and mental health domains. Although this is a group that is also at considerable risk for academic failure, very little research has been done to understand the academic functioning of this population. The current study sought to expand what is…

  2. The involvement of proline-rich protein Mus musculus predicted gene 4736 in ocular surface functions

    PubMed Central

    Qi, Xia; Ren, Sheng-Wei; Zhang, Feng; Wang, Yi-Qiang

    2016-01-01

    AIM To research the two homologous predicted proline-rich protein genes, Mus musculus predicted gene 4736 (MP4) and proline-rich protein BstNI subfamily 1 (Prb1) which were significantly upregulated in cultured corneal organs when encountering fungal pathogen preparations. This study was to confirm the expression and potential functions of these two genes in ocular surface. METHODS A Pseudomonas aeruginosa keratitis model was established in Balb/c mice. One day post infection, mRNA level of MP4 was measured using real-time polymerase chain reaction (PCR), and MP4 protein detected by immunohistochemistry (IHC) or Western blot using a customized polyclonal anti-MP4 antibody preparation. Lacrimal glands from normal mice were also subjected to IHC staining for MP4. An online bioinformatics program, BioGPS, was utilized to screen public data to determine other potential locations of MP4. RESULTS One day after keratitis induction, MP4 was upregulated in the corneas at both mRNA level as measured using real-time PCR and protein levels as measured using Western blot and IHC. BioGPS analysis of public data suggested that the MP4 gene was most abundantly expressed in the lacrimal glands, and IHC revealed that normal murine lacrimal glands were positive for MP4 staining. CONCLUSION MP4 and Prb1 are closely related with the physiology and pathological processes of the ocular surface. Considering the significance of ocular surface abnormalities like dry eye, we propose that MP4 and Prb1 contribute to homeostasis of ocular surface, and deserve more extensive functional and disease correlation studies. PMID:27588265

  3. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation

    PubMed Central

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S.; Gautam, Hemant K.; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  4. Tc-99m diethylenetriamine pentaacetic acid (DTPA) renal function reserve estimation: is it a reliable predictive tool for assessment of preclinical renal involvement in scleroderma patients?

    PubMed

    Amin, Amr; El-Sayed, S; Taher, N; Sedki, M; Nasr, H

    2012-06-01

    Prognosis of systemic sclerosis (SSc) depends on internal organ involvement. We assessed the value of renal function reserve (RFR) for the detection of preclinical nephropathy in scleroderma. Thirty SSc patients with normal serum creatinine and 30 healthy controls were included. Medsger disease severity score, glomerular filtration rate (GFR), and microalbuminuria were measured. Tc-99m DTPA was utilized for GFR measurement at baseline and after oral protein overload (stimulated GFR). RFR was calculated as the percentile increase of stimulated GFR. SSc patients had lower means of baseline GFR (P=0.001), stimulated GFR (P=0.004), RFR (P=0.046), and higher microalbuminuria (P=0.009) than controls. According to baseline GFR, SSc patients showed three categories-normal baseline GFR (n=12), hyperfiltration GFR (n=3), and reduced baseline GFR (n=15). In the former category, RFR was normal in 6/12 patients and abnormal in the remainders (50%). Hyperfiltration patients and those with reduced baseline GFR showed abnormal RFR. A statistically significant negative association was found between microalbuminuria versus stimulated GFR and RFR (r= -0.5, P=0.007 and r= -0.45, P=0.013, respectively). The majority of SSc patients with abnormal RFR had disease duration of ≥48 months (60% vs. 20%, P=0.008). All SSc patients with pulmonary hypertension had abnormal RFR, while reduced baseline GFR was noted in only 60%. A significant negative correlation was found between reduced baseline GFR and cumulative dose of corticosteroids in SSc patients (r= -0.4, P=0.022). RFR estimation could be a useful predictive marker for preclinical renal involvement in SSc patients so that early prophylactic measures and therapy modifications could be considered. PMID:22362258

  5. Fractal calculus involving gauge function

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Alireza K.; Baleanu, Dumitru

    2016-08-01

    Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized Fα-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *Fα-integrable. Using gauge function we define *Fα-derivative of functions their Fα-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of Fα-calculus.

  6. Structural model of ρ1 GABAC receptor based on evolutionary analysis: Testing of predicted protein–protein interactions involved in receptor assembly and function

    PubMed Central

    Adamian, Larisa; Gussin, Hélène A; Tseng, Yan Yuan; Muni, Niraj J; Feng, Feng; Qian, Haohua; Pepperberg, David R; Liang, Jie

    2009-01-01

    The homopentameric ρ1 GABAC receptor is a ligand-gated ion channel with a binding pocket for γ-aminobutyric acid (GABA) at the interfaces of N-terminal extracellular domains. We combined evolutionary analysis, structural modeling, and experimental testing to study determinants of GABAC receptor assembly and channel gating. We estimated the posterior probability of selection pressure at amino acid residue sites measured as ω-values and built a comparative structural model, which identified several polar residues under strong selection pressure at the subunit interfaces that may form intersubunit hydrogen bonds or salt bridges. At three selected sites (R111, T151, and E55), mutations disrupting intersubunit interactions had strong effects on receptor folding, assembly, and function. We next examined the role of a predicted intersubunit salt bridge for residue pair R158–D204. The mutant R158D, where the positively charged residue is replaced by a negatively charged aspartate, yielded a partially degraded receptor and lacked membrane surface expression. The membrane surface expression was rescued by the double mutant R158D–D204R, where positive and negative charges are switched, although the mutant receptor was inactive. The single mutants R158A, D204R, and D204A exhibited diminished activities and altered kinetic profiles with fast recovery kinetics, suggesting that R158–D204 salt bridge perhaps stabilizes the open state of the GABAC receptor. Our results emphasize the functional importance of highly conserved polar residues at the protein–protein interfaces in GABAC ρ1 receptors and demonstrate how the integration of computational and experimental approaches can aid discovery of functionally important interactions. PMID:19768800

  7. Infancy to Age Five: Predicting Fathers' Involvement.

    ERIC Educational Resources Information Center

    Bailey, William T.

    Four years after a study of paternal involvement among intact, middle-class families with an infant, a follow-up was conducted of 26 of the still intact families to determine the stability of paternal involvement and the psychological predictors of fathers' behavior at the time. Paternal involvement was assessed at both times in terms of care,…

  8. Predicting communities from functional traits.

    PubMed

    Cadotte, Marc W; Arnillas, Carlos A; Livingstone, Stuart W; Yasui, Simone-Louise E

    2015-09-01

    Species traits influence where species live and how they interact. While there have been many advances in describing the functional composition and diversity of communities, only recently do researchers have the ability to predict community composition and diversity. This predictive ability can offer fundamental insights into ecosystem resilience and restoration. PMID:26190136

  9. Functional MicroRNA Involved in Endometriosis

    PubMed Central

    Creighton, Chad J.; Han, Derek Y.; Zariff, Azam; Anderson, Matthew L.; Gunaratne, Preethi H.; Matzuk, Martin M.

    2011-01-01

    Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we describe the first transcriptome-microRNAome analysis of endometriomas and eutopic endometrium using next-generation sequencing technology. Using this approach, we generated a total of more than 54 million independent small RNA reads from our 19 clinical samples. At the microRNA level, we found 10 microRNA that were up-regulated (miR-202, 193a-3p, 29c, 708, 509-3-5p, 574-3p, 193a-5p, 485-3p, 100, and 720) and 12 microRNA that were down-regulated (miR-504, 141, 429, 203, 10a, 200b, 873, 200c, 200a, 449b, 375, and 34c-5p) in endometriomas compared with endometrium. Using in silico prediction algorithms, we correlated these microRNA with their corresponding differentially expressed mRNA targets. To validate the functional roles of microRNA, we manipulated levels of miR-29c in an in vitro system of primary cultures of human endometrial stromal fibroblasts. Extracellular matrix genes that were potential targets of miR-29c in silico were significantly down-regulated using this biological in vitro system. In vitro functional studies using luciferase reporter constructs further confirmed that miR-29c directly affects specific extracellular matrix genes that are dysregulated in endometriomas. Thus, miR-29c and other abnormally regulated microRNA appear to play important roles in the pathophysiology of uterine function and dysfunction. PMID:21436257

  10. Serotonin involvement in pituitary-adrenal function

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Kellar, K. J.; Kent, D.; Gonzales, C.; Berger, P. A.; Barchas, J. D.

    1977-01-01

    Experiments clarifying the effects of serotonin (5-HT) in the regulation of the hypothalamic-pituitary-adrenocortical system are surveyed. Lesion experiments which seek to determine functional maps of serotonergic input to areas involved in regulation are reported. Investigations of the effects of 5-HT levels on the plasma ACTH response to stress and the diurnal variation in basal plasma corticosterone are summarized, and the question of whether serotonergic transmission is involved in the regulation of all aspects of pituitary-adrenal function is considered with attention to the stimulatory and inhibitory action of 5-HT.

  11. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis. PMID:27011029

  12. Year 2 Report: Protein Function Prediction Platform

    SciTech Connect

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  13. Vascular function and ocular involvement in sarcoidosis.

    PubMed

    Siasos, Gerasimos; Paraskevopoulos, Theodoros; Gialafos, Elias; Rapti, Aggeliki; Oikonomou, Evangelos; Zaromitidou, Marina; Mourouzis, Konstantinos; Siasou, Georgia; Gouliopoulos, Nikolaos; Tsalamandris, Sotiris; Vlasis, Konstantinos; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2015-07-01

    Ocular involvement occurs in sarcoidosis (Sar) patients mainly in the form of uveitis. This study was designed to determine if uveitis in Sar patients is associated with vascular impairment. We enrolled 82 Sar patients and 77, age and sex matched, control subjects (Cl). Sar patients were divided into those with ocular sarcoidosis (OS) and those without ocular sarcoidosis (WOS). Endothelial function was evaluated by flow-mediated dilation (FMD). Pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections. Although there was no significant difference in sex, age and mean arterial pressure, patients with OS compared to WOS patients and Cl subjects had impaired FMD (p<0.001), increased AIx (p=0.02) and increased PWV (p=0.001). Interestingly, impaired FMD in Sar patients was independently, from possible covariates (age, sex, smoking habits, arterial hypertension, dyslipidemia), associated with increased odds of ocular involvement (odds ratio=1.69, p=0.001). More precisely ROC curve analysis revealed that FMD had a significant diagnostic ability for the detection of OS (AUC=0.77, p<0.001) with a sensitivity of 79% and a specificity of 68% for an FMD value below 6.00%. To conclude in the present study we have shown that ocular involvement in Sar patients is associated with impaired endothelial function and increased arterial stiffness. These results strengthen the vascular theory which considers uveitis a consequence of vascular dysfunction in Sar patients and reveals a possible clinical importance of the use of endothelial function tests. PMID:25937082

  14. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  15. Predicting hand function after hemidisconnection.

    PubMed

    Küpper, Hanna; Kudernatsch, Manfred; Pieper, Tom; Groeschel, Samuel; Tournier, Jacques-Donald; Raffelt, David; Winkler, Peter; Holthausen, Hans; Staudt, Martin

    2016-09-01

    Hemidisconnections (i.e. hemispherectomies or hemispherotomies) invariably lead to contralateral hemiparesis. Many patients with a pre-existing hemiparesis, however, experience no deterioration in motor functions, and some can still grasp with their paretic hand after hemidisconnection. The scope of our study was to predict this phenomenon. Hypothesizing that preserved contralateral grasping ability after hemidisconnection can only occur in patients controlling their paretic hands via ipsilateral corticospinal projections already in the preoperative situation, we analysed the asymmetries of the brainstem (by manual magnetic resonance imaging volumetry) and of the structural connectivity of the corticospinal tracts within the brainstem (by magnetic resonance imaging diffusion tractography), assuming that marked hypoplasia or Wallerian degeneration on the lesioned side in patients who can grasp with their paretic hands indicate ipsilateral control. One hundred and two patients who underwent hemidisconnections between 0.8 and 36 years of age were included. Before the operation, contralateral hand function was normal in 3/102 patients, 47/102 patients showed hemiparetic grasping ability and 52/102 patients could not grasp with their paretic hands. After hemidisconnection, 20/102 patients showed a preserved grasping ability, and 5/102 patients began to grasp with their paretic hands only after the operation. All these 25 patients suffered from pre- or perinatal brain lesions. Thirty of 102 patients lost their grasping ability. This group included all seven patients with a post-neonatally acquired or progressive brain lesion who could grasp before the operation, and also all three patients with a preoperatively normal hand function. The remaining 52/102 patients were unable to grasp pre- and postoperatively. On magnetic resonance imaging, the patients with preserved grasping showed significantly more asymmetric brainstem volumes than the patients who lost their grasping

  16. Prediction of Research Self-Efficacy and Future Research Involvement.

    ERIC Educational Resources Information Center

    Bishop, Rosean M.; And Others

    Although graduate programs hope that their students will be committed to research in their careers, most students express ambivalence towards research. Identifying the variables that predict involvement in research thus seems crucial. In this study 136 doctoral students from a wide range of disciplines completed the Research Self-Efficacy Scale…

  17. PREDICTION OF NONLINEAR SPATIAL FUNCTIONALS. (R827257)

    EPA Science Inventory

    Spatial statistical methodology can be useful in the arena of environmental regulation. Some regulatory questions may be addressed by predicting linear functionals of the underlying signal, but other questions may require the prediction of nonlinear functionals of the signal. ...

  18. Inequalities involving modified Bessel functions of the first kind II

    NASA Astrophysics Data System (ADS)

    Baricz, Arpad; Neuman, Edward

    2007-08-01

    The intrinsic properties, including logarithmic convexity (concavity), of the modified Bessel functions of the first kind and some other related functions are obtained. Several inequalities involving functions under discussion are established.

  19. Theoretical prediction of new Kubas four centre H2 complexes involving dimolybdate clusters

    NASA Astrophysics Data System (ADS)

    Simandiras, Emmanuel D.; Liakos, Dimitrios G.

    2013-09-01

    A new type of Kubas nonclassical molecular hydrogen complex involving two metallic centers is predicted by extensive DFT calculations, using five accurate functionals. The interaction consists of a four centre bond involving two metal atoms and the H2 molecule, the latter retaining a significant part of its molecular nature. [Mo2Cl8(μ-H2)]2- and [Mo2(CO)8(μ-H2)] are two examples that are found to be stable.

  20. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  1. Monotonicity and Logarithmic Concavity of Two Functions Involving Exponential Function

    ERIC Educational Resources Information Center

    Liu, Ai-Qi; Li, Guo-Fu; Guo, Bai-Ni; Qi, Feng

    2008-01-01

    The function 1 divided by "x"[superscript 2] minus "e"[superscript"-x"] divided by (1 minus "e"[superscript"-x"])[superscript 2] for "x" greater than 0 is proved to be strictly decreasing. As an application of this monotonicity, the logarithmic concavity of the function "t" divided by "e"[superscript "at"] minus "e"[superscript"(a-1)""t"] for "a"…

  2. Quantitative assessment of protein function prediction programs.

    PubMed

    Rodrigues, B N; Steffens, M B R; Raittz, R T; Santos-Weiss, I C R; Marchaukoski, J N

    2015-01-01

    Fast prediction of protein function is essential for high-throughput sequencing analysis. Bioinformatic resources provide cheaper and faster techniques for function prediction and have helped to accelerate the process of protein sequence characterization. In this study, we assessed protein function prediction programs that accept amino acid sequences as input. We analyzed the classification, equality, and similarity between programs, and, additionally, compared program performance. The following programs were selected for our assessment: Blast2GO, InterProScan, PANTHER, Pfam, and ScanProsite. This selection was based on the high number of citations (over 500), fully automatic analysis, and the possibility of returning a single best classification per sequence. We tested these programs using 12 gold standard datasets from four different sources. The gold standard classification of the databases was based on expert analysis, the Protein Data Bank, or the Structure-Function Linkage Database. We found that the miss rate among the programs is globally over 50%. Furthermore, we observed little overlap in the correct predictions from each program. Therefore, a combination of multiple types of sources and methods, including experimental data, protein-protein interaction, and data mining, may be the best way to generate more reliable predictions and decrease the miss rate. PMID:26782400

  3. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices

    PubMed Central

    Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang

    2013-01-01

    Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971

  4. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods. PMID:26869536

  5. Prediction of Motor Recovery Using Diffusion Tensor Tractography in Supratentorial Stroke Patients With Severe Motor Involvement

    PubMed Central

    Kim, Kang Hee; Kim, Yun-Hee; Kim, Min Su; Park, Chang-hyun; Lee, Ahee

    2015-01-01

    Objective To investigate whether early stage diffusion tensor tractography (DTT) values predict motor function at 3 months after onset in supratentorial stroke patients with severe motor involvement. Methods A retrospective study design was used to analyze medical records and neuroimaging data of 49 supratentorial stroke patients with severe motor involvement. Diffusion tensor imaging was assessed within 3 weeks after stroke in all patients. Three-dimensional tractography of the ipsilateral corticospinal tract (CST) was performed using the fiber assignment of the continuous tracking algorithm. The two-step DTT analysis was used. The first step was classification according to ipsilateral CST visualization. The second step was a quantitative analysis of the visible-CST group parameters. Motor function was assessed at 2 weeks and at 3 months after stroke. Comparative and correlation analyses were performed between DTT-derived measures and motor assessment scores. Results Motor function of the upper extremity at 3 months after stroke was significantly higher in the visible-CST group than that in the nonvisible-CST group (p<0.05). Early stage fractional anisotropy was of DTT correlated significantly with upper extremity motor function at 3 months after stroke in the visible-CST group (p<0.05). Conclusion These results demonstrate that early DTT-derived measures predict motor recovery in the upper extremity at 3 months after onset in supratentorial stroke patients with severe motor involvement. PMID:26361593

  6. Biological cluster evaluation for gene function prediction.

    PubMed

    Klie, Sebastian; Nikoloski, Zoran; Selbig, Joachim

    2014-06-01

    Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set. PMID:20059365

  7. Optimizing nondecomposable loss functions in structured prediction.

    PubMed

    Ranjbar, Mani; Lan, Tian; Wang, Yang; Robinovitch, Steven N; Li, Ze-Nian; Mori, Greg

    2013-04-01

    We develop an algorithm for structured prediction with nondecomposable performance measures. The algorithm learns parameters of Markov Random Fields (MRFs) and can be applied to multivariate performance measures. Examples include performance measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines), and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a Quadratic Program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset. PMID:22868650

  8. State public policy issues involved with the Parkfield prediction experiment.

    USGS Publications Warehouse

    Andrews, R.; Goltz, J.

    1988-01-01

    The earthquake-prediction experiment at Parkfield may well be the most important such experiment currently underway worldwide. Its importance, however, extends beyond the scientific data that will be gathered and whether those data that will be gathered and whether those data can provide reliable prediction methods. Important public policy lessons are being learned (and are yet to be learned), and these lessons may be transferable to other parts of California and the nation. Indeed, the Parkfield experiment has captured the interest of numerous Californians, including State officials, emergency managers, the news media, and at least some of the public.

  9. Computations involving differential operators and their actions on functions

    NASA Technical Reports Server (NTRS)

    Crouch, Peter E.; Grossman, Robert; Larson, Richard

    1991-01-01

    The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications.

  10. Teachers' Self-Efficacy vs. Parental Involvement: Prediction and Implementation

    ERIC Educational Resources Information Center

    Fisher, Yael; Kostelitz, Yifat

    2015-01-01

    This research examines the influence of teachers' views regarding parental involvement on their perception of self-efficacy. Data were collected from a sample of 319 Israeli elementary schools teachers. A path analysis procedure was employed to test the mediating effect of personal background and organizational variables and perceived parental…

  11. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  12. Children on the Autism Spectrum: Grandmother Involvement and Family Functioning

    ERIC Educational Resources Information Center

    Sullivan, Alison; Winograd, Greta; Verkuilen, Jay; Fish, Marian C.

    2012-01-01

    Background: This study investigated associations between the presence of a child with autism or Asperger's disorder in the family, family functioning and grandmother experiences with the goal of better understanding grandparent involvement in the lives of grandchildren on the autism spectrum and their families. Methods: Mothers and grandmothers of…

  13. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    PubMed Central

    Hoehndorf, Robert; Martin, Maria J.; Solovyev, Victor

    2016-01-01

    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations. PMID:27390860

  14. Executive functions predict conceptual learning of science.

    PubMed

    Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J

    2016-06-01

    We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. PMID:26751597

  15. Functional limitations due to foot involvement in spondyloarthritis

    PubMed Central

    Ozaras, Nihal; Havan, Nuri; Poyraz, Emine; Rezvanı, Aylin; Aydın, Teoman

    2016-01-01

    [Purpose] Spondyloarthritis is a major inflammatory disease followed-up in the rheumatology clinics, foot involvement in spodyloarthritis is common. The functional states of patients with spondyloarthritis are usually evaluated globally. The aim of this study was to assess the foot involvement-related functional limitations in patients with spondyloarthritis. [Subjects and Methods] Patients with ankylosing spondylitis and psoriatic arthritis with foot pain more than 4 weeks who underwent anteroposterior and lateral feet radiography were enrolled into the study. A “clinical findings score” was calculated by assigning 1 point for every finding of swelling, redness, and tenderness. C-reactive protein and erythrocyte sedimentation rate were used as serum markers for disease activity. Foot radiograms were evaluated using the spondyloarthropathy tarsal radiographic index and the foot-related functional state of patients was determined by the Turkish version of the Foot and Ankle Outcome Score. [Results] There were no relationships between Foot and Ankle Outcome Score subscales and clinical findings score, serum markers, or radiologic score. Pain and symptoms subscale scores were result positively correlated with activity of daily living, sport and recreation, and quality of life subscale scores. [Conclusion] Pain and symptoms are the main determinants of foot-related functional limitations in spondyloarthritis. PMID:27512252

  16. Identification of Resting State Networks Involved in Executive Function.

    PubMed

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function. PMID:26935902

  17. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation.

    PubMed

    Hériché, Jean-Karim; Lees, Jon G; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M Julia; Hossain, M Julius; Adler, Priit; Fernández, José M; Krallinger, Martin; Haering, Christian H; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A; Orengo, Christine; Ellenberg, Jan

    2014-08-15

    The advent of genome-wide RNA interference (RNAi)-based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function-mitotic chromosome condensation-and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  18. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation

    PubMed Central

    Hériché, Jean-Karim; Lees, Jon G.; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M. Julia; Hossain, M. Julius; Adler, Priit; Fernández, José M.; Krallinger, Martin; Haering, Christian H.; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A.; Orengo, Christine; Ellenberg, Jan

    2014-01-01

    The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  19. Contrast sensitivity function calibration based on image quality prediction

    NASA Astrophysics Data System (ADS)

    Han, Yu; Cai, Yunze

    2014-11-01

    Contrast sensitivity functions (CSFs) describe visual stimuli based on their spatial frequency. However, CSF calibration is limited by the size of the sample collection and this remains an open issue. In this study, we propose an approach for calibrating CSFs that is based on the hypothesis that a precise CSF model can accurately predict image quality. Thus, CSF calibration is regarded as the inverse problem of image quality prediction according to our hypothesis. A CSF could be calibrated by optimizing the performance of a CSF-based image quality metric using a database containing images with known quality. Compared with the traditional method, this would reduce the work involved in sample collection dramatically. In the present study, we employed three image databases to optimize some existing CSF models. The experimental results showed that the performance of a three-parameter CSF model was better than that of other models. The results of this study may be helpful in CSF and image quality research.

  20. Predicting Head Start parent involvement in an alcohol and other drug prevention program.

    PubMed

    Hahn, E J

    1995-01-01

    This study examined Health Belief Model predictors of parent involvement with preschool children in an alcohol and other drug (AOD) prevention program. Over 300 Head Start parents were invited to participate in BABES (Beginning Alcohol and Addictions Basic Education Studies) with their children once a week for 7 weeks. Two hundred parents completed self-report instruments prior to participation in BABES. Previous classroom involvement, barriers, county, and race predicted high attendance (3 to 7 lessons). AOD use severity, benefits, and role modeling predicted low attendance (1 to 2 lessons). Further research involving manipulation of external cues, parent involvement in nonclassroom settings, and race-homogeneous samples is recommended. PMID:7862545

  1. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. PMID:24937013

  2. Functional involvement of human discs large tumor suppressor in cytokinesis

    SciTech Connect

    Unno, Kenji; Hanada, Toshihiko; Chishti, Athar H.

    2008-10-15

    Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.

  3. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.

    PubMed

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L; Kenworthy, Lauren; Martin, Alex

    2015-12-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome--adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement. PMID:26627261

  4. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L.; Kenworthy, Lauren; Martin, Alex

    2015-01-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome—adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement. PMID:26627261

  5. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  6. Cellular functions of vaults and their involvement in multidrug resistance.

    PubMed

    Steiner, E; Holzmann, K; Elbling, L; Micksche, M; Berger, W

    2006-08-01

    Vaults are evolutionary highly conserved ribonucleoprotein (RNP) particles with a hollow barrel-like structure. They are 41 x 73 nm in size and are composed of multiple copies of three proteins and small untranslated RNA (vRNA). The main component of vaults represents the 110 kDa major vault protein (MVP), whereas the two minor vault proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (VPARP) and the 240 kDa telomerase-associated protein-1 (TEP1). Vaults are abundantly present in the cytoplasm of eukaryotic cells and they were found to be associated with cytoskeletal elements as well as occasionally with the nuclear envelope. Vaults and MVP have been associated with several cellular processes which are also involved in cancer development like cell motility and differentiation. Due to the over-expression of MVP (also termed lung resistance-related protein or LRP) in several P-glycoprotein (P-gp)-negative chemoresistant cancer cell lines, vaults have been linked to multidrug resistance (MDR). Accordingly, high levels of MVP were found in tissues chronically exposed to xenobiotics. In addition, the expression of MVP correlated with the degree of malignancy in certain cancer types, suggesting a direct involvement in tumor development and/or progression. Based on the finding that MVP binds several phosphatases and kinases including PTEN, SHP-2 as well as Erk, evidence is accumulating that MVP might be involved in the regulation of important cell signalling pathways including the PI3K/Akt and the MAPK pathways. In this review we summarize the current knowledge concerning the vault particle and discuss its possible cellular functions, focusing on the role of vaults in chemotherapy resistance. PMID:16918321

  7. A Prediction Model of the Capillary Pressure J-Function.

    PubMed

    Xu, W S; Luo, P Y; Sun, L; Lin, N

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  8. Predicting and exploring network components involved in pathogenesis in the malaria parasite via novel subnetwork alignments

    PubMed Central

    2015-01-01

    Background Malaria is a major health threat, affecting over 40% of the world's population. The latest report released by the World Health Organization estimated about 207 million cases of malaria infection, and about 627,000 deaths in 2012 alone. During the past decade, new therapeutic targets have been identified and are at various stages of characterization, thanks to the emerging omics-based technologies. However, the mechanism of malaria pathogenesis remains largely unknown. In this paper, we employ a novel neighborhood subnetwork alignment approach to identify network components that are potentially involved in pathogenesis. Results Our module-based subnetwork alignment approach identified 24 functional homologs of pathogenesis-related proteins in the malaria parasite P. falciparum, using the protein-protein interaction networks in Escherichia coli as references. Eighteen out of these 24 proteins are associated with 418 other proteins that are related to DNA replication, transcriptional regulation, translation, signaling, metabolism, cell cycle regulation, as well as cytoadherence and entry to the host. Conclusions The subnetwork alignments and subsequent protein-protein association network mining predicted a group of malarial proteins that may be involved in parasite development and parasite-host interaction, opening a new systems-level view of parasite pathogenesis and virulence. PMID:26100579

  9. Predicted vibrational spectra from anharmonic potential functions

    SciTech Connect

    Dunn, K.M.

    1986-01-01

    The dissertation develops a procedure for predicting vibrational spectra of polyatomic molecules from a combination of theoretical and experimental information. Ab initio quantum chemical calculations provide anharmonic force constants including cubics and diagonal quartics. A variational procedure analogous to configuration interaction is then used to compute eigenvalues of the pure vibrational Hamiltonian. The diagonal quadratic force constants are then adjusted until the calculated fundamental frequencies agree with experiment. The resulting theoretical-experimental force field may then be used to predict the energies of vibrationally excited states. The method is applied to three molecules: hydrogen cyanide, ammonia, and methyl fluoride. For hydrogen cyanide, the dissertation presents predicted energies for all of the vibrationally excited states with up to four quanta of excitation distributed among the four modes. The root-mean-square error is 8.7 cm{sup {minus}1} for the states below 11,000 cm{sup {minus}1}. The force constants for ammonia are adjusted to reproduce the fundamental frequencies of ND{sub 3}. The force constants then predict the energies of states below 7000 cm{sup {minus}1} with an rms error of 5.8 cm{sup {minus}1} for ND{sub 3} and 16.7 cm{sup {minus}1} for NH{sub 3}. Finally, the adjusted force constants for methyl fluoride predict the energies of states below 4100 cm{sup {minus}1} with an rms error of 4.3 cm{sup {minus}1}. These force constants are also used to predict the CH stretching overtone region of CH{sub 3}F and the first, second and third overtone regions of CD{sub 2}FH for which experimental information is not available.

  10. Father involvement: Identifying and predicting family members' shared and unique perceptions.

    PubMed

    Dyer, W Justin; Day, Randal D; Harper, James M

    2014-08-01

    Father involvement research has typically not recognized that reports of involvement contain at least two components: 1 reflecting a view of father involvement that is broadly recognized in the family, and another reflecting each reporter's unique perceptions. Using a longitudinal sample of 302 families, this study provides a first examination of shared and unique views of father involvement (engagement and warmth) from the perspectives of fathers, children, and mothers. This study also identifies influences on these shared and unique perspectives. Father involvement reports were obtained when the child was 12 and 14 years old. Mother reports overlapped more with the shared view than father or child reports. This suggests the mother's view may be more in line with broadly recognized father involvement. Regarding antecedents, for fathers' unique view, a compensatory model partially explains results; that is, negative aspects of family life were positively associated with fathers' unique view. Children's unique view of engagement may partially reflect a sentiment override with father antisocial behaviors being predictive. Mothers' unique view of engagement was predicted by father and mother work hours and her unique view of warmth was predicted by depression and maternal gatekeeping. Taken, together finding suggests a far more nuanced view of father involvement should be considered. PMID:25000130

  11. Network-based prediction of protein function

    PubMed Central

    Sharan, Roded; Ulitsky, Igor; Shamir, Ron

    2007-01-01

    Functional annotation of proteins is a fundamental problem in the post-genomic era. The recent availability of protein interaction networks for many model species has spurred on the development of computational methods for interpreting such data in order to elucidate protein function. In this review, we describe the current computational approaches for the task, including direct methods, which propagate functional information through the network, and module-assisted methods, which infer functional modules within the network and use those for the annotation task. Although a broad variety of interesting approaches has been developed, further progress in the field will depend on systematic evaluation of the methods and their dissemination in the biological community. PMID:17353930

  12. MASS FUNCTION PREDICTIONS BEYOND {Lambda}CDM

    SciTech Connect

    Bhattacharya, Suman; Lukic, Zarija; Habib, Salman; Heitmann, Katrin; White, Martin; Wagner, Christian

    2011-05-10

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference {Lambda}CDM cosmology and for a set of wCDM cosmologies. For the reference {Lambda}CDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) {Lambda}CDM mass function over a mass range of 6 x 10{sup 11}-3 x 10{sup 15} M{sub sun} to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a {Lambda}CDM cosmology and others with w {approx_equal} -1) are described by the fitting formula for the reference {Lambda}CDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  13. Mass Function Predictions Beyond ΛCDM

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Suman; Heitmann, Katrin; White, Martin; Lukić, Zarija; Wagner, Christian; Habib, Salman

    2011-05-01

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference ΛCDM cosmology and for a set of wCDM cosmologies. For the reference ΛCDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) ΛCDM mass function over a mass range of 6 × 1011-3 × 1015 M sun to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a ΛCDM cosmology and others with w ~= -1) are described by the fitting formula for the reference ΛCDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  14. The Factorial and Predictive Validities of a Revised Measure of Zaichkowsky's Personal Involvement Inventory.

    ERIC Educational Resources Information Center

    Munson, J. Michael; McQuarrie, Edward F.

    1987-01-01

    A shortened version of Zaichkowsky's 20-item Personal Involvement Inventory was created, removing four items which might be difficult to understand for noncollege-educated populations. The 16-item modified version had acceptable internal consistency; test-retest reliability; and factorial and predictive validity. (Author/GDC)

  15. Predicting the Career Involvement of Women One Year After College Graduation.

    ERIC Educational Resources Information Center

    Lentz, Linda P.

    A 1980 study was conducted to determine those factors (educational background, career plans, family influence, parental background, and career salience) predictive of women's career involvement one year after college graduation. A second analysis further differentiated between the groups on the variable "commitment to working." Participants were…

  16. Early executive function predicts reasoning development.

    PubMed

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills. PMID:23184588

  17. Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data

    PubMed Central

    Nariai, Naoki; Kolaczyk, Eric D.; Kasif, Simon

    2007-01-01

    Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI) data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins) represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO) terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function. PMID:17396164

  18. Metabolic Syndrome Biomarkers Predict Lung Function Impairment

    PubMed Central

    Naveed, Bushra; Weiden, Michael D.; Kwon, Sophia; Gracely, Edward J.; Comfort, Ashley L.; Ferrier, Natalia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Rationale: Cross-sectional studies demonstrate an association between metabolic syndrome and impaired lung function. Objectives: To define if metabolic syndrome biomarkers are risk factors for loss of lung function after irritant exposure. Methods: A nested case-control study of Fire Department of New York personnel with normal pre–September 11th FEV1 and who presented for subspecialty pulmonary evaluation before March 10, 2008. We correlated metabolic syndrome biomarkers obtained within 6 months of World Trade Center dust exposure with subsequent FEV1. FEV1 at subspecialty pulmonary evaluation within 6.5 years defined disease status; cases had FEV1 less than lower limit of normal, whereas control subjects had FEV1 greater than or equal to lower limit of normal. Measurements and Main Results: Clinical data and serum sampled at the first monitoring examination within 6 months of September 11, 2001, assessed body mass index, heart rate, serum glucose, triglycerides and high-density lipoprotein (HDL), leptin, pancreatic polypeptide, and amylin. Cases and control subjects had significant differences in HDL less than 40 mg/dl with triglycerides greater than or equal to 150 mg/dl, heart rate greater than or equal to 66 bpm, and leptin greater than or equal to 10,300 pg/ml. Each increased the odds of abnormal FEV1 at pulmonary evaluation by more than twofold, whereas amylin greater than or equal to 116 pg/ml decreased the odds by 84%, in a multibiomarker model adjusting for age, race, body mass index, and World Trade Center arrival time. This model had a sensitivity of 41%, a specificity of 86%, and a receiver operating characteristic area under the curve of 0.77. Conclusions: Abnormal triglycerides and HDL and elevated heart rate and leptin are independent risk factors of greater susceptibility to lung function impairment after September 11, 2001, whereas elevated amylin is protective. Metabolic biomarkers are predictors of lung disease, and may be useful for assessing

  19. Functional prediction of hypothetical proteins in human adenoviruses.

    PubMed

    Dorden, Shane; Mahadevan, Padmanabhan

    2015-01-01

    Assigning functional information to hypothetical proteins in virus genomes is crucial for gaining insight into their proteomes. Human adenoviruses are medium sized viruses that cause a range of diseases. Their genomes possess proteins with uncharacterized function known as hypothetical proteins. Using a wide range of protein function prediction servers, functional information was obtained about these hypothetical proteins. A comparison of functional information obtained from these servers revealed that some of them produced functional information, while others provided little functional information about these human adenovirus hypothetical proteins. The PFP, ESG, PSIPRED, 3d2GO, and ProtFun servers produced the most functional information regarding these hypothetical proteins. PMID:26664031

  20. Sexual abuse predicts functional somatic symptoms: an adolescent population study.

    PubMed

    Bonvanie, Irma J; van Gils, Anne; Janssens, Karin A M; Rosmalen, Judith G M

    2015-08-01

    The main aim of this study was to investigate the effect of childhood sexual abuse on medically not well explained or functional somatic symptoms (FSSs) in adolescents. We hypothesized that sexual abuse predicts higher levels of FSSs and that anxiety and depression contribute to this relationship. In addition, we hypothesized that more severe abuse is associated with higher levels of FSSs and that sexual abuse is related to gastrointestinal FSSs in particular. This study was part of the Tracking Adolescents' Individual Lives Survey (TRAILS): a general population cohort which started in 2001 (N=2,230; 50.8% girls, mean age 11.1 years). The current study uses data of 1,680 participants over four assessment waves (75% of baseline, mean duration of follow-up: 8 years). FSSs were measured by the Somatic Complaints subscale of the Youth Self-Report at all waves. Sexual abuse before the age of sixteen was assessed retrospectively with a questionnaire at T4. To test the hypotheses linear mixed models were used adjusted for age, sex, socioeconomic status, anxiety and depression. Sexual abuse predicted higher levels of FSSs after adjustment for age sex and socioeconomic status (B=.06) and after additional adjustment for anxiety and depression (B=.03). While sexual abuse involving physical contact significantly predicted the level of FSSs (assault; B=.08, rape; B=.05), non-contact sexual abuse was not significantly associated with FSSs (B=.04). Sexual abuse was not a stronger predictor of gastrointestinal FSSs (B=.06) than of all FSSs. Further research is needed to clarify possible mechanisms underlying relationship between sexual abuse and FSSs. PMID:26142915

  1. Using search engine technology for protein function prediction.

    PubMed

    Chen, Ziyang; Cai, Zhao; Li, Min; Liu, Binbin

    2011-01-01

    Prediction of protein function is one of the most challenging problems in the post-genomic era. In this paper, we propose a novel algorithm Improved ProteinRank (IPR) for protein function prediction, which is based on the search engine technology and the preferential attachment criteria. In addition, an improved algorithm IPRW is developed from IPR to be used in the weighted protein?protein interaction (PPI) network. The proposed algorithms IPR and IPRW are applied to the PPI network of S.cerevisiae. The experimental results show that both IPR and IPRW outweigh the previous methods for the prediction of protein functions. PMID:21441099

  2. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  3. Cerebral Involvement in the Cognitive Functioning of Bilinguals.

    ERIC Educational Resources Information Center

    Vaid, Jyotsna; Lambert, Wallace E.

    The cognitive processing strategies of two groups of French-English bilinguals were studied by means of an auditory Stroop test designed to evaluate cerebral hemispheric involvement. An "early bilingual" group were bilingual before the age of five, and a "late bilingual" group were bilingual after the age of ten. Stimuli were words uttered in…

  4. Rumination prospectively predicts executive functioning impairments in adolescents

    PubMed Central

    Connolly, Samantha L.; Wagner, Clara A.; Shapero, Benjamin G.; Pendergast, Laura L.; Abramson, Lyn Y.; Alloy, Lauren B.

    2014-01-01

    Background and objectives The current study tested the resource allocation hypothesis, examining whether baseline rumination or depressive symptom levels prospectively predicted deficits in executive functioning in an adolescent sample. The alternative to this hypothesis was also evaluated by testing whether lower initial levels of executive functioning predicted increases in rumination or depressive symptoms at follow-up. Methods A community sample of 200 adolescents (ages 12–13) completed measures of depressive symptoms, rumination, and executive functioning at baseline and at a follow-up session approximately 15 months later. Results Adolescents with higher levels of baseline rumination displayed decreases in selective attention and attentional switching at follow-up. Rumination did not predict changes in working memory or sustained and divided attention. Depressive symptoms were not found to predict significant changes in executive functioning scores at follow-up. Baseline executive functioning was not associated with change in rumination or depression over time. Conclusions Findings partially support the resource allocation hypothesis that engaging in ruminative thoughts consumes cognitive resources that would otherwise be allocated towards difficult tests of executive functioning. Support was not found for the alternative hypothesis that lower levels of initial executive functioning would predict increased rumination or depressive symptoms at follow-up. Our study is the first to find support for the resource allocation hypothesis using a longitudinal design and an adolescent sample. Findings highlight the potentially detrimental effects of rumination on executive functioning during early adolescence. PMID:23978629

  5. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average. PMID:25343279

  6. Early involvement in friendships predicts later plasma concentrations of oxytocin and vasopressin in juvenile rhesus macaques (Macaca mulatta)

    PubMed Central

    Weinstein, Tamara A. R.; Bales, Karen L.; Maninger, Nicole; Hostetler, Caroline M.; Capitanio, John P.

    2014-01-01

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) are involved in social bonding in attachment relationships, but their role in friendship is poorly understood. We investigated whether rhesus macaques’ (Macaca mulatta) friendships at age one predicted plasma OT and AVP at two later time points. Subjects were 54 rhesus macaques at the California National Primate Research Center (CNPRC). Blood was drawn during a brief capture-and-release in the home cage, and plasma assayed for OT and AVP using an enzyme immunoassay (EIA). Separate linear mixed models for each sex tested the effects of dominance rank, age, sampling time point, housing condition, parturition status, two blood draw timing measures, and five friendship types: proximity friendships, play friendships, reciprocal friendships (a preference for a peer that also preferred the subject), multiplex friendships (friendships displayed in more than one behavioral domain), and total number of friendships. Females’ number of reciprocal and play friendships at age one significantly predicted later OT; additionally, these two friendship types interacted with rank, such that high-ranking females with the fewest friendships had the highest OT concentrations. Friendship did not predict later OT levels in males, however proximity, play, reciprocal, and total number of friendships predicted males’ plasma AVP. Play and total number of friendships also tended to predict AVP in females. Our results show that peripheral measures of neuroendocrine functioning in juvenile rhesus monkeys are influenced by early involvement in friendships. Friendships have an especially strong impact on an individual’s psychosocial development, and our data suggest OT and AVP as potential underlying mechanisms. Moreover, sex differences in the functioning of the OT and AVP systems, and their relation to friendship, may have important clinical implications for the use of OT as a therapeutic, as well as informing the social

  7. Karyopherins: potential biological elements involved in the delayed graft function in renal transplant recipients

    PubMed Central

    2014-01-01

    Background Immediately after renal transplantation, patients experience rapid and significant improvement of their clinical conditions and undergo considerable systemic and cellular modifications. However, some patients present a slow recovery of the renal function commonly defined as delayed graft function (DGF). Although clinically well characterized, the molecular mechanisms underlying this condition are not totally defined, thus, we are currently missing specific clinical markers to predict and to make early diagnosis of this event. Methods We investigated, using a pathway analysis approach, the transcriptomic profile of peripheral blood mononuclear cells (PBMC) from renal transplant recipients with DGF and with early graft function (EGF), before (T0) and 24 hours (T24) after transplantation. Results Bioinformatics/statistical analysis showed that 15 pathways (8 up-regulated and 7 down-regulated) and 11 pathways (5 up-regulated and 6 down-regulated) were able to identify DGF patients at T0 and T24, respectively. Interestingly, the most up-regulated pathway at both time points was NLS-bearing substrate import into nucleus, which includes genes encoding for several subtypes of karyopherins, a group of proteins involved in nucleocytoplasmic transport. Signal transducers and activators of transcription (STAT) utilize karyopherins-alpha (KPNA) for their passage from cytoplasm into the nucleus. In vitro functional analysis demonstrated that in PBMCs of DGF patients, there was a significant KPNA-mediated nuclear translocation of the phosphorylated form of STAT3 (pSTAT3) after short-time stimulation (2 and 5 minutes) with interleukin-6. Conclusions Our study suggests the involvement, immediately before transplantation, of karyopherin-mediated nuclear transport in the onset and development of DGF. Additionally, it reveals that karyopherins could be good candidates as potential DGF predictive clinical biomarkers and targets for pharmacological interventions in renal

  8. Predicting Pelvic Lymph Node Involvement in Current-Era Prostate Cancer

    SciTech Connect

    Rahman, Sophia; Cosmatos, Harry; Dave, Giatri; Williams, Stephen; Tome, Michael

    2012-02-01

    Purpose: The Roach formula [2/3 Multiplication-Sign prostate-specific antigen + (Gleason score - 6) Multiplication-Sign 10], derived in 1993 during the early prostate specific antigen (PSA) screening era, has been used to predict the risk of pelvic lymph node involvement in patients with prostate cancer. In the current era of widespread PSA screening with a shift to earlier disease stages, there is evidence to suggest that the Roach score overestimates risk of nodal metastasis. This study retrospectively reviews the validity of this formula as a prediction tool. Methods and Materials: We conducted a retrospective institutional review including men with clinical T1c-T3 prostate cancer, with baseline PSA levels and biopsy-obtained Gleason scores who underwent radical prostatectomy with pelvic node dissection from 2001 through 2009 (N = 1,022). The predicted risk of nodal involvement was calculated for each patient using the Roach formula and then compared with actual rates following surgery. Results: The study included 1,022 patients; 99.6% had clinical T1c/T2 disease, with a mean of 10.3 lymph nodes surgically evaluated. Overall, 42 patients (4.1%) had nodal metastasis. For every range of scores, the Roach formula overestimates the risk of nodal involvement. Observed nodal positivity was 1%, 6.3%, 10%, 15.2%, and 16.7% for Roach scores {<=}10%, >10%-20%, >20%-30%, >30%-40%, and >40%, respectively. The Roach score overestimates the risk by approximately 4.5-fold in patients with scores {<=}10%, by 2.5-fold for all scores between 10% and 40%, and by 4-fold for scores >40%. Conclusion: The Roach formula overpredicts the risk of pelvic nodal involvement in current-era prostate cancer patients undergoing regular PSA screening and with mainly T1c/T2 disease. Contemporary patients are much less likely to have nodal involvement for a given PSA and Gleason score.

  9. Identification of chromosomal regions involved in decapentaplegic function in Drosophila.

    PubMed Central

    Nicholls, R E; Gelbart, W M

    1998-01-01

    Signaling molecules of the transforming growth factor beta (TGF-beta) family contribute to numerous developmental processes in a variety of organisms. However, our understanding of the mechanisms which regulate the activity of and mediate the response to TGF-beta family members remains incomplete. The product of the Drosophila decapentaplegic (dpp) locus is a well-characterized member of this family. We have taken a genetic approach to identify factors required for TGF-beta function in Drosophila by testing for genetic interactions between mutant alleles of dpp and a collection of chromosomal deficiencies. Our survey identified two deficiencies that act as maternal enhancers of recessive embryonic lethal alleles of dpp. The enhanced individuals die with weakly ventralized phenotypes. These phenotypes are consistent with a mechanism whereby the deficiencies deplete two maternally provided factors required for dpp's role in embryonic dorsal-ventral pattern formation. One of these deficiencies also appears to delete a factor required for dpp function in wing vein formation. These deficiencies remove material from the 54F-55A and 66B-66C polytene chromosomal regions, respectively. As neither of these regions has been previously implicated in dpp function, we propose that each of the deficiencies removes a novel factor or factors required for dpp function. PMID:9584097

  10. Thyroid Gland Involvement in Carcinoma Larynx and Hypopharynx-Predictive Factors and Prognostic Significance

    PubMed Central

    Iype, Elizabeth Mathew; Jagad, Vijay; Varghese, Bipin T.; Sebastian, Paul

    2016-01-01

    Introduction Intraoperative management of thyroid gland in laryngeal and hypopharyngeal cancer is controversial. Aim The objectives of this study were to determine the incidence of thyroid gland invasion in patients undergoing surgery for laryngeal or hypopharyngeal carcinoma, to assess predictive factors and to assess the prognosis in patients with and without thyroid gland invasion. Materials and Methods One hundred and thirty-three patients who underwent surgery for carcinoma larynx and hypopharynx from 2006 to 2010 were reviewed retrospectively. Surgical specimens were examined to determine the incidence of thyroid gland invasion and predictive factors were analysed. The recurrence rate and the survival in patients with and without thyroid gland invasion were also analysed. Results Out of the 133 patients with carcinoma larynx and hypopharynx who underwent surgery, histological thyroid gland invasion was observed in 28/133 (21%) patients. Significant relationship was found between histological thyroid gland invasion and preoperative evidence of thyroid cartilage erosion by CT scan and also when gross thyroid gland involvement observed during surgery. There is significant association between thyroid gland invasion when there is upper oesophageal or subglottic involvement. Conclusion After analysing the retrospective data from our study, we would like to suggest that thyroid gland need not be removed routinely in all laryngectomies, unless there is advanced disease with thyroid cartilage erosion and gross thyroid gland involvement or disease with significant subglottic or oesophageal involvement. PMID:27042568

  11. Gene function prediction with knowledge from gene ontology.

    PubMed

    Shen, Ying; Zhang, Lin

    2015-01-01

    Gene function prediction is an important problem in bioinformatics. Due to the inherent noise existing in the gene expression data, the attempt to improve the prediction accuracy resorting to new classification techniques is limited. With the emergence of Gene Ontology (GO), extra knowledge about the gene products can be extracted from GO and facilitates solving the gene function prediction problem. In this paper, we propose a new method which utilises GO information to improve the classifiers' performance in gene function prediction. Specifically, our method learns a distance metric under the supervision of the GO knowledge using the distance learning technique. Compared with the traditional distance metrics, the learned one produces a better performance and consequently classification accuracy can be improved. The effectiveness of our proposed method has been corroborated by the extensive experimental results. PMID:26529907

  12. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  13. Empirical sediment transport function predicting seepage erosion undercutting for cohesive bank failure prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remains a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including ...

  14. INTEGRATING COMPUTATIONAL PROTEIN FUNCTION PREDICTION INTO DRUG DISCOVERY INITIATIVES

    PubMed Central

    Grant, Marianne A.

    2014-01-01

    Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies for identifying valid targets and discovering leads against them as a way of accelerating drug discovery. The ever increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold-standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical and genetic knowledge have emerged. Herein, we review current bioinformatic programs and approaches for protein function prediction/annotation and discuss their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully utilizing the vast amounts of genomic sequence information available to drug discovery and development processes. PMID:25530654

  15. Preschool Executive Functioning Abilities Predict Early Mathematics Achievement

    ERIC Educational Resources Information Center

    Clark, Caron A. C.; Pritchard, Verena E.; Woodward, Lianne J.

    2010-01-01

    Impairments in executive function have been documented in school-age children with mathematical learning difficulties. However, the utility and specificity of preschool executive function abilities in predicting later mathematical achievement are poorly understood. This study examined linkages between children's developing executive function…

  16. A Unitary Executive Function Predicts Intelligence in Children

    ERIC Educational Resources Information Center

    Brydges, Christopher R.; Reid, Corinne L.; Fox, Allison M.; Anderson, Mike

    2012-01-01

    Executive functions (EF) and intelligence are of critical importance to success in many everyday tasks. Working memory, or updating, which is one latent variable identified in confirmatory factor analytic models of executive functions, predicts intelligence (both fluid and crystallised) in adults, but inhibition and shifting do not (Friedman et…

  17. STRIPAK Complexes: structure, biological function, and involvement in human diseases

    PubMed Central

    Hwang, Juyeon; Pallas, David C.

    2014-01-01

    The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK–like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK or STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we will explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation. PMID:24333164

  18. Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure

    PubMed Central

    Zuloaga, Damian G.; Iancu, Ovidiu D.; Weber, Sydney; Etzel, Desiree; Marzulla, Tessa; Stewart, Blair; Allen, Charles N.; Raber, Jacob

    2015-01-01

    Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain. PMID:26441501

  19. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  20. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  1. A large-scale evaluation of computational protein function prediction.

    PubMed

    Radivojac, Predrag; Clark, Wyatt T; Oron, Tal Ronnen; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kaßner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Boehm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas A; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-03-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools. PMID:23353650

  2. Involvement of Local Lamellipodia in Endothelial Barrier Function

    PubMed Central

    Breslin, Jerome W.; Zhang, Xun E.; Worthylake, Rebecca A.; Souza-Smith, Flavia M.

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  3. Involvement of local lamellipodia in endothelial barrier function.

    PubMed

    Breslin, Jerome W; Zhang, Xun E; Worthylake, Rebecca A; Souza-Smith, Flavia M

    2015-01-01

    Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and

  4. Revisiting the prediction of protein function at CASP6.

    PubMed

    Pellegrini-Calace, Marialuisa; Soro, Simonetta; Tramontano, Anna

    2006-07-01

    The ability to predict the function of a protein, given its sequence and/or 3D structure, is an essential requirement for exploiting the wealth of data made available by genomics and structural genomics projects and is therefore raising increasing interest in the computational biology community. To foster developments in the area as well as to establish the state of the art of present methods, a function prediction category was tentatively introduced in the 6th edition of the Critical Assessment of Techniques for Protein Structure Prediction (CASP) worldwide experiment. The assessment of the performance of the methods was made difficult by at least two factors: (a) the experimentally determined function of the targets was not available at the time of assessment; (b) the experiment is run blindly, preventing verification of whether the convergence of different predictions towards the same functional annotation was due to the similarity of the methods or to a genuine signal detectable by different methodologies. In this work, we collected information about the methods used by the various predictors and revisited the results of the experiment by verifying how often and in which cases a convergent prediction was obtained by methods based on different rationale. We propose a method for classifying the type and redundancy of the methods. We also analyzed the cases in which a function for the target protein has become available. Our results show that predictions derived from a consensus of different methods can reach an accuracy as high as 80%. It follows that some of the predictions submitted to CASP6, once reanalyzed taking into account the type of converging methods, can provide very useful information to researchers interested in the function of the target proteins. PMID:16759228

  5. Coupled cluster Green function: Model involving single and double excitations

    NASA Astrophysics Data System (ADS)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Shelton, William A.

    2016-04-01

    In this paper, we report on the development of a parallel implementation of the coupled-cluster (CC) Green function formulation (GFCC) employing single and double excitations in the cluster operator (GFCCSD). A key aspect of this work is the determination of the frequency dependent self-energy, Σ(ω). The detailed description of the underlying algorithm is provided, including approximations used that preserve the pole structure of the full GFCCSD method, thereby reducing the computational costs while maintaining an accurate character of methodology. Furthermore, for systems with strong local correlation, our formulation reveals a diagonally dominate block structure where as the non-local correlation increases, the block size increases proportionally. To demonstrate the accuracy of our approach, several examples including calculations of ionization potentials for benchmark systems are presented and compared against experiment.

  6. Coupled cluster Green function: Model involving single and double excitations.

    PubMed

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Shelton, William A

    2016-04-14

    In this paper, we report on the development of a parallel implementation of the coupled-cluster (CC) Green function formulation (GFCC) employing single and double excitations in the cluster operator (GFCCSD). A key aspect of this work is the determination of the frequency dependent self-energy, Σ(ω). The detailed description of the underlying algorithm is provided, including approximations used that preserve the pole structure of the full GFCCSD method, thereby reducing the computational costs while maintaining an accurate character of methodology. Furthermore, for systems with strong local correlation, our formulation reveals a diagonally dominate block structure where as the non-local correlation increases, the block size increases proportionally. To demonstrate the accuracy of our approach, several examples including calculations of ionization potentials for benchmark systems are presented and compared against experiment. PMID:27083702

  7. Postoperative cognitive dysfunction: Involvement of neuroinflammation and neuronal functioning.

    PubMed

    Hovens, Iris B; Schoemaker, Regien G; van der Zee, Eddy A; Absalom, Anthony R; Heineman, Erik; van Leeuwen, Barbara L

    2014-05-01

    Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced inflammatory processes, which may influence neuronal functioning either directly or through modulation of intraneuronal pathways, such as the brain derived neurotrophic factor (BDNF) mediated pathway. To study the time course of post-surgical (neuro)inflammation, changes in the BDNF-pathway and POCD, we subjected 3months old male Wistar rats to abdominal surgery and implanted a jugular vein catheter for timed blood sampling. Cognition, affective behavior and markers for (neuro)inflammation, BDNF and neurogenesis were assessed at 1, 2 and 3weeks following surgery. Rats displayed changes in exploratory activity shortly after surgery, associated with postoperatively elevated IL-6 plasma levels. Spatial learning and memory were temporarily impaired in the first 2weeks following surgery, whereas non-spatial cognitive functions seemed unaffected. Analysis of brain tissue revealed increased neuroinflammation (IL-1B and microgliosis) 7days following surgery, decreased BDNF levels on postoperative day 14 and 21, and decreased neurogenesis until at least 21days following surgery. These findings indicate that in young adult rats only spatial learning and memory is affected by surgery, suggesting hippocampal dependent cognition is especially vulnerable to surgery-induced impairment. The observed differences in time course following surgery and relation to plasma IL-6 suggest cognitive dysfunction and mood changes comprise distinct features of postoperative behavioral impairment. The postoperative changes in neuroinflammation, BDNF and neurogenesis may represent aspects of the underlying mechanism for POCD. Future research should be aimed to elucidate how these players interact. PMID:24517920

  8. Evolution and cellular function of monothiol glutaredoxins: involvement in iron-sulphur cluster assembly.

    PubMed

    Vilella, Felipe; Alves, Rui; Rodríguez-Manzaneque, María Teresa; Bellí, Gemma; Swaminathan, Swarna; Sunnerhagen, Per; Herrero, Enrique

    2004-01-01

    A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron-sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron-sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell. PMID:18629168

  9. Selenium in the environment, metabolism and involvement in body functions.

    PubMed

    Mehdi, Youcef; Hornick, Jean-Luc; Istasse, Louis; Dufrasne, Isabelle

    2013-01-01

    Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals. PMID:23486107

  10. Structure and function of pseudoknots involved in gene expression control

    PubMed Central

    Peselis, Alla; Serganov, Alexander

    2015-01-01

    Natural RNA molecules can have a high degree of structural complexity but even the most complexly-folded RNAs are assembled from simple structural building blocks. Among the simplest RNA elements are double-stranded helices that participate in the formation of different folding topologies and constitute the major fraction of RNA structures. One common folding motif of RNA is a pseudoknot, defined as a bipartite helical structure formed by base-pairing of the apical loop in the stem-loop structure with an outside sequence. Pseudoknots constitute integral parts of the RNA structures essential for various cellular activities. Among many functions of pseudoknotted RNAs is feedback regulation of gene expression, carried out through specific recognition of various molecules. Pseudoknotted RNAs autoregulate ribosomal and phage protein genes in response to downstream encoded proteins, while many metabolic and transport genes are controlled by cellular metabolites interacting with pseudoknotted RNA elements from the riboswitch family. Modulation of some genes also depends on metabolite-induced mRNA cleavage performed by pseudoknotted ribozymes. Several regulatory pseudoknots have been characterized biochemically and structurally in great detail. These studies have demonstrated a plethora of pseudoknot-based folds and have begun uncovering diverse molecular principles of the ligand-dependent gene expression control. The pseudoknot-mediated mechanisms of gene control and many unexpected and interesting features of the regulatory pseudoknots have significantly advanced our understanding of the genetic circuits and laid the foundation for modulation of their outcomes. PMID:25044223

  11. [Prediction of postoperative visual acuity in retinal detachment with macular involvement].

    PubMed

    Yasukawa, T; Fukuda, T; Kishimoto, M; Ogura, Y

    1995-03-01

    We used laser interferometry (LI) and a potential acuity meter (PAM) to predict visual acuity after surgery for patients with rhegmatogenous retinal detachment with macular involvement. Thirty one eyes of 31 patients with retinal detachment were treated with scleral buckling procedures. Postoperative visual acuity was correlated with preoperative measurements of the LI and PAM, preoperative visual acuity by Landort's ring, and the estimated duration of macular detachment. The correlation between the duration of macular detachment and the postoperative visual acuity was not good (r = 0.55, p < 0.01). Although the preoperative visual acuity showed a relatively good correlation with postoperative visual acuity (r = 0.62, p < 0.01), the results of the LI and PAM provided a better correlation (LI; r = 0.73, PAM; r = 0.71). Our results suggest that the LI and PAM are useful to predict the visual acuity after retinal reattachment in patients with preoperative macular detachment. PMID:7732924

  12. PredictProtein—an open resource for online prediction of protein structural and functional features

    PubMed Central

    Yachdav, Guy; Kloppmann, Edda; Kajan, Laszlo; Hecht, Maximilian; Goldberg, Tatyana; Hamp, Tobias; Hönigschmid, Peter; Schafferhans, Andrea; Roos, Manfred; Bernhofer, Michael; Richter, Lothar; Ashkenazy, Haim; Punta, Marco; Schlessinger, Avner; Bromberg, Yana; Schneider, Reinhard; Vriend, Gerrit; Sander, Chris; Ben-Tal, Nir; Rost, Burkhard

    2014-01-01

    PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org. PMID:24799431

  13. Prediction of Postchemotherapy Ovarian Function Using Markers of Ovarian Reserve

    PubMed Central

    Xia, Rong; Schott, Anne F.; McConnell, Daniel; Banerjee, Mousumi; Hayes, Daniel F.

    2014-01-01

    Background. Reproductive-aged women frequently receive both chemotherapy and endocrine therapy as part of their treatment regimen for early stage hormone receptor-positive breast cancer. Chemotherapy results in transient or permanent ovarian failure in the majority of women. The difficulty in determining which patients will recover ovarian function has implications for adjuvant endocrine therapy decision making. We hypothesized that pretreatment serum anti-Müllerian hormone (AMH) and inhibin B concentrations would predict for ovarian function following chemotherapy. Methods. Pre- and perimenopausal women aged 25–50 years with newly diagnosed breast cancer were enrolled. Subjects underwent phlebotomy for assessment of serum AMH, inhibin B, follicle-stimulating hormone, and estradiol prior to chemotherapy and 1 month and 1 year following completion of treatment. Associations among hormone concentrations, clinical factors, and biochemically assessed ovarian function were assessed. Results. Twenty-seven subjects were evaluable for the primary endpoint. Median age was 41. Twenty subjects (74.1%) experienced recovery of ovarian function within 18 months. Of the 26 evaluable subjects assessed prior to chemotherapy, 19 (73.1%) had detectable serum concentrations of AMH. The positive predictive value of a detectable baseline serum AMH concentration for recovery of ovarian function was 94.7%, and the negative predictive value was 85.7%. On univariate analysis, younger age and detectable serum AMH concentration at chemotherapy initiation were predictive of increased likelihood of recovery of ovarian function. Conclusion. Prechemotherapy assessment of serum AMH may be useful for predicting postchemotherapy ovarian function. This finding has implications for decision making about adjuvant endocrine therapy in premenopausal women treated with chemotherapy. PMID:24319018

  14. Biochemical functional predictions for protein structures of unknown or uncertain function

    PubMed Central

    Mills, Caitlyn L.; Beuning, Penny J.; Ondrechen, Mary Jo

    2015-01-01

    With the exponential growth in the determination of protein sequences and structures via genome sequencing and structural genomics efforts, there is a growing need for reliable computational methods to determine the biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating the function at the molecular level of uncharacterized proteins. While sequence- and three-dimensional-structure-based methods for protein function prediction have been reviewed previously, the recent trends in local structure-based methods have received less attention. These local structure-based methods are the primary focus of this review. Computational methods have been developed to predict the residues important for catalysis and the local spatial arrangements of these residues can be used to identify protein function. In addition, the combination of different types of methods can help obtain more information and better predictions of function for proteins of unknown function. Global initiatives, including the Enzyme Function Initiative (EFI), COMputational BRidges to EXperiments (COMBREX), and the Critical Assessment of Function Annotation (CAFA), are evaluating and testing the different approaches to predicting the function of proteins of unknown function. These initiatives and global collaborations will increase the capability and reliability of methods to predict biochemical function computationally and will add substantial value to the current volume of structural genomics data by reducing the number of absent or inaccurate functional annotations. PMID:25848497

  15. Predicting real-world functional milestones in schizophrenia.

    PubMed

    Olsson, Anna-Karin; Hjärthag, Fredrik; Helldin, Lars

    2016-08-30

    Schizophrenia is a severe disorder that often causes impairments in major areas of functioning, and most patients do not achieve expected real-world functional milestones. The aim of this study was to identify which variables of demography, illness activity, and functional capacity predict patients' ability to attain real-world functional milestones. Participants were 235 outpatients, 149 men and 86 women, diagnosed with schizophrenia spectrum disorder. Our results showed that younger patients managed to achieve a higher level of functioning in educational level, marital status, and social contacts. Patients' functional capacity was primarily associated with educational level and housing situation. We also found that women needed less support regarding housing and obtained a higher level of marital status as compared with men. Our findings demonstrate the importance of considering current symptoms, especially negative symptoms, and remission stability over time, together with age, duration of illness, gender, educational level, and current functional capacity, when predicting patients' future real-world functioning. We also conclude that there is an advantage in exploring symptoms divided into positive, negative, and general domains considering their probable impact on functional achievements. PMID:27235985

  16. DIANA-microT web server: elucidating microRNA functions through target prediction.

    PubMed

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT. PMID:19406924

  17. Beyond Genotype: Serotonin Transporter Epigenetic Modification Predicts Human Brain Function

    PubMed Central

    Nikolova, Yuliya S.; Koenen, Karestan C.; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L.; Sibille, Etienne; Williamson, Douglas E.; Hariri, Ahmad R.

    2014-01-01

    We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

  18. The rat nucleus accumbens is involved in guiding of instrumental responses by stimuli predicting reward magnitude.

    PubMed

    Giertler, Christian; Bohn, Ines; Hauber, Wolfgang

    2003-10-01

    The present study examined the involvement of N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate/kainate (AMPA/KA) and dopamine receptors in the nucleus accumbens (ACB) in influencing reaction times of instrumental responses by the expectancy of reward. A simple reaction time task demanding conditioned lever release was used in which the upcoming reward magnitude was signalled in advance by discriminative cues. After training, in control rats with vehicle infusions (0.5 micro L) into the ACB, reaction times of responses were significantly shorter to the discriminative cue predictive of high reward magnitude. Indirect stimulation of dopamine receptors in the ACB by d-amphetamine (20 micro g/0.5 micro L) decreased reaction times, impaired their guidance by cue-associated reward magnitudes and reduced the accuracy of task performance. Blockade of AMPA/KA receptors in the ACB by 6-cyano-7-nitroquino-xaline-2,3-dione (0.75 and 2.5 micro g/0.5 micro L) or NMDA receptors by d(-)-2-amino-5-phosphonopentanoic acid (5 micro g/0.5 micro L) produced a general increase in reaction times, but left guidance of reaction times by cue-associated reward magnitudes unaffected. Thus, stimulation of intra-ACB ionotropic glutamate receptors is critically involved in modulating the speed of instrumental responding to cues predictive for reward magnitude, but is not required for intact performance of previously learned instrumental behaviour. PMID:14622231

  19. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood

    PubMed Central

    Copeland, William E.; Wolke, Dieter; Lereya, Suzet Tanya; Shanahan, Lilly; Worthman, Carol; Costello, E. Jane

    2014-01-01

    Bullying is a common childhood experience that involves repeated mistreatment to improve or maintain one’s status. Victims display long-term social, psychological, and health consequences, whereas bullies display minimal ill effects. The aim of this study is to test how this adverse social experience is biologically embedded to affect short- or long-term levels of C-reactive protein (CRP), a marker of low-grade systemic inflammation. The prospective population-based Great Smoky Mountains Study (n = 1,420), with up to nine waves of data per subject, was used, covering childhood/adolescence (ages 9–16) and young adulthood (ages 19 and 21). Structured interviews were used to assess bullying involvement and relevant covariates at all childhood/adolescent observations. Blood spots were collected at each observation and assayed for CRP levels. During childhood and adolescence, the number of waves at which the child was bullied predicted increasing levels of CRP. Although CRP levels rose for all participants from childhood into adulthood, being bullied predicted greater increases in CRP levels, whereas bullying others predicted lower increases in CRP compared with those uninvolved in bullying. This pattern was robust, controlling for body mass index, substance use, physical and mental health status, and exposures to other childhood psychosocial adversities. A child’s role in bullying may serve as either a risk or a protective factor for adult low-grade inflammation, independent of other factors. Inflammation is a physiological response that mediates the effects of both social adversity and dominance on decreases in health. PMID:24821813

  20. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood.

    PubMed

    Copeland, William E; Wolke, Dieter; Lereya, Suzet Tanya; Shanahan, Lilly; Worthman, Carol; Costello, E Jane

    2014-05-27

    Bullying is a common childhood experience that involves repeated mistreatment to improve or maintain one's status. Victims display long-term social, psychological, and health consequences, whereas bullies display minimal ill effects. The aim of this study is to test how this adverse social experience is biologically embedded to affect short- or long-term levels of C-reactive protein (CRP), a marker of low-grade systemic inflammation. The prospective population-based Great Smoky Mountains Study (n = 1,420), with up to nine waves of data per subject, was used, covering childhood/adolescence (ages 9-16) and young adulthood (ages 19 and 21). Structured interviews were used to assess bullying involvement and relevant covariates at all childhood/adolescent observations. Blood spots were collected at each observation and assayed for CRP levels. During childhood and adolescence, the number of waves at which the child was bullied predicted increasing levels of CRP. Although CRP levels rose for all participants from childhood into adulthood, being bullied predicted greater increases in CRP levels, whereas bullying others predicted lower increases in CRP compared with those uninvolved in bullying. This pattern was robust, controlling for body mass index, substance use, physical and mental health status, and exposures to other childhood psychosocial adversities. A child's role in bullying may serve as either a risk or a protective factor for adult low-grade inflammation, independent of other factors. Inflammation is a physiological response that mediates the effects of both social adversity and dominance on decreases in health. PMID:24821813

  1. Exploring Function Prediction in Protein Interaction Networks via Clustering Methods

    PubMed Central

    Trivodaliev, Kire; Bogojeska, Aleksandra; Kocarev, Ljupco

    2014-01-01

    Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach. PMID:24972109

  2. The Prediction of Ego Functioning in Adolescence. Final Report.

    ERIC Educational Resources Information Center

    Taube, Irvin; Vreeland, Rebecca

    The object of this study was to predict ego functioning in college among a group of successful high school graduates. Two hundred and seventy-one graduates of Phillips Exeter Academy who had been admitted to Harvard University during 4 consecutive years were studied. Three types of previously collected data were used: (1) teacher reports on the…

  3. Human transfer functions used to predict system performance parameters

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Automatic, parameter-tracking, model-matching technique compares the responses of a human operator with those of an analog computer model of a human operator to predict and analyze the performance of mechanical or electromechanical systems prior to construction. Transfer functions represent the input-output relation of an operator controlling a closed-loop system.

  4. Protein side chain conformation predictions with an MMGBSA energy function.

    PubMed

    Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas

    2016-06-01

    The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc. PMID:26948696

  5. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  6. Predicting Protein Function via Semantic Integration of Multiple Networks.

    PubMed

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically i ntegrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet. PMID:26800544

  7. Analysis and Functional Prediction of Reactive Cysteine Residues*

    PubMed Central

    Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pKa, to algorithms for functional prediction of different types of Cys in proteins. PMID:22157013

  8. Pattern recognition methods for protein functional site prediction.

    PubMed

    Yang, Zheng Rong; Wang, Lipo; Young, Natasha; Trudgian, Dave; Chou, Kuo-Chen

    2005-10-01

    Protein functional site prediction is closely related to drug design, hence to public health. In order to save the cost and the time spent on identifying the functional sites in sequenced proteins in biology laboratory, computer programs have been widely used for decades. Many of them are implemented using the state-of-the-art pattern recognition algorithms, including decision trees, neural networks and support vector machines. Although the success of this effort has been obvious, advanced and new algorithms are still under development for addressing some difficult issues. This review will go through the major stages in developing pattern recognition algorithms for protein functional site prediction and outline the future research directions in this important area. PMID:16248799

  9. Predicting plants -modeling traits as a function of environment

    NASA Astrophysics Data System (ADS)

    Franklin, Oskar

    2016-04-01

    A central problem in understanding and modeling vegetation dynamics is how to represent the variation in plant properties and function across different environments. Addressing this problem there is a strong trend towards trait-based approaches, where vegetation properties are functions of the distributions of functional traits rather than of species. Recently there has been enormous progress in in quantifying trait variability and its drivers and effects (Van Bodegom et al. 2012; Adier et al. 2014; Kunstler et al. 2015) based on wide ranging datasets on a small number of easily measured traits, such as specific leaf area (SLA), wood density and maximum plant height. However, plant function depends on many other traits and while the commonly measured trait data are valuable, they are not sufficient for driving predictive and mechanistic models of vegetation dynamics -especially under novel climate or management conditions. For this purpose we need a model to predict functional traits, also those not easily measured, and how they depend on the plants' environment. Here I present such a mechanistic model based on fitness concepts and focused on traits related to water and light limitation of trees, including: wood density, drought response, allocation to defense, and leaf traits. The model is able to predict observed patterns of variability in these traits in relation to growth and mortality, and their responses to a gradient of water limitation. The results demonstrate that it is possible to mechanistically predict plant traits as a function of the environment based on an eco-physiological model of plant fitness. References Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant lifehistory strategies. Proc. Natl. Acad. Sci. U. S. A., 111, 740-745. Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C. et al. (2015). Plant functional traits

  10. A Prediction Model for Functional Outcomes in Spinal Cord Disorder Patients Using Gaussian Process Regression.

    PubMed

    Lee, Sunghoon Ivan; Mortazavi, Bobak; Hoffman, Haydn A; Lu, Derek S; Li, Charles; Paak, Brian H; Garst, Jordan H; Razaghy, Mehrdad; Espinal, Marie; Park, Eunjeong; Lu, Daniel C; Sarrafzadeh, Majid

    2016-01-01

    Predicting the functional outcomes of spinal cord disorder patients after medical treatments, such as a surgical operation, has always been of great interest. Accurate posttreatment prediction is especially beneficial for clinicians, patients, care givers, and therapists. This paper introduces a prediction method for postoperative functional outcomes by a novel use of Gaussian process regression. The proposed method specifically considers the restricted value range of the target variables by modeling the Gaussian process based on a truncated Normal distribution, which significantly improves the prediction results. The prediction has been made in assistance with target tracking examinations using a highly portable and inexpensive handgrip device, which greatly contributes to the prediction performance. The proposed method has been validated through a dataset collected from a clinical cohort pilot involving 15 patients with cervical spinal cord disorder. The results show that the proposed method can accurately predict postoperative functional outcomes, Oswestry disability index and target tracking scores, based on the patient's preoperative information with a mean absolute error of 0.079 and 0.014 (out of 1.0), respectively. PMID:25423659

  11. Hallucinogen use predicts reduced recidivism among substance-involved offenders under community corrections supervision.

    PubMed

    Hendricks, Peter S; Clark, C Brendan; Johnson, Matthew W; Fontaine, Kevin R; Cropsey, Karen L

    2014-01-01

    Hallucinogen-based interventions may benefit substance use populations, but contemporary data informing the impact of hallucinogens on addictive behavior are scarce. Given that many individuals in the criminal justice system engage in problematic patterns of substance use, hallucinogen treatments also may benefit criminal justice populations. However, the relationship between hallucinogen use and criminal recidivism is unknown. In this longitudinal study, we examined the relationship between naturalistic hallucinogen use and recidivism among individuals under community corrections supervision with a history of substance involvement (n=25,622). We found that hallucinogen use predicted a reduced likelihood of supervision failure (e.g. noncompliance with legal requirements including alcohol and other drug use) while controlling for an array of potential confounding factors (odds ratio (OR)=0.60 (0.46, 0.79)). Our results suggest that hallucinogens may promote alcohol and other drug abstinence and prosocial behavior in a population with high rates of recidivism. PMID:24399338

  12. Scoring functions for prediction of protein-ligand interactions.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin

    2013-01-01

    The scoring functions for protein-ligand interactions plays central roles in computational drug design, virtual screening of chemical libraries for new lead identification, and prediction of possible binding targets of small chemical molecules. An ideal scoring function for protein-ligand interactions is expected to be able to recognize the native binding pose of a ligand on the protein surface among decoy poses, and to accurately predict the binding affinity (or binding free energy) so that the active molecules can be discriminated from the non-active ones. Due to the empirical nature of most, if not all, scoring functions for protein-ligand interactions, the general applicability of empirical scoring functions, especially to domains far outside training sets, is a major concern. In this review article, we will explore the foundations of different classes of scoring functions, their possible limitations, and their suitable application domains. We also provide assessments of several scoring functions on weakly-interacting protein-ligand complexes, which will be useful information in computational fragment-based drug design or virtual screening. PMID:23016847

  13. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus

    PubMed Central

    2013-01-01

    Background Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. Results Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. Conclusions P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae. PMID:23514356

  14. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.

    PubMed

    Warde-Farley, David; Donaldson, Sylva L; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George; Bader, Gary D; Morris, Quaid

    2010-07-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist. PMID:20576703

  15. Gender as a Moderator in Predicting Re-arrest Among Treated Drug-Involved Offenders

    PubMed Central

    Yang, Y.; Knight, K.; Joe, G.W.; Rowan, G.A.; Lehman, W. E.K.; Flynn, P.M.

    2016-01-01

    The primary aim of the current study is to explore gender differences on the relationships of pre-treatment risk factors (i.e., substance use severity and criminal history) and psychosocial functioning (i.e., decision making, risk taking, self-esteem, social support, and peer support) with time to re-arrest following termination from prison. With gender as a moderator variable, survival analysis was used to model time to re-arrest in terms of pre-treatment risk factors and psychosocial functioning. The sample consisted of 697 participants (384 males and 313 females) who were admitted to four prison-based substance abuse treatment programs. Female inmates experienced a longer time to re-arrest than male inmates. Better decision making and more peer support were associated with lower levels of re-arrest for males. Males with higher self-esteem were more likely to be re-arrested than their counterparts. Females with more self-reported criminal involvements had a higher rate of re-arrest than those with less criminal involvement. In contrast to males, females with relatively high self-reported self-esteem had a lower rate of re-arrest than their counterparts. Clinical implications include the importance of enhancing decision-making ability and peer support for males and self-esteem for females. PMID:25216813

  16. Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network

    PubMed Central

    Hwang, Sohyun; Rhee, Seung Y; Marcotte, Edward M; Lee, Insuk

    2012-01-01

    AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by combining candidate prioritization by AraNet with focused experimental tests. PMID:21886106

  17. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  18. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services. PMID:25599106

  19. Optimizing Non-Decomposable Loss Functions in Structured Prediction

    PubMed Central

    Ranjbar, Mani; Lan, Tian; Wang, Yang; Robinovitch, Steven N.; Li, Ze-Nian; Mori, Greg

    2012-01-01

    We develop an algorithm for structured prediction with non-decomposable performance measures. The algorithm learns parameters of Markov random fields and can be applied to multivariate performance measures. Examples include performance measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines) and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a quadratic program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset. PMID:22868650

  20. Rapid D-Affine Biventricular Cardiac Function with Polar Prediction

    PubMed Central

    Gilbert, Kathleen; Cowan, Brett; Suinesiaputra, Avan; Occleshaw, Christopher; Young, Alistair

    2014-01-01

    Although many solutions have been proposed for left ventricular functional analysis of the heart, right and left (bi-) ventricular function has been problematic due to the complex geometry and large motions. Biventricular function is particularly important in congenital heart disease, the most common type of birth defects. We describe a rapid interactive analysis tool for biventricular function which incorporates 1) a 3D+ time finite element model of biventricular geometry, 2) a fast prediction step which estimates an initial geometry in a polar coordinate system, and 3) a Cartesian update which penalizes deviations from affine transformations (D-Affine) from a prior. Solution times were very rapid, enabling interaction in real time using guide point modeling. The method was applied to 13 patients with congenital heart disease and compared with the clinical gold standard of manual tracing. Results between the methods showed good correlation (R2 > 0.9) and good precision (volume<17ml; mass<11g) for both chambers. PMID:25485422

  1. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  2. Predictions of Geospace Drivers By the Probability Distribution Function Model

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C.; Ridley, A. J.

    2014-12-01

    Geospace drivers like the solar wind speed, interplanetary magnetic field (IMF), and solar irradiance have a strong influence on the density of the thermosphere and the near-Earth space environment. This has important consequences on the drag on satellites that are in low orbit and therefore on their position. One of the basic problems with space weather prediction is that these drivers can only be measured about one hour before they affect the environment. In order to allow for adequate planning for some members of the commercial, military, or civilian communities, reliable long-term space weather forecasts are needed. The study presents a model for predicting geospace drivers up to five days in advance. This model uses the same general technique to predict the solar wind speed, the three components of the IMF, and the solar irradiance F10.7. For instance, it uses Probability distribution functions (PDFs) to relate the current solar wind speed and slope to the future solar wind speed, as well as the solar wind speed to the solar wind speed one solar rotation in the future. The PDF Model has been compared to other models for predictions of the speed. It has been found that it is better than using the current solar wind speed (i.e., persistence), and better than the Wang-Sheeley-Arge Model for prediction horizons of 24 hours. Once the drivers are predicted, and the uncertainty on the drivers are specified, the density in the thermosphere can be derived using various models of the thermosphere, such as the Global Ionosphere Thermosphere Model. In addition, uncertainties on the densities can be estimated, based on ensembles of simulations. From the density and uncertainty predictions, satellite positions, as well as the uncertainty in those positions can be estimated. These can assist operators in determining the probability of collisions between objects in low Earth orbit.

  3. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    PubMed

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  4. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  5. Quantitative reactivity profiling predicts functional cysteines in proteomes.

    PubMed

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M; Richter, Florian; Khare, Sagar; Dillon, Myles B D; Bachovchin, Daniel A; Mowen, Kerri; Baker, David; Cravatt, Benjamin F

    2010-12-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  6. Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression

    PubMed Central

    Lehtinen, Sonja; Lees, Jon; Bähler, Jürg; Shawe-Taylor, John; Orengo, Christine

    2015-01-01

    With the growing availability of large-scale biological datasets, automated methods of extracting functionally meaningful information from this data are becoming increasingly important. Data relating to functional association between genes or proteins, such as co-expression or functional association, is often represented in terms of gene or protein networks. Several methods of predicting gene function from these networks have been proposed. However, evaluating the relative performance of these algorithms may not be trivial: concerns have been raised over biases in different benchmarking methods and datasets, particularly relating to non-independence of functional association data and test data. In this paper we propose a new network-based gene function prediction algorithm using a commute-time kernel and partial least squares regression (Compass). We compare Compass to GeneMANIA, a leading network-based prediction algorithm, using a number of different benchmarks, and find that Compass outperforms GeneMANIA on these benchmarks. We also explicitly explore problems associated with the non-independence of functional association data and test data. We find that a benchmark based on the Gene Ontology database, which, directly or indirectly, incorporates information from other databases, may considerably overestimate the performance of algorithms exploiting functional association data for prediction. PMID:26288239

  7. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.

    PubMed

    Lefcheck, Jonathan S; Duffy, J Emmett

    2015-11-01

    The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context. PMID:27070016

  8. Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity.

    PubMed

    Benedek, Mathias; Jauk, Emanuel; Sommer, Markus; Arendasy, Martin; Neubauer, Aljoscha C

    2014-09-01

    Intelligence and creativity are known to be correlated constructs suggesting that they share a common cognitive basis. The present study assessed three specific executive abilities - updating, shifting, and inhibition - and examined their common and differential relations to fluid intelligence and creativity (i.e., divergent thinking ability) within a latent variable model approach. Additionally, it was tested whether the correlation of fluid intelligence and creativity can be explained by a common executive involvement. As expected, fluid intelligence was strongly predicted by updating, but not by shifting or inhibition. Creativity was predicted by updating and inhibition, but not by shifting. Moreover, updating (and the personality factor openness) was found to explain a relevant part of the shared variance between intelligence and creativity. The findings provide direct support for the executive involvement in creative thought and shed further light on the functional relationship between intelligence and creativity. PMID:25278640

  9. Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity

    PubMed Central

    Benedek, Mathias; Jauk, Emanuel; Sommer, Markus; Arendasy, Martin; Neubauer, Aljoscha C.

    2014-01-01

    Intelligence and creativity are known to be correlated constructs suggesting that they share a common cognitive basis. The present study assessed three specific executive abilities – updating, shifting, and inhibition – and examined their common and differential relations to fluid intelligence and creativity (i.e., divergent thinking ability) within a latent variable model approach. Additionally, it was tested whether the correlation of fluid intelligence and creativity can be explained by a common executive involvement. As expected, fluid intelligence was strongly predicted by updating, but not by shifting or inhibition. Creativity was predicted by updating and inhibition, but not by shifting. Moreover, updating (and the personality factor openness) was found to explain a relevant part of the shared variance between intelligence and creativity. The findings provide direct support for the executive involvement in creative thought and shed further light on the functional relationship between intelligence and creativity. PMID:25278640

  10. Remote sensing of vegetation ecophysiological function for improved hydrologic prediction

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Ruddell, B. L.

    2014-12-01

    Land surface hydrology in vegetated landscapes is strongly controlled by ecophysiological function. The coupling between photosynthesis, stomatal dynamics and leaf energy balance fundamentally links the hydrologic and carbon cycles, and provides a basis for examining the utility of observations of functional plant traits for hydrologic prediction. Here we explore the potential of solar induced fluorescence (SIF) and thermal infrared (TIR) remote sensing observations to improve the accuracy and reduce the uncertainty in hydrologic prediction. While SIF represents an emission of radiation associated with photosynthesis, TIR provides information on foliage temperature and is related to stomatal function and water stress. A set of remote observing system simulation experiments are conducted to quantify the value of remotely sensed observations of SIF and TIR when assimilated into a detailed vegetation biophysical model. The MLCan model discretizes a dense plant canopy to resolve vertical variation in photosynthesis, water vapor and energy exchange. Here we present extensions to MLCan that allow for direct computation of the canopy emission of both SIF and TIR. The detailed representation of the physical environment and biological functioning of structurally complex canopies makes MLCan an ideal simulation tool for exploring the impact of these two unique, and potentially synergistic observables. This work specifically addresses remote sensing capabilities on both recently launched (OCO-2) and near-term (ECOSTRESS) satellite platforms. We contrast the information gained through the assimilation of SIF and TIR observations to that of the assimilation of data related to physical states such as soil moisture and leaf area index.

  11. Spinal meningiomas: clinicoradiological factors predicting recurrence and functional outcome.

    PubMed

    Maiti, Tanmoy K; Bir, Shyamal C; Patra, Devi Prasad; Kalakoti, Piyush; Guthikonda, Bharat; Nanda, Anil

    2016-08-01

    OBJECTIVE Spinal meningiomas are benign tumors with a wide spectrum of clinical and radiological features at presentation. The authors analyzed multiple clinicoradiological factors to predict recurrence and functional outcome in a cohort with a mean follow-up of more than 4 years. The authors also discuss the results of clinical studies regarding spinal meningiomas in the last 15 years. METHODS The authors retrospectively reviewed the clinical and radiological details of patients who underwent surgery for spinal tumors between 2001 and 2015 that were histopathologically confirmed as meningiomas. Demographic parameters, such as age, sex, race, and association with neurofibromatosis Type 2, were considered. Radiological parameters, such as tumor size, signal changes of spinal cord, spinal level, number of levels, location of tumor attachment, shape of tumor, and presence of dural tail/calcification, were noted. These factors were analyzed to predict recurrence and functional outcome. Furthermore, a pooled analysis was performed from 13 reports of spinal meningiomas in the last 15 years. RESULTS A total of 38 patients were included in this study. Male sex and tumors with radiological evidence of a dural tail were associated with an increased risk of recurrence at a mean follow-up of 51.2 months. Ventral or ventrolateral location, large tumors, T2 cord signal changes, and poor preoperative functional status were associated with poor functional outcome at 1-year follow-up. CONCLUSIONS Spine surgeons must be aware of the natural history and risk factors of spinal meningiomas to establish a prognosis for their patients. PMID:27476848

  12. FAST TRACK COMMUNICATION: Solvable nonlinear evolution PDEs in multidimensional space involving trigonometric functions

    NASA Astrophysics Data System (ADS)

    Calogero, F.; Françoise, J.-P.; Sommacal, M.

    2007-05-01

    A solvable nonlinear (system of) evolution PDEs in multidimensional space, involving trigonometric (or hyperbolic) functions, is identified. An isochronous version of this (system of) evolution PDEs in multidimensional space is also reported.

  13. miRDB: an online resource for microRNA target prediction and functional annotations.

    PubMed

    Wong, Nathan; Wang, Xiaowei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB. PMID:25378301

  14. Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions

    PubMed Central

    Baleanu, D.; Agarwal, P.; Purohit, S. D.

    2013-01-01

    We apply generalized operators of fractional integration involving Appell's function F3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fractional integrals are also presented. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions. PMID:24379745

  15. Models for predicting objective function weights in prostate cancer IMRT

    SciTech Connect

    Boutilier, Justin J. Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  16. Simple topological properties predict functional misannotations in a metabolic network

    PubMed Central

    Liberal, Rodrigo; Pinney, John W.

    2013-01-01

    Motivation: Misannotation in sequence databases is an important obstacle for automated tools for gene function annotation, which rely extensively on comparison with sequences with known function. To improve current annotations and prevent future propagation of errors, sequence-independent tools are, therefore, needed to assist in the identification of misannotated gene products. In the case of enzymatic functions, each functional assignment implies the existence of a reaction within the organism’s metabolic network; a first approximation to a genome-scale metabolic model can be obtained directly from an automated genome annotation. Any obvious problems in the network, such as dead end or disconnected reactions, can, therefore, be strong indications of misannotation. Results: We demonstrate that a machine-learning approach using only network topological features can successfully predict the validity of enzyme annotations. The predictions are tested at three different levels. A random forest using topological features of the metabolic network and trained on curated sets of correct and incorrect enzyme assignments was found to have an accuracy of up to 86% in 5-fold cross-validation experiments. Further cross-validation against unseen enzyme superfamilies indicates that this classifier can successfully extrapolate beyond the classes of enzyme present in the training data. The random forest model was applied to several automated genome annotations, achieving an accuracy of in most cases when validated against recent genome-scale metabolic models. We also observe that when applied to draft metabolic networks for multiple species, a clear negative correlation is observed between predicted annotation quality and phylogenetic distance to the major model organism for biochemistry (Escherichia coli for prokaryotes and Homo sapiens for eukaryotes). Contact: j.pinney@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  17. Quality of Parental Homework Involvement: Predictors and Reciprocal Relations with Academic Functioning in the Reading Domain

    ERIC Educational Resources Information Center

    Dumont, Hanna; Trautwein, Ulrich; Nagy, Gabriel; Nagengast, Benjamin

    2014-01-01

    This study examined predictors of the quality of parental homework involvement and reciprocal relations between the quality of parental homework involvement and students' reading achievement and academic functioning in a reading-intensive subject (German). Data from 2,830 students in nonacademic tracks and their parents who were surveyed in both…

  18. "Reverse Genomics" Predicts Function of Human Conserved Noncoding Elements.

    PubMed

    Marcovitz, Amir; Jia, Robin; Bejerano, Gill

    2016-05-01

    Evolutionary changes in cis-regulatory elements are thought to play a key role in morphological and physiological diversity across animals. Many conserved noncoding elements (CNEs) function as cis-regulatory elements, controlling gene expression levels in different biological contexts. However, determining specific associations between CNEs and related phenotypes is a challenging task. Here, we present a computational "reverse genomics" approach that predicts the phenotypic functions of human CNEs. We identify thousands of human CNEs that were lost in at least two independent mammalian lineages (IL-CNEs), and match their evolutionary profiles against a diverse set of phenotypes recently annotated across multiple mammalian species. We identify 2,759 compelling associations between human CNEs and a diverse set of mammalian phenotypes. We discuss multiple CNEs, including a predicted ear element near BMP7, a pelvic CNE in FBN1, a brain morphology element in UBE4B, and an aquatic adaptation forelimb CNE near EGR2, and provide a full list of our predictions. As more genomes are sequenced and more traits are annotated across species, we expect our method to facilitate the interpretation of noncoding mutations in human disease and expedite the discovery of individual CNEs that play key roles in human evolution and development. PMID:26744417

  19. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  20. Electrocortical indices of selective attention predict adolescent executive functioning.

    PubMed

    Lackner, Christine L; Santesso, Diane L; Dywan, Jane; Wade, Terrance J; Segalowitz, Sidney J

    2013-05-01

    Executive functioning is considered a powerful predictor of behavioral and mental health outcomes during adolescence. Our question was whether executive functioning skills, normally considered "top-down" processes, are related to automatic aspects of selective attention. Event-related potentials (ERPs) were recorded from typically-developing 12-14-year-old adolescents as they responded to tones presented in attended and unattended channels in an auditory selective attention task. Examining these ERPs in relation to parental reports on the Behavior Rating Inventory of Executive Function (BRIEF) revealed that an early frontal positivity (EFP) elicited by to-be-ignored/unattended tones was larger in those with poorer executive functions, driven by scores on the BRIEF Metacognition Index. As is traditionally found, N1 amplitudes were more negative for the to-be-attended rather than unattended tones. Additionally, N1 latencies to unattended tones correlated with parent-ratings on the BRIEF Behavior Regulation Index, where shorter latencies predicted better executive functions. Results suggest that the ability to disengage attention from distractor information in the early stages of stimulus processing is associated with adolescent executive functioning skills. PMID:23528784

  1. Motor function predicts parent-reported musculoskeletal pain in children with cerebral palsy

    PubMed Central

    Barney, Chantel C; Krach, Linda E; Rivard, Patrick F; Belew, John L; Symons, Frank J

    2013-01-01

    BACKGROUND: The relationship between pain and motor function is not well understood, especially for children and adolescents with communication and motor impairments associated with cerebral palsy (CP). OBJECTIVES: To determine whether a predictive relationship between motor function and musculoskeletal pain exists in children with CP. METHODS: Following informed consent, caregivers of 34 pediatric patients with CP (mean [± SD] age 9.37±4.49 years; 80.0% male) completed pain- and function-related measures. Parents completed the Dalhousie Pain Interview and the Brief Pain Inventory based on a one-week recall to determine whether pain had been experienced in the past week, its general description, possible cause, duration, frequency, intensity and interference with daily function. The Gross Motor Function Classification System (GMFCS) was used to classify the motor involvement of the child based on their functional ability and their need for assistive devices for mobility. RESULTS: GMFCS level significantly predicted parent-reported musculoskeletal pain frequency (P<0.02), duration (P=0.05) and intensity (P<0.01). Duration of pain was significantly related to interference with activities of daily living (P<0.05). CONCLUSIONS: Children with CP with greater motor involvement, as indexed by GMFCS level, may be at risk for increased pain (intensity, frequency and duration) that interfers with activities of daily living. The clinical index of suspicion should be raised accordingly when evaluating children with developmental disability who cannot self-report reliably. PMID:24308022

  2. [Chronic diseases, functional ability, social involvement and satisfaction in community-dwelling elderly: the Fibra study].

    PubMed

    Pinto, Juliana Martins; Neri, Anita Liberalesso

    2013-12-01

    The scope of this article is to describe variations in the measurement of chronic diseases, functional ability, social involvement and satisfaction with respect to memory, problem solving, social relationships, environment, health services and transportation. This is done according to gender, age and income. It analyzes correlations between social involvement and functional ability in independent community dwelling-elderly aged 65 and above. 2,472 seniors without cognitive deficit, from probabilistic samples of seven Brazilian locations, were submitted to self-reported measurement concerning all variables, with the exception of grip strength and gait speed assessed by objective tests. Mean age was 72.2 ± 5.5 years and mean income was 3.9 ± 4.9 MW; 65.7% were women, who had more diseases, worse functional performance and greater social involvement than men; those aged 80 and above and the poorest participants had worse functional performance and less social involvement. Correlations were observed between functional ability and social involvement. Level of income was related to satisfaction concerning memory, problem solving, health and transport services. Health, functionality and satisfaction interact in old age, influencing patterns of activity and social involvement. PMID:24263862

  3. Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii.

    PubMed

    Dai, Longhai; Liu, Can; Zhu, Yueming; Zhang, Jiangsheng; Men, Yan; Zeng, Yan; Sun, Yuanxia

    2015-06-01

    Mogrosides, the major bioactive components isolated from the fruits of Siraitia grosvenorii, are a family of cucurbitane-type tetracyclic triterpenoid saponins that are used worldwide as high-potency sweeteners and possess a variety of notable pharmacological activities. Mogrosides are synthesized from 2,3-oxidosqualene via a series of reactions catalyzed by cucurbitadienol synthase (CbQ), Cyt P450s (P450s) and UDP glycosyltransferases (UGTs) in vivo. However, the relevant genes have not been characterized to date. In this study, we report successful identification of SgCbQ and UGT74AC1, which were previously predicted via RNA-sequencing (RNA-seq) and digital gene expression (DGE) profile analysis of the fruits of S. grosvenorii. SgCbQ was functionally characterized by expression in the lanosterol synthase-deficient yeast strain GIL77 and was found to accumulate cucurbitadienol as the sole product. UGT74AC1 was heterologously expressed in Escherichia coli as a His-tag protein and it showed specificity for mogrol by transfer of a glucose moiety to the C-3 hydroxyl to form mogroside IE by in vitro enzymatic activity assays. This study reports the identification of CbQ and glycosyltransferase from S. grosvenorii for the first time. The results also suggest that RNA-seq, combined with DGE profile analysis, is a promising approach for discovery of candidate genes involved in biosynthesis of triterpene saponins. PMID:25759326

  4. Prediction of functional residues in water channels and related proteins.

    PubMed Central

    Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

    1998-01-01

    In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

  5. The Evolutionary Legacy of Diversification Predicts Ecosystem Function.

    PubMed

    Yguel, Benjamin; Jactel, Hervé; Pearse, Ian S; Moen, Daniel; Winter, Marten; Hortal, Joaquin; Helmus, Matthew R; Kühn, Ingolf; Pavoine, Sandrine; Purschke, Oliver; Weiher, Evan; Violle, Cyrille; Ozinga, Wim; Brändle, Martin; Bartish, Igor; Prinzing, Andreas

    2016-10-01

    Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning. PMID:27622874

  6. Utility functions predict variance and skewness risk preferences in monkeys

    PubMed Central

    Genest, Wilfried; Stauffer, William R.; Schultz, Wolfram

    2016-01-01

    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals’ preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals’ preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys’ choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences. PMID:27402743

  7. Predicting activity approach based on new atoms similarity kernel function.

    PubMed

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. PMID:26117822

  8. Predicting clinical responses in major depression using intrinsic functional connectivity.

    PubMed

    Qin, Jian; Shen, Hui; Zeng, Ling-Li; Jiang, Weixiong; Liu, Li; Hu, Dewen

    2015-08-19

    There has been increasing interest in multivariate pattern analysis (MVPA) as a means of distinguishing psychiatric patients from healthy controls using brain imaging. However, it remains unclear whether MVPA methods can accurately estimate the medication status of psychiatric patients. This study aims to develop an MVPA approach to accurately predict the antidepressant medication status of individuals with major depression on the basis of whole-brain resting-state functional connectivity MRI (rs-fcMRI). We investigated data from rs-fcMRI of 24 medication-naive depressed patients, 16 out of whom subsequently underwent antidepressant treatment and achieved clinical recovery, and 29 demographically similar controls. By training a linear support vector machine classifier and combining it with principal component analysis, the medication-naive patients were identified from the healthy controls with 100% accuracy. In addition, we found reliable correlations between MVPA prediction scores and clinical symptom severity. Moreover, the most discriminative functional connections were located within or across the cerebellum and default mode, affective, and sensorimotor networks, indicating that these networks may play important roles in major depression. Most importantly, only ∼30% of these discriminative connections were normalized in clinically recovered patients after antidepressant treatment. The current study may not only show the feasibility of estimating medication status by MVPA of whole-brain rs-fcMRI data in major depression but also shed new light on the pathological mechanism of this disorder. PMID:26164454

  9. Habitual fat intake predicts memory function in younger women

    PubMed Central

    Gibson, E. Leigh; Barr, Suzanne; Jeanes, Yvonne M.

    2013-01-01

    High intakes of fat have been linked to greater cognitive decline in old age, but such associations may already occur in younger adults. We tested memory and learning in 38 women (25 to 45 years old), recruited for a larger observational study in women with polycystic ovary syndrome. These women varied in health status, though not significantly between cases (n = 23) and controls (n = 15). Performance on tests sensitive to medial temporal lobe function (CANTABeclipse, Cambridge Cognition Ltd, Cambridge, UK), i.e., verbal memory, visuo-spatial learning, and delayed pattern matching (DMS), were compared with intakes of macronutrients from 7-day diet diaries and physiological indices of metabolic syndrome. Partial correlations were adjusted for age, activity, and verbal IQ (National Adult Reading Test). Greater intakes of saturated and trans fats, and higher saturated to unsaturated fat ratio (Sat:UFA), were associated with more errors on the visuo-spatial task and with poorer word recall and recognition. Unexpectedly, higher UFA intake predicted poorer performance on the word recall and recognition measures. Fasting insulin was positively correlated with poorer word recognition only, whereas higher blood total cholesterol was associated only with visuo-spatial learning errors. None of these variables predicted performance on a DMS test. The significant nutrient–cognition relationships were tested for mediation by total energy intake: saturated and trans fat intakes, and Sat:UFA, remained significant predictors specifically of visuo-spatial learning errors, whereas total fat and UFA intakes now predicted only poorer word recall. Examination of associations separately for monounsaturated (MUFA) and polyunsaturated fats suggested that only MUFA intake was predictive of poorer word recall. Saturated and trans fats, and fasting insulin, may already be associated with cognitive deficits in younger women. The findings need extending but may have important implications for

  10. Prediction of functional aerobic capacity without exercise testing

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Blair, S. N.; Mahar, M. T.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.

    1990-01-01

    The purpose of this study was to develop functional aerobic capacity prediction models without using exercise tests (N-Ex) and to compare the accuracy with Astrand single-stage submaximal prediction methods. The data of 2,009 subjects (9.7% female) were randomly divided into validation (N = 1,543) and cross-validation (N = 466) samples. The validation sample was used to develop two N-Ex models to estimate VO2peak. Gender, age, body composition, and self-report activity were used to develop two N-Ex prediction models. One model estimated percent fat from skinfolds (N-Ex %fat) and the other used body mass index (N-Ex BMI) to represent body composition. The multiple correlations for the developed models were R = 0.81 (SE = 5.3 ml.kg-1.min-1) and R = 0.78 (SE = 5.6 ml.kg-1.min-1). This accuracy was confirmed when applied to the cross-validation sample. The N-Ex models were more accurate than what was obtained from VO2peak estimated from the Astrand prediction models. The SEs of the Astrand models ranged from 5.5-9.7 ml.kg-1.min-1. The N-Ex models were cross-validated on 59 men on hypertensive medication and 71 men who were found to have a positive exercise ECG. The SEs of the N-Ex models ranged from 4.6-5.4 ml.kg-1.min-1 with these subjects.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Ongoing dynamics in large-scale functional connectivity predict perception

    PubMed Central

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D’Esposito, Mark

    2015-01-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency. PMID:26106164

  12. Intravenous immunoglobulins improve the function and ameliorate joint involvement in systemic sclerosis: a pilot study

    PubMed Central

    Nacci, F; Righi, A; Conforti, M L; Miniati, I; Fiori, G; Martinovic, D; Melchiorre, D; Sapir, T; Blank, M; Shoenfeld, Y; Pignone, A Moggi; Cerinic, M Matucci

    2007-01-01

    Background In systemic sclerosis (SSc), joint involvement may reduce the functional capacity of the hands. Intravenous immunoglobulins have previously been shown to benefit patients with SSc. Aim To verify the efficacy of intravenous immunoglobulins on joint involvement and function in SSc. Patients and methods 7 women with SSc, 5 with limited and 2 with diffuse SSc, with a severe and refractory joint involvement were enrolled in the study. Methotrexate and cyclophosphamide pulse therapy did not ameliorate joint symptoms. Hence, intravenous immunoglobulins therapy was prescribed at a dosage of 2 g/kg body weight during 4 days/month for six consecutive courses. The presence of joint tenderness and swelling, and articular deformities (due to primary joint involvement and not due to skin and subcutaneous changes) were evaluated. Before and after 6 months of treatment, patients were subjected to (1) Ritchie Index (RI) evaluation of joint involvement; (2) Dreiser Algo‐Functional Index (IAFD) evaluation of hand joint function; (3) pain visual analogue scale (VAS) to measure joint pain; (4) Health Assessment Questionnaire (HAQ) to evaluate the limitations in everyday living and physical disability; and (5) modified Rodnan Skin Score for skin involvement. Results After 6 months of intravenous immunoglobulins therapy, joint pain and tenderness, measured with the VAS, decreased significantly (p<0.03), and hand function (IAFD) improved significantly (p<0.02), together with the quality of life (HAQ; p<0.03). All patients significantly improved, except for one. The skin score after 6 months of intravenous immunoglobulins therapy was significantly reduced (p<0.003). Conclusion This pilot study suggests that intravenous immunoglobulins may reduce joint pain and tenderness, with a significant recovery of joint function in patients with SSc with severe and refractory joint involvement. The cost of intravenous immunoglobulins might limit their use only to patients who

  13. Predicting Parental Home and School Involvement in High School African American Adolescents

    ERIC Educational Resources Information Center

    Hayes, DeMarquis

    2011-01-01

    Predictors of parental home and school involvement for high school adolescents were examined within two groups of urban African American parents from various socioeconomic levels. Home involvement was defined as parent-adolescent communication about school and learning, while school involvement was defined in terms of parent attendance and…

  14. Further results involving a class of generalized Hurwitz-Lerch zeta functions

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Gaboury, S.; Fugère, B.-J.

    2014-10-01

    In this paper, we present several new expansion formulas for a class of generalized Hurwitz-Lerch zeta functions which were introduced by Raina and Chhajed [R. K. Raina and P. K. Chhajed, "Certain Results Involving a Class of Functions Associated with the Hurwitz Zeta Function," Acta Math. Univ. Comenian. 73, 89-100 (2004)] and (more recently) by Srivastava et al. [H. M. Srivastava, M.-J. Luo, and R. K. Raina, "New Results Involving a Class of Generalized Hurwitz-Lerch Zeta Functions and Their Applications," Turkish J. Anal. Number Theory 1, 26-35 (2013)]. These expansion formulas are obtained with the help of some fractional calculus theorems such as the generalized Leibniz rules, the Taylorlike expansions in terms of different functions and the generalized chain rule. Several (known or new) special cases are also considered.

  15. Emotion Regulation Predicts Pain and Functioning in Children With Juvenile Idiopathic Arthritis: An Electronic Diary Study

    PubMed Central

    Bromberg, Maggie H.; Anthony, Kelly K.; Gil, Karen M.; Franks, Lindsey; Schanberg, Laura E.

    2012-01-01

    Objectives This study utilized e-diaries to evaluate whether components of emotion regulation predict daily pain and function in children with juvenile idiopathic arthritis (JIA). Methods 43 children ages 8–17 years and their caregivers provided baseline reports of child emotion regulation. Children then completed thrice daily e-diary assessments of emotion, pain, and activity involvement for 28 days. E-diary ratings of negative and positive emotions were used to calculate emotion variability and to infer adaptive emotion modulation following periods of high or low emotion intensity. Hierarchical linear models were used to evaluate how emotion regulation related to pain and function. Results The attenuation of negative emotion following a period of high negative emotion predicted reduced pain; greater variability of negative emotion predicted higher pain and increased activity limitation. Indices of positive emotion regulation also significantly predicted pain. Conclusions Components of emotion regulation as captured by e-diaries predict important health outcomes in children with JIA. PMID:22037006

  16. Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence

    PubMed Central

    Cao, Jianhua; Huang, Siluo; Qian, Ji; Huang, Jinlin; Jin, Li; Su, Zhixi; Yang, Ji; Liu, Jianfeng

    2009-01-01

    Background Class C G protein-coupled receptors (GPCRs) represent a distinct group of the GPCR family, which structurally possess a characteristically distinct extracellular domain inclusive of the Venus flytrap module (VFTM). The VFTMs of the class C GPCRs is responsible for ligand recognition and binding, and share sequence similarity with bacterial periplasmic amino acid binding proteins (PBPs). An extensive phylogenetic investigation of the VFTMs was conducted by analyzing for functional divergence and testing for positive selection for five typical groups of the class C GPCRs. The altered selective constraints were determined to identify the sites that had undergone functional divergence via positive selection. In order to structurally demonstrate the pattern changes during the evolutionary process, three-dimensional (3D) structures of the GPCR VFTMs were modelled and reconstructed from ancestral VFTMs. Results Our results show that the altered selective constraints in the VFTMs of class C GPCRs are statistically significant. This implies that functional divergence played a key role in characterizing the functions of the VFTMs after gene duplication events. Meanwhile, positive selection is involved in the evolutionary process and drove the functional divergence of the VFTMs. Our results also reveal that three continuous duplication events occurred in order to shape the evolutionary topology of class C GPCRs. The five groups of the class C GPCRs have essentially different sites involved in functional divergence, which would have shaped the specific structures and functions of the VFTMs. Conclusion Taken together, our results show that functional divergence involved positive selection and is partially responsible for the evolutionary patterns of the class C GPCR VFTMs. The sites involved in functional divergence will provide more clues and candidates for further research on structural-function relationships of these modules as well as shedding light on the

  17. Predicting individual brain maturity using dynamic functional connectivity

    PubMed Central

    Qin, Jian; Chen, Shan-Guang; Hu, Dewen; Zeng, Ling-Li; Fan, Yi-Ming; Chen, Xiao-Ping; Shen, Hui

    2015-01-01

    Neuroimaging-based functional connectivity (FC) analyses have revealed significant developmental trends in specific intrinsic connectivity networks linked to cognitive and behavioral maturation. However, knowledge of how brain functional maturation is associated with FC dynamics at rest is limited. Here, we examined age-related differences in the temporal variability of FC dynamics with data publicly released by the Nathan Kline Institute (NKI; n = 183, ages 7–30) and showed that dynamic inter-region interactions can be used to accurately predict individual brain maturity across development. Furthermore, we identified a significant age-dependent trend underlying dynamic inter-network FC, including increasing variability of the connections between the visual network, default mode network (DMN) and cerebellum as well as within the cerebellum and DMN and decreasing variability within the cerebellum and between the cerebellum and DMN as well as the cingulo-opercular network. Overall, the results suggested significant developmental changes in dynamic inter-network interaction, which may shed new light on the functional organization of typical developmental brains. PMID:26236224

  18. Predicting Gene-Regulation Functions: Lessons from Temperate Bacteriophages

    PubMed Central

    Teif, Vladimir B.

    2010-01-01

    Gene-regulation functions (GRF) provide a unique characteristic of a cis-regulatory module (CRM), relating the concentrations of transcription factors (input) to the promoter activities (output). The challenge is to predict GRFs from the sequence. Here we systematically consider the lysogeny-lysis CRMs of different temperate bacteriophages such as the Lactobacillus casei phage A2, Escherichia coli phages λ, and 186 and Lactococcal phage TP901-1. This study allowed explaining a recent experimental puzzle on the role of Cro protein in the lambda switch. Several general conclusions have been drawn: 1), long-range interactions, multilayer assembly and DNA looping may lead to complex GRFs that cannot be described by linear functions of binding site occupancies; 2), in general, GRFs cannot be described by the Boolean logic, whereas a three-state non-Boolean logic suffices for the studied examples; 3), studied CRMs of the intact phages seemed to have a similar GRF topology (the number of plateaus and peaks corresponding to different expression regimes); we hypothesize that functionally equivalent CRMs might have topologically equivalent GRFs for a larger class of genetic systems; and 4) within a given GRF class, a set of mechanistic-to-mathematical transformations has been identified, which allows shaping the GRF before carrying out a system-level analysis. PMID:20371324

  19. Individual differences in common factors of emotional traits and executive functions predict functional connectivity of the amygdala.

    PubMed

    Rohr, C S; Dreyer, F R; Aderka, I M; Margulies, D S; Frisch, S; Villringer, A; Okon-Singer, H

    2015-10-15

    Evidence suggests that individual differences in emotion control are associated with frontoparietal-limbic networks and linked to emotional traits and executive functions. In a first attempt to directly target the link between emotional traits and executive functions using resting-state fMRI analysis, 43 healthy adults completed a test battery including executive tasks and emotional trait self-assessments that were subjected to a principal component analysis. Of the three factors detected, two explained 40.4% of the variance and were further investigated. Both factors suggest a relation between emotional traits and executive functions. Specifically, the first factor consisted of measures related to inhibitory control and negative affect, and the second factor was related to reward and positive affect. To investigate whether this interplay between emotional traits and executive functions is reflected in neural connectivity, we used resting-state fMRI to explore the functional connectivity of the amygdala as a starting point, and progressed to other seed-based analyses based on the initial findings. We found that the first factor predicted the strength of connectivity between brain regions known to be involved in the cognitive control of emotion, including the amygdala and the dorsolateral prefrontal cortex, whereas the second factor predicted the strength of connectivity between brain regions known to be involved in reward and attention, including the amygdala, the caudate and the thalamus. These findings suggest that individual differences in the ability to inhibit negative affect are mediated by prefrontal-limbic pathways, while the ability to be positive and use rewarding information is mediated by a network that includes the amygdala and thalamostriatal regions. PMID:26108101

  20. Striatal structure and function predict individual biases in learning to avoid pain

    PubMed Central

    Eldar, Eran; Hauser, Tobias U.; Dayan, Peter; Dolan, Raymond J.

    2016-01-01

    Pain is an elemental inducer of avoidance. Here, we demonstrate that people differ in how they learn to avoid pain, with some individuals refraining from actions that resulted in painful outcomes, whereas others favor actions that helped prevent pain. These individual biases were best explained by differences in learning from outcome prediction errors and were associated with distinct forms of striatal responses to painful outcomes. Specifically, striatal responses to pain were modulated in a manner consistent with an aversive prediction error in individuals who learned predominantly from pain, whereas in individuals who learned predominantly from success in preventing pain, modulation was consistent with an appetitive prediction error. In contrast, striatal responses to success in preventing pain were consistent with an appetitive prediction error in both groups. Furthermore, variation in striatal structure, encompassing the region where pain prediction errors were expressed, predicted participants’ predominant mode of learning, suggesting the observed learning biases may reflect stable individual traits. These results reveal functional and structural neural components underlying individual differences in avoidance learning, which may be important contributors to psychiatric disorders involving pathological harm avoidance behavior. PMID:27071092

  1. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  2. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGESBeta

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  3. Predicting stability constants for uranyl complexes using density functional theory.

    PubMed

    Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S

    2015-04-20

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578

  4. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  5. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ . PMID:25424913

  6. Predictive Factors in Undergraduates' Involvement in Campus Secret Cults in Public Universities in Edo State of Nigeria

    ERIC Educational Resources Information Center

    Azetta Arhedo, Philip; Aluede, Oyaziwo; Adomeh, Ilu O. C.

    2011-01-01

    This study examined the predictive factors in undergraduates' involvement in campus secret cults in public universities in Edo State of Nigeria. The study employed the descriptive method, specifically the survey format. A random sample of three hundred and eighty (380) undergraduates was drawn from the two public universities. Data were elicited…

  7. The Role of Family Involvement in Predicting Student-Teacher Relationships and Academic and Behavioral Outcomes for Children of Immigrants

    ERIC Educational Resources Information Center

    Ryce, Patrice

    2012-01-01

    Using a multi-ethnic, socioeconomically varied sample of children of immigrants attending Islamic and public schools from first through third grade, this dissertation examined the degree to which school-based family involvement predicted teacher perceptions of value differences with parents, teacher expectations, child externalizing behavioral…

  8. A continuous function model for path prediction of entities

    NASA Astrophysics Data System (ADS)

    Nanda, S.; Pray, R.

    2007-04-01

    As militaries across the world continue to evolve, the roles of humans in various theatres of operation are being increasingly targeted by military planners for substitution with automation. Forward observation and direction of supporting arms to neutralize threats from dynamic adversaries is one such example. However, contemporary tracking and targeting systems are incapable of serving autonomously for they do not embody the sophisticated algorithms necessary to predict the future positions of adversaries with the accuracy offered by the cognitive and analytical abilities of human operators. The need for these systems to incorporate methods characterizing such intelligence is therefore compelling. In this paper, we present a novel technique to achieve this goal by modeling the path of an entity as a continuous polynomial function of multiple variables expressed as a Taylor series with a finite number of terms. We demonstrate the method for evaluating the coefficient of each term to define this function unambiguously for any given entity, and illustrate its use to determine the entity's position at any point in time in the future.

  9. Local functional descriptors for surface comparison based binding prediction

    PubMed Central

    2012-01-01

    Background Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without regard to the underlying structural scaffold that creates the surface. Results We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with more generality than these prior methods. Conclusions Local functional descriptors offer a new method for protein surface comparison that is sufficiently flexible to serve in a variety of applications. PMID:23176080

  10. Homework Involvement and Functions: Perceptions of Hong Kong Chinese Primary School Students and Parents

    ERIC Educational Resources Information Center

    Tam, Vicky C. W.; Chan, Raymond M. C.

    2011-01-01

    This study examines the perceptions of Chinese students and parents in Hong Kong on homework involvement, assignment type and homework functions. The relationships of homework perceptions to student and parent attributes are also assessed. The sample includes 1393 pairs of students and their parents from 36 primary schools in Hong Kong. Findings…

  11. Relationship between involvement and functional milk desserts intention to purchase. Influence on attitude towards packaging characteristics.

    PubMed

    Ares, Gastón; Besio, Mariángela; Giménez, Ana; Deliza, Rosires

    2010-10-01

    Consumers perceive functional foods as member of the particular food category to which they belong. In this context, apart from health and sensory characteristics, non-sensory factors such as packaging might have a key role on determining consumers' purchase decisions regarding functional foods. The aims of the present work were to study the influence of different package attributes on consumer willingness to purchase regular and functional chocolate milk desserts; and to assess if the influence of these attributes was affected by consumers' level of involvement with the product. A conjoint analysis task was carried out with 107 regular milk desserts consumers, who were asked to score their willingness to purchase of 16 milk dessert package concepts varying in five features of the package, and to complete a personal involvement inventory questionnaire. Consumers' level of involvement with the product affected their interest in the evaluated products and their reaction towards the considered conjoint variables, suggesting that it could be a useful segmentation tool during food development. Package colour and the presence of a picture on the label were the variables with the highest relative importance, regardless of consumers' involvement with the product. The importance of these variables was higher than the type of dessert indicating that packaging may play an important role in consumers' perception and purchase intention of functional foods. PMID:20609376

  12. Academic Achievement and School Functioning among Nonincarcerated Youth Involved with the Juvenile Justice System

    ERIC Educational Resources Information Center

    Brown, Jonathan D.; Riley, Anne W.; Walrath, Christine M.; Leaf, Philip J.; Valdez, Carmen

    2008-01-01

    The relationship between academic problems and delinquency is well documented among incarcerated populations but has not been examined among nonincarcerated youth involved with the juvenile justice system. This research examined the school functioning and academic achievement of 157 youth who had brief contact with a state department of juvenile…

  13. Self-Determination and Student Involvement in Functional Assessment: Innovative Practices

    ERIC Educational Resources Information Center

    Wehmeyer, Michael L.; Baker, Daniel J.; Blumberg, Richard; Harrison, Richard

    2004-01-01

    The fundamental feature that distinguishes positive behavior support (PBS) from previous generations of applied behavior analysis is its focus on the remediation of deficient contexts that are determined to be the source of the problem. Determining this source involves conducting a functional assessment. This innovative practices article presents…

  14. Can Parents' Involvement in Children's Education Offset the Effects of Early Insensitivity on Academic Functioning?

    ERIC Educational Resources Information Center

    Monti, Jennifer D.; Pomerantz, Eva M.; Roisman, Glenn I.

    2014-01-01

    Data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 1,312) were analyzed to examine whether the adverse effects of early insensitive parenting on children's academic functioning can be offset by parents' later involvement in children's education. Observations of mothers' early…

  15. Sensitivity and specificity of the functional hallux limitus test to predict foot function.

    PubMed

    Payne, Craig; Chuter, Vivienne; Miller, Kathryn

    2002-05-01

    Functional hallux limitus is an underrecognized entity that generally does not produce symptoms but can result in a variety of compensatory mechanisms that can produce symptoms. Clinically, hallux limitus can be determined by assessing the range of motion available at the first metatarsophalangeal joint while the first ray is prevented from plantarflexing. The aim of this study was to determine the sensitivity and specificity of this clinical test to predict abnormal excessive midtarsal joint function during gait. A total of 86 feet were examined for functional hallux limitus and abnormal pronation of the midtarsal joint during late midstance. The test had a sensitivity of 0.72 and a specificity of 0.66, suggesting that clinicians should consider functional hallux limitus when there is late midstance pronation of the midtarsal joint during gait. PMID:12015407

  16. Development of a predictive model of Crohn’s disease proximal small bowel involvement in capsule endoscopy evaluation

    PubMed Central

    Rodrigues-Pinto, Eduardo; Cardoso, Helder; Rosa, Bruno; Santos-Antunes, João; Rodrigues, Susana; Marques, Margarida; Lopes, Susana; Albuquerque, Andreia; Carvalho, Pedro; Moreira, Maria; Cotter, José; Macedo, Guilherme

    2016-01-01

    Background and study aims: One of the indications for capsule endoscopy (CE) is the detection of proximal small bowel (SB) involvement in Crohn's disease (CD) patients. Our aim was to assess clinical, laboratory and endoscopic predictors associated with proximal SB involvement in CD patients submitted to CE. Patients and methods: Retrospective multicenter study in which Lewis score (LS) was systematically determined in 190 CE of patients diagnosed with CD between 2003 and 2014. Results: Significant inflammatory activity (LS > 135) was present in 23 % of the patients in the first tertile and in 31 % of the patients in the second tertile. Albumin, haemoglobin, and total proteins were significantly lower in patients with a LS > 790 compared to patients with a LS < 135, while white blood cell counts and C-reactive protein were significantly higher. In the univariable analysis, a higher risk for proximal SB involvement at CE was associated with ileal involvement at ileocolonoscopy (OR 2.858, P = 0.006), higher platelets levels (OR 1.005, P = 0.004) and significant weight loss (OR 2.450, P = 0.006). In logistic regression, ileal involvement at ileocolonoscopy (OR 6.817, P = 0.003), stricturing behavior (OR 8.653, P = 0.011) and significant weight loss (OR 3.629, P = 0.028) were independently associated with proximal SB involvement at CE. Considering the ROC curve of this model, a cut-off > 0.249 predicts proximal SB involvement with 90 % sensitivity and 40 % specificity (AUROC 0.732). Conclusions: One-third of patients had proximal SB involvement. Predictive factors were significant weight loss, stricturing behaviour, and ileal involvement at ileocolonoscopy. These data help to select CD patients that benefit the most from performing a CE. PMID:27556069

  17. The role of family, peers and school perceptions in predicting involvement in youth violence.

    PubMed

    Laufer, Avital; Harel, Yossi

    2003-01-01

    This study explored the relative importance of family, peers and school in predicting youth violence. The analysis was done on a nationally representative sample included 8,394 students from grade 6th-10th in Israel. Measures of youth violence included bullying, physical fights and weapon carrying. The findings suggested that all three social systems had significant relations with youth violence, respectively. Variables found to predict violence were: Family-lack of parental support regarding school; Peers-Lack of social integration or too many evenings out with friends; School-feeling of school alienation, low academic achievement and perceptions of frequent acts of violence in school. School perceptions had the strongest predicting power. Findings emphasized the importance of focusing on improving the daily school experience in reducing youth violence. PMID:12964445

  18. Anatomical Involvement of the Subventricular Zone Predicts Poor Survival Outcome in Low-Grade Astrocytomas

    PubMed Central

    Liu, Shuai; Wang, Yinyan; Fan, Xing; Ma, Jun; Ma, Wenbin; Wang, Renzhi; Jiang, Tao

    2016-01-01

    The subventricular zone (SVZ) has been implicated in the origination, development, and biological behavior of gliomas. Tumor-SVZ contact is also postulated to be a poor prognostic factor in glioblastomas. We aimed to evaluate the prognostic consequence of the anatomical involvement of low-grade gliomas with the SVZ. To that end, we reviewed 143 patients with diffuse astrocytomas, and tumor lesions were manually delineated on magnetic resonance images. We initially investigated the prognostic role of SVZ contact in all patients. Additionally, we investigated the influence of the anatomical proximity of the tumor lesion centroids to the SVZ in the SVZ-involved patient cohorts, as well as location within the SVZ. We found SVZ contact with tumors to be a significant prognostic factor of overall survival in all patients with diffuse astrocytomas (p = 0.027). In the SVZ-involved cohort, a shorter distance from the tumor centroid to the SVZ (≤30 mm) correlated with shorter overall survival (p = 0.022) on univariate analysis. However, there was no significant difference in overall survival with respect to the SVZ region involved with the tumor (p = 0.930). Multivariate analysis showed that a shorter distance between the tumor centroid and the SVZ (p = 0.039) was significantly associated with poor overall survival in SVZ-involved patients. Hence, this study helps establish the prognostic role of the anatomical interaction of tumors with the SVZ in low-grade astrocytomas. PMID:27120204

  19. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices

    PubMed Central

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-01-01

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651

  20. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome

    PubMed Central

    2016-01-01

    Objective To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Methods Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Results Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. Conclusion A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS. PMID:27446785

  1. Asymmetries involving dihadron fragmentation functions: from DIS to e+ e- annihilation

    SciTech Connect

    Bacchetta, Alessandro; Radici, M.; Mukherjee, Asmita; Ceccopieri, Federico

    2009-01-01

    Using a model calculation of dihadron fragmentation functions, we fit the spin asymmetry recently extracted by HERMES for the semi-inclusive pion pair production in deep-inelastic scattering on a transversely polarized proton target. By evolving the obtained dihadron fragmentation functions, we make predictions for the correlation of the angular distributions of two pion pairs produced in electron-positron annihilations at BELLE kinematics. Our study shows that the combination of two-hadron inclusive deep-inelastic scattering and electron-positron annihilation measurements can provide a valid alternative to Collins effect for the extraction of the quark transversity distribution in the nucleon.

  2. Parental Involvement in Predicting School Motivation: Similar and Differential Effects across Ethnic Groups

    ERIC Educational Resources Information Center

    Fan, Weihua; Williams, Cathy M.; Wolters, Christopher A.

    2012-01-01

    The authors investigated how different dimensions of parental involvement similarly or differentially linked to various constructs of school motivation (academic self-efficacy in mathematics and English, intrinsic motivation toward mathematics and English, and engagement) across ethnic groups of Caucasian, African American, Asian American, and…

  3. Arts Involvement Predicts Academic Achievement Only When the Child Has a Musical Instrument

    ERIC Educational Resources Information Center

    Young, Laura N.; Cordes, Sara; Winner, Ellen

    2014-01-01

    We examined the associations between academic achievement and arts involvement (access to a musical instrument for the child at home, participation in unspecified after-school arts activities) in a sample of 2339 11-12-year-olds surveyed in the USA between 1998 and 2008. We compared the contributions of these variables to other kinds of cognitive…

  4. High School Drinker Typologies Predict Alcohol Involvement and Psychosocial Adjustment during Acclimation to College

    ERIC Educational Resources Information Center

    Hersh, Matthew A.; Hussong, Andrea M.

    2006-01-01

    This study examined differences among distinct types of high school drinkers on their alcohol involvement and psychosocial adjustment during the first semester of college. Participants were 147 college freshmen (66% female; 86% Caucasian) from a large Southeastern public university who reported on high school drinking and college stress, affect,…

  5. How Does Motivational Interviewing Work? Therapist Interpersonal Skill Predicts Client Involvement Within Motivational Interviewing Sessions

    ERIC Educational Resources Information Center

    Moyers, Theresa B.; Miller, William R.; Hendrickson, Stacey M. L.

    2005-01-01

    Although many studies have shown that motivational interviewing (MI) is effective in reducing problem behaviors, few have investigated purported causal mechanisms. Therapist interpersonal skills have been proposed as an influence on client involvement during MI sessions and as a necessary precursor to client commitment language. Using the…

  6. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  7. Relating Phylogenetic and Functional Diversity among Denitrifiers and Quantifying their Capacity to Predict Community Functioning

    PubMed Central

    Salles, Joana Falcão; Le Roux, Xavier; Poly, Franck

    2012-01-01

    Genetic diversity of phylogenetic or functional markers is widely used as a proxy of microbial diversity. However, it remains unclear to what extent functional diversity (FD), gene sequence diversity and community functioning are linked. For a range of denitrifying bacteria, we analyzed the relationships between (i) the similarity of functional traits evaluated from metabolic profiles (BIOLOG plates) or from N2O accumulation patterns on different carbon sources and (ii) the similarity of phylogenetic (16S rRNA gene) or functional (nir gene) markers. We also calculated different proxies for the diversity of denitrifier community based on taxa richness, phylogenetic (16S rRNA gene) or functional similarities (based either on metabolic profiles or N2O accumulation patterns), and evaluated their performance in inferring the functioning of assembled denitrifying communities. For individual strains, the variation in the 16S rRNA gene sequence was weakly correlated with the variation in metabolic patterns (ρ = 0.35) and was not related to N2O accumulation. The latter was correlated with the similarity of nitrite reductase residues. When nir genes were analyzed separately, the similarity in amino acids coded by the nirS genes was highly correlated with the observed patterns of N2O accumulation (ρ = 0.62), whereas nirK amino acid residues were unrelated to N2O accumulation. For bacterial assemblages, phylogenetic diversity (average similarity among species in a community) and mean community dissimilarity (average distance between species) calculated using 16S rRNA gene sequences, and FD measures associated with metabolic profiles, poorly predicted the variation in the functioning of assembled communities (≤15%). In contrast, the proxies of FD based on N2O accumulation patterns performed better and explained from 23 to 42% of the variation in denitrification. Amongst those, community niche was the best metric, indicating the importance of complementarity for

  8. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  9. How to Develop, Validate, and Compare Clinical Prediction Models Involving Radiological Parameters: Study Design and Statistical Methods.

    PubMed

    Han, Kyunghwa; Song, Kijun; Choi, Byoung Wook

    2016-01-01

    Clinical prediction models are developed to calculate estimates of the probability of the presence/occurrence or future course of a particular prognostic or diagnostic outcome from multiple clinical or non-clinical parameters. Radiologic imaging techniques are being developed for accurate detection and early diagnosis of disease, which will eventually affect patient outcomes. Hence, results obtained by radiological means, especially diagnostic imaging, are frequently incorporated into a clinical prediction model as important predictive parameters, and the performance of the prediction model may improve in both diagnostic and prognostic settings. This article explains in a conceptual manner the overall process of developing and validating a clinical prediction model involving radiological parameters in relation to the study design and statistical methods. Collection of a raw dataset; selection of an appropriate statistical model; predictor selection; evaluation of model performance using a calibration plot, Hosmer-Lemeshow test and c-index; internal and external validation; comparison of different models using c-index, net reclassification improvement, and integrated discrimination improvement; and a method to create an easy-to-use prediction score system will be addressed. This article may serve as a practical methodological reference for clinical researchers. PMID:27134523

  10. How to Develop, Validate, and Compare Clinical Prediction Models Involving Radiological Parameters: Study Design and Statistical Methods

    PubMed Central

    Han, Kyunghwa; Choi, Byoung Wook

    2016-01-01

    Clinical prediction models are developed to calculate estimates of the probability of the presence/occurrence or future course of a particular prognostic or diagnostic outcome from multiple clinical or non-clinical parameters. Radiologic imaging techniques are being developed for accurate detection and early diagnosis of disease, which will eventually affect patient outcomes. Hence, results obtained by radiological means, especially diagnostic imaging, are frequently incorporated into a clinical prediction model as important predictive parameters, and the performance of the prediction model may improve in both diagnostic and prognostic settings. This article explains in a conceptual manner the overall process of developing and validating a clinical prediction model involving radiological parameters in relation to the study design and statistical methods. Collection of a raw dataset; selection of an appropriate statistical model; predictor selection; evaluation of model performance using a calibration plot, Hosmer-Lemeshow test and c-index; internal and external validation; comparison of different models using c-index, net reclassification improvement, and integrated discrimination improvement; and a method to create an easy-to-use prediction score system will be addressed. This article may serve as a practical methodological reference for clinical researchers. PMID:27134523

  11. Expert Involvement Predicts mHealth App Downloads: Multivariate Regression Analysis of Urology Apps

    PubMed Central

    Osório, Luís; Cavadas, Vitor; Fraga, Avelino; Carrasquinho, Eduardo; Cardoso de Oliveira, Eduardo; Castelo-Branco, Miguel; Roobol, Monique J

    2016-01-01

    Background Urological mobile medical (mHealth) apps are gaining popularity with both clinicians and patients. mHealth is a rapidly evolving and heterogeneous field, with some urology apps being downloaded over 10,000 times and others not at all. The factors that contribute to medical app downloads have yet to be identified, including the hypothetical influence of expert involvement in app development. Objective The objective of our study was to identify predictors of the number of urology app downloads. Methods We reviewed urology apps available in the Google Play Store and collected publicly available data. Multivariate ordinal logistic regression evaluated the effect of publicly available app variables on the number of apps being downloaded. Results Of 129 urology apps eligible for study, only 2 (1.6%) had >10,000 downloads, with half having ≤100 downloads and 4 (3.1%) having none at all. Apps developed with expert urologist involvement (P=.003), optional in-app purchases (P=.01), higher user rating (P<.001), and more user reviews (P<.001) were more likely to be installed. App cost was inversely related to the number of downloads (P<.001). Only data from the Google Play Store and the developers’ websites, but not other platforms, were publicly available for analysis, and the level and nature of expert involvement was not documented. Conclusions The explicit participation of urologists in app development is likely to enhance its chances to have a higher number of downloads. This finding should help in the design of better apps and further promote urologist involvement in mHealth. Official certification processes are required to ensure app quality and user safety. PMID:27421338

  12. Physical characteristics that predict involvement with the ball in recreational youth soccer.

    PubMed

    Ré, Alessandro H Nicolai; Cattuzzo, Maria Teresa; Henrique, Rafael Dos Santos; Stodden, David F

    2016-09-01

    This study examined the relative contribution of age, stage of puberty, anthropometric characteristics, health-related fitness, soccer-specific tests and match-related technical performance to variance in involvements with the ball during recreational 5-a-side small-sided (32 × 15 m) soccer matches. Using a cross-sectional design, 80 healthy male students (14.6 ± 0.5 years of age; range 13.6-15.4) who played soccer recreationally were randomly divided into 10 teams and played against each other. Measurements included height, body mass, pubertal status, health-related fitness (12-min walk/run test, standing long jump, 15-m sprint and sit-ups in 30 s), soccer-specific tests (kicking for speed, passing for accuracy and agility run with and without a ball), match-related technical performance (kicks, passes and dribbles) and involvements with the ball during matches. Forward multiple regression analysis revealed that cardiorespiratory fitness (12-min walk/run test) accounted for 36% of the variance in involvements with the ball. When agility with the ball (zigzag running) and power (standing long jump) were included among the predictors, the total explained variance increased to 62%. In conclusion, recreational adolescent players, regardless of their soccer-specific skills, may increase participation in soccer matches most through physical activities that promote improvement in cardiorespiratory fitness, muscle power and agility. PMID:27328724

  13. Can a video-based hazard perception test used for driver licensing predict crash involvement?

    PubMed

    Horswill, Mark S; Hill, Andrew; Wetton, Mark

    2015-09-01

    In 2008, the state of Queensland in Australia introduced a video-based hazard perception test as part of the licensing process for new drivers. A key validity check for such a test is whether scores are associated with crash involvement. We present data demonstrating that drivers who failed the hazard perception test (based on a ROC curve-derived pass mark) were 25% [95% confidence interval (CI) 6%, 48%] more likely to be involved in an active crash (defined as a crash occurring while the driver's vehicle was moving but they were not engaged in parking or reversing) during a one year period following the test (controlling for driving exposure, age, and sex). Failing drivers were also 17% (95% CI 6%, 29%) more likely to have been involved in active crashes prior to the test, in the period since obtaining their provisional license. These data support the proposal that the hazard perception test is a valid measure of crash-related driving performance. PMID:26093097

  14. Structure and Function of a Novel ld-Carboxypeptidase A Involved in Peptidoglycan Recycling

    PubMed Central

    Das, Debanu; Hervé, Mireille; Elsliger, Marc-André; Kadam, Rameshwar U.; Grant, Joanna C.; Chiu, Hsiu-Ju; Knuth, Mark W.; Klock, Heath E.; Miller, Mitchell D.; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.

    2013-01-01

    Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Å resolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling. PMID:24123814

  15. Reduced Cognitive Function Predicts Functional Decline in Patients with Heart Failure over 12 months

    PubMed Central

    Alosco, Michael L.; Spitznagel, Mary Beth; Cohen, Ronald; Sweet, Lawrence H.; Colbert, Lisa H.; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2016-01-01

    Background Impaired activities of daily living (ADL) are common in heart failure (HF) patients and contribute to the elevated mortality and hospitalization rates in this population. Cognitive impairment is also prevalent in HF, though its ability to predict functional decline over time is unknown. Aims This study examined the longitudinal pattern of activities of daily living in HF persons and whether reduced baseline cognitive status predicts functional decline in this population. Methods 110 persons with HF completed the Lawton-Brody Activities of Daily Living Scale and were administered the Modified Mini-Mental Status Examination (3MS) at baseline and a 12-month follow-up. Three composite scores were derived from the Lawton-Brody, including total, instrumental, and basic ADLs. Results HF patients reported high rates of baseline impairments in instrumental ADLs, including shopping, food preparation, housekeeping duties, laundry, among others. Repeated measures analyses showed significant declines in total and instrumental ADLs from baseline to the 12-month follow-up in HF (p < .05). Hierarchical regression analyses showed that poorer baseline performance on the 3MS predicted worse total ADL performance at 12-months (β = .15, p = .049), including greater dependence in shopping, driving, feeding, and physical ambulation (p < .05 for all). Conclusion The current results show that HF patients report significant functional decline over a 12-month period and brief cognitive tests can identify those patients at highest risk for decline. If replicated, such findings encourage the use of cognitive screening measures to identify HF patients most likely to require assistance with ADL tasks. PMID:23754840

  16. Parental Involvement in Infant Sleep Routines Predicts Differential Sleep Patterns in Children With and Without Anxiety Disorders.

    PubMed

    Cowie, Jennifer; Palmer, Cara A; Hussain, Hira; Alfano, Candice A

    2016-08-01

    This study compared parents' retrospective reports of their involvement in infant settling strategies and their relation to current sleep patterns among children (N = 84, ages 7-11) with generalized anxiety disorder (GAD) and healthy controls. Parents of children with GAD were significantly more likely to report rocking their infants to sleep and putting infants down when they were already asleep than parents of healthy controls, even when accounting for infant health-related factors and parental anxiety. Greater involvement in infant sleep routines also predicted sleep patterns (measured via actigraphy) during childhood, though opposite relationships were observed in the two groups. Early involvement was related to poorer sleep in control children but better sleep for children with GAD even after controlling for current parenting practices. Findings suggest differential effects of early sleep-related parenting for children with and without later anxiety disorders with possible implications for early intervention. PMID:26493392

  17. Recent improvements in prediction of protein structure by global optimization of a potential energy function

    PubMed Central

    Pillardy, Jarosław; Czaplewski, Cezary; Liwo, Adam; Lee, Jooyoung; Ripoll, Daniel R.; Kaźmierkiewicz, Rajmund; Ołdziej, Stanisław; Wedemeyer, William J.; Gibson, Kenneth D.; Arnautova, Yelena A.; Saunders, Jeff; Ye, Yuan-Jie; Scheraga, Harold A.

    2001-01-01

    Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence. PMID:11226239

  18. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    PubMed

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder. PMID:25553620

  19. Prediction of functional sites in proteins using conserved functional group analysis.

    PubMed

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-01

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects. PMID:15033369

  20. On the regularization of extremal three-point functions involving giant gravitons

    NASA Astrophysics Data System (ADS)

    Kristjansen, Charlotte; Mori, Stefano; Young, Donovan

    2015-11-01

    In the AdS5 /CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.

  1. Identification of Interphase Functions for the NIMA Kinase Involving Microtubules and the ESCRT Pathway

    PubMed Central

    Govindaraghavan, Meera; McGuire Anglin, Sarah Lea; Shen, Kuo-Fang; Shukla, Nandini; De Souza, Colin P.; Osmani, Stephen A.

    2014-01-01

    The Never in Mitosis A (NIMA) kinase (the founding member of the Nek family of kinases) has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP) which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell cycle progression

  2. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS

    PubMed Central

    2012-01-01

    Background Lymph node status is not part of the staging system for cervical cancer, but provides important information for prognosis and treatment. We investigated whether lymph node status can be predicted with proteomic profiling. Material & methods Serum samples of 60 cervical cancer patients (FIGO I/II) were obtained before primary treatment. Samples were run through a HPLC depletion column, eliminating the 14 most abundant proteins ubiquitously present in serum. Unbound fractions were concentrated with spin filters. Fractions were spotted onto CM10 and IMAC30 surfaces and analyzed with surface-enhanced laser desorption time of flight (SELDI-TOF) mass spectrometry (MS). Unsupervised peak detection and peak clustering was performed using MASDA software. Leave-one-out (LOO) validation for weighted Least Squares Support Vector Machines (LSSVM) was used for prediction of lymph node involvement. Other outcomes were histological type, lymphvascular space involvement (LVSI) and recurrent disease. Results LSSVM models were able to determine LN status with a LOO area under the receiver operating characteristics curve (AUC) of 0.95, based on peaks with m/z values 2,698.9, 3,953.2, and 15,254.8. Furthermore, we were able to predict LVSI (AUC 0.81), to predict recurrence (AUC 0.92), and to differentiate between squamous carcinomas and adenocarcinomas (AUC 0.88), between squamous and adenosquamous carcinomas (AUC 0.85), and between adenocarcinomas and adenosquamous carcinomas (AUC 0.94). Conclusions Potential markers related with lymph node involvement were detected, and protein/peptide profiling support differentiation between various subtypes of cervical cancer. However, identification of the potential biomarkers was hampered by the technical limitations of SELDI-TOF MS. PMID:22694804

  3. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    PubMed Central

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  4. Integrative functional genomic delineation of the cascades of transcriptional changes involved in hepatocellular carcinoma progression.

    PubMed

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-10-01

    Development of targeted therapeutics is still at its early stage for hepatocellular carcinoma (HCC) due to the incomplete understanding of the confounding regulations at signaling pathway level. In this investigation, gene co-expression-based networking and integrative functional genomic modeling of HCC mRNA profiles as signaling processes were employed to understand the complex signaling cascades involved in HCC development toward understanding the avenues for targeted therapeutics. Multiple sets of genes and molecular biological processes involved during HCC development were identified from this integrative analysis: (i) Loss of liver cellular features due to the reduced HNF4A & PPAR signaling in the early stages of HCC, (ii) activated inflammatory and stress signals in the cirrhosis stages and (iii) highly activated cellular proliferation with the activated E2F-MYC oncogenic signaling with the gain of embryonic liver stem cell-like features in the advanced stage tumors. Upon connecting these gene-sets with the established drug sensitivity-related gene signatures, targeted therapeutic strategies for the heterogeneous HCC conditions have been identified. PPAR agonist class of drugs for early stage HCC conditions, anti-inflammatory drugs for cirrhosis and topoisomerase inhibitors for the advanced HCC conditions were inferred. Integrative functional genomic analysis of HCC transcriptome profiles at the context of signaling pathways has defined the key molecular processes involved in HCC development. Further, the study highlights the stage-specific and pathway focused targeted therapeutics for HCC. These findings deserve extensive preclinical explorations toward the establishment of targeted therapeutics. PMID:27194100

  5. firestar--advances in the prediction of functionally important residues.

    PubMed

    Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L

    2011-07-01

    firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php. PMID:21672959

  6. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator...

  7. Comparison of Nodal Risk Formula and MR Lymphography for Predicting Lymph Node Involvement in Prostate Cancer

    SciTech Connect

    Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van

    2011-09-01

    Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.

  8. Working memory involved in predicting future outcomes based on past experiences.

    PubMed

    Dretsch, Michael N; Tipples, Jason

    2008-02-01

    Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152-162]. Similarly, a secondary memory load task has been shown to impair task performance [Hinson, J., Jameson, T. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioural Neuroscience, 2, 341-353]. In the present study, we investigate whether the latter findings were due to increased random responding [Franco-Watkins, A. M., Pashler, H., & Rickard, T. C. (2006). Does working memory load lead to greater impulsivity? Commentary on Hinson, Jameson, and Whitney's (2003). Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 443-447]. Participants were tested under Low Working Memory (LWM; n=18) or High Working Memory (HWM; n=17) conditions while performing the Reversed IGT in which punishment was immediate and reward delayed [Bechara, A., Dolan, S., & Hindes, A. (2002). Decision making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705]. In support of a role for working memory in emotional decision making, compared to the LWM condition, participants in the HWM condition made significantly greater number of disadvantageous selections than that predicted by chance. Performance by the HWM group could not be fully explained by random responding. PMID:17628270

  9. The functional analysis of MicroRNAs involved in NF-κB signaling.

    PubMed

    Yang, Y; Wang, J-K

    2016-05-01

    Nuclear factor kB (NF-kB) is a transcriptional factor that regulates a large number of genes that controls diverse biological functions, ranging from inflammation, cell proliferation and tumor development to learning and memory. MicroRNAs (miRNAs) are small non-coding RNA molecules involved in most aspects of physiological and pathological processes, including cancer, viral infections, inflammation and autoimmune diseases. miRNAs also play an important role in the regulation of NF-kB signaling pathway, some being inhibitory and others activating. Here, we analyzed the convergence of miRNAs involved in NF-kB signaling regulation and dysregulation of miRNAs and NF-kB activation in human diseases, particularly in cancer. The function of miR-146, miR-125b, miR-21, miR-301a, miR-30b, and miR-199 and their impacts on tumorigenesis are analyzed in this work. miRNAs as one of the most abundant classes of regulatory molecules, deciphering their biological function and pathological contribution in NF-kB dysregulation is essential to understand the complexity of immune systems and to develop therapeutics against cancer. PMID:27212168

  10. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  11. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  12. Predicting Transfer Performance: A Comparison of Competing Function Learning Models

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Dimperio, Eric; Griego, Jacqueline A.; Busemeyer, Jerome R.

    2009-01-01

    The population of linear experts (POLE) model suggests that function learning and transfer are mediated by activation of a set of prestored linear functions that together approximate the given function (Kalish, Lewandowsky, & Kruschke, 2004). In the extrapolation-association (EXAM) model, an exemplar-based architecture associates trained input…

  13. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine.

    PubMed

    San Fabián, J; Omar, S; García de la Vega, J M

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF)n](-) and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules. PMID:27586916

  14. Predicting the Risk of Pelvic Node Involvement Among Men With Prostate Cancer in the Contemporary Era

    SciTech Connect

    Nguyen, Paul L. Chen, M.-H.; Hoffman, Karen E.; Katz, Matthew S.; D'Amico, Anthony V.

    2009-05-01

    Purpose: The 'Roach formula' for the risk of pelvic lymph node metastases [(2/3) * PSA + (Gleason score - 6) * 10] was developed in the early prostate-specific antigen (PSA) era. We examined the accuracy of this formula in contemporary patients. Methods: We included men in the Surveillance, Epidemiology, and End Results Registry with a diagnosis of clinical T1c-T4 prostate cancer in 2004 who had a surgical lymph node evaluation, Gleason score (typically from prostatectomy), and baseline PSA level (n = 9,387). Expected and observed rates of node positivity were compared. Results: Ninety-eight percent were clinical T1c/T2, and 97% underwent prostatectomy. Overall, 309 patients (3.29%) had positive lymph nodes. Roach scores overestimated the actual rate of positive lymph nodes in the derivation set by 16-fold for patients with Roach score less than or equal to 10%, by 7-fold for scores greater than 10-20%, and by approximately 2.5-fold for scores greater than 20%. Applying these adjustment factors to Roach scores in the validation data set yielded accurate predictions of risk. For those with Roach score less than or equal to 10%, adjusted expected risk was 0.2% and observed risk was 0.2%. For Roach score greater than 10-20%, adjusted expected risk was 2.0% and observed risk was 2.1%. For Roach score greater than 20-30%, adjusted expected risk was 9.7% and observed risk was 6.5%. For Roach score greater than 30-40%, adjusted expected risk was 13.9% and observed risk was 13.9%. Conclusion: Applied to contemporary patients with mainly T1c/T2 disease, the Roach formula appears to overestimate pelvic lymph node risk. The adjustment factors presented here should be validated by using biopsy Gleason scores and extended lymphadenectomies.

  15. Right Ventricular and Right Atrial Involvement Can Predict Atrial Fibrillation in Patients with Hypertrophic Cardiomyopathy?

    PubMed Central

    Doesch, Christina; Lossnitzer, Dirk; Rudic, Boris; Tueluemen, Erol; Budjan, Johannes; Haubenreisser, Holger; Henzler, Thomas; Schoenberg, Stefan O.; Borggrefe, Martin; Papavassiliu, Theano

    2016-01-01

    Objectives and Background: Atrial fibrillation (AF) is associated with clinical deterioration, stroke and disability in patients with hypertrophic cardiomyopathy (HCM). Therefore, the objective of this study was to evaluated cardiac magnetic resonance (CMR)-derived determinants for the occurrence of AF in patients with HCM. Methods: 98 Patients with HCM and 30 healthy controls underwent CMR and were followed-up for 6±3 years. Results: 19 (19.4%) patients presented with AF at initial diagnosis, 19 (19.4%) developed AF during follow-up and 60 (61.2%) remained in sinus rhythm (SR). Compared to healthy controls, patients with HCM who remained in SR presented with significantly increased left ventricular mass, an elevated left ventricular remodeling index, enlarged left atrial volumes and reduced septal mitral annular plane systolic excursion (MAPSE) compared to healthy controls. Whereas HCM patients who presented with AF at initial diagnosis and those who developed AF during follow-up additionally presented with reduced tricuspid annular plane systolic excursion (TAPSE) and right atrial (RA) dilatation. Receiver-operator curve analysis indicated good predictive performance of TAPSE, RA diameter and septal MAPSE (AUC 0.73, 0.69 and 0.71, respectively) to detect patients at risk of developing AF. Conclusion: Reduced MAPSE measurements and enlarged LA volumes seems to be a common feature in patients with HCM, whereas reduced TAPSE and RA dilatation only seem to be altered in patients with history of AF and those developing AF. Therefore, they could serve as easy determinable markers of AF in patients with HCM. PMID:26812947

  16. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia

    PubMed Central

    2014-01-01

    Background Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. Results In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith’s phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose

  17. The inhomogeneous distribution of liver function: possible impact on the prediction of post-operative remnant liver function

    PubMed Central

    Nilsson, Henrik; Karlgren, Silja; Blomqvist, Lennart; Jonas, Eduard

    2015-01-01

    Background Previous studies have shown that liver function is inhomogeneously distributed in diseased livers, and this uneven distribution cannot be compensated for if a global liver function test is used for the prediction of post-operative remnant liver function. Dynamic Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) can assess segmental liver function, thus offering the possibility to overcome this problem. Methods In 10 patients with liver cirrhosis and 10 normal volunteers, the contribution of individual liver segments to total liver function and volume was calculated using dynamic Gd-EOB-DTPA-enhanced MRI. Remnant liver function predictions using a segmental method and global assessment were compared for a simulated left hemihepatectomy. For the prediction based on segmental functional MRI assessment, the estimated function of the remnant liver segments was added. Results Global liver function assessment overestimated the remnant liver function in 9 out of 10 patients by as much as 9.3% [median −3.5% (−9.3–3.5%)]. In the normal volunteers there was a slight underestimation of remnant function in 9 out of 10 cases [median 1.07% (−0.7–2.5%)]. Discussion The present study underlines the necessity of a segmental liver function test able to compensate for the non-homogeneous nature of liver function, if the prediction of post-operative remnant liver function is to be improved. PMID:25297934

  18. Cloud Prediction of Protein Structure and Function with PredictProtein for Debian

    PubMed Central

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032

  19. Cloud prediction of protein structure and function with PredictProtein for Debian.

    PubMed

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032

  20. Functional brain imaging predicts public health campaign success.

    PubMed

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns. PMID:26400858

  1. Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies.

    PubMed

    Silverman, Merav H; Jedd, Kelly; Luciana, Monica

    2015-11-15

    Behavioral responses to, and the neural processing of, rewards change dramatically during adolescence and may contribute to observed increases in risk-taking during this developmental period. Functional MRI (fMRI) studies suggest differences between adolescents and adults in neural activation during reward processing, but findings are contradictory, and effects have been found in non-predicted directions. The current study uses an activation likelihood estimation (ALE) approach for quantitative meta-analysis of functional neuroimaging studies to: (1) confirm the network of brain regions involved in adolescents' reward processing, (2) identify regions involved in specific stages (anticipation, outcome) and valence (positive, negative) of reward processing, and (3) identify differences in activation likelihood between adolescent and adult reward-related brain activation. Results reveal a subcortical network of brain regions involved in adolescent reward processing similar to that found in adults with major hubs including the ventral and dorsal striatum, insula, and posterior cingulate cortex (PCC). Contrast analyses find that adolescents exhibit greater likelihood of activation in the insula while processing anticipation relative to outcome and greater likelihood of activation in the putamen and amygdala during outcome relative to anticipation. While processing positive compared to negative valence, adolescents show increased likelihood for activation in the posterior cingulate cortex (PCC) and ventral striatum. Contrasting adolescent reward processing with the existing ALE of adult reward processing reveals increased likelihood for activation in limbic, frontolimbic, and striatal regions in adolescents compared with adults. Unlike adolescents, adults also activate executive control regions of the frontal and parietal lobes. These findings support hypothesized elevations in motivated activity during adolescence. PMID:26254587

  2. High-throughput functional testing of ENCODE segmentation predictions

    PubMed Central

    Kwasnieski, Jamie C.; Fiore, Christopher; Chaudhari, Hemangi G.

    2014-01-01

    The histone modification state of genomic regions is hypothesized to reflect the regulatory activity of the underlying genomic DNA. Based on this hypothesis, the ENCODE Project Consortium measured the status of multiple histone modifications across the genome in several cell types and used these data to segment the genome into regions with different predicted regulatory activities. We measured the cis-regulatory activity of more than 2000 of these predictions in the K562 leukemia cell line. We tested genomic segments predicted to be Enhancers, Weak Enhancers, or Repressed elements in K562 cells, along with other sequences predicted to be Enhancers specific to the H1 human embryonic stem cell line (H1-hESC). Both Enhancer and Weak Enhancer sequences in K562 cells were more active than negative controls, although surprisingly, Weak Enhancer segmentations drove expression higher than did Enhancer segmentations. Lower levels of the covalent histone modifications H3K36me3 and H3K27ac, thought to mark active enhancers and transcribed gene bodies, associate with higher expression and partly explain the higher activity of Weak Enhancers over Enhancer predictions. While DNase I hypersensitivity (HS) is a good predictor of active sequences in our assay, transcription factor (TF) binding models need to be included in order to accurately identify highly expressed sequences. Overall, our results show that a significant fraction (∼26%) of the ENCODE enhancer predictions have regulatory activity, suggesting that histone modification states can reflect the cis-regulatory activity of sequences in the genome, but that specific sequence preferences, such as TF-binding sites, are the causal determinants of cis-regulatory activity. PMID:25035418

  3. Increased involvement of the parahippocampal gyri in a sad mood predicts future depressive symptoms

    PubMed Central

    Huffziger, Silke; Ebner-Priemer, Ulrich; Kuehner, Christine; Kirsch, Peter

    2014-01-01

    Behavioral studies suggest a relationship between autobiographical memory, rumination and depression. The objective of this study was to determine whether remitted depressed patients show alterations in connectivity of the posterior cingulate cortex (PCC, a node in the default mode network) with the parahippocampal gyri (PHG, a region associated with autobiographical memory) while intensively recalling negative memories and whether this is related to daily life symptoms and to the further course of depression. Sad mood was induced with keywords of personal negative life events in participants with remitted depression (n = 29) and matched healthy controls (n = 29) during functional magnetic resonance imaging. Additionally, daily life assessments of mood and rumination and a 6-month follow-up were conducted. Remitted depressed participants showed greater connectivity than healthy controls of the PCC with the PHG, which was even stronger in patients with more previous episodes. Furthermore, patients with increased PCC–PHG connectivity showed a sadder mood and more rumination in daily life and a worsening of rumination and depression scores during follow-up. A relationship of negative autobiographical memory processing, rumination, sad mood and depression on a neural level seems likely. The identified increased connectivity probably indicates a ‘scar’ of recurrent depression and may represent a prognostic factor for future depression. PMID:24493842

  4. Circadian Misalignment, Reward-Related Brain Function, and Adolescent Alcohol Involvement

    PubMed Central

    Hasler, Brant P.; Clark, Duncan B.

    2013-01-01

    Background Developmental changes in sleep and circadian rhythms that occur during adolescence may contribute to reward-related brain dysfunction, and consequently increase the risk of alcohol use disorders (AUDs). Methods This review (a) describes marked changes in circadian rhythms, reward-related behavior and brain function, and alcohol involvement that occur during adolescence, (b) offers evidence that these parallel developmental changes are associated, and (c) posits a conceptual model by which misalignment between sleep-wake timing and endogenous circadian timing may increase the risk of adolescent AUDs by altering reward-related brain function. Results The timing of sleep shifts later throughout adolescence, in part due to developmental changes in endogenous circadian rhythms, which tend to become more delayed. This tendency for delayed sleep and circadian rhythms is at odds with early school start times during secondary education, leading to misalignment between many adolescents’ sleep-wake schedules and their internal circadian timing. Circadian misalignment is associated with increased alcohol use and other risk-taking behaviors, as well as sleep loss and sleep disturbance. Growing evidence indicates that circadian rhythms modulate the reward system, suggesting that circadian misalignment may impact adolescent alcohol involvement by altering reward-related brain function. Neurocognitive function is also subject to sleep and circadian influence, and thus circadian misalignment may also impair inhibitory control and other cognitive processes relevant to alcohol use. Specifically, circadian misalignment may further exacerbate the cortical-subcortical imbalance within the reward circuit, an imbalance thought to explain increased risk-taking and sensation-seeking during adolescence. Adolescent alcohol use is highly contexualized, however, and thus studies testing this model will also need to consider factors that may influence both circadian misalignment and

  5. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947

  6. Does cognitive functioning predict chronic pain? Results from a prospective surgical cohort.

    PubMed

    Attal, Nadine; Masselin-Dubois, Anne; Martinez, Valéria; Jayr, Christian; Albi, Aline; Fermanian, Jacques; Bouhassira, Didier; Baudic, Sophie

    2014-03-01

    It is well established that chronic pain impairs cognition, particularly memory, attention and mental flexibility. Overlaps have been found between the brain regions involved in pain modulation and cognition, including in particular the prefrontal cortex and the anterior cingulate cortex, which are involved in executive function, attention and memory. However, whether cognitive function may predict chronic pain has not been investigated. We addressed this question in surgical patients, because such patients can be followed prospectively and may have no pain before surgery. In this prospective longitudinal study, we investigated the links between executive function, visual memory and attention, as assessed by clinical measurements and the development of chronic pain, its severity and neuropathic symptoms (based on the 'Douleur Neuropathique 4' questionnaire), 6 and 12 months after surgery (total knee arthroplasty for osteoarthritis or breast surgery for cancer). Neuropsychological tests included the Trail-Making Test A and B, and the Rey-Osterrieth Complex Figure copy and immediate recall, which assess cognitive flexibility, visuospatial processing and visual memory. Anxiety, depression and coping strategies were also evaluated. In total, we investigated 189 patients before surgery: 96% were re-evaluated at 6 months, and 88% at 12 months. Multivariate logistic regression (stepwise selection) for the total group of patients indicated that the presence of clinical meaningful pain at 6 and 12 months (pain intensity ≥ 3/10) was predicted by poorer cognitive performance in the Trail Making Test B (P = 0.0009 and 0.02 for pain at 6 and 12 months, respectively), Rey-Osterrieth Complex Figure copy (P = 0.015 and 0.006 for pain at 6 and 12 months, respectively) and recall (P = 0.016 for pain at 12 months), independently of affective variables. Linear regression analyses indicated that impaired scores on these tests predicted pain intensity (P < 0.01) and neuropathic

  7. In vitro gene regulatory networks predict in vivo function of liver

    PubMed Central

    2010-01-01

    Background Evolution of toxicity testing is predicated upon using in vitro cell based systems to rapidly screen and predict how a chemical might cause toxicity to an organ in vivo. However, the degree to which we can extend in vitro results to in vivo activity and possible mechanisms of action remains to be fully addressed. Results Here we use the nitroaromatic 2,4,6-trinitrotoluene (TNT) as a model chemical to compare and determine how we might extrapolate from in vitro data to in vivo effects. We found 341 transcripts differentially expressed in common among in vitro and in vivo assays in response to TNT. The major functional term corresponding to these transcripts was cell cycle. Similarly modulated common pathways were identified between in vitro and in vivo. Furthermore, we uncovered the conserved common transcriptional gene regulatory networks between in vitro and in vivo cellular liver systems that responded to TNT exposure, which mainly contain 2 subnetwork modules: PTTG1 and PIR centered networks. Interestingly, all 7 genes in the PTTG1 module were involved in cell cycle and downregulated by TNT both in vitro and in vivo. Conclusions The results of our investigation of TNT effects on gene expression in liver suggest that gene regulatory networks obtained from an in vitro system can predict in vivo function and mechanisms. Inhibiting PTTG1 and its targeted cell cyle related genes could be key machanism for TNT induced liver toxicity. PMID:21073692

  8. Identification of four novel PCDH19 Mutations and prediction of their functional impact.

    PubMed

    Leonardi, Emanuela; Sartori, Stefano; Vecchi, Marilena; Bettella, Elisa; Polli, Roberta; Palma, Luca De; Boniver, Clementina; Murgia, Alessandra

    2014-11-01

    The PCDH19 gene encodes protocadherin-19, a transmembrane protein with six cadherin (EC) domains, containing adhesive interfaces likely to be involved in neuronal connection. Over a hundred mostly private mutations have been identified in girls with epilepsy, with or without intellectual disability (ID). Furthermore, transmitting hemizygous males are devoid of seizures or ID, making it difficult to establish the pathogenic nature of newly identified variants. Here, we describe an integrated approach to evaluate the pathogenicity of four novel PCDH19 mutations. Segregation analysis has been complemented with an in silico analysis of mutation effects at the protein level. Using sequence information, we compared different computational prediction methods. We used homology modeling to build structural models of two PCDH19 EC-domains, and compared wild-type and mutant models to identify differences in residue interactions or biochemical properties of the model surfaces. Our analysis suggests different molecular effects of the novel mutations in exerting their pathogenic role. Two of them interfere with or alter functional residues predicted to mediate ligand or protein binding, one alters the EC-domain folding stability; the frame-shift mutation produces a truncated protein lacking the intracellular domain. Interestingly, the girl carrying the putative loss of function mutation presents the most severe phenotype. PMID:25227595

  9. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species.

    PubMed

    Cabrero, Josefa; Bakkali, Mohammed; Navarro-Domínguez, Beatriz; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores; Camacho, Juan Pedro M

    2013-06-25

    The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans. PMID:23797468

  10. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data

    PubMed Central

    Aßhauer, Kathrin P.; Wemheuer, Bernd; Daniel, Rolf; Meinicke, Peter

    2015-01-01

    Motivation: The characterization of phylogenetic and functional diversity is a key element in the analysis of microbial communities. Amplicon-based sequencing of marker genes, such as 16S rRNA, is a powerful tool for assessing and comparing the structure of microbial communities at a high phylogenetic resolution. Because 16S rRNA sequencing is more cost-effective than whole metagenome shotgun sequencing, marker gene analysis is frequently used for broad studies that involve a large number of different samples. However, in comparison to shotgun sequencing approaches, insights into the functional capabilities of the community get lost when restricting the analysis to taxonomic assignment of 16S rRNA data. Results: Tax4Fun is a software package that predicts the functional capabilities of microbial communities based on 16S rRNA datasets. We evaluated Tax4Fun on a range of paired metagenome/16S rRNA datasets to assess its performance. Our results indicate that Tax4Fun provides a good approximation to functional profiles obtained from metagenomic shotgun sequencing approaches. Availability and implementation: Tax4Fun is an open-source R package and applicable to output as obtained from the SILVAngs web server or the application of QIIME with a SILVA database extension. Tax4Fun is freely available for download at http://tax4fun.gobics.de/. Contact: kasshau@gwdg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25957349

  11. Misshapen/NIK-related kinase (MINK1) is involved in platelet function, hemostasis, and thrombus formation.

    PubMed

    Yue, Ming; Luo, Dongjiao; Yu, Shanshan; Liu, Pu; Zhou, Qi; Hu, Mengjiao; Liu, Yangyang; Wang, Shuai; Huang, Qian; Niu, Yuxi; Lu, Linrong; Hu, Hu

    2016-02-18

    The sterile-20 kinase misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1) is involved in many important cellular processes such as growth, cytoskeletal rearrangement, and motility. Here, with MINK1-deficient (MINK1(-/-)) mice, we showed that MINK1 plays an important role in hemostasis and thrombosis via the regulation of platelet functions. In the tail-bleeding assay, MINK1(-/-) mice exhibited a longer bleeding time than wild-type (WT) mice (575.2 ± 59.7 seconds vs 419.6 ± 66.9 seconds). In a model of ferric chloride-induced mesenteric arteriolar thrombosis, vessel occlusion times were twice as long in MINK1(-/-) mice as in WT mice. In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on a collagen matrix under arterial shear conditions was significantly reduced in MINK1(-/-) platelets. Moreover, MINK1(-/-) platelets demonstrated impaired aggregation and secretion in response to low doses of thrombin and collagen. Furthermore, platelet spreading on fibrinogen was largely hampered in MINK1(-/-) platelets. The functional differences of MINK1(-/-) platelets could be attributed to impaired adenosine 5'-diphosphate secretion. Signaling events associated with MINK1 appeared to involve extracellular signal-regulated kinase, p38, and Akt. Hence, MINK1 may be an important signaling molecule that mediates mitogen-activated protein kinase signaling and participates in platelet activation and thrombus formation. PMID:26598717

  12. A Biochemical and Functional Protein Complex Involving Dopamine Synthesis and Transport into Synaptic Vesicles

    PubMed Central

    Cartier, Etienne A.; Parra, Leonardo A.; Baust, Tracy B.; Quiroz, Marisol; Salazar, Gloria; Faundez, Victor; Egaña, Loreto; Torres, Gonzalo E.

    2010-01-01

    Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT2) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT2 physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT2, whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT1 and with overexpressed VMAT2. GST pull-down assays further identified three cytosolic domains of VMAT2 involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT2. Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT2-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT2/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT2-mediated transport into vesicles. PMID:19903816

  13. Executive Function Predicts Artificial Language Learning in Children and Adults

    ERIC Educational Resources Information Center

    Kapa, Leah Lynn

    2013-01-01

    Prior research has established an executive function advantage among bilinguals as compared to monolingual peers. These non-linguistic cognitive advantages are largely assumed to result from the experience of managing two linguistic systems. However, the possibility remains that the relationship between bilingualism and executive function is…

  14. Baseline Religion Involvement Predicts Subsequent Salivary Cortisol Levels Among Male But not Female Black Youth

    PubMed Central

    Assari, Shervin; Moghani Lankarani, Maryam; Malekahmadi, Mohammad Reza; Caldwell, Cleopatra Howard; Zimmerman, Marc

    2015-01-01

    race, sex, religiosity, chronic stress, coping, and function of hypothalamo-pituitary-adrenal (HPA). It is not known whether male Black youth who are and those who are not religious differently cope with stress associated with daily discrimination and living in disadvantaged neighborhoods. PMID:26633983

  15. Functions of Parental Involvement and Effects of School Climate on Bullying Behaviors among South Korean Middle School Students

    ERIC Educational Resources Information Center

    Lee, Chang-Hun; Song, Juyoung

    2012-01-01

    This study uses an ecological systems theory to understand bullying behavior. Emphasis is given to overcome limitations found in the literature, such as very little empirical research on functions of parental involvement and the impacts of school climate on bullying as an outcome variable. Two functions of parental involvement investigated are (a)…

  16. Motor cortex excitability changes within 8 hours after ischaemic stroke may predict the functional outcome.

    PubMed

    Di Lazzaro, V; Oliviero, A; Profice, P; Saturno, E; Pilato, F; Tonali, P

    1999-06-01

    Motor evoked potentials after magnetic transcranial stimulation and the excitability of the motor cortex to increasing magnetic stimulus intensities were evaluated in six patients with hemiparesis after ischaemic stroke within 8 hours after stroke. The latencies of motor evoked potentials were normal in all patients. After stimulation of the ischaemic hemisphere we obtained responses comparable with the contralateral ones in two patients (mean NIH score 2 (SD 0)) and this group was completely asymptomatic after 15 days (NIH score 0). In four patients the excitability of the motor cortex involved by the ischaemia was reduced and magnetic motor threshold was higher than that of the spared motor cortex. This finding was associated with a poor motor recovery and the NIH score after 15 days was unchanged (NIH score 1.75 (SD 1.5)). The present data suggest that the evaluation of the excitability of motor cortex may offer a mean of predicting functional outcome following stroke. PMID:10461555

  17. Prediction of Functional Outcome in Individuals at Clinical High Risk for Psychosis

    PubMed Central

    Carrión, Ricardo E.; McLaughlin, Danielle; Goldberg, Terry E.; Auther, Andrea M.; Olsen, Ruth H.; Olvet, Doreen M.; Correll, Christoph U.; Cornblatt, Barbara A.

    2014-01-01

    Importance A major public health concern associated with schizophrenia and psychotic disorders is the long-term disability that involves impaired cognition, lack of social support, and an inability to function independently in the community. A critical goal of early detection and intervention studies in psychosis is therefore to understand the factors leading to this often profound impairment. Objective To develop a predictive model of functional (social and role) outcome in a clinical high-risk sample for psychosis. Design Prospective, naturalistic, longitudinal 3- to 5-year follow-up study. Setting The Recognition and Prevention Program in New York, a research clinic located in the Zucker Hillside Hospital in New York. Participants One hundred one treatment-seeking patients at clinical high risk for psychosis. Ninety-two (91%) were followed up prospectively for a mean (SD) of 3 (1.6) years. Intervention Neurocognitive and clinical assessment. Main Outcomes and Measures The primary outcome variables were social and role functioning at the last follow-up visit. Results Poor social outcome was predicted by reduced processing speed (odds ratio [OR], 1.38; 95% CI, 1.050-1.823; P = .02), impaired social functioning at baseline (OR, 1.85; 95% CI, 1.258-2.732; P = .002), and total disorganized symptoms (OR, 5.06; 95% CI, 1.548-16.527; P = .007). Reduced performance on tests for verbal memory (OR, 1.74; 95% CI, 1.169-2.594; P = .006), role functioning at baseline (OR, 1.34; 95% CI, 1.053-1.711; P = .02), and motor disturbances (OR, 1.77; 95% CI, 1.060-2.969; P = .03) predicted role outcome. The areas under the curve for the social and role prediction models were 0.824 (95% CI, 0.736-0.913; P < .001) and 0.77 (95% CI, 0.68-0.87; P < .001), respectively, demonstrating a high discriminative ability. In addition, poor functional outcomes were not entirely dependent on the development of psychosis, because 40.3% and 45.5% of nonconverters at clinical high risk had poor social

  18. Predicting Biological Functions of Compounds Based on Chemical-Chemical Interactions

    PubMed Central

    Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a compound, how can we effectively predict its biological function? It is a fundamentally important problem because the information thus obtained may benefit the understanding of many basic biological processes and provide useful clues for drug design. In this study, based on the information of chemical-chemical interactions, a novel method was developed that can be used to identify which of the following eleven metabolic pathway classes a query compound may be involved with: (1) Carbohydrate Metabolism, (2) Energy Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism, (5) Amino Acid Metabolism, (6) Metabolism of Other Amino Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism of Cofactors and Vitamins, (9) Metabolism of Terpenoids and Polyketides, (10) Biosynthesis of Other Secondary Metabolites, (11) Xenobiotics Biodegradation and Metabolism. It was observed that the overall success rate obtained by the method via the 5-fold cross-validation test on a benchmark dataset consisting of 3,137 compounds was 77.97%, which is much higher than 10.45%, the corresponding success rate obtained by the random guesses. Besides, to deal with the situation that some compounds may be involved with more than one metabolic pathway class, the method presented here is featured by the capacity able to provide a series of potential metabolic pathway classes ranked according to the descending order of their likelihood for each of the query compounds concerned. Furthermore, our method was also applied to predict 5,549 compounds whose metabolic pathway classes are unknown. Interestingly, the results thus obtained are quite consistent with the deductions from the reports by other investigators. It is anticipated that, with the continuous increase of the chemical-chemical interaction data, the current method will be further enhanced in its power and accuracy, so as to become a useful complementary vehicle in annotating uncharacterized compounds for their biological

  19. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel).

    PubMed

    Wang, Luo-Luo; Lu, Xue-Ping; Meng, Li-Wei; Huang, Yong; Wei, Dong; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2016-06-01

    Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance. PMID:27155483

  20. Intrinsic functional connectivity predicts individual differences in distractibility.

    PubMed

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability. PMID:27132070

  1. Better prediction of functional effects for sequence variants

    PubMed Central

    2015-01-01

    Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over the state-of-the-art in distinguishing between effect and neutral variants. Our method's improved performance results from screening many potentially relevant protein features and from refining our development data sets. Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods, attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods. Performance increased for human variants but much more so for other organisms. Our method's carefully calibrated reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web Definitions used Delta, input feature that results from computing the difference feature scores for native amino acid and feature scores for variant amino acid; nsSNP, non-synoymous SNP; PMD, Protein Mutant Database; SNAP, Screening for non-acceptable polymorphisms; SNP, single nucleotide polymorphism; variant, any amino acid changing sequence variant. PMID:26110438

  2. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    SciTech Connect

    Weber, Damien C.; Johanson, Safora; Peguret, Nicolas; Cozzi, Luca; Olsen, Dag R.

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results: The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.

  3. A kinome wide screen identifies novel kinases involved in regulation of monoamine transporter function.

    PubMed

    Vuorenpää, Anne; Ammendrup-Johnsen, Ina; Jørgensen, Trine N; Gether, Ulrik

    2016-09-01

    The high affinity transporters for the monoamine neurotransmitters, dopamine, norepinephrine, and serotonin, play a key role in controlling monoaminergic neurotransmission. It is believed that the transporters (DAT, NET and SERT, respectively) are subject to tight regulation by the cellular signaling machinery to maintain monoaminergic homeostasis. Kinases constitute a pivotal role in cellular signaling, however, the regulation of monoamine transporters by the entire ensemble of kinases is unknown. Here, we perform a whole human kinome RNA interference screen to identify novel kinases involved in regulation of monoamine transporter function and surface expression. A primary screen in HEK 293 cells stably expressing DAT or SERT with siRNAs against 573 human kinases revealed 93 kinases putatively regulating transporter function. All 93 hits, which also included kinases previously implicated in monoamine transporter regulation, such as Protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), were validated with a new set of siRNAs in a secondary screen. In this screen we assessed both changes in uptake and surface expression leading to selection of 11 kinases for further evaluation in HEK 293 cells transiently expressing DAT, SERT or NET. Subsequently, three kinases; salt inducible kinase 3 (SIK3), cAMP-dependent protein kinase catalytic subunit alpha (PKA C-α) and protein kinase X-linked (PrKX); were selected for additional exploration in catecholaminergic CATH.a differentiated cells (CAD) and rat chromocytoma (PC12) cells. Whereas SIK3 likely transcriptionally regulated expression of the three transfected transporters, depletion of PKA C-α was shown to decrease SERT function. Depletion of PrKX caused decreased surface expression and function of DAT without changing protein levels, suggesting that PrKX stabilizes the transporter at the cell surface. Summarized, our data provide novel insight into kinome regulation of the monoamine transporters and

  4. Predictive Factors of Social Functioning in Patients with Schizophrenia: Exploration for the Best Combination of Variables Using Data Mining

    PubMed Central

    Bae, Sung-Man; Park, Young-Min; Hyun, Myung-Ho; Yoon, Hiejin

    2010-01-01

    Objective This study aimed to use data mining to explore the significantly contributing variables to good social functioning in schizophrenia patients. Methods The study cohort comprised 67 schizophrenia patients on stable medication. A total of 51 variables (6 demographic data, 3 illness history, 22 social cognition, 16 neurocognition, 4 psychiatric symptoms) were input into a data-mining decision tree using the Answer Tree program to find the pathway for the best social functioning. Results Several contributing factors for good social functioning were found. Continuous attention was the strongest contributing factor. Three variables involving best social functioning included good continuous attention, good theory of mind (TOM), and low sensitivity of disgust emotion. Conclusion Our results confirmed the mediating roles of social cognition between neurocognition and functional outcomes, and suggested that social cognition can significantly predict social functioning in schizophrenia patients. PMID:20577617

  5. Wiggle—Predicting Functionally Flexible Regions from Primary Sequence

    PubMed Central

    Gu, Jenny; Gribskov, Michael; Bourne, Philip E

    2006-01-01

    The Wiggle series are support vector machine–based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity. PMID:16839194

  6. Fitness Costs Predict Inbreeding Aversion Irrespective of Self-Involvement: Support for Hypotheses Derived from Evolutionary Theory

    PubMed Central

    Antfolk, Jan; Lieberman, Debra; Santtila, Pekka

    2012-01-01

    It is expected that in humans, the lowered fitness of inbred offspring has produced a sexual aversion between close relatives. Generally, the strength of this aversion depends on the degree of relatedness between two individuals, with closer relatives inciting greater aversion than more distant relatives. Individuals are also expected to oppose acts of inbreeding that do not include the self, as inbreeding between two individuals posits fitness costs not only to the individuals involved in the sexual act, but also to their biological relatives. Thus, the strength of inbreeding aversion should be predicted by the fitness costs an inbred child posits to a given individual, irrespective of this individual’s actual involvement in the sexual act. To test this prediction, we obtained information about the family structures of 663 participants, who reported the number of same-sex siblings, opposite-sex siblings, opposite-sex half siblings and opposite-sex cousins. Each participant was presented with three different types of inbreeding scenarios: 1) Participant descriptions, in which participants themselves were described as having sex with an actual opposite-sex relative (sibling, half sibling, or cousin); 2) Related third-party descriptions, in which participants’ actual same-sex siblings were described as having sex with their actual opposite-sex relatives; 3) Unrelated third-party descriptions, in which individuals of the same sex as the participants but unrelated to them were described as having sex with opposite-sex relatives. Participants rated each description on the strength of sexual aversion (i.e., disgust-reaction). We found that unrelated third-party descriptions elicited less disgust than related third-party and participant descriptions. Related third-party and participant descriptions elicited similar levels of disgust suggesting that the strength of inbreeding aversion is predicted by inclusive fitness costs. Further, in the related and unrelated

  7. Predictability Effects on Durations of Content and Function Words in Conversational English

    SciTech Connect

    Bell, Alan; Brenier, Jason; Gregory, Michelle L.; girand, cynthia; Jurafsky, Daniel

    2009-01-01

    Content and function word duration are affected differently by their frequency and predictability. Regression analyses of conversational speech show that content words are shorter when they are more frequent, but function words are not. Repeated content words are shorter, but function words are not. Furthermore, function words have shorter pronunciations, after controlling for frequency and predictability. both content and function words are strongly affected by predictability from the word following them, and only very frequent function words show sensitivity to predictability from the preceding word. The results support the view that content and function words are accessed by different production mechanisms. We argue that words’ form differences due to frequency or repetition stem from their faster or slower lexical access, mediated by a general mechanism that coordinates the pace of higher-level planning and the execution of the articulatory plan.

  8. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Martin, Alex

    2014-01-01

    Objectives Autism spectrum disorders (ASD) are diagnosed based on early-manifesting clinical symptoms, including markedly impaired social communication. We assessed the viability of resting-state functional MRI (rs-fMRI) connectivity measures as diagnostic biomarkers for ASD and investigated which connectivity features are predictive of a diagnosis. Methods Rs-fMRI scans from 59 high functioning males with ASD and 59 age- and IQ-matched typically developing (TD) males were used to build a series of machine learning classifiers. Classification features were obtained using 3 sets of brain regions. Another set of classifiers was built from participants' scores on behavioral metrics. An additional age and IQ-matched cohort of 178 individuals (89 ASD; 89 TD) from the Autism Brain Imaging Data Exchange (ABIDE) open-access dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) were included for replication. Results High classification accuracy was achieved through several rs-fMRI methods (peak accuracy 76.67%). However, classification via behavioral measures consistently surpassed rs-fMRI classifiers (peak accuracy 95.19%). The class probability estimates, P(ASD|fMRI data), from brain-based classifiers significantly correlated with scores on a measure of social functioning, the Social Responsiveness Scale (SRS), as did the most informative features from 2 of the 3 sets of brain-based features. The most informative connections predominantly originated from regions strongly associated with social functioning. Conclusions While individuals can be classified as having ASD with statistically significant accuracy from their rs-fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evidence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, particularly those involved in social information processing. PMID:25685703

  9. Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis.

    PubMed

    Furt, Fabienne; Allen, William J; Widhalm, Joshua R; Madzelan, Peter; Rizzo, Robert C; Basset, Gilles; Wilson, Mark A

    2013-10-01

    The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. PMID:24100308

  10. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  11. Functional prediction: identification of protein orthologs and paralogs.

    PubMed Central

    Chen, R.; Jeong, S. S.

    2000-01-01

    Orthologs typically retain the same function in the course of evolution. Using beta-decarboxylating dehydrogenase family as a model, we demonstrate that orthologs can be confidently identified. The strategy is based on our recent findings that substitutions of only a few amino acid residues in these enzymes are sufficient to exchange substrate and coenzyme specificities. Hence, the few major specificity determinants can serve as reliable markers for determining orthologous or paralogous relationships. The power of this approach has been demonstrated by correcting similarity-based functional misassignment and discovering new genes and related pathways, and should be broadly applicable to other enzyme families. PMID:11206056

  12. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components. PMID:25631025

  13. Energy functions for knots: Beginning to predict physical behavior

    SciTech Connect

    Simon, J.

    1996-12-31

    Several definitions have been proposed for the {open_quotes}energy{close_quotes} of a knot. The intuitive goal is to define a number u(K) that somehow measures how {open_quotes}tangled{close_quotes} or {open_quotes}crumpled{close_quotes} a knot K is. Typically, one starts with the idea that a small piece of the knot somehow repels other pieces, and then adds up the contributions from all the pieces. From a purely mathematical standpoint, one may hope to define new knot-type invariants, e.g by considering the minimum of u(K) as K ranges over all the knots of a given knot-type. We also are motivated by the desire to understand and predict how knot-type affects the behavior of physically real knots, in particular DNA loops in gel electrophoresis or random knotting experiments. Despite the physical naivete of recently studied knot energies, there now is enough laboratory data on relative gel velocity, along with computer calculations of idealized knot energies, to justify the assertion that knot energies can predict relative knot behavior in physical systems. The relationships between random knot frequencies and either gel velocities or knot energies is less clear at this time. 50 refs., 8 figs., 2 tabs.

  14. Linking mother and youth parenting attitudes: indirect effects via maltreatment, parent involvement, and youth functioning.

    PubMed

    Thompson, Richard; Jones, Deborah J; Litrownik, Alan J; English, Diana J; Kotch, Jonathan B; Lewis, Terri; Dubowitz, Howard

    2014-01-01

    Evidence suggests that parenting attitudes are transmitted within families. However, limited research has examined this prospectively. The current prospective study examined direct effects of early maternal attitudes toward parenting (as measured at child age 4 by the Adult-Adolescent Parenting Inventory [AAPI]) on later youth parenting attitudes (as measured by the AAPI at youth age 18). Indirect effects via child maltreatment (physical abuse, sexual abuse, neglect, and emotional maltreatment), parent involvement, and youth functioning (internalizing and externalizing problems) were also assessed. Analyses were conducted on data from 412 families enrolled in the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). There were significant direct effects for three of the four classes of mother parenting attitudes (appropriate developmental expectations of children, empathy toward children, and appropriate family roles) on youth attitudes but not for rejection of punishment. In addition, the following indirect effects were obtained: Mother expectations influenced youth expectations via neglect; mother empathy influenced youth empathy via both parental involvement and youth externalizing problems; and mother rejection of punishment influenced youth rejection of punishment via youth internalizing problems. None of the child or family process variables, however, affected the link between mother and youth attitudes about roles. PMID:25113632

  15. Linking Mother and Youth Parenting Attitudes: Indirect Effects via Maltreatment, Parent Involvement, and Youth Functioning

    PubMed Central

    Thompson, Richard; Jones, Deborah J.; Litrownik, Alan J.; English, Diana J.; Kotch, Jonathan B.; Lewis, Terri; Dubowitz, Howard

    2014-01-01

    Evidence suggests that parenting attitudes are transmitted within families. However, limited research has examined this prospectively. The current prospective study examined direct effects of early maternal attitudes toward parenting (as measured at child age 4 by the Adult-Adolescent Parenting Inventory [AAPI]) on later youth parenting attitudes (as measured by the AAPI at youth age 18). Indirect effects via child maltreatment (physical abuse, sexual abuse, neglect, and emotional maltreatment), parent involvement, and youth functioning (internalizing and externalizing problems) were also assessed. Analyses were conducted on data from 412 families enrolled in the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). There were significant direct effects for three of the four classes of mother parenting attitudes (appropriate developmental expectations of children, empathy toward children, and appropriate family roles) on youth attitudes but not for rejection of punishment. In addition, the following indirect effects were obtained: Mother expectations influenced youth expectations via neglect; mother empathy influenced youth empathy via both parental involvement and youth externalizing problems; and mother rejection of punishment influenced youth rejection of punishment via youth internalizing problems. None of the child or family process variables, however, affected the link between mother and youth attitudes about roles. PMID:25113632

  16. From static to dynamic: The need for structural ensembles and a predictive model of RNA folding and function

    PubMed Central

    Herschlag, Daniel; Allred, Benjamin E.; Gowrishankar, Seshadri

    2015-01-01

    To understand RNA, it is necessary to move beyond a descriptive categorization towards quantitative predictions of its molecular conformations and functional behavior. An incisive approach to understanding the function and folding of biological RNA systems involves characterizing small, simple components that are largely responsible for the behavior of complex systems including helix-junction-helix elements and tertiary motifs. State-of-the-art methods have permitted unprecedented insight into the conformational ensembles of these elements revealing, for example, that conformations of helix-junction-helix elements are confined to a small region of the ensemble, that this region is highly dependent on the junction’s topology, and that the correct alignment of tertiary motifs may be a rare conformation on the overall folding landscape. Further characterization of RNA components and continued development of experimental and computational methods with the goal of quantitatively predicting RNA folding and functional behavior will be critical to understanding biological RNA systems. PMID:25744941

  17. Next Generation Sequencing in Predicting Gene Function in Podophyllotoxin Biosynthesis*

    PubMed Central

    Marques, Joaquim V.; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A.; May, Gregory D.; Crow, John A.; Davin, Laurence B.; Lewis, Norman G.

    2013-01-01

    Podophyllum species are sources of (−)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (−)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (−)-matairesinol into (−)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (−)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways. PMID:23161544

  18. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, W. J.

    2014-05-01

    Wim J. de Lange, Geert F. Prinsen, Jacco H. Hoogewoud, Ab A Veldhuizen, Joachim Hunink, Erik F.W. Ruijgh, Timo Kroon Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses

  19. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, Wim; Prinsen, Geert.; Hoogewoud, Jacco; Veldhuizen, Ab; Ruijgh, Erik; Kroon, Timo

    2013-04-01

    Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with? by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the

  20. Clinical presentation and outcome prediction of clinical, serological, and histopathological classification schemes in ANCA-associated vasculitis with renal involvement.

    PubMed

    Córdova-Sánchez, Bertha M; Mejía-Vilet, Juan M; Morales-Buenrostro, Luis E; Loyola-Rodríguez, Georgina; Uribe-Uribe, Norma O; Correa-Rotter, Ricardo

    2016-07-01

    categories predict renal or patient survival. Age, renal function and proteinuria at presentation, histopathology, and infectious complications constitute the main outcome predictors and should be considered for individualized management. PMID:26852317

  1. Predicting Functional Status Following Amputation After Lower Extremity Bypass

    PubMed Central

    Suckow, Bjoern D.; Goodney, Philip P.; Cambria, Robert A.; Bertges, Daniel J.; Eldrup-Jorgensen, Jens; Indes, Jeffrey E.; Schanzer, Andres; Stone, David H.; Kraiss, Larry W.; Cronenwett, Jack L.

    2012-01-01

    Background Some patients who undergo lower extremity bypass (LEB) for critical limb ischemia ultimately require amputation. The functional outcome achieved by these patients after amputation is not well known. Therefore, we sought to characterize the functional outcome of patients who undergo amputation after LEB, and to describe the pre- and perioperative factors associated with independent ambulation at home after lower extremity amputation. Methods Within a cohort of 3,198 patients who underwent an LEB between January, 2003 and December, 2008, we studied 436 patients who subsequently received an above-knee (AK), below-knee (BK), or minor (forefoot or toe) ipsilateral or contralateral amputation. Our main outcome measure consisted of a “good functional outcome,” defined as living at home and ambulating independently. We calculated univariate and multivariate associations among patient characteristics and our main outcome measure, as well as overall survival. Results Of the 436 patients who underwent amputation within the first year following LEB, 224 of 436 (51.4%) had a minor amputation, 105 of 436 (24.1%) had a BK amputation, and 107 of 436 (24.5%) had an AK amputation. The majority of AK (75 of 107, 72.8%) and BK amputations (72 of 105, 70.6%) occurred in the setting of bypass graft thrombosis, whereas nearly all minor amputations (200 of 224, 89.7%) occurred with a patent bypass graft. By life-table analysis at 1 year, we found that the proportion of surviving patients with a good functional outcome varied by the presence and extent of amputation (proportion surviving with good functional outcome = 88% no amputation, 81% minor amputation, 55% BK amputation, and 45% AK amputation, p = 0.001). Among those analyzed at long-term follow-up, survival was slightly lower for those who had a minor amputation when compared with those who did not receive an amputation after LEB (81 vs. 88%, p = 0.02). Survival among major amputation patients did not significantly

  2. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  3. miR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function

    PubMed Central

    Song, Juhyun; Lee, Jong Eun

    2015-01-01

    Alzheimer’s disease (AD) is considered the most common cause of sporadic dementia. In AD, adaptive and innate immune responses play a crucial role in clearance of amyloid beta and maintenance of cognitive functions. In addition to other changes in the immune system, AD alters the T-cell responses that affect activation of glial cells, neuronal cells, macrophages, and secretion of pro-inflammatory cytokines. These changes in the immune system influence AD pathogenesis. Micro-RNA (miRNA)-155 is a multifunctional miRNA with a distinct expression profile. It is involved in diverse physiological and pathological mechanisms, such as immunity and inflammation. Recent studies indicate that miR-155 regulates T-cell functions during inflammation. In this article, we summarize recent studies describing the therapeutic potential of miR-155 via regulation of T cells in AD. Further, we propose that regulation of miR-155 might be a new protective approach against AD pathogenesis. PMID:25983691

  4. Insertional Mutagenesis for Genes involved in Otic/Vestibular Development and Function in Xenopus Tropicalis

    NASA Technical Reports Server (NTRS)

    Torrejon, Marcela; Li, Erica; Nguyen, Minh; Winfree, Seth; Wang, Esther; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Sensitivity to gravity is essential for spatial orientation. Consequently, the gravity receptor system is one of the phylogenetically oldest sensory systems, and the special adaptations that enhance sensitivity to gravity are highly conserved. The main goal of this project is to use Xenopus (frog) to identify genes expressed during vestibular and auditory development. These studies will lead a better understanding of the molecular mechanisms involved in vestibular and auditory development and function. We are using a gene-trap approach in Xenopus tropicalis with the green fluorescent protein (GFP) gene as the transgene reporter. GFP expression occurs only when the GFP gene is correctly integrated in actively transcribed genes. Using the GFP as a tag we can easily identify and clone the mutated gene. In addition, we can study the function of the mutated gene by analyzing the defects generated by insertion of the GFP transgene. To date we have tissue specific GFP expression in X. tropicalis including expression in ear, neural tube, kidney, muscle, eyes and nose. Our transgenic animals will soon reach maturity so that we can outcross them and analyze their progeny. Our next goal is to isolate RNA from our transgenics and clone the tagged genes using RACE-PCR. Currently we are optimizing the RACE-PCR method using transgenics with crystallin GFP expression.

  5. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance

    PubMed Central

    Shi, Li; Wei, Peng; Wang, Xiangzun; Shen, Guangmao; Zhang, Jiao; Xiao, Wei; Xu, Zhifeng; Xu, Qiang; He, Lin

    2016-01-01

    The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene’s function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, respectively) via RNA interference. The bioassay data showed that the resistant levels to three acaricides were significantly decreased after the down-regulation of TCE2, indicating a correlation between the expression of TCE2 and the acaricide-resistance in T. cinnabarinus. TCE2 gene was then re-engineered for heterologous expression in Escherichia coli. The recombinant TCE2 exhibited α-naphthyl acetate activity (483.3 ± 71.8 nmol/mg pro. min−1), and the activity of this enzyme could be inhibited by abamectin, fenpropathrin, and cyflumetofen, respectively. HPLC and GC results showed that 10 μg of the recombinant TCE2 could effectively decompose 21.23% fenpropathrin and 49.70% cyflumetofen within 2 hours. This is the first report of a successful heterologous expression of an esterase gene from mites. This study provides direct evidence that TCE2 is a functional gene involved in acaricide resistance in T. cinnabarinus. PMID:26725309

  6. Social choice functions: A tool for ranking variables involved in action plans against road noise.

    PubMed

    Ruiz-Padillo, Alejandro; de Oliveira, Thiago B F; Alves, Matheus; Bazzan, Ana L C; Ruiz, Diego P

    2016-08-01

    Traffic noise is gaining importance in planning and operation of roads in developing countries, and particularly in Europe and Latin America. Many variables with different degrees of importance influence the perception of noise from roads. Thus, the problem of prioritizing road stretches for action against such noise is an important issue in environmental noise management. For example, it can be addressed using multicriteria methods. However, these methodologies require criteria or suitable variables to be ranked according to their relative importance. In the present study, for this ranking, a list of nine variables involved in the decision-making process (called "road stretch priority variables") was presented in the form of questionnaires to high-level experts from Andalusia, southern Spain. These experts ranked the variables by relevance. Using the same data, seven social choice functions (Plurality, Raynaud, Kemeny-Young, Copeland, Simpson, Schulze, and Borda) were used in order to rank the variables. The results indicate that the most important variables were those that take into account the parameters of greatest exposure for the citizens, followed by variables related to the intensity of the problem analyzed. The results show that a combination of the use of social choice functions on aggregated information from expert panels can provide a consensus for ranking priority variables related to road stretches. PMID:27127892

  7. The Proteome Folding Project: Proteome-scale prediction of structure and function

    PubMed Central

    Drew, Kevin; Winters, Patrick; Butterfoss, Glenn L.; Berstis, Viktors; Uplinger, Keith; Armstrong, Jonathan; Riffle, Michael; Schweighofer, Erik; Bovermann, Bill; Goodlett, David R.; Davis, Trisha N.; Shasha, Dennis; Malmström, Lars; Bonneau, Richard

    2011-01-01

    The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions. PMID:21824995

  8. Structural and functional protein network analyses predict novel signaling functions for rhodopsin

    PubMed Central

    Kiel, Christina; Vogt, Andreas; Campagna, Anne; Chatr-aryamontri, Andrew; Swiatek-de Lange, Magdalena; Beer, Monika; Bolz, Sylvia; Mack, Andreas F; Kinkl, Norbert; Cesareni, Gianni; Serrano, Luis; Ueffing, Marius

    2011-01-01

    Orchestration of signaling, photoreceptor structural integrity, and maintenance needed for mammalian vision remain enigmatic. By integrating three proteomic data sets, literature mining, computational analyses, and structural information, we have generated a multiscale signal transduction network linked to the visual G protein-coupled receptor (GPCR) rhodopsin, the major protein component of rod outer segments. This network was complemented by domain decomposition of protein–protein interactions and then qualified for mutually exclusive or mutually compatible interactions and ternary complex formation using structural data. The resulting information not only offers a comprehensive view of signal transduction induced by this GPCR but also suggests novel signaling routes to cytoskeleton dynamics and vesicular trafficking, predicting an important level of regulation through small GTPases. Further, it demonstrates a specific disease susceptibility of the core visual pathway due to the uniqueness of its components present mainly in the eye. As a comprehensive multiscale network, it can serve as a basis to elucidate the physiological principles of photoreceptor function, identify potential disease-associated genes and proteins, and guide the development of therapies that target specific branches of the signaling pathway. PMID:22108793

  9. Genomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in Medicago truncatula[C][W

    PubMed Central

    Naoumkina, Marina A.; Modolo, Luzia V.; Huhman, David V.; Urbanczyk-Wochniak, Ewa; Tang, Yuhong; Sumner, Lloyd W.; Dixon, Richard A.

    2010-01-01

    Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones (sapogenins). Saponins possess many biological activities, including conferring potential health benefits for humans. However, most of the steps specific for the biosynthesis of triterpene saponins remain uncharacterized at the molecular level. Here, we use comprehensive gene expression clustering analysis to identify candidate genes involved in the elaboration, hydroxylation, and glycosylation of the triterpene skeleton in the model legume Medicago truncatula. Four candidate uridine diphosphate glycosyltransferases were expressed in Escherichia coli, one of which (UGT73F3) showed specificity for multiple sapogenins and was confirmed to glucosylate hederagenin at the C28 position. Genetic loss-of-function studies in M. truncatula confirmed the in vivo function of UGT73F3 in saponin biosynthesis. This report provides a basis for future studies to define genetically the roles of multiple cytochromes P450 and glycosyltransferases in triterpene saponin biosynthesis in Medicago. PMID:20348429

  10. Target Gene and Function Prediction of Differentially Expressed MicroRNAs in Lactating Mammary Glands of Dairy Goats

    PubMed Central

    Ji, Zhi-Bin; Chen, Cun-Xian; Wang, Gui-Zhi; Wang, Jian-Min

    2013-01-01

    MicroRNAs are small noncoding RNAs that can regulate gene expression, and they can be involved in the regulation of mammary gland development. The differential expression of miRNAs during mammary gland development is expected to provide insight into their roles in regulating the homeostasis of mammary gland tissues. To screen out miRNAs that should have important regulatory function in the development of mammary gland from miRNA expression profiles and to predict their function, in this study, the target genes of differentially expressed miRNAs in the lactating mammary glands of Laoshan dairy goats are predicted, and then the functions of these miRNAs are analyzed via bioinformatics. First, we screen the expression patterns of 25 miRNAs that had shown significant differences during the different lactation stages in the mammary gland. Then, these miRNAs are clustered according to their expression patterns. Computational methods were used to obtain 215 target genes for 22 of these miRNAs. Combining gene ontology annotation, Fisher's exact test, and KEGG analysis with the target prediction for these miRNAs, the regulatory functions of miRNAs belonging to different clusters are predicted. PMID:24195063

  11. In silico predicted structural and functional robustness of piscine steroidogenesis.

    PubMed

    Hala, D; Huggett, D B

    2014-03-21

    Assessments of metabolic robustness or susceptibility are inherently dependent on quantitative descriptions of network structure and associated function. In this paper a stoichiometric model of piscine steroidogenesis was constructed and constrained with productions of selected steroid hormones. Structural and flux metrics of this in silico model were quantified by calculating extreme pathways and optimal flux distributions (using linear programming). Extreme pathway analysis showed progestin and corticosteroid synthesis reactions to be highly participant in extreme pathways. Furthermore, reaction participation in extreme pathways also fitted a power law distribution (degree exponent γ=2.3), which suggested that progestin and corticosteroid reactions act as 'hubs' capable of generating other functionally relevant pathways required to maintain steady-state functionality of the network. Analysis of cofactor usage (O2 and NADPH) showed progestin synthesis reactions to exhibit high robustness, whereas estrogen productions showed highest energetic demands with low associated robustness to maintain such demands. Linear programming calculated optimal flux distributions showed high heterogeneity of flux values with a near-random power law distribution (degree exponent γ≥2.7). Subsequently, network robustness was tested by assessing maintenance of metabolite flux-sum subject to targeted deletions of rank-ordered (low to high metric) extreme pathway participant and optimal flux reactions. Network robustness was susceptible to deletions of extreme pathway participant reactions, whereas minimal impact of high flux reaction deletion was observed. This analysis shows that the steroid network is susceptible to perturbation of structurally relevant (extreme pathway) reactions rather than those carrying high flux. PMID:24333207

  12. Fibrosis with Inflammation at One Year Predicts Transplant Functional Decline

    PubMed Central

    Park, Walter D.; Griffin, Matthew D.; Cornell, Lynn D.; Cosio, Fernando G.

    2010-01-01

    Lack of knowledge regarding specific causes for late loss of kidney transplants hampers improvements in long-term allograft survival. Kidney transplants with both interstitial fibrosis and subclinical inflammation but not fibrosis alone after 1 year have reduced survival. This study tested whether fibrosis with inflammation at 1 year associates with decline of renal function in a low-risk cohort and characterized the nature of the inflammation. We studied 151 living-donor, tacrolimus/mycophenolate-treated recipients without overt risk factors for reduced graft survival. Transplants with normal histology (n = 86) or fibrosis alone (n = 45) on 1-year protocol biopsy had stable renal function between 1 and 5 years, whereas those with both fibrosis and inflammation (n = 20) exhibited a decline in GFR and reduced graft survival. Immunohistochemistry confirmed increased interstitial T cells and macrophages/dendritic cells in the group with both fibrosis and inflammation, and there was increased expression of transcripts related to innate and cognate immunity. Pathway- and pathologic process–specific analyses of microarray profiles revealed that potentially damaging immunologic activities were enriched among the overexpressed transcripts (e.g., Toll-like receptor signaling, antigen presentation/dendritic cell maturation, IFN-γ–inducible response, cytotoxic T lymphocyte–associated and acute rejection–associated genes). Therefore, the combination of fibrosis and inflammation in 1-year protocol biopsies associates with reduced graft function and survival as well as a rejection-like gene expression signature, even among recipients with no clinical risk factors for poor outcomes. Early interventions aimed at altering rejection-like inflammation may improve long-term survival of kidney allografts. PMID:20813870

  13. Does human presynaptic striatal dopamine function predict social conformity?

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels. PMID:24257812

  14. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids

    PubMed Central

    Ferrer, J.-L.; Austin, M.B.; Stewart, C.; Noel, J.P.

    2010-01-01

    As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure–function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution

  15. PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins

    PubMed Central

    Minguez, Pablo; Letunic, Ivica; Parca, Luca; Bork, Peer

    2013-01-01

    Post-translational modifications (PTMs) are involved in the regulation and structural stabilization of eukaryotic proteins. The combination of individual PTM states is a key to modulate cellular functions as became evident in a few well-studied proteins. This combinatorial setting, dubbed the PTM code, has been proposed to be extended to whole proteomes in eukaryotes. Although we are still far from deciphering such a complex language, thousands of protein PTM sites are being mapped by high-throughput technologies, thus providing sufficient data for comparative analysis. PTMcode (http://ptmcode.embl.de) aims to compile known and predicted PTM associations to provide a framework that would enable hypothesis-driven experimental or computational analysis of various scales. In its first release, PTMcode provides PTM functional associations of 13 different PTM types within proteins in 8 eukaryotes. They are based on five evidence channels: a literature survey, residue co-evolution, structural proximity, PTMs at the same residue and location within PTM highly enriched protein regions (hotspots). PTMcode is presented as a protein-based searchable database with an interactive web interface providing the context of the co-regulation of nearly 75 000 residues in >10 000 proteins. PMID:23193284

  16. Teacher Involvement in the Development of Function-Based Behaviour Intervention Plans for Students with Challenging Behaviour

    ERIC Educational Resources Information Center

    O'Neill, Sue; Stephenson, Jennifer

    2009-01-01

    This article examines literature published since 1997 on functional behaviour assessment (FBA) and behaviour intervention plans (BIPs), involving school-based personnel, for children identified as having or being at risk of emotional/behavioural disorder (E/BD) in school settings. Of interest was the level of involvement of school-based personnel…

  17. Human SAD1 kinase is involved in UV-induced DNA damage checkpoint function.

    PubMed

    Lu, Rui; Niida, Hiroyuki; Nakanishi, Makoto

    2004-07-23

    Checkpoint activation by DNA damage during G(2) prevents activation of cyclin B/Cdc2 complexes, and as a consequence, mitotic entry is blocked. Although initiation and maintenance of G(2) arrest are known to be regulated by at least two distinct signaling pathways, including those of p38MAPK and ataxia-telangiectasia-mutated (ATM)- and Rad3-related (ATR)-Chk1 in higher eukaryotes, the actual number of signaling pathways involved in this regulation is still elusive. In the present study, we identified human SAD1 (hsSAD1) by searching a sequence data base. The predicted hsSAD1 protein comprises 778 amino acids and shares significant homology with the fission yeast Cdr2, a mitosis-regulatory kinase, and Caenorhabditis elegans SAD1, a neuronal cell polarity regulator. HsSAD1 transcript was expressed ubiquitously with the highest levels of expression in brain and testis. HsSAD1 specifically phosphorylated Wee1A, Cdc25-C, and -B on Ser-642, Ser-216, and Ser-361 in vitro, respectively. Overexpression of hsSAD1 resulted in an increased phosphorylation of Cdc25C on Ser-216 in vivo. DNA damage induced by UV or methyl methane sulfonate but not by IR enhanced endogenous hsSAD1 kinase activity in a caffeine-sensitive manner and caused translocation of its protein from cytoplasm to nucleus. Overexpression of wild-type hsSAD1 induced G(2)/M arrest in HeLa S2 cells. Furthermore, UV-induced G(2)/M arrest was partially abrogated by the reduced expression of hsSAD1 using small interfering RNA. These results suggest that hsSAD1 acts as checkpoint kinase upon DNA damage induced by UV or methyl methane sulfonate. The identification of this new kinase suggests the existence of an alternative checkpoint pathway other than those of ATR-Chk1 and p38MAPK. PMID:15150265

  18. Multiple functional involvement of thymosin beta-4 in tooth germ development.

    PubMed

    Ookuma, Yukiko F; Kiyoshima, Tamotsu; Kobayashi, Ieyoshi; Nagata, Kengo; Wada, Hiroko; Fujiwara, Hiroaki; Yamaza, Haruyoshi; Nonaka, Kazuaki; Sakai, Hidetaka

    2013-02-01

    Thymosin beta-4 (Tβ4) is known to be ubiquitously involved in the actin monomer sequestering on the cytoskeleton. Our previous study showed specific temporal and special in situ expression pattern of Tβ4 mRNA in dental epithelial and mesenchymal cells in the developing tooth germ of the mouse lower first molar. In this study, we examined the functional implications of Tβ4 in the developmental course of the mouse lower first molar. An inhibition assay using Tβ4 antisense sulfur-substituted oligodeoxynucleotide (AS S-ODN) in cultured embryonic day 11.0 (E11.0) mandibles showed a significant growth inhibition of the tooth germ. However, no growth arrest of the cultured E15.0 tooth germ was observed by using Tβ4 AS S-ODN. The Tβ4 knockdown led to significantly decreased expression levels of type II/III runt-related transcription factor 2 (Runx2) and nucleolin (Ncl) in the cultured E11.0 mandibles. Since our previous studies proved that the inhibition of type II/III Runx2 and Ncl translations resulted in the developmental arrest of the tooth germ in the cultured E11.0 mandible, Tβ4 appears to play roles in tooth germ development via the regulation of the type II/III Runx2 and Ncl expressions. Tβ4 knockdown also resulted in decreased secretion of matrix metalloproteinase (Mmp)-2, a reduced cell motility activity and upregulation of E-cadherin in dental epithelial mDE6 cells. These results suggest that Tβ4 plays multiple functional roles in odontogenic epithelial cells in the early stages of tooth germ development by regulating the expression of odontogenesis-related genes. PMID:23052839

  19. Bioinformatic analysis of functional proteins involved in obesity associated with diabetes.

    PubMed

    Rao, Allam Appa; Tayaru, N Manga; Thota, Hanuman; Changalasetty, Suresh Babu; Thota, Lalitha Saroja; Gedela, Srinubabu

    2008-03-01

    The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes. PMID:23675069

  20. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis.

    PubMed

    Yu, Fang; Thamm, Antje M K; Reed, Darwin; Villa-Ruano, Nemesio; Quesada, Alfonso Lara; Gloria, Edmundo Lozoya; Covello, Patrick; De Luca, Vincenzo

    2013-07-01

    Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus. PMID:22652241

  1. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  2. Functional involvement of Noc2, a Rab27 effector, in rat parotid acinar cells.

    PubMed

    Imai, Akane; Yoshie, Sumio; Nashida, Tomoko; Shimomura, Hiromi; Fukuda, Mitsunori

    2006-11-15

    Noc2 has recently been proposed to regulate exocytosis in both endocrine and exocrine cells; however, protein expression, subcellular localization and function of Noc2 in exocrine cells have never been elucidated. In this study, we investigated whether Noc2, a Rab27 effector, is involved in isoproterenol (IPR)-stimulated amylase release from acinar cells. Rab27 was detected in the apical plasma membrane (APM) and secretory granule membrane (SGM) fractions, and was translocated to the APM after IPR stimulation for 5 min, but was detected at lower levels in the APM after 30 min. In contrast, although Noc2 was expressed in SGM bound to Rab27, Noc2 was not translocated to APM and the Noc2/Rab27 complex was disrupted after stimulation with IPR for short time. In addition, the anti-Noc2-Rab-binding-domain antibody inhibited IPR-stimulated amylase release from streptolysin O-permeabilized parotid acinar cells. Our results suggest that the Noc2/Rab27 complex is an important constituent of the early stages of IPR-stimulated amylase release. PMID:17067543

  3. Identification and characterization of RP1 Tra1 cistrons involved in pilus function and plasmid mobilization.

    PubMed Central

    Fong, S T; Stanisich, V A

    1993-01-01

    Transfer-defective mutants of the Tra1 region of RP1 were isolated. Complementation studies involving stable heterozygotes combined with the mapping of Tn5 insertion mutations revealed two pilus cistrons, pilA and pilB, at positions 46.9 to 48.2 kb and 46.0 to 46.4 kb, respectively. All pilB mutants were Dps- (i.e., resistant to donor-specific phages PR4 and PRR1), whereas pilA mutants were Dps- (promoter-proximal mutations), Dps+/- (sensitive only to PR4 [more centrally located mutations]), or Dps+ (sensitive to both phages [promoter-distal mutations]). The correlation between the site mutated and the Dps phenotype, together with the finding that certain Dps+ pilA mutants continued to mobilize nonconjugative plasmids, suggested that pilA is bifunctional, contributing both to pilus function (at the promoter-proximal end) and to RP1 mobilization. It was also shown that the 43.5- to 49.5-kb region that includes pilA and pilB encodes all of the Tra1 pilus functions required for propagation of donor-specific phages and hence, probably, for pili that are active in conjugation. Finally, three cistrons that specifically affect RP1 mobilization were identified. Two of these, mobA and mobB, occur immediately anticlockwise to oriT and probably correspond to the traJ and traI genes characterized by other workers. The third cistron, mobC, occurs clockwise to oriT and may be a new mobilization gene, since its function can be substituted by IncP beta plasmids, a feature different from that of the traK mobilization gene which occurs in the same region but is RP1 specific. None of the mob cistrons was required for mobilization of nonconjugative plasmids, except for mobB, which was required by pVS99. PMID:8093446

  4. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function. PMID:18942157

  5. Predicting maize phenology: Intercomparison of functions for developmental response to temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...

  6. Nurses' Assessment of Rehabilitation Potential and Prediction of Functional Status at Discharge from Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Myers, Jamie S.; Grigsby, Jim; Teel, Cynthia S.; Kramer, Andrew M.

    2009-01-01

    The goals of this study were to evaluate the accuracy of nurses' predictions of rehabilitation potential in older adults admitted to inpatient rehabilitation facilities and to ascertain whether the addition of a measure of executive cognitive function would enhance predictive accuracy. Secondary analysis was performed on prospective data collected…

  7. Predicting the biomechanical strength of proximal femur specimens with Minkowski functionals and support vector regression

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel

    2014-03-01

    Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.

  8. FNTM: a server for predicting functional networks of tissues in mouse.

    PubMed

    Goya, Jonathan; Wong, Aaron K; Yao, Victoria; Krishnan, Arjun; Homilius, Max; Troyanskaya, Olga G

    2015-07-01

    Functional Networks of Tissues in Mouse (FNTM) provides biomedical researchers with tissue-specific predictions of functional relationships between proteins in the most widely used model organism for human disease, the laboratory mouse. Users can explore FNTM-predicted functional relationships for their tissues and genes of interest or examine gene function and interaction predictions across multiple tissues, all through an interactive, multi-tissue network browser. FNTM makes predictions based on integration of a variety of functional genomic data, including over 13 000 gene expression experiments, and prior knowledge of gene function. FNTM is an ideal starting point for clinical and translational researchers considering a mouse model for their disease of interest, researchers already working with mouse models who are interested in discovering new genes related to their pathways or phenotypes of interest, and biologists working with other organisms to explore the functional relationships of their genes of interest in specific mouse tissue contexts. FNTM predicts tissue-specific functional relationships in 200 tissues, does not require any registration or installation and is freely available for use at http://fntm.princeton.edu. PMID:25940632

  9. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  10. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis.

    PubMed

    Xing, Heming; McDonagh, Paul D; Bienkowska, Jadwiga; Cashorali, Tanya; Runge, Karl; Miller, Robert E; Decaprio, Dave; Church, Bruce; Roubenoff, Ronenn; Khalil, Iya G; Carulli, John

    2011-03-01

    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86--a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28. PMID:21423713

  11. Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis

    PubMed Central

    Xing, Heming; McDonagh, Paul D.; Bienkowska, Jadwiga; Cashorali, Tanya; Runge, Karl; Miller, Robert E.; DeCaprio, Dave; Church, Bruce; Roubenoff, Ronenn; Khalil, Iya G.; Carulli, John

    2011-01-01

    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28. PMID:21423713

  12. Work Involvement and Timing of Motherhood in the Accumulation of Problems in Social Functioning in Young Women.

    ERIC Educational Resources Information Center

    Ronka, Anna; Pulkkinen, Lea

    1998-01-01

    Examined longitudinally the relationship between earlier risk factors and later problems in young Finnish women's social functioning. Found that low work involvement mediated between risk factors and accumulation of problems in social functioning in young adulthood. Risk factors increased the likelihood of early motherhood, but early motherhood…

  13. GWAS for executive function and processing speed suggests involvement of the CADM2 gene.

    PubMed

    Ibrahim-Verbaas, C A; Bressler, J; Debette, S; Schuur, M; Smith, A V; Bis, J C; Davies, G; Trompet, S; Smith, J A; Wolf, C; Chibnik, L B; Liu, Y; Vitart, V; Kirin, M; Petrovic, K; Polasek, O; Zgaga, L; Fawns-Ritchie, C; Hoffmann, P; Karjalainen, J; Lahti, J; Llewellyn, D J; Schmidt, C O; Mather, K A; Chouraki, V; Sun, Q; Resnick, S M; Rose, L M; Oldmeadow, C; Stewart, M; Smith, B H; Gudnason, V; Yang, Q; Mirza, S S; Jukema, J W; deJager, P L; Harris, T B; Liewald, D C; Amin, N; Coker, L H; Stegle, O; Lopez, O L; Schmidt, R; Teumer, A; Ford, I; Karbalai, N; Becker, J T; Jonsdottir, M K; Au, R; Fehrmann, R S N; Herms, S; Nalls, M; Zhao, W; Turner, S T; Yaffe, K; Lohman, K; van Swieten, J C; Kardia, S L R; Knopman, D S; Meeks, W M; Heiss, G; Holliday, E G; Schofield, P W; Tanaka, T; Stott, D J; Wang, J; Ridker, P; Gow, A J; Pattie, A; Starr, J M; Hocking, L J; Armstrong, N J; McLachlan, S; Shulman, J M; Pilling, L C; Eiriksdottir, G; Scott, R J; Kochan, N A; Palotie, A; Hsieh, Y-C; Eriksson, J G; Penman, A; Gottesman, R F; Oostra, B A; Yu, L; DeStefano, A L; Beiser, A; Garcia, M; Rotter, J I; Nöthen, M M; Hofman, A; Slagboom, P E; Westendorp, R G J; Buckley, B M; Wolf, P A; Uitterlinden, A G; Psaty, B M; Grabe, H J; Bandinelli, S; Chasman, D I; Grodstein, F; Räikkönen, K; Lambert, J-C; Porteous, D J; Price, J F; Sachdev, P S; Ferrucci, L; Attia, J R; Rudan, I; Hayward, C; Wright, A F; Wilson, J F; Cichon, S; Franke, L; Schmidt, H; Ding, J; de Craen, A J M; Fornage, M; Bennett, D A; Deary, I J; Ikram, M A; Launer, L J; Fitzpatrick, A L; Seshadri, S; van Duijn, C M; Mosley, T H

    2016-02-01

    To identify common variants contributing to normal variation in two specific domains of cognitive functioning, we conducted a genome-wide association study (GWAS) of executive functioning and information processing speed in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing was available for 5429-32,070 subjects of European ancestry aged 45 years or older, free of dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects from 20 independent cohorts. A significant association was observed in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value=3.12 × 10(-8)) and in the joint discovery and replication meta-analysis (P-value=3.28 × 10(-9) after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of the major transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an alternative first exon. The variant is associated with expression of CADM2 in the cingulate cortex (P-value=4 × 10(-4)). The protein encoded by CADM2 is involved in glutamate signaling (P-value=7.22 × 10(-15)), gamma-aminobutyric acid (GABA) transport (P-value=1.36 × 10(-11)) and neuron cell-cell adhesion (P-value=1.48 × 10(-13)). Our findings suggest that genetic variation in the CADM2 gene is associated with individual differences in information processing speed. PMID:25869804

  14. GWAS for executive function and processing speed suggests involvement of the CADM2 gene

    PubMed Central

    Ibrahim-Verbaas, CA; Bressler, J; Debette, S; Schuur, M; Smith, AV; Bis, JC; Davies, G; Trompet, S; Smith, JA; Wolf, C; Chibnik, LB; Liu, Y; Vitart, V; Kirin, M; Petrovic, K; Polasek, O; Zgaga, L; Fawns-Ritchie, C; Hoffmann, P; Karjalainen, J; Lahti, J; Llewellyn, DJ; Schmidt, CO; Mather, KA; Chouraki, V; Sun, Q; Resnick, SM; Rose, LM; Oldmeadow, C; Stewart, M; Smith, BH; Gudnason, V; Yang, Q; Mirza, SS; Jukema, JW; deJager, PL; Harris, TB; Liewald, DC; Amin, N; Coker, LH; Stegle, O; Lopez, OL; Schmidt, R; Teumer, A; Ford, I; Karbalai, N; Becker, JT; Jonsdottir, MK; Au, R; Fehrmann, RSN; Herms, S; Nalls, M; Zhao, W; Turner, ST; Yaffe, K; Lohman, K; van Swieten, JC; Kardia, SLR; Knopman, DS; Meeks, WM; Heiss, G; Holliday, EG; Schofield, PW; Tanaka, T; Stott, DJ; Wang, J; Ridker, P; Gow, AJ; Pattie, A; Starr, JM; Hocking, LJ; Armstrong, NJ; McLachlan, S; Shulman, JM; Pilling, LC; Eiriksdottir, G; Scott, RJ; Kochan, NA; Palotie, A; Hsieh, Y-C; Eriksson, JG; Penman, A; Gottesman, RF; Oostra, BA; Yu, L; DeStefano, AL; Beiser, A; Garcia, M; Rotter, JI; Nöthen, MM; Hofman, A; Slagboom, PE; Westendorp, RGJ; Buckley, BM; Wolf, PA; Uitterlinden, AG; Psaty, BM; Grabe, HJ; Bandinelli, S; Chasman, DI; Grodstein, F; Räikkönen, K; Lambert, J-C; Porteous, DJ; Price, JF; Sachdev, PS; Ferrucci, L; Attia, JR; Rudan, I; Hayward, C; Wright, AF; Wilson, JF; Cichon, S; Franke, L; Schmidt, H; Ding, J; de Craen, AJM; Fornage, M

    2016-01-01

    To identify common variants contributing to normal variation in two specific domains of cognitive functioning, we conducted a genome-wide association study (GWAS) of executive functioning and information processing speed in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing was available for 5429–32 070 subjects of European ancestry aged 45 years or older, free of dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects from 20 independent cohorts. A significant association was observed in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value = 3.12 × 10−8) and in the joint discovery and replication meta-analysis (P-value = 3.28 × 10−9 after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of the major transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an alternative first exon. The variant is associated with expression of CADM2 in the cingulate cortex (P-value = 4 × 10−4). The protein encoded by CADM2 is involved in glutamate signaling (P-value = 7.22 × 10−15), gamma-aminobutyric acid (GABA) transport (P-value = 1.36 × 10−11) and neuron cell-cell adhesion (P-value = 1.48 × 10−13). Our findings suggest that genetic variation in the CADM2 gene is associated with individual differences in information processing speed. PMID:25869804

  15. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes

    PubMed Central

    Pan, Zhao-Jun; Chen, You-Yi; Du, Jian-Syun; Chen, Yun-Yu; Chung, Mei-Chu; Tsai, Wen-Chieh; Wang, Chun-Neng; Chen, Hong-Hwa

    2014-01-01

    The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein–protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes. PMID:24571782

  16. Functional responses and molecular mechanisms involved in histone-mediated platelet activation.

    PubMed

    Carestia, A; Rivadeneyra, L; Romaniuk, M A; Fondevila, C; Negrotto, S; Schattner, M

    2013-11-01

    Histones are highly alkaline proteins found in cell nuclei and they can be released by either dying or inflammatory cells. The recent observations that histones are major components of neutrophil extracellular traps and promote platelet aggregation and platelet-dependent thrombin generation have shown that these proteins are potent prothrombotic molecules. Because the mechanism(s) of platelet activation by histones are not completely understood, we explored the ability of individual recombinant human histones H1, H2A, H2B, H3 and H4 to induce platelet activation as well as the possible molecular mechanisms involved. All histones were substrates for platelet adhesion and spreading and triggered fibrinogen binding, aggregation, von Willebrand factor release, P-selectin and phosphatidylserine (PS) exposure and the formation of platelet-leukocyte aggregates; however, H4 was the most potent. Histone-mediated fibrinogen binding, P-selectin and PS exposure and the formation of mixed aggregates were potentiated by thrombin. Histones induced the activation of ERK, Akt, p38 and NFκB. Accordingly, histone-induced platelet activation was significantly impaired by pretreatment of platelets with inhibitors of ERK (U 0126), PI3K/Akt (Ly 294002), p38 (SB 203580) and NFκB (BAY 11-7082 and Ro 106-9920). Preincubation of platelets with either aspirin or dexamethasone markedly decreased fibrinogen binding and the adhesion mediated by histones without affecting P-selectin exposure. Functional platelet responses induced by H3 and H4, but not H1, H2A and H2B, were partially mediated through interaction with Toll-like receptors -2 and -4. Our data identify histones as important triggers of haemostatic and proinflammatory platelet responses, and only haemostatic responses are partially inhibited by anti-inflammatory drugs. PMID:23965842

  17. The functional and structural characterization of a novel oncogene GIG47 involved in the breast tumorigenesis

    PubMed Central

    2012-01-01

    Background A candidate oncogene GIG47, previously known as a neudesin with a neurotrophic activity, was identified by applying the differential expression analysis method. Methods As a first step to understand the molecular role of GIG47, we analyzed the expression profile of GIG47 in multiple human cancers including the breast cancer and characterized its function related to human carcinogenesis. Based on this oncogenic role of GIG47, we then embarked on determining the high-resolution structure of GIG47. We have applied multidimensional heteronuclear NMR methods to GIG47. Results GIG47 was over-expressed in primary breast tumors as well as other human tumors including carcinomas of the uterine cervix, malignant lymphoma, colon, lung, skin, and leukemia. To establish its role in the pathogenesis of breast cancer in humans, we generated stable transfectants of MCF7 cells. The ectopic expression of GIG47 in MCF7 cells promoted the invasiveness in the presence of 50% serum. In addition, it also resulted in the increased tumorigenicity in in vivo tumor formation assay. The tumorigenesis mechanism involving GIG47 might be mediated by the activation of MAPK and PI3K pathways. These results indicate that GIG47 plays a role in the breast tumorigenesis, thus representing a novel target for the treatment of breast cancer. To facilitate the development of GIG47-targeted therapeutics, we determined the structural configuration of GIG47. The high-resolution structure of GIG47 was obtained by combination of NMR and homology modeling. The overall structure of GIG47 has four α-helices and 6 β-strands, arranged in a β1-α1-β2-β3-α2-β4-α3-α4-β5-β6 topology. There is a potential heme/steroid binding pocket formed between two helices α2 and α3. Conclusion The determined three-dimensional structure of GIG47 may facilitate the development of potential anti-cancer agents. PMID:22748190

  18. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes.

    PubMed

    Pan, Zhao-Jun; Chen, You-Yi; Du, Jian-Syun; Chen, Yun-Yu; Chung, Mei-Chu; Tsai, Wen-Chieh; Wang, Chun-Neng; Chen, Hong-Hwa

    2014-05-01

    The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein-protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes. PMID:24571782

  19. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides

    PubMed Central

    Ariyoshi, Wataru; Takahashi, Nobunori; Hida, Daisuke; Knudson, Cheryl B.; Knudson, Warren

    2011-01-01

    Objective Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation such as matrix metalloproteinases as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions. Methods Bovine articular chondrocytes or bovine cartilage tissue were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real time reverse transcriptase-polymerase chain reaction and western blot analysis of ADAMTS4, ADAMTS5 and aggrecan proteolytic fragments. To test the interactions between ADAMTS4 and MT4-MMP, protein lysates purified from stimulated chondrocytes were subjected to co-immunoprecipitation. Results Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS4 and ADAMTS5 in time- and dose-dependent manner. The association of GPI-anchored MT4-MMP with ADAMTS4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharides-mediated stimulation of aggrecanases. Conclusions Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway. PMID:21905012

  20. Cognitive Impairment Precedes and Predicts Functional Impairment in Mild Alzheimer’s Disease

    PubMed Central

    Liu-Seifert, Hong; Siemers, Eric; Price, Karen; Han, Baoguang; Selzler, Katherine J.; Henley, David; Sundell, Karen; Aisen, Paul; Cummings, Jeffrey; Raskin, Joel; Mohs, Richard

    2015-01-01

    Abstract Background: The temporal relationship of cognitive deficit and functional impairment in Alzheimer’s disease (AD) is not well characterized. Recent analyses suggest cognitive decline predicts subsequent functional decline throughout AD progression. Objective: To better understand the relationship between cognitive and functional decline in mild AD using autoregressive cross-lagged (ARCL) panel analyses in several clinical trials. Methods: Data included placebo patients with mild AD pooled from two multicenter, double-blind, Phase 3 solanezumab (EXPEDITION/2) or semagacestat (IDENTITY/2) studies, and from AD patients participating in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cognitive and functional outcomes were assessed using AD Assessment Scale-Cognitive subscale (ADAS-Cog), AD Cooperative Study-Activities of Daily Living instrumental subscale (ADCS-iADL), or Functional Activities Questionnaire (FAQ), respectively. ARCL panel analyses evaluated relationships between cognitive and functional impairment over time. Results: In EXPEDITION, ARCL panel analyses demonstrated cognitive scores significantly predicted future functional impairment at 5 of 6 time points, while functional scores predicted subsequent cognitive scores in only 1 of 6 time points. Data from IDENTITY and ADNI programs yielded consistent results whereby cognition predicted subsequent function, but not vice-versa. Conclusions: Analyses from three databases indicated cognitive decline precedes and predicts subsequent functional decline in mild AD dementia, consistent with previously proposed hypotheses, and corroborate recent publications using similar methodologies. Cognitive impairment may be used as a predictor of future functional impairment in mild AD dementia and can be considered a critical target for prevention strategies to limit future functional decline in the dementia process. PMID:26402769

  1. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction

    PubMed Central

    2013-01-01

    Background Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. Results This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Conclusions Our newly developed method for HMC takes into account network information in the learning phase: When

  2. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

    PubMed

    Yang, Fan; Xu, Jinbo; Zeng, Jianyang

    2014-01-01

    In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains unclear whether functional information on proteins can also contribute to this task. Little work has been developed to combine such information with other data to identify new interactions between drugs and targets. In this paper, we introduce functional data into DTI prediction and construct biological space for targets using the functional similarity measure. We present a probabilistic graphical model, called conditional random field (CRF), to systematically integrate genomic, chemical, functional and pharmacological data plus the topology of DTI networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent prediction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Material is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf. PMID:24297542

  3. A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-02-28

    Efficient and accurate prediction of the correlation functions of uniform electron gases is of great importance for both practical and theoretical applications. This paper presents a bridge-functional-based classical mapping method for calculating the correlation functions of uniform spin-unpolarized electron gases at finite temperature. The bridge functional is formulated by following Rosenfeld's universality ansatz in combination with the modified fundamental measure theory. The theoretical predictions are in good agreement with recent quantum Monte Carlo results but with negligible computational cost, and the accuracy is better than a previous attempt based on the hypernetted-chain approximation. We find that the classical mapping method is most accurate if the effective mass of electrons increases as the density falls.

  4. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  5. Machine learning classification of resting state functional connectivity predicts smoking status

    PubMed Central

    Pariyadath, Vani; Stein, Elliot A.; Ross, Thomas J.

    2014-01-01

    Machine learning-based approaches are now able to examine functional magnetic resonance imaging data in a multivariate manner and extract features predictive of group membership. We applied support vector machine (SVM)-based classification to resting state functional connectivity (rsFC) data from nicotine-dependent smokers and healthy controls to identify brain-based features predictive of nicotine dependence. By employing a network-centered approach, we observed that within-network functional connectivity measures offered maximal information for predicting smoking status, as opposed to between-network connectivity, or the representativeness of each individual node with respect to its parent network. Further, our analysis suggests that connectivity measures within the executive control and frontoparietal networks are particularly informative in predicting smoking status. Our findings suggest that machine learning-based approaches to classifying rsFC data offer a valuable alternative technique to understanding large-scale differences in addiction-related neurobiology. PMID:24982629

  6. Can structural or functional changes following traumatic brain injury in the rat predict the epileptic outcome?

    PubMed Central

    Shultz, Sandy R; Cardamone, Lisa; Liu, Ying R; Hogan, R. Edward; Maccotta, Luigi; Wright, David K; Zheng, Ping; Koe, Amelia; Gregoire, Marie-Claude; Williams, John P; Hicks, Rodney J; Jones, Nigel C; Myers, Damian E; O’Brien, Terence J; Bouilleret, Viviane

    2014-01-01

    Summary Purpose Post-traumatic epilepsy (PTE) occurs in a proportion of traumatic brain injury (TBI) cases, significantly compounding the disability, risk of injury, and death for sufferers. To date, predictive biomarkers for PTE have not been identified. This study used the lateral fluid percussion injury (LFPI) rat model of TBI to investigate whether structural, functional, and behavioral changes post-TBI relate to the later development of PTE. Methods Adult male Wistar rats underwent LFPI or sham-injury. Serial MR and PET imaging, and behavioral analyses were performed over six months post-injury. Rats were then implanted with recording electrodes and monitored for two consecutive weeks using video-EEG to assess for PTE. Of the LFPI rats, 52% (n=12) displayed spontaneous recurring seizures and/or epileptic discharges on the video-EEG recordings. Key findings MRI volumetric and signal analysis of changes in cortex, hippocampus, thalamus, and amygdala, 18F-FDG PET analysis of metabolic function, and behavioral analysis of cognitive and emotional changes, at one week, one month, three months, and six months post-LFPI, all failed to identify significant differences on univariate analysis between the epileptic and non-epileptic groups. However, hippocampal surface shape analysis using high dimensional mapping-large deformation identified significant changes in the ipsilateral hippocampus at one week post-injury relative to baseline that differed between rats that would go onto become epileptic versus those who did not. Furthermore, a multivariate logistic regression model that incorporated the one week, one month, and three month 18F-FDG PET parameters from the ipsilateral hippocampus was able to correctly predict the epileptic outcome in all of the LFPI cases. As such, these subtle changes in the ipsilateral hippocampus at acute phases after LFPI may be related to PTE and require further examination. Significance These findings suggest PTE may be independent of

  7. The Function of Electronic Communication Devices in Assisting Parental Involvement in Middle Schools

    ERIC Educational Resources Information Center

    Koch, Cotton S.

    2010-01-01

    The importance of home-to-school and school-to-home communication and parental involvement is well documented by researchers and acknowledged by practitioners. A number of earlier studies argue that there is a positive association between two-way communication, parental involvement, and student achievement at all levels of K-12 education. However,…

  8. Caregiver Involvement in the Intensive Mental Health Program: Influence on Changes in Child Functioning

    ERIC Educational Resources Information Center

    Richards, Margaret M.; Bowers, Mark J.; Lazicki, Tammy; Krall, Dan; Jacobs, Anne K.

    2008-01-01

    We examined behavioral markers of caregiver involvement and the ways in which family participation was related to treatment outcomes in 47 elementary school children with SED enrolled in a school-based intensive mental health program. Measures of caregiver involvement included therapeutic home visits, attendance at therapeutic meetings, completion…

  9. Classroom Climate, Parental Educational Involvement, and Student School Functioning in Early Adolescence: A Longitudinal Study

    ERIC Educational Resources Information Center

    Kaplan Toren, Nurit; Seginer, Rachel

    2015-01-01

    In this 2-year longitudinal study, we examine the effects of perceived classroom climate and two aspects of parental educational involvement (home-based and school-based) on junior high school students' self-evaluation and academic achievement. Our main hypothesis was that perceived parental educational involvement mediates students' perceived…

  10. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    EPA Science Inventory

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  11. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. PMID:26635392

  12. An Evaluation of the Predictive Validity of Confidence Ratings in Identifying Functional Behavioral Assessment Hypothesis Statements

    ERIC Educational Resources Information Center

    Borgmeier, Chris; Horner, Robert H.

    2006-01-01

    Faced with limited resources, schools require tools that increase the accuracy and efficiency of functional behavioral assessment. Yarbrough and Carr (2000) provided evidence that informant confidence ratings of the likelihood of problem behavior in specific situations offered a promising tool for predicting the accuracy of function-based…

  13. A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index.

    PubMed

    Ducci, F; Newman, T K; Funt, S; Brown, G L; Virkkunen, M; Goldman, D

    2006-09-01

    CSF. Our results are consistent with an emerging literature that suggests greater complexity in how variation in MAOA expression alters monoaminergic function. Finally, our work suggests that MAOA may be involved in the regulation of BMI. Independent samples are necessary to confirm this preliminary finding. PMID:16770335

  14. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    PubMed Central

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  15. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  16. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    PubMed

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years. PMID:26914106

  17. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction.

    PubMed

    Delattre, Hadrien; Souiai, Oussema; Fagoonee, Khema; Guerois, Raphaël; Petit, Marie-Agnès

    2016-09-01

    Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships. PMID:27254594

  18. Early functional magnetic resonance imaging activations predict language outcome after stroke.

    PubMed

    Saur, Dorothee; Ronneberger, Olaf; Kümmerer, Dorothee; Mader, Irina; Weiller, Cornelius; Klöppel, Stefan

    2010-04-01

    An accurate prediction of system-specific recovery after stroke is essential to provide rehabilitation therapy based on the individual needs. We explored the usefulness of functional magnetic resonance imaging scans from an auditory language comprehension experiment to predict individual language recovery in 21 aphasic stroke patients. Subjects with an at least moderate language impairment received extensive language testing 2 weeks and 6 months after left-hemispheric stroke. A multivariate machine learning technique was used to predict language outcome 6 months after stroke. In addition, we aimed to predict the degree of language improvement over 6 months. 76% of patients were correctly separated into those with good and bad language performance 6 months after stroke when based on functional magnetic resonance imaging data from language relevant areas. Accuracy further improved (86% correct assignments) when age and language score were entered alongside functional magnetic resonance imaging data into the fully automatic classifier. A similar accuracy was reached when predicting the degree of language improvement based on imaging, age and language performance. No prediction better than chance level was achieved when exploring the usefulness of diffusion weighted imaging as well as functional magnetic resonance imaging acquired two days after stroke. This study demonstrates the high potential of current machine learning techniques to predict system-specific clinical outcome even for a disease as heterogeneous as stroke. Best prediction of language recovery is achieved when the brain activation potential after system-specific stimulation is assessed in the second week post stroke. More intensive early rehabilitation could be provided for those with a predicted poor recovery and the extension to other systems, for example, motor and attention seems feasible. PMID:20299389

  19. Prediction accuracy measurements as a fitness function for software effort estimation.

    PubMed

    Urbanek, Tomas; Prokopova, Zdenka; Silhavy, Radek; Vesela, Veronika

    2015-01-01

    This paper evaluates the usage of analytical programming and different fitness functions for software effort estimation. Analytical programming and differential evolution generate regression functions. These functions are evaluated by the fitness function which is part of differential evolution. The differential evolution requires a proper fitness function for effective optimization. The problem is in proper selection of the fitness function. Analytical programming and different fitness functions were tested to assess insight to this problem. Mean magnitude of relative error, prediction 25 %, mean squared error (MSE) and other metrics were as possible candidates for proper fitness function. The experimental results shows that means squared error performs best and therefore is recommended as a fitness function. Moreover, this work shows that analytical programming method is viable method for calibrating use case points method. All results were evaluated by standard approach: visual inspection and statistical significance. PMID:26697288

  20. Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    PubMed Central

    Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.

    2011-01-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875

  1. Predicting Functional Cortical ROIs via DTI-Derived Fiber Shape Models

    PubMed Central

    Zhang, Tuo; Guo, Lei; Li, Kaiming; Jing, Changfeng; Yin, Yan; Zhu, Dajiang; Cui, Guangbin; Li, Lingjiang

    2012-01-01

    Studying structural and functional connectivities of human cerebral cortex has drawn significant interest and effort recently. A fundamental and challenging problem arises when attempting to measure the structural and/or functional connectivities of specific cortical networks: how to identify and localize the best possible regions of interests (ROIs) on the cortex? In our view, the major challenges come from uncertainties in ROI boundary definition, the remarkable structural and functional variability across individuals and high nonlinearities within and around ROIs. In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on their learned fiber shape models from multimodal task-based functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data. In the training stage, shape models of white matter fibers are learnt from those emanating from the functional ROIs, which are activated brain regions detected from task-based fMRI data. In the prediction stage, functional ROIs are predicted in individual brains based only on DTI data. Our experiment results show that the average ROI prediction error is around 3.94 mm, in comparison with benchmark data provided by working memory and visual task-based fMRI. Our work demonstrated that fiber bundle shape models derived from DTI data are good predictors of functional cortical ROIs. PMID:21705394

  2. Executive function does not predict coping with symptoms in stable patients with a diagnosis of schizophrenia

    PubMed Central

    Bak, Maarten; Krabbendam, Lydia; Delespaul, Philippe; Huistra, Karola; Walraven, Wil; van Os, Jim

    2008-01-01

    Background Associations between coping with and control over psychotic symptoms were examined using the Maastricht Assessment of Coping Strategies-24, testing the hypothesis that the cognitive domain of executive functioning predicted quality and quantity of coping. Methods MACS-24 was administered to 32 individuals with a diagnosis of schizophrenia. For each of 24 symptoms, experience of distress, type of coping and the resulting degree of perceived control were assessed. Coping types were reduced to two contrasting coping categories: symptomatic coping (SC) and non-symptomatic coping (NSC; combining active problem solving, passive illness behaviour, active problem avoiding, and passive problem avoiding). Cognitive functioning was assessed using the GIT (Groninger Intelligence Test), the Zoo map (BADS: Behavioural Assessment of Dysexecutive function), Stroop-test and Trail making. Results Cognitive function was not associated with frequency of coping, nor did cognitive function differentially predict SC or NSC. Cognitive function similarly was not associated with symptom distress or level of perceived control over the symptom. Conclusion There was no evidence that cognitive function predicts quantity or quality of coping with symptoms in people with a diagnosis of schizophrenia. Variation in the realm of emotion regulation and social cognition may be more predictive of coping with psychotic symptoms. PMID:18510757

  3. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  4. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior. PMID:25481157

  5. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  6. Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Furtak, Sharon C.; Pitman, Roger K.; Quirk, Gregory J.; Milad, Mohammed R.

    2014-01-01

    Objective Individual differences in ability to control fear have been linked to activation of dorsal anterior cingulate cortex, ventromedial prefrontal cortex, and amygdala. This study investigated whether functional variance in this network can be predicted by resting metabolism in these same regions. Methods Healthy subject volunteers were studied with positron emission tomography using [18F]-deoxyglucose to measure resting brain metabolism. This was followed by a two-day fear conditioning and extinction training paradigm in a functional magnetic resonance imaging scanner to measure brain activation during fear extinction and its recall. Skin conductance response was used to index conditioned responding. Resting metabolism in amygdala, dorsal anterior cingulate cortex and ventromedial prefrontal cortex were used to predict responses during fear extinction and extinction recall. Results During extinction training, resting amygdala metabolism positively predicted ventromedial prefrontal cortex, and negatively predicted dorsal anterior cingulate cortex, activation. In contrast, during extinction recall, resting amygdala metabolism negatively predicted ventromedial prefrontal cortex, and positively predicted dorsal anterior cingulate cortex, activation. Resting dorsal anterior cingulate cortex metabolism predicted fear expression (skin conductance response) during extinction recall. Conclusions Brain metabolism at rest predicts neuronal reactivity and skin conductance changes associated with recall of the fear extinction memory. PMID:22318762

  7. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    PubMed

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  8. Counseling the post-radical prostatectomy patients about functional recovery: high predictiveness of current status

    PubMed Central

    Vickers, Andrew J.; Kent, Matthew; Mulhall, John; Sandhu, Jaspreet

    2014-01-01

    Objectives To develop prediction models to help counsel post-radical prostatectomy patients about functional recovery. Methods The study included 2162 patients undergoing radical prostatectomy at a major cancer center who reported urinary and erectile function at one year or at two years and at least 1 prior follow-up at 3, 6, 9, or 12 months. We created logistic regression models predicting function at one or two years on the basis of function at 3, 6, 9, and 12 months (2 years only), with the additional predictors of age, stage, grade, PSA, nerve-sparing status and baseline functional score. Results No variable other than current functional score had a consistent, statistically significant relationship with outcome. The area-under-the-curves for predicting function at 2 years based on current function alone at 3, 6, 9, and 12 months were, respectively, 0.796, 0.831, 0.882, and 0.885 for erectile function and 0.789, 0.862, 0.869 and 0.876 for urinary function. Patients using one pad at 6 months had only a 50% probability of being pad free at 2 years; this dropped to 36% for patients using 2 pads. This suggests that there is an opportunity for early identification and possible referral of patients likely to have long-term urinary dysfunction. Conclusions Assessment of urinary and erectile function in the first post-operative year is strongly predictive of long-term outcome and can guide patient counseling and decisions about rehabilitative treatments. PMID:24824411

  9. Predicting predation through prey ontogeny using size-dependent functional response models.

    PubMed

    McCoy, Michael W; Bolker, Benjamin M; Warkentin, Karen M; Vonesh, James R

    2011-06-01

    The functional response is a critical link between consumer and resource dynamics, describing how a consumer's feeding rate varies with prey density. Functional response models often assume homogenous prey size and size-independent feeding rates. However, variation in prey size due to ontogeny and competition is ubiquitous, and predation rates are often size dependent. Thus, functional responses that ignore prey size may not effectively predict predation rates through ontogeny or in heterogeneous populations. Here, we use short-term response-surface experiments and statistical modeling to develop and test prey size-dependent functional responses for water bugs and dragonfly larvae feeding on red-eyed treefrog tadpoles. We then extend these models through simulations to predict mortality through time for growing prey. Both conventional and size-dependent functional response models predicted average overall mortality in short-term mixed-cohort experiments, but only the size-dependent models accurately captured how mortality was spread across sizes. As a result, simulations that extrapolated these results through prey ontogeny showed that differences in size-specific mortality are compounded as prey grow, causing predictions from conventional and size-dependent functional response models to diverge dramatically through time. Our results highlight the importance of incorporating prey size when modeling consumer-prey dynamics in size-structured, growing prey populations. PMID:21597252

  10. Can infant lung function predict respiratory morbidity during the first year of life in preterm infants?

    PubMed

    Proietti, Elena; Riedel, Thomas; Fuchs, Oliver; Pramana, Isabelle; Singer, Florian; Schmidt, Anne; Kuehni, Claudia; Latzin, Philipp; Frey, Urs

    2014-06-01

    Compared with term-born infants, preterm infants have increased respiratory morbidity in the first year of life. We investigated whether lung function tests performed near term predict subsequent respiratory morbidity during the first year of life and compared this to standard clinical parameters in preterms. The prospective birth cohort included randomly selected preterm infants with and without bronchopulmonary dysplasia. Lung function (tidal breathing and multiple-breath washout) was measured at 44 weeks post-menstrual age during natural sleep. We assessed respiratory morbidity (wheeze, hospitalisation, inhalation and home oxygen therapy) after 1 year using a standardised questionnaire. We first assessed the association between lung function and subsequent respiratory morbidity. Secondly, we compared the predictive power of standard clinical predictors with and without lung function data. In 166 preterm infants, tidal volume, time to peak tidal expiratory flow/expiratory time ratio and respiratory rate were significantly associated with subsequent wheeze. In comparison with standard clinical predictors, lung function did not improve the prediction of later respiratory morbidity in an individual child. Although associated with later wheeze, noninvasive infant lung function shows large physiological variability and does not add to clinically relevant risk prediction for subsequent respiratory morbidity in an individual preterm. PMID:24696112

  11. Application of Gap-Constraints Given Sequential Frequent Pattern Mining for Protein Function Prediction

    PubMed Central

    Park, Hyeon Ah; Kim, Taewook; Li, Meijing; Shon, Ho Sun; Park, Jeong Seok; Ryu, Keun Ho

    2015-01-01

    Objectives Predicting protein function from the protein–protein interaction network is challenging due to its complexity and huge scale of protein interaction process along with inconsistent pattern. Previously proposed methods such as neighbor counting, network analysis, and graph pattern mining has predicted functions by calculating the rules and probability of patterns inside network. Although these methods have shown good prediction, difficulty still exists in searching several functions that are exceptional from simple rules and patterns as a result of not considering the inconsistent aspect of the interaction network. Methods In this article, we propose a novel approach using the sequential pattern mining method with gap-constraints. To overcome the inconsistency problem, we suggest frequent functional patterns to include every possible functional sequence—including patterns for which search is limited by the structure of connection or level of neighborhood layer. We also constructed a tree-graph with the most crucial interaction information of the target protein, and generated candidate sets to assign by sequential pattern mining allowing gaps. Results The parameters of pattern length, maximum gaps, and minimum support were given to find the best setting for the most accurate prediction. The highest accuracy rate was 0.972, which showed better results than the simple neighbor counting approach and link-based approach. Conclusion The results comparison with other approaches has confirmed that the proposed approach could reach more function candidates that previous methods could not obtain. PMID:25938021

  12. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed.

  13. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    SciTech Connect

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-08-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second (FEV1) . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested.

  14. Perinatal medical variables predict executive function within a sample of preschoolers born very low birth weight.

    PubMed

    Duvall, Susanne W; Erickson, Sarah J; MacLean, Peggy; Lowe, Jean R

    2015-05-01

    The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed 3 executive function tasks: Dimensional Change Card Sort-Separated (inhibition, working memory, and cognitive flexibility), Bear Dragon (inhibition and working memory), and Gift Delay Open (inhibition). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids, and number of surgeries) and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we can identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418

  15. Cognitive Functioning Predicts Driver Safety On Road-Tests 1 and 2 Years Later

    PubMed Central

    Aksan, Nazan; Anderson, Steven W.; Dawson, Jeffrey D.; Johnson, Amy M.; Uc, Ergun Y.; Rizzo, Matthew

    2011-01-01

    BACKGROUND Our ability to predict aging related declines in driving performance from off-road assessments have clinical practice and social policy implications. OBJECTIVES 1) To describe longitudinal changes in mean-level and evaluate rank-order stability in potential predictors of driving safety (visual sensory, motor, visual attention, and cognitive functioning) and safety errors during an 18-mile on-road-drive-test among older adults. 2) To evaluate the relative predictive power of earlier visual sensory, motor, visual attention, and cognitive functioning on future safety errors controlling for earlier driving capacity. DESIGN A three-year longitudinal observational study; SETTING A large teaching hospital in the Mid-West; PARTICIPANTS 111 neurologically normal older adults (60 to 89 years at baseline); MEASUREMENTS Safety errors based on video review of a standard 18-mile on-road driving test served as the outcome measure. Comprehensive battery of tests on the predictor side included visual sensory functioning, motor functioning, cognitive functioning, and a measure of Useful Field of View. RESULTS Longitudinal changes in mean-levels of safety errors and cognitive functioning were small from year-to-year. Relative rank-order stability between consecutive assessments was moderate in overall safety errors, it was moderate to strong in visual attention and cognitive functioning. While prospective bivariate correlations ranged from fair to moderate between safety errors and predictors, only functioning in the cognitive domain predicted future driver performance one and two-years later in multivariate analyses. CONCLUSION Normative aging related declines in driver performance as assessed by on-road tests emerge slowly. The findings clearly demonstrated that even in the presence conservative controls, such as previous driving ability, age, visual sensory and motor functioning, cognitive functioning predicted future driving performance on-road one and two-years later

  16. Prediction of Detailed Enzyme Functions and Identification of Specificity Determining Residues by Random Forests

    PubMed Central

    Nagao, Chioko; Nagano, Nozomi; Mizuguchi, Kenji

    2014-01-01

    Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number of residues and therefore, information about these critical residues can potentially help discriminate detailed functions. However, because these residues must be identified by mutagenesis experiments, the available information is limited, and the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed function prediction methods and computational identification of SDRs. Here we present a novel method for predicting enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs). EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98 and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily. PMID:24416252

  17. Inter-individual differences in the experience of negative emotion predict variations in functional brain architecture.

    PubMed

    Petrican, Raluca; Saverino, Cristina; Shayna Rosenbaum, R; Grady, Cheryl

    2015-12-01

    Current evidence suggests that two spatially distinct neuroanatomical networks, the dorsal attention network (DAN) and the default mode network (DMN), support externally and internally oriented cognition, respectively, and are functionally regulated by a third, frontoparietal control network (FPC). Interactions among these networks contribute to normal variations in cognitive functioning and to the aberrant affective profiles present in certain clinical conditions, such as major depression. Nevertheless, their links to non-clinical variations in affective functioning are still poorly understood. To address this issue, we used fMRI to measure the intrinsic functional interactions among these networks in a sample of predominantly younger women (N=162) from the Human Connectome Project. Consistent with the previously documented dichotomous motivational orientations (i.e., withdrawal versus approach) associated with sadness versus anger, we hypothesized that greater sadness would predict greater DMN (rather than DAN) functional dominance, whereas greater anger would predict the opposite. Overall, there was evidence of greater DAN (rather than DMN) functional dominance, but this pattern was modulated by current experience of specific negative emotions, as well as subclinical depressive and anxiety symptoms. Thus, greater levels of currently experienced sadness and subclinical depression independently predicted weaker DAN functional dominance (i.e., weaker DAN-FPC functional connectivity), likely reflecting reduced goal-directed attention towards the external perceptual environment. Complementarily, greater levels of currently experienced anger and subclinical anxiety predicted greater DAN functional dominance (i.e., greater DAN-FPC functional connectivity and, for anxiety only, also weaker DMN-FPC coupling). Our findings suggest that distinct affective states and subclinical mood symptoms have dissociable neural signatures, reflective of the symbiotic relationship

  18. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level.

    PubMed

    Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Muñoz-Fuentes, Violeta; Green, Andy J; Kopuchian, Cecilia; Tubaro, Pablo L; Alza, Luis; Bulgarella, Mariana; Smith, Matthew M; Wilson, Robert E; Fago, Angela; McCracken, Kevin G; Storz, Jay F

    2015-12-01

    A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. PMID:26637114

  19. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level

    PubMed Central

    Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Muñoz-Fuentes, Violeta; Green, Andy J.; Kopuchian, Cecilia; Tubaro, Pablo L.; Alza, Luis; Bulgarella, Mariana; Smith, Matthew M.; Wilson, Robert E.; Fago, Angela; McCracken, Kevin G.; Storz, Jay F.

    2015-01-01

    A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. PMID:26637114

  20. Prediction of Dynamic Response for Ti/TiB Functionally Graded Beams

    SciTech Connect

    Tuegel, Eric J.; Byrd, Larry W.; Beberniss, Timothy J.

    2008-02-15

    Functionally graded ceramic-metal materials are candidates for use in aerospace structures that are exposed to high temperatures. These structures will experience other demands such as significant pressure fluctuations that will cause panels to vibrate at high frequencies. These materials must be engineered for specific applications. Standard engineering methods were used to predict the response of Ti/TiB cantilever beams to quasi-static and dynamic loadings. Experiments were performed and compared to the predictions. The predictions and experiments did not agree due to significant uncertainty about the elastic modulus of TiB.

  1. NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach

    NASA Astrophysics Data System (ADS)

    Goudarzi, Sobhan; Jafari, Sajad; Moradi, Mohammad Hassan; Sprott, J. C.

    2016-02-01

    The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods.

  2. How and when should interactome-derived clusters be used to predict functional modules and protein function?

    PubMed Central

    Song, Jimin; Singh, Mona

    2009-01-01

    Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks? Results: We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis. Contact: msingh@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19770263

  3. Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets.

    PubMed

    Swanton, Charles; Larkin, James M; Gerlinger, Marco; Eklund, Aron C; Howell, Michael; Stamp, Gordon; Downward, Julian; Gore, Martin; Futreal, P Andrew; Escudier, Bernard; Andre, Fabrice; Albiges, Laurence; Beuselinck, Benoit; Oudard, Stephane; Hoffmann, Jens; Gyorffy, Balázs; Torrance, Chris J; Boehme, Karen A; Volkmer, Hansjuergen; Toschi, Luisella; Nicke, Barbara; Beck, Marlene; Szallasi, Zoltan

    2010-01-01

    The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients. PREDICT's approach to predictive biomarker discovery differs from conventional associative learning approaches, which can be susceptible to the detection of chance associations that lead to overestimation of true clinical accuracy. These methods will identify molecular pathways important for survival and growth of RCC cells and particular targets suitable for therapeutic development. Importantly, our results may enable individualized treatment of RCC, reducing ineffective therapy in drug-resistant disease, leading to improved quality of life and higher cost efficiency, which in turn should broaden patient access to beneficial therapeutics, thereby enhancing clinical outcome and cancer survival. The consortium will also establish and consolidate a European network providing the technological and clinical platform for large-scale functional genomic biomarker discovery. Here we review our current understanding

  4. Predictive Equations Using Regression Analysis of Pulmonary Function for Healthy Children in Northeast China

    PubMed Central

    Ma, Ya-Nan; Wang, Jing; Dong, Guang-Hui; Liu, Miao-Miao; Wang, Da; Liu, Yu-Qin; Zhao, Yang; Ren, Wan-Hui; Lee, Yungling Leo; Zhao, Ya-Dong; He, Qin-Cheng

    2013-01-01

    Background There have been few published studies on spirometric reference values for healthy children in China. We hypothesize that there would have been changes in lung function that would not have been precisely predicted by the existing spirometric reference equations. The objective of the study was to develop more accurate predictive equations for spirometric reference values for children aged 9 to 15 years in Northeast China. Methodology/Principal Findings Spirometric measurements were obtained from 3,922 children, including 1,974 boys and 1,948 girls, who were randomly selected from five cities of Liaoning province, Northeast China, using the ATS (American Thoracic Society) and ERS (European Respiratory Society) standards. The data was then randomly split into a training subset containing 2078 cases and a validation subset containing 1844 cases. Predictive equations used multiple linear regression techniques with three predictor variables: height, age and weight. Model goodness of fit was examined using the coefficient of determination or the R2 and adjusted R2. The predicted values were compared with those obtained from the existing spirometric reference equations. The results showed the prediction equations using linear regression analysis performed well for most spirometric parameters. Paired t-tests were used to compare the predicted values obtained from the developed and existing spirometric reference equations based on the validation subset. The t-test for males was not statistically significant (p>0.01). The predictive accuracy of the developed equations was higher than the existing equations and the predictive ability of the model was also validated. Conclusion/Significance We developed prediction equations using linear regression analysis of spirometric parameters for children aged 9–15 years in Northeast China. These equations represent the first attempt at predicting lung function for Chinese children following the ATS/ERS Task Force 2005

  5. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    PubMed

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264

  6. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions. PMID:22371207

  7. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    SciTech Connect

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.

  8. SIFTER search: a web server for accurate phylogeny-based protein function prediction

    DOE PAGESBeta

    Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.

    2015-05-15

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less

  9. Functional Connectivity between Brain Regions Involved in Learning Words of a New Language

    ERIC Educational Resources Information Center

    Veroude, Kim; Norris, David G.; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter

    2010-01-01

    Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a…

  10. Enhanced Left Frontal Involvement during Novel Metaphor Comprehension in Schizophrenia: Evidence from Functional Neuroimaging

    ERIC Educational Resources Information Center

    Mashal, N.; Vishne, T.; Laor, N.; Titone, D.

    2013-01-01

    The neural basis involved in novel metaphor comprehension in schizophrenia is relatively unknown. Fourteen people with schizophrenia and fourteen controls were scanned while they silently read novel metaphors, conventional metaphors, literal expressions, and meaningless word-pairs. People with schizophrenia showed reduced comprehension of both…

  11. Parental Involvement and the Academic Achievement and Social Functioning of Cuban School Children

    ERIC Educational Resources Information Center

    Alvarez-Valdivia, Ibis M.; Chavez, Kenia Lorenzo; Schneider, Barry H.; Roberts, Jesse S.; Becalli-Puerta, Laura E.; Perez-Lujan, Dalgys; Sanz-Martinez, Yuri Arsenio

    2013-01-01

    The goal of the current study was to investigate whether parental involvement is an important predictor of student outcomes within the Cuban school system, where extensive support for pupils' progress and adjustment are available from the peer group, community, and family. The participants were 188 children in Grades 2 and 3 from four…

  12. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.

    PubMed

    Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. PMID:26590254

  13. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures

    PubMed Central

    Lua, Rhonald C.; Wilson, Stephen J.; Konecki, Daniel M.; Wilkins, Angela D.; Venner, Eric; Morgan, Daniel H.; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. PMID:26590254

  14. The F8H Glycosyltransferase is a Functional Paralog of FRA8 Involved in Glucuronoxylan Biosynthesis in Arabidopsis

    EPA Science Inventory

    The FRAGILE FIBER8 gene was previously shown to be required for the biosynthesis of the reducing end tetrasaccharide sequence of glucuronoxylan (GX) in Arabidopsis thaliana. Here, we demonstrate that F8H, a close homolog of FRA8, is a functional ortholog of FRA8 involved in GX bi...

  15. Father Involvement, Nurturant Fathering, and Young Adult Psychosocial Functioning: Differences among Adoptive, Adoptive Stepfather, and Nonadoptive Stepfamilies

    ERIC Educational Resources Information Center

    Schwartz, Seth J.; Finley, Gordon E.

    2006-01-01

    The present study was conducted to investigate differences in nurturant fathering, father involvement, and young adult psychosocial functioning among small samples of three nontraditional family forms. A total of 168 young-adult university students from three family forms (27 adoptive, 22 adoptive stepfather, 119 nonadoptive stepfather) completed…

  16. Functions of parental involvement and effects of school climate on bullying behaviors among South Korean middle school students.

    PubMed

    Lee, Chang-Hun; Song, Juyoung

    2012-08-01

    This study uses an ecological systems theory to understand bullying behavior. Emphasis is given to overcome limitations found in the literature, such as very little empirical research on functions of parental involvement and the impacts of school climate on bullying as an outcome variable. Two functions of parental involvement investigated are (a) bridging the negative experiences within the family with bullying behaviors at schools, and (b) influencing school climate. Bullying behaviors were measured by a modified Korean version of Olweus' bully/victim questionnaire (reliability range: .78-.84) from 1,238 randomly selected Korean middle school students in 2007. Findings from structural equation modeling (SEM) analyses showed that (a) individual traits are one of the most important influence on bullying, (b) negative experiences in the family do not have direct influence on bullying behaviors at school, (c) parental involvement influences school climate, and (d) positive school climate was negatively related to bullying behaviors. PMID:22328649

  17. iPFPi: A System for Improving Protein Function Prediction through Cumulative Iterations.

    PubMed

    Taha, Kamal; Yoo, Paul D; Alzaabi, Mohammed

    2015-01-01

    We propose a classifier system called iPFPi that predicts the functions of un-annotated proteins. iPFPi assigns an un-annotated protein P the functions of GO annotation terms that are semantically similar to P. An un-annotated protein P and a GO annotation term T are represented by their characteristics. The characteristics of P are GO terms found within the abstracts of biomedical literature associated with P. The characteristics of Tare GO terms found within the abstracts of biomedical literature associated with the proteins annotated with the function of T. Let F and F/ be the important (dominant) sets of characteristic terms representing T and P, respectively. iPFPi would annotate P with the function of T, if F and F/ are semantically similar. We constructed a novel semantic similarity measure that takes into consideration several factors, such as the dominance degree of each characteristic term t in set F based on its score, which is a value that reflects the dominance status of t relative to other characteristic terms, using pairwise beats and looses procedure. Every time a protein P is annotated with the function of T, iPFPi updates and optimizes the current scores of the characteristic terms for T based on the weights of the characteristic terms for P. Set F will be updated accordingly. Thus, the accuracy of predicting the function of T as the function of subsequent proteins improves. This prediction accuracy keeps improving over time iteratively through the cumulative weights of the characteristic terms representing proteins that are successively annotated with the function of T. We evaluated the quality of iPFPi by comparing it experimentally with two recent protein function prediction systems. Results showed marked improvement. PMID:26357323

  18. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events.

    PubMed

    Das, Malay; Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R

    2016-08-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  19. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory.

    PubMed

    Bigelow, Robin T; Agrawal, Yuri

    2015-01-01

    A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research. PMID:26410672

  20. Predictive Models of Resting State Networks for Assessment of Altered Functional Connectivity in Mild Cognitive Impairment

    PubMed Central

    Jiang, Xi; Zhu, Dajiang; Li, Kaiming; Zhang, Tuo; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming

    2014-01-01

    Due to the difficulties in establishing correspondences between functional regions across individuals and populations, systematic elucidation of functional connectivity alterations in mild cognitive impairment (MCI) in comparison with normal controls (NC) is still a challenging problem. In this paper, we assessed the functional connectivity alterations in MCI via novel, alternative predictive models of resting state networks (RSNs) learned from multimodal resting state fMRI (R-fMRI) and diffusion tensor imaging (DTI) data. First, ICA-clustering was used to construct RSNs from R-fMRI data in NC group. Second, since the RSNs in MCI are already altered and can hardly be constructed directly from R-fMRI data, structural landmarks derived from DTI data were employed as the predictive models of RSNs for MCI. Third, given that the landmarks are structurally consistent and correspondent across NC and MCI, functional connectivities in MCI were assessed based on the predicted RSNs and compared with those in NC. Experimental results demonstrated that the predictive models of RSNs based on multimodal R-fMRI and DTI data systematically and comprehensively revealed widespread functional connectivity alterations in MCI in comparison with NC. PMID:24293138

  1. Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction

    PubMed Central

    Shoichet, Brian K.; Gillis, Jesse

    2016-01-01

    The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63–0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited. PMID:27467773

  2. Weaknesses in executive functioning predict the initiating of adolescents' alcohol use.

    PubMed

    Peeters, Margot; Janssen, Tim; Monshouwer, Karin; Boendermaker, Wouter; Pronk, Thomas; Wiers, Reinout; Vollebergh, Wilma

    2015-12-01

    Recently, it has been suggested that impairments in executive functioning might be risk factors for the onset of alcohol use rather than a result of heavy alcohol use. In the present study, we examined whether two aspects of executive functioning, working memory and response inhibition, predicted the first alcoholic drink and first binge drinking episode in young adolescents using discrete survival analyses. Adolescents were selected from several Dutch secondary schools including both mainstream and special education (externalizing behavioral problems). Participants were 534 adolescents between 12 and 14 years at baseline. Executive functioning and alcohol use were assessed four times over a period of two years. Working memory uniquely predicted the onset of first drink (p=.01) and first binge drinking episode (p=.04) while response inhibition only uniquely predicted the initiating of the first drink (p=.01). These results suggest that the association of executive functioning and alcohol consumption found in former studies cannot simply be interpreted as an effect of alcohol consumption, as weaknesses in executive functioning, found in alcohol naïve adolescents, predict the initiating of (binge) drinking. Though, prolonged and heavy alcohol use might further weaken already existing deficiencies. PMID:25936585

  3. Remodelling of spared proprioceptive circuit involving a small number of neurons supports functional recovery

    PubMed Central

    Hollis, Edmund R.; Ishiko, Nao; Pessian, Maysam; Tolentino, Kristine; Lee-Kubli, Corinne A.; Calcutt, Nigel A.; Zou, Yimin

    2016-01-01

    Studies show that limited functional recovery can be achieved by plasticity and adaptation of the remaining circuitry in partial injuries in the central nervous system, although the new circuits that arise in these contexts have not been clearly identified or characterized. We show here that synaptic contacts from dorsal root ganglions to a small number of dorsal column neurons, a caudal extension of nucleus gracilis, whose connections to the thalamus are spared in a precise cervical level 1 lesion, underwent remodeling over time. These connections support proprioceptive functional recovery in a conditioning lesion paradigm, as silencing or eliminating the remodelled circuit completely abolishes the recovered proprioceptive function of the hindlimb. Furthermore, we show that blocking repulsive Wnt signalling increases axon plasticity and synaptic connections that drive greater functional recovery. PMID:25597627

  4. Factors involved in maintaining prolonged functional independence following supratentorial glioblastoma resection

    PubMed Central

    Chaichana, Kaisorn L.; Halthore, Aditya N.; Parker, Scott L.; Olivi, Alessandro; Weingart, Jon D.; Brem, Henry; Quinones-Hinojosa, Alfredo

    2013-01-01

    Object The median survival duration for patients with glioblastoma is approximately 12 months. Maximizing quality of life (QOL) for patients with glioblastoma is a priority. An important, yet understudied, QOL component is functional independence. The aims of this study were to evaluate functional outcomes over time for patients with glioblastoma, as well as identify factors associated with prolonged functional independence. Methods All patients who underwent first-time resection of either a primary (de novo) or secondary (prior lower grade glioma) glioblastoma at a single institution from 1996 to 2006 were retrospectively reviewed. Patients with a Karnofsky Performance Scale (KPS) score ≥ 80 were included. Kaplan-Meier, log-rank, and multivariate proportional hazards regression analyses were used to identify associations (p < 0.05) with functional independence (KPS score ≥ 60) following glioblastoma resection. Results The median follow-up duration time was 10 months (interquartile range [IQR] 5.6–17.0 months). A patient’s preoperative (p = 0.02) and immediate postoperative (within 2 months) functional status was associated with prolonged survival (p < 0.0001). Of the 544 patients in this series, 302 (56%) lost their functional independence at a median of 10 months (IQR 6–16 months). Factors independently associated with prolonged functional independence were: preoperative KPS score ≥ 90 (p = 0.004), preoperative seizures (p = 0.002), primary glioblastoma (p < 0.0001), gross-total resection (p < 0.0001), and temozolomide chemotherapy (p < 0.0001). Factors independently associated with decreased functional independence were: older age (p < 0.0001), coexistent coronary artery disease (p = 0.009), and incurring a new postoperative motor deficit (p = 0.009). Furthermore, a decline in functional status was independently associated with tumor recurrence (p = 0.01). Conclusions The identification and consideration of these factors associated with prolonged

  5. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    PubMed

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings. PMID:26166191

  6. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  7. KNEE EXTENSOR STRENGTH EXHIBITS POTENTIAL TO PREDICT FUNCTION IN SPORADIC INCLUSION-BODY MYOSITIS

    PubMed Central

    LOWES, LINDA PAX; ALFANO, LINDSAY; VIOLLET, LAURENCE; ROSALES, XIOMARA QUINTERO; SAHENK, ZARIFE; KASPAR, BRIAN K.; CLARK, K. REED; FLANIGAN, KEVIN M.; MENDELL, JERRY R.

    2013-01-01

    Introduction In this study we address the challenging issue of potential use of muscle strength to predict function in clinical trials. This has immediate relevance to translational studies that attempt to improve quadriceps strength in sporadic inclusion-body myositis (sIBM). Methods Maximum voluntary isometric contraction testing as a measure of muscle strength and a battery of functional outcomes were tested in 85 ambulatory subjects with sIBM. Results Marked quadriceps weakness was noted in all patients. Strength was correlated with distance walked at 2 and 6 minutes. Additional correlations were found with time to get up from a chair, climb stairs, and step up on curbs. Conclusions Quadriceps (knee extensor) strength correlated with performance in this large cohort of sIBM subjects, which demonstrated its potential to predict function in this disease. These data provide initial support for use of muscle strength as a surrogate for function, although validation in a clinical trial is required. PMID:22246869

  8. Enhanced left frontal involvement during novel metaphor comprehension in schizophrenia: evidence from functional neuroimaging.

    PubMed

    Mashal, N; Vishne, T; Laor, N; Titone, D

    2013-01-01

    The neural basis involved in novel metaphor comprehension in schizophrenia is relatively unknown. Fourteen people with schizophrenia and fourteen controls were scanned while they silently read novel metaphors, conventional metaphors, literal expressions, and meaningless word-pairs. People with schizophrenia showed reduced comprehension of both novel and conventional metaphors. Furthermore, while controls showed enhanced brain activation in right inferior frontal gyrus (IFG) for novel metaphors versus meaningless word-pairs, people with schizophrenia showed an over-activation of left IFG and middle frontal gyrus (MFG). Direct comparison between the groups revealed greater activation in left precuneus for both novel metaphors and literal expressions vs. baseline for individuals with schizophrenia. Direct comparison for novel metaphors vs. literal expressions also revealed increased activation for individuals with schizophrenia in left MFG. These results suggest that the inefficient processing of novel metaphors in schizophrenia involves compensatory recruitment of additional brain regions that include the left MFG and left precuneus. PMID:23291493

  9. Predictions of the solar wind speed by the probability distribution function model

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C. D.; Ridley, A. J.

    2014-06-01

    The near-Earth space environment is strongly driven by the solar wind and interplanetary magnetic field. This study presents a model for predicting the solar wind speed up to 5 days in advance. Probability distribution functions (PDFs) were created that relate the current solar wind speed and slope to the future solar wind speed, as well as the solar wind speed to the solar wind speed one solar rotation in the future. It was found that a major limitation of this type of technique is that the solar wind periodicity is close to 27 days but can be from about 22 to 32 days. Further, the optimum lag between two solar rotations can change from day to day, making a prediction of the future solar wind speed based solely on the solar wind speed approximately 27 days ago quite difficult. It was found that using a linear combination of the solar wind speed one solar rotation ago and a prediction of the solar wind speed based on the current speed and slope is optimal. The linear weights change as a function of the prediction horizon, with shorter prediction times putting more weight on the prediction based on the current solar wind speed and the longer prediction times based on an even spread between the two. For all prediction horizons from 8 h up to 120 h, the PDF Model is shown to be better than using the current solar wind speed (i.e., persistence), and better than the Wang-Sheeley-Arge Model for prediction horizons of 24 h.

  10. Prediction of functional outcome by motor capability after spinal cord injury.

    PubMed

    Lazar, R B; Yarkony, G M; Ortolano, D; Heinemann, A W; Perlow, E; Lovell, L; Meyer, P R

    1989-11-01

    The relationship between early motor status and functional outcome after spinal cord injury (SCI) was evaluated prospectively in 52 quadriplegic and 26 paraplegic patients. Motor status was measured within 72 hours of injury and quantified with the Motor Index Score (MIS). Functional status was evaluated with the Modified Barthel Index (MBI). A senior physical therapist completed the MIS and the MBI when each patient was admitted to the spinal cord intensive care unit and every 30 days during rehabilitation. Early motor function was correlated with average daily improvement in functional status including self-care and mobility (p = .001). The initial MIS strongly correlated with functional status of quadriplegics at admission (p = .001), at 60 days, and at rehabilitation discharge (p = .001). In paraplegics, the overall MBI at admission, after 60 days of rehabilitation, and at discharge was not correlated with early motor function. However, the MIS correlated significantly with the MBI self-care subscore at 60 days and at discharge (p = .01), but not with the mobility subscore. The initial MIS was also significantly correlated to functional status at discharge in patients with complete lesions (p = .001), but was not related to functional status at discharge in patients with incomplete lesions. The MIS appears to be a useful tool in predicting function during rehabilitation, although individual differences in ambulation, particularly for patients with paraplegia, limit the predictive utility of this index. PMID:2818153

  11. Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata

    PubMed Central

    Fang, Dong; Xu, Guangrui; Hu, Yilin; Pan, Cong; Xie, Liping; Zhang, Rongqing

    2011-01-01

    Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the ‘aragonitic line’. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P.fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the ‘aragonitic line’, and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth. PMID:21747964

  12. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata.

    PubMed

    Fang, Dong; Xu, Guangrui; Hu, Yilin; Pan, Cong; Xie, Liping; Zhang, Rongqing

    2011-01-01

    Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth. PMID:21747964

  13. Using Wannier functions to improve solid band gap predictions in density functional theory.

    PubMed

    Ma, Jie; Wang, Lin-Wang

    2016-01-01

    Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure. PMID:27114185

  14. Using Wannier functions to improve solid band gap predictions in density functional theory

    PubMed Central

    Ma, Jie; Wang, Lin-Wang

    2016-01-01

    Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure. PMID:27114185

  15. Using Wannier functions to improve solid band gap predictions in density functional theory

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Lin-Wang

    2016-04-01

    Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure.

  16. Biological interpretation of genome-wide association studies using predicted gene functions.

    PubMed

    Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude

    2015-01-01

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes. PMID:25597830

  17. Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions.

    PubMed

    Nakamura, Ritsuko; Nakamoto, Chizu; Obama, Hiroya; Durward, Elaine; Nakamoto, Masaru

    2012-01-27

    Nel (neural epidermal growth factor (EGF)-like molecule) is a multimeric, multimodular extracellular glycoprotein with heparin-binding activity and structural similarities to thrombospondin-1. Nel is predominantly expressed in the nervous system and has been implicated in neuronal proliferation and differentiation, retinal axon guidance, synaptic functions, and spatial learning. The Nel protein contains an N-terminal thrombospondin-1 (TSP-N) domain, five cysteine-rich domains, and six EGF-like domains. However, little is known about the functions of specific domains of the Nel protein. In this study, we have performed structure-function analysis of Nel, by using a series of expression constructs for different regions of the Nel protein. Our studies demonstrate that the TSP-N domain is responsible for homo-multimer formation of Nel and its heparin-binding activity. In vivo, Nel and related Nell1 are expressed in several regions of the mouse central nervous system with partly overlapping patterns. When they are expressed in the same cells in vitro, Nel and Nell1 can form hetero-multimers through the TSP-N domain, but they do not hetero-oligomerize with thrombospondin-1. Whereas both the TSP-N domain and cysteine-rich domains can bind to retinal axons in vivo, only the latter causes growth cone collapse in cultured retinal axons, suggesting that cysteine-rich domains interact with and activate an inhibitory axon guidance receptor. These results suggest that Nel interacts with a range of molecules through its different domains and exerts distinct functions. PMID:22157752

  18. Predictive Models of Resting State Networks for Assessment of Altered Functional Connectivity in MCI

    PubMed Central

    Jiang, Xi; Zhu, Dajiang; Li, Kaiming; Zhang, Tuo; Shen, Dinggang; Guo, Lei; Liu, Tianming

    2014-01-01

    Due to the difficulties in establishing accurate correspondences of brain network nodes across individual subjects, systematic elucidation of possible functional connectivity (FC) alterations in mild cognitive impairment (MCI) compared with normal controls (NC) is a challenging problem. To address this challenge, in this paper, we develop and apply novel predictive models of resting state networks (RSNs) learned from multimodal resting state fMRI (R-fMRI) and DTI data to assess large-scale FC alterations in MCI. Our rationale is that some RSNs in MCI are substantially altered and can hardly be directly compared with those in NC. Instead, structural landmarks derived from DTI data are much more consistent and correspondent across MCI/NC brains, and therefore can be employed to encode RSNs in NC and serve as the predictive models of RSNs for MCI. To derive these predictive models, RSNs in NC are constructed by group-wise ICA clustering and employed to functionally annotate corresponding structural landmarks. Afterwards, these functionally-annotated structural landmarks are predicted in MCI based on DTI data and used to assess FC alterations in MCI. Experimental results demonstrated that the predictive models of RSNs are effective and can comprehensively reveal widespread FC alterations in MCI. PMID:24579199

  19. Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct.

    PubMed

    Funk, Christopher S; Kahanda, Indika; Ben-Hur, Asa; Verspoor, Karin M

    2015-01-01

    Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated. PMID:26005564

  20. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions. PMID:26100388

  1. Examining the interaction of parental involvement and parenting style in predicting adherence in youth with type 1 diabetes

    PubMed Central

    Landers, Sara E.; Friedrich, Elizabeth A.; Jawad, Abbas F.; Miller, Victoria A.

    2016-01-01

    Introduction This study examined whether aspects of parenting style (specifically, warmth, autonomy support, and coercion) moderated the association between parental involvement and adherence in youth with type 1 diabetes. Methods Children ages 8–16 years with type 1 diabetes and a parent completed assessments of parental involvement, parenting style, and adherence. Results Parent autonomy support and coercion were associated with adherence but warmth was not. Child report of more parental involvement was associated with better adherence. Warmth, autonomy support, and coercion were not moderators. Discussion The findings underscore the importance of parental involvement, operationalized as responsibility for diabetes tasks, and parenting style, specifically coercion and autonomy support, for adherence in pediatric chronic illness management. Longitudinal research is needed to better understand how and why dimensions of involvement (e.g., responsibility, monitoring, support) vary over time and whether they impact outcomes differentially. PMID:26866945

  2. Functions of heat shock transcription factors involved in response to photooxidative stresses in Arabidopsis.

    PubMed

    Yabuta, Yukinori

    2016-07-01

    Because plants are continually exposed to various environmental stresses, they possess numerous transcription factors that regulate metabolism to adapt and acclimate to those conditions. To clarify the gene regulation systems activated in response to photooxidative stress, we isolated 76 high light and heat shock stress-inducible genes, including heat shock transcription factor (Hsf) A2 from Arabidopsis. Unlike yeast or animals, more than 20 genes encoding putative Hsfs are present in the genomes of higher plants, and they are categorized into three classes based on their structural characterization. However, the multiplicity of Hsfs in plants remains unknown. Furthermore, the individual functions of Hsfs are also largely unknown because of their genetic redundancy. Recently, the developments of T-DNA insertion knockout mutant lines and chimeric repressor gene-silencing technology have provided effective tools for exploring the individual functions of Hsfs. This review describes the current knowledge on the individual functions and activation mechanisms of Hsfs. PMID:27095030

  3. Mothers' depressive symptoms and children's cognitive and social agency: Predicting first-grade cognitive functioning.

    PubMed

    Yan, Ni; Dix, Theodore

    2016-08-01

    Using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development (N = 1,364), the present study supports an agentic perspective; it demonstrates that mothers' depressive symptoms in infancy predict children's poor first-grade cognitive functioning because depressive symptoms predict children's low social and cognitive agency-low motivation to initiate social interaction and actively engage in activities. When mothers' depressive symptoms were high in infancy, children displayed poor first-grade cognitive functioning due to (a) tendencies to become socially withdrawn by 36 months and low in mastery motivation by 54 months and (b) tendencies for children's low agency to predict declines in mothers' sensitivity and cognitive stimulation. Findings suggest that mothers' depressive symptoms undermine cognitive development through bidirectional processes centered on children's low motivation to engage in social interaction and initiate and persist at everyday tasks. (PsycINFO Database Record PMID:27389834

  4. Composite motifs integrating multiple protein structures increase sensitivity for function prediction.

    PubMed

    Chen, Brian Y; Bryant, Drew H; Cruess, Amanda E; Bylund, Joseph H; Fofanov, Viacheslav Y; Kristensen, David M; Kimmel, Marek; Lichtarge, Olivier; Kavraki, Lydia E

    2007-01-01

    The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources. PMID:17951837

  5. Cognitive functioning differentially predicts different dimensions of older drivers' on-road safety.

    PubMed

    Aksan, Nazan; Anderson, Steve W; Dawson, Jeffrey; Uc, Ergun; Rizzo, Matthew

    2015-02-01

    The extent to which deficits in specific cognitive domains contribute to older drivers' safety risk in complex real-world driving tasks is not well understood. We selected 148 drivers older than 70 years of age both with and without neurodegenerative diseases (Alzheimer disease-AD and Parkinson disease-PD) from an existing driving database of older adults. Participant assessments included on-road driving safety and cognitive functioning in visuospatial construction, speed of processing, memory, and executive functioning. The standardized on-road drive test was designed to examine multiple facets of older driver safety including navigation performance (e.g., following a route, identifying landmarks), safety errors while concurrently performing secondary navigation tasks ("on-task" safety errors), and safety errors in the absence of any secondary navigation tasks ("baseline" safety errors). The inter-correlations of these outcome measures were fair to moderate supporting their distinctiveness. Participants with diseases performed worse than the healthy aging group on all driving measures and differences between those with AD and PD were minimal. In multivariate analyses, different domains of cognitive functioning predicted distinct facets of driver safety on road. Memory and set-shifting predicted performance in navigation-related secondary tasks, speed of processing predicted on-task safety errors, and visuospatial construction predicted baseline safety errors. These findings support broad assessments of cognitive functioning to inform decisions regarding older driver safety on the road and suggest navigation performance may be useful in evaluating older driver fitness and restrictions in licensing. PMID:25525974

  6. Concurrent and Predictive Relations between Hormone Levels and Social-Emotional Functioning in Early Adolescence.

    ERIC Educational Resources Information Center

    Nottelmann, Editha D.; And Others

    Hormone levels and changes in hormone levels were evaluated three times across a 1-year period as concurrent and predictive correlates of the socio-emotional functioning of 56 boys 10- to 14-years-old and 52 girls 9- to 14-years-old who represented the five stages of Tanner's criteria of pubertal development. The hormone measures were serum levels…

  7. Individual Differences in Executive Functioning Predict Preschoolers' Improvement from Theory-of-Mind Training

    ERIC Educational Resources Information Center

    Benson, Jeannette E.; Sabbagh, Mark A.; Carlson, Stephanie M.; Zelazo, Philip David

    2013-01-01

    Twenty-four 3.5-year-old children who initially showed poor performance on false-belief tasks participated in a training protocol designed to promote performance on these tasks. Our aim was to determine whether the extent to which children benefited from training was predicted by their performance on a battery of executive functioning tasks.…

  8. Mothers' Predictions of Their Son's Executive Functioning Skills: Relations to Child Behavior Problems

    ERIC Educational Resources Information Center

    Johnston, Charlotte

    2011-01-01

    This study examined mothers' ability to accurately predict their sons' performance on executive functioning tasks in relation to the child's behavior problems. One-hundred thirteen mothers and their 4-7 year old sons participated. From behind a one-way mirror, mothers watched their sons perform tasks assessing inhibition and planning skills.…

  9. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  10. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  11. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  12. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890...

  13. Executive Functioning Predicts School Readiness and Success: Implications for Assessment and Intervention

    ERIC Educational Resources Information Center

    Cantin, Rachelle H.; Mann, Trisha D.; Hund, Alycia M.

    2012-01-01

    In recent years, executive functioning (EF) has received increasing attention from researchers and practitioners focusing on how EF predicts important outcomes such as success at school and in life. For example, EF has been described as the single best predictor of school readiness (Blair & Razza, 2007). Moreover, EF has been implicated in…

  14. Patterns of Functioning and Predictive Factors in Children Born Moderately Preterm or at Term

    ERIC Educational Resources Information Center

    Cserjesi, Renata; van Braeckel, Koenraad N. J. A.; Timmerman, Marieke; Butcher, Phillipa R.; Kerstjens, Jorien M.; Reijneveld, Sijmen A.; Bouma, Anke; Bos, Arend F.; Geuze, Reint H.

    2012-01-01

    Aim: The aim of this study was to identify subgroups of children born moderately preterm (MPT) and term with distinctive levels and patterns of functioning, and the perinatal and demographic factors that predict subgroup membership. Method: A total of 378 children aged 7 years, 248 MPT (138 males, 110 females; gestational age 32-36 wks) and a…

  15. A seepage erosion sediment transport function and geometric headcut relationships for predicting seepage erosion undercutting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remain a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including n...

  16. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus.

    PubMed

    Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S

    2015-09-01

    The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches. PMID:26162909

  17. Potency prediction of β-secretase (BACE-1) inhibitors using density functional methods.

    PubMed

    Roos, Katarina; Viklund, Jenny; Meuller, Johan; Kaspersson, Karin; Svensson, Mats

    2014-03-24

    Scoring potency is a main challenge for structure based drug design. Inductive effects of subtle variations in the ligand are not possible to accurately predict by classical computational chemistry methods. In this study, the problem of predicting potency of ligands with electronic variations participating in key interactions with the protein was addressed. The potency was predicted for a large set of cyclic amidine and guanidine cores extracted from β-secretase (BACE-1) inhibitors. All cores were of similar size and had equal interaction motifs but were diverse with respect to electronic substitutions. A density functional theory approach, in combination with a representation of the active site of a protein using only key residues, was shown to be predictive. This computational approach was used to guide and support drug design, within the time frame of a normal drug discovery design cycle. PMID:24456077

  18. LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains

    PubMed Central

    Helft, Laura; Reddy, Vignyan; Chen, Xiyang; Koller, Teresa; Federici, Luca; Fernández-Recio, Juan; Gupta, Rishabh; Bent, Andrew

    2011-01-01

    Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains. PMID:21789174

  19. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae

    PubMed Central

    Lee, Min-Soo; Yu, Mi; Kim, Kyoung-Yeon; Park, Geun-Hee; Kwack, KyuBum; Kim, Keun P.

    2015-01-01

    Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer. PMID:25938495

  20. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization

    PubMed Central

    Shahbaaz, Mohd.; Bisetty, Krishna; Ahmad, Faizan

    2015-01-01

    Abstract Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis. PMID:26076386

  1. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores.

    PubMed

    Hu, Xueyun; Makita, Satoru; Schelbert, Silvia; Sano, Shinsuke; Ochiai, Masanori; Tsuchiya, Tohru; Hasegawa, Shigeaki F; Hörtensteiner, Stefan; Tanaka, Ayumi; Tanaka, Ryouichi

    2015-03-01

    Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed. PMID:25583926

  2. Reexamination of Chlorophyllase Function Implies Its Involvement in Defense against Chewing Herbivores1[OPEN

    PubMed Central

    Hu, Xueyun; Makita, Satoru; Schelbert, Silvia; Sano, Shinsuke; Tsuchiya, Tohru; Hasegawa, Shigeaki F.; Hörtensteiner, Stefan; Tanaka, Ayumi

    2015-01-01

    Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed. PMID:25583926

  3. Predicting mass loading as a function of pressure difference across prefilter/HEPA filter systems

    SciTech Connect

    Novick, V.J.; Klassen, J.F. ); Monson, P.R. )

    1992-01-01

    The purpose of this work is to develop a methodology for predicting the mass loading and pressure drop effects on a prefilter/ HEPA filter system. The methodology relies on the use of empirical equations for the specific resistance of the aerosol loaded filter as a function of the particle diameter. These correlations relate the pressure difference across a filter to the mass loading on the filter and accounts for aerosol particle density effects. These predictions are necessary for the efficient design of new filtration systems and for risk assessment studies of existing filter systems. This work specifically addresses the prefilter/HEPA filter Airborne Activity Confinement Systems (AACS) at the Savannah River Plant. In order to determine the mass loading on the system, it is necessary to establish the efficiency characteristics for the prefilter, the mass loading characteristics of the prefilter measured as a function of pressure difference across the prefilter, and the mass loading characteristics of the HEPA filter as a function of pressure difference across the filter. Furthermore, the efficiency and mass loading characteristics need to be determined as a function of the aerosol particle diameter. A review of the literature revealed that no previous work had been performed to characterize the prefilter material of interest. In order to complete the foundation of information necessary to predict total mass loadings on prefilter/HEPA filter systems, it was necessary to determine the prefilter efficiency and mass loading characteristics. The measured prefilter characteristics combined with the previously determined HEPA filter characteristics allowed the resulting pressure difference across both filters to be predicted as a function of total particle mass for a given particle distribution. These predictions compare favorably to experimental measurements ({plus minus}25%).

  4. Collective prediction of protein functions from protein-protein interaction networks

    PubMed Central

    2014-01-01

    Background Automated assignment of functions to unknown proteins is one of the most important task in computational biology. The development of experimental methods for genome scale analysis of molecular interaction networks offers new ways to infer protein function from protein-protein interaction (PPI) network data. Existing techniques for collective classification (CC) usually increase accuracy for network data, wherein instances are interlinked with each other, using a large amount of labeled data for training. However, the labeled data are time-consuming and expensive to obtain. On the other hand, one can easily obtain large amount of unlabeled data. Thus, more sophisticated methods are needed to exploit the unlabeled data to increase prediction accuracy for protein function prediction. Results In this paper, we propose an effective Markov chain based CC algorithm (ICAM) to tackle the label deficiency problem in CC for interrelated proteins from PPI networks. Our idea is to model the problem using two distinct Markov chain classifiers to make separate predictions with regard to attribute features from protein data and relational features from relational information. The ICAM learning algorithm combines the results of the two classifiers to compute the ranks of labels to indicate the importance of a set of labels to an instance, and uses an ICA framework to iteratively refine the learning models for improving performance of protein function prediction from PPI networks in the paucity of labeled data. Conclusion Experimental results on the real-world Yeast protein-protein interaction datasets show that our proposed ICAM method is better than the other ICA-type methods given limited labeled training data. This approach can serve as a valuable tool for the study of protein function prediction from PPI networks. PMID:24564855

  5. Prediction of CpG-island function: CpG clustering vs. sliding-window methods

    PubMed Central

    2010-01-01

    Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903

  6. Predicting Romantic Involvement, Relationship Cognitions, and Relationship Qualities from Physical Appearance, Perceived Norms, and Relational Styles Regarding Friends and Parents

    PubMed Central

    Furman, Wyndol; Winkles, Jessica K

    2010-01-01

    Using a sample of 199 adolescents, the present study examined Furman and Wehner’s (1999) hypothesis that the predictors of the degree of romantic involvement and the predictors of romantic relationship cognitions and qualities differ. As hypothesized, physical appearance and friends’ normative romantic involvement were related to the degree of casual and serious romantic involvement, whereas relational styles regarding friends and parents were unrelated in almost all cases. On the other hand, relational styles regarding friends and parents were related to supportive and negative romantic interactions and romantic styles,. In contrast, physical appearance and friends’ normative romantic involvement were generally unrelated to interactions and romantic styles. Physical appearance was also related to romantic appeal and satisfaction. PMID:20800891

  7. Predicting Species-environment Relationships with Functional Traits for the Understory Flora of Wisconsin

    NASA Astrophysics Data System (ADS)

    Ash, J.; Li, D.; Johnson, S.; Rogers, D. A.; Waller, D. M.

    2015-12-01

    Understanding the processes that structure species' abundance patterns is a central problem in ecology, both for explaining current species' distributions and predicting future changes. Environmental gradients affect species' distribution patterns with these responses likely depending on species' functional traits. Thus, tracking shifts in species' traits can provide insight into the mechanisms by which species respond to dynamic environmental conditions. We examined how functional traits are associated with long-term changes in the distribution and abundance of understory plants in Wisconsin forests over the last 50+ years. We relied on detailed surveys and resurveys of the same Wisconsin forest plots, data on 12 functional traits, and site-level environmental variables including soil and climate conditions. We then related changes in the abundance of 293 species across a network of 249 sites to these environmental variables and explored whether functional traits served to predict these relationships using multilevel models. Species abundance patterns were strongly related to variation in environmental conditions among sites, but species appear to be responding to distinct sets of environmental variables. Functional traits only weakly predicted these species-environment relationships, limiting our ability to generalize these results to other systems. Nonetheless, understanding how traits interact with environmental gradients to structure species distribution patterns helps us to disentangle the drivers of ecological change across diverse landscapes.

  8. Network-based auto-probit modeling for protein function prediction.

    PubMed

    Jiang, Xiaoyu; Gold, David; Kolaczyk, Eric D

    2011-09-01

    Predicting the functional roles of proteins based on various genome-wide data, such as protein-protein association networks, has become a canonical problem in computational biology. Approaching this task as a binary classification problem, we develop a network-based extension of the spatial auto-probit model. In particular, we develop a hierarchical Bayesian probit-based framework for modeling binary network-indexed processes, with a latent multivariate conditional autoregressive Gaussian process. The latter allows for the easy incorporation of protein-protein association network topologies-either binary or weighted-in modeling protein functional similarity. We use this framework to predict protein functions, for functions defined as terms in the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functionality. Furthermore, we show how a natural extension of this framework can be used to model and correct for the high percentage of false negative labels in training data derived from GO, a serious shortcoming endemic to biological databases of this type. Our method performance is evaluated and compared with standard algorithms on weighted yeast protein-protein association networks, extracted from a recently developed integrative database called Search Tool for the Retrieval of INteracting Genes/proteins (STRING). Results show that our basic method is competitive with these other methods, and that the extended method-incorporating the uncertainty in negative labels among the training data-can yield nontrivial improvements in predictive accuracy. PMID:21133881

  9. Structure-based activity prediction for an enzyme of unknown function

    PubMed Central

    Hermann, Johannes C.; Marti-Arbona, Ricardo; Fedorov, Alexander A.; Fedorov, Elena; Almo, Steven C.; Shoichet, Brian K.; Raushel, Frank M.

    2008-01-01

    With many genomes sequenced, a pressing challenge in biology is predicting the function of the proteins that the genes encode. When proteins are unrelated to others of known activity, bioinformatics inference for function becomes problematic. It would thus be useful to interrogate protein structures for function directly. Here, we predict the function of an enzyme of unknown activity, Tm0936 from Thermotoga maritima, by docking high-energy intermediate forms of thousands of candidate metabolites. The docking hit list was dominated by adenine analogues, which appeared to undergo C6-deamination. Four of these, including 5-methylthioadenosine and S-adenosylhomocysteine (SAH), were tested as substrates, and three had substantial catalytic rate constants (105 M−1s−1). The X-ray crystal structure of the complex between Tm0936 and the product resulting from the deamination of SAH, S-inosylhomocysteine, was determined, and it corresponded closely to the predicted structure. The deaminated products can be further metabolized by T. maritima in a previously uncharacterized SAH degradation pathway. Structure-based docking with high-energy forms of potential substrates may be a useful tool to annotate enzymes for function. PMID:17603473

  10. Evolution of an ancient protein function involved in organized multicellularity in animals.

    PubMed

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. PMID:26740169

  11. Examining the consistency relations describing the three-point functions involving tensors

    SciTech Connect

    Sreenath, V.; Sriramkumar, L. E-mail: sriram@physics.iitm.ac.in

    2014-10-01

    It is well known that the non-Gaussianity parameter f{sub NL} characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C{sub NL}{sup R} and C{sub NL}{sup γ} that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h{sub NL} used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary

  12. FOXA2 regulates a network of genes involved in critical functions of human intestinal epithelial cells.

    PubMed

    Gosalia, Nehal; Yang, Rui; Kerschner, Jenny L; Harris, Ann

    2015-07-01

    The forkhead box A (FOXA) family of pioneer transcription factors is critical for the development of many endoderm-derived tissues. Their importance in regulating biological processes in the lung and liver is extensively characterized, though much less is known about their role in intestine. Here we investigate the contribution of FOXA2 to coordinating intestinal epithelial cell function using postconfluent Caco2 cells, differentiated into an enterocyte-like model. FOXA2 binding sites genome-wide were determined by ChIP-seq and direct targets of the factor were validated by ChIP-qPCR and siRNA-mediated depletion of FOXA1/2 followed by RT-qPCR. Peaks of FOXA2 occupancy were frequent at loci contributing to gene ontology pathways of regulation of cell migration, cell motion, and plasma membrane function. Depletion of both FOXA1 and FOXA2 led to a significant reduction in the expression of multiple transmembrane proteins including ion channels and transporters, which form a network that is essential for maintaining normal ion and solute transport. One of the targets was the adenosine A2B receptor, and reduced receptor mRNA levels were associated with a functional decrease in intracellular cyclic AMP. We also observed that 30% of FOXA2 binding sites contained a GATA motif and that FOXA1/A2 depletion reduced GATA-4, but not GATA-6 protein levels. These data show that FOXA2 plays a pivotal role in regulating intestinal epithelial cell function. Moreover, that the FOXA and GATA families of transcription factors may work cooperatively to regulate gene expression genome-wide in the intestinal epithelium. PMID:25921584

  13. The use of copula functions for predictive analysis of correlations between extreme storm tides

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy

    2014-11-01

    In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.

  14. Patient factors predict functional outcomes after cruciate retaining TKA: a 2-year follow-up analysis.

    PubMed

    Roth, Justin S; Buehler, Knute C; Shen, Jianhua; Naughton, Marybeth

    2013-09-01

    We analyzed preoperative patient characteristics and postoperative functional outcomes to identify the most predictive preoperative characteristics of postoperative functional outcome for Cruciate Retaining (CR) TKA. In a prospective, multicenter study, 307 knees with minimum 2-year follow-up were first divided into groups based on 2-year functional performance. Logistic regression then determined SF-36 General Health Score (GHS) to be the most predictive preoperative patient characteristic. Subsequently, a second analysis was performed using preoperative SF-36 GHS to stratify patients into groups. Statistical significance was achieved in both analyses by gender, BMI and hypertension. Statistical significance was achieved in a single analysis by age, preoperative narcotic use, preoperative metabolic medication usage, preoperative pulmonary disease and preoperative use of medication for anxiety or depression. PMID:23523205

  15. On the applicability of hybrid functionals for predicting fundamental properties of metals

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Abtew, Tesfaye A.; Cai, Tianyi; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-05-01

    The repercussions of an inaccurate account of electronic states near the Fermi level by hybrid functionals in predicting several important metallic properties are investigated. The difficulties include a vanishing or severely suppressed density of states (DOS) at EF, significantly widened valence bandwidth, greatly enhanced electron-phonon (el-ph) deformation potentials, and an overestimate of magnetic moment in transition metals. The erroneously enhanced el-ph coupling calculated by hybrid functionals may lead to a false prediction of lattice instability. The main culprit of the problem comes from the simplistic treatment of the exchange functional rooted in the original Fock exchange energy. The use of a short-ranged Coulomb interaction alleviates some of the drawbacks but the fundamental issues remain unchanged.

  16. Systematic Triple Mutant Analysis Uncovers Functional Connectivity Between Pathways Involved in Chromosome Regulation

    PubMed Central

    Haber, James E.; Braberg, Hannes; Wu, Qiuqin; Alexander, Richard; Haase, Julian; Ryan, Colm; Lipkin-Moore, Zach; Franks-Skiba, Kathleen E.; Johnson, Tasha; Shales, Michael; Lenstra, Tineke L.; Holstege, Frank C. P.; Johnson, Jeffrey R.; Bloom, Kerry; Krogan, Nevan J.

    2013-01-01

    Genetic interactions reveal the functional relationships between pairs of genes. In this study, we describe a method for the systematic generation and quantitation of triple mutants, termed Triple Mutant Analysis (TMA). We have used this approach to interrogate partially redundant pairs of genes in S. cerevisiae, including ASF1 and CAC1, two histone chaperones. After subjecting asf1Δ cac1Δ to TMA, we found that the Swi/Snf Rdh54 protein, compensates for the absence of Asf1 and Cac1. Rdh54 more strongly associates with the chromatin apparatus and the pericentromeric region in the double mutant. Moreover, Asf1 is responsible for the synthetic lethality observed in cac1Δ strains lacking the HIRA-like proteins. A similar TMA was carried out after deleting both CLB5 and CLB6, cyclins that regulate DNA replication, revealing a strong functional connection to chromosome segregation. This approach can reveal functional redundancies that cannot be uncovered using traditional double mutant analyses. PMID:23746449

  17. Effect of triacontanol on numbers and functions of cells involved in inflammatory responses.

    PubMed

    Warren, R P; Burger, R A; Sidwell, R W; Clark, L L

    1992-07-01

    A preparation of a triacontanol-containing compound was studied for its effect on cells involved in the inflammatory response. C57BL/6 mice were injected intraperitoneally with various concentrations of this compound and investigated for total body weight, wet weight of thymus tissue, number of thymus cells and splenocytes, interleukin 1 production of spleen monocytes, and response of splenocytes to the T cell mitogen, phytohemagglutinin. Mice treated with the triacontanol preparation exhibited decreased total body weight, 24% reduction in thymus weights, 39% decrease in the number of thymus cells, and 21% depression in total splenocytes. Splenic monocytes of these animals produced a significantly reduced amount of interleukin 1 and splenocytes had a significantly depressed response to phytohemagglutinin. It is concluded that triacontanol has an inhibitory effect on at least some of the cells responsible for inflammation. PMID:1615010

  18. Involvement of unconventional myosin VI in myoblast function and myotube formation.

    PubMed

    Karolczak, Justyna; Pavlyk, Iuliia; Majewski, Łukasz; Sobczak, Magdalena; Niewiadomski, Paweł; Rzhepetskyy, Yuriy; Sikorska, Agata; Nowak, Natalia; Pomorski, Paweł; Prószyński, Tomasz; Ehler, Elisabeth; Rędowicz, Maria Jolanta

    2015-07-01

    The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes. During myoblast differentiation, the isoform expression pattern of MVI and its subcellular localization underwent changes. In undifferentiated myoblasts, MVI-stained puncti were seen throughout the cytoplasm and were in close proximity to actin filaments, Golgi apparatus, vinculin-, and talin-rich focal adhesion as well as endoplasmic reticulum. Colocalization of MVI with endoplasmic reticulum was enhanced during myotube formation, and differentiation-dependent association was also seen in sarcoplasmic reticulum of neonatal rat cardiomyocytes (NRCs). Moreover, we observed enrichment of MVI in myotube regions containing acetylcholine receptor-rich clusters, suggesting its involvement in the organization of the muscle postsynaptic machinery. Overexpression of the H246R MVI mutant (associated with hypertrophic cardiomyopathy) in myoblasts and NRCs caused the formation of abnormally large intracellular vesicles. MVI knockdown caused changes in myoblast morphology and inhibition of their migration. On the subcellular level, MVI-depleted myoblasts exhibited aberrations in the organization of actin cytoskeleton and adhesive structures as well as in integrity of Golgi apparatus and endoplasmic reticulum. Also, MVI depletion or overexpression of H246R mutant caused the formation of significantly wider or aberrant myotubes, respectively, indicative of involvement of MVI in myoblast differentiation. The presented results suggest an important role for MVI in myogenic cells and possibly in myoblast differentiation. PMID:25896210

  19. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish

    PubMed Central

    Di Rosa, Viviana; López-Olmeda, Jose Fernando; Burguillo, Ana; Frigato, Elena; Bertolucci, Cristiano; Piferrer, Francesc; Sánchez-Vázquez, Francisco Javier

    2016-01-01

    Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase) and the antimüllerian hormone (amh, testis) was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase) and ZT 15:39 h (at night), respectively. The expression of foxl2 (forkhead box L2) was also rhythmic in the ovary (acrophase located at ZT 5:02 h) and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1) was rhythmic in testes (acrophase at ZT 18:36 h). In the brain, cyp19a1b (brain aromatase) and cyp11b (11beta-hydroxylase) presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish. PMID:27322588

  20. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish.

    PubMed

    Di Rosa, Viviana; López-Olmeda, Jose Fernando; Burguillo, Ana; Frigato, Elena; Bertolucci, Cristiano; Piferrer, Francesc; Sánchez-Vázquez, Francisco Javier

    2016-01-01

    Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase) and the antimüllerian hormone (amh, testis) was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase) and ZT 15:39 h (at night), respectively. The expression of foxl2 (forkhead box L2) was also rhythmic in the ovary (acrophase located at ZT 5:02 h) and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1) was rhythmic in testes (acrophase at ZT 18:36 h). In the brain, cyp19a1b (brain aromatase) and cyp11b (11beta-hydroxylase) presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish. PMID:27322588

  1. Angiotensin II-Induced Arterial Thickening, Fibrosis and Stiffening Involves Elevated Arginase Function

    PubMed Central

    Bhatta, Anil; Yao, Lin; Toque, Haroldo A.; Shatanawi, Alia; Xu, Zhimin; Caldwell, Ruth B.; Caldwell, R. William

    2015-01-01

    Background Arterial stiffness (AS) is an independent risk factor for cardiovascular morbidity/mortality. Smooth muscle cell (SMC) proliferation and increased collagen synthesis are key features in development of AS. Arginase (ARG), an enzyme implicated in many cardiovascular diseases, can compete with nitric oxide (NO) synthase for their common substrate, L-arginine. Increased arginase can also provide ornithine for synthesis of polyamines via ornithine decarboxylase (ODC) and proline/collagen via ornithine aminotransferase (OAT), leading to vascular cell proliferation and collagen formation, respectively. We hypothesized that elevated arginase activity is involved in Ang II-induced arterial thickening, fibrosis, and stiffness and that limiting its activity can prevent these changes. Methods and Results We tested this by studies in mice lacking one copy of the ARG1 gene that were treated with angiotensin II (Ang II, 4 weeks). Studies were also performed in rat aortic Ang II-treated SMC. In WT mice treated with Ang II, we observed aortic stiffening (pulse wave velocity) and aortic and coronary fibrosis and thickening that were associated with increases in ARG1 and ODC expression/activity, proliferating cell nuclear antigen, hydroxyproline levels, and collagen 1 protein expression. ARG1 deletion prevented each of these alterations. Furthermore, exposure of SMC to Ang II (1 μM, 48 hrs) increased ARG1 expression, ARG activity, ODC mRNA and activity, cell proliferation, collagen 1 protein expression and hydroxyproline content. Treatment with ABH prevented these changes. Conclusion Arginase 1 is crucially involved in Ang II-induced SMC proliferation and arterial fibrosis and stiffness and represents a promising therapeutic target. PMID:25807386

  2. SPARSE GENERALIZED FUNCTIONAL LINEAR MODEL FOR PREDICTING REMISSION STATUS OF DEPRESSION PATIENTS

    PubMed Central

    Liu, Yashu; Nie, Zhi; Zhou, Jiayu; Farnum, Michael; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2014-01-01

    Complex diseases such as major depression affect people over time in complicated patterns. Longitudinal data analysis is thus crucial for understanding and prognosis of such diseases and has received considerable attention in the biomedical research community. Traditional classification and regression methods have been commonly applied in a simple (controlled) clinical setting with a small number of time points. However, these methods cannot be easily extended to the more general setting for longitudinal analysis, as they are not inherently built for time-dependent data. Functional regression, in contrast, is capable of identifying the relationship between features and outcomes along with time information by assuming features and/or outcomes as random functions over time rather than independent random variables. In this paper, we propose a novel sparse generalized functional linear model for the prediction of treatment remission status of the depression participants with longitudinal features. Compared to traditional functional regression models, our model enables high-dimensional learning, smoothness of functional coefficients, longitudinal feature selection and interpretable estimation of functional coefficients. Extensive experiments have been conducted on the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) data set and the results show that the proposed sparse functional regression method achieves significantly higher prediction power than existing approaches. PMID:24297562

  3. Prediction Accuracy of a Novel Dynamic Structure–Function Model for Glaucoma Progression

    PubMed Central

    Hu, Rongrong; Marín-Franch, Iván; Racette, Lyne

    2014-01-01

    Purpose. To assess the prediction accuracy of a novel dynamic structure–function (DSF) model to monitor glaucoma progression. Methods. Longitudinal data of paired rim area (RA) and mean sensitivity (MS) from 220 eyes with ocular hypertension or primary open-angle glaucoma enrolled in the Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study were included. Rim area and MS were expressed as percent of mean normal based on an independent dataset of 91 healthy eyes. The DSF model uses centroids as estimates of the current state of the disease and velocity vectors as estimates of direction and rate of change over time. The first three visits were used to predict the fourth visit; the first four visits were used to predict the fifth visit, and so on up to the 11th visit. The prediction error (PE) was compared to that of ordinary least squares linear regression (OLSLR) using Wilcoxon signed-rank test. Results. For predictions at visit 4 to visit 7, the average PE for the DSF model was significantly lower than OLSLR by 1.19% to 3.42% of mean normal. No significant difference was observed for the predictions at visit 8 to visit 11. The DSF model had lower PE than OLSLR for 70% of eyes in predicting visit 4 and approximately 60% in predicting visits 5, 6, and 7. Conclusions. The two models had similar prediction capabilities, and the DSF model performed better in shorter time series. The DSF model could be clinically useful when only limited follow-ups are available. (ClinicalTrials.gov numbers, NCT00221923, NCT00221897.) PMID:25358735

  4. Less-structured time in children's daily lives predicts self-directed executive functioning

    PubMed Central

    Barker, Jane E.; Semenov, Andrei D.; Michaelson, Laura; Provan, Lindsay S.; Snyder, Hannah R.; Munakata, Yuko

    2014-01-01

    Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6–7 year-old children's daily, annual, and typical schedules. We categorized children's activities as “structured” or “less-structured” based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up

  5. Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE

    PubMed Central

    Rhodius, Virgil A.; Mutalik, Vivek K.

    2010-01-01

    Sequenced bacterial genomes provide a wealth of information but little understanding of transcriptional regulatory circuits largely because accurate prediction of promoters is difficult. We examined two important issues for accurate promoter prediction: (1) the ability to predict promoter strength and (2) the sequence properties that distinguish between active and weak/inactive promoters. We addressed promoter prediction using natural core promoters recognized by the well-studied alternative sigma factor, Escherichia coli σE, as a representative of group 4 σs, the largest σ group. To evaluate the contribution of sequence to promoter strength and function, we used modular position weight matrix models comprised of each promoter motif and a penalty score for suboptimal motif location. We find that a combination of select modules is moderately predictive of promoter strength and that imposing minimal motif scores distinguished active from weak/inactive promoters. The combined -35/-10 score is the most important predictor of activity. Our models also identified key sequence features associated with active promoters. A conserved “AAC” motif in the -35 region is likely to be a general predictor of function for promoters recognized by group 4 σs. These results provide valuable insights into sequences that govern promoter strength, distinguish active and inactive promoters for the first time, and are applicable to both in vivo and in vitro measures of promoter strength. PMID:20133665

  6. Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, sigmaE.

    PubMed

    Rhodius, Virgil A; Mutalik, Vivek K

    2010-02-16

    Sequenced bacterial genomes provide a wealth of information but little understanding of transcriptional regulatory circuits largely because accurate prediction of promoters is difficult. We examined two important issues for accurate promoter prediction: (1) the ability to predict promoter strength and (2) the sequence properties that distinguish between active and weak/inactive promoters. We addressed promoter prediction using natural core promoters recognized by the well-studied alternative sigma factor, Escherichia coli sigma(E), as a representative of group 4 sigmas, the largest sigma group. To evaluate the contribution of sequence to promoter strength and function, we used modular position weight matrix models comprised of each promoter motif and a penalty score for suboptimal motif location. We find that a combination of select modules is moderately predictive of promoter strength and that imposing minimal motif scores distinguished active from weak/inactive promoters. The combined -35/-10 score is the most important predictor of activity. Our models also identified key sequence features associated with active promoters. A conserved "AAC" motif in the -35 region is likely to be a general predictor of function for promoters recognized by group 4 sigmas. These results provide valuable insights into sequences that govern promoter strength, distinguish active and inactive promoters for the first time, and are applicable to both in vivo and in vitro measures of promoter strength. PMID:20133665

  7. Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes

    PubMed Central

    Johnson, Jeffrey R.; Santos, Silvia D.; Johnson, Tasha; Pieper, Ursula; Strumillo, Marta; Wagih, Omar; Sali, Andrej; Krogan, Nevan J.; Beltrao, Pedro

    2015-01-01

    The African clawed frog Xenopus laevis is an important model organism for studies in developmental and cell biology, including cell-signaling. However, our knowledge of X. laevis protein post-translational modifications remains scarce. Here, we used a mass spectrometry-based approach to survey the phosphoproteome of this species, compiling a list of 2636 phosphosites. We used structural information and phosphoproteomic data for 13 other species in order to predict functionally important phospho-regulatory events. We found that the degree of conservation of phosphosites across species is predictive of sites with known molecular function. In addition, we predicted kinase-protein interactions for a set of cell-cycle kinases across all species. The degree of conservation of kinase-protein interactions was found to be predictive of functionally relevant regulatory interactions. Finally, using comparative protein structure models, we find that phosphosites within structured domains tend to be located at positions with high conformational flexibility. Our analysis suggests that a small class of phosphosites occurs in positions that have the potential to regulate protein conformation. PMID:26312481

  8. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sanghamitra; Ghosh, Dip; Mitra, Ramkrishna; Zhao, Zhongming

    2015-01-01

    MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

  9. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  10. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  11. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  12. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  13. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  14. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  15. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  16. Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Qunjing; Li, Guoli

    2016-05-01

    This article deals with the identification of nonlinear model and Nonlinear Predictive Functional Controller (NPFC) design based on the Hammerstein structure for the turntable servo system. As a mechanism with multi-mass rotational system, nonlinearities significantly influence the system operation, especially when the turntable is in the states of zero-crossing distortion or rapid acceleration/deceleration, etc. The field data from identification experiments are processed by Comprehensive Learning Particle Swarm Optimization (CLPSO). As a result, Hammerstein model can be derived to describe the input-output relationship globally, considering all the linear and nonlinear factors of the turntable system. Cross validation results demonstrate good correspondence between the real equipment and the identified model. In the second part of this manuscript, a nonlinear control strategy based on the genetic algorithm and predictive control is developed. The global nonlinear predictive controller is carried out by two steps: (i) build the linear predictive functional controller with state space equations for the linear subsystem of Hammerstein model, and (ii) optimize the global control variable by minimizing the cost function through genetic algorithm. On the basis of distinguish model for turntable and the effectiveness of NPFC, the good performance of tracking ability is achieved in the simulation results.

  17. Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5

    PubMed Central

    Beaudry, H; Mercier-Blais, A-A; Delaygue, C; Lavoie, C; Parent, J-L; Neugebauer, W; Gendron, L

    2015-01-01

    Background and Purpose Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. Experimental Approach The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. Key Results Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. Conclusions and Implications Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process. PMID:25598508

  18. Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions

    NASA Astrophysics Data System (ADS)

    Quaas, Alexander; Xia, Aliang

    2016-06-01

    In this article, we prove the existence and multiplicity of positive solutions for the following fractional elliptic equation with sign-changing weight functions: (-Δ)^α u= a_λ(x)|u|^{q-2}u+b(x)|u|^{2^*_α-1}u &in Ω, u=0&in {R}^N{setminus} Ω, where {0 < α < 1}, {Ω} is a bounded domain with smooth boundary in {{R}^N} with {N > 2 α} and {2^*_{α}=2N/(N-2α)} is the fractional critical Sobolev exponent. Our multiplicity results are based on studying the decomposition of the Nehari manifold and the Lusternik-Schnirelmann category.

  19. Functional Neuroanatomy Involved in Automatic order Mental Arithmetic and Recitation of the Multiplication Table

    NASA Astrophysics Data System (ADS)

    Wang, Li-Qun; Saito, Masao

    We used 1.5T functional magnetic resonance imaging (fMRI) to explore that which brain areas contribute uniquely to numeric computation. The BOLD effect activation pattern of metal arithmetic task (successive subtraction: actual calculation task) was compared with multiplication tables repetition task (rote verbal arithmetic memory task) response. The activation found in right parietal lobule during metal arithmetic task suggested that quantitative cognition or numeric computation may need the assistance of sensuous convert, such as spatial imagination and spatial sensuous convert. In addition, this mechanism may be an ’analog algorithm’ in the simple mental arithmetic processing.

  20. [Physiology of protease-activated receptors (PARs): involvement of PARs in digestive functions].

    PubMed

    Kawabata, A; Kuroda, R; Hollenberg, M D

    1999-10-01

    The protease-activated receptor (PAR), a G protein-coupled receptor present on cell surface, mediates cellular actions of extracellular proteases. Proteases cleave the extracellular N-terminal of PAR molecules at a specific site, unmasking and exposing a novel N-terminal, a tethered ligand, that binds to the body of receptor molecules resulting in receptor activation. Amongst four distinct PARs that have been cloned, PARs 1, 3 and 4 are activated by thrombin, but PAR-2 is activated by trypsin or mast cell tryptase. Human platelets express two distinct thrombin receptors, PAR-1 and PAR-4, while murine platelets express PAR-3 and PAR-4. Apart from roles of PARs in platelet activation, PARs are distributed to a number of organs in various species, predicting their physiological importance. We have been evaluating agonists specific for each PAR, using multiple procedures including a HEK cell calcium signal receptor desensitization assay. Using specific agonists that we developed, we found the following: 1) the salivary glands express PAR-2 mRNA and secret saliva in response to PAR-2 activation; 2) pancreatic juice secretion occurs following in vivo PAR-2 activation; 3) PAR-1 and PAR-2 modulate duodenal motility. Collectively, PAR plays various physiological and/or pathophysiological roles, especially in the digestive systems, and could be a novel target for drug development. PMID:10629876

  1. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    SciTech Connect

    Lee, Taewoo Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.

    2013-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl{sub 2} distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the

  2. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation

    PubMed Central

    Saucedo, Lucía; Buffa, Gabriela N.; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J.

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615

  3. Adenovirus Virus-Associated RNA Is Processed to Functional Interfering RNAs Involved in Virus Production

    PubMed Central

    Aparicio, Oscar; Razquin, Nerea; Zaratiegui, Mikel; Narvaiza, Iñigo; Fortes, Puri

    2006-01-01

    Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression. PMID:16415015

  4. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells.

    PubMed

    Du, Juan; Sours-Brothers, Sherry; Coleman, Rashadd; Ding, Min; Graham, Sarabeth; Kong, De-Hu; Ma, Rong

    2007-05-01

    Contractility of mesangial cells (MC) is tightly controlled by [Ca(2+)](i). Ca(2+) influx across the plasma membrane constitutes a major component of mesangial responses to vasoconstrictors. Canonical transient receptor potential 1 (TRPC1) is a Ca(2+)-permeable cation channel in a variety of cell types. This study was performed to investigate whether TRPC1 takes part in vasoconstrictor-induced mesangial contraction by mediating Ca(2+) entry. It was found that angiotensin II (AngII) evoked remarkable contraction of the cultured MC. Downregulation of TRPC1 using RNA interference significantly attenuated the contractile response. Infusion of AngII or endothelin-1 in rats caused a decrease in GFR. The GFR decline was significantly reduced by infusion of TRPC1 antibody that targets an extracellular domain in the pore region of TRPC1 channel. However, the treatment of TRPC1 antibody did not affect the AngII-induced vasopressing effect. Electrophysiologic experiments revealed that functional or biologic inhibition of TRPC1 significantly depressed AngII-induced channel activation. Fura-2 fluorescence-indicated that Ca(2+) entry in response to AngII stimulation was also dramatically inhibited by TRPC1 antibody and TRPC1-specific RNA interference. These results suggest that TRPC1 plays an important role in controlling contractile function of MC. Mediation of Ca(2+) entry might be the underlying mechanism for the TRPC1-associated MC contraction. PMID:17389736

  5. Progerin expression disrupts critical adult stem cell functions involved in tissue repair.

    PubMed

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-12-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell?mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs. Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  6. Oncological and Functional Outcome after Surgical Treatment of Early Glottic Carcinoma without Anterior Commissure Involvement

    PubMed Central

    Milovanovic, Jovica; Jotic, Ana; Djukic, Vojko; Pavlovic, Bojan; Trivic, Aleksandar; Krejovic-Trivic, Sanja; Milovanovic, Andjela; Milovanovic, Aleksandar; Artiko, Vera; Banko, Bojan

    2014-01-01

    Introduction. Glottic carcinoma can be successfully diagnosed in its early stages and treated with high percentage of success. Organ preservation and optimal functional outcomes could be achieved with wide array of surgical techniques for early glottic cancer, including endoscopic approaches or open laryngeal preserving procedures, making surgery the preferred method of treatment of early glottic carcinoma in the last few years. Material and Methods. Prospective study was done on 59 patients treated for Tis and T1a glottic carcinoma over a one-year time period in a tertiary medical center. Patients were treated with endoscopic laser cordectomy (types II–IV cordectomies according to European Laryngological Society classification of endoscopic cordectomies) and open cordectomy through laryngofissure. Follow-up period was 60 months. Clinical and oncological results were followed postoperatively. Voice quality after the treatment was assessed using multidimensional voice analysis 12 months after the treatment. Results. There were no significant differences between oncological and functional results among two groups of patients, though complications were more frequent in patients treated with open cordectomy. Conclusion. Endoscopic laser surgery should be the first treatment of choice in treatment of early glottic carcinomas, though open approach through laryngofissure should be available for selected cases where anatomical factors present limiting adequate tumor removal. PMID:24991554

  7. Evolution of an ancient protein function involved in organized multicellularity in animals

    PubMed Central

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169

  8. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation.

    PubMed

    Saucedo, Lucía; Buffa, Gabriela N; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J; Vazquez-Levin, Mónica H; Marín-Briggiler, Clara

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615

  9. Progerin expression disrupts critical adult stem cell functions involved in tissue repair

    PubMed Central

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-01-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell–mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs). Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  10. Computing Molecular Signatures as Optima of a Bi-Objective Function: Method and Application to Prediction in Oncogenomics

    PubMed Central

    Gardeux, Vincent; Chelouah, Rachid; Wanderley, Maria F Barbosa; Siarry, Patrick; Braga, Antônio P; Reyal, Fabien; Rouzier, Roman; Pusztai, Lajos; Natowicz, René

    2015-01-01

    BACKGROUND Filter feature selection methods compute molecular signatures by selecting subsets of genes in the ranking of a valuation function. The motivations of the valuation functions choice are almost always clearly stated, but those for selecting the genes according to their ranking are hardly ever explicit. METHOD We addressed the computation of molecular signatures by searching the optima of a bi-objective function whose solution space was the set of all possible molecular signatures, ie, the set of subsets of genes. The two objectives were the size of the signature–to be minimized–and the interclass distance induced by the signature–to be maximized–. RESULTS We showed that: 1) the convex combination of the two objectives had exactly n optimal non empty signatures where n was the number of genes, 2) the n optimal signatures were nested, and 3) the optimal signature of size k was the subset of k top ranked genes that contributed the most to the interclass distance. We applied our feature selection method on five public datasets in oncology, and assessed the prediction performances of the optimal signatures as input to the diagonal linear discriminant analysis (DLDA) classifier. They were at the same level or better than the best-reported ones. The predictions were robust, and the signatures were almost always significantly smaller. We studied in more details the performances of our predictive modeling on two breast cancer datasets to predict the response to a preoperative chemotherapy: the performances were higher than the previously reported ones, the signatures were three times smaller (11 versus 30 gene signatures), and the genes member of the signature were known to be involved in the response to chemotherapy. CONCLUSIONS Defining molecular signatures as the optima of a bi-objective function that combined the signature size and the interclass distance was well founded and efficient for prediction in oncogenomics. The complexity of the computation

  11. Determination of the functional domains involved in nucleolar targeting of nucleolin.

    PubMed Central

    Créancier, L; Prats, H; Zanibellato, C; Amalric, F; Bugler, B

    1993-01-01

    Nucleolin (713 aa), a major nucleolar protein, presents two structural domains: a N-terminus implicated in interaction with chromatin and a C-terminus containing four RNA-binding domains (RRMs) and a glycine/arginine-rich domain mainly involved in pre-rRNA packaging. Furthermore, nucleolin was shown to shuttle between cytoplasm and nucleolus. To get an insight on the nature of nuclear and nucleolar localization signals, a set of nucleolin deletion mutants in fusion with the prokaryotic chloramphenicol acetyltransferase (CAT) were constructed, and the resulting chimeric proteins were recognized by anti-CAT antibodies. First, a nuclear location signal bipartite and composed of two short basic stretches separated by eleven residues was characterized. Deletion of either motifs renders the protein cytoplasmic. Second, by deleting one or more domains implicated in nucleolin association either with DNA, RNA, or proteins, we demonstrated that nucleolar accumulation requires, in addition to the nuclear localization sequence, at least two of the five RRMs in presence or absence of N-terminus. However, in presence of only one RRM the N-terminus allowed a partial targeting of the chimeric protein to the nucleolus. Images PMID:8167407

  12. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism

    PubMed Central

    Pinard, Robert; Hampel, Ken J.; Heckman, Joyce E.; Lambert, Dominic; Chan, Philip A.; Major, Francois; Burke, John M.

    2001-01-01

    The catalytic determinants for the cleavage and ligation reactions mediated by the hairpin ribozyme are integral to the polyribonucleotide chain. We describe experiments that place G8, a critical guanosine, at the active site, and point to an essential role in catalysis. Cross-linking and modeling show that formation of a catalytic complex is accompanied by a conformational change in which N1 and O6 of G8 become closely apposed to the scissile phosphodiester. UV cross-linking, hydroxyl-radical footprinting and native gel electrophoresis indicate that G8 variants inhibit the reaction at a step following domain association, and that the tertiary structure of the inactive complex is not measurably altered. Rate–pH profiles and fluorescence spectroscopy show that protonation at the N1 position of G8 is required for catalysis, and that modification of O6 can inhibit the reaction. Kinetic solvent isotope analysis suggests that two protons are transferred during the rate-limiting step, consistent with rate-limiting cleavage chemistry involving concerted deprotonation of the attacking 2′-OH and protonation of the 5′-O leaving group. We propose mechanistic models that are consistent with these data, including some that invoke a novel keto–enol tautomerization. PMID:11707414

  13. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms. PMID:26923212

  14. Structure-based prediction of transcription factor binding specificity using an integrative energy function

    PubMed Central

    Farrel, Alvin; Murphy, Jonathan; Guo, Jun-tao

    2016-01-01

    Transcription factors (TFs) regulate gene expression through binding to specific target DNA sites. Accurate annotation of transcription factor binding sites (TFBSs) at genome scale represents an essential step toward our understanding of gene regulation networks. In this article, we present a structure-based method for computational prediction of TFBSs using a novel, integrative energy (IE) function. The new energy function combines a multibody (MB) knowledge-based potential and two atomic energy terms (hydrogen bond and π interaction) that might not be accurately captured by the knowledge-based potential owing to the mean force nature and low count problem. We applied the new energy function to the TFBS prediction using a non-redundant dataset that consists of TFs from 12 different families. Our results show that the new IE function improves the prediction accuracy over the knowledge-based, statistical potentials, especially for homeodomain TFs, the second largest TF family in mammals. Contact: jguo4@uncc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307632

  15. Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily

    PubMed Central

    Wallrapp, Frank H.; Pan, Jian-Jung; Ramamoorthy, Gurusankar; Almonacid, Daniel E.; Hillerich, Brandan S.; Seidel, Ronald; Patskovsky, Yury; Babbitt, Patricia C.; Almo, Steven C.; Jacobson, Matthew P.; Poulter, C. Dale

    2013-01-01

    The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans-polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging. We addressed this challenge through large-scale bioinformatics analysis of >5,000 putative polyprenyl transferases; experimental characterization of the chain-length specificity of 79 diverse members of this group; determination of 27 structures of 19 of these enzymes, including seven cocrystallized with substrate analogs or products; and the development and successful application of a computational approach to predict function that leverages available structural data through homology modeling and docking of possible products into the active site. The crystallographic structures and computational structural models of the enzyme–ligand complexes elucidate the structural basis of specificity. As a result of this study, the percentage of E-PTS sequences similar to functionally annotated ones (BLAST e-value ≤ 1e−70) increased from 40.6 to 68.8%, and the percentage of sequences similar to available crystal structures increased from 28.9 to 47.4%. The high accuracy of our blind prediction of newly characterized enzymes indicates the potential to predict function to the complete polyprenyl transferase subgroup of the isoprenoid synthase superfamily computationally. PMID:23493556

  16. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  17. Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wills, John M.

    2012-02-01

    The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Prediction and extension of curves of distillation of vacuum residue using probability functions

    NASA Astrophysics Data System (ADS)

    León, A. Y.; Riaño, P. A.; Laverde, D.

    2016-02-01

    The use of the probability functions for the prediction of crude distillation curves has been implemented in different characterization studies for refining processes. The study of four functions of probability (Weibull extreme, Weibull, Kumaraswamy and Riazi), was analyzed in this work for the fitting of curves of distillation of vacuum residue. After analysing the experimental data was selected the Weibull extreme function as the best prediction function, the fitting capability of the best function was validated considering as criterions of estimation the AIC (Akaike Information Criterion), BIC (Bayesian information Criterion), and correlation coefficient R2. To cover a wide range of composition were selected fifty-five (55) vacuum residue derived from different hydrocarbon mixture. The parameters of the probability function Weibull Extreme were adjusted from simple measure properties such as Conradson Carbon Residue (CCR), and compositional analysis SARA (saturates, aromatics, resins and asphaltenes). The proposed method is an appropriate tool to describe the tendency of distillation curves and offers a practical approach in terms of classification of vacuum residues.

  19. Radiomic Texture Analysis Mapping Predicts Areas of True Functional MRI Activity

    PubMed Central

    Hassan, Islam; Kotrotsou, Aikaterini; Bakhtiari, Ali Shojaee; Thomas, Ginu A.; Weinberg, Jeffrey S.; Kumar, Ashok J.; Sawaya, Raymond; Luedi, Markus M.; Zinn, Pascal O.; Colen, Rivka R.

    2016-01-01

    Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias. PMID:27151623

  20. Neural function, injury, and stroke subtype predict treatment gains after stroke

    PubMed Central

    Quinlan, Erin Burke; Dodakian, Lucy; See, Jill; McKenzie, Alison; Le, Vu; Wojnowicz, Mike; Shahbaba, Babak; Cramer, Steven C.

    2014-01-01

    Objective To better understand the high variability in response seen when treating human subjects with restorative therapies post-stroke. Preclinical studies suggest that neural function, neural injury, and clinical status each influence treatment gains, therefore the current study hypothesized that a multivariate approach incorporating these three measures would have the greatest predictive value. Methods Patients 3-6 months post-stroke underwent a battery of assessments before receiving 3-weeks of standardized upper extremity robotic therapy. Candidate predictors included measures of brain injury (including to gray and white matter), neural function (cortical function and cortical connectivity), and clinical status (demographics/medical history, cognitive/mood, and impairment). Results Among all 29 patients, predictors of treatment gains identified measures of brain injury (smaller corticospinal tract (CST) injury), cortical function (greater ipsilesional motor cortex (M1) activation), and cortical connectivity (greater inter-hemispheric M1-M1 connectivity). Multivariate modeling found that best prediction was achieved using both CST injury and M1-M1 connectivity (r2=0.44, p=0.002), a result confirmed using Lasso regression. A threshold was defined whereby no subject with >63% CST injury achieved clinically significant gains. Results differed according to stroke subtype: gains in patients with lacunar stroke were exclusively predicted by a measure of intra-hemispheric connectivity. Interpretation Response to a restorative therapy after stroke is best predicted by a model that includes measures of both neural injury and function. Neuroimaging measures were the best predictors and may have an ascendant role in clinical decision-making for post-stroke rehabilitation, which remains largely reliant on behavioral assessments. Results differed across stroke subtypes, suggesting utility of lesion-specific strategies. PMID:25382315

  1. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit.

    PubMed

    Zhang, Ning; Jiang, Jing; Yang, Yan-li; Wang, Zhi-he

    2015-10-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato. PMID:26465132

  2. Antiplasmodial activities of gold(I) complexes involving functionalized N-heterocyclic carbenes.

    PubMed

    Hemmert, Catherine; Ramadani, Arba Pramundita; Boselli, Luca; Fernández Álvarez, Álvaro; Paloque, Lucie; Augereau, Jean-Michel; Gornitzka, Heinz; Benoit-Vical, Françoise

    2016-07-01

    A series of twenty five molecules, including imidazolium salts functionalized by N-, O- or S-containing groups and their corresponding cationic, neutral or anionic gold(I) complexes were evaluated on Plasmodium falciparum in vitro and then on Vero cells to determine their selectivity. Among them, eight new compounds were synthesized and fully characterized by spectroscopic methods. The X-ray structures of three gold(I) complexes are presented. Except one complex (18), all the cationic gold(I) complexes show potent antiplasmodial activity with IC50 in the micro- and submicromolar range, correlated with their lipophilicity. Structure-activity relationships enable to evidence a lead-complex (21) displaying a good activity (IC50=210nM) close to the value obtained with chloroquine (IC50=514nM) and a weak cytotoxicity. PMID:27240469

  3. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit*

    PubMed Central

    ZHANG, Ning; JIANG, Jing; YANG, Yan-li; WANG, Zhi-he

    2015-01-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato. PMID:26465132

  4. Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site.

    PubMed

    Safronova, Valentina G; Vulfius, Catherine A; Shelukhina, Irina V; Mal'tseva, Valentina N; Berezhnov, Alexey V; Fedotova, Eugeniya I; Miftahova, Regina G; Kryukova, Elena V; Grinevich, Andrey A; Tsetlin, Victor I

    2016-07-01

    Participation of nicotinic acetylcholine receptors (nAChRs) in functioning of polymorphonuclear neutrophils (PMNs) isolated from inflammatory site of mice and expression of different nAChR subunits were studied. Nicotine and acetylcholine (ACh) modified respiratory burst induced by a chemotactic peptide N-formyl-MLF in neutrophils of male (but not female) mice. Antagonists of nAChRs α-cobratoxin (αCTX), α-conotoxins MII and [A10L]PnIA at concentrations of 0.01-5μM, 0.2μM and 1μM, respectively, eliminated nAChR agonist effects. ACh also affected adhesion of PMNs, this effect was also prevented by αCTX (100nM) and MII (1nM). Neutrophils of female mice after chronic nicotine consumption acquired sensitivity to nAChR agonists. Changes of free intracellular Ca(2+) concentration in neutrophils under the action of nAChR ligands were analyzed. In cells with no Ca(2+) oscillations and relatively low resting level of intracellular Ca(2+), nicotine triggered Ca(2+)-spikes, the lag of the response shortened with increasing nicotine concentration. A nicotinic antagonist caramiphen strongly decreased the effect of nicotine. RT-PCR analysis revealed mRNAs of α2, α3, α4, α5, α6, α7, α9, β2, β3, and β4 nAChR subunits. Specific binding of [(125)I]-α-bungarotoxin was demonstrated. Thus in view of the effects and binding characteristics the results obtained suggest a regulatory role of α7, α3β2 or α6* nAChR types in specific functions of PMNs. PMID:26965141

  5. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress.

    PubMed

    Kobayashi, Yosuke; Yoshida, Junjiro; Iwata, Hisashi; Koyama, Yoshiyuki; Kato, Jun; Ogihara, Jun; Kasumi, Takafumi

    2013-06-01

    Among three erythritol reductase isogenes (er1, er2, and er3) in Trichosporonoides megachiliensis SN-124A, er1 and er2 each had one stress response element (STRE) approximately 2 kbp upstream of their respective initiator codon; in contrast, er3 had two STREs, 148 and 40 bp upstream from the initiator codon. Based on intracellular erythritol accumulation and gene expression profiles, er3 seemed to be highly responsive to stress than er1 or er2. Under hyper-osmotic conditions, intracellular glycerol production, increased significantly within 1.5 h together with glycerol-3-phosphate dehydrogenase gene (gpd1) expression; in contrast, neither er gene expression nor the corresponding production of intracellular erythritol increased significantly within the first 1.5 h of hyper-osmotic culture. However, within 24 h of hyper-osmotic culture, erythritol production and er3 gene expression increased significantly and in parallel. Thus, we concluded that, as an initial response to hyper-osmotic growth conditions, T. megachiliensis produces glycerol as an osmoregulatory compatible solute via GPD; however, within 24 h, it begins to produce erythritol, mainly via ER3, as the preferred compatible solute. Heterologous expression of ers in a Saccharomyces cerevisiae mutant indicated that any of three ers might not function in S. cerevisiae for erythritol biosynthesis in spite of ers and corresponding ERs expression. Hence, although er is annotated as a galactose-inducible crystalline-like yeast protein gene (gcy1) homolog, er may be functionally different from gcy1 in glycolytic metabolism. Otherwise, S. cerevisiae is not likely to produce erythrose, the substrate of erythrose reductase due to metabolic characteristics. PMID:23294575

  6. CRISPR/Cas9 as Tool for Functional Study of Genes Involved in Preimplantation Embryo Development

    PubMed Central

    Kwon, Jeongwoo; Namgoong, Suk; Kim, Nam-Hyung

    2015-01-01

    The CRISPR/Cas9 system has proven to be an efficient gene-editing tool for genome modification of cells and organisms. However, the applicability and efficiency of this system in pig embryos have not been studied in depth. Here, we aimed to remove porcine OCT4 function as a model case using the CRISPR/Cas9 system. Injection of Cas9 and single-guide RNA (sgRNA) against OCT4 decreased the percentages of OCT4-positive embryos to 37–50% of total embryos, while ~100% of control embryos exhibited clear OCT4 immunostaining. We assessed the mutation status near the guide sequence using polymerase chain reaction (PCR) and DNA sequencing, and a portion of blastocysts (20% in exon 2 and 50% in exon 5) had insertions/deletions near protospacer-adjacent motifs (PAMs). Different target sites had frequent deletions, but different concentrations of sgRNA made no impact. OCT4 mRNA levels dramatically decreased at the 8-cell stage, and they were barely detectable in blastocysts, while mRNA levels of other genes, including NANOG, and CDX2 were not affected. In addition, the combination of two sgRNAs led to large-scale deletion (about 1.8 kb) in the same chromosome. Next, we injected an enhanced green fluorescent protein (eGFP) vector targeting the OCT4 exon with Cas9 and sgRNA to create a knockin. We confirmed eGFP fluorescence in blastocysts in the inner cell mass, and also checked the mutation status using PCR and DNA sequencing. A significant portion of blastocysts had eGFP sequence insertions near PAM sites. The CRISPR/CAS9 system provides a good tool for gene functional studies by deleting target genes in the pig. PMID:25775469

  7. Functional Characterization of New Polyketide Synthase Genes Involved in Ochratoxin A Biosynthesis in Aspergillus Ochraceus fc-1

    PubMed Central

    Wang, Liuqing; Wang, Yan; Wang, Qi; Liu, Fei; Selvaraj, Jonathan Nimal; Liu, Lingna; Xing, Fuguo; Zhao, Yueju; Zhou, Lu; Liu, Yang

    2015-01-01

    Ochratoxin A (OTA), a potentially carcinogenic mycotoxin which contaminates grains, is produced by several Aspergillus species. A comparative sequence analysis of the OTA-producing Aspergillus ochraceus fc-1 strain and other Aspergillus species was performed. Two new OTA-related polyketide synthase (PKS) (AoOTApks) genes were identified. The predicted amino acid sequence of AoOTApks-1 displayed high similarity to previously identified PKSs from OTA-producing A. carbonarius ITEM 5010 (67%; [PI] No. 173482) and A. niger CBS 513.88 (62%; XP_001397313). However, the predicted amino acid sequence of AoOTApks-2 displayed lower homology with A. niger CBS 513.88 (38%) and A. carbonarius ITEM 5010 (28%). A phylogenetic analysis of the β-ketosynthase and acyl-transferase domains of the AoOTApks proteins indicated that they shared a common origin with other OTA-producing species, such as A. carbonarius, A. niger, and A. westerdijkiae. A real-time reverse-transcription PCR analysis showed that the expression of AoOTApks-1 and -2 was positively correlated with the OTA concentration. The pks gene deleted mutants ∆AoOTApks-1 and ∆AoOTApks-2 produced nil and lesser OTA than the wild-type strain, respectively. Our study suggests that AoOTApks-1 could be involved in OTA biosynthesis, while AoOTApks-2 might be indirectly involved in OTA production. PMID:26213966

  8. Functional Characterisation of Three O-methyltransferases Involved in the Biosynthesis of Phenolglycolipids in Mycobacterium tuberculosis

    PubMed Central

    Simeone, Roxane; Huet, Gaëlle; Constant, Patricia; Malaga, Wladimir; Lemassu, Anne; Laval, Françoise; Daffé, Mamadou; Guilhot, Christophe; Chalut, Christian

    2013-01-01

    Phenolic glycolipids are produced by a very limited number of slow-growing mycobacterial species, most of which are pathogen for humans. In Mycobacterium tuberculosis, the etiologic agent of tuberculosis, these molecules play a role in the pathogenicity by modulating the host immune response during infection. The major variant of phenolic glycolipids produced by M. tuberculosis, named PGL-tb, consists of a large lipid core terminated by a glycosylated aromatic nucleus. The carbohydrate part is composed of three sugar residues, two rhamnosyl units and a terminal fucosyl residue, which is per-O-methylated, and seems to be important for pathogenicity. While most of the genes responsible for the synthesis of the lipid core domain and the saccharide appendage of PGL-tb have been characterized, the enzymes involved in the O-methylation of the fucosyl residue of PGL-tb remain unknown. In this study we report the identification and characterization of the methyltransferases required for the O-methylation of the terminal fucosyl residue of PGL-tb. These enzymes are encoded by genes Rv2954c, Rv2955c and Rv2956. Mutants of M. tuberculosis harboring deletion within these genes were constructed. Purification and analysis of the phenolglycolipids produced by these strains, using a combination of mass spectrometry and NMR spectroscopy, revealed that Rv2954c, Rv2955c and Rv2956 encode the methyltransferases that respectively catalysed the O-methylation of the hydroxyl groups located at positions 3, 4 and 2 of the terminal fucosyl residue of PGL-tb. Our data also suggest that methylation at these positions is a sequential process, starting with position 2, followed by positions 4 and 3. PMID:23536839

  9. Modulation and functional involvement of CB2 peripheral cannabinoid receptors during B-cell differentiation.

    PubMed

    Carayon, P; Marchand, J; Dussossoy, D; Derocq, J M; Jbilo, O; Bord, A; Bouaboula, M; Galiègue, S; Mondière, P; Pénarier, G; Fur, G L; Defrance, T; Casellas, P

    1998-11-15

    Two subtypes of G-protein-coupled cannabinoid receptors have been identified to date: the CB1 central receptor subtype, which is mainly expressed in the brain, and the CB2 peripheral receptor subtype, which appears particularly abundant in the immune system. We investigated the expression of CB2 receptors in leukocytes using anti-CB2 receptor immunopurified polyclonal antibodies. We showed that peripheral blood and tonsillar B cells were the leukocyte subsets expressing the highest amount of CB2 receptor proteins. Dual-color confocal microscopy performed on tonsillar tissues showed a marked expression of CB2 receptors in mantle zones of secondary follicles, whereas germinal centers (GC) were weakly stained, suggesting a modulation of this receptor during the differentiation stages from virgin B lymphocytes to memory B cells. Indeed, we showed a clear downregulation of CB2 receptor expression during B-cell differentiation both at transcript and protein levels. The lowest expression was observed in GC proliferating centroblasts. Furthermore, we investigated the effect of the cannabinoid agonist CP55,940 on the CD40-mediated proliferation of both virgin and GC B-cell subsets. We found that CP55,940 enhanced the proliferation of both subsets and that this enhancement was blocked by the CB2 receptor antagonist SR 144528 but not by the CB1 receptor antagonist SR 141716. Finally, we observed that CB2 receptors were dramatically upregulated in both B-cell subsets during the first 24 hours of CD40-mediated activation. These data strongly support an involvement of CB2 receptors during B-cell differentiation. PMID:9808554

  10. Functional traits predict relationship between plant abundance dynamic and long-term climate warming.

    PubMed

    Soudzilovskaia, Nadejda A; Elumeeva, Tatiana G; Onipchenko, Vladimir G; Shidakov, Islam I; Salpagarova, Fatima S; Khubiev, Anzor B; Tekeev, Dzhamal K; Cornelissen, Johannes H C

    2013-11-01

    Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year's shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400