Science.gov

Sample records for functional brain plasticity

  1. Strengthening connections: functional connectivity and brain plasticity

    PubMed Central

    Kelly, Clare; Castellanos, F. Xavier

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into effects of experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypothesis for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology. PMID:24496903

  2. An Evolutionary Computation Approach to Examine Functional Brain Plasticity

    PubMed Central

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A.; Hillary, Frank G.

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength of functional relationship between DMN and ECN for TBI subjects, which is consistent with prior findings in the TBI-literature. The EC-approach also allowed us to separate sub-regional-pairs contributing to positive and negative plasticity; the detected sub-regional-pairs significantly overlap across runs thus highlighting the reliability of the EC-approach. These sub-regional-pairs may be useful in performing nuanced analyses of brain-behavior relationships during recovery from TBI. PMID:27092047

  3. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    ERIC Educational Resources Information Center

    Demir, Ozlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2010-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions

  4. Imaging brain plasticity after trauma

    PubMed Central

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  5. Brain plasticity and functionality explored by nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.

    2010-02-01

    In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising perspectives in understanding the computations of neuronal networks.

  6. Brain plasticity as a basis for recovery of function in humans.

    PubMed

    Bach-y-Rita, P

    1990-01-01

    One of the factors leading to the virtual neglect of the long-term potential for functional recovery following brain damage was the eclipse of plasticity concepts during the 100 years following Broca's 1861 publication on location of function. However, in the last 30 years evidence has been accumulating that demonstrates the plasticity of the brain and thus recovery potential is a subject of practical as well as theoretical interest. "Unmasking" of relatively inactive pathways, the taking over of functional representation by undamaged brain tissue, and neuronal group selection are among the mechanisms that are being explored. Human models of recovery of function include hemispherectomy patients that have regained bilateral function, facial paralysis patients who recover function (with appropriate rehabilitation) after VII-XII cranial nerve anastomosis, and patients with muscle transpositions to re-establish lost motor functions. The role of early and late rehabilitation, with attention to psychosocial and environmental factors, appears to be critical for recovery. PMID:2395525

  7. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults. PMID:17046669

  8. Investigating brain functional evolution and plasticity using microelectrode array technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2015-10-01

    The aim of this work was to investigate long and short-term plasticity responsible for memory formation in dissociated neuronal networks. In order to address this issue, a set of experiments was designed and implemented in which the microelectrode array electrode grid was divided into four quadrants, two of which were chronically stimulated, every two days for one hour with a stimulation paradigm that varied over time. Overall network and quadrant responses were then analyzed to quantify what level of plasticity took place in the network and how this was due to the stimulation interruption. The results demonstrate that there were no spatial differences in the stimulus-evoked activity within quadrants. Furthermore, the implemented stimulation protocol induced depression effects in the neuronal networks as demonstrated by the consistently lower network activity following stimulation sessions. Finally, the analysis demonstrated that the inhibitory effects of the stimulation decreased over time, thus suggesting a habituation phenomenon. These findings are sufficient to conclude that electrical stimulation is an important tool to interact with dissociated neuronal cultures, but localized stimuli are not enough to drive spatial synaptic potentiation or depression. On the contrary, the ability to modulate synaptic temporal plasticity was a feasible task to achieve by chronic network stimulation. PMID:26476356

  9. Functional Plasticity in Childhood Brain Disorders: When, What, How, and Whom to Assess

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Simic, Nevena; Sinopoli, Katia J.; Wilkinson, Amy; Yeates, Keith Owen; Taylor, H. Gerry; Bigler, Erin D.; Fletcher, Jack M.

    2014-01-01

    At every point in the lifespan, the brain balances malleable processes representing neural plasticity that promote change with homeostatic processes that promote stability. Whether a child develops typically or with brain injury, his or her neural and behavioral outcome is constructed through transactions between plastic and homeostatic processes and the environment. In clinical research with children in whom the developing brain has been malformed or injured, behavioral outcomes provide an index of the result of plasticity, homeostasis, and environmental transactions. When should we assess outcome in relation to age at brain insult, time since brain insult, and age of the child at testing? What should we measure? Functions involving reacting to the past and predicting the future, as well as social-affective skills, are important. How should we assess outcome? Information from performance variability, direct measures and informants, overt and covert measures, and laboratory and ecological measures should be considered. In whom are we assessing outcome? Assessment should be cognizant of individual differences in gene, socio-economic status (SES), parenting, nutrition, and interpersonal supports, which are moderators that interact with other factors influencing functional outcome. PMID:24821533

  10. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery.

    PubMed

    Ethier, C; Gallego, J A; Miller, L E

    2015-08-01

    There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient's voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to match the details of the patient's voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity. PMID:25827275

  11. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis

    PubMed Central

    Prosperini, Luca; Piattella, Maria Cristina

    2015-01-01

    Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS). In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI). In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations. PMID:26064692

  12. Insights into brain function and neural plasticity using magnetic source imaging.

    PubMed

    Simos, P G; Papanicolaou, A C; Breier, J I; Fletcher, J M; Wheless, J W; Maggio, W W; Gormley, W; Constantinou, J E; Kramer, L

    2000-03-01

    This review outlines the rationale for the use of magnetoencephalography (MEG) or magnetic source imaging (MSI), a noninvasive functional imaging technique, and the features that any imaging method should display to make a substantial contribution to cognitive neuroscience. After a brief discussion of the basic experimental approach used in the authors' studies, the use of early sensory components of brain magnetic responses is reviewed to address issues of the functional organization of the primary sensory cortices, followed by a comment on the clinical use of these components. Second, normative studies focusing on the late components of magnetic responses for establishing the validity and reliability of MSI maps of the language-specific cortex in normal subjects are reviewed. Third, the authors' investigations of fine spatiotemporal features of brain activation maps, specific to receptive language and to reading, are reviewed. Fourth, experience with presurgical mapping of the language-specific cortex in neurosurgery candidates and in patients undergoing the "Wada" procedure is summarized followed by a comment on the perfect agreement of the MSI maps with those derived by more direct invasive brain mapping procedures. Fifth. MSI-derived evidence of often dramatic, functional reorganization of brain areas subserving both simple sensory and linguistic functions is summarized along with comments on the use of MSI as a means for investigating brain plasticity. Finally, in the sixth section of this review, the authors relate their experience with the use of MSI in deriving brain activation profiles during silent reading of real words and pseudowords that are specific to dyslexic children. The review concludes with a discussion on the further use of MSI in assessing, among other issues, the effectiveness of intervention strategies designed to improve reading fluency in dyslexic children. PMID:10831106

  13. Brain functional plasticity associated with the emergence of expertise in extreme language control.

    PubMed

    Hervais-Adelman, Alexis; Moser-Mercer, Barbara; Golestani, Narly

    2015-07-01

    We used functional magnetic resonance imaging (fMRI) to longitudinally examine brain plasticity arising from long-term, intensive simultaneous interpretation training. Simultaneous interpretation is a bilingual task with heavy executive control demands. We compared brain responses observed during simultaneous interpretation with those observed during simultaneous speech repetition (shadowing) in a group of trainee simultaneous interpreters, at the beginning and at the end of their professional training program. Age, sex and language-proficiency matched controls were scanned at similar intervals. Using multivariate pattern classification, we found distributed patterns of changes in functional responses from the first to second scan that distinguished the interpreters from the controls. We also found reduced recruitment of the right caudate nucleus during simultaneous interpretation as a result of training. Such practice-related change is consistent with decreased demands on multilingual language control as the task becomes more automatized with practice. These results demonstrate the impact of simultaneous interpretation training on the brain functional response in a cerebral structure that is not specifically linguistic, but that is known to be involved in learning, in motor control, and in a variety of domain-general executive functions. Along with results of recent studies showing functional and structural adaptations in the caudate nuclei of experts in a broad range of domains, our results underline the importance of this structure as a central node in expertise-related networks. PMID:25869858

  14. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    PubMed Central

    Demir, Özlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2009-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work mostly focused on the emergence of earlier developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier developing aspects of language extends to more complex, later-developing language functions by examining the narrative production of children with PL. Using an elicitation technique that involves asking children to create stories de novo in response to a story stem, we collected narratives from 11 children with PL and 20 typically-developing (TD) children. Narratives were analyzed for length, diversity of the vocabulary used, use of complex syntax, complexity of the macro-level narrative structure and use of narrative evaluation. Children’s language performance on vocabulary and syntax tasks outside of the narrative context was also measured. Findings show that children with PL produced shorter stories, used less diverse vocabulary, produced structurally less complex stories at the macro-level, and made fewer inferences regarding the cognitive states of the story characters. These differences in the narrative task emerged even though children with PL did not differ from TD children on vocabulary and syntax tasks outside of the narrative context. Thus, findings suggest that there may be limitations to the plasticity for language functions displayed by children with PL, and that these limitations may be most apparent in complex, decontextualized language tasks such as narrative production. PMID:20590727

  15. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    ERIC Educational Resources Information Center

    Demir, Ozlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2010-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions…

  16. Psychotherapy and brain plasticity

    PubMed Central

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of consciousness; an emphasis which may usefully complement what can be learnt from more specific methodologies. PMID:24046752

  17. Plasticity in the Developing Brain: Intellectual, Language and Academic Functions in Children with Ischaemic Perinatal Stroke

    ERIC Educational Resources Information Center

    Ballantyne, Angela O.; Spilkin, Amy M.; Hesselink, John; Trauner, Doris A.

    2008-01-01

    The developing brain has the capacity for a great deal of plasticity. A number of investigators have demonstrated that intellectual and language skills may be in the normal range in children following unilateral perinatal stroke. Questions have been raised, however, about whether these skills can be maintained at the same level as the brain

  18. Functional and anatomical basis for brain plasticity in facial palsy rehabilitation using the masseteric nerve.

    PubMed

    Buendia, Javier; Loayza, Francis R; Luis, Elkin O; Celorrio, Marta; Pastor, Maria A; Hontanilla, Bernardo

    2016-03-01

    Several techniques have been described for smile restoration after facial nerve paralysis. When a nerve other than the contralateral facial nerve is used to restore the smile, some controversy appears because of the nonphysiological mechanism of smile recovering. Different authors have reported natural results with the masseter nerve. The physiological pathways which determine whether this is achieved continue to remain unclear. Using functional magnetic resonance imaging, brain activation pattern measuring blood-oxygen-level-dependent (BOLD) signal during smiling and jaw clenching was recorded in a group of 24 healthy subjects (11 females). Effective connectivity of premotor regions was also compared in both tasks. The brain activation pattern was similar for smile and jaw-clenching tasks. Smile activations showed topographic overlap though more extended for smile than clenching. Gender comparisons during facial movements, according to kinematics and BOLD signal, did not reveal significant differences. Effective connectivity results of psychophysiological interaction (PPI) from the same seeds located in bilateral facial premotor regions showed significant task and gender differences (p < 0.001). The hypothesis of brain plasticity between the facial nerve and masseter nerve areas is supported by the broad cortical overlap in the representation of facial and masseter muscles. PMID:26683008

  19. Plasticity in the Developing Brain: Intellectual, Language and Academic Functions in Children with Ischaemic Perinatal Stroke

    ERIC Educational Resources Information Center

    Ballantyne, Angela O.; Spilkin, Amy M.; Hesselink, John; Trauner, Doris A.

    2008-01-01

    The developing brain has the capacity for a great deal of plasticity. A number of investigators have demonstrated that intellectual and language skills may be in the normal range in children following unilateral perinatal stroke. Questions have been raised, however, about whether these skills can be maintained at the same level as the brain…

  20. Brain Plasticity and Behaviour in the Developing Brain

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2011-01-01

    Objective: To review general principles of brain development, identify basic principles of brain plasticity, and discuss factors that influence brain development and plasticity. Method: A literature review of relevant English-language manuscripts on brain development and plasticity was conducted. Results: Brain development progresses through a series of stages beginning with neurogenesis and progressing to neural migration, maturation, synaptogenesis, pruning, and myelin formation. Eight basic principles of brain plasticity are identified. Evidence that brain development and function is influenced by different environmental events such as sensory stimuli, psychoactive drugs, gonadal hormones, parental-child relationships, peer relationships, early stress, intestinal flora, and diet. Conclusions: The development of the brain reflects more than the simple unfolding of a genetic blueprint but rather reflects a complex dance of genetic and experiential factors that shape the emerging brain. Understanding the dance provides insight into both normal and abnormal development. PMID:22114608

  1. Using brain-computer interfaces to induce neural plasticity and restore function

    NASA Astrophysics Data System (ADS)

    Grosse-Wentrup, Moritz; Mattia, Donatella; Oweiss, Karim

    2011-04-01

    Analyzing neural signals and providing feedback in realtime is one of the core characteristics of a brain-computer interface (BCI). As this feature may be employed to induce neural plasticity, utilizing BCI technology for therapeutic purposes is increasingly gaining popularity in the BCI community. In this paper, we discuss the state-of-the-art of research on this topic, address the principles of and challenges in inducing neural plasticity by means of a BCI, and delineate the problems of study design and outcome evaluation arising in this context. We conclude with a list of open questions and recommendations for future research in this field.

  2. Can noninvasive brain stimulation measure and modulate developmental plasticity to improve function in stroke-induced cerebral palsy?

    PubMed

    Kirton, Adam

    2013-06-01

    The permanent nature of motor deficits is a consistent cornerstone of cerebral palsy definitions. Such pessimism is disheartening to children, families, and researchers alike and may no longer be appropriate for it ignores the fantastic plastic potential of the developing brain. Perinatal stroke is presented as the ideal human model of developmental neuroplasticity following distinct, well-defined, focal perinatal brain injury. Elegant animal models are merging with human applied technology methods, including noninvasive brain stimulation for increasingly sophisticated models of plastic motor development following perinatal stroke. In this article, how potential central therapeutic targets are identified and potentially modulated to enhance motor function within these models is discussed. Also, future directions and emerging clinical trials are reviewed. PMID:23948686

  3. [Brain development and plasticity].

    PubMed

    Martinez-Morga, M; Martinez, S

    2016-02-21

    Neurodevelopmental disorders are associated to functional anomalies of the brain that become manifest early on in life. Traditionally, they have been related almost exclusively to the appearance of intellectual disability and delayed psychomotor development. The causes of these disorders have been partially described, and include anomalies due to genetic causes (Down syndrome, fragile X syndrome, etc.), exposure to toxic factors during pregnancy (foetal alcohol syndrome), infections (cytomegalovirus, toxoplasmosis, etc.) or other alterations, including a status of great immaturity at birth (very preterm). Epidemiological data based on a better knowledge of the diseases affecting the central nervous system suggest that some mental disorders, which appear in adolescence or early adulthood, also have their origin in anomalies in brain development. This review aims to offer an overview of brain development. Some of the cellular and molecular processes that may account for the similarities and differences in the phenotypes that generate alterations affecting normal development are also analysed. The study is conducted with a view to clearly identifying processes that are susceptible to modification by means of therapeutic intervention consisting in an early care programme. PMID:26922956

  4. Mechanistic basis and functional roles of long-term plasticity in auditory neurons induced by a brain-generated estrogen.

    PubMed

    Tremere, Liisa A; Kovaleski, Ryan F; Burrows, Kaiping; Jeong, Jin Kwon; Pinaud, Raphael

    2012-11-14

    The classic estrogen 17β-estradiol (E2) was recently identified as a novel modulator of hearing function. It is produced rapidly, in an experience-dependent fashion, by auditory cortical neurons of both males and females. This brain-generated E2 enhances the efficiency of auditory coding and improves the neural and behavioral discrimination of auditory cues. Remarkably, the effects of E2 are long-lasting and persist for hours after local rises in hormone levels have subsided. The mechanisms and functional consequences of this E2-induced plasticity of auditory responses are unknown. Here, we addressed these issues in the zebra finch model by combining intracerebral pharmacology, biochemical assays, in vivo neurophysiology in awake animals, and computational and information theoretical approaches. We show that auditory experience activates the MAPK pathway in an E2-dependent manner. This effect is mediated by estrogen receptor β (ERβ), which directly associates with MEKK1 to sequentially modulate MEK and ERK activation, where the latter is required for the engagement of downstream molecular targets. We further show that E2-mediated activation of the MAPK cascade is required for the long-lasting enhancement of auditory-evoked responses in the awake brain. Moreover, a functional consequence of this E2/MAPK activation is to sustain enhanced information handling and neural discrimination by auditory neurons for several hours following hormonal challenge. Our results demonstrate that brain-generated E2 engages, via a nongenomic interaction between an estrogen receptor and a kinase, a persistent form of experience-dependent plasticity that enhances the neural coding and discrimination of behaviorally relevant sensory signals in the adult vertebrate brain. PMID:23152630

  5. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self. PMID:24966816

  6. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self. PMID:24966816

  7. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a "minimal common brain".

    PubMed

    Ius, Tamara; Angelini, Elsa; Thiebaut de Schotten, Michel; Mandonnet, Emmanuel; Duffau, Hugues

    2011-06-01

    Despite recent advances in non-invasive brain mapping imaging, the resectability of a given area in a patient harboring a WHO grade II glioma cannot be predicted preoperatively with high reliability, due to mechanisms of functional reorganization. Therefore, intraoperative mapping by direct electrical stimulation remains the gold standard for detection and preservation of eloquent areas during glioma surgery, because it enables to perform on-line anatomo-functional correlations. To study potentials and limitations of brain plasticity, we gathered 58 postoperative MRI of patients operated on for a WHO grade II glioma under direct electrical cortico-subcortical stimulation. Postoperative images were registered on the MNI template to construct an atlas of functional resectability for which each voxel represents the probability to observe residual non-resectable tumor, that is, non-compensable area. The resulting atlas offers a rigorous framework to identify areas with high plastic potential (i.e. with probabilities of residual tumor close to 0), with low compensatory capabilities (i.e. probabilities of residual tumor close to 1) and with intermediate level of resectability (probability around 0.5). The resulting atlas highlights the utmost importance of preserving a core of connectivity through the main associative pathways, namely, it supports the existence of a "minimal common brain" among patients. PMID:21414413

  8. Neural prostheses and brain plasticity

    NASA Astrophysics Data System (ADS)

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2009-12-01

    The success of modern neural prostheses is dependent on a complex interplay between the devices' hardware and software and the dynamic environment in which the devices operate: the patient's body or 'wetware'. Over 120 000 severe/profoundly deaf individuals presently receive information enabling auditory awareness and speech perception from cochlear implants. The cochlear implant therefore provides a useful case study for a review of the complex interactions between hardware, software and wetware, and of the important role of the dynamic nature of wetware. In the case of neural prostheses, the most critical component of that wetware is the central nervous system. This paper will examine the evidence of changes in the central auditory system that contribute to changes in performance with a cochlear implant, and discuss how these changes relate to electrophysiological and functional imaging studies in humans. The relationship between the human data and evidence from animals of the remarkable capacity for plastic change of the central auditory system, even into adulthood, will then be examined. Finally, we will discuss the role of brain plasticity in neural prostheses in general.

  9. Plasticity in Brain Development

    PubMed Central

    Aoki, Chiye; Siekevitz, Philip

    2010-01-01

    The final wiring of the brain occurs after birth and is governed by early experience. A protein called MAP2 seems to take part in the molecular events that underlie the brain’s ability to change PMID:2849807

  10. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor

    PubMed Central

    Xie, Hui; Yung, Wing-ho

    2012-01-01

    Obstructive sleep apnea (OSA) is well known for its metabolic as well as neurobehavioral consequences. Chronic intermittent hypoxia (IH) is a major component of OSA. In recent years, substantial advances have been made in elucidating the cellular and molecular mechanisms underlying the effect of chronic IH on neurocognitive functions, many of which are based on studies in animal models. A number of hypotheses have been put forward to explain chronic IH-induced neurological dysfunctions. Among these, the roles of oxidative stress and apoptosis-related neural injury are widely accepted. Here, focusing on results derived from animal studies, we highlight a possible role of reduced expression of brain-derived neurotrophic factor (BDNF) in causing impairment in long-term synaptic plasticity and neurocognitive functions during chronic IH. The possible relationship between BDNF and previous findings on this subject will be elucidated. PMID:22212429

  11. Ben's Plastic Brain

    ERIC Educational Resources Information Center

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up

  12. Ben's Plastic Brain

    ERIC Educational Resources Information Center

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  13. Plasticity from muscle to brain.

    PubMed

    Wolpaw, Jonathan R; Carp, Jonathan S

    2006-01-01

    Recognition that the entire central nervous system (CNS) is highly plastic, and that it changes continually throughout life, is a relatively new development. Until very recently, neuroscience has been dominated by the belief that the nervous system is hardwired and changes at only a few selected sites and by only a few mechanisms. Thus, it is particularly remarkable that Sir John Eccles, almost from the start of his long career nearly 80 years ago, focused repeatedly and productively on plasticity of many different kinds and in many different locations. He began with muscles, exploring their developmental plasticity and the functional effects of the level of motor unit activity and of cross-reinnervation. He moved into the spinal cord to study the effects of axotomy on motoneuron properties and the immediate and persistent functional effects of repetitive afferent stimulation. In work that combined these two areas, Eccles explored the influences of motoneurons and their muscle fibers on one another. He studied extensively simple spinal reflexes, especially stretch reflexes, exploring plasticity in these reflex pathways during development and in response to experimental manipulations of activity and innervation. In subsequent decades, Eccles focused on plasticity at central synapses in hippocampus, cerebellum, and neocortex. His endeavors extended from the plasticity associated with CNS lesions to the mechanisms responsible for the most complex and as yet mysterious products of neuronal plasticity, the substrates underlying learning and memory. At multiple levels, Eccles' work anticipated and helped shape present-day hypotheses and experiments. He provided novel observations that introduced new problems, and he produced insights that continue to be the foundation of ongoing basic and clinical research. This article reviews Eccles' experimental and theoretical contributions and their relationships to current endeavors and concepts. It emphasizes aspects of his contributions that are less well known at present and yet are directly relevant to contemporary issues. PMID:16647181

  14. Brain plasticity-based therapeutics

    PubMed Central

    Merzenich, Michael M.; Van Vleet, Thomas M.; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine. PMID:25018719

  15. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    PubMed

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it. PMID:26578509

  16. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    SciTech Connect

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  17. Evolutionary Perspectives on Language and Brain Plasticity.

    ERIC Educational Resources Information Center

    Deacon, Terrence W.

    2000-01-01

    This review discusses how general principles of brain development have contributed to both human brain plasticity and the acquisition of the human capacity for speech. Specifically, the role played by plastic developmental processes in the evolution and development of articulate control over vocalization in speech is examined. (Contains…

  18. Hearing colors: an example of brain plasticity.

    PubMed

    Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo

    2015-01-01

    Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called "Eyeborg", that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy ((1)H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities. PMID:25926778

  19. SAHA Enhances Synaptic Function and Plasticity In Vitro but Has Limited Brain Availability In Vivo and Does Not Impact Cognition

    PubMed Central

    Hanson, Jesse E.; La, Hank; Plise, Emile; Chen, Yung-Hsiang; Ding, Xiao; Hanania, Taleen; Sabath, Emily V.; Alexandrov, Vadim; Brunner, Dani; Leahy, Emer; Steiner, Pascal; Liu, Lichuan; Scearce-Levie, Kimberly; Zhou, Qiang

    2013-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer’s disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology. PMID:23922875

  20. Brain Plasticity and Disease: A Matter of Inhibition

    PubMed Central

    Baroncelli, Laura; Braschi, Chiara; Spolidoro, Maria; Begenisic, Tatjana; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    One major goal in Neuroscience is the development of strategies promoting neural plasticity in the adult central nervous system, when functional recovery from brain disease and injury is limited. New evidence has underscored a pivotal role for cortical inhibitory circuitries in regulating plasticity both during development and in adulthood. This paper summarizes recent findings showing that the inhibition-excitation balance controls adult brain plasticity and is at the core of the pathogenesis of neurodevelopmental disorders like autism, Down syndrome, and Rett syndrome. PMID:21766040

  1. Hearing colors: an example of brain plasticity

    PubMed Central

    Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo

    2015-01-01

    Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called “Eyeborg”, that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy (1H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities. PMID:25926778

  2. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    PubMed

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. PMID:24699036

  3. Environment and brain plasticity: towards an endogenous pharmacotherapy.

    PubMed

    Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto

    2014-01-01

    Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes. PMID:24382886

  4. [Brain function and white matter].

    PubMed

    Wake, Hiroaki; Kato, Daisuke

    2015-04-01

    Accumulated evidence shows that neural information processing takes place in superficial layers of the brain called the gray matter. Synapses, which connect different neurons reside in the gray matter and are considered the major components of information processing and plasticity. On the other hand, myelinated axons lie beneath the gray matter. These bundles of cables connect neurons in the different brain regions to form functional neural circuits. Myelinated axons were of little of interest to neuroscientists and have long been ignored in the formation of functional neuronal circuits. Recent evidence shows that myelin formed by oligodendrocytes shows plastic changes depending on neuronal activity. In this issue, we discuss the plastic changes of myelin and its functional role in learning and training. PMID:25846599

  5. Brain plasticity and motor practice in cognitive aging

    PubMed Central

    Cai, Liuyang; Chan, John S. Y.; Yan, Jin H.; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population. PMID:24653695

  6. Do some neurological conditions induce brain plasticity processes?

    PubMed

    Manning, Lilianne

    2008-09-01

    Paillard [Paillard J. Réflexions sur l'usage du concept de plasticité en Neurobiologie. J Psychol Norm Pathol 1976;1:33-47] defined adaptive plasticity as the capacity of the system to change its own structure and expand its behavioural repertoire. We review the literature on brain damage patients, in whom, adaptive plasticity was observed via neuropsychological and functional neuroimaging examinations. Attentional and memory system alterations and some resulting changes considered as compensatory mechanisms are commented. We have selected a single case presenting with developmental amnesia [Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 1997;277(5324):376-80; Maguire EA, Vargha-Khadem F, Mishkin M. The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain 2001;124(Pt 6):1156-70] and several groups of multiple sclerosis patients studied recently [e.g. Mainero C, Pantano P, Caramia F, Pozzilli C. Brain reorganization during attention and memory tasks in multiple sclerosis: insights from functional MRI studies. J Neurol Sci 2006;245(1/2):93-8; Morgen K, Sammer G, Courtney SM, Wolters T, Melchior H, Blecker CR, et al. Distinct mechanisms of altered brain activation in patients with multiple sclerosis. Neuroimage 2007;37(3):937-46; Nebel K, Wiese H, Seyfarth J, Gizewski ER, Stude P, Diener HC, et al. Activity of attention related structures in multiple sclerosis patients. Brain Res 2007;1151:150-60]. Convergence evidence via the two approaches - neuropsychological and functional fMRI - was shown as functional and structural brain plasticity was demonstrated in the selected works. Some common characteristics of brain plasticity emerge from this review independently of the neurological conditions we reviewed. PMID:18479763

  7. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  8. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    ERIC Educational Resources Information Center

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…

  9. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  10. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    ERIC Educational Resources Information Center

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these

  11. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    PubMed

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  12. Synaptic plasticity functions in an organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.

    2015-12-01

    Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.

  13. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    PubMed Central

    Rocha-Ferreira, Eridan

    2016-01-01

    Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity. PMID:27047695

  14. Plastic brains and the dialectics of dialectics

    NASA Astrophysics Data System (ADS)

    Loxley, Andrew; Murphy, Colette; Seery, Aidan

    2014-09-01

    This article advances the thinking of Lima, Ostermann and Rezende's "Marxism in Vygotskian approaches to cultural studies of science education" and Mark Zuss' response to their paper. Firstly, it introduces Catherine Malabou's concept of plasticity, from which Hegel's dialectic can be re-read as historical materialist self-determination in a way that embraces science but non-reductively, and which leads to the possibility of challenging theoretical rigidity as a form of transformative action. Secondly, this response article provides political analysis of scientific concepts as they reproduce and reinforce particular interests and are expropriated by policy makers and unaware teacher educators whose understanding lies within a technical-instrumentalism and diluted humanism framework. Both arguments feature the human brain as an object of research in science education. From Malabou, the emancipatory conceptualisation of the brain as material, historical and sociocultural; whilst `Brain Gym' exemplifies a non-science and nonsensical misappropriation of scientific concepts for commercial gain via a para-educational intervention.

  15. Age, Plasticity, and Homeostasis In Childhood Brain Disorders

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Juranek, Jenifer J.; Bigler, Erin D.; Snead, O. Carter; Fletcher, Jack M.

    2013-01-01

    It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are: Plasticity is neutral with respect to outcome. Although the effects of plasticity are often beneficial, the outcome of plasticity may be adaptive or maladaptive.The young age plasticity privilege has been overstated.Plastic change operates in concert with homeostatic mechanisms regulating change at every point in the lifespan.The same mechanisms that propel developmental change expose the immature brain to adverse events, making it more difficult for the immature than for the mature brain to sustain equilibrium between plasticity and homeostasis.Poor outcome in many neurodevelopmental disorders and childhood acquired brain insults is related to disequilibrium between plasticity and homeostasis. PMID:24096190

  16. Plasticity of Nonneuronal Brain Tissue: Roles in Developmental Disorders

    ERIC Educational Resources Information Center

    Dong, Willie K.; Greenough, William T.

    2004-01-01

    Neuronal and nonneuronal plasticity are both affected by environmental and experiential factors. Remodeling of existing neurons induced by such factors has been observed throughout the brain, and includes alterations in dendritic field dimensions, synaptogenesis, and synaptic morphology. The brain loci affected by these plastic neuronal changes…

  17. Plasticity in the Developing Brain: Implications for Rehabilitation

    ERIC Educational Resources Information Center

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive…

  18. Plasticity in the Developing Brain: Implications for Rehabilitation

    ERIC Educational Resources Information Center

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive

  19. Brain foods: the effects of nutrients on brain function

    PubMed Central

    Gómez-Pinilla, Fernando

    2009-01-01

    It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators of synaptic plasticity, such as brain-derived neurotrophic factor, can function as metabolic modulators, responding to peripheral signals such as food intake. Understanding the molecular basis of the effects of food on cognition will help us to determine how best to manipulate diet in order to increase the resistance of neurons to insults and promote mental fitness. PMID:18568016

  20. Plasticity and functional recovery in neurology.

    PubMed

    Ramachandran, V S

    2005-01-01

    Experiments on patients with phantom limbs suggest that neural connections in the adult human brain are much more malleable than previously assumed. Three weeks after amputation of an arm, sensations from the ipsilateral face are referred to the phantom; this effect is caused by the sensory input from the face skin 'invading' and activating deafferented hand zones in the cortex and thalamus. Many phantom arms are 'paralysed' in a painful position. If a mirror is propped vertically in the sagittal plane and the patient looks at the reflection of his/her normal hand, this reflection appears superimposed on the 'felt' position of the phantom. Remarkably, if the real arm is moved, the phantom is felt to move as well and this sometimes relieves the painful cramps in the phantom. Mirror visual feedback (MVF) has shown promising results with chronic regional pain syndrome and hemiparesis following stroke. These results suggest two reasons for a paradigm shift in neurorehabilitation. First, there appears to be tremendous latent plasticity even in the adult brain. Second, the brain should be thought of, not as a hierarchy of organised autonomous modules, each of which delivers its output to the next level, but as a set of complex interacting networks that are in a state of dynamic equilibrium with the brain's environment. Both principles can be potentially exploited in a clinical context to facilitate recovery of function. PMID:16138492

  1. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    PubMed Central

    Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that 30 min of brain stimulation in rats induced a robust enhancement in synaptic plasticity, a neuronal process critical for learning and memory. Understanding such molecular effects will lead to a better understanding of the mechanisms by which brain stimulation produces its effects on cognition and performance. PMID:26377469

  2. Structure, function, and plasticity of GABA transporters

    PubMed Central

    Scimemi, Annalisa

    2014-01-01

    GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Numerous efforts have been devoted to determine the structural and functional properties of GABA transporters. There is also evidence that the expression of GABA transporters on the cell membrane and their lateral mobility can be modulated by different intracellular signaling cascades. The strength of individual synaptic contacts and the activity of entire neuronal networks may be finely tuned by altering the density, distribution and diffusion rate of GABA transporters within the cell membrane. These findings are intriguing because they suggest the existence of complex regulatory systems that control the plasticity of GABAergic transmission in the brain. Here we review the current knowledge on the structural and functional properties of GABA transporters and highlight the molecular mechanisms that alter the expression and mobility of GABA transporters at central synapses. PMID:24987330

  3. Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity

    PubMed Central

    Tognini, Paola; Napoli, Debora; Pizzorusso, Tommaso

    2015-01-01

    Experience-dependent plasticity is the ability of brain circuits to undergo molecular, structural and functional changes as a function of neural activity. Neural activity continuously shapes our brain during all the stages of our life, from infancy through adulthood and beyond. Epigenetic modifications of histone proteins and DNA seem to be a leading molecular mechanism to modulate the transcriptional changes underlying the fine-tuning of synaptic connections and circuitry rewiring during activity-dependent plasticity. The recent discovery that cytosine methylation is an epigenetic mark particularly dynamic in brain cells has strongly increased the interest of neuroscientists in understanding the role of covalent modifications of DNA in activity-induced remodeling of neuronal circuits. Here, we provide an overview of the role of DNA methylation and hydroxylmethylation in brain plasticity both during adulthood, with emphasis on learning and memory related processes, and during postnatal development, focusing specifically on experience-dependent plasticity in the visual cortex. PMID:26379502

  4. Split Brain Functioning.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    1978-01-01

    Summarizing recent research, this article defines the functions performed by the left and right sides of the human brain. Attention is given to the right side, or the nondominant side, of the brain and its potential in terms of perception of the environment, music, art, geometry, and the aesthetics. (JC)

  5. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  6. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…

  7. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    ERIC Educational Resources Information Center

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  8. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    ERIC Educational Resources Information Center

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia

  9. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same

  10. Functional plasticity in cognitive aging: review and hypothesis.

    PubMed

    Greenwood, P M

    2007-11-01

    Cognitive aging reflects not only loss but also adaptation to loss. The adult brain is capable of plastic change, including change in cortical representation. This has been seen in association not only with frank lesions but also in healthy individuals as a function of experience and training. This review considers the potential for adult plasticity together with evidence of a relation in old age between regional cortical atrophy/shrinkage and increased activation in neuroimaging. Those cortical regions shown most consistently to shrink in adulthood--prefrontal and parietal cortices--are the same regions showing increased regional activation in aging. Combining several strands of behavioral and neuroimaging evidence, the author argues that functional plasticity alters the course of cognitive aging. The author advances the hypothesis that losses in regional brain integrity drive functional reorganization through changes in processing strategy and makes specific predictions from that hypothesis. PMID:17983277

  11. The maternal brain and its plasticity in humans.

    PubMed

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  12. Brain plasticity in Diptera and Hymenoptera

    PubMed Central

    Groh, Claudia; Meinertzhagen, Ian A.

    2010-01-01

    To mediate different types of behaviour, nervous systems must coordinate the proper operation of their neural circuits as well as short- and long-term alterations that occur within those circuits. The latter ultimately devolve upon specific changes in neuronal structures, membrane properties and synaptic connections that are all examples of plasticity. This reorganization of the adult nervous system is shaped by internal and external influences both during development and adult maturation. In adults, behavioural experience is a major driving force of neuronal plasticity studied particularly in sensory systems. The range of adaptation depends on features that are important to a particular species, so that learning is essential for foraging in honeybees, while regenerative capacities are important in hemimetabolous insects with long appendages. Experience is usually effective during a critical period in early adult life, when neural function becomes tuned to future conditions in an insect's life. Changes occur at all levels, in synaptic circuits, neuropile volumes, and behaviour. There are many examples, and this review incorporates only a select few, mainly those from Diptera and Hymenoptera. PMID:20036946

  13. Computational anatomy for studying use-dependant brain plasticity

    PubMed Central

    Draganski, Bogdan; Kherif, Ferath; Lutti, Antoine

    2014-01-01

    In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g., myelin, iron, and water content) in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences. PMID:25018716

  14. Split My Brain: A Case Study of Seizure Disorder and Brain Function

    ERIC Educational Resources Information Center

    Omarzu, Julia

    2004-01-01

    This case involves a couple deciding whether or not their son should undergo brain surgery to treat a severe seizure disorder. In examining this dilemma, students apply knowledge of brain anatomy and function. They also learn about brain scanning techniques and discuss the plasticity of the brain.

  15. Lutein and Brain Function

    PubMed Central

    Erdman, John W.; Smith, Joshua W.; Kuchan, Matthew J.; Mohn, Emily S.; Johnson, Elizabeth J.; Rubakhin, Stanislav S.; Wang, Lin; Sweedler, Jonathan V.; Neuringer, Martha

    2015-01-01

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities. PMID:26566524

  16. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity.

    PubMed

    Agrawal, Rahul; Noble, Emily; Vergnes, Laurent; Ying, Zhe; Reue, Karen; Gomez-Pinilla, Fernando

    2016-05-01

    Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders. PMID:26661172

  17. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  18. Plasticity of brain wave network interactions and evolution across physiologic states.

    PubMed

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  19. Brain Dynamics Promotes Function

    NASA Astrophysics Data System (ADS)

    Lourenço, Carlos

    Dynamical structure in the brain promotes biological function. Natural scientists look for correlations between measured electrical signals and behavior or mental states. Computational scientists have new opportunities to receive ’algorithmic’ inspiration from brain processes and propose computational paradigms. Thus a tradition which dates back to the 1940s with neural nets research is renewed. Real processes in the brain are ’complex’ and withstand trivial descriptions. However, dynamical complexity need not be at odds with a computational description of the phenomena and with the inspiration for algorithms that actually compute something in an engineering sense. We engage this complexity from a computational viewpoint, not excluding dynamical regimes that a number of authors are willing to label as chaos. The key question is: what may we be missing computation-wise if we overlook brain dynamics? At this point in brain research, we are happy if we can at least provide a partial answer.

  20. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

    PubMed Central

    Ksiazek-Winiarek, Dominika Justyna; Szpakowski, Piotr; Glabinski, Andrzej

    2015-01-01

    Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689

  1. Inhibitory synaptic plasticity: spike timing-dependence and putative network function

    PubMed Central

    Vogels, T. P.; Froemke, R. C.; Doyon, N.; Gilson, M.; Haas, J. S.; Liu, R.; Maffei, A.; Miller, P.; Wierenga, C. J.; Woodin, M. A.; Zenke, F.; Sprekeler, H.

    2013-01-01

    While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical findings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012. PMID:23882186

  2. Inhibitory synaptic plasticity: spike timing-dependence and putative network function.

    PubMed

    Vogels, T P; Froemke, R C; Doyon, N; Gilson, M; Haas, J S; Liu, R; Maffei, A; Miller, P; Wierenga, C J; Woodin, M A; Zenke, F; Sprekeler, H

    2013-01-01

    While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical findings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012. PMID:23882186

  3. Evidence for Impaired Plasticity after Traumatic Brain Injury in the Developing Brain

    PubMed Central

    Li, Nan; Yang, Ya; Glover, David P.; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney

    2014-01-01

    Abstract The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2–3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks. PMID:24050267

  4. The Maternal Brain: An Organ with Peripartal Plasticity

    PubMed Central

    Hillerer, Katharina Maria; Jacobs, Volker Rudolf; Fischer, Thorsten; Aigner, Ludwig

    2014-01-01

    The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed. PMID:24883213

  5. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism.

    PubMed

    Mottron, Laurent; Duret, Pauline; Mueller, Sophia; Moore, Robert D; Forgeot d'Arc, Baudouin; Jacquemont, Sebastien; Xiong, Lan

    2015-01-01

    Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event. PMID:26052415

  6. Brain Allometry and Neural Plasticity in the Bumblebee Bombus occidentalis

    PubMed Central

    Riveros, Andre J.; Gronenberg, Wulfila

    2010-01-01

    Brain plasticity is a common phenomenon across animals and in many cases it is associated with behavioral transitions. In social insects, such as bees, wasps and ants, plasticity in a particular brain compartment involved in multisensory integration (the mushroom body) has been associated with transitions between tasks differing in cognitive demands. However, in most of these cases, transitions between tasks are age-related, requiring the experimental manipulation of the age structure in the studied colonies to distinguish age and experience-dependent effects. To better understand the interplay between brain plasticity and behavioral performance it would therefore be advantageous to study species whose division of labor is not age-dependent. Here, we focus on brain plasticity in the bumblebee Bombus occidentalis, in which division of labor is strongly affected by the individual's body size instead of age. We show that, like in vertebrates, body size strongly correlates with brain size. We also show that foraging experience, but not age, significantly correlates with the increase in the size of the mushroom body, and in particular one of its components, the medial calyx. Our results support previous findings from other social insects suggesting that the mushroom body plays a key role in experience-based decision making. We also discuss the use of bumblebees as models to analyze neural plasticity and the association between brain size and behavioral performance. PMID:20516659

  7. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal?

    PubMed Central

    Freitas, Catarina; Farzan, Faranak; Pascual-Leone, Alvaro

    2013-01-01

    Sustaining brain and cognitive function across the lifespan must be one of the main biomedical goals of the twenty-first century. We need to aim to prevent neuropsychiatric diseases and, thus, to identify and remediate brain and cognitive dysfunction before clinical symptoms manifest and disability develops. The brain undergoes a complex array of changes from developmental years into old age, putatively the underpinnings of changes in cognition and behavior throughout life. A functionally “normal” brain is a changing brain, a brain whose capacity and mechanisms of change are shifting appropriately from one time-point to another in a given individual's life. Therefore, assessing the mechanisms of brain plasticity across the lifespan is critical to gain insight into an individual's brain health. Indexing brain plasticity in humans is possible with transcranial magnetic stimulation (TMS), which, in combination with neuroimaging, provides a powerful tool for exploring local cortical and brain network plasticity. Here, we review investigations to date, summarize findings, and discuss some of the challenges that need to be solved to enhance the use of TMS measures of brain plasticity across all ages. Ultimately, TMS measures of plasticity can become the foundation for a brain health index (BHI) to enable objective correlates of an individual's brain health over time, assessment across diseases and disorders, and reliable evaluation of indicators of efficacy of future preventive and therapeutic interventions. PMID:23565072

  8. GABAergic Neuronal Precursor Grafting: Implications in Brain Regeneration and Plasticity

    PubMed Central

    Alvarez Dolado, Manuel; Broccoli, Vania

    2011-01-01

    Numerous neurological disorders are caused by a dysfunction of the GABAergic system that impairs or either stimulates its inhibitory action over its neuronal targets. Pharmacological drugs have generally been proved very effective in restoring its normal function, but their lack of any sort of spatial or cell type specificity has created some limitations in their use. In the last decades, cell-based therapies using GABAergic neuronal grafts have emerged as a promising treatment, since they may restore the lost equilibrium by cellular replacement of the missing/altered inhibitory neurons or modulating the hyperactive excitatory system. In particular, the discovery that embryonic ganglionic eminence-derived GABAergic precursors are able to disperse and integrate in large areas of the host tissue after grafting has provided a strong rationale for exploiting their use for the treatment of diseased brains. GABAergic neuronal transplantation not only is efficacious to restore normal GABAergic activities but can also trigger or sustain high neuronal plasticity by promoting the general reorganization of local neuronal circuits adding new synaptic connections. These results cast new light on dynamics and plasticity of adult neuronal assemblies and their associated functions disclosing new therapeutic opportunities for the near future. PMID:21766042

  9. Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations.

    PubMed

    Toutounji, Hazem; Pipa, Gordon

    2014-03-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447

  10. Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations

    PubMed Central

    Toutounji, Hazem; Pipa, Gordon

    2014-01-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447

  11. Plastic Brains and the Dialectics of Dialectics

    ERIC Educational Resources Information Center

    Loxley, Andrew; Murphy, Colette; Seery, Aidan

    2014-01-01

    This article advances the thinking of Lima, Ostermann and Rezende's "Marxism in Vygotskian approaches to cultural studies of science education" and Mark Zuss' response to their paper. Firstly, it introduces Catherine Malabou's concept of plasticity, from which Hegel's dialectic can be re-read as historical materialist

  12. Plastic Brains and the Dialectics of Dialectics

    ERIC Educational Resources Information Center

    Loxley, Andrew; Murphy, Colette; Seery, Aidan

    2014-01-01

    This article advances the thinking of Lima, Ostermann and Rezende's "Marxism in Vygotskian approaches to cultural studies of science education" and Mark Zuss' response to their paper. Firstly, it introduces Catherine Malabou's concept of plasticity, from which Hegel's dialectic can be re-read as historical materialist…

  13. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    PubMed Central

    Dias, Gisele Pereira

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  14. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    PubMed Central

    Chang, Yongmin

    2014-01-01

    Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research. PMID:24550812

  15. Modulating brain oscillations to drive brain function.

    PubMed

    Thut, Gregor

    2014-12-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  16. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  17. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour

    PubMed Central

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534

  18. Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain

    PubMed Central

    Sakurai, Yoshio

    2014-01-01

    This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is “how is information encoded in the brain?” This is the fundamental question for understanding what our minds are and is related to the verification of Hebb’s cell assembly theory. The second is “how is information distributed in the brain?” This is also a reconsideration of the functional localization of the brain. The third is “what is the function of the ongoing activity of the brain?” This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is “how does the bodily behavior affect the brain function?” This is the problem of brain-body interaction, and obtaining a new “body” by a BMI leads to a possibility of changes in the owner’s brain. The last is “to what extent can the brain induce plasticity?” Most BMIs require changes in the brain’s neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity. PMID:24904323

  19. Neural Functions of Matrix Metalloproteinases: Plasticity, Neurogenesis, and Disease

    PubMed Central

    Fujioka, Hiromi; Dairyo, Yusuke; Yasunaga, Kei-ichiro; Emoto, Kazuo

    2012-01-01

    The brain changes in response to experience and altered environment. To do that, the nervous system often remodels the structures of neuronal circuits. This structural plasticity of the neuronal circuits appears to be controlled not only by intrinsic factors, but also by extrinsic mechanisms including modification of the extracellular matrix. Recent studies employing a range of animal models implicate that matrix metalloproteinases regulate multiple aspects of the neuronal development and remodeling in the brain. This paper aims to summarize recent advances of our knowledge on the neuronal functions of matrix metalloproteinases and discuss how they might relate in neuronal disease. PMID:22567285

  20. Musical Training Induces Functional Plasticity in Human Hippocampus

    PubMed Central

    Esposito, Fabrizio; di Salle, Francesco; Boller, Christian; Hilti, Caroline C.; Habermeyer, Benedikt; Scheffler, Klaus; Wetzel, Stephan; Seifritz, Erich; Cattapan-Ludewig, Katja

    2010-01-01

    Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for the investigation of auditory processing, we examined brain responses induced by temporal novelty in otherwise isochronous sound patterns in musicians and musical laypersons, since the hippocampus has been suggested previously to be crucially involved in various forms of novelty detection. In the first cross-sectional experiment, we identified enhanced neural responses to temporal novelty in the anterior left hippocampus of professional musicians, pointing to expertise-related differences in hippocampal processing. In the second experiment, we evaluated neural responses to acoustic temporal novelty in a longitudinal approach to disentangle training-related changes from predispositional factors. For this purpose, we examined an independent sample of music academy students before and after two semesters of intensive aural skills training. After this training period, hippocampal responses to temporal novelty in sounds were enhanced in musical students, and statistical interaction analysis of brain activity changes over time suggests training rather than predisposition effects. Thus, our results provide direct evidence for functional changes of the adult hippocampus in humans related to musical training. PMID:20107063

  1. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  2. Rapid eye movement sleep promotes cortical plasticity in the developing brain

    PubMed Central

    Dumoulin Bridi, Michelle C.; Aton, Sara J.; Seibt, Julie; Renouard, Leslie; Coleman, Tammi; Frank, Marcos G.

    2015-01-01

    Rapid eye movement sleep is maximal during early life, but its function in the developing brain is unknown. We investigated the role of rapid eye movement sleep in a canonical model of developmental plasticity in vivo (ocular dominance plasticity in the cat) induced by monocular deprivation. Preventing rapid eye movement sleep after monocular deprivation reduced ocular dominance plasticity and inhibited activation of a kinase critical for this plasticity (extracellular signal–regulated kinase). Chronic single-neuron recording in freely behaving cats further revealed that cortical activity during rapid eye movement sleep resembled activity present during monocular deprivation. This corresponded to times of maximal extracellular signal–regulated kinase activation. These findings indicate that rapid eye movement sleep promotes molecular and network adaptations that consolidate waking experience in the developing brain. PMID:26601213

  3. Changes in liver mitochondrial plasticity induced by brain tumor

    PubMed Central

    Pouliquen, Daniel; Olivier, Christophe; Debien, Emilie; Meflah , Khaled; Vallette, François M; Menanteau, Jean

    2006-01-01

    Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU) to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost) were calculated from Nuclear Magnetic Resonance (NMR) measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation. PMID:17018136

  4. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation

    PubMed Central

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  5. Dynamic neuroimaging of brain function.

    PubMed

    Simpson, G V; Pflieger, M E; Foxe, J J; Ahlfors, S P; Vaughan, H G; Hrabe, J; Ilmoniemi, R J; Lantos, G

    1995-09-01

    To fully characterize the brain processes underlying sensorimotor and cognitive function, the spatial distribution of active regions, their interconnected regions must be measured. We describe methods for imaging brain sources from surface-recorded EEG and magnetoencephalographic data, called electromagnetic source imaging (EMSI). EMSI provides brain source locations within the common framework of magnetic resonance (MR) images of brain anatomy. This allows integration of data from other functional brain imaging methods, like positron emission tomography and functional MR imaging, which can improve the accuracy of EMSI localization. EMSI also provides submillisecond temporal resolution of the dynamic processes within brain systems. Examples are given of applications to visual perceptual and attentional studies. PMID:8576389

  6. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper

  7. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  8. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    PubMed Central

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  9. Spike-Timing-Dependent Plasticity in the Intact Brain: Counteracting Spurious Spike Coincidences

    PubMed Central

    Shulz, Daniel E.; Jacob, Vincent

    2010-01-01

    A computationally rich algorithm of synaptic plasticity has been proposed based on the experimental observation that the sign and amplitude of the change in synaptic weight is dictated by the temporal order and temporal contiguity between pre- and postsynaptic activities. For more than a decade, this spike-timing-dependent plasticity (STDP) has been studied mainly in brain slices of different brain structures and cultured neurons. Although not yet compelling, evidences for the STDP rule in the intact brain, including primary sensory cortices, have been provided lastly. From insects to mammals, the presentation of precisely timed sensory inputs drives synaptic and functional plasticity in the intact central nervous system, with similar timing requirements than the in vitro defined STDP rule. The convergent evolution of this plasticity rule in species belonging to so distant phylogenic groups points to the efficiency of STDP, as a mechanism for modifying synaptic weights, as the basis of activity-dependent development, learning and memory. In spite of the ubiquity of STDP phenomena, a number of significant variations of the rule are observed in different structures, neuronal types and even synapses on the same neuron, as well as between in vitro and in vivo conditions. In addition, the state of the neuronal network, its ongoing activity and the activation of ascending neuromodulatory systems in different behavioral conditions have dramatic consequences on the expression of spike-timing-dependent synaptic plasticity, and should be further explored. PMID:21423523

  10. Activity-dependent synaptic plasticity modulates the critical phase of brain development.

    PubMed

    Chaudhury, Sraboni; Sharma, Vikram; Kumar, Vivek; Nag, Tapas C; Wadhwa, Shashi

    2016-04-01

    Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way. PMID:26515724

  11. Using non-invasive brain stimulation to augment motor training-induced plasticity

    PubMed Central

    Bolognini, Nadia; Pascual-Leone, Alvaro; Fregni, Felipe

    2009-01-01

    Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date. PMID:19292910

  12. Human brain somatic representation: a functional magnetic resonance mapping

    NASA Astrophysics Data System (ADS)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  13. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain

    PubMed Central

    Apkarian, A.V.; Hashmi, J.A.; Baliki, M.N.

    2010-01-01

    We review recent advances in brain imaging in humans, concentrating on advances in our understanding of the human brain in clinical chronic pain. Understanding regarding anatomical and functional reorganization of the brain in chronic pain is emphasized. We conclude by proposing a brain model for the transition of the human from acute to chronic pain. PMID:21146929

  14. Is Being Plastic Fantastic? Mechanisms of Altered Plasticity after Developmental Traumatic Brain Injury

    PubMed Central

    Giza, Christopher C.; Prins, Mayumi L.

    2014-01-01

    Traumatic brain injury (TBI) is predominantly a clinical problem of young persons, resulting in chronic cognitive and behavioral deficits. Specifically, the physiological response to a diffuse biomechanical injury in a maturing brain can clearly alter normal neuroplasticity. To properly evaluate and investigate developmental TBI requires an understanding of normal principles of cerebral maturation, as well as a consideration of experience-dependent changes. Changes in neuroplasticity may occur through many age-specific processes, and our understanding of these responses at a basic neuroscience level is only beginning. In this article, we will particularly discuss mechanisms of TBI-induced altered developmental plasticity such as altered neurotransmission, distinct molecular responses, cell death, perturbations in neuronal connectivity, experience-dependent ‘good plasticity’ enhancements and chronic ‘bad plasticity’ sequelae. From this summary, we can conclude that ‘young is not always better’ and that the developing brain manifests several crucial vulnerabilities to TBI. PMID:16943660

  15. Review of Research: Neuroscience and the Impact of Brain Plasticity on Braille Reading

    ERIC Educational Resources Information Center

    Hannan, Cheryl Kamei

    2006-01-01

    In this systematic review of research, the author analyzes studies of neural cortical activation, brain plasticity, and braille reading. The conclusions regarding the brain's plasticity and ability to reorganize are encouraging for individuals with degenerative eye conditions or late-onset blindness because they indicate that the brain can make…

  16. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    PubMed Central

    Zhang, Zhan-chi; Luan, Feng; Xie, Chun-yan; Geng, Dan-dan; Wang, Yan-yong; Ma, Jun

    2015-01-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function. PMID:26199608

  17. Evolution, development, and plasticity of the human brain: from molecules to bones

    PubMed Central

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R.; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  18. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model.

    PubMed

    Mottron, Laurent; Belleville, Sylvie; Rouleau, Guy A; Collignon, Olivier

    2014-11-01

    The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism. PMID:25155242

  19. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors.

    PubMed

    Chapman, Sandra B; Aslan, Sina; Spence, Jeffrey S; Hart, John J; Bartz, Elizabeth K; Didehbani, Nyaz; Keebler, Molly W; Gardner, Claire M; Strain, Jeremy F; DeFina, Laura F; Lu, Hanzhang

    2015-02-01

    Complex mental activity induces improvements in cognition, brain function, and structure in animals and young adults. It is not clear to what extent the aging brain is capable of such plasticity. This study expands previous evidence of generalized cognitive gains after mental training in healthy seniors. Using 3 MRI-based measurements, that is, arterial spin labeling MRI, functional connectivity, and diffusion tensor imaging, we examined brain changes across 3 time points pre, mid, and post training (12 weeks) in a randomized sample (n = 37) who received cognitive training versus a control group. We found significant training-related brain state changes at rest; specifically, 1) increases in global and regional cerebral blood flow (CBF), particularly in the default mode network and the central executive network, 2) greater connectivity in these same networks, and 3) increased white matter integrity in the left uncinate demonstrated by an increase in fractional anisotropy. Improvements in cognition were identified along with significant CBF correlates of the cognitive gains. We propose that cognitive training enhances resting-state neural activity and connectivity, increasing the blood supply to these regions via neurovascular coupling. These convergent results provide preliminary evidence that neural plasticity can be harnessed to mitigate brain losses with cognitive training in seniors. PMID:23985135

  20. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  1. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on

  2. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss.

    PubMed

    Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J

    2016-01-28

    Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. PMID:26621123

  3. Interactions between environmental changes and brain plasticity in birds.

    PubMed

    Barnea, Anat

    2009-09-01

    Neurogenesis and neuronal recruitment occur in many vertebrates, including humans. Most of the new neurons die before reaching their destination. Those which survive migrate to various brain regions, replace older ones and connect to existing circuits. Evidence suggests that this replacement is related to acquisition of new information. Therefore, neuronal replacement can be seen as a form of brain plasticity that enables organisms to adjust to environmental changes. However, direct evidence of a causal link between replacement and learning remains elusive. Our hypothesis is that increased neuronal recruitment is associated with increase in memory load. Moreover, since neuronal recruitment is part of a turnover process, we assume that the same conditions that favor survival of some neurons induce the death of others. I present studies that investigated the effect of various behaviors and environmental conditions (food-hoarding, social change, reproductive cycle) on neuronal recruitment and survival in adult avian brains, and discuss how these phenomena relate to the life of animals. I offer a frame and rationale for comparing neuronal replacement in the adult brain, in order to uncover the pressures, rules, and mechanisms that govern its constant rejuvenation. The review emphasizes the importance of using various approaches (behavioral, anatomical, cellular and hormonal) in neuroethological research, and the need to study natural populations, in order to fully understand how neurogenesis and neuronal replacement contribute to life of animals. Finally, the review indicates to future directions and ends with the hope that a better understanding of adult neuronal replacement will lead to medical applications. PMID:19361509

  4. Neural Plastic Effects of Cognitive Training on Aging Brain

    PubMed Central

    Leung, Natalie T. Y.; Tam, Helena M. K.; Chu, Leung W.; Kwok, Timothy C. Y.; Chan, Felix; Lam, Linda C. W.; Woo, Jean; Lee, Tatia M. C.

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. PMID:26417460

  5. Indestructible plastic: the neuroscience of the new aging brain

    PubMed Central

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  6. Cognitive development in children born preterm: implications for theories of brain plasticity following early injury.

    PubMed

    Luciana, Monica

    2003-01-01

    The human brain is functionally altered through experience, a phenomenon known as plasticity. Relevant experiences may be negative, as in brain injury. Adult brain injury results in permanent impairment. However, it has been assumed that early injury leads to substantial functional recovery. Animal studies suggest several predictions regarding whether this principle generally holds true. These studies indicate that the timing of brain injury, relative to the expected course of neurodevelopment, impacts the extent of recovery. Injuries occurring during the period of cell migration are particularly detrimental. However, outcome must be assessed longitudinally because apparent recovery in childhood may reverse as the brain matures. Moreover, recovery of one function may come at the expense of others. Whether these findings characterize outcome following preterm birth is the focus of this review. Preterm birth is associated with high rates of neurodevelopmental disability, primarily due to hypoxic-ischemic events. Periventricular brain structures and white matter tracts are particularly vulnerable to damage. Through school age, preterm children exhibit diminished levels of global intellectual function, attention, memory, and reasoning skills relative to full-term peers. It is questionable whether these deficits persist. Because few studies have followed recent cohorts into young adulthood, it is argued that outcome cannot be reliably described based on the available literature. Moreover, important contributors to later development have been neglected, including both genetic and experiential factors. With improved assessment, it may be possible to develop interventions based on the individual child's constellation of genetic, biological, and sociodemographic risks. PMID:14984136

  7. [Components of plastic disrupt the function of the nervous system].

    PubMed

    Szychowski, Konrad Andrzej; Wójtowicz, Anna Katarzyna

    2013-01-01

    Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system. PMID:23752602

  8. Bridging animal and human models of exercise-induced brain plasticity

    PubMed Central

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  9. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity.

    PubMed

    Montgomery, Stephen H; Merrill, Richard M; Ott, Swidbert R

    2016-06-15

    Behavioral and sensory adaptations are often reflected in the differential expansion of brain components. These volumetric differences represent changes in cell number, size, and/or connectivity, which may denote changes in the functional and evolutionary relationships between different brain regions, and between brain composition and behavioral ecology. Here we describe the brain composition of two species of Heliconius butterflies, a long-standing study system for investigating ecological adaptation and speciation. We confirm a previous report of a striking volumetric expansion of the mushroom body, and explore patterns of differential posteclosion and experience-dependent plasticity between different brain regions. This analysis uncovers age- and experience-dependent posteclosion mushroom body growth comparable to that in foraging Hymenoptera, but also identifies plasticity in several other neuropils. An interspecific analysis indicates that Heliconius display a remarkably large investment in mushroom bodies for a lepidopteran, and indeed rank highly compared to other insects. Our analyses lay the foundation for future comparative and experimental analyses that will establish Heliconius as a valuable case study in evolutionary neurobiology. J. Comp. Neurol. 524:1747-1769, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918905

  10. Mother's voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation.

    PubMed

    Webb, Alexandra R; Heller, Howard T; Benson, Carol B; Lahav, Amir

    2015-03-10

    Brain development is largely shaped by early sensory experience. However, it is currently unknown whether, how early, and to what extent the newborn's brain is shaped by exposure to maternal sounds when the brain is most sensitive to early life programming. The present study examined this question in 40 infants born extremely prematurely (between 25- and 32-wk gestation) in the first month of life. Newborns were randomized to receive auditory enrichment in the form of audio recordings of maternal sounds (including their mother's voice and heartbeat) or routine exposure to hospital environmental noise. The groups were otherwise medically and demographically comparable. Cranial ultrasonography measurements were obtained at 30 ± 3 d of life. Results show that newborns exposed to maternal sounds had a significantly larger auditory cortex (AC) bilaterally compared with control newborns receiving standard care. The magnitude of the right and left AC thickness was significantly correlated with gestational age but not with the duration of sound exposure. Measurements of head circumference and the widths of the frontal horn (FH) and the corpus callosum (CC) were not significantly different between the two groups. This study provides evidence for experience-dependent plasticity in the primary AC before the brain has reached full-term maturation. Our results demonstrate that despite the immaturity of the auditory pathways, the AC is more adaptive to maternal sounds than environmental noise. Further studies are needed to better understand the neural processes underlying this early brain plasticity and its functional implications for future hearing and language development. PMID:25713382

  11. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    PubMed Central

    Wiera, Grzegorz; Mozrzymas, Jerzy W.

    2015-01-01

    Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation. PMID:26582976

  12. Magnetic Resonance, Functional (fMRI) -- Brain

    MedlinePlus

    ... thought, speech, movement and sensation, which is called brain mapping. help assess the effects of stroke, trauma or degenerative disease (such as Alzheimer's) on brain function. monitor the growth and function of brain ...

  13. Natriuretic Hormones in Brain Function

    PubMed Central

    Hodes, Anastasia; Lichtstein, David

    2014-01-01

    Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed. PMID:25506340

  14. Repetition suppression and plasticity in the human brain

    PubMed Central

    Garrido, Marta I.; Kilner, James M.; Kiebel, Stefan J.; Stephan, Klaas E.; Baldeweg, Torsten; Friston, Karl J.

    2010-01-01

    The suppression of neuronal responses to a repeated event is a ubiquitous phenomenon in neuroscience. However, the underlying mechanisms remain largely unexplored. The aim of this study was to examine the temporal evolution of experience-dependent changes in connectivity induced by repeated stimuli. We recorded event-related potentials (ERPs) during frequency changes of a repeating tone. Bayesian inversion of dynamic causal models (DCM) of ERPs revealed systematic repetition-dependent changes in both intrinsic and extrinsic connections, within a hierarchical cortical network. Critically, these changes occurred very quickly, over inter-stimulus intervals that implicate short-term synaptic plasticity. Furthermore, intrinsic (within-source) connections showed biphasic changes that were much faster than changes in extrinsic (between-source) connections, which decreased monotonically with repetition. This study shows that auditory perceptual learning is associated with repetition-dependent plasticity in the human brain. It is remarkable that distinct changes in intrinsic and extrinsic connections could be quantified so reliably and non-invasively using EEG. PMID:19540921

  15. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity.

    PubMed

    Brenowitz, Eliot A

    2015-04-01

    The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401

  16. Functional Brain Basis of Hypnotizability

    PubMed Central

    Hoeft, Fumiko; Gabrieli, John D.E.; Whitfield-Gabrieli, Susan; Haas, Brian W.; Bammer, Roland; Menon, Vinod; Spiegel, David

    2015-01-01

    Context Focused hypnotic concentration is a model for brain control over sensation and behavior. Pain and anxiety can be effectively alleviated by hypnotic suggestion, which modulates activity in brain regions associated with focused attention, but the specific neural network underlying this phenomenon is not known. Objective The main goal of the study was to investigate the brain basis of hypnotizability. Design Cross sectional, in-vivo neuroimaging study. Setting Academic medical center at Stanford University School of Medicine. Patients 12 adults with high and 12 adults with low hypnotizability. Main Outcome Measures (1) functional MRI (fMRI) to measure functional connectivity networks at rest including default-mode, salience and executive-control networks, (2) structural T1 MRI to measure regional grey and white matter volumes, and (3) diffusion tensor imaging (DTI) to measure white matter microstructural integrity. Results High-compared to low-hypnotizable individuals showed greater functional connectivity between left dorsolateral prefrontal cortex (DLPFC), an executive-control region of the brain, and the salience network composed of the dorsal anterior cingulate cortex (dACC), anterior insula, amygdala, and ventral striatum, involved in detecting, integrating, and filtering relevant somatic, autonomic, and emotional information, using independent component analysis (ICA). Seed based analysis confirmed elevated functional coupling between the dACC and the DLPFC in high, compared to low, hypnotizables. These functional differences were not due to variation in brain structure in these regions, including regional grey and white matter volumes and white matter microstructure. Conclusions Our results provide novel evidence that altered functional connectivity in DLPFC and dACC may underlie hypnotizability. Future studies focusing on how these functional networks change and interact during hypnosis are warranted. PMID:23026956

  17. Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas 'plastic' reorganisation.

    PubMed

    Rossini, P M; Pauri, F

    2000-09-01

    The potential for reorganization in the adult brain has been largely underestimated in the past and we are just beginning to understand the organisational principles involved in functional recovery. A bulk of experimental evidences have been accumulated in support of the hypothesis that neuronal aggregates adjacent to a lesion in the cortical brain areas can be progressively vicarious to the function of the damaged neurones. Such a reorganisation, if occurring in the affected hemisphere of a patient with a monohemispheric lesion, should significantly modify the interhemispheric symmetry of somatotopic organisation of the sensorimotor cortices, both in terms of absolute surfaces and number of "recruited" neurons, as well as of spatial coordinates. In fact, a roughly symmetrical organisation of sensorimotor - particularly for the hand contorl - in the right and left hemisphere has been observed in healthy humans by different methods of functional brain imaging, including fMRI, TMS, MEG, HD-EEG. Not uniform results about the functional brain activity related to sensory, motor and cognitive functions in normal and diseased subjects are often due to differences in the experimental paradigm designed as well as in the spatial and temporal resolution of the neuroimaging techniques used. The multi-modal integration of data obtained with several neuroimaging techniques allowed a coherent modelling of human brain higher functions. Functional magnetic resonance imaging (fMRI) provided fine spatial details (millimetres) of the brain responses, which were compared with the cortical maps of the motor output to different body districts obtained with transcranial magnetic stimulation (TMS). Magnetoencephalography (MEG) ability to study sensorimotor areas by analysing cortical magnetic fields, is also complementary to the motor cortex topographical mapping provided by TMS. MEG high temporal resolution allows to detect relatively restricted functional neuronal pools activated during cerebral processing of external stimuli. Moreover, these brain responses can be investigated with magnetoencephalography (MEG) and high density electroencephalography (EEG) techniques, with elevated time resolution (ms). With respect to the high resolution EEG technique, the MEG technique allowed a more precise localisation of the sites of neural activity buried into the cortical sulci, but was unable to detect the response of the crown of the cortical giri and of the frontal-mesial cortex (including the supplementary motor area), because of its poor sensitivity to radially oriented dipoles. The integration of functional and anatomical information provide cues on the relationship between brain activity and anatomic sites where this takes place, allowing the characterisation of the physiological activity of the cortical brain layers as well as to study the plastic reorganisation of the brain in different pathological conditions following stroke, limb amputation, spinal cord injury, hemisperectomy. PMID:11011062

  18. Semaphorin Function in Neural Plasticity and Disease

    PubMed Central

    Pasterkamp, R. Jeroen; Giger, Roman J.

    2009-01-01

    4. Summary of recent advances The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology. PMID:19541473

  19. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity.

    PubMed

    Moreno, Sylvain; Marques, Carlos; Santos, Andreia; Santos, Manuela; Castro, São Luís; Besson, Mireille

    2009-03-01

    We conducted a longitudinal study with 32 nonmusician children over 9 months to determine 1) whether functional differences between musician and nonmusician children reflect specific predispositions for music or result from musical training and 2) whether musical training improves nonmusical brain functions such as reading and linguistic pitch processing. Event-related brain potentials were recorded while 8-year-old children performed tasks designed to test the hypothesis that musical training improves pitch processing not only in music but also in speech. Following the first testing sessions nonmusician children were pseudorandomly assigned to music or to painting training for 6 months and were tested again after training using the same tests. After musical (but not painting) training, children showed enhanced reading and pitch discrimination abilities in speech. Remarkably, 6 months of musical training thus suffices to significantly improve behavior and to influence the development of neural processes as reflected in specific pattern of brain waves. These results reveal positive transfer from music to speech and highlight the influence of musical training. Finally, they demonstrate brain plasticity in showing that relatively short periods of training have strong consequences on the functional organization of the children's brain. PMID:18832336

  20. Training-induced behavioral and brain plasticity in inhibitory control.

    PubMed

    Spierer, Lucas; Chavan, Camille F; Manuel, Aurelie L

    2013-01-01

    Deficits in inhibitory control, the ability to suppress ongoing or planned motor or cognitive processes, contribute to many psychiatric and neurological disorders. The rehabilitation of inhibition-related disorders may therefore benefit from neuroplasticity-based training protocols aiming at normalizing inhibitory control proficiency and the underlying brain networks. Current literature on training-induced behavioral and brain plasticity in inhibitory control suggests that improvements may follow either from the development of automatic forms of inhibition or from the strengthening of top-down, controlled inhibition. Automatic inhibition develops in conditions of consistent and repeated associations between inhibition-triggering stimuli and stopping goals. Once established, the stop signals directly elicit inhibition, thereby bypassing slow, top-down executive control and accelerating stopping processes. In contrast, training regimens involving varying stimulus-response associations or frequent inhibition failures prevent the development of automatic inhibition and thus strengthen top-down inhibitory processes rather than bottom-up ones. We discuss these findings in terms of developing optimal inhibitory control training regimens for rehabilitation purposes. PMID:23914169

  1. PET-imaging of brain plasticity after cochlear implantation.

    PubMed

    Strelnikov, K; Marx, M; Lagleyre, S; Fraysse, B; Deguine, O; Barone, P

    2015-04-01

    In this article, we review the PET neuroimaging literature, which indicates peculiarities of brain networks involved in speech restoration after cochlear implantation. We consider data on implanted patients during stimulation as well as during resting state, which indicates basic long-term reorganisation of brain functional architecture. On the basis of our analysis of neuroimaging literature and considering our own studies, we indicate that auditory recovery in deaf patients after cochlear implantation partly relies on visual cues. The brain develops mechanisms of audio-visual integration as a strategy to achieve high levels of speech recognition. It turns out that this neuroimaging evidence is in line with behavioural findings of better audiovisual integration in these patients. Thus, strong visually and audio-visually based rehabilitation during the first months after cochlear implantation would significantly improve and fasten the functional recovery of speech intelligibility and other auditory functions in these patients. We provide perspectives for further neuroimaging studies in cochlear implanted patients, which would help understand brain organisation to restore auditory cognitive processing in the implanted patients and would potentially suggest novel approaches for their rehabilitation. This article is part of a Special Issue entitled . PMID:25448166

  2. Sleep, plasticity and memory from molecules to whole-brain networks.

    PubMed

    Abel, Ted; Havekes, Robbert; Saletin, Jared M; Walker, Matthew P

    2013-09-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation of memory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, rapid eye movement (REM) and non-rapid eye movement (NREM) sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent NREM sleep. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exerts powerful effects on molecular, cellular and network mechanisms of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961

  3. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961

  4. Current trends in stroke rehabilitation. A review with focus on brain plasticity.

    PubMed

    Johansson, B B

    2011-03-01

    Current understanding of brain plasticity has lead to new approaches in ischemic stroke rehabilitation. Stroke units that combine good medical and nursing care with task-oriented intense training in an environment that provides confidence, stimulation and motivation significantly improve outcome. Repetitive trans-cranial magnetic stimulation (rTMS), and trans-cranial direct current stimulation (tDCS) are applied in rehabilitation of motor function. The long-term effect, optimal way of stimulation and possibly efficacy in cognitive rehabilitation need evaluation. Methods based on multisensory integration of motor, cognitive, and perceptual processes including action observation, mental training, and virtual reality are being tested. Different approaches of intensive aphasia training are described. Recent data on intensive melodic intonation therapy indicate that even patients with very severe non-fluent aphasia can regain speech through homotopic white matter tract plasticity. Music therapy is applied in motor and cognitive rehabilitation. To avoid the confounding effect of spontaneous improvement, most trials are preformed ≥3 months post stroke. Randomized controlled trials starting earlier after strokes are needed. More attention should be given to stroke heterogeneity, cognitive rehabilitation, and social adjustment and to genetic differences, including the role of BDNF polymorphism in brain plasticity. PMID:20726844

  5. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2012-01-01

    Novel classes of small and long non-coding RNAs (ncRNAs) are being characterized at a rapid pace, driven by recent paradigm shifts in our understanding of genomic architecture, regulation and transcriptional output, as well as by innovations in sequencing technologies and computational and systems biology. These ncRNAs can interact with DNA, RNA and protein molecules; engage in diverse structural, functional and regulatory activities; and have roles in nuclear organization and transcriptional, post-transcriptional and epigenetic processes. This expanding inventory of ncRNAs is implicated in mediating a broad spectrum of processes including brain evolution, development, synaptic plasticity and disease pathogenesis. PMID:22814587

  6. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  7. Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of the Subthalamic Nucleus in Parkinsons Disease

    PubMed Central

    van Hartevelt, Tim J.; Cabral, Joana; Deco, Gustavo; Mller, Arne; Green, Alexander L.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2014-01-01

    Background Positive clinical outcomes are now well established for deep brain stimulation, but little is known about the effects of long-term deep brain stimulation on brain structural and functional connectivity. Here, we used the rare opportunity to acquire pre- and postoperative diffusion tensor imaging in a patient undergoing deep brain stimulation in bilateral subthalamic nuclei for Parkinsons Disease. This allowed us to analyse the differences in structural connectivity before and after deep brain stimulation. Further, a computational model of spontaneous brain activity was used to estimate the changes in functional connectivity arising from the specific changes in structural connectivity. Results We found significant localised structural changes as a result of long-term deep brain stimulation. These changes were found in sensory-motor, prefrontal/limbic, and olfactory brain regions which are known to be affected in Parkinsons Disease. The nature of these changes was an increase of nodal efficiency in most areas and a decrease of nodal efficiency in the precentral sensory-motor area. Importantly, the computational model clearly shows the impact of deep brain stimulation-induced structural alterations on functional brain changes, which is to shift the neural dynamics back towards a healthy regime. The results demonstrate that deep brain stimulation in Parkinsons Disease leads to a topological reorganisation towards healthy bifurcation of the functional networks measured in controls, which suggests a potential neural mechanism for the alleviation of symptoms. Conclusions The findings suggest that long-term deep brain stimulation has not only restorative effects on the structural connectivity, but also affects the functional connectivity at a global level. Overall, our results support causal changes in human neural plasticity after long-term deep brain stimulation and may help to identify the underlying mechanisms of deep brain stimulation. PMID:24466120

  8. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  9. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals

    PubMed Central

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L.

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  10. Genetic Mapping of Brain Plasticity Across Development in Williams Syndrome: ERP Markers of Face and Language Processing

    PubMed Central

    Mills, D. L.; Dai, L.; Fishman, I.; Yam, A.; Appelbaum, L. G.; Galaburda, A.; Bellugi, U.; Korenberg, J. R.

    2014-01-01

    In Williams Syndrome (WS), a known genetic deletion results in atypical brain function with strengths in face and language processing. We examined how genetic influences on brain activity change with development. In three studies, ERPs from large samples of children, adolescents, and adults with the full genetic deletion for WS were compared to typically developing controls, and two adults with partial deletions for WS. Studies 1 and 2 identified ERP markers of brain plasticity in WS across development. Study 3 suggested that in adults with partial deletions for WS, specific genes may be differentially implicated in face and language processing. PMID:24219698

  11. Interhemispheric Plasticity Protects the Deafferented Somatosensory Cortex from Functional Takeover After Nerve Injury

    PubMed Central

    Koretsky, Alan P.

    2014-01-01

    Abstract Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC. PMID:25117691

  12. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity

    PubMed Central

    Rajtmajer, Sarah M.; Roy, Arnab; Albert, Reka; Molenaar, Peter C. M.; Hillary, Frank G.

    2015-01-01

    Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity. PMID:26283928

  13. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity.

    PubMed

    Rajtmajer, Sarah M; Roy, Arnab; Albert, Reka; Molenaar, Peter C M; Hillary, Frank G

    2015-01-01

    Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity. PMID:26283928

  14. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces

    PubMed Central

    Mandonnet, Emmanuel; Duffau, Hugues

    2014-01-01

    Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved. PMID:24834030

  15. Seasonal female brain plasticity in processing social vs. sexual vocal signals.

    PubMed

    Cousillas, Hugo; George, Isabelle; Alcaix, Sandrine; Henry, Laurence; Richard, Jean-Pierre; Hausberger, Martine

    2013-03-01

    While cerebral plasticity has been extensively studied and demonstrated - during ontogenetic development, few studies have considered adult plasticity in different social contexts using relevant social communication signals. Communication requires adaptability throughout the life of an individual, especially in species for which breeding periods (when intersexual signaling prevails) are interspersed with more 'social' (non-sexual) periods when intrasexual bonding prevails. In songbirds, structure or frequency of songs or song elements may convey different information depending on the season. This is the case in the European starling, where some song structures characterize social bonds between females while other song structures are more characteristic of male courtship. We hypothesized that the female perceptual system may have adapted to these changes in song structure and function according to season, and we tested for potential seasonal brain plasticity. Electrophysiological recordings from adult female starlings during playback of song elements with different functions showed clear seasonal (breeding/non-breeding) changes in neuronal responses in the primary auditory area. The proportion of responsive sites was higher in response to social (non-sexual) songs during the non-reproductive season, and higher in response to sexual songs during the reproductive season. PMID:23294108

  16. Methylphenidate and the Juvenile Brain: Enhancement of Attention at the Expense of Cortical Plasticity?

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2013-01-01

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidates actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD. PMID:24095262

  17. SIRT1 is essential for normal cognitive function and synaptic plasticity

    PubMed Central

    Michán, Shaday; Li, Ying; Chou, Maggie Meng-Hsiu; Parrella, Edoardo; Ge, Huanying; Long, Jeffrey M.; Allard, Joanne S.; Lewis, Kaitlyn; Miller, Marshall; Xu, Wei; Mervis, Ronald F.; Chen, Jing; Guerin, Karen I.; Smith, Lois E. H.; McBurney, Michael W.; Sinclair, David A.; Baudry, Michel; de Cabo, Rafael; Longo, Valter D.

    2010-01-01

    Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian NAD+-dependent deacetylase, SIRT1, impacts different processes potentially involved in the maintenance of brain integrity such as chromatin remodeling, DNA repair, cell survival and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knockout mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but display a decrease in dendritic branching, branch length and complexity of neuronal dendritic arbors. Also, a decrease in ERK1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory and synaptic plasticity in mice. PMID:20660252

  18. Dynamic imaging of brain function

    PubMed Central

    Hyder, Fahmeed

    2013-01-01

    In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neuronal activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used as a model to reveal activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with specified spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Because the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques. PMID:18839085

  19. A role for synaptic plasticity in the adolescent development of executive function

    PubMed Central

    Selemon, L D

    2013-01-01

    Adolescent brain maturation is characterized by the emergence of executive function mediated by the prefrontal cortex, e.g., goal planning, inhibition of impulsive behavior and set shifting. Synaptic pruning of excitatory contacts is the signature morphologic event of late brain maturation during adolescence. Mounting evidence suggests that glutamate receptor-mediated synaptic plasticity, in particular long term depression (LTD), is important for elimination of synaptic contacts in brain development. This review examines the possibility (1) that LTD mechanisms are enhanced in the prefrontal cortex during adolescence due to ongoing synaptic pruning in this late developing cortex and (2) that enhanced synaptic plasticity in the prefrontal cortex represents a key molecular substrate underlying the critical period for maturation of executive function. Molecular sites of interaction between environmental factors, such as alcohol and stress, and glutamate receptor mediated plasticity are considered. The accentuated negative impact of these factors during adolescence may be due in part to interference with LTD mechanisms that refine prefrontal cortical circuitry and when disrupted derail normal maturation of executive function. Diminished prefrontal cortical control over risk-taking behavior could further exacerbate negative outcomes associated with these behaviors, as for example addiction and depression. Greater insight into the neurobiology of the adolescent brain is needed to fully understand the molecular basis for heightened vulnerability during adolescence to the injurious effects of substance abuse and stress. PMID:23462989

  20. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    PubMed Central

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  1. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies.

    PubMed

    Oliva, Carolina A; Vargas, Jessica Y; Inestrosa, Nibaldo C

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer's disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  2. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-01

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. PMID:26972317

  3. Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2014-01-01

    Cognitive enhancement is perhaps one of the most intriguing and controversial topics in neuroscience today. Currently, the main classes of drugs used as potential cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are also frequently used. Pharmacologically, substances that enhance the components of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or norepinephrine—stand to improve brain function in healthy individuals beyond their baseline functioning. In particular, non-medical use of prescription stimulants such as MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent rise among teens and young adults in schools and college campuses. However, this enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate function via the use of psychostimulants may impair behavioral flexibility, leading to the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. Healthy individuals run the risk of pushing themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states, thus vitiating the very behaviors they are striving to improve. Finally, recent studies have begun to highlight potential damaging effects of stimulant exposure in healthy juveniles. This review explains how the main classes of cognitive enhancing drugs affect the learning and memory circuits, and highlights the potential risks and concerns in healthy individuals, particularly juveniles and adolescents. We emphasize the performance enhancement at the potential cost of brain plasticity that is associated with the neural ramifications of nootropic drugs in the healthy developing brain. PMID:24860437

  4. Disrupted functional brain networks in autistic toddlers.

    PubMed

    Boersma, Maria; Kemner, Chantal; de Reus, Marcel A; Collin, Guusje; Snijders, Tineke M; Hofman, Dennis; Buitelaar, Jan K; Stam, Cornelis J; van den Heuvel, Martijn P

    2013-01-01

    Communication and integration of information between brain regions plays a key role in healthy brain function. Conversely, disruption in brain communication may lead to cognitive and behavioral problems. Autism is a neurodevelopmental disorder that is characterized by impaired social interactions and aberrant basic information processing. Aberrant brain connectivity patterns have indeed been hypothesized to be a key neural underpinning of autism. In this study, graph analytical tools are used to explore the possible deviant functional brain network organization in autism at a very early stage of brain development. Electroencephalography (EEG) recordings in 12 toddlers with autism (mean age 3.5 years) and 19 control subjects were used to assess interregional functional brain connectivity, with functional brain networks constructed at the level of temporal synchronization between brain regions underlying the EEG electrodes. Children with autism showed a significantly increased normalized path length and reduced normalized clustering, suggesting a reduced global communication capacity already during early brain development. In addition, whole brain connectivity was found to be significantly reduced in these young patients suggesting an overall under-connectivity of functional brain networks in autism. Our findings support the hypothesis of abnormal neural communication in autism, with deviating effects already present at the early stages of brain development. PMID:23259692

  5. Aging and functional brain networks

    SciTech Connect

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  6. [Contribution of brain function analysis to the evolution of neurorehabilitation].

    PubMed

    Miyai, Ichiro; Mihara, Masahito; Hattori, Noriaki; Hatakenaka, Megumi; Kawano, Teiji; Yagura, Hajime

    2012-01-01

    Recent studies of functional neuroimaging and clinical neurophysiology have implied that functional recovery after stroke is associated with use-dependent plasticity of the damaged brain. However the property of the reorganized neural network depends on site and size of the lesion, which makes it difficult to assess what the adaptive plasticity is. From clinical point of view there is accumulating randomized controlled trials for the benefit of task-oriented rehabilitative intervention including constraint-induced movement therapy, robotics, and body-weight supported treadmill training. However dose-matched control intervention is usually as effective as a specific intervention. This raises a question regarding the specificity of a task-oriented intervention. Second question is whether such intervention goes beyond the biological destiny of human. Specifically there is no known strategy enhancing recovery of severely impaired hand. To augment functional gain, several methods of neuro-modulation may bring break-through on the assumption that they induce greater adaptive plasticity. Such neuro-modulative methods include neuropharmacological modulation, brain stimulation using transcranial magnetic stimulation and direct current stimulation, peripheral nerve stimulation, neurofeedback using real-time fMRI and real-time fNIRS, and brain-machine interface. A preliminary randomized controlled trial regarding real-time feedback of premotor activities revealed promising results for recovery of paretic hand in patients with stroke. PMID:23196554

  7. Task decomposition: a framework for comparing diverse training models in human brain plasticity studies.

    PubMed

    Coffey, Emily B J; Herholz, Sibylle C

    2013-01-01

    Training studies, in which the structural or functional neurophysiology is compared before and after expertise is acquired, are increasingly being used as models for understanding the human brain's potential for reorganization. It is proving difficult to use these results to answer basic and important questions like how task training leads to both specific and general changes in behavior and how these changes correspond with modifications in the brain. The main culprit is the diversity of paradigms used as complex task models. An assortment of activities ranging from juggling to deciphering Morse code has been reported. Even when working in the same general domain, few researchers use similar training models. New ways to meaningfully compare complex tasks are needed. We propose a method for characterizing and deconstructing the task requirements of complex training paradigms, which is suitable for application to both structural and functional neuroimaging studies. We believe this approach will aid brain plasticity research by making it easier to compare training paradigms, identify "missing puzzle pieces," and encourage researchers to design training protocols to bridge these gaps. PMID:24115927

  8. Synthesis of Research on Brain Plasticity: The Classroom Environment and Curriculum Enrichment.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1986-01-01

    Outlines research findings on enriched environment investigations on the development of the brain's neocortex. Although the research has been conducted on animal brains, researchers expect to find related patterns in plasticity in humans. The research is important to educators as it challenges them to define, create, and maintain an emotionally…

  9. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  10. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  11. Dolichol alters brain membrane functions

    SciTech Connect

    Sun, G.Y.; Sun, A.Y.; Schroeder, F.; Wood, G.; Strong, R.

    1986-03-05

    It has been well demonstrated that there is a direct correlation between increase in dolichol level in brain and aging. An abnormally high level of dolichol was found in brain tissue of patients with pathological aging disorders. The aim of this study is to examine the physiological significance of dolichol affecting membrane transport activity and phospholipid acyl group turnover. Dolichol added to synaptic plasma membranes resulted in a biphasic effect on (Na/sup +/, K/sup +/)-ATPase, i.e., an enhancement of activity at low concentrations (5 ..mu..g/125 mg protein) and an inhibition of activity at high concentrations (40-100 ..mu..g). To probe the membrane acyl group turnover, the incorporation of (/sup 14/C)-arachidonate into plasma membrane phospholipids was examined in the presence and absence of dolichol. Dolichol elicited an increase in the incorporation of label into phospholipids. However, the effects varied depending on whether BSA is present. In the absence of BSA, the increase in labeling of phosphatidylinositols is higher than that of phosphatidylcholines. These results suggest that dolichols, when inserted into membranes, may alter membrane functions.

  12. Rehabilitative Interventions and Brain Plasticity in Autism Spectrum Disorders: Focus on MRI-Based Studies.

    PubMed

    Calderoni, Sara; Billeci, Lucia; Narzisi, Antonio; Brambilla, Paolo; Retico, Alessandra; Muratori, Filippo

    2016-01-01

    Clinical and research evidence supports the efficacy of rehabilitative intervention for improving targeted skills or global outcomes in individuals with autism spectrum disorder (ASD). However, putative mechanisms of structural and functional brain changes are poorly understood. This review aims to investigate the research literature on the neural circuit modifications after non-pharmacological intervention. For this purpose, longitudinal studies that used magnetic resonance imaging (MRI)-based techniques at the start and at the end of the trial to evaluate the neural effects of rehabilitative treatment in subjects with ASD were identified. The six included studies involved a limited number of patients in the active group (from 2 to 16), and differed by acquisition method (task-related and resting-state functional MRI) as well as by functional MRI tasks. Overall, the results produced by the selected investigations demonstrated brain plasticity during the treatment interval that results in an activation/functional connectivity more similar to those of subjects with typical development (TD). Repeated MRI evaluation may represent a promising tool for the detection of neural changes in response to treatment in patients with ASD. However, large-scale randomized controlled trials after standardized rehabilitative intervention are required before translating these preliminary results into clinical use. PMID:27065795

  13. Rehabilitative Interventions and Brain Plasticity in Autism Spectrum Disorders: Focus on MRI-Based Studies

    PubMed Central

    Calderoni, Sara; Billeci, Lucia; Narzisi, Antonio; Brambilla, Paolo; Retico, Alessandra; Muratori, Filippo

    2016-01-01

    Clinical and research evidence supports the efficacy of rehabilitative intervention for improving targeted skills or global outcomes in individuals with autism spectrum disorder (ASD). However, putative mechanisms of structural and functional brain changes are poorly understood. This review aims to investigate the research literature on the neural circuit modifications after non-pharmacological intervention. For this purpose, longitudinal studies that used magnetic resonance imaging (MRI)-based techniques at the start and at the end of the trial to evaluate the neural effects of rehabilitative treatment in subjects with ASD were identified. The six included studies involved a limited number of patients in the active group (from 2 to 16), and differed by acquisition method (task-related and resting-state functional MRI) as well as by functional MRI tasks. Overall, the results produced by the selected investigations demonstrated brain plasticity during the treatment interval that results in an activation/functional connectivity more similar to those of subjects with typical development (TD). Repeated MRI evaluation may represent a promising tool for the detection of neural changes in response to treatment in patients with ASD. However, large-scale randomized controlled trials after standardized rehabilitative intervention are required before translating these preliminary results into clinical use. PMID:27065795

  14. Two is More Than One: How to Combine Brain Stimulation Rehabilitative Training for Functional Recovery?

    PubMed Central

    Koganemaru, Satoko; Fukuyama, Hidenao; Mima, Tatsuya

    2015-01-01

    A number of studies have shown that non-invasive brain stimulation has an additional effect in combination with rehabilitative therapy to enhance functional recovery than either therapy alone. The combination enhances use-dependent plasticity induced by repetitive training. The neurophysiological mechanism of the effects of this combination is based on associative plasticity. However, these effects were not reported in all cases. We propose a list of possible strategies to achieve an effective association between rehabilitative training with brain stimulation for plasticity: (1) control of temporal aspect between stimulation and task execution; (2) the use of a shaped task for the combination; (3) the appropriate stimulation of neuronal circuits where use-dependent plastic changes occur; and (4) phase synchronization between rhythmically patterned brain stimulation and task-related patterned activities of neurons. To better utilize brain stimulation in neuro-rehabilitation, it is important to develop more effective techniques to combine them. PMID:26617497

  15. Musicians and music making as a model for the study of brain plasticity.

    PubMed

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. PMID:25725909

  16. Musicians and music making as a model for the study of brain plasticity

    PubMed Central

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician’s lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. PMID:25725909

  17. Complement emerges as a masterful regulator of CNS homeostasis, neural synaptic plasticity and cognitive function.

    PubMed

    Mastellos, Dimitrios C

    2014-11-01

    Growing evidence points to a previously elusive role of complement-modulated pathways in CNS development, neurogenesis and synaptic plasticity. Distinct complement effectors appear to play a multifaceted role in brain homeostasis by regulating synaptic pruning in the retinogeniculate system and sculpting functional neural circuits both in the developing and adult mammalian brain. A recent study by Perez-Alcazar et al. (2014) provides novel insights into this intricate interplay between complement and the dynamically regulated brain synaptic circuitry, by reporting that mice deficient in C3 exhibit enhanced hippocampus-dependent spatial learning and cognitive performance. This behavioral pattern is associated with an impact of C3 on the functional capacity of glutamatergic synapses, supporting a crucial role for complement in excitatory synapse elimination in the hippocampus. These findings add a fresh twist to this rapidly evolving research field, suggesting that discrete complement components may differentially modulate synaptic connectivity by wiring up with diverse neural effectors in different regions of the brain. The emerging role of complement in synaptogenesis and neural network plasticity opens new conceptual avenues for considering complement interception as a potential therapeutic modality for ameliorating progressive cognitive impairment in age-related, debilitating brain diseases with a prominent inflammatory signature. PMID:24975369

  18. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    NASA Technical Reports Server (NTRS)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  19. Promoting Motor Function by Exercising the Brain

    PubMed Central

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects’ motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson’s patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  20. Promoting motor function by exercising the brain.

    PubMed

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects' motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson's patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  1. Music mnemonics aid Verbal Memory and Induce Learning - Related Brain Plasticity in Multiple Sclerosis.

    PubMed

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey's auditory verbal learning test. We defined the "learning-related synchronization" (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances "deep encoding" during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  2. Music mnemonics aid Verbal Memory and Induce Learning – Related Brain Plasticity in Multiple Sclerosis

    PubMed Central

    Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  3. The brain timewise: how timing shapes and supports brain function

    PubMed Central

    Hari, Riitta; Parkkonen, Lauri

    2015-01-01

    We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function. PMID:25823867

  4. Right ventricular plasticity and functional imaging

    PubMed Central

    Brittain, Evan L.; Hemnes, Anna R.; Keebler, Mary; Lawson, Mark; Byrd, Benjamin F.; DiSalvo, Tom

    2012-01-01

    Right ventricular (RV) function is a strong independent predictor of outcome in a number of distinct cardiopulmonary diseases. The RV has a remarkable ability to sustain damage and recover function which may be related to unique anatomic, physiologic, and genetic factors that differentiate it from the left ventricle. This capacity has been described in patients with RV myocardial infarction, pulmonary arterial hypertension, and chronic thromboembolic disease as well as post-lung transplant and post-left ventricular assist device implantation. Various echocardiographic and magnetic resonance imaging parameters of RV function contribute to the clinical assessment and predict outcomes in these patients; however, limitations remain with these techniques. Early diagnosis of RV function and better insight into the mechanisms of RV recovery could improve patient outcomes. Further refinement of established and emerging imaging techniques is necessary to aid subclinical diagnosis and inform treatment decisions. PMID:23130100

  5. Functional Data Analysis in Brain Imaging Studies

    PubMed Central

    Tian, Tian Siva

    2010-01-01

    Functional data analysis (FDA) considers the continuity of the curves or functions, and is a topic of increasing interest in the statistics community. FDA is commonly applied to time-series and spatial-series studies. The development of functional brain imaging techniques in recent years made it possible to study the relationship between brain and mind over time. Consequently, an enormous amount of functional data is collected and needs to be analyzed. Functional techniques designed for these data are in strong demand. This paper discusses three statistically challenging problems utilizing FDA techniques in functional brain imaging analysis. These problems are dimension reduction (or feature extraction), spatial classification in functional magnetic resonance imaging studies, and the inverse problem in magneto-encephalography studies. The application of FDA to these issues is relatively new but has been shown to be considerably effective. Future efforts can further explore the potential of FDA in functional brain imaging studies. PMID:21833205

  6. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, Andr; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  7. Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions

    PubMed Central

    Vollmann, Henning; Taubert, Marco; Sehm, Bernhard; Cohen, Leonardo G.; Villringer, Arno; Ragert, Patrick

    2013-01-01

    Spike timing-dependent plasticity (STDP) has been proposed as one of the key mechanisms underlying learning and memory. Repetitive median nerve stimulation, followed by transcranial magnetic stimulation (TMS) of the contralateral primary motor cortex (M1), defined as paired-associative stimulation (PAS), has been used as an in vivo model of STDP in humans. PAS-induced excitability changes in M1 have been repeatedly shown to be time-dependent in a STDP-like fashion, since synchronous arrival of inputs within M1 induces long-term potentiation-like effects, whereas an asynchronous arrival induces long-term depression (LTD)-like effects. Here, we show that interhemispheric inhibition of the sensorimotor network during PAS, with the peripheral stimulation over the hand ipsilateral to the motor cortex receiving TMS, results in a LTD-like effect, as opposed to the standard STDP-like effect seen for contralateral PAS. Furthermore, we could show that this reversed-associative plasticity critically depends on the timing interval between afferent and cortical stimulation. These results indicate that the outcome of associative stimulation in the human brain depends on functional network interactions (inhibition or facilitation) at a systems level and can either follow standard or reversed STDP-like mechanisms. PMID:23407353

  8. Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions.

    PubMed

    Conde, Virginia; Vollmann, Henning; Taubert, Marco; Sehm, Bernhard; Cohen, Leonardo G; Villringer, Arno; Ragert, Patrick

    2013-05-01

    Spike timing-dependent plasticity (STDP) has been proposed as one of the key mechanisms underlying learning and memory. Repetitive median nerve stimulation, followed by transcranial magnetic stimulation (TMS) of the contralateral primary motor cortex (M1), defined as paired-associative stimulation (PAS), has been used as an in vivo model of STDP in humans. PAS-induced excitability changes in M1 have been repeatedly shown to be time-dependent in a STDP-like fashion, since synchronous arrival of inputs within M1 induces long-term potentiation-like effects, whereas an asynchronous arrival induces long-term depression (LTD)-like effects. Here, we show that interhemispheric inhibition of the sensorimotor network during PAS, with the peripheral stimulation over the hand ipsilateral to the motor cortex receiving TMS, results in a LTD-like effect, as opposed to the standard STDP-like effect seen for contralateral PAS. Furthermore, we could show that this reversed-associative plasticity critically depends on the timing interval between afferent and cortical stimulation. These results indicate that the outcome of associative stimulation in the human brain depends on functional network interactions (inhibition or facilitation) at a systems level and can either follow standard or reversed STDP-like mechanisms. PMID:23407353

  9. Bioengineered functional brain-like cortical tissue

    PubMed Central

    Tang-Schomer, Min D.; White, James D.; Tien, Lee W.; Schmitt, L. Ian; Valentin, Thomas M.; Graziano, Daniel J.; Hopkins, Amy M.; Omenetto, Fiorenzo G.; Haydon, Philip G.; Kaplan, David L.

    2014-01-01

    The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury. PMID:25114234

  10. The development of Human Functional Brain Networks

    PubMed Central

    Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L

    2010-01-01

    Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306

  11. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  12. Plastic neuroscience: studying what the brain cares about

    PubMed Central

    Dumit, Joseph

    2014-01-01

    Drawing on Allan Newell's “You can't play 20 questions with nature and win,” this article proposes that neuroscience needs to go beyond binary hypothesis testing and design experiments that follow what neurons care about. Examples from Lettvin et. al. are used to demonstrate that one can experimentally play with neurons and generate surprising results. In this manner, brains are not confused with persons, rather, persons are understood to do things with their brains. PMID:24795589

  13. Pulmonary functions in plastic factory workers: a preliminary study.

    TOXLINE Toxicology Bibliographic Information

    Khaliq F; Singh P; Chandra P; Gupta K; Vaney N

    2011-01-01

    Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.

  14. Pulmonary functions in plastic factory workers: a preliminary study.

    PubMed

    Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam

    2011-01-01

    Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection. PMID:22315811

  15. Exercise-mimetic AICAR transiently benefits brain function.

    PubMed

    Guerrieri, Davide; van Praag, Henriette

    2015-07-30

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function. PMID:26286955

  16. Exercise-mimetic AICAR transiently benefits brain function

    PubMed Central

    Guerrieri, Davide; van Praag, Henriette

    2015-01-01

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function. PMID:26286955

  17. Brain Function: Implications for Schooling.

    ERIC Educational Resources Information Center

    Edwards, Clifford H.

    1982-01-01

    The implications of cerebral dominance for curriculum and instruction are enormous. Cognitive style, sex differences, instructional materials preparation and selection, and testing are affected by right or left brain hemisphere dominance. (CJ)

  18. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases. PMID:25890884

  19. Effects of plasticizers and plastic bags on granulocyte function during storage.

    PubMed

    Miyamoto, M; Sasakawa, S

    1987-01-01

    The influence of the plasticizers, di-(2-ethylhexyl)phthalate (DEHP) and tri-(2-ethylhexyl)trimellitate (TOTM), on granulocyte function was examined. Polyvinyl chloride (PVC) bags with DEHP (DEHP-PVC) leaked DEHP into plasma, but TOTM did not dissolve in plasma under the same conditions. Glow discharge treatment inhibited the leakage of DEHP from DEHP-PVC bags. Depending on the amount of DEHP added into granulocyte suspension, chemotaxis and bactericidal activity decreased, but cell counts and phagocytosis were not affected. During storage for 24 h at 22 degrees C, granulocyte function decreased greatly in DEHP-PVC, but was well maintained in the bags which did not leak plasticizers, TOTM-PVC and glow-discharged DEHP-PVC. PMID:3660766

  20. Brain lateralization and neural plasticity for musical and cognitive abilities in an epileptic musician

    PubMed Central

    Trujillo-Pozo, Isabel; Martín-Monzón, Isabel; Rodríguez-Romero, Rafael

    2013-01-01

    The use of intracarotid propofol procedure (IPP) when assessing musical lateralization has not been reported in literature up to now. This procedure (similar to Wada Test) has provided the opportunity to investigate not only lateralization of language and memory functions on epileptic patients but also offers a functional mapping approach with superior spatial and temporal resolution to analyze the lateralization of musical abilities. Findings in literature suggest that musical training modifies functional and structural brain organization. We studied hemispheric lateralization in a professional musician, a 33 years old woman with refractory left medial temporal lobe (MTL) epilepsy (TLE). A longitudinal neuropsychological study was performed over a period of 21 months. Before epilepsy surgery, musical abilities, language and memory were tested during IPP by means of a novel and exhaustive neuropsychological battery focusing on the processing of music. We used a selection of stimuli to analyze listening, score reading, and tempo discrimination. Our results suggested that IPP is an excellent method to determine not only language, semantic, and episodic memory, but also musical dominance in a professional musician who may be candidate for epilepsy surgery. Neuropsychological testing revealed that right hemisphere's patient is involved in semantic and episodic musical memory processes, whereas her score reading and tempo processing require contribution from both hemispheres. At one-year follow-up, outcome was excellent with respect to seizures and professional skills, meanwhile cognitive abilities improved. These findings indicate that IPP helps to predict who might be at risk for postoperative musical, language, and memory deficits after epilepsy surgery. Our research suggests that musical expertise and epilepsy critically modifies long-term memory processes and induces brain structural and functional plasticity. PMID:24367312

  1. Cortical plasticity and preserved function in early blindness.

    PubMed

    Renier, Laurent; De Volder, Anne G; Rauschecker, Josef P

    2014-04-01

    The "neural Darwinism" theory predicts that when one sensory modality is lacking, as in congenital blindness, the target structures are taken over by the afferent inputs from other senses that will promote and control their functional maturation (Edelman, 1993). This view receives support from both cross-modal plasticity experiments in animal models and functional imaging studies in man, which are presented here. PMID:23453908

  2. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity

    PubMed Central

    Sadeh, Sadra; Clopath, Claudia; Rotter, Stefan

    2015-01-01

    In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity. PMID:26090844

  3. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.

    PubMed

    Sadeh, Sadra; Clopath, Claudia; Rotter, Stefan

    2015-06-01

    In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity. PMID:26090844

  4. Brain Plasticity and the Art of Teaching to Learn

    ERIC Educational Resources Information Center

    Martinez, Margaret

    2005-01-01

    "Everyone thinks of changing the world, but no one thinks of changing himself, "wrote Leo Tolstoy. Have you ever thought about how learning changes your brain? If yes, this paper may help you explore the research that will change our learning landscape in the next few years! Recent developers in the neurosciences and education research

  5. Brain Plasticity and the Art of Teaching to Learn

    ERIC Educational Resources Information Center

    Martinez, Margaret

    2005-01-01

    "Everyone thinks of changing the world, but no one thinks of changing himself, "wrote Leo Tolstoy. Have you ever thought about how learning changes your brain? If yes, this paper may help you explore the research that will change our learning landscape in the next few years! Recent developers in the neurosciences and education research…

  6. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the

  7. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  8. Perspectives of TRPV1 Function on the Neurogenesis and Neural Plasticity

    PubMed Central

    Ramírez-Barrantes, R.; Cordova, C.; Poblete, H.; Muñoz, P.; Marchant, I.; Wianny, F.; Olivero, P.

    2016-01-01

    The development of new strategies to renew and repair neuronal networks using neural plasticity induced by stem cell graft could enable new therapies to cure diseases that were considered lethal until now. In adequate microenvironment a neuronal progenitor must receive molecular signal of a specific cellular context to determine fate, differentiation, and location. TRPV1, a nonselective calcium channel, is expressed in neurogenic regions of the brain like the subgranular zone of the hippocampal dentate gyrus and the telencephalic subventricular zone, being valuable for neural differentiation and neural plasticity. Current data show that TRPV1 is involved in several neuronal functions as cytoskeleton dynamics, cell migration, survival, and regeneration of injured neurons, incorporating several stimuli in neurogenesis and network integration. The function of TRPV1 in the brain is under intensive investigation, due to multiple places where it has been detected and its sensitivity for different chemical and physical agonists, and a new role of TRPV1 in brain function is now emerging as a molecular tool for survival and control of neural stem cells. PMID:26881090

  9. Margaret Kennard (1899-1975): not a 'principle' of brain plasticity but a founding mother of developmental neuropsychology.

    PubMed

    Dennis, Maureen

    2010-09-01

    According to the 'Kennard Principle', there is a negative linear relation between age at brain injury and functional outcome. Other things being equal, the younger the lesioned organism, the better the outcome. But the 'Kennard Principle' is neither Kennard's nor a principle. In her work, Kennard sought to explain the factors that predicted functional outcome (age, to be sure, but also staging, laterality, location, and number of brain lesions, and outcome domain) and the neural mechanisms that altered the lesioned brain's functionality. This paper discusses Kennard's life and years at Yale (1931-1943); considers the genesis and scope of her work on early-onset brain lesions, which represents an empirical and theoretical foundation for current developmental neuropsychology; offers an historical explanation of why the 'Kennard Principle' emerged in the context of early 1970s work on brain plasticity; shows why uncritical belief in the 'Kennard Principle' continues to shape current research and practice; and reviews the continuing importance of her work. PMID:20079891

  10. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    PubMed

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores. PMID:26803657

  11. Anatomical Correlates of Functional Plasticity in Mouse Visual Cortex

    PubMed Central

    Antonini, Antonella; Fagiolini, Michela; Stryker, Michael P.

    2008-01-01

    Much of what is known about activity-dependent plasticity comes from studies of the primary visual cortex and its inputs in higher mammals, but the molecular bases remain largely unknown. Similar functional plasticity takes place during a critical period in the visual cortex of the mouse, an animal in which genetic experiments can readily be performed to investigate the underlying molecular and cellular events. The experiments of this paper were directed toward understanding whether anatomical changes accompany functional plasticity in the developing visual cortex of the mouse, as they do in higher mammals. In normal mice, transneuronal label after an eye injection clearly delineated the monocular and binocular zones of area 17. Intrinsic signal optical imaging also showed monocular and binocular zones of area 17 but revealed no finer organization of ocular dominance or orientation selectivity. In normal animals, single geniculocortical afferents serving the contralateral eye showed great heterogeneity and no clustering consistent with the presence of ocular dominance patches. Growth and elaboration of terminal arbor continues beyond postnatal day 40 (P40), after the peak of the critical period. After prolonged monocular deprivation (MD) from P20 to P60, transneuronal labeling showed that the projection serving the ipsilateral eye was severely affected, whereas the effect on the contralateral eye's pathway was inconsistent. Optical imaging also showed profound effects of deprivation, particularly in the ipsilateral pathway, and microelectrode studies confirmed continued functional plasticity past P40. Reconstruction of single afferents showed that MD from P20 to P40 promoted the growth of the open eye's geniculocortical connections without causing the closed eye's contralateral projection to shrink, whereas MD from P20 to P60 caused an arrest of growth of deprived arbors. Our findings reveal numerous similarities between mouse and higher mammals in development and plasticity, along with some differences. We discuss the factors that may be responsible for these differences. PMID:10341241

  12. Prentice Award Lecture 2011: Removing the Brakes on Plasticity in the Amblyopic Brain

    PubMed Central

    Levi, Dennis M.

    2012-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the “brakes” that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to re-consider our notions about neural plasticity in amblyopia. PMID:22581119

  13. Prentice award lecture 2011: removing the brakes on plasticity in the amblyopic brain.

    PubMed

    Levi, Dennis M

    2012-06-01

    Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the "brakes" that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However, new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia. PMID:22581119

  14. Impact of fatty acids on brain circulation, structure and function.

    PubMed

    Haast, Roy A M; Kiliaan, Amanda J

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of brain health is increasingly endorsed across epidemiological and diet-interventional studies. Promising results are found regarding to the protection of proper brain circulation, structure and functionality in healthy and diseased humans and animal models. These include enhanced cerebral blood flow (CBF), white and gray matter integrity, and improved cognitive functioning, and are possibly mediated through increased neurovascular coupling, neuroprotection and neuronal plasticity, respectively. Contrary, studies investigating diets high in saturated fats provide opposite results, which may eventually lead to irreversible damage. Studies like these are of great importance given the high incidence of obesity caused by the increased and decreased consumption of respectively saturated fats and ω3-LCPUFAs in the Western civilization. This paper will review in vivo research conducted on the effects of ω3-LCPUFAs and saturated fatty acids on integrity (circulation, structure and function) of the young, aging and diseased brain. PMID:24485516

  15. Preventive brain radio-chemotherapy alters plasticity associated metabolite profile in the hippocampus but seems to not affect spatial memory in young leukemia patients

    PubMed Central

    Brandt, Moritz D; Brandt, Kalina; Werner, Annett; Schönfeld, Robby; Loewenbrück, Kai; Donix, Markus; Schaich, Markus; Bornhäuser, Martin; von Kummer, Rüdiger; Leplow, Bernd; Storch, Alexander

    2015-01-01

    Background Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. Methods To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy (1H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. Results CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in 1H-MRS. Conclusion Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that 1H-MRS allows the detection of neurogenesis-associated plasticity in the human brain. PMID:26442754

  16. Longitudinal fMRI studies: Exploring brain plasticity and repair in MS.

    PubMed

    Enzinger, Christian; Pinter, Daniela; Rocca, Maria A; De Luca, John; Sastre-Garriga, Jaume; Audoin, Bertrand; Filippi, Massimo

    2016-03-01

    Functional magnetic resonance imaging (fMRI) has greatly advanced our understanding of cerebral functional changes occurring in patients with multiple sclerosis (MS). However, most of our knowledge regarding brain plasticity and repair in MS as evidenced by fMRI has been extrapolated from cross-sectional studies across different phenotypes of the disease. This topical review provides an overview of this research, but also highlights limitations of existing fMRI studies with cross-sectional design. We then review the few existing longitudinal fMRI studies and discuss the feasibility and constraints of serial fMRI in individuals with MS. We further emphasize the potential to track fMRI changes in evolving disease and the insights this may give in terms of mechanisms of adaptation and repair, focusing on serial fMRI to monitor response to disease-modifying therapies or rehabilitation interventions. Finally, we offer recommendations for designing future research studies to overcome previous methodological shortcomings. PMID:26683590

  17. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function

    PubMed Central

    Licheri, Valentina; Talani, Giuseppe; Gorule, Ashish A.; Mostallino, Maria Cristina; Biggio, Giovanni; Sanna, Enrico

    2015-01-01

    Pregnancy needs complex pathways that together play a role in proper growth and protection of the fetus preventing its premature loss. Changes during pregnancy and postpartum period include the manifold machinery of neuroactive steroids that plays a crucial role in neuronal excitability by local modulation of specific inhibitory receptors: the GABAA receptors. Marked fluctuations in both blood and brain concentration of neuroactive steroids strongly contribute to GABAA receptor function and plasticity. In this review, we listed several interesting results regarding the regulation and plasticity of GABAA receptor function during pregnancy and postpartum period in rats. The increase in brain levels of neuroactive steroids during pregnancy and their sudden decrease immediately before delivery are causally related to changes in the expression/function of specific GABAA receptor subunits in the hippocampus. These data suggest that alterations in GABAA receptor expression and function may be related to neurological and psychiatric disorders associated with crucial periods in women. These findings could help to provide potential new treatments for these women's disabling syndromes. PMID:26413323

  18. White matter in the older brain is more plastic than in the younger brain

    PubMed Central

    Yotsumoto, Yuko; Chang, Li-Hung; Ni, Rui; Pierce, Russell; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2014-01-01

    Visual perceptual learning (VPL) with younger subjects is associated with changes in functional activation of the early visual cortex. Although overall brain properties decline with age, it is unclear whether these declines are associated with visual perceptual learning. Here we use diffusion tensor imaging to test whether changes in white matter are involved in VPL for older adults. After training on a texture discrimination task for 3 daily sessions, both older and younger subjects show performance improvements. While the older subjects show significant changes in fractional anisotropy (FA) in the white matter beneath the early visual cortex after training, no significant change in FA is observed for younger subjects. These results suggest that the mechanism for VPL in older individuals is considerably different from that in younger individuals and that VPL of older individuals involves re-organization of white matter. PMID:25407566

  19. Margaret Kennard (1899–1975): Not a ‘Principle’ of Brain Plasticity But a Founding Mother of Developmental Neuropsychology

    PubMed Central

    Dennis, Maureen

    2009-01-01

    According to the ‘Kennard Principle’, there is a negative linear relation between age at brain injury and functional outcome. Other things being equal, the younger the lesioned organism, the better the outcome. But the ‘Kennard Principle’ is neither Kennard’s nor a principle. In her work, Kennard sought to explain the factors that predicted functional outcome (age, to be sure, but also staging, laterality, location, and number of brain lesions, and outcome domain) and the neural mechanisms that altered the lesioned brain’s functionality. This paper discusses Kennard’s life and years at Yale (1931–1943); considers the genesis and scope of her work on early-onset brain lesions, which represents an empirical and theoretical foundation for current developmental neuropsychology; offers an historical explanation of why the ‘Kennard Principle’ emerged in the context of early 1970s work on brain plasticity; shows why uncritical belief in the ‘Kennard Principle’ continues to shape current research and practice; and reviews the continuing importance of her work. PMID:20079891

  20. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    PubMed Central

    Villiger, Michael; Grabher, Patrick; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Curt, Armin; Bolliger, Marc; Hotz-Boendermaker, Sabina; Kollias, Spyros; Eng, Kynan; Freund, Patrick

    2015-01-01

    Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16–20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3–4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training. PMID:25999842

  1. An allosteric model for the functional plasticity of olfactory chemoreceptors

    NASA Astrophysics Data System (ADS)

    Colosimo, Alfredo

    2000-12-01

    A simple allosteric model may describe the relatively (a)specific behaviour of olfactory chemoreceptors (OCs) and their functional plasticity with a minimum number of parameters. Allosteric, heterotropic effectors are suggested as a possible cause of variable responses documented, in particular, in frog OCs. As an immediate spinoff of the continuously increasing amount of structural information available on natural OCs, development of appropriate allosteric models is foreseen to provide plausible molecular mechanisms for their complex functional performance. This may also have implications in the design of artificial olfaction systems.

  2. Nitroxy/azido-functionalized triazoles as potential energetic plasticizers.

    PubMed

    Tang, Yongxing; Shreeve, Jean'ne M

    2015-05-01

    The synthesis of a series of nitroxy- and azido-functionalized compounds, based on 4-amino-3,5-di(hydroxymethyl)-1,2,4-triazole, for possible use as an energetic plasticizers is described. All compounds were fully characterized. Two of them were further confirmed by X-ray single crystal diffraction. Energetic performance was calculated by using EXPLO5 v6.01 based on calculated heats of formation (Gaussian 03) and experimentally determined densities at 25?C. The results show that the nitration product 1-nitro-3,5-di(nitroxymethyl)-1,2,4-triazole, containing a nitro group and two nitroxy groups, exhibits good detonation properties (D=8574?m?s(-1) , P=32.7?GPa). In addition, its low melting point makes it very attractive as an energetic plasticizer in solid propellants. PMID:25801532

  3. Toward discovery science of human brain function.

    PubMed

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Ktter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID:20176931

  4. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized. PMID:17234291

  5. [Anesthetic mechanisms revealed by functional brain imaging].

    PubMed

    Kurata, Jiro

    2011-05-01

    Recent advancement in functional brain imaging techniques has revealed much of the global effects of general anesthetics on the human brain. General anesthetics preferentially suppress specific brain areas including the parietal association cortex and the thalamus, part of which appears to mirror the default mode network. Low-level sensory areas are relatively preserved and remain activated even under deep sedation by anesthetics. Functional connectivity analysis by resting-state functional magnetic resonance imaging has shown that general anesthetics moderately suppress functional connectivity of the default mode network. Midazolam-induced loss of consciousness is associated with remarkable suppression of cortico-cortical propagation of evoked currents. Overall, those results prompt us to hypothesize that general anesthetics induce loss of consciousness by disrupting the integrative properties of the cerebral cortex. PMID:21626860

  6. Brain Connectivity Plasticity in the Motor Network after Ischemic Stroke

    PubMed Central

    Jiang, Lin; Xu, Huijuan

    2013-01-01

    The motor function is controlled by the motor system that comprises a series of cortical and subcortical areas interacting via anatomical connections. The motor function will be disturbed when the stroke lesion impairs either any of these areas or their connections. More and more evidence indicates that the reorganization of the motor network including both areas and their anatomical and functional connectivity might contribute to the motor recovery after stroke. Here, we review recent studies employing models of anatomical, functional, and effective connectivity on neuroimaging data to investigate how ischemic stroke influences the connectivity of motor areas and how changes in connectivity relate to impaired function and functional recovery. We suggest that connectivity changes constitute an important pathophysiological aspect of motor impairment after stroke and important mechanisms of motor recovery. We also demonstrate that therapeutic interventions may facilitate motor recovery after stroke by modulating the connectivity among the motor areas. In conclusion, connectivity analyses improved our understanding of the mechanisms of motor recovery after stroke and may help to design hypothesis-driven treatment strategies and sensitive measures for outcome prediction in stroke patients. PMID:23738150

  7. Prospects for Optogenetic Augmentation of Brain Function.

    PubMed

    Jarvis, Sarah; Schultz, Simon R

    2015-01-01

    The ability to optically control neural activity opens up possibilities for the restoration of normal function following neurological disorders. The temporal precision, spatial resolution, and neuronal specificity that optogenetics offers is unequalled by other available methods, so will it be suitable for not only restoring but also extending brain function? As the first demonstrations of optically "implanted" novel memories emerge, we examine the suitability of optogenetics as a technique for extending neural function. While optogenetics is an effective tool for altering neural activity, the largest impediment for optogenetics in neural augmentation is our systems level understanding of brain function. Furthermore, a number of clinical limitations currently remain as substantial hurdles for the applications proposed. While neurotechnologies for treating brain disorders and interfacing with prosthetics have advanced rapidly in the past few years, partially addressing some of these critical problems, optogenetics is not yet suitable for use in humans. Instead we conclude that for the immediate future, optogenetics is the neurological equivalent of the 3D printer: its flexibility providing an ideal tool for testing and prototyping solutions for treating brain disorders and augmenting brain function. PMID:26635547

  8. Prospects for Optogenetic Augmentation of Brain Function

    PubMed Central

    Jarvis, Sarah; Schultz, Simon R.

    2015-01-01

    The ability to optically control neural activity opens up possibilities for the restoration of normal function following neurological disorders. The temporal precision, spatial resolution, and neuronal specificity that optogenetics offers is unequalled by other available methods, so will it be suitable for not only restoring but also extending brain function? As the first demonstrations of optically “implanted” novel memories emerge, we examine the suitability of optogenetics as a technique for extending neural function. While optogenetics is an effective tool for altering neural activity, the largest impediment for optogenetics in neural augmentation is our systems level understanding of brain function. Furthermore, a number of clinical limitations currently remain as substantial hurdles for the applications proposed. While neurotechnologies for treating brain disorders and interfacing with prosthetics have advanced rapidly in the past few years, partially addressing some of these critical problems, optogenetics is not yet suitable for use in humans. Instead we conclude that for the immediate future, optogenetics is the neurological equivalent of the 3D printer: its flexibility providing an ideal tool for testing and prototyping solutions for treating brain disorders and augmenting brain function. PMID:26635547

  9. Lrp4 Domains Differentially Regulate Limb/Brain Development and Synaptic Plasticity

    PubMed Central

    Pohlkamp, Theresa; Durakoglugil, Murat; Lane-Donovan, Courtney; Xian, Xunde; Johnson, Eric B.; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer’s Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development. PMID:25688974

  10. Evidence for training-induced plasticity in multisensory brain structures: an MEG study.

    PubMed

    Paraskevopoulos, Evangelos; Kuchenbuch, Anja; Herholz, Sibylle C; Pantev, Christo

    2012-01-01

    Multisensory learning and resulting neural brain plasticity have recently become a topic of renewed interest in human cognitive neuroscience. Music notation reading is an ideal stimulus to study multisensory learning, as it allows studying the integration of visual, auditory and sensorimotor information processing. The present study aimed at answering whether multisensory learning alters uni-sensory structures, interconnections of uni-sensory structures or specific multisensory areas. In a short-term piano training procedure musically naive subjects were trained to play tone sequences from visually presented patterns in a music notation-like system [Auditory-Visual-Somatosensory group (AVS)], while another group received audio-visual training only that involved viewing the patterns and attentively listening to the recordings of the AVS training sessions [Auditory-Visual group (AV)]. Training-related changes in cortical networks were assessed by pre- and post-training magnetoencephalographic (MEG) recordings of an auditory, a visual and an integrated audio-visual mismatch negativity (MMN). The two groups (AVS and AV) were differently affected by the training. The results suggest that multisensory training alters the function of multisensory structures, and not the uni-sensory ones along with their interconnections, and thus provide an answer to an important question presented by cognitive models of multisensory training. PMID:22570723

  11. Adaptive Motor Imagery: A Multimodal Study of Immobilization-Induced Brain Plasticity.

    PubMed

    Burianová, Hana; Sowman, Paul F; Marstaller, Lars; Rich, Anina N; Williams, Mark A; Savage, Greg; Al-Janabi, Shahd; de Lissa, Peter; Johnson, Blake W

    2016-03-01

    The consequences of losing the ability to move a limb are traumatic. One approach that examines the impact of pathological limb nonuse on the brain involves temporary immobilization of a healthy limb. Here, we investigated immobilization-induced plasticity in the motor imagery (MI) circuitry during hand immobilization. We assessed these changes with a multimodal paradigm, using functional magnetic resonance imaging (fMRI) to measure neural activation, magnetoencephalography (MEG) to track neuronal oscillatory dynamics, and transcranial magnetic stimulation (TMS) to assess corticospinal excitability. fMRI results show a significant decrease in neural activation for MI of the constrained hand, localized to sensorimotor areas contralateral to the immobilized hand. MEG results show a significant decrease in beta desynchronization and faster resynchronization in sensorimotor areas contralateral to the immobilized hand. TMS results show a significant increase in resting motor threshold in motor cortex contralateral to the constrained hand, suggesting a decrease in corticospinal excitability in the projections to the constrained hand. These results demonstrate a direct and rapid effect of immobilization on MI processes of the constrained hand, suggesting that limb nonuse may not only affect motor execution, as evidenced by previous studies, but also MI. These findings have important implications for the effectiveness of therapeutic approaches that use MI as a rehabilitation tool to ameliorate the negative effects of limb nonuse. PMID:25477368

  12. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation

    PubMed Central

    Webb, Alexandra R.; Heller, Howard T.; Benson, Carol B.; Lahav, Amir

    2015-01-01

    Brain development is largely shaped by early sensory experience. However, it is currently unknown whether, how early, and to what extent the newborn’s brain is shaped by exposure to maternal sounds when the brain is most sensitive to early life programming. The present study examined this question in 40 infants born extremely prematurely (between 25- and 32-wk gestation) in the first month of life. Newborns were randomized to receive auditory enrichment in the form of audio recordings of maternal sounds (including their mother’s voice and heartbeat) or routine exposure to hospital environmental noise. The groups were otherwise medically and demographically comparable. Cranial ultrasonography measurements were obtained at 30 ± 3 d of life. Results show that newborns exposed to maternal sounds had a significantly larger auditory cortex (AC) bilaterally compared with control newborns receiving standard care. The magnitude of the right and left AC thickness was significantly correlated with gestational age but not with the duration of sound exposure. Measurements of head circumference and the widths of the frontal horn (FH) and the corpus callosum (CC) were not significantly different between the two groups. This study provides evidence for experience-dependent plasticity in the primary AC before the brain has reached full-term maturation. Our results demonstrate that despite the immaturity of the auditory pathways, the AC is more adaptive to maternal sounds than environmental noise. Further studies are needed to better understand the neural processes underlying this early brain plasticity and its functional implications for future hearing and language development. PMID:25713382

  13. The Radical Plasticity Thesis: How the Brain Learns to be Conscious

    PubMed Central

    Cleeremans, Axel

    2011-01-01

    In this paper, I explore the idea that consciousness is something that the brain learns to do rather than an intrinsic property of certain neural states and not others. Starting from the idea that neural activity is inherently unconscious, the question thus becomes: How does the brain learn to be conscious? I suggest that consciousness arises as a result of the brain's continuous attempts at predicting not only the consequences of its actions on the world and on other agents, but also the consequences of activity in one cerebral region on activity in other regions. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of meta-representations that characterize and qualify the target first-order representations. Such learned redescriptions, enriched by the emotional value associated with them, form the basis of conscious experience. Learning and plasticity are thus central to consciousness, to the extent that experiences only occur in experiencers that have learned to know they possess certain first-order states and that have learned to care more about certain states than about others. This is what I call the Radical Plasticity Thesis. In a sense thus, this is the enactive perspective, but turned both inwards and (further) outwards. Consciousness involves signal detection on the mind; the conscious mind is the brain's (non-conceptual, implicit) theory about itself. I illustrate these ideas through neural network models that simulate the relationships between performance and awareness in different tasks. PMID:21687455

  14. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex.

    PubMed

    Southwell, Derek G; Hervey-Jumper, Shawn L; Perry, David W; Berger, Mitchel S

    2016-05-01

    OBJECT To avoid iatrogenic injury during the removal of intrinsic cerebral neoplasms such as gliomas, direct electrical stimulation (DES) is used to identify cortical and subcortical white matter pathways critical for language, motor, and sensory function. When a patient undergoes more than 1 brain tumor resection as in the case of tumor recurrence, the use of DES provides an unusual opportunity to examine brain plasticity in the setting of neurological disease. METHODS The authors examined 561 consecutive cases in which patients underwent DES mapping during surgery forglioma resection. "Positive" and "negative" sites-discrete cortical regions where electrical stimulation did (positive) or did not (negative) produce transient sensory, motor, or language disturbance-were identified prior to tumor resection and documented by intraoperative photography for categorization into functional maps. In this group of 561 patients, 18 were identified who underwent repeat surgery in which 1 or more stimulation sites overlapped with those tested during the initial surgery. The authors compared intraoperative sensory, motor, or language mapping results between initial and repeat surgeries, and evaluated the clinical outcomes for these patients. RESULTS A total of 117 sites were tested for sensory (7 sites, 6.0%), motor (9 sites, 7.7%), or language (101 sites, 86.3%) function during both initial and repeat surgeries. The mean interval between surgical procedures was 4.1 years. During initial surgeries, 95 (81.2%) of 117 sites were found to be negative and 22 (18.8%) of 117 sites were found to be positive. During repeat surgeries, 103 (88.0%) of 117 sites were negative and 14 (12.0%) of 117 were positive. Of the 95 sites that were negative at the initial surgery, 94 (98.9%) were also negative at the repeat surgery, while 1 (1.1%) site was found to be positive. Of the 22 sites that were initially positive, 13 (59.1%) remained positive at repeat surgery, while 9 (40.9%) had become negative for function. Overall, 6 (33.3%) of 18 patients exhibited loss of function at 1 or more motor or language sites between surgeries. Loss of function at these sites was not associated with neurological impairment at the time of repeat surgery, suggesting that neurological function was preserved through neural circuit reorganization or activation of latent functional pathways. CONCLUSIONS The adult central nervous system reorganizes motor and language areas in patients with glioma. Ultimately, adult neural plasticity may help to preserve motor and language function in the presence of evolving structural lesions. The insight gained from this subset of patients has implications for our understanding of brain plasticity in clinical settings. PMID:26544767

  15. Th17 Cell Plasticity and Functions in Cancer Immunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2015-01-01

    Th17 cells represent a particular subset of T helper lymphocytes characterized by high production of IL-17 and other inflammatory cytokines. Th17 cells participate in antimicrobial immunity at mucosal and epithelial barriers and particularly fight against extracellular bacteria and fungi. While a role for Th17 cells in promoting inflammation and autoimmune disorders has been extensively and elegantly demonstrated, it is still controversial whether and how Th17 cells influence tumor immunity. Although Th17 cells specifically accumulate in many different types of tumors compared to healthy tissues, the outcome might however differ from a tumor type to another. Th17 cells were consequently associated with both good and bad prognoses. The high plasticity of those cells toward cells exhibiting either anti-inflammatory or in contrast pathogenic functions might contribute to Th17 versatile functions in the tumor context. On one hand, Th17 cells promote tumor growth by inducing angiogenesis (via IL-17) and by exerting themselves immunosuppressive functions. On the other hand, Th17 cells drive antitumor immune responses by recruiting immune cells into tumors, activating effector CD8+ T cells, or even directly by converting toward Th1 phenotype and producing IFN-γ. In this review, we are discussing the impact of the tumor microenvironment on Th17 cell plasticity and function and its implications in cancer immunity. PMID:26583099

  16. Advantages in functional imaging of the brain

    PubMed Central

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this—visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine. PMID:26042013

  17. Maintaining older brain functionality: A targeted review.

    PubMed

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed. PMID:26054789

  18. [Localization of language function in the brain].

    PubMed

    Miyashita, Hiroyuki; Sakai, Kuniyoshi L

    2011-12-01

    Since the first report of an aphasic patient by Paul Broca, the localization of brain function has been disputed for 150 years. In lesion studies, double dissociation has been a key concept to show the localization of particular cognitive functions. The advancement of non-invasive brain imaging methods enables us to investigate the brain activities under well-controlled conditions, further promoting the studies on the localization of the cognitive functions, including language function. Brain imaging studies, together with subtraction and correlation analyses, have accumulated evidence that syntax, phonology, and sentence comprehension are separately processed by modules in different cortical regions. More specifically, it has been clarified that the module for syntax localizes in the left lateral premotor cortex and the opercular/triangular parts of the left inferior frontal gyrus. This modular structure further suggests that aphasia is interpreted as deficits in either syntactic or phonological processing. Therefore, the classical model of contrasting speech production and comprehension should be updated. According to theoretical linguistics, on the other hand, the recursive computation of syntactic structures is an essential feature of human language faculty. One direction of research would be to contrast human beings and animals for the abilities of processing symbolic sequences. Another direction is to clarify that the human brain is indeed specialized in language processing, which can be revealed by well-controlled language tasks and functional imaging techniques. Here we will review recent studies that demonstrate the existence of grammar center in the left frontal cortex. The future studies in the neuroscience of language will eventually elucidate the cortical localization of language function in a more precise way, i.e., what is really computed in the human brain. PMID:22147453

  19. Progesterone Receptors: Form and Function in Brain

    PubMed Central

    Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon

    2008-01-01

    Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRβ and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402

  20. Characterizing Brain Cortical Plasticity and Network Dynamics Across the Age-Span in Health and Disease with TMS-EEG and TMS-fMRI

    PubMed Central

    Pascual-Leone, Alvaro; Freitas, Catarina; Oberman, Lindsay; Horvath, Jared C.; Halko, Mark; Eldaief, Mark; Bashir, Shahid; Vernet, Marine; Shafi, Mouhshin; Westover, Brandon; Vahabzadeh-Hagh, Andrew M.; Rotenberg, Alexander

    2012-01-01

    Brain plasticity can be conceptualized as nature’s invention to overcome limitations of the genome and adapt to a rapidly changing environment. As such, plasticity is an intrinsic property of the brain across the life-span. However, mechanisms of plasticity may vary with age. The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) enables clinicians and researchers to directly study local and network cortical plasticity, in humans in vivo, and characterize their changes across the age-span. Parallel, translational studies in animals can provide mechanistic insights. Here, we argue that, for each individual, the efficiency of neuronal plasticity declines throughout the age-span and may do so more or less prominently depending on variable ‘starting-points’ and different ‘slopes of change’ defined by genetic, biological, and environmental factors. Furthermore, aberrant, excessive, insufficient, or mistimed plasticity may represent the proximal pathogenic cause of neurodevelopmental and neurodegenerative disorders such as autism spectrum disorders or Alzheimer’s disease. PMID:21842407

  1. Contribution of metabolic reprogramming to macrophage plasticity and function.

    PubMed

    El Kasmi, Karim C; Stenmark, Kurt R

    2015-08-01

    Macrophages display a spectrum of functional activation phenotypes depending on the composition of the microenvironment they reside in, including type of tissue/organ and character of injurious challenge they are exposed to. Our understanding of how macrophage plasticity is regulated by the local microenvironment is still limited. Here we review and discuss the recent literature regarding the contribution of cellular metabolic pathways to the ability of the macrophage to sense the microenvironment and to alter its function. We propose that distinct alterations in the microenvironment induce a spectrum of inducible and reversible metabolic programs that might form the basis of the inducible and reversible spectrum of functional macrophage activation/polarization phenotypes. We highlight that metabolic pathways in the bidirectional communication between macrophages and stromals cells are an important component of chronic inflammatory conditions. Recent work demonstrates that inflammatory macrophage activation is tightly associated with metabolic reprogramming to aerobic glycolysis, an altered TCA cycle, and reduced mitochondrial respiration. We review cytosolic and mitochondrial mechanisms that promote initiation and maintenance of macrophage activation as they relate to increased aerobic glycolysis and highlight potential pathways through which anti-inflammatory IL-10 could promote macrophage deactivation. Finally, we propose that in addition to their role in energy generation and regulation of apoptosis, mitochondria reprogram their metabolism to also participate in regulating macrophage activation and plasticity. PMID:26454572

  2. [Brain function and artificial respiration].

    PubMed

    Prien, T; Lawin, P; Schoeppner, H

    1984-12-01

    Haemodynamic changes (cerebral perfusion pressure, cerebral blood flow) and variations of blood gases (especially paCO2) induced by mechanical ventilation, can influence cerebral function. The cerebral response to these changes is modified by the individual pathophysiology of the cranial contents. The cerebral mechanisms of adaptation allow a safe ventilation of a patient without cerebral disorders, provided ventilation is within normal clinical limits. In patients, however, whose mechanisms of adaption are impaired locally or globally, the pathophysiological situation may become grossly changed by variations in the ventilatory pattern. A therapeutical application of this interaction is controlled hyperventilation to lower intracranial pressure. On the other hand, changes in the ventilatory pattern (variation of PEEP-level, variation of minute volume, bronchial toilet) can impair cerebral function critically. As the individual reactions cannot be predicted in this group of patients, monitoring of haemodynamic parameters (MAP, CVP, CO), blood gases, intracranial pressure, and EEG is of utmost importance. PMID:6441481

  3. Functional imaging of the brain by MRI

    NASA Astrophysics Data System (ADS)

    LeBihan, D.; Cuenod, Charles-Andre; Turner, J. R.; Jezzard, P.; Bonnerot, Valerie; Zeffiro, Thomas A.

    1993-08-01

    Recent developments in Magnetic Resonance Imaging (MRI) enabling imaging of hemodynamics and metabolism hold significant promise in the noninvasive evaluation of normal and abnormal brain function. Among several methods, the most successful approach exploits the sensitivity of MRI to changes in the oxygenation status of hemoglobin (oxy/deoxyhemoglobin) in red blood cells related to local variations in blood flow and oxygen consumption in tissues. In cerebral cortex, such variations may be induced by external stimuli or internal cognitive processes. Typically, MRI signal slightly increases when brain is activated due to increase in oxygen supply (blood flow). These studies suggest that MRI may be the method of choice to study mental and cognitive processes underlying the function of the human brain.

  4. Prefrontal and Hippocampal Brain Volume Deficits: The Role of Low Physical Activity on Brain Plasticity in First-Episode Schizophrenia Patients

    PubMed Central

    McEwen, Sarah C.; Hardy, Anthony; Ellingson, Benjamin M.; Jarrahi, Behnaz; Sandu, Navjot; Subotnik, Kenneth L.; Ventura, Joseph; Nuechterlein, Keith H.

    2015-01-01

    Objective Our objective in the present study was to conduct the first empirical study to examine regular physical activity habits and their relationship with brain volume and cortical thickness in patients in the early phase of schizophrenia. Relationships between larger brain volumes and higher physical activity levels have been reported in samples of healthy and aging populations, but have never been explored in first-episode schizophrenia patients. Method We collected MRI structural scans in fourteen first-episode schizophrenia patients with either self-reported low or high physical activity levels. Results We found a reduction in total grey matter volume, prefrontal cortex (PFC) and hippocampal grey matter volumes in the low physical activity group compared to the high activity group. Cortical thickness in the dorsolateral and orbitofrontal PFC were also significantly reduced in the low physical activity group compared to the high activity group. In the combined sample, greater overall physical activity levels showed a non-significant tendency with better performance on tests of verbal memory and social cognition. Conclusions Together these pilot study findings suggest that greater amounts of physical activity may have a positive influence on brain health and cognition in first-episode schizophrenia patients and support the development of physical exercise interventions in this patient population to improve brain plasticity and cognitive functioning. PMID:26581798

  5. Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body

    PubMed Central

    Kumar, Prem; Prabhakar, Nanduri R.

    2014-01-01

    The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article. PMID:23728973

  6. Integrating Retinoic Acid Signaling with Brain Function

    ERIC Educational Resources Information Center

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  7. Classroom Seating and Functional Brain Asymmetry

    ERIC Educational Resources Information Center

    Gur, Raquel E.; And Others

    1975-01-01

    This study examined the relationship between functional brain assymetry, as measured by the characteristic direction of eye movements in response to face-to-face questioning, and sitting on the left or right side of a classroom. Results are congruent with other findings comparing right and left movers. (Author/BJG)

  8. Integrating Retinoic Acid Signaling with Brain Function

    ERIC Educational Resources Information Center

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to

  9. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  10. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  11. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity.

    PubMed

    Xu, Ren; Jiang, Ning; Mrachacz-Kersting, Natalie; Lin, Chuang; Asín Prieto, Guillermo; Moreno, Juan C; Pons, Jose L; Dremstrup, Kim; Farina, Dario

    2014-07-01

    In this paper, we present a brain-computer interface (BCI) driven motorized ankle-foot orthosis (BCI-MAFO), intended for stroke rehabilitation, and we demonstrate its efficacy in inducing cortical neuroplasticity in healthy subjects with a short intervention procedure (∼15 min). This system detects imaginary dorsiflexion movements within a short latency from scalp EEG through the analysis of movement-related cortical potentials (MRCPs). A manifold-based method, called locality preserving projection, detected the motor imagery online with a true positive rate of 73.0 ± 10.3%. Each detection triggered the MAFO to elicit a passive dorsiflexion. In nine healthy subjects, the size of the motor-evoked potential (MEP) elicited by transcranial magnetic stimulation increased significantly immediately following and 30 min after the cessation of this BCI-MAFO intervention for ∼15 min ( p = 0.009 and , respectively), indicating neural plasticity. In four subjects, the size of the short latency stretch reflex component did not change following the intervention, suggesting that the site of the induced plasticity was cortical. All but one subject also performed two control conditions where they either imagined only or where the MAFO was randomly triggered. Both of these control conditions resulted in no significant changes in MEP size (p = 0.38 and p = 0.15). The proposed system provides a fast and effective approach for inducing cortical plasticity through BCI and has potential in motor function rehabilitation following stroke. PMID:24686231

  12. Switching roles: the functional plasticity of adult tissue stem cells.

    PubMed

    Wabik, Agnieszka; Jones, Philip H

    2015-05-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  13. Switching roles: the functional plasticity of adult tissue stem cells

    PubMed Central

    Wabik, Agnieszka; Jones, Philip H

    2015-01-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  14. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques

    PubMed Central

    Boggio, Paulo S.; Asthana, Manish K.; Costa, Thiago L.; Valasek, Cláudia A.; Osório, Ana A. C.

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  15. Magnesium Protects Cognitive Functions and Synaptic Plasticity in Streptozotocin-Induced Sporadic Alzheimer’s Model

    PubMed Central

    Bao, Jian; Wang, Zhi-Hao; Zeng, Juan; Liu, En-Jie; Li, Xiao-Guang; Huang, Rong-Xi; Gao, Di; Li, Meng-Zhu; Zhang, Yao; Liu, Gong-Ping; Wang, Jian-Zhi

    2014-01-01

    Alzheimer’s disease (AD) is characterized by profound synapse loss and impairments of learning and memory. Magnesium affects many biochemical mechanisms that are vital for neuronal properties and synaptic plasticity. Recent studies have demonstrated that the serum and brain magnesium levels are decreased in AD patients; however, the exact role of magnesium in AD pathogenesis remains unclear. Here, we found that the intraperitoneal administration of magnesium sulfate increased the brain magnesium levels and protected learning and memory capacities in streptozotocin-induced sporadic AD model rats. We also found that magnesium sulfate reversed impairments in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic proteins. Magnesium sulfate treatment also decreased tau hyperphosphorylation by increasing the inhibitory phosphorylation of GSK-3β at serine 9, thereby increasing the activity of Akt at Ser473 and PI3K at Tyr458/199, and improving insulin sensitivity. We conclude that magnesium treatment protects cognitive function and synaptic plasticity by inhibiting GSK-3β in sporadic AD model rats, which suggests a potential role for magnesium in AD therapy. PMID:25268773

  16. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  17. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  18. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  19. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  20. The significance of the subplate for evolution and developmental plasticity of the human brain

    PubMed Central

    Judaš, Miloš; Sedmak, Goran; Kostović, Ivica

    2013-01-01

    The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate (RMR) in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter) probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates. PMID:23935575

  1. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain

    PubMed Central

    Ramachandran, V. S.

    1993-01-01

    Recent behavioral and physiological evidence suggests that even brief sensory deprivation can lead to the rapid emergence of new and functionally effective neural connections in the adult human brain. Images Fig. 2 PMID:8248123

  2. Structural and functional brain imaging in schizophrenia.

    PubMed Central

    Cleghorn, J M; Zipursky, R B; List, S J

    1991-01-01

    We present an evaluation of the contribution of structural and functional brain imaging to our understanding of schizophrenia. Methodological influences on the validity of the data generated by these new technologies include problems with measurement and clinical and anatomic heterogeneity. These considerations greatly affect the interpretation of the data generated by these technologies. Work in these fields to date, however, has produced strong evidence which suggests that schizophrenia is a disease which involves abnormalities in the structure and function of many brain areas. Structural brain imaging studies of schizophrenia using computed tomography (CT) and magnetic resonance imaging (MRI) are reviewed and their contribution to current theories of the pathogenesis of schizophrenia are discussed. Positron emission tomography (PET) studies of brain metabolic activity and dopamine receptor binding in schizophrenia are summarized and the critical questions raised by these studies are outlined. Future studies in these fields have the potential to yield critical insights into the pathophysiology of schizophrenia; new directions for studies of schizophrenia using these technologies are identified. PMID:1911736

  3. Robust transient dynamics and brain functions.

    PubMed

    Rabinovich, Mikhail I; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework - heteroclinic sequential dynamics - to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory - a vital cognitive function -, and to find specific dynamical signatures - different kinds of instabilities - of several brain functions and mental diseases. PMID:21716642

  4. Individual diversity of functional brain network economy.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-04-01

    On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders. PMID:25411715

  5. Robust Transient Dynamics and Brain Functions

    PubMed Central

    Rabinovich, Mikhail I.; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework – heteroclinic sequential dynamics – to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory – a vital cognitive function –, and to find specific dynamical signatures – different kinds of instabilities – of several brain functions and mental diseases. PMID:21716642

  6. Peroxisomes in brain development and function.

    PubMed

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-05-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer's disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  7. Different Plasticity Patterns of Language Function in Children With Perinatal and Childhood Stroke

    PubMed Central

    Tomberg, Tiiu; Kepler, Joosep; Laugesaar, Rael; Kaldoja, Mari-Liis; Kepler, Kalle; Kolk, Anneli

    2014-01-01

    Plasticity of language function after brain damage can depend on maturation of the brain. Children with left-hemisphere perinatal (n = 7) or childhood stroke (n = 5) and 12 controls were investigated using functional magnetic resonance imaging. The verb generation and the sentence comprehension tasks were employed to activate the expressive and receptive language areas, respectively. Weighted laterality indices were calculated and correlated with results assessed by neuropsychological test battery. Compared to controls, children with childhood stroke showed significantly lower mean scores for the expressive (P < .05) and receptive (P = .05) language tests. On functional magnetic resonance imaging they showed left-side cortical activation, as did controls. Perinatal stroke patients showed atypical right-side or bilateral language lateralization during both tasks. Negative correlation for stroke patients was found between scores for expressive language tests and laterality index during the verb generation task. (Re)organization of language function differs in children with perinatal and childhood stroke and correlates with neurocognitive performance. PMID:23748202

  8. Astrocytes: Orchestrating synaptic plasticity?

    PubMed

    De Pittà, M; Brunel, N; Volterra, A

    2016-05-26

    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. PMID:25862587

  9. When "altering brain function" becomes "mind control".

    PubMed

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control. PMID:25352789

  10. Brain On Stress: Vulnerability and Plasticity of the Prefrontal Cortex Over the Life Course

    PubMed Central

    McEwen, Bruce S.; Morrison, John H.

    2013-01-01

    The prefrontal cortex (PFC) is involved in working memory, self-regulatory and goal-directed behaviors and displays remarkable structural and functional plasticity over the life course. Neural circuitry, molecular profiles and neurochemistry can be changed by experiences, which influences behavior as well as neuroendocrine and autonomic function. Such effects have a particular impact during infancy and in adolescence. Behavioral stress affects both the structure and function of PFC, though such effects are not necessarily permanent, as young animals show remarkable neuronal resilience if the stress is discontinued. During aging, neurons within the PFC become less resilient to stress. There are also sex differences in the PFC response to stressors. While such stress- and sex-hormone related alterations occur in regions mediating the highest levels of cognitive function and self regulatory control, the fact that they are not necessarily permanent has implications for future behavior-based therapies that harness neural plasticity for recovery. PMID:23849196

  11. Brain Function Lateralization and Language Acquisition: the Evidence from Japanese.

    ERIC Educational Resources Information Center

    Sanches, Mary

    1979-01-01

    Presents evidence of differences in brain function lateralization between Japanese-speakers and speakers of Indo-European languages, and suggests that current conceptualizations of brain function specialization are not adequate. (AM)

  12. Brain-Derived Neurotrophic Factor in Arterial Baroreceptor Pathways: Implications for Activity-Dependent Plasticity at Baroafferent Synapses

    PubMed Central

    Martin, Jessica L.; Jenkins, Victoria K.; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2008-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion (NG), their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius (NTS). Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn NG neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  13. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses.

    PubMed

    Martin, Jessica L; Jenkins, Victoria K; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2009-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion, their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius. Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn nodose ganglion neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  14. Non-invasive brain-to-brain interface (BBI): establishing functional links between two brains.

    PubMed

    Yoo, Seung-Schik; Kim, Hyungmin; Filandrianos, Emmanuel; Taghados, Seyed Javid; Park, Shinsuk

    2013-01-01

    Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications. PMID:23573251

  15. Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains

    PubMed Central

    Yoo, Seung-Schik; Kim, Hyungmin; Filandrianos, Emmanuel; Taghados, Seyed Javid; Park, Shinsuk

    2013-01-01

    Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer’s intention to stimulate a rat’s brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer’s intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications. PMID:23573251

  16. Combined cognitive-psychological-physical intervention induces reorganization of intrinsic functional brain architecture in older adults.

    PubMed

    Zheng, Zhiwei; Zhu, Xinyi; Yin, Shufei; Wang, Baoxi; Niu, Yanan; Huang, Xin; Li, Rui; Li, Juan

    2015-01-01

    Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age. PMID:25810927

  17. Neurological Impairment Linked with Cortico-Subcortical Infiltration of Diffuse Low-Grade Gliomas at Initial Diagnosis Supports Early Brain Plasticity

    PubMed Central

    Smits, Anja; Zetterling, Maria; Lundin, Margareta; Melin, Beatrice; Fahlström, Markus; Grabowska, Anna; Larsson, Elna-Marie; Berntsson, Shala Ghaderi

    2015-01-01

    Diffuse low-grade gliomas (DLGG) are slow-growing brain tumors that in spite of an indolent behavior at onset show a continuous expansion over time and inevitably transform into malignant gliomas. Extensive tumor resections may be performed with preservation of neurological function due to neuroplasticity that is induced by the slow tumor growth. However, DLGG prefer to migrate along subcortical pathways, and white matter plasticity is considerably more limited than gray matter plasticity. Whether signs of functional decompensating white matter that may be found as early as at disease presentation has not been systematically studied. Here, we examined 52 patients who presented with a DLGG at the time of radiological diagnosis. We found a significant correlation between neurological impairment and eloquent cortico-subcortical tumor localization, but not between neurological function and tumor volume. These results suggest that even small tumors invading white matter pathways may lack compensatory mechanisms for functional reorganization already at disease presentation. PMID:26113841

  18. Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity.

    PubMed

    Cowansage, Kiriana K; LeDoux, Joseph E; Monfils, Marie-H

    2010-01-01

    Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family of structurally related proteins that promote neuronal differentiation and survival during development, is a potent modulator of synaptic plasticity. Changes in BDNF expression, release and neuromodulatory activity, mediated by both epigenetic and post-translational mechanisms, have been associated with many pathological conditions and developmental experiences, such as maternal deprivation and environmental enrichment. Much effort has been devoted to studying plasticity in the hippocampus, a structure traditionally associated with learning and memory, yet there is increasing empirical support for the contribution of another structure--the amygdala--to BDNF-induced changes. Because the amygdala is a critical site for emotional memory formation, and many emotional and neurodevelopmental pathologies have been linked to amygdala-based abnormalities, considerable efforts have been devoted to the characterization of its circuitry. Here we review the role of BDNF as a biochemical integrator of convergent cellular signals, and as a central driver of neural plasticity. We conclude by emphasizing the importance of characterizing BDNF signaling cascades in behaviorally-relevant networks, to identify potential drug targets for novel therapeutic interventions. PMID:20030625

  19. Anatomical Plasticity of Adult Brain is Titrated by Nogo Receptor 1

    PubMed Central

    Akbik, Feras V.; Bhagat, Sarah M.; Patel, Pujan R.; Cafferty, William B.J.; Strittmatter, Stephen M.

    2013-01-01

    SUMMARY Experience rearranges anatomical connectivity in the brain, but such plasticity is suppressed in adulthood. We examined the turnover of dendritic spines and axonal varicosities in the somatosensory cortex of mice lacking Nogo Receptor 1 (NgR1). Through adolescence, the anatomy and plasticity of ngr1 null mice are indistinguishable from control, but suppression of turnover after age 26 days fails to occur in ngr1?/? mice. Adolescent anatomical plasticity can be restored to one-year old mice by conditional deletion of ngr1. Suppression of anatomical dynamics by NgR1 is cell autonomous, and is phenocopied by deletion of Nogo-A ligand. Whisker removal deprives the somatosensory cortex of experience-dependent input and reduces dendritic spine turnover in adult ngr1?/? mice to control levels, while an acutely enriched environment increases dendritic spine dynamics in control mice to the level of ngr1?/? mice in a standard environment. Thus, NgR1 determines the low set point for synaptic turnover in adult cerebral cortex. PMID:23473316

  20. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats

    PubMed Central

    2014-01-01

    Background and purpose Both the immobilization of the unaffected arm combined with physical therapy (forced arm use, FAU) and voluntary exercise (VE) as model for enriched environment are promising approaches to enhance recovery after stroke. The genomic mechanisms involved in long-term plasticity changes after different means of rehabilitative training post-stroke are largely unexplored. The present investigation explored the effects of these physical therapies on behavioral recovery and molecular markers of regeneration after experimental ischemia. Methods 42 Wistar rats were randomly treated with either forced arm use (FAU, 1-sleeve plaster cast onto unaffected limb at 8/10 days), voluntary exercise (VE, connection of a freely accessible running wheel to cage), or controls with no access to a running wheel for 10 days starting at 48 hours after photothrombotic stroke of the sensorimotor cortex. Functional outcome was measured using sensorimotor test before ischemia, after ischemia, after the training period of 10 days, at 3 and 4 weeks after ischemia. Global gene expression changes were assessed from the ipsi- and contralateral cortex and the hippocampus. Results FAU-treated animals demonstrated significantly improved functional recovery compared to the VE-treated group. Both were superior to cage control. A large number of genes are altered by both training paradigms in the ipsi- and contralateral cortex and the hippocampus. Overall, the extent of changes observed correlated well with the functional recovery obtained. One category of genes overrepresented in the gene set is linked to neuronal plasticity processes, containing marker genes such as the NMDA 2a receptor, PKC ζ, NTRK2, or MAP 1b. Conclusions We show that physical training after photothrombotic stroke significantly and permanently improves functional recovery after stroke, and that forced arm training is clearly superior to voluntary running training. The behavioral outcomes seen correlate with patterns and extent of gene expression changes in all brain areas examined. We propose that physical training induces a fundamental change in plasticity-relevant gene expression in several brain regions that enables recovery processes. These results contribute to the debate on optimal rehabilitation strategies, and provide a valuable source of molecular entry points for future pharmacological enhancement of recovery. PMID:24528872

  1. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. PMID:24962172

  2. Sialylation regulates brain structure and function.

    PubMed

    Yoo, Seung-Wan; Motari, Mary G; Susuki, Keiichiro; Prendergast, Jillian; Mountney, Andrea; Hurtado, Andres; Schnaar, Ronald L

    2015-07-01

    Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders. PMID:25846372

  3. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128

    PubMed Central

    2014-01-01

    MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases. PMID:24555688

  4. Theta burst stimulation to characterize changes in brain plasticity following mild traumatic brain injury: a proof-of-principle study

    PubMed Central

    Tremblay, Sara; Vernet, Marine; Bashir, Shahid; Pascual-Leone, Alvaro; Théoret, Hugo

    2016-01-01

    Purpose Recent studies investigating the acute effects of mild traumatic brain injury (mTBI) suggest the presence of unbalanced excitatory and inhibitory mechanisms within primary motor cortex (M1). Whether these abnormalities are associated with impaired synaptic plasticity remains unknown. Methods The effects of continuous theta burst stimulation (cTBS) on transcranial magnetic stimulation-induced motor evoked potentials (MEPs) were assessed on average two weeks and six weeks following mTBI in five individuals. Results The procedure was well-tolerated by all participants. Continuous TBS failed to induce a significant reduction of MEP amplitudes two weeks after the injury, but response to cTBS normalized six weeks following injury, as a majority of patients became asymptomatic. Conclusions These preliminary results suggest that cTBS can be used to assess M1 synaptic plasticity in the acute and sub-acute phases following mTBI and may provide insights into neurobiological substrates of symptoms and consequences of mTBI. PMID:25735241

  5. Clinton Woolsey: Functional Brain Mapping Pioneer

    PubMed Central

    Lyon, Will; Mehta, Tej I.; Pointer, Kelli B.; Walden, Daniel; Elmayan, Ardem; Swanson, Kyle I.; Kuo, John S.

    2014-01-01

    Dr. Clinton Woolsey was a leading twentieth century neuroscientist for almost four decades. His most significant achievements were the novel use and refinement of evoked potential techniques to functionally map mammalian brains, the discovery of secondary cortical areas, and a wide repertoire of comparative neurofunctional studies across many species. We discuss his life and work through a historical context with contemporaries, highlight the primitive state of brain mapping before Woolsey, and his involvement in advancing its rapid development through work at both Johns Hopkins University and University of Wisconsin in Madison. Dr. Woolsey’s lasting impact on basic and clinical neuroscience, neurosurgery, and neurology and his important roles as a scientific mentor and leader are also described. PMID:25105696

  6. Clinton Woolsey: functional brain mapping pioneer.

    PubMed

    Lyon, Will; Mehta, Tej I; Pointer, Kelli B; Walden, Daniel; Elmayan, Ardem; Swanson, Kyle I; Kuo, John S

    2014-10-01

    Dr. Clinton Woolsey was a leading 20th-century neuroscientist for almost 4 decades. His most significant achievements were the novel use and refinement of evoked potential techniques to functionally map mammalian brains, the discovery of secondary cortical areas, and a wide repertoire of comparative neurofunctional studies across many species. The authors discuss his life and work through a historical context with contemporaries, highlight the primitive state of brain mapping before Woolsey, and review his involvement in advancing its rapid development through work at both Johns Hopkins University and University of Wisconsin in Madison. Dr. Woolsey's lasting impact on basic and clinical neuroscience, neurosurgery, and neurology and his important roles as a scientific mentor and leader are also described. PMID:25105696

  7. Exercise but not (-)-Epigallocatechin-3-gallate or β-Alanine enhances physical fitness, brain plasticity, and behavioral performance in mice

    PubMed Central

    Bhattacharya, Tushar K.; Pence, Brandt D.; Ossyra, Jessica M.; Gibbons, Trisha E.; Perez, Samuel; McCusker, Robert H.; Kelley, Keith W.; Johnson, Rodney W.; Woods, Jeffrey A.; Rhodes, Justin S.

    2015-01-01

    Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-alanine (B-ALA) is a naturally occurring β–amino acid that could increase cognitive functioning by increasing levels of exercise via increased capacity of skeletal muscle, by crossing the blood brain barrier and acting as a neurotransmitter, or by free radical scavenging in muscle and brain after conversion into carnosine. The objective of this study was to determine the effects of EGCG (∼ 250 mg/kg/day), B-ALA (∼550 mg/kg/day), and their combination with voluntary wheel running exercise on the following outcome measures: body composition, time to fatigue, production of new cells in the granule layer of the dentate gyrus of the hippocampus as a marker for neuronal plasticity, and behavioral performance on the contextual and cued fear conditioning tasks, as measures of associative learning and memory. Young adult male BALB/cJ mice approximately 2 months old were randomized into 8 groups varying the nutritional supplement in their diet and access to running wheels over a 39 day study period. Running increased food intake, decreased fat mass, increased time to exhaustive fatigue, increased numbers of new cells in the granule layer of the hippocampus, and enhanced retrieval of both contextual and cued fear memories. The diets had no effect on their own or in combination with exercise on any of the fitness, plasticity, and behavioral outcome measures other than B-ALA decreased percent body fat whereas EGCG increased lean body mass slightly. Results suggest that, in young adult BALB/cJ mice, a 39 day treatment of exercise but not dietary supplementation with B-ALA or EGCG, enhances measures of fitness, neuroplasticity and cognition. PMID:25797079

  8. Exercise but not (-)-epigallocatechin-3-gallate or β-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice.

    PubMed

    Bhattacharya, Tushar K; Pence, Brandt D; Ossyra, Jessica M; Gibbons, Trisha E; Perez, Samuel; McCusker, Robert H; Kelley, Keith W; Johnson, Rodney W; Woods, Jeffrey A; Rhodes, Justin S

    2015-06-01

    Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-Alanine (B-ALA) is a naturally occurring β-amino acid that could increase cognitive functioning by increasing levels of exercise via increased capacity of skeletal muscle, by crossing the blood brain barrier and acting as a neurotransmitter, or by free radical scavenging in muscle and brain after conversion into carnosine. The objective of this study was to determine the effects of EGCG (~250mg/kg/day), B-ALA (~550mg/kg/day), and their combination with voluntary wheel running exercise on the following outcome measures: body composition, time to fatigue, production of new cells in the granule layer of the dentate gyrus of the hippocampus as a marker for neuronal plasticity, and behavioral performance on the contextual and cued fear conditioning tasks, as measures of associative learning and memory. Young adult male BALB/cJ mice approximately 2months old were randomized into 8 groups varying the nutritional supplement in their diet and access to running wheels over a 39day study period. Running increased food intake, decreased fat mass, increased time to exhaustive fatigue, increased numbers of new cells in the granule layer of the hippocampus, and enhanced retrieval of both contextual and cued fear memories. The diets had no effect on their own or in combination with exercise on any of the fitness, plasticity, and behavioral outcome measures other than B-ALA decreased percent body fat whereas EGCG increased lean body mass slightly. Results suggest that, in young adult BALB/cJ mice, a 39day treatment of exercise but not dietary supplementation with B-ALA or EGCG enhances measures of fitness, neuroplasticity and cognition. PMID:25797079

  9. Diminished experience-dependent neuroanatomical plasticity: evidence for an improved biomarker of subtle neurotoxic damage to the developing rat brain.

    PubMed Central

    Wallace, Christopher S; Reitzenstein, Jonathon; Withers, Ginger S

    2003-01-01

    Millions of children are exposed to low levels of environmental neurotoxicants as their brains are developing. Conventional laboratory methods of neurotoxicology can detect maldevelopment of brain structure but are not designed to detect maldevelopment of the brain's capacity for plasticity that could impair learning throughout life. The environmental complexity (EC) paradigm has become classic for demonstrating the modifications in brain structure that occur in response to experience and thus provides a set of indices for plasticity in the healthy brain. In this study, we have tested the hypothesis that if degradation of experience-dependent cortical plasticity is used as a biomarker, then developmental neurotoxic effects will be detected at doses below those that alter cortical morphogenesis overtly. Pregnant Long-Evans hooded rats received a single injection of either saline vehicle or 1, 5, 10, or 25 mg/kg of the well-characterized developmental neurotoxicant methylazoxymethanol acetate (MAM) on the 16th or 17th day of gestation. On postnatal days 35-39, male offspring were assigned to either a complex environment (EC) or an individual cage (IC) for 28 days to stimulate neuroanatomical plasticity. This response was measured as the difference between the thickness of visual cortex of IC and EC littermates at a given dose. The threshold dose for significant reduction of cortical thickness was 25 mg/kg, but the threshold dose for failure of plasticity was much lower and could be detected at 1 mg/kg, the lowest dose used. No other method of assessment has detected lasting effects of prenatal exposure to MAM at such a low dose. These data suggest that this simple test of plasticity could be an efficient way to detect subtle neurotoxic damage to the developing brain. PMID:12896849

  10. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  11. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2016-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. PMID:26609811

  12. Dynamic Functional Brain Connectivity for Face Perception

    PubMed Central

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive processing. We investigated the dynamic functional connectivity in face perception by analyzing time-dependent EEG phase synchronization in four different frequency bands: theta (4–7 Hz), alpha (8–14 Hz), beta (15–24 Hz), and gamma (25–45 Hz) bands in the early stages of face processing from 30 to 300 ms. High-density EEG were recorded from subjects who were passively viewing faces, buildings, and chairs. The dynamic connectivity within the core system and between the extended system were investigated. Significant differences between faces and non-faces mainly appear in theta band connectivity: (1) at the time segment of 90–120 ms between parietal area and occipito-temporal area in the right hemisphere, and (2) at the time segment of 150–180 ms between bilateral occipito-temporal areas. These results indicate (1) the importance of theta-band connectivity in the face-sensitive processing, and (2) that different parts of network are involved for the initial stage of face categorization and the stage of face structural encoding. PMID:26696870

  13. Reconciling Stable Asymmetry with Recovery of Function: An Adaptive Systems Perspective on Functional Plasticity.

    ERIC Educational Resources Information Center

    Bullock, Daniel; And Others

    1987-01-01

    This commentary, written in response to Witelson's work (1987), examines alternative ways of determining how the developmentally stable functional asymmetry (hemispheric specialization) observed in neurologically intact children can be reconciled with the dramatic recovery of function often displayed following unilateral brain damage. (PCB)

  14. Brain Dynamics, Chaos and Bessel Functions

    NASA Astrophysics Data System (ADS)

    Freeman, W. J.; Capolupo, A.; Kozma, R.; Olivares del Campo, A.; Vitiello, G.

    2015-07-01

    By resorting to Freeman's observations showing that the distribution functions of impulse responses of cortex to sensory stimuli resemble Bessel functions, we study brain dynamics by considering the equivalence of spherical Bessel equation, in a given parametrization, to two oscillator equations, one damped and one amplified oscillator. The study of such a couple of equations, which are at the basis of the formulation of the dissipative many-body model, reveals the structure of the root loci of poles and zeros of solutions of Bessel equations, which are consistent with results obtained using ordinary differential equation techniques. We analyze stable and unstable limit cycles and consider thermodynamic features of brain functioning, which in this way may be described in terms of transitions between chaotic gas-like and ordered liquid-like behaviors. Nonlinearity dominates the dynamical critical transition regimes. Linear behavior, on the other hand, characterizes superpositions within self-organized neuronal domains in each dynamical phase. The formalism is consistent with the observed coexistence in circular causality of pulse density fields and wave density fields.

  15. Stability and plasticity of auditory brainstem function across the lifespan.

    PubMed

    Skoe, Erika; Krizman, Jennifer; Anderson, Samira; Kraus, Nina

    2015-06-01

    The human auditory brainstem is thought to undergo rapid developmental changes early in life until age ∼2 followed by prolonged stability until aging-related changes emerge. However, earlier work on brainstem development was limited by sparse sampling across the lifespan and/or averaging across children and adults. Using a larger dataset than past investigations, we aimed to trace more subtle variations in auditory brainstem function that occur normally from infancy into the eighth decade of life. To do so, we recorded auditory brainstem responses (ABRs) to a click stimulus and a speech syllable (da) in 586 normal-hearing healthy individuals. Although each set of ABR measures (latency, frequency encoding, response consistency, nonstimulus activity) has a distinct developmental profile, across all measures developmental changes were found to continue well past age 2. In addition to an elongated developmental trajectory and evidence for multiple auditory developmental processes, we revealed a period of overshoot during childhood (5-11 years old) for latency and amplitude measures, when the latencies are earlier and the amplitudes are greater than the adult value. Our data also provide insight into the capacity for experience-dependent auditory plasticity at different stages in life and underscore the importance of using age-specific norms in clinical and experimental applications. PMID:24366906

  16. Smart plastic functionalization by nanoimprint and injection molding

    NASA Astrophysics Data System (ADS)

    Zalkovskij, Maksim; Thamdrup, Lasse H.; Smistrup, Kristian; Andén, Thomas; Johansson, Alicia C.; Mikkelsen, Niels Jørgen; Madsen, Morten Hannibal; Garnæs, Jørgen; Kristiansen, Tommy Tungelund; Diemer, Mads; Døssing, Michael; Minzari, Daniel; Tang, Peter Torben; Kristensen, Anders; Taboryski, Rafael; Essendrop, Søren; Nielsen, Theodor; Bilenberg, Brian

    2015-03-01

    In this paper, we present a route for making smart functionalized plastic parts by injection molding with sub-micrometer surface structures. The method is based on combining planar processes well known and established within silicon micro and sub-micro fabrication with proven high resolution and high fidelity with truly freeform injection molding inserts. The link between the planar processes and the freeform shaped injection molding inserts is enabled by the use of nanoimprint with flexible molds for the pattern definition combined with unidirectional sputter etching for transferring the pattern. With this approach, we demonstrate the transfer of down to 140 nm wide holes on large areas with good structure fidelity on an injection molding steel insert. The durability of the sub-micrometer structures on the inserts have been investigated by running two production series of 102,000 and 73,000 injection molded parts, respectively, on two different inserts and inspecting the inserts before and after the production series and the molded parts during the production series.

  17. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD, animal and human behaviour, and pathophysiology and disease. It focuses particularly on Neuroplastin binding partners and signalling mechanisms, and proposes perspectives for future research on these important immunoglobulin superfamily members. PMID:25040546

  18. Distinct PKA and Epac compartmentalization in airway function and plasticity.

    PubMed

    Dekkers, Bart G J; Racké, Kurt; Schmidt, Martina

    2013-02-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibroblasts, substantially contribute to disease features by the release of inflammatory mediators, smooth muscle contraction, extracellular matrix deposition and structural changes in the airways. Current pharmacological treatment of both diseases intends to target the dynamic features of the endogenous intracellular suppressor cyclic AMP (cAMP). This review will summarize our current knowledge on cAMP and will emphasize on key discoveries and paradigm shifts reflecting the complex spatio-temporal nature of compartmentalized cAMP signalling networks in health and disease. As airway fibroblasts and airway smooth muscle cells are recognized as central players in the development and progression of asthma and COPD, we will focus on the role of cAMP signalling in their function in relation to airway function and plasticity. We will recapture on the recent identification of cAMP-sensing multi-protein complexes maintained by cAMP effectors, including A-kinase anchoring proteins (AKAPs), proteins kinase A (PKA), exchange protein directly activated by cAMP (Epac), cAMP-elevating seven-transmembrane (7TM) receptors and phosphodiesterases (PDEs) and we will report on findings indicating that the pertubation of compartmentalized cAMP signalling correlates with the pathopysiology of obstructive lung diseases. Future challenges include studies on cAMP dynamics and compartmentalization in the lung and the development of novel drugs targeting these systems for therapeutic interventions in chronic obstructive inflammatory diseases. PMID:23089371

  19. Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity.

    PubMed

    Hick, Meike; Herrmann, Ulrike; Weyer, Sascha W; Mallm, Jan-Philipp; Tschäpe, Jakob-Andreas; Borgers, Marianne; Mercken, Marc; Roth, Fabian C; Draguhn, Andreas; Slomianka, Lutz; Wolfer, David P; Korte, Martin; Müller, Ulrike C

    2015-01-01

    The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsβ, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition. PMID:25432317

  20. Phosphatidylserine in the Brain: Metabolism and Function

    PubMed Central

    Kim, Hee-Yong; Huang, Bill X.; Spector, Arthur A.

    2014-01-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine in reactions are catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear. PMID:24992464

  1. Plastic responses in the metabolome and functional traits of maize plants to temperature variations.

    PubMed

    Sun, C X; Gao, X X; Li, M Q; Fu, J Q; Zhang, Y L

    2016-03-01

    Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non-polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment. PMID:26280133

  2. Early Brain Stimulation May Help Stroke Survivors Recover Language Function

    MedlinePlus

    ... Media Hub On Heart.org Learn More Early brain stimulation may help stroke survivors recover language function ... and strokeassociation.org Share Related Images Infographic - Thiel-Brain Stimulation copyright American Heart Association Download (311.8 ...

  3. Dietary boron, brain function, and cognitive performance.

    PubMed Central

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and women. Within-subject designs were used to assess functional responses in all studies. Spectral analysis of electroencephalographic data showed effects of dietary boron in two of the three studies. When the low boron intake was compared to the high intake, there was a significant (p < 0.05) increase in the proportion of low-frequency activity, and a decrease in the proportion of higher-frequency activity, an effect often observed in response to general malnutrition and heavy metal toxicity. Performance (e.g., response time) on various cognitive and psychomotor tasks also showed an effect of dietary boron. When contrasted with the high boron intake, low dietary boron resulted in significantly poorer performance (p < 0.05) on tasks emphasizing manual dexterity (studies II and III); eye-hand coordination (study II); attention (all studies); perception (study III); encoding and short-term memory (all studies); and long-term memory (study I). Collectively, the data from these three studies indicate that boron may play a role in human brain function and cognitive performance, and provide additional evidence that boron is an essential nutrient for humans. PMID:7889884

  4. Order and disorder in the brain function.

    PubMed

    Quadens, Olga

    2003-01-01

    The interest in studying the brain electrical activity as a function of the development of intelligence has been spurred by the need to understand how the brain responds to environmental information. The description of sleep in mentally retarded children reveals deviant patterns of the EEG-spindles and of the eye movement activity (REM sleep) when compared to normal children. The patterns may be considered as a valuable index of mental function. According to experimental evidence, the distribution of the eye movements of sleep appears either as random or ordered. The latter are altered in the mentally handicapped in whom the appearance out of chaos, of the order which is needed for intelligence and memory to function, is altered. The sleep signs are redundant as from birth. Their pattern is also related to the psychomotor development of the infant. If their distribution remains random, or appears in long uninterrupted sequences of waves as in epilepsy, intelligence does not develop. A similar strategy appears to function in the foetus when nature organizes the structures that will lead to the development of intelligence. The eye movement patterns of sleep change in the pregnant women as a function of term and resemble those of premature babies of a similar gestational age. They also change as a function of the menstrual cycle and more generally as a function of age. The hypothesis that attention is the diurnal equivalent of REM sleep is discussed. Attempts at modelling the eye movement patterns of REM sleep as a function of near zero gravity environments have been made. 1) By means of a Montecarlo simulation using the semi Markov model during the Spacelab 1 flight. 2) With the method of the single and multiple g-phase transition analysis of the strange attractor dimension (d) during parabolic flights. The implication of the latter for the neural processes involved in learning is that the central nervous system can preserve intact, from input to output, over a period of several days, all the information it receives 3) The relation between spindles and eye movements has also been viewed by a quantum approach which is another medium between the information and the way of describing it. PMID:14523349

  5. Intrinsic Functional Plasticity of the Sensory-Motor Network in Patients with Cervical Spondylotic Myelopathy

    PubMed Central

    Zhou, F. Q.; Tan, Y. M.; Wu, L.; Zhuang, Y.; He, L. C.; Gong, H. H.

    2015-01-01

    Several neuroimaging studies have suggested brain reorganisation in patients with cervical spondylotic myelopathy (CSM); however, the changes in spontaneous neuronal activity that are associated with connectedness remain largely unknown. In this study, functional connectivity strength (FCS), a data-driven degree centrality method based on a theoretical approach, was applied for the first time to investigate changes in the sensory-motor network (SMN) at the voxel level. Comparatively, CSM not only showed significantly decreased FCS in the operculum-integrated regions, which exhibited reduced resting-state functional connectivity (rsFC) around the Rolandic sulcus, but it also showed increased FCS in the premotor, primary somatosensory, and parietal-integrated areas, which primarily showed an enhanced rsFC pattern. Correlation analysis showed that altered FCS (in the left premotor-ventral/precentral-operculum, right operculum-parietale 4, and right S1) was associated with worsening Japanese Orthopaedic Association scores and that the rsFC pattern was influenced by cervical cord micro-structural damage at the C2 level. Together, these findings suggest that during myelopathy, the intrinsic functional plasticity of the SMN responds to the insufficient sensory and motor experience in CSM patients. This knowledge may improve our understanding of the comprehensive functional defects found in CSM patients and may inspire the development of new therapeutic strategies in the future. PMID:25897648

  6. Brain Function and Upper Limb Outcome in Stroke: A Cross-Sectional fMRI Study

    PubMed Central

    Buma, Floor E.; Raemaekers, Mathijs; Kwakkel, Gert; Ramsey, Nick F.

    2015-01-01

    Objective The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls. Methods We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task. Results Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well. Conclusion Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists. PMID:26440276

  7. Exercise is brain food: the effects of physical activity on cognitive function.

    PubMed

    Ploughman, Michelle

    2008-07-01

    This commentary reviews selected biomedical and clinical research examining the relationship between physical exercise and cognitive function especially in youth with disability. Youth with physical disability may not benefit from the effects of exercise on cardiovascular fitness and brain health since they are less active than their non-disabled peers. In animal models, physical activity enhances memory and learning, promotes neurogenesis and protects the nervous system from injury and neurodegenerative disease. Neurotrophins, endogenous proteins that support brain plasticity likely mediate the beneficial effects of exercise on the brain. In clinical studies, exercise increases brain volume in areas implicated in executive processing, improves cognition in children with cerebral palsy and enhances phonemic skill in school children with reading difficulty. Studies examining the intensity of exercise required to optimize neurotrophins suggest that moderation is important. Sustained increases in neurotrophin levels occur with prolonged low intensity exercise, while higher intensity exercise, in a rat model of brain injury, elevates the stress hormone, corticosterone. Clearly, moderate physical activity is important for youth whose brains are highly plastic and perhaps even more critical for young people with physical disability. PMID:18781504

  8. The brain as a complex system: plasticity at multiple scales and criticality

    NASA Astrophysics Data System (ADS)

    Ng, Tony; Miller, Paul

    2015-03-01

    As a complex system, a successful organism is one that can react effectively to environmental fluctuations. Not only should its response repertoire be commensurate with the number of independent conditions that it encounters, behavioral and environmental variations need to be matched at the appropriate scales. In the cortex, neuronal clusters, not individual cells, operate at the proper scale that is necessary to generate appropriate responses to external states of the world. Single neurons, however, serve on a finer scale to mediate interactions between neuronal assemblies. The distinction of scales is significant, as plasticity mechanisms can operate on various spatial and temporal scales. The brain has apparently evolved complex-system strategies to calibrate its own dynamics at multiple scales. This makes the joint study of local balance and global homeostasis fundamentally important, where criticality emerges as a signature of a computationally powerful system. We show via simulations how plasticity mechanisms at multiple scales are inextricably tied to spike-based neuronal avalanches, which are microscopic in origin and poorly predictive of animal behavior, and cluster-based avalanches, which are manifest macroscopically and are relevant to cognition and behavior.

  9. Brain microvascular function during cardiopulmonary bypass

    SciTech Connect

    Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.

  10. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    PubMed

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. PMID:22504276

  11. Neurobiological markers of exercise-related brain plasticity in older adults

    PubMed Central

    Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Olson, Erin A.; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A.; Pence, Brandt D.; Cook, Marc D.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.

    2012-01-01

    The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF. PMID:23123199

  12. Plasticity in Unimodal and Multimodal Brain Areas Reflects Multisensory Changes in Self-Face Identification

    PubMed Central

    Apps, Matthew A. J.; Tajadura-Jiménez, Ana; Sereno, Marty; Blanke, Olaf; Tsakiris, Manos

    2015-01-01

    Nothing provides as strong a sense of self as seeing one's face. Nevertheless, it remains unknown how the brain processes the sense of self during the multisensory experience of looking at one's face in a mirror. Synchronized visuo-tactile stimulation on one's own and another's face, an experience that is akin to looking in the mirror but seeing another's face, causes the illusory experience of ownership over the other person's face and changes in self-recognition. Here, we investigate the neural correlates of this enfacement illusion using fMRI. We examine activity in the human brain as participants experience tactile stimulation delivered to their face, while observing either temporally synchronous or asynchronous tactile stimulation delivered to another's face on either a specularly congruent or incongruent location. Activity in the multisensory right temporo-parietal junction, intraparietal sulcus, and the unimodal inferior occipital gyrus showed an interaction between the synchronicity and the congruency of the stimulation and varied with the self-reported strength of the illusory experience, which was recorded after each stimulation block. Our results highlight the important interplay between unimodal and multimodal information processing for self-face recognition, and elucidate the neurobiological basis for the plasticity required for identifying with our continuously changing visual appearance. PMID:23964067

  13. Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome

    PubMed Central

    Greenberg, J. K.; Xia, J.; Zhou, X.; Thatcher, S. R.; Gu, X.; Ament, S. A.; Newman, T. C.; Green, P. J.; Zhang, W.; Robinson, G. E.; Ben-Shahar, Y.

    2012-01-01

    Small, non-coding microRNAs (miRNAs) have been implicated in many biological processes, including the development of the nervous system. However, the roles of miRNAs in natural behavioral and neuronal plasticity are not well understood. To help address this we characterized the microRNA transcriptome in the adult worker honey bee head and investigated whether changes in microRNA expression levels in the brain are associated with division of labor among honey bees, a well-established model for socially regulated behavior. We determined that several miRNAs were downregulated in bees that specialize on brood care (nurses) relative to foragers. Additional experiments showed that this downregulation is dependent upon social context; it only occurred when nurse bees were in colonies that also contained foragers. Analyses of conservation patterns of brain-expressed miRNAs across Hymenoptera suggest a role for certain miRNAs in the evolution of the Aculeata, which includes all the eusocial hymenopteran species. Our results support the intriguing hypothesis that miRNAs are important regulators of social behavior at both developmental and evolutionary time scales. PMID:22409512

  14. Plasticity in unimodal and multimodal brain areas reflects multisensory changes in self-face identification.

    PubMed

    Apps, Matthew A J; Tajadura-Jimnez, Ana; Sereno, Marty; Blanke, Olaf; Tsakiris, Manos

    2015-01-01

    Nothing provides as strong a sense of self as seeing one's face. Nevertheless, it remains unknown how the brain processes the sense of self during the multisensory experience of looking at one's face in a mirror. Synchronized visuo-tactile stimulation on one's own and another's face, an experience that is akin to looking in the mirror but seeing another's face, causes the illusory experience of ownership over the other person's face and changes in self-recognition. Here, we investigate the neural correlates of this enfacement illusion using fMRI. We examine activity in the human brain as participants experience tactile stimulation delivered to their face, while observing either temporally synchronous or asynchronous tactile stimulation delivered to another's face on either a specularly congruent or incongruent location. Activity in the multisensory right temporo-parietal junction, intraparietal sulcus, and the unimodal inferior occipital gyrus showed an interaction between the synchronicity and the congruency of the stimulation and varied with the self-reported strength of the illusory experience, which was recorded after each stimulation block. Our results highlight the important interplay between unimodal and multimodal information processing for self-face recognition, and elucidate the neurobiological basis for the plasticity required for identifying with our continuously changing visual appearance. PMID:23964067

  15. Brain-Derived Neurotrophic Factor-Induced Gene Expression Reveals Novel Actions of VGF in Hippocampal Synaptic Plasticity

    PubMed Central

    Alder, Janet; Thakker-Varia, Smita; Bangasser, Debra A.; Kuroiwa, May; Plummer, Mark R.; Shors, Tracey J.; Black, Ira B.

    2012-01-01

    Synaptic strengthening induced by brain-derived neurotrophic factor (BDNF) is associated with learning and is coupled to transcriptional activation. However, identification of the spectrum of genes associated with BDNF-induced synaptic plasticity and the correlation of expression with learning paradigms in vivo has not yet been studied. Transcriptional analysis of BDNF-induced synaptic strengthening in cultured hippocampal neurons revealed increased expression of the immediate early genes (IEGs), c-fos, early growth response gene 1 (EGR1), activity-regulated cytoskeletal-associated protein (Arc) at 20 min, and the secreted peptide VGF (non-acronymic) protein precursor at 3 hr. The induced genes served as prototypes to decipher mechanisms of both BDNF-induced transcription and plasticity. BDNF-mediated gene expression was tyrosine kinase B and mitogen-activated protein kinase-dependent, as demonstrated by pharmacological studies. Single-cell transcriptional analysis of Arc after whole-cell patch-clamp recordings indicated that increased gene expression correlated with enhancement of synaptic transmission by BDNF. Increased expression in vitro predicted elevations in vivo: VGF and the IEGs increased after trace eyeblink conditioning, a hippocampal-dependent learning paradigm. VGF protein was also upregulated by BDNF treatment and was expressed in a punctate manner in dissociated hippocampal neurons. Collectively, these findings suggested that the VGF neuropeptides may regulate synaptic function. We found a novel function for VGF by applying VGF peptides to neurons. C-terminal VGF peptides acutely increased synaptic charge in a dose-dependent manner, whereas N-terminal peptide had no effect. These observations indicate that gene profiling in vitro can reveal new mechanisms of synaptic strengthening associated with learning and memory. PMID:14645472

  16. Effects of the diet on brain function

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.

    1981-01-01

    The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neutrotransmitter products.

  17. 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity

    PubMed Central

    Dreyer, David; Vitt, Holger; Dippel, Stefan; Goetz, Brigitte; el Jundi, Basil; Kollmann, Martin; Huetteroth, Wolf; Schachtner, Joachim

    2009-01-01

    The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system. In the current study, we provide 3D standard brain atlases of freshly eclosed adult female and male beetles (A0). The atlases include eight paired and three unpaired neuropils including antennal lobes (ALs), optic lobe neuropils, mushroom body calyces and pedunculi, and central complex. For each of the two standard brains, we averaged brain areas of 20 individual brains. Additionally, we characterized eight selected olfactory glomeruli from 10 A0 female and male beetles respectively, which we could unequivocally recognize from individual to individual owing to their size and typical position in the ALs. In summary, comparison of the averaged neuropil volumes revealed no sexual dimorphism in any of the reconstructed neuropils in A0 Tribolium brains. Both, the female and male 3D standard brain are also used for interspecies comparisons, and, importantly, will serve as future volumetric references after genetical manipulation especially regarding metamorphic development and adult plasticity. PMID:20339482

  18. Neuropsychological functioning of children with brain tumors.

    PubMed

    Divcić, Branka; Hajnzić, Tomislav Franjo

    2008-06-01

    In the past few decades, the survivor rate from childhood cancers has significantly increased due to constant modifications and improvements in treatment protocols, so the estimates are that childhood cancer occurs in 1 per 600 children, and that 1 per 450 adolescents or young adults is a long-term cancer survivor. Nevertheless, radiation treatment is still a necessary option that certainly contributes to greater survival rate (75%), until new approaches to patients with malignant diseases are accepted. In our clinical practice, surgical treatment for malignant brain tumor is followed by radio- and chemotherapy tailored according to patient age and tumor type, position and size. During a six-year period, neuropsychological functioning was tested in 21 patients upon completion of treatment and retested in 19 patients in the stage of primary disease remission. Comparison of the test-retest results revealed some, statistically nonsignificant decline in full scale IQ, verbal and performance subscales, and graphomotor skills. However, the results showed a statistically significant improvement in several cognitive functions including short-term memory, information fund (suggesting long-term memory improvement), visuospatial functions measured by object assemble and block design subtests. There were no statistically significant differences between the patients younger and older than 7 years. Results also suggested an improved quality of recovery expressed by numerous school re-entries, without age or sex differences. Trials are continued to follow-up the possible long -term adverse effects of the aggressive oncologic therapy. PMID:18949900

  19. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  20. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  1. Plasticity of Attentional Functions in Older Adults after Non-Action Video Game Training: A Randomized Controlled Trial

    PubMed Central

    Mayas, Julia; Parmentier, Fabrice B. R.; Andrés, Pilar; Ballesteros, Soledad

    2014-01-01

    A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. Trial Registration ClinicalTrials.gov NCT02007616 PMID:24647551

  2. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    PubMed Central

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  3. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals.

    PubMed

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  4. BrainKnowledge: a human brain function mapping knowledge-base system.

    PubMed

    Hsiao, Mei-Yu; Chen, Chien-Chung; Chen, Jyh-Horng

    2011-03-01

    Associating fMRI image datasets with the available literature is crucial for the analysis and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (BrainKnowledge) that associates fMRI data analysis and literature search functions. BrainKnowledge not only contains indexed literature, but also provides the ability to compare experimental data with those derived from the literature. BrainKnowledge provides three major functions: (1) to search for brain activation models by selecting a particular brain function; (2) to query functions by brain structure; (3) to compare the fMRI data with data extracted from the literature. All these functions are based on our literature extraction and mining module developed earlier (Hsiao, Chen, Chen. Journal of Biomedical Informatics 42, 912-922, 2009), which automatically downloads and extracts information from a vast amount of fMRI literature and generates co-occurrence models and brain association patterns to illustrate the relevance of brain structures and functions. BrainKnowledge currently provides three co-occurrence models: (1) a structure-to-function co-occurrence model; (2) a function-to-structure co-occurrence model; and (3) a brain structure co-occurrence model. Each model has been generated from over 15,000 extracted Medline abstracts. In this study, we illustrate the capabilities of BrainKnowledge and provide an application example with the studies of affect. BrainKnowledge, which combines fMRI experimental results with Medline abstracts, may be of great assistance to scientists not only by freeing up resources and valuable time, but also by providing a powerful tool that collects and organizes over ten thousand abstracts into readily usable and relevant sources of information for researchers. PMID:20857233

  5. Mapping brain function in freely moving subjects

    PubMed Central

    Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject’s natural behavior. Here we provide an overview of several approaches that have been undertaken in the past to achieve this aim in both tethered and freely moving animals, as well as in nonrestrained human subjects. Applications of specific radiotracers to single photon emission computed tomography and positron emission tomography are discussed in which brain activation is imaged after completion of the behavioral task and capture of the tracer. Potential applications to clinical neuropsychiatry are discussed, as well as challenges inherent to constraint-free functional neuroimaging. Future applications of these methods promise to increase our understanding of the neural circuits underlying mammalian behavior in health and disease. PMID:15465134

  6. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain

    PubMed Central

    Hawkins, Robert D.

    2013-01-01

    Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca2+ and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer’s disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD). PMID:24049187

  7. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes.

    PubMed

    Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P; Stanhope, Kimber L; Graham, James L; Havel, Peter J; Gomez-Pinilla, Fernando

    2014-09-01

    The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, p<0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM. PMID:24840661

  8. Topographic Brain Mapping: A Window on Brain Function?

    ERIC Educational Resources Information Center

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  9. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  10. NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain

    PubMed Central

    Kaltschmidt, Barbara; Kaltschmidt, Christian

    2015-01-01

    The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory—a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system. PMID:26635522

  11. Advanced Structural and Functional Brain MRI in Multiple Sclerosis.

    PubMed

    Giorgio, Antonio; De Stefano, Nicola

    2016-04-01

    Conventional magnetic resonance imaging (MRI) of the central nervous system is crucial for an early and reliable diagnosis and monitoring of patients with multiple sclerosis (MS). Focal white matter (WM) lesions, as detected by MRI, are the pathological hallmark of the disease and show some relation to clinical disability, especially in the long run. Gray matter (GM) involvement is evident from disease onset and includes focal (i.e., cortical lesions) and diffuse pathology (i.e., atrophy). Both accumulate over time and show close relation to physical disability and cognitive impairment. Using advanced quantitative MRI techniques such as magnetization transfer imaging (MTI), diffusion tensor imaging (DTI), proton MR spectroscopy ((1)H-MRS), and iron imaging, subtle MS pathology has been demonstrated from early stages outside focal WM lesions in the form of widespread abnormalities of the normal appearing WM and GM. In addition, studies using functional MRI have demonstrated that brain plasticity is driven by MS pathology, playing adaptive or maladaptive roles to neurologic and cognitive status and explaining, at least in part, the clinicoradiological paradox of MS. PMID:27116723

  12. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  13. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be stored in a relational database for comparison with corresponding responses previously observed in other subjects.

  14. Amphetamine-Associated Contextual Learning is Accompanied by Structural and Functional Plasticity in the Basolateral Amygdala

    PubMed Central

    Rademacher, David J.; Rosenkranz, J. Amiel; Morshedi, Maud M.; Sullivan, Elyse M.; Meredith, Gloria E.

    2010-01-01

    Drug seeking and the vulnerability to relapse occur when individuals are exposed to an environment with sensory cues where drug taking has occurred. Memory formation is thought to require plasticity in synaptic circuits, and so we examined whether the memory for a drug-paired environment correlates with changes in the synaptic circuits of the basolateral amygdala (BLA), where emotional learning is a recognized phenomenon. We used amphetamine (AMPH) as the unconditioned stimulus in the conditioned place preference (CPP) paradigm. Rats were conditioned with 1.0 mg/kg AMPH and tested, drug-free, 72 h after the last conditioning session. Controls included a saline conditioned group and a home cage AMPH injection group, whose exposure to the CPP apparatus was delayed by 4 h, long enough to clear the AMPH from the brain. We counted excitatory synapses in the BLA using the electron microscope and the physical disector design (stereology). Rats that expressed AMPH CPP had an increase in excitatory synapses compared to controls. Excitatory synaptic activity was measured using in vivo intracellular recordings from the BLA in anesthetized rats. We found that AMPH CPP, but not drug alone, increased measures of synaptic drive, including the frequency of synaptic events, and the paired-pulse ratio of synaptic inputs to BLA pyramidal neurons. The in vivo findings suggest that the increase in BLA neuronal excitatory drive reflects the change in excitatory synapse number. Thus, context-drug associations are accompanied by structural and functional plasticity in the BLA, findings that have important implications for drug-seeking behavior. PMID:20357118

  15. Brain serotonin and pituitary-adrenal functions

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  16. Gut microbial communities modulating brain development and function

    PubMed Central

    Al-Asmakh, Maha; Anuar, Farhana; Zadjali, Fahad; Rafter, Joseph; Pettersson, Sven

    2012-01-01

    Mammalian brain development is initiated in utero and internal and external environmental signals can affect this process all the way until adulthood. Recent observations suggest that one such external cue is the indigenous microbiota which has been shown to affect developmental programming of the brain. This may have consequences for brain maturation and function that impact on cognitive functions later in life. This review discusses these recent findings from a developmental perspective. PMID:22743758

  17. Brain Plasticity in Speech Training in Native English Speakers Learning Mandarin Tones

    NASA Astrophysics Data System (ADS)

    Heinzen, Christina Carolyn

    The current study employed behavioral and event-related potential (ERP) measures to investigate brain plasticity associated with second-language (L2) phonetic learning based on an adaptive computer training program. The program utilized the acoustic characteristics of Infant-Directed Speech (IDS) to train monolingual American English-speaking listeners to perceive Mandarin lexical tones. Behavioral identification and discrimination tasks were conducted using naturally recorded speech, carefully controlled synthetic speech, and non-speech control stimuli. The ERP experiments were conducted with selected synthetic speech stimuli in a passive listening oddball paradigm. Identical pre- and post- tests were administered on nine adult listeners, who completed two-to-three hours of perceptual training. The perceptual training sessions used pair-wise lexical tone identification, and progressed through seven levels of difficulty for each tone pair. The levels of difficulty included progression in speaker variability from one to four speakers and progression through four levels of acoustic exaggeration of duration, pitch range, and pitch contour. Behavioral results for the natural speech stimuli revealed significant training-induced improvement in identification of Tones 1, 3, and 4. Improvements in identification of Tone 4 generalized to novel stimuli as well. Additionally, comparison between discrimination of across-category and within-category stimulus pairs taken from a synthetic continuum revealed a training-induced shift toward more native-like categorical perception of the Mandarin lexical tones. Analysis of the Mismatch Negativity (MMN) responses in the ERP data revealed increased amplitude and decreased latency for pre-attentive processing of across-category discrimination as a result of training. There were also laterality changes in the MMN responses to the non-speech control stimuli, which could reflect reallocation of brain resources in processing pitch patterns for the across-category lexical tone contrast. Overall, the results support the use of IDS characteristics in training non-native speech contrasts and provide impetus for further research.

  18. Brain Research: The Necessity for Separating Sites, Actions and Functions.

    ERIC Educational Resources Information Center

    Meeker, Mary

    Educators, as applied scientists, must work in partnership with investigative scientists who are researching brain functions in order to reach a better understanding of gifted students and students who are intelligent but do not learn. Improper understanding of brain functions can cause gross errors in educational placement. Until recently, the…

  19. [Functional organization of a photoperiodic brain system].

    PubMed

    Zamorskiĭ, I I; Pishak, V P

    2003-01-01

    The neurofunctional system, which receives a photoperiod, is a photoperiodic brain system. As a part of chronoperiodic system of organism it is involved in perception and transfer of information about the main external Zeitgeber to the peripheral tissues. Such role of photoperiodic system allows it not only synchronize the chronorhythms of different somatic and visceral functions, but also realize the coordination and the modulation of adaptation mechanisms to the stressors influence. The present review is focused on the ways of conduction of photoperiodic information, role of suprachiasmatic nuclei of hypothalamus in endogenous oscillation of chronorhythms and pineal gland as a neuroendocrinal transducer; and also on characteristics of circadian and circannual parts of photoperiodic system. Special attention is given to vegetative part of photoperiodic system and melatonin--"the hormone of dark". It is supposed that adenosine, one of the humoral elements of photoperiodic system, is involved in transfer of duration of the light part of photoperiod. Due to presented data we have come to the conclusion that septohippocampal system is one of the center for saving photoperiodic information. PMID:14658302

  20. Spatial variability of functional brain networks in early-blind and sighted subjects.

    PubMed

    Boldt, Robert; Seppä, Mika; Malinen, Sanna; Tikka, Pia; Hari, Riitta; Carlson, Synnöve

    2014-07-15

    To further the understanding how the human brain adapts to early-onset blindness, we searched in early-blind and normally-sighted subjects for functional brain networks showing the most and least spatial variabilities across subjects. We hypothesized that the functional networks compensating for early-onset blindness undergo cortical reorganization. To determine whether reorganization of functional networks affects spatial variability, we used functional magnetic resonance imaging to compare brain networks, derived by independent component analysis, of 7 early-blind and 7 sighted subjects while they rested or listened to an audio drama. In both conditions, the blind compared with sighted subjects showed more spatial variability in a bilateral parietal network (comprising the inferior parietal and angular gyri and precuneus) and in a bilateral auditory network (comprising the superior temporal gyri). In contrast, a vision-related left-hemisphere-lateralized occipital network (comprising the superior, middle and inferior occipital gyri, fusiform and lingual gyri, and the calcarine sulcus) was less variable in blind than sighted subjects. Another visual network and a tactile network were spatially more variable in the blind than sighted subjects in one condition. We contemplate whether our results on inter-subject spatial variability of brain networks are related to experience-dependent brain plasticity, and we suggest that auditory and parietal networks undergo a stronger experience-dependent reorganization in the early-blind than sighted subjects while the opposite is true for the vision-related occipital network. PMID:24680867

  1. Violent Video Games Alter Brain Function in Young Men

    MedlinePlus

    ... and Updates News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men ... Using functional MRI, researchers have found that playing violent video games for one week causes changes in ...

  2. Persistent Postconcussive Symptoms Are Accompanied by Decreased Functional Brain Oxygenation.

    PubMed

    Helmich, Ingo; Saluja, Rajeet S; Lausberg, Hedda; Kempe, Mathias; Furley, Philip; Berger, Alisa; Chen, Jen-Kai; Ptito, Alain

    2015-01-01

    Diagnostic methods are considered a major concern in the determination of mild traumatic brain injury. The authors examined brain oxygenation patterns in subjects with severe and minor persistent postconcussive difficulties and a healthy control group during working memory tasks in prefrontal brain regions using functional near-infrared spectroscopy. The results demonstrated decreased working memory performances among concussed subjects with severe postconcussive symptoms that were accompanied by decreased brain oxygenation patterns. An association appears to exist between decreased brain oxygenation, poor performance of working memory tasks, and increased symptom severity scores in subjects suffering from persistent postconcussive symptoms. PMID:25803447

  3. The connection between rhythmicity and brain function.

    PubMed

    Thaut, M H; Kenyon, G P; Schauer, M L; McIntosh, G C

    1999-01-01

    Although rhythm and music are not entirely synonymous terms, rhythm constitutes one of the most essential structural and organizational elements of music. When considering the effect of music on human adaptation, the profound effect of rhythm on the motor system strongly suggests that the time structure of music is the essential element relating music specifically to motor behavior. Why the motor system appears so sensitive to auditory priming and timing stimulation can only be partially answered so far. The high-performance function of the auditory system regarding processing of time information makes good functional sense within the constraints of auditory sensory processing. Thus, the motor system sensitivity to auditory entrainment may simply be an evolutionary useful function of taking advantage of the specific and unique aspects of auditory information processing for enhanced control and organization of motor behavior; e.g, in the time domain. Unlike processes in the motor system, many other physiological processes cannot be effectively entrained by external sensory stimuli. For example, there is probably a very good protective reason why other cyclical physiological processes (e.g., autonomic processes such as heart rate) have only very limited entrainment capacity to external rhythmic cues. Some of the basic auditory-motor arousal connections may also have their basis in adaptive evolutionary processes related to survival behavior; e.g., in fight or flight reactions. Much of the "why" in auditory-motor interactions, however, remains unknown heuristically. In the absence of this knowledge, great care should be taken to not compensate for this lack of understanding of specific cause and effect processes by assigning anthropomorphic descriptions to the behavior of biological and physical systems. The unraveling of the perceptual, physiological, and neuroanatomical basis of the interaction between rhythm and movement has been, and continues to be, a fascinating endeavor with important ramifications for the study of brain function, sensory perception, and motor behavior. One of the most exciting findings in this research, however, may be the evidence that the interaction between auditory rhythm and physical response can be effectively harnessed for specific therapeutic purposes in the rehabilitation of persons with movement disorders. PMID:10101675

  4. Structural and functional connectivity in traumatic brain injury

    PubMed Central

    Xiao, Hui; Yang, Yang; Xi, Ji-hui; Chen, Zi-qian

    2015-01-01

    Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis. PMID:26889200

  5. Perceptual shift in bilingualism: brain potentials reveal plasticity in pre-attentive colour perception.

    PubMed

    Athanasopoulos, Panos; Dering, Benjamin; Wiggett, Alison; Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-09-01

    The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour oddball detection task with Greek and English speakers, a recent study suggests that language effects may exist at early stages of perceptual integration [Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. (2009). Unconscious effects of language-specific terminology on pre-attentive colour perception. Proceedings of the National Academy of Sciences, 106, 4567-4570]. In this paper, we test whether in Greek speakers exposure to a new cultural environment (UK) with contrasting colour terminology from their native language affects early perceptual processing as indexed by an electrophysiological correlate of visual detection of colour luminance. We also report semantic mapping of native colour terms and colour similarity judgements. Results reveal convergence of linguistic descriptions, cognitive processing, and early perception of colour in bilinguals. This result demonstrates for the first time substantial plasticity in early, pre-attentive colour perception and has important implications for the mechanisms that are involved in perceptual changes during the processes of language learning and acculturation. PMID:20566193

  6. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  7. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly

  8. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa.

    PubMed

    McLean, Elizabeth H; Prober, Suzanne M; Stock, William D; Steane, Dorothy A; Potts, Brad M; Vaillancourt, René E; Byrne, Margaret

    2014-06-01

    Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south-eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ(13)C and δ(18)O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation. PMID:24329726

  9. Sugar for the brain: the role of glucose in physiological and pathological brain function

    PubMed Central

    Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas

    2013-01-01

    The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694

  10. The Dynamic Dielectric at a Brain Functional Site and an EM Wave Approach to Functional Brain Imaging

    PubMed Central

    Li, X. P.; Xia, Q.; Qu, D.; Wu, T. C.; Yang, D. G.; Hao, W. D.; Jiang, X.; Li, X. M.

    2014-01-01

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging. PMID:25367217

  11. Development of large-scale functional brain networks in children.

    PubMed

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  12. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience.

    PubMed

    Foster, Jane A; Lyte, Mark; Meyer, Emeran; Cryan, John F

    2016-05-01

    There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29(th) International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, "Gut microbiota and brain function: Relevance to psychiatric disorders" to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations. PMID:26438800

  13. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  14. The disorganized visual cortex in reelin-deficient mice is functional and allows for enhanced plasticity.

    PubMed

    Pielecka-Fortuna, Justyna; Wagener, Robin Jan; Martens, Ann-Kristin; Goetze, Bianka; Schmidt, Karl-Friedrich; Staiger, Jochen F; Löwel, Siegrid

    2015-11-01

    A hallmark of neocortical circuits is the segregation of processing streams into six distinct layers. The importance of this layered organization for cortical processing and plasticity is little understood. We investigated the structure, function and plasticity of primary visual cortex (V1) of adult mice deficient for the glycoprotein reelin and their wild-type littermates. In V1 of rl-/- mice, cells with different laminar fates are present at all cortical depths. Surprisingly, the (vertically) disorganized cortex maintains a precise retinotopic (horizontal) organization. Rl-/- mice have normal basic visual capabilities, but are compromised in more challenging perceptual tasks, such as orientation discrimination. Additionally, rl-/- animals learn and memorize a visual task as well as their wild-type littermates. Interestingly, reelin deficiency enhances visual cortical plasticity: juvenile-like ocular dominance plasticity is preserved into late adulthood. The present data offer an important insight into the capabilities of a disorganized cortical system to maintain basic functional properties. PMID:25119525

  15. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  16. Beyond localized and distributed accounts of brain functions. Comment on Understanding brain networks and brain organization by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  17. Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults.

    PubMed

    Wei, Gao-Xia; Dong, Hao-Ming; Yang, Zhi; Luo, Jing; Zuo, Xi-Nian

    2014-01-01

    Whether Tai Chi Chuan (TCC) can influence the intrinsic functional architecture of the human brain remains unclear. To examine TCC-associated changes in functional connectomes, resting-state functional magnetic resonance images were acquired from 40 older individuals including 22 experienced TCC practitioners (experts) and 18 demographically matched TCC-naïve healthy controls, and their local functional homogeneities across the cortical mantle were compared. Compared to the controls, the TCC experts had significantly greater and more experience-dependent functional homogeneity in the right post-central gyrus (PosCG) and less functional homogeneity in the left anterior cingulate cortex (ACC) and the right dorsal lateral prefrontal cortex. Increased functional homogeneity in the PosCG was correlated with TCC experience. Intriguingly, decreases in functional homogeneity (improved functional specialization) in the left ACC and increases in functional homogeneity (improved functional integration) in the right PosCG both predicted performance gains on attention network behavior tests. These findings provide evidence for the functional plasticity of the brain's intrinsic architecture toward optimizing locally functional organization, with great implications for understanding the effects of TCC on cognition, behavior and health in aging population. PMID:24860494

  18. Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats.

    PubMed

    Brenes, Juan C; Lackinger, Martin; Höglinger, Günter U; Schratt, Gerhard; Schwarting, Rainer K W; Wöhr, Markus

    2016-06-01

    Environmental enrichment (EE) exerts beneficial effects on brain plasticity, cognition, and anxiety/depression, leading to a brain that can counteract deficits underlying various brain disorders. Because the complexity of the EE commonly used makes it difficult to identify causal aspects, we examined possible factors using a 2 × 2 design with social EE (two vs. six rats) and physical EE (physically enriched vs. nonenriched). For the first time, we demonstrate that social and physical EE have differential effects on brain plasticity, cognition, and ultrasonic communication. Expectedly, physical EE promoted neurogenesis in the dentate gyrus of the hippocampal formation, but not in the subventricular zone, and, as a novel finding, affected microRNA expression levels, with the activity-dependent miR-124 and miR-132 being upregulated. Concomitant improvements in cognition were observed, yet social deficits were seen in the emission of prosocial 50-kHz ultrasonic vocalizations (USV) paralleled by a lack of social approach in response to them, consistent with the intense world syndrome/theory of autism. In contrast, social EE had only minor effects on brain plasticity and cognition, but led to increased prosocial 50-kHz USV emission rates and enhanced social approach behavior. Importantly, social deficits following physical EE were prevented by additional social EE. The finding that social EE has positive whereas physical EE has negative effects on social behavior indicates that preclinical studies focusing on EE as a potential treatment in models for neuropsychiatric disorders characterized by social deficits, such as autism, should include social EE in addition to physical EE, because its lack might worsen social deficits. J. Comp. Neurol. 524:1586-1607, 2016. © 2015 Wiley Periodicals, Inc. PMID:26132842

  19. IL-12 drives functional plasticity of human group 2 innate lymphoid cells.

    PubMed

    Lim, Ai Ing; Menegatti, Silvia; Bustamante, Jacinta; Le Bourhis, Lionel; Allez, Matthieu; Rogge, Lars; Casanova, Jean-Laurent; Yssel, Hans; Di Santo, James P

    2016-04-01

    Group 2 innate lymphoid cells (ILC2) include IL-5- and IL-13-producing CRTh2(+)CD127(+)cells that are implicated in early protective immunity at mucosal surfaces. Whereas functional plasticity has been demonstrated for both human and mouse ILC3 subsets that can reversibly give rise to IFN-γ-producing ILC1, plasticity of human or mouse ILC2 has not been shown. Here, we analyze the phenotypic and functional heterogeneity of human peripheral blood ILC2. Although subsets of human CRTh2(+)ILC2 differentially express CD117 (c-kit receptor), some ILC2 surface phenotypes are unstable and can be modulated in vitro. Surprisingly, human IL-13(+)ILC2 can acquire the capacity to produce IFN-γ, thereby generating plastic ILC2. ILC2 cultures demonstrated that IFN-γ(+)ILC2 clones could be derived and were stably associated with increased T-BET expression. The inductive mechanism for ILC2 plasticity was mapped to the IL-12-IL-12R signaling pathway and was confirmed through analysis of patients with Mendelian susceptibility to mycobacterial disease due to IL-12Rβ1 deficiencies that failed to generate plastic ILC2. We also detected IL-13(+)IFN-γ(+)ILC2 ex vivo in intestinal samples from Crohn's disease patients. These results demonstrate cytokine production plasticity for human ILC2 and further suggest that environmental cues can dictate ILC phenotype and function for these tissue-resident innate effector cells. PMID:26976630

  20. Brain function in social anxiety disorder.

    PubMed

    Argyropoulos, S V; Bell, C J; Nutt, D J

    2001-12-01

    What have these studies revealed about SAD? First, few studies have been performed so far, with even fewer replications. Most of the work has been exploratory in nature and follows the paradigms used in PD. This approach has been justifiably criticized. The use of psychological (naturalistic) challenges may be more appropriate in SP than chemical challenges. The paradigms of public speaking, autobiographical scripts, or similar behavioral challenges merit further use, exploration, and validation if symptoms resembling those of the condition proper are to be induced in experimental circumstances. However, some tentative conclusions can be drawn from the research performed so far. There is no enough evidence to support the presence of structural brain abnormality in SAD. Admittedly, such a finding would have been very unlikely. On the other hand, evidence of subtle functional abnormalities is accumulating. On the nosologic question, there appear to be differences from PD. While in some challenges (e.g., CO2 and pentagastrin) the two conditions differ only in degree, in others (e.g., lactate, caffeine, and flumazenil), the separation is clearer. Equally, there is a strong argument to differentiate the generalized from the specific form of social anxiety on the basis of substantial (albeit accidental) findings outlined earlier. More sophisticated neuroimaging techniques, directly comparing patients from both groups before and after pharmacologic or psychological treatment, should provide more conclusive evidence on this issue. What might also help future research is the integration of biological investigations with specific personality profiles. In one study, SAD patients scored low in novelty seeking, self-directedness and cooperativeness and high in harm avoidance. It has been hypothesized that such results indicate serotonergic and dopaminergic dysregulation, which is consistent with the findings described earlier. The best evidence for neurotransmitter abnormality so far is for altered dopamine function at the level of the basal ganglia, either pre- or postsynaptic, which may result in reduced basal ganglia function so that the normal fluidity of social motor functions (e.g., smiling, eye movements, and speech) are impaired, thus leading to the cognitive symptoms of social anxiety and the subsequent generation of avoidance behavior. Such patients should respond poorly to antipsychotics, and additional challenges with these drugs could be used to test this theory. Furthermore, more research needs to be done to elucidate the mechanism by which SSRIs work in SAD. Neuroanatomical models of social anxiety (Fig. 4) [see structure: Text], explaining the site of action of drugs and psychological treatments, have been proposed in recent years. Central to these models is the notion of an innate anxiety circuit, which could be tentatively identified with the behavioral inhibition system, the septohippocampal system. This area receives 5-HT, NE, and dopamine input and has connections with the cortex and limbic structures. The relevance of these models remains to be assessed in experiments that are specifically designed to test them. PMID:11723629

  1. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  2. The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

    PubMed Central

    Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele

    2016-01-01

    This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776

  3. Neuroplasticity as a function of second language learning: anatomical changes in the human brain.

    PubMed

    Li, Ping; Legault, Jennifer; Litcofsky, Kaitlyn A

    2014-09-01

    The brain has an extraordinary ability to functionally and physically change or reconfigure its structure in response to environmental stimulus, cognitive demand, or behavioral experience. This property, known as neuroplasticity, has been examined extensively in many domains. But how does neuroplasticity occur in the brain as a function of an individual's experience with a second language? It is not until recently that we have gained some understanding of this question by examining the anatomical changes as well as functional neural patterns that are induced by the learning and use of multiple languages. In this article we review emerging evidence regarding how structural neuroplasticity occurs in the brain as a result of one's bilingual experience. Our review aims at identifying the processes and mechanisms that drive experience-dependent anatomical changes, and integrating structural imaging evidence with current knowledge of functional neural plasticity of language and other cognitive skills. The evidence reviewed so far portrays a picture that is highly consistent with structural neuroplasticity observed for other domains: second language experience-induced brain changes, including increased gray matter (GM) density and white matter (WM) integrity, can be found in children, young adults, and the elderly; can occur rapidly with short-term language learning or training; and are sensitive to age, age of acquisition, proficiency or performance level, language-specific characteristics, and individual differences. We conclude with a theoretical perspective on neuroplasticity in language and bilingualism, and point to future directions for research. PMID:24996640

  4. Functional and Phenotypic Plasticity of CD4+ T Cell Subsets

    PubMed Central

    Caza, Tiffany; Landas, Steve

    2015-01-01

    The remarkable plasticity of CD4+ T cells allows individuals to respond to environmental stimuli in a context-dependent manner. A balance of CD4+ T cell subsets is critical to mount responses against pathogen challenges to prevent inappropriate activation, to maintain tolerance, and to participate in antitumor immune responses. Specification of subsets is a process beginning in intrathymic development and continuing within the circulation. It is highly flexible to adapt to differences in nutrient availability and the tissue microenvironment. CD4+ T cell subsets have significant cross talk, with the ability to “dedifferentiate” given appropriate environmental signals. This ability is dependent on the metabolic status of the cell, with mTOR acting as the rheostat. Autoimmune and antitumor immune responses are regulated by the balance between regulatory T cells and Th17 cells. When a homeostatic balance of subsets is not maintained, immunopathology can result. CD4+ T cells carry complex roles within tumor microenvironments, with context-dependent immune responses influenced by oncogenic drivers and the presence of inflammation. Here, we examine the signals involved in CD4+ T cell specification towards each subset, interconnectedness of cytokine networks, impact of mTOR signaling, and cellular metabolism in lineage specification and provide a supplement describing techniques to study these processes. PMID:26583116

  5. Complex Networks - A Key to Understanding Brain Function

    ScienceCinema

    Olaf Sporns

    2010-01-08

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  6. Complex Networks - A Key to Understanding Brain Function

    SciTech Connect

    Olaf Sporns

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  7. Complex Networks - A Key to Understanding Brain Function

    SciTech Connect

    Sporns, Olaf

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  8. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social

  9. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  10. Set and setting: how behavioral state regulates sensory function and plasticity

    PubMed Central

    Aton, Sara J.

    2013-01-01

    Recently developed neuroimaging and electrophysiological techniques are allowing us to answer fundamental questions about how behavioral states regulate our perception of the external environment. Studies using these techniques have yielded surprising insights into how sensory processing is affected at the earliest stages by attention and motivation, and how new sensory information received during wakefulness (e.g., during learning) continues to affect sensory brain circuits (leading to plastic changes) during subsequent sleep. This review aims to describe how brain states affect sensory response properties among neurons in primary and secondary sensory cortices, and how this relates to psychophysical detection thresholds and performance on sensory discrimination tasks. This is not intended to serve as a comprehensive overview of all brain states, or all sensory systems, but instead as an illustrative description of how three specific state variables (attention, motivation, and vigilance [i.e., sleep vs. wakefulness]) affect sensory systems in which they have been best studied. PMID:23792020

  11. Brain Hemispheric Functions and the Native American.

    ERIC Educational Resources Information Center

    Ross, Allen Chuck

    1982-01-01

    Uses brain research conducted by Dr. Roger Sperry to show that traditional Native Americans are more dominant in right hemisphere thinking, setting them apart from a modern left hemisphere-oriented society (especially emphasized in schools). Describes some characteristics of Native American thinking that illustrate a right hemisphere orientation

  12. Generating Text from Functional Brain Images

    PubMed Central

    Pereira, Francisco; Detre, Greg; Botvinick, Matthew

    2011-01-01

    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

  13. Brain Hemispheric Functions and the Native American.

    ERIC Educational Resources Information Center

    Ross, Allen Chuck

    1982-01-01

    Uses brain research conducted by Dr. Roger Sperry to show that traditional Native Americans are more dominant in right hemisphere thinking, setting them apart from a modern left hemisphere-oriented society (especially emphasized in schools). Describes some characteristics of Native American thinking that illustrate a right hemisphere orientation…

  14. Neural Substrate Expansion for the Restoration of Brain Function

    PubMed Central

    Chen, H. Isaac; Jgamadze, Dennis; Serruya, Mijail D.; Cullen, D. Kacy; Wolf, John A.; Smith, Douglas H.

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  15. Neural Substrate Expansion for the Restoration of Brain Function.

    PubMed

    Chen, H Isaac; Jgamadze, Dennis; Serruya, Mijail D; Cullen, D Kacy; Wolf, John A; Smith, Douglas H

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  16. Early constraint-induced movement therapy promotes functional recovery and neuronal plasticity in a subcortical hemorrhage model rat.

    PubMed

    Ishida, Akimasa; Misumi, Sachiyo; Ueda, Yoshitomo; Shimizu, Yuko; Cha-Gyun, Jung; Tamakoshi, Keigo; Ishida, Kazuto; Hida, Hideki

    2015-05-01

    Constraint-induced movement therapy (CIMT) promotes functional recovery of impaired forelimbs after hemiplegic strokes, including intracerebral hemorrhage (ICH). We used a rat model of subcortical hemorrhage to compare the effects of delivering early or late CIMT after ICH. The rat model was made by injecting collagenase into the globus pallidus near the internal capsule, and then forcing rats to use the affected forelimb for 7 days starting either 1 day (early CIMT) or 17 days (late CIMT) after the lesion. Recovery of forelimb function in the skilled reaching test and the ladder stepping test was found after early-CIMT, while no significant recovery was shown after late CIMT or in the non-CIMT controls. Early CIMT was associated with greater numbers of ΔFosB-positive cells in the ipsi-lesional sensorimotor cortex layers II-III and V. Additionally, we found expression of the growth-related genes brain-derived neurotrophic factor (BDNF) and growth-related protein 43 (GAP-43), and abundant dendritic arborization of pyramidal neurons in the sensorimotor area. Similar results were not detected in the contra-lesional cortex. In contrast to early CIMT, late CIMT failed to induce any changes in plasticity. We conclude that CIMT induces molecular and morphological plasticity in the ipsi-lesional sensorimotor cortex and facilitates better functional recovery when initiated immediately after hemorrhage. PMID:25700666

  17. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert

    PubMed Central

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-01-01

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745

  18. Plastic modulation of episodic memory networks in the aging brain with cognitive decline.

    PubMed

    Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun

    2016-07-15

    Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. PMID:27091676

  19. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  20. Rewiring the Brain: Potential Role of the Premotor Cortex in Motor Control, Learning, and Recovery of Function Following Brain Injury

    PubMed Central

    Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.

    2016-01-01

    The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382

  1. Digital media, the developing brain and the interpretive plasticity of neuroplasticity.

    PubMed

    Choudhury, Suparna; McKinney, Kelly A

    2013-04-01

    The use and misuse of digital technologies among adolescents has been the focus of fiery debates among parents, educators, policy-makers and in the media. Recently, these debates have become shaped by emerging data from cognitive neuroscience on the development of the adolescent brain and cognition. "Neuroplasticity" has functioned as a powerful metaphor in arguments both for and against the pervasiveness of digital media cultures that increasingly characterize teenage life. In this paper, we propose that the debates concerning adolescents are the meeting point of two major social anxieties both of which are characterized by the threat of "abnormal" (social) behaviour: existing moral panics about adolescent behaviour in general and the growing alarm about intense, addictive, and widespread media consumption in modern societies. Neuroscience supports these fears but the same kinds of evidence are used to challenge these fears and reframe them in positive terms. Here, we analyze discourses about digital media, the Internet, and the adolescent brain in the scientific and lay literature. We argue that while the evidential basis is thin and ambiguous, it has immense social influence. We conclude by suggesting how we might move beyond the poles of neuro-alarmism and neuro-enthusiasm. By analyzing the neurological adolescent in the digital age as a socially extended mind, firstly, in the sense that adolescent cognition is distributed across the brain, body, and digital media tools and secondly, by viewing adolescent cognition as enabled and transformed by the institution of neuroscience, we aim to displace the normative terms of current debates. PMID:23599391

  2. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  3. Functional principal component model for high-dimensional brain imaging.

    PubMed

    Zipunnikov, Vadim; Caffo, Brian; Yousem, David M; Davatzikos, Christos; Schwartz, Brian S; Crainiceanu, Ciprian

    2011-10-01

    We explore a connection between the singular value decomposition (SVD) and functional principal component analysis (FPCA) models in high-dimensional brain imaging applications. We formally link right singular vectors to principal scores of FPCA. This, combined with the fact that left singular vectors estimate principal components, allows us to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a FPCA model is fit to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed. PMID:21798354

  4. The impact of cognitive reserve on brain functional connectivity in Alzheimer's disease.

    PubMed

    Bozzali, Marco; Dowling, Claire; Serra, Laura; Spanò, Barbara; Torso, Mario; Marra, Camillo; Castelli, Diana; Dowell, Nicholas G; Koch, Giacomo; Caltagirone, Carlo; Cercignani, Mara

    2015-01-01

    One factor believed to impact brain resilience to the pathological damage of Alzheimer's disease (AD) is the so-called "cognitive reserve" (CR). A critical issue that still needs to be fully understood is the mechanism by which environmental enrichment interacts with brain plasticity to determine resilience to AD pathology. Previous work using PET suggests that increased brain connectivity might be at the origin of the compensatory mechanisms implicated in this process. This study aims to further clarify this issue using resting-state functional MRI. Resting-state functional MRI was collected for 11 patients with AD, 18 with mild cognitive impairment (MCI), and 16 healthy controls, and analyzed to isolate the default mode network (DMN). A quantitative score of CR was obtained by combining information about number of years of education and type of schools attended. Consistent with previous reports, education was found to modulate functional connectivity in the posterior cingulate cortex, whose disconnection with the temporal lobes is known to be critical for the conversion from MCI to AD. This effect was highly significant in AD patients, less so in patients with MCI, and absent in healthy subjects. These findings show the potential neural mechanisms underlying the individual's ability to cope with brain damage, although they should be treated with some caution based on small numbers. PMID:25201783

  5. Mental Training as a Tool in the Neuroscientific Study of Brain and Cognitive Plasticity

    PubMed Central

    Slagter, Heleen A.; Davidson, Richard J.; Lutz, Antoine

    2011-01-01

    Although the adult brain was once seen as a rather static organ, it is now clear that the organization of brain circuitry is constantly changing as a function of experience or learning. Yet, research also shows that learning is often specific to the trained stimuli and task, and does not improve performance on novel tasks, even very similar ones. This perspective examines the idea that systematic mental training, as cultivated by meditation, can induce learning that is not stimulus or task specific, but process specific. Many meditation practices are explicitly designed to enhance specific, well-defined core cognitive processes. We will argue that this focus on enhancing core cognitive processes, as well as several general characteristics of meditation regimens, may specifically foster process-specific learning. To this end, we first define meditation and discuss key findings from recent neuroimaging studies of meditation. We then identify several characteristics of specific meditation training regimes that may determine process-specific learning. These characteristics include ongoing variability in stimulus input, the meta-cognitive nature of the processes trained, task difficulty, the focus on maintaining an optimal level of arousal, and the duration of training. Lastly, we discuss the methodological challenges that researchers face when attempting to control or characterize the multiple factors that may underlie meditation training effects. PMID:21347275

  6. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia

    PubMed Central

    Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.

    2015-01-01

    During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232

  7. Exploring brain function from anatomical connectivity.

    PubMed

    Zamora-López, Gorka; Zhou, Changsong; Kurths, Jürgen

    2011-01-01

    The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that cortico-cortical networks display a few prominent characteristics: (i) modular organization, (ii) abundant alternative processing paths, and (iii) the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them toward a comprehensive perception of the real world. The results here exposed are mainly based on anatomical data of cats' brain, but further observations suggest that, from worms to humans, the nervous system of all animals might share these fundamental principles of organization. PMID:21734863

  8. Higher brain functions served by the lowly rodent primary visual cortex

    PubMed Central

    Gavornik, Jeffrey P.

    2014-01-01

    It has been more than 50 years since the first description of ocular dominance plasticity—the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain as a potential substrate for learning and memory. The pace of discovery has quickened considerably in recent years as mice have become the preferred species to study visual cortical plasticity, and new studies have overturned the dogma that primary sensory cortex is immutable after a developmental critical period. Recent work has shown that, in addition to ocular dominance plasticity, adult visual cortex exhibits several forms of response modification previously considered the exclusive province of higher cortical areas. These “higher brain functions” include neural reports of stimulus familiarity, reward-timing prediction, and spatiotemporal sequence learning. Primary visual cortex can no longer be viewed as a simple visual feature detector with static properties determined during early development. Rodent V1 is a rich and dynamic cortical area in which functions normally associated only with “higher” brain regions can be studied at the mechanistic level. PMID:25225298

  9. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    PubMed Central

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  10. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  11. Development of functional characteristics of vehicle mounted plastic scintillation system

    SciTech Connect

    Follette, J.G.; Briggs, C.T.; Tappen, J.J.

    1994-12-31

    To meet the Yucca Mountain Site Characterization Project Office preactivity survey schedules, increase efficiency, and reduce labor costs, SAIC implemented the use of a Vehicle Mounted Radiation Detector (VMRD). The VMRD consists of two systems, a Global Positioning System (GPS) and a Radiation Detection System (RDS). This paper focuses on the functional characteristics of the RDS. The functional characteristics of the TSA Model GPRS-100 Vehicle Mounted Global Positioning Radiometric Scanner were studied. The tests performed during this study were limited to gamma ray energies between 275 keV and 1275 keV, and source strengths between 16 kBq and 318 kBq. The system`s efficiency as a function of vehicle speed, gamma ray energy, detector height, and source activity are presented. The system`s efficiency as a function of detector height for Cs-137 ranged from 3.14% for a detector height for Cs-137 ranged from 3.14% for a detector height of 15 cm, to 0.91% for a detector height of 60 cm. The system`s efficiency is not dependent upon gamma ray energy or source activity for the sources used in this study. It was determined that the system`s efficiency as a function of speed falls within a predictable range dependent upon detector height and vehicle speed. For performing large area preactivity surveys a detector height of 60 cm and vehicle speed of less than 2.5 m/s will optimize this system`s efficiency.

  12. [Determinism and Freedom of Choice in the Brain Functioning].

    PubMed

    Ivanitsky, A M

    2015-01-01

    The problem is considered whether the brain response is completely determined by the stimulus and the personal experience or in some cases the brain is free to choose its behavioral response to achieve the desired goal. The attempt is made to approach to this important philosophical problem basing on modern knowledge about the brain. The paper consists of four parts. In the first part the theoretical views about the free choice problem solving are considered, including views about the freedom of choice as a useful illusion, the hypothesis on appliance of quantum mechanics laws to the brain functioning and the theory of mentalism. In other tree parts consequently the more complicated brain functions such as choice reaction, thinking and creation are analyzed. The general conclusion is that the possibility of quite unpredictable, but sometimes very effective decisions increases when the brain functions are more and more complicated. This fact can be explained with two factors: increasing stochasticity of the brain processes and the role of top-down determinations from mental to neural levels, according to the theory of mentalism. PMID:26601509

  13. Brain Plasticity following Intensive Bimanual Therapy in Children with Hemiparesis: Preliminary Evidence

    PubMed Central

    Weinstein, Maya; Myers, Vicki; Green, Dido; Schertz, Mitchell; Shiran, Shelly I.; Geva, Ronny; Artzi, Moran; Gordon, Andrew M.; Fattal-Valevski, Aviva; Ben Bashat, Dafna

    2015-01-01

    Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children's Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH. PMID:26640717

  14. Brain Plasticity following Intensive Bimanual Therapy in Children with Hemiparesis: Preliminary Evidence.

    PubMed

    Weinstein, Maya; Myers, Vicki; Green, Dido; Schertz, Mitchell; Shiran, Shelly I; Geva, Ronny; Artzi, Moran; Gordon, Andrew M; Fattal-Valevski, Aviva; Ben Bashat, Dafna

    2015-01-01

    Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children's Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH. PMID:26640717

  15. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-01

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide. PMID:25822754

  16. ABCD: a functional database for the avian brain.

    PubMed

    Schrott, Aniko; Kabai, Peter

    2008-01-30

    Here we present the first database developed for storing, retrieving and cross-referencing neuroscience information about the connectivity of the avian brain. The Avian Brain Circuitry Database (ABCD) contains entries about the new and old terminology of the areas and their hierarchy, data on connections between brain regions, as well as a functional keyword system linked to brain regions and connections. Data were collected from the primary literature and textbooks, and an online submission system was developed to facilitate further data collection directly from researchers. The database aims to help spread the results of avian connectivity studies, the recently revised nomenclature and also to provide data for brain network research. ABCD is freely available at http://www.behav.org/abcd. PMID:17889371

  17. Magnetoencephalography in studies of human cognitive brain function.

    PubMed

    Näätänen, R; Ilmoniemi, R J; Alho, K

    1994-09-01

    Magnetoencephalography provides a new dimension to the functional imaging of the brain. The cerebral magnetic fields recorded noninvasively enable the accurate determination of locations of cerebral activity with an uncompromized time resolution. The first whole-scalp sensor arrays have just recently come into operation, and significant advances are to be expected in both neurophysiological and cognitive studies, as well as in clinical practice. However, although the accuracy of locating isolated sources of brain activity has improved, identification of multiple simultaneous sources can still be a problem. Therefore, attempts are being made to combine magnetoencephalography with other brain-imaging methods to improve spatial localization of multiple sources and, simultaneously, to achieve a more complete characterization of different aspects of brain activity during cognitive processing. Owing to its good time resolution and considerably better spatial accuracy than that provided by EEG, magnetoencephalography holds great promise as a tool for revealing information-processing sequences of the human brain. PMID:7529443

  18. Human brain functional MRI and DTI visualization with virtual reality

    PubMed Central

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-01-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  19. Compensatory Plasticity in the Deaf Brain: Effects on Perception of Music

    PubMed Central

    Good, Arla; Reed, Maureen J.; Russo, Frank A.

    2014-01-01

    When one sense is unavailable, sensory responsibilities shift and processing of the remaining modalities becomes enhanced to compensate for missing information. This shift, referred to as compensatory plasticity, results in a unique sensory experience for individuals who are deaf, including the manner in which music is perceived. This paper evaluates the neural, behavioural and cognitive evidence for compensatory plasticity following auditory deprivation and considers how this manifests in a unique experience of music that emphasizes visual and vibrotactile modalities. PMID:25354235

  20. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  1. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  2. Effects of Tetramethylpyrazine on Functional Recovery and Neuronal Dendritic Plasticity after Experimental Stroke

    PubMed Central

    Lin, Jun-Bin; Zheng, Chan-Juan; Zhang, Xuan; Chen, Juan; Liao, Wei-Jing; Wan, Qi

    2015-01-01

    The 2,3,5,6-tetramethylpyrazine (TMP) has been widely used in the treatment of ischemic stroke by Chinese doctors. Here, we report the effects of TMP on functional recovery and dendritic plasticity after ischemic stroke. A classical model of middle cerebral artery occlusion (MCAO) was established in this study. The rats were assigned into 3 groups: sham group (sham operated rats treated with saline), model group (MCAO rats treated with saline) and TMP group (MCAO rats treated with 20 mg/kg/d TMP). The neurological function test of animals was evaluated using the modified neurological severity score (mNSS) at 3 d, 7 d, and 14 d after MCAO. Animals were euthanized for immunohistochemical labeling to measure MAP-2 levels in the peri-infarct area. Golgi-Cox staining was performed to test effect of TMP on dendritic plasticity at 14 d after MCAO. TMP significantly improved neurological function at 7 d and 14 d after ischemia, increased MAP-2 level at 14 d after ischemia, and enhanced spine density of basilar dendrites. TMP failed to affect the spine density of apical dendrites and the total dendritic length. Data analyses indicate that there was significant negative correlation between mNSS and plasticity measured at 14 d after MCAO. Thus, enhanced dendritic plasticity contributes to TMP-elicited functional recovery after ischemic stroke. PMID:26379744

  3. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.

    PubMed

    Linkeviciute, Viktorija; Rackham, Owen J L; Gough, Julian; Oates, Matt E; Fang, Hai

    2015-12-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of 'architecture plasticity potential' - the capacity to form distinct domain architectures - both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  4. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  5. Functional neuroimaging of traumatic brain injury: advances and clinical utility

    PubMed Central

    Irimia, Andrei; Van Horn, John Darrell

    2015-01-01

    Functional deficits due to traumatic brain injury (TBI) can have significant and enduring consequences upon patients’ life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques – especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography – for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI. PMID:26396520

  6. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.

    PubMed

    Kraus, Dominic; Naros, Georgios; Bauer, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza

    2016-01-15

    Brain-robot interfaces (BRI) are studied as novel interventions to facilitate functional restoration in patients with severe and persistent motor deficits following stroke. They bridge the impaired connection in the sensorimotor loop by providing brain-state dependent proprioceptive feedback with orthotic devices attached to the hand or arm of the patients. The underlying neurophysiology of this BRI neuromodulation is still largely unknown. We investigated changes of corticospinal excitability with transcranial magnetic stimulation in thirteen right-handed healthy subjects who performed 40min of kinesthetic motor imagery receiving proprioceptive feedback with a robotic orthosis attached to the left hand contingent to event-related desynchronization of the right sensorimotor cortex in the β-band (16-22Hz). Neural correlates of this BRI intervention were probed by acquiring the stimulus-response curve (SRC) of both motor evoked potential (MEP) peak-to-peak amplitudes and areas under the curve. In addition, a motor mapping was obtained. The specificity of the effects was studied by comparing two neighboring hand muscles, one BRI-trained and one control muscle. Robust changes of MEP amplitude but not MEP area occurred following the BRI intervention, but only in the BRI-trained muscle. The steep part of the SRC showed an MEP increase, while the plateau of the SRC showed an MEP decrease. MEP mapping revealed a distributed pattern with a decrease of excitability in the hand area of the primary motor cortex, which controlled the BRI, but an increase of excitability in the surrounding somatosensory and premotor cortex. In conclusion, the BRI intervention induced a complex pattern of modulated corticospinal excitability, which may boost subsequent motor learning during physiotherapy. PMID:26505298

  7. Magnetic resonance and the human brain: anatomy, function and metabolism.

    PubMed

    Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

    2006-05-01

    The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. PMID:16568243

  8. Resiliency of EEG-Based Brain Functional Networks.

    PubMed

    Jalili, Mahdi

    2015-01-01

    Applying tools available in network science and graph theory to study brain networks has opened a new era in understanding brain mechanisms. Brain functional networks extracted from EEG time series have been frequently studied in health and diseases. In this manuscript, we studied failure resiliency of EEG-based brain functional networks. The network structures were extracted by analysing EEG time series obtained from 30 healthy subjects in resting state eyes-closed conditions. As the network structure was extracted, we measured a number of metrics related to their resiliency. In general, the brain networks showed worse resilient behaviour as compared to corresponding random networks with the same degree sequences. Brain networks had higher vulnerability than the random ones (P < 0.05), indicating that their global efficiency (i.e., communicability between the regions) is more affected by removing the important nodes. Furthermore, the breakdown happened as a result of cascaded failures in brain networks was severer (i.e., less nodes survived) as compared to randomized versions (P < 0.05). These results suggest that real EEG-based networks have not been evolved to possess optimal resiliency against failures. PMID:26295341

  9. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time

    PubMed Central

    Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.

    2016-01-01

    Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia.

  10. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  11. Alcohol Elicits Functional and Structural Plasticity Selectively in Dopamine D1 Receptor-Expressing Neurons of the Dorsomedial Striatum

    PubMed Central

    Cheng, Yifeng; Wang, Xuehua; Roltsch Hellard, Emily; Ma, Tengfei; Gil, Hannah; Ben Hamida, Sami

    2015-01-01

    Addiction is thought to be a maladaptive form of learning and memory caused by drug-evoked aberrant synaptic plasticity. We previously showed that alcohol facilitates synaptic plasticity in the dorsomedial striatum (DMS), a brain region that drives goal-directed behaviors. The majority of DMS cells are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1Rs) or D2 receptors (D2Rs), which drive “Go” or “No-Go” behaviors, respectively. Here, we report that alcohol induces cell type-specific synaptic and structural plasticity in the DMS. Using mice that express a fluorescence marker to visualize D1R or D2R MSNs, we show that repeated cycles of systemic administration of alcohol or alcohol consumption induces a long-lasting increase in AMPAR activity specifically in DMS D1R but not in D2R MSNs. Importantly, we report that alcohol consumption increases the complexity of dendritic branching and the density of mature mushroom-shaped spines selectively in DMS D1R MSNs. Finally, we found that blockade of D1R but not D2R activity in the DMS attenuates alcohol consumption. Together, these data suggest that alcohol intake produces profound functional and structural plasticity events in a subpopulation of neurons in the DMS that control reinforcement-related learning. SIGNIFICANCE STATEMENT Alcohol addiction is considered maladaptive learning and memory processes. Here we unraveled a long-lasting cellular mechanism that may contribute to the memory of alcohol-seeking behaviors. Specifically, we found that alcohol consumption produces a long-lasting enhancement of channel activity and persistent alterations of neuronal morphology in a part of the brain (DMS) that controls alcohol-drinking behaviors. Furthermore, we show that these alterations occur only in a subpopulation of neurons that positively control reward and reinforcement of drugs of abuse. Finally, we report that blocking the activity of this neuronal population reduces alcohol intake. As such synaptic and structural changes are the cellular hallmarks of learning and memory, and these neuroadaptations may drive the development of pathological heavy alcohol consumption. PMID:26290240

  12. Democratic reinforcement: A principle for brain function

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, Dimitris; Bak, Per

    1995-05-01

    We introduce a simple ``toy'' brain model. The model consists of a set of randomly connected, or layered integrate-and-fire neurons. Inputs to and outputs from the environment are connected randomly to subsets of neurons. The connections between firing neurons are strengthened or weakened according to whether the action was successful or not. Unlike previous reinforcement learning algorithms, the feedback from the environment is democratic: it affects all neurons in the same way, irrespective of their position in the network and independent of the output signal. Thus no unrealistic back propagation or other external computation is needed. This is accomplished by a global threshold regulation which allows the system to self-organize into a highly susceptible, possibly ``critical'' state with low activity and sparse connections between firing neurons. The low activity permits memory in quiescent areas to be conserved since only firing neurons are modified when new information is being taught.

  13. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).

  14. Tracking the Brain's Functional Coupling Dynamics over Development.

    PubMed

    Hutchison, R Matthew; Morton, J Bruce

    2015-04-29

    The transition from childhood to adulthood is marked by pronounced functional and structural brain transformations that impact cognition and behavior. Here, we use a functional imaging approach to reveal dynamic changes in coupling strength between networks and the expression of discrete brain configurations over human development during rest and a cognitive control task. Although the brain's repertoire of functional states was generally preserved across ages, state-specific temporal features, such as the frequency of expression and the amount of time spent in select states, varied by age in ways that were dependent on condition. Increasing age was associated with greater variability of connection strengths across time at rest, while there was a selective inversion of this effect in higher-order networks during implementation of cognitive control. The results suggest that development is characterized by the modification of dynamic coupling to both maximize and constrain functional variability in response to ongoing cognitive and behavioral requirements. PMID:25926460

  15. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI. PMID:26457551

  16. Plasticity of the worker bumble bee brain in relation to age and rearing environment

    PubMed Central

    Jones, Beryl M.; Leonard, Anne S.; Papaj, Daniel R.; Gronenberg, Wulfila

    2014-01-01

    The environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumble bee, Bombus impatiens. First, to establish the timeline of brain development during early adulthood, we estimated regional brain volumes across a range of ages. We discovered significant age-related volume changes in nearly every region of the brain. Next, to determine whether these changes were dependent upon certain environmental stimuli, we manipulated the visual and olfactory stimuli available to newly emerged bumble bee workers in a factorial manner. Newly emerged bumble bees were maintained in the presence or absence of supplemental visual and/or olfactory stimuli for seven days, after which the volumes of several brain regions were estimated. We found that the volumes of the mushroom body lobes and calyces were larger in the absence of visual stimuli. Additionally, visual deprivation was associated with the expression of larger antennal lobes, the primary olfactory processing regions of the brain. In contrast, exposure to plant-derived olfactory stimuli did not have a significant effect on brain region volumes. This study is the first to explore the separate and interactive effects of visual and olfactory stimuli on bee brain development. Assessing the timing and sensitivity of brain development is a first step toward understanding how different rearing environments differentially affect regional brain volumes in this species. Our findings suggest that environmental factors experienced during the first week of adulthood can modify bumble brain development in many subtle ways. PMID:24281415

  17. Plasticity of the worker bumblebee brain in relation to age and rearing environment.

    PubMed

    Jones, Beryl M; Leonard, Anne S; Papaj, Daniel R; Gronenberg, Wulfila

    2013-01-01

    The environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning, and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumblebee Bombus impatiens. First, to establish the timeline of brain development during early adulthood, we estimated regional brain volumes across a range of ages. We discovered significant age-related volume changes in nearly every region of the brain. Next, to determine whether these changes were dependent upon certain environmental stimuli, we manipulated the visual and olfactory stimuli available to newly emerged bumblebee workers in a factorial manner. Newly emerged bumblebees were maintained in the presence or absence of supplemental visual and/or olfactory stimuli for 7 days, after which the volumes of several brain regions were estimated. We found that the volumes of the mushroom body lobes and calyces were larger in the absence of visual stimuli. Additionally, visual deprivation was associated with the expression of larger antennal lobes, the primary olfactory processing regions of the brain. In contrast, exposure to plant-derived olfactory stimuli did not have a significant effect on brain region volumes. This study is the first to explore the separate and interactive effects of visual and olfactory stimuli on bee brain development. Assessing the timing and sensitivity of brain development is a first step toward understanding how different rearing environments differentially affect regional brain volumes in this species. Our findings suggest that environmental factors experienced during the first week of adulthood can modify bumblebee brain development in many subtle ways. PMID:24281415

  18. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    PubMed Central

    Bonnier, Christine; Costet, Aurélie; Hmaimess, Ghassan; Catale, Corinne; Maillart, Christelle; Marique, Patricia

    2010-01-01

    We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI) at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development. PMID:21188227

  19. Organization of Cognitive Functions in the Brain.

    ERIC Educational Resources Information Center

    Smith, Aaron

    Neuropsychological research on the effects of hemispherectomy-the excision of one of the cerebral hemispheres-in children and adults adds to knowledge about the division of labor between the left cerebral hemisphere, which specializes in language and verbal cognitive functions, and the right hemisphere, which specializes in nonlanguage functions.…

  20. Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala.

    PubMed

    Abumaria, Nashat; Yin, Bin; Zhang, Ling; Li, Xiang-Yao; Chen, Tao; Descalzi, Giannina; Zhao, Liangfang; Ahn, Matae; Luo, Lin; Ran, Chen; Zhuo, Min; Liu, Guosong

    2011-10-19

    Anxiety disorders, such as phobias and posttraumatic stress disorder, are among the most common mental disorders. Cognitive therapy helps in treating these disorders; however, many cases relapse or resist the therapy, which justifies the search for cognitive enhancers that might augment the efficacy of cognitive therapy. Studies suggest that enhancement of plasticity in certain brain regions such as the prefrontal cortex (PFC) and/or hippocampus might enhance the efficacy of cognitive therapy. We found that elevation of brain magnesium, by a novel magnesium compound [magnesium-l-threonate (MgT)], enhances synaptic plasticity in the hippocampus and learning and memory in rats. Here, we show that MgT treatment enhances retention of the extinction of fear memory, without enhancing, impairing, or erasing the original fear memory. We then explored the molecular basis of the effects of MgT treatment on fear memory and extinction. In intact animals, elevation of brain magnesium increased NMDA receptors (NMDARs) signaling, BDNF expression, density of presynaptic puncta, and synaptic plasticity in the PFC but, interestingly, not in the basolateral amygdala. In vitro, elevation of extracellular magnesium concentration increased synaptic NMDAR current and plasticity in the infralimbic PFC, but not in the lateral amygdala, suggesting a difference in their sensitivity to elevation of brain magnesium. The current study suggests that elevation of brain magnesium might be a novel approach for enhancing synaptic plasticity in a regional-specific manner leading to enhancing the efficacy of extinction without enhancing or impairing fear memory formation. PMID:22016520

  1. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording

    PubMed Central

    Zhao, Xiao-Yan; Liu, Ming-Gang; Yuan, Dong-Liang; Wang, Yan; He, Ying; Wang, Dan-Dan; Chen, Xue-Feng; Zhang, Fu-Kang; Li, Hua; He, Xiao-Sheng; Chen, Jun

    2009-01-01

    Background Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. Results On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 × 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of persistent nociception, while that in naïve or saline control state was not affected. All these changes in synaptic connection and function, confirmed by the 2-dimentional current source density imaging, were found to be highly correlated with peripheral persistent nociception since pre-blockade of nociceptive impulses could eliminate all of them. Finally, the initial pharmacological investigation showed that AMPA/KA glutamate receptors might play more important roles in mediation of pain-associated spatiotemporal plasticity than NMDA receptors. Conclusion Peripheral persistent nociception produces great impact upon the higher brain structures that lead to not only temporal plasticity, but also spatial plasticity of synaptic connection and function in the HF. The spatial plasticity of synaptic activities is more complex than the temporal plasticity, comprising of enlargement of synaptic connection size at network level, deformed fEPSP at local circuit level and, increased synaptic efficacy at cellular level. In addition, the multi-synaptic model established in the present investigation may open a new avenue for future studies of pain-related brain dysfunctions at the higher level of the neuromatrix. PMID:19772643

  2. Selector function of MHC I molecules is determined by protein plasticity

    NASA Astrophysics Data System (ADS)

    Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim

    2015-10-01

    The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.

  3. Extraction, identification, and functional characterization of a bioactive substance from automated compound-handling plastic tips.

    PubMed

    Watson, John; Greenough, Emily B; Leet, John E; Ford, Michael J; Drexler, Dieter M; Belcastro, James V; Herbst, John J; Chatterjee, Moneesh; Banks, Martyn

    2009-06-01

    Disposable plastic labware is ubiquitous in contemporary pharmaceutical research laboratories. Plastic labware is routinely used for chemical compound storage and during automated liquid-handling processes that support assay development, high-throughput screening, structure-activity determinations, and liability profiling. However, there is little information available in the literature on the contaminants released from plastic labware upon DMSO exposure and their resultant effects on specific biological assays. The authors report here the extraction, by simple DMSO washing, of a biologically active substance from one particular size of disposable plastic tips used in automated compound handling. The active contaminant was identified as erucamide ((Z)-docos-13-enamide), a long-chain mono-unsaturated fatty acid amide commonly used in plastics manufacturing, by gas chromatography/mass spectroscopy analysis of the DMSO-extracted material. Tip extracts prepared in DMSO, as well as a commercially obtained sample of erucamide, were active in a functional bioassay of a known G-protein-coupled fatty acid receptor. A sample of a different disposable tip product from the same vendor did not release detectable erucamide following solvent extraction, and DMSO extracts prepared from this product were inactive in the receptor functional assay. These results demonstrate that solvent-extractable contaminants from some plastic labware used in the contemporary pharmaceutical research and development (R&D) environment can be introduced into physical and biological assays during routine compound management liquid-handling processes. These contaminants may further possess biological activity and are therefore a potential source of assay-specific confounding artifacts. PMID:19470712

  4. Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat.

    PubMed

    Yip, Ping K; Wong, Liang-Fong; Sears, Thomas A; Yáñez-Muñoz, Rafael J; McMahon, Stephen B

    2010-01-01

    Following trauma of the adult brain or spinal cord the injured axons of central neurons fail to regenerate or if intact display only limited anatomical plasticity through sprouting. Adult cortical neurons forming the corticospinal tract (CST) normally have low levels of the neuronal calcium sensor-1 (NCS1) protein. In primary cultured adult cortical neurons, the lentivector-induced overexpression of NCS1 induces neurite sprouting associated with increased phospho-Akt levels. When the PI3K/Akt signalling pathway was pharmacologically inhibited the NCS1-induced neurite sprouting was abolished. The overexpression of NCS1 in uninjured corticospinal neurons exhibited axonal sprouting across the midline into the CST-denervated side of the spinal cord following unilateral pyramidotomy. Improved forelimb function was demonstrated behaviourally and electrophysiologically. In injured corticospinal neurons, overexpression of NCS1 induced axonal sprouting and regeneration and also neuroprotection. These findings demonstrate that increasing the levels of intracellular NCS1 in injured and uninjured central neurons enhances their intrinsic anatomical plasticity within the injured adult central nervous system. PMID:20585375

  5. Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation

    PubMed Central

    Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann M.; Alexandrakis, George

    2013-01-01

    Abstract. Transcranial direct current stimulation (tDCS) of the human sensorimotor cortex during physical rehabilitation induces plasticity in the injured brain that improves motor performance. Bi-hemispheric tDCS is a noninvasive technique that modulates cortical activation by delivering weak current through a pair of anodal–cathodal (excitation–suppression) electrodes, placed on the scalp and centered over the primary motor cortex of each hemisphere. To quantify tDCS-induced plasticity during motor performance, sensorimotor cortical activity was mapped during an event-related, wrist flexion task by functional near-infrared spectroscopy (fNIRS) before, during, and after applying both possible bi-hemispheric tDCS montages in eight healthy adults. Additionally, torque applied to a lever device during isometric wrist flexion and surface electromyography measurements of major muscle group activity in both arms were acquired concurrently with fNIRS. This multiparameter approach found that hemispheric suppression contralateral to wrist flexion changed resting-state connectivity from intra-hemispheric to inter-hemispheric and increased flexion speed (p<0.05). Conversely, exciting this hemisphere increased opposing muscle output resulting in a decrease in speed but an increase in accuracy (p<0.05 for both). The findings of this work suggest that tDCS with fNIRS and concurrent multimotor measurements can provide insights into how neuroplasticity changes muscle output, which could find future use in guiding motor rehabilitation. PMID:24193947

  6. Loss of brain function - liver disease

    MedlinePlus

    ... may be made by the body, such as ammonia. Or they may be substances that you take ... MRI EEG Liver function tests Prothrombin time Serum ammonia level Sodium level in the blood Potassium level ...

  7. Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain*†

    PubMed Central

    Simpson, Sean L.; Bowman, F. DuBois; Laurienti, Paul J.

    2014-01-01

    Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. PMID:25309643

  8. Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E.

    1994-06-01

    In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

  9. Distinct Functions of Glial and Neuronal Dystroglycan in the Developing and Adult Mouse Brain

    PubMed Central

    Satz, Jakob S.; Ostendorf, Adam P.; Hou, Shangwei; Turner, Amy; Kusano, Hajime; Lee, Jane C.; Turk, Rolf; Nguyen, Huy; Ross-Barta, Susan E.; Westra, Steve; Hoshi, Toshinori; Moore, Steven A.; Campbell, Kevin P.

    2010-01-01

    SUMMARY Cobblestone (type II) lissencephaly and mental retardation are characteristic features of a subset of congenital muscular dystrophies that include Walker-Warburg Syndrome, Muscle-Eye-Brain disease, and Fukuyama-type congenital muscular dystrophy. Although the majority of clinical cases are genetically undefined, several causative genes have been identified that encode known or putative glycosyltransferases in the biosynthetic pathway of dystroglycan. Here we test the effects of brain-specific deletion of dystroglycan, and show distinct functions for neuronal and glial dystroglycan. Deletion of dystroglycan in the whole brain produced glial/neuronal heterotopia resembling the cerebral cortex malformation in cobblestone lissencephaly. In wild-type mice, dystroglycan stabilizes the basement membrane of the glia limitans, thereby supporting the cortical infrastructure necessary for neuronal migration. This function depends on extracellular dystroglycan interactions, since the cerebral cortex developed normally in transgenic mice that lack the dystroglycan intracellular domain. Also, forebrain histogenesis was preserved in mice with neuron-specific deletion of dystroglycan, but hippocampal long-term potentiation was blunted, as is also the case in the Largemyd mouse, in which dystroglycan glycosylation is disrupted. Our findings provide genetic evidence that neuronal dystroglycan plays a role in synaptic plasticity and that glial dystroglycan is involved in forebrain development. Differences in dystroglycan glycosylation in distinct cell types of the CNS may therefore contribute to the diversity of dystroglycan function in the CNS, as well as to the broad clinical spectrum of type II lissencephalies. PMID:20980614

  10. Laterality patterns of brain functional connectivity: gender effects.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483

  11. Linking structure and function: Information processing in the brain

    SciTech Connect

    Gremillion, M.A.V.

    1990-01-01

    Traditionally, theories of function in neuroscience have emerged from physiology. Physiologists have suggested a number of means by which information in the brain can be processed, yet the principles underlying the generation of these phenomena are not well understood. A complex systems approach would be to examine the overall structure and function of the system and to attempt to establish a common framework for information processing interactions. This paper will use the structure-function relationship as a basis for exploring units of information processing. It will examine the brain as a whole, first providing the non-specialists with an short overview of the structure and some of the functions or outputs of the brain. It then very briefly reviews three of the prominent theoretical concepts that have emerged in the last few decades: receptive fields, feature extraction, and parallel processing. Next, it addresses the question of information processing and outlines the structures which have traditionally been proposed to be the basic unit of information processing. An alternative unit on which information processing in the brain might be based is then proposed, and data outlined to support it. Finally, the implications of this different mode of processing are discussed, both for the brain and for other complex systems. 40 refs., 4 figs., 2 tabs.

  12. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  13. Neuron-glia networks: integral gear of brain function

    PubMed Central

    Perea, Gertrudis; Sur, Mriganka; Araque, Alfonso

    2014-01-01

    Astrocytes, the most abundant glial cell in the brain, play critical roles in metabolic and homeostatic functions of the Nervous System; however, their participation in coding information and cognitive processes has been largely ignored. The strategic position of astrocyte processes facing synapses and the astrocyte ability to uptake neurotransmitters and release neuroactive substances, so-called “gliotransmitters”, provide the scenario for prolific neuron-astrocyte signaling. From studies at single-cell level to animal behavior, recent advances in technology and genetics have revealed the impact of astrocyte activity in brain function from cellular and synaptic physiology, neuronal circuits to behavior. The present review critically discusses the consequences of astrocyte signaling on synapses and networks, as well as its impact on neuronal information processing, showing that some crucial brain functions arise from the coordinated activity of neuron-glia networks. PMID:25414643

  14. Assortative mixing in functional brain networks during epileptic seizures

    NASA Astrophysics Data System (ADS)

    Bialonski, Stephan; Lehnertz, Klaus

    2013-09-01

    We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

  15. The brain and higher mental function.

    PubMed

    Smith, G C

    1991-06-01

    Critical evaluation of biological theories of psychiatric disorder requires an understanding of current concepts of higher mental function and its related biology. Both the nature of the topic and the rapidity of advances in the field make it difficult to obtain an updated synthesis. Part I of this paper attempts to provide that by reviewing current concepts of the mind/body relationship, emotion, arousal, attention, consciousness and motivation. Part II considers those concepts in relation to recent work on the structure and function of the reticular, limbic and anterior cerebral systems. It is concluded that the model of the limbic system as subserving emotional life could now perhaps be set aside in favour of the model of a core set of chemically identified neurons in the reticular system being necessary but not sufficient to subserve higher mental function whilst also subserving other integrating functions for which no mental terminology is required. The problem of developing an eclectic theory of higher mental function that will embrace these concepts is discussed. PMID:1678938

  16. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis.

    PubMed

    Sprecher, Simon G; Bernardo-Garcia, F Javier; van Giesen, Lena; Hartenstein, Volker; Reichert, Heinrich; Neves, Ricardo; Bailly, Xavier; Martinez, Pedro; Brauchle, Michael

    2015-01-01

    The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. PMID:26581588

  17. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    PubMed Central

    Belcher, Annabelle M.; Yen, Cecil Chern-Chyi; Notardonato, Lucia; Ross, Thomas J.; Volkow, Nora D.; Yang, Yihong; Stein, Elliot A.; Silva, Afonso C.; Tomasi, Dardo

    2016-01-01

    In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or “hubs”, and we have recently proposed local functional connectivity density (lFCD) mapping to identify highly-connected nodes in the human brain. Here, we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains FC hubs. Ten adult common marmosets (Callithrix jacchus) were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2), higher-order visual association areas (A19M/V6[DM]), posterior parietal and posterior cingulate areas (PGM and A23b/A31), thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a). lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology. PMID:26973476

  18. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis

    PubMed Central

    Sprecher, Simon G.; Bernardo-Garcia, F. Javier; van Giesen, Lena; Hartenstein, Volker; Reichert, Heinrich; Neves, Ricardo; Bailly, Xavier; Martinez, Pedro; Brauchle, Michael

    2015-01-01

    ABSTRACT The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. PMID:26581588

  19. Richard P. Bunge memorial lecture. Nerve injury and repair--a challenge to the plastic brain.

    PubMed

    Lundborg, Göran

    2003-12-01

    Repair and reconstruction of major nerve trunks in the upper extremity is a very challenging surgical problem. Today, there is no surgical repair technique that can assure recovery of tactile discrimination in the hand of an adult patient following nerve repair. In contrast, young individuals usually attain a complete recovery of functional sensibility. The outcome from nerve repair depends mainly on central nervous system factors including functional cortical reorganizational processes caused by misdirection in axonal outgrowth. Deafferentation due to local anesthetic block, amputation or nerve transection in the upper extremity leads to very rapid cortical synaptic remodeling, resulting in a distorted cortical hand representation as well as in enlarged and overlapping cortical receptive fields. Sensory relearning programs are aimed at refinement of these receptive fields to normalize the distorted hand map and improve processing at a high-order cortical level in the context of the 'new language spoken by the hand'. As peripheral nerve repair techniques cannot be further refined, there is a need for new and improved strategies for sensory relearning following nerve repair. We propose the utilization of multimodal capacity of the brain, using another sense (hearing) to substitute for lost hand sensation and to provide an alternate sensory input from the hand early after transection. The purpose was to modulate cortical reorganizations due to deafferentation to preserve cortical hand representation. Preliminary results from a prospective clinical randomized study indicate that the use of a Sensor Glove System, which stereophonically transposes the friction sound elicited by active touch, results in improved recovery of tactile discrimination in the nerve-injured hand. Future strategies for treatment of nerve injuries should promote cellular methods to minimize post-traumatic nerve cell death and to improve axonal outgrowth rate and orientation, but high on the agenda are new strategies for refined sensory relearning following nerve repair. PMID:14641646

  20. Language functioning and deficits following pediatric traumatic brain injury.

    PubMed

    Sullivan, Jeremy R; Riccio, Cynthia A

    2010-04-01

    The purpose of this article is to provide a current review of language functioning and deficits following traumatic brain injury (TBI), specifically among the pediatric population. This paper will: (a) outline the manner in which these deficits may impede functioning across environments; (b) review methods of assessing language functioning within this population; and (c) discuss empirically supported interventions to address noted language deficits as they present in pediatric TBI. PMID:20467948

  1. Estimating brain's functional graph from the structural graph's Laplacian

    NASA Astrophysics Data System (ADS)

    Abdelnour, F.; Dayan, M.; Devinsky, O.; Thesen, T.; Raj, A.

    2015-09-01

    The interplay between the brain's function and structure has been of immense interest to the neuroscience and connectomics communities. In this work we develop a simple linear model relating the structural network and the functional network. We propose that the two networks are related by the structural network's Laplacian up to a shift. The model is simple to implement and gives accurate prediction of function's eigenvalues at the subject level and its eigenvectors at group level.

  2. The microbiota-gut-brain axis in functional gastrointestinal disorders.

    PubMed

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients' quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other's expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis. PMID:24921926

  3. The microbiota-gut-brain axis in functional gastrointestinal disorders

    PubMed Central

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients’ quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other’s expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis. PMID:24921926

  4. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  5. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  6. Voltage Imaging in the Study of Hippocampal Circuit Function and Plasticity.

    PubMed

    Wright, Brandon J; Jackson, Meyer B

    2015-01-01

    Synaptic plasticity has the capacity to alter the function of neural circuits, and long-term potentiation (LTP) of synaptic transmission induced by high frequency electrical activity has the capacity to store information in neural circuits. The cellular and molecular mechanisms of LTP have been studied intensively for many years and much progress has been made on this front. By contrast, how synaptic plasticity alters circuit function has received much less attention and remains poorly understood. Voltage imaging provides a powerful general technique for the study of neural circuitry, and studies of synaptic plasticity with voltage imaging are beginning to reveal important aspects of how the function of a neural circuit can change when the strength of its synapses has been modified. The hippocampus has an important role in learning and memory and the plasticity of its synapses has received much attention. Voltage imaging with voltage sensitive dye in the CA1 region of a hippocampal slice has shown that spatial patterns of enhancement following LTP induction can diverge from the spatial patterns elicited by electrical stimulation, suggesting that LTP exhibits a distinct organizational structure. LTP can alter the throughput of electrical activity in the dentate gyrus of a hippocampal slice, to gate transmission on to the CA3 region. The spatial patterns evoked by complex electrical stimulation can be stored within the CA3 region in a hippocampal slice, allowing patterns to be reconstructed with simpler electrical stimulation. Thus, voltage imaging has demonstrated that the CA3 circuit has the capacity for pattern completion. These studies with voltage sensitive dye illustrate a range of interesting and novel questions that can be addressed at the population level. It is hoped that future imaging experiments with single-cell resolution using genetically-encoded voltage sensors will provide a more detailed picture of how synaptic plasticity modifies the information processing capabilities of neural circuits. PMID:26238054

  7. Resting state functional connectivity data supports detection of cognition in the rodent brain

    PubMed Central

    Nasrallah, Fatima A.; To, Xuan Vinh; Chen, Der-Yow; Routtenberg, Aryeh; Chuang, Kai-Hsiang

    2016-01-01

    Learning is a process which induces plastic changes in the synapses and connections across different regions of the brain. It is hypothesized that these new connections can be tracked with resting state functional connectivity MRI. While most of the evidence of learning-induced plasticity arises from previous human data, data from sedated rats that had undergone training for either 1 day or 5 days in a Morris Watermaze is presented. Seed points were taken from the somatosensory and visual cortices, and the hippocampal CA3 to detect connectivity changes. The data demonstrates that 5-day trained rats showed increased correlations between the hippocampal CA3 and thalamus, septum and cingulate cortex, compared to swim control or naïve animals. Seven days after the training, persistent but reorganized networks toward the cortex were observed. Data from the 1-day trained rats, on the contrary, showed connectivity similar to the swim control and less persistent. The connectivity in several regions was highly correlated with the behavioral performance in these animals. The data demonstrates that longitudinal changes following learning-induced plasticity can be detected and tracked with resting state connectivity. PMID:27115031

  8. Resting state functional connectivity data supports detection of cognition in the rodent brain.

    PubMed

    Nasrallah, Fatima A; To, Xuan Vinh; Chen, Der-Yow; Routtenberg, Aryeh; Chuang, Kai-Hsiang

    2016-06-01

    Learning is a process which induces plastic changes in the synapses and connections across different regions of the brain. It is hypothesized that these new connections can be tracked with resting state functional connectivity MRI. While most of the evidence of learning-induced plasticity arises from previous human data, data from sedated rats that had undergone training for either 1 day or 5 days in a Morris Watermaze is presented. Seed points were taken from the somatosensory and visual cortices, and the hippocampal CA3 to detect connectivity changes. The data demonstrates that 5-day trained rats showed increased correlations between the hippocampal CA3 and thalamus, septum and cingulate cortex, compared to swim control or naïve animals. Seven days after the training, persistent but reorganized networks toward the cortex were observed. Data from the 1-day trained rats, on the contrary, showed connectivity similar to the swim control and less persistent. The connectivity in several regions was highly correlated with the behavioral performance in these animals. The data demonstrates that longitudinal changes following learning-induced plasticity can be detected and tracked with resting state connectivity. PMID:27115031

  9. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents

    PubMed Central

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  10. Interactions between occlusion and human brain function activities.

    PubMed

    Ohkubo, C; Morokuma, M; Yoneyama, Y; Matsuda, R; Lee, J S

    2013-02-01

    There are few review articles in the area of human research that focus on the interactions between occlusion and brain function. This systematic review discusses the effect of occlusion on the health of the entire body with a focus on brain function. Available relevant articles in English from 1999 to 2011 were assessed in an online database and as hard copies in libraries. The selected 19 articles were classified into the following five categories: chewing and tongue movements, clenching and grinding, occlusal splints and occlusal interference, prosthetic rehabilitation, and pain and stimulation. The relationships between the brain activity observed in the motor and sensory cortices and movements of the oral and maxillofacial area, such as those produced by gum chewing, tapping and clenching, were investigated. It was found that the sensorimotor cortex was also affected by the placement of the occlusal interference devices, splints and implant prostheses. Brain activity may change depending on the strength of the movements in the oral and maxillofacial area. Therefore, mastication and other movements stimulate the activity in the cerebral cortex and may be helpful in preventing degradation of a brain function. However, these findings must be verified by evidence gathered from more subjects. PMID:22624951

  11. Task-Specific Functional Brain Geometry from Model Maps

    PubMed Central

    Langs, Georg; Samaras, Dimitris; Paragios, Nikos; Honorio, Jean; Alia-Klein, Nelly; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2016-01-01

    In this paper we propose model maps to derive and represent the intrinsic functional geometry of a brain from functional magnetic resonance imaging (fMRI) data for a specific task. Model maps represent the coherence of behavior of individual fMRI-measurements for a set of observations, or a time sequence. The maps establish a relation between individual positions in the brain by encoding the blood oxygen level dependent (BOLD) signal over a time period in a Markov chain. They represent this relation by mapping spatial positions to a new metric space, the model map. In this map the Euclidean distance between two points relates to the joint modeling behavior of their signals and thus the co-dependencies of the corresponding signals. The map reflects the functional as opposed to the anatomical geometry of the brain. It provides a quantitative tool to explore and study global and local patterns of resource allocation in the brain. To demonstrate the merit of this representation, we report quantitative experimental results on 29 fMRI time sequences, each with sub-sequences corresponding to 4 different conditions for two groups of individuals. We demonstrate that drug abusers exhibit lower differentiation in brain interactivity between baseline and reward related tasks, which could not be quantified until now. PMID:18979834

  12. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  13. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    PubMed

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. PMID:26496011

  14. Neural interfaces for the brain and spinal cord--restoring motor function.

    PubMed

    Jackson, Andrew; Zimmermann, Jonas B

    2012-12-01

    Regaining motor function is of high priority to patients with spinal cord injury (SCI). A variety of electronic devices that interface with the brain or spinal cord, which have applications in neural prosthetics and neurorehabilitation, are in development. Owing to our advancing understanding of activity-dependent synaptic plasticity, new technologies to monitor, decode and manipulate neural activity are being translated to patient populations, and have demonstrated clinical efficacy. Brain-machine interfaces that decode motor intentions from cortical signals are enabling patient-driven control of assistive devices such as computers and robotic prostheses, whereas electrical stimulation of the spinal cord and muscles can aid in retraining of motor circuits and improve residual capabilities in patients with SCI. Next-generation interfaces that combine recording and stimulating capabilities in so-called closed-loop devices will further extend the potential for neuroelectronic augmentation of injured motor circuits. Emerging evidence suggests that integration of closed-loop interfaces into intentional motor behaviours has therapeutic benefits that outlast the use of these devices as prostheses. In this Review, we summarize this evidence and propose that several known plasticity mechanisms, operating in a complementary manner, might underlie the therapeutic effects that are achieved by closing the loop between electronic devices and the nervous system. PMID:23147846

  15. Prenatal and Infant Exposure to an Environmental Pollutant Damages Brain Architecture and Plasticity. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This Brief reports on the study "Perinatal Exposure to a Noncoplanar Bichlorinated Biphenol Alters Tonotopy, Receptive Fields and Plasticity in the Auditory Cortex" (T. Kenet; R. C. Froemke; C. E. Schreiner; I. N. Pessah; and M. M.…

  16. Effects of Soccer Heading on Brain Structure and Function.

    PubMed

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player's unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6-12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety guidelines that could help to minimize the risk of possible adverse effects of soccer on brain structure and function. PMID:27047444

  17. Effects of Soccer Heading on Brain Structure and Function

    PubMed Central

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety guidelines that could help to minimize the risk of possible adverse effects of soccer on brain structure and function. PMID:27047444

  18. Functional constraints in the evolution of brain circuits

    PubMed Central

    Bosman, Conrado A.; Aboitiz, Francisco

    2015-01-01

    Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor. PMID:26388716

  19. The Role of Sleep in Emotional Brain Function

    PubMed Central

    Goldstein, Andrea N.; Walker, Matthew P.

    2014-01-01

    Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and emotional brain function. These findings are mirrored by longstanding clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more sleep abnormalities. This review aims to (1) provide a synthesis of recent findings describing the emotional brain and behavioral benefits triggered by sleep, and conversely, the detrimental impairments following a lack of sleep, (2) outline a proposed framework in which sleep, and specifically rapid-eye movement (REM) sleep, supports a process of affective brain homeostasis, optimally preparing the organism for next-day social and emotional functioning, and (3) describe how this hypothesized framework can explain the prevalent relationships between sleep and psychiatric disorders, with a particular focus on post-traumatic stress disorder and major depression. PMID:24499013

  20. Brain tumour cells interconnect to a functional and resistant network.

    PubMed

    Osswald, Matthias; Jung, Erik; Sahm, Felix; Solecki, Gergely; Venkataramani, Varun; Blaes, Jonas; Weil, Sophie; Horstmann, Heinz; Wiestler, Benedikt; Syed, Mustafa; Huang, Lulu; Ratliff, Miriam; Karimian Jazi, Kianush; Kurz, Felix T; Schmenger, Torsten; Lemke, Dieter; Gömmel, Miriam; Pauli, Martin; Liao, Yunxiang; Häring, Peter; Pusch, Stefan; Herl, Verena; Steinhäuser, Christian; Krunic, Damir; Jarahian, Mostafa; Miletic, Hrvoje; Berghoff, Anna S; Griesbeck, Oliver; Kalamakis, Georgios; Garaschuk, Olga; Preusser, Matthias; Weiss, Samuel; Liu, Haikun; Heiland, Sabine; Platten, Michael; Huber, Peter E; Kuner, Thomas; von Deimling, Andreas; Wick, Wolfgang; Winkler, Frank

    2015-12-01

    Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease. PMID:26536111

  1. Pro-cognitive drug effects modulate functional brain network organization

    PubMed Central

    Giessing, Carsten; Thiel, Christiane M.

    2012-01-01

    Previous studies document that cholinergic and noradrenergic drugs improve attention, memory and cognitive control in healthy subjects and patients with neuropsychiatric disorders. In humans neural mechanisms of cholinergic and noradrenergic modulation have mainly been analyzed by investigating drug-induced changes of task-related neural activity measured with functional magnetic resonance imaging (fMRI). Endogenous neural activity has often been neglected. Further, although drugs affect the coupling between neurons, only a few human studies have explicitly addressed how drugs modulate the functional connectome, i.e., the functional neural interactions within the brain. These studies have mainly focused on synchronization or correlation of brain activations. Recently, there are some drug studies using graph theory and other new mathematical approaches to model the brain as a complex network of interconnected processing nodes. Using such measures it is possible to detect not only focal, but also subtle, widely distributed drug effects on functional network topology. Most important, graph theoretical measures also quantify whether drug-induced changes in topology or network organization facilitate or hinder information processing. Several studies could show that functional brain integration is highly correlated with behavioral performance suggesting that cholinergic and noradrenergic drugs which improve measures of cognitive performance should increase functional network integration. The purpose of this paper is to show that graph theory provides a mathematical tool to develop theory-driven biomarkers of pro-cognitive drug effects, and also to discuss how these approaches can contribute to the understanding of the role of cholinergic and noradrenergic modulation in the human brain. Finally we discuss the “global workspace” theory as a theoretical framework of pro-cognitive drug effects and argue that pro-cognitive effects of cholinergic and noradrenergic drugs might be related to higher network integration. PMID:22973209

  2. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    PubMed

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period and that the functional connectome of unilateral SSNHL patients is characterized by a shift toward small-worldization. Additionally, we hope that these findings will help to elucidate unilateral SSNHL through a new research perspective and provide insight for the potential pathophysiology of unilateral SSNHL. PMID:26969260

  3. Network Plasticity as Bayesian Inference

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2015-01-01

    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099

  4. Predictors of physical functioning in postoperative brain tumor patients.

    PubMed

    Tankumpuan, Thitipong; Utriyaprasit, Ketsarin; Chayaput, Prangtip; Itthimathin, Parunut

    2015-02-01

    A cross-sectional predictive design was used to study the relationships among recovery symptoms, mood state, and physical functioning and to identify predictors of physical functioning in patients who underwent surgery for brain tumor at the first follow-up visit (2 weeks) after hospital discharge. The sample included 88 patients who were 18 years or older, had full level of consciousness, and underwent first-time surgery for brain tumor without other adjuvant treatments from a tertiary hospital in Bangkok, Thailand. Descriptive statistics, Pearson product-moment correlation coefficient, and multiple regression were used for data analysis. The results revealed that most participants were women (75%) with an average age of 45.18 ± 11.49 years, having benign brain tumors (91%) and pathological results as meningioma (48.9%). The most common recovery symptoms were pain (mean = 3.2, SD = 2.6) and sleep disturbance (mean = 3.1, SD = 3.0). As for mood state, the problem of confusion was found the most (mean = 4.6, SD = 2.7). The physical functioning problem found the most was work aspect (mean = 66.3, SD = 13.3). Recovery symptoms had positive relationships with physical functioning and mood state (r = .406, .716; p < .01), respectively. At the same time, mood state had positive relationships with physical functioning (r = .288, p < .01). Recovery symptoms, total mood disturbance, fatigue, and vigor were statistically significant predictors of physical functioning and could explain variance of postoperative physical functioning in these patients at 2 weeks after discharge by 35%. Total mood disturbance was the strongest predictor of physical functioning followed by vigor, fatigue, and recovery symptom, respectively. Interventions to improve physical functioning in postoperative brain tumor patients during home recovery should account for not only recovery symptom management but also mood state. PMID:25565598

  5. Modulatory Interactions of Resting-State Brain Functional Connectivity

    PubMed Central

    Di, Xin; Biswal, Bharat B.

    2013-01-01

    The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions. PMID:24023609

  6. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults

    PubMed Central

    Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.

    2016-01-01

    Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041

  7. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults.

    PubMed

    Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D

    2016-01-01

    Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25-0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F (1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31-0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041

  8. "Hotheaded": the role OF TRPV1 in brain functions.

    PubMed

    Martins, D; Tavares, I; Morgado, C

    2014-10-01

    The TRPV1 (vanilloid 1) channel is best known for its role in sensory transmission in the nociceptive neurons of the peripheral nervous system. Although first studied in the dorsal root ganglia as the receptor for capsaicin, TRPV1 has been recently recognized to have a broader distribution in the central nervous system, where it is likely to constitute an atypical neurotransmission system involved in several functions through modulation of both neuronal and glial activities. The endovanilloid-activated brain TRPV1 channels seem to be involved in somatosensory, motor and visceral functions. Recent studies suggested that TRPV1 channels also account for more complex functions, as addiction, anxiety, mood and cognition/learning. However, more studies are needed before the relevance of TRPV1 in brain activity can be clearly stated. This review highlights the increasing importance of TRPV1 as a regulator of brain function and discusses possible bases for the future development of new therapeutic approaches that by targeting brain TRPV1 receptors might be used for the treatment of several neurological disorders. PMID:24887171

  9. Functional craniology and brain evolution: from paleontology to biomedicine

    PubMed Central

    Bruner, Emiliano; de la Cuétara, José Manuel; Masters, Michael; Amano, Hideki; Ogihara, Naomichi

    2014-01-01

    Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modeling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer’s disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes. PMID:24765064

  10. Function of insulin in snail brain in associative learning.

    PubMed

    Kojima, S; Sunada, H; Mita, K; Sakakibara, M; Lukowiak, K; Ito, E

    2015-10-01

    Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla. PMID:26233474

  11. The Functional Connectivity Landscape of the Human Brain

    PubMed Central

    Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

    2014-01-01

    Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

  12. Memory Function Before and After Whole Brain Radiotherapy in Patients With and Without Brain Metastases

    SciTech Connect

    Welzel, Grit Fleckenstein, Katharina; Schaefer, Joerg; Hermann, Brigitte; Kraus-Tiefenbacher, Uta; Mai, Sabine K.; Wenz, Frederik

    2008-12-01

    Purpose: To prospectively compare the effect of prophylactic and therapeutic whole brain radiotherapy (WBRT) on memory function in patients with and without brain metastases. Methods and Materials: Adult patients with and without brain metastases (n = 44) were prospectively evaluated with serial cognitive testing, before RT (T0), after starting RT (T1), at the end of RT (T2), and 6-8 weeks (T3) after RT completion. Data were obtained from small-cell lung cancer patients treated with prophylactic cranial irradiation, patients with brain metastases treated with therapeutic cranial irradiation (TCI), and breast cancer patients treated with RT to the breast. Results: Before therapy,