Science.gov

Sample records for functional gene annotation

  1. Gene Coexpression Network Analysis as a Source of Functional Annotation for Rice Genes

    PubMed Central

    Childs, Kevin L.; Davidson, Rebecca M.; Buell, C. Robin

    2011-01-01

    With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa) gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional annotation of those

  2. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  3. Functional annotation of rare gene aberration drivers of pancreatic cancer.

    PubMed

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J; Eterovic, Karina; Mills, Gordon B; Scott, Kenneth L

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  4. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    SciTech Connect

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.

  5. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGESBeta

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  6. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  7. Functional gene clustering via gene annotation sentences, MeSH and GO keywords from biomedical literature

    PubMed Central

    Natarajan, Jeyakumar; Ganapathy, Jawahar

    2007-01-01

    Gene function annotation remains a key challenge in modern biology. This is especially true for high-throughput techniques such as gene expression experiments. Vital information about genes is available electronically from biomedical literature in the form of full texts and abstracts. In addition, various publicly available databases (such as GenBank, Gene Ontology and Entrez) provide access to gene-related information at different levels of biological organization, granularity and data format. This information is being used to assess and interpret the results from high-throughput experiments. To improve keyword extraction for annotational clustering and other types of analyses, we have developed a novel text mining approach, which is based on keywords identified at the level of gene annotation sentences (in particular sentences characterizing biological function) instead of entire abstracts. Further, to improve the expressiveness and usefulness of gene annotation terms, we investigated the combination of sentence-level keywords with terms from the Medical Subject Headings (MeSH) and Gene Ontology (GO) resources. We find that sentence-level keywords combined with MeSH terms outperforms the typical ‘baseline’ set-up (term frequencies at the level of abstracts) by a significant margin, whereas the addition of GO terms improves matters only marginally. We validated our approach on the basis of a manually annotated corpus of 200 abstracts generated on the basis of 2 cancer categories and 10 genes per category. We applied the method in the context of three sets of differentially expressed genes obtained from pediatric brain tumor samples. This analysis suggests novel interpretations of discovered gene expression patterns. PMID:18305827

  8. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium.

    PubMed

    Gaudet, Pascale; Livstone, Michael S; Lewis, Suzanna E; Thomas, Paul D

    2011-09-01

    The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods. PMID:21873635

  9. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    SciTech Connect

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  10. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  11. Algal functional annotation tool

    Energy Science and Technology Software Center (ESTSC)

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  12. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  13. The Gene Ontology's Reference Genome Project: A Unified Framework for Functional Annotation across Species

    PubMed Central

    2009-01-01

    The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content. PMID:19578431

  14. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1. PMID:23226257

  15. Global profiling of Shewanella oneidensis MR-1: Expression of hypothetical genes and improved functional annotations

    SciTech Connect

    Picone, Alex F.; Galperin, Michael Y.; Romine, Margaret; Higdon, Roger; Makarova, Kira S.; Kolker, Natali; Anderson, Gordon A; Qiu, Xiaoyun; Babnigg, Gyorgy; Beliaev, Alexander S; Edlefsen, Paul; Elias, Dwayne A.; Gorby, Dr. Yuri A.; Holzman, Ted; Klappenbach, Joel; Konstantinidis, Konstantinos T; Land, Miriam L; Lipton, Mary S.; McCue, Lee Ann; Monroe, Matthew; Pasa-Tolic, Ljiljana; Pinchuk, Grigoriy; Purvine, Samuel; Serres, Margrethe H.; Tsapin, Sasha; Zakrajsek, Brian A.; Zhu, Wenguang; Zhou, Jizhong; Larimer, Frank W; Lawrence, Charles E.; Riley, Monica; Collart, Frank; YatesIII, John R.; Smith, Richard D.; Nealson, Kenneth H.; Fredrickson, James K; Tiedje, James M.

    2005-01-01

    The gamma-proteobacterium Shewanella oneidensis strain MR-1 is a metabolically versatile organism that can reduce a wide range of organic compounds, metal ions, and radionuclides. Similar to most other sequenced organisms, approximate to40% of the predicted ORFs in the S. oneidensis genome were annotated as uncharacterized "hypothetical" genes. We implemented an integrative approach by using experimental and computational analyses to provide more detailed insight into gene function. Global expression profiles were determined for cells after UV irradiation and under aerobic and suboxic growth conditions. Transcriptomic and proteomic analyses confidently identified 538 hypothetical genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all predicted hypothetical proteins). Publicly available analysis tools and databases and the expression data were applied to improve the annotation of these genes. The annotation results were scored by using a seven-category schema that ranked both confidence and precision of the functional assignment. We were able to identify homologs for nearly all of these hypothetical proteins (97%), but could confidently assign exact biochemical functions for only 16 proteins (category 1; 3%). Altogether, computational and experimental evidence provided functional assignments or insights for 240 more genes (categories 2-5; 45%). These functional annotations advance our understanding of genes involved in vital cellular processes, including energy conversion, ion transport, secondary metabolism, and signal transduction. We propose that this integrative approach offers a valuable means to undertake the enormous challenge of characterizing the rapidly growing number of hypothetical proteins with each newly sequenced genome.

  16. Guidelines for the functional annotation of microRNAs using the Gene Ontology.

    PubMed

    Huntley, Rachael P; Sitnikov, Dmitry; Orlic-Milacic, Marija; Balakrishnan, Rama; D'Eustachio, Peter; Gillespie, Marc E; Howe, Doug; Kalea, Anastasia Z; Maegdefessel, Lars; Osumi-Sutherland, David; Petri, Victoria; Smith, Jennifer R; Van Auken, Kimberly; Wood, Valerie; Zampetaki, Anna; Mayr, Manuel; Lovering, Ruth C

    2016-05-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558

  17. Guidelines for the functional annotation of microRNAs using the Gene Ontology

    PubMed Central

    D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna

    2016-01-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558

  18. Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data

    PubMed Central

    Miozzi, Laura; Piro, Rosario Michael; Rosa, Fabio; Ala, Ugo; Silengo, Lorenzo; Di Cunto, Ferdinando; Provero, Paolo

    2008-01-01

    Background High-throughput gene expression data can predict gene function through the “guilt by association” principle: coexpressed genes are likely to be functionally associated. Methodology/Principal Findings We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. Conclusions/Significance We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic diseases of unknown molecular basis. PMID:18560577

  19. Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium

    PubMed Central

    Janssen, Sarah F.; van der Spek, Sophie J. F.; ten Brink, Jacoline B.; Essing, Anke H. W.; Gorgels, Theo G. M. F.; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2013-01-01

    Background The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. Methods We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. Results Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. Conclusion Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and

  20. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.

    PubMed

    Valli, Minoska; Tatto, Nadine E; Peymann, Armin; Gruber, Clemens; Landes, Nils; Ekker, Heinz; Thallinger, Gerhard G; Mattanovich, Diethard; Gasser, Brigitte; Graf, Alexandra B

    2016-09-01

    As manually curated and non-automated BLAST analysis of the published Pichia pastoris genome sequences revealed many differences between the gene annotations of the strains GS115 and CBS7435, RNA-Seq analysis, supported by proteomics, was performed to improve the genome annotation. Detailed analysis of sequence alignment and protein domain predictions were made to extend the functional genome annotation to all P. pastoris sequences. This allowed the identification of 492 new ORFs, 4916 hypothetical UTRs and the correction of 341 incorrect ORF predictions, which were mainly due to the presence of upstream ATG or erroneous intron predictions. Moreover, 175 previously erroneously annotated ORFs need to be removed from the annotation. In total, we have annotated 5325 ORFs. Regarding the functionality of those genes, we improved all gene and protein descriptions. Thereby, the percentage of ORFs with functional annotation was increased from 48% to 73%. Furthermore, we defined functional groups, covering 25 biological cellular processes of interest, by grouping all genes that are part of the defined process. All data are presented in the newly launched genome browser and database available at www.pichiagenome.org In summary, we present a wide spectrum of curation of the P. pastoris genome annotation from gene level to protein function. PMID:27388471

  1. Global Profiling of Shewanella oneidensis MR-1: Expression of Hypothetical Genes and Improved functional annotations

    SciTech Connect

    Kolker, Eugene; Picone, Alessandro F.; Galperin, Michael Y.; Romine, Margaret F.; Higdon, Roger; Makarova, Kira S.; Kolker, Natali; Anderson, Gordon A.; Qiu, Xiaoyun; Auberry, Kenneth J.; Babnigg, Gyorgy; Beliaev, Alex S.; Edlefsen, Paul; Elias, Dwayne A.; Gorby, Yuri A.; Holzman, Ted; Klappenbach, Joel; Konstantinidis, Kostas; Land, Miriam L.; Lipton, Mary S.; McCue, Lee-Ann; Monroe, Matthew E.; Pasa-Tolic, Liljiana; Pinchuk, Grigoriy E.; Purvine, Samuel O.; Serres, Margaret; Tsapin, Sasha; Zakrajsek, Brian A.; Zhu, Wenhong; Zhou, Jizhong; Larimer, Frank; Lawrence, Charles; Riley, Monica; Collart, Frank R.; Yates, III, John R.; Smith, Richard D.; Giometti, Carol S.; Nealson, Kenneth; Fredrickson, Jim K.; Tiedje, James M.

    2005-02-08

    The y-proteobacterium Shewanella oneidensis strain MR-1 is a respiratory versatile organism that can reduce a wide range of organics, metals, and radionuclides. Similar to most other sequenced organisms, approximately 40% of the predicted ORFs in the MR-1 genome were annotated as uncharacterized ''hypothetical'' genes. We implemented an integrative approach using experimental and computational analyses to provide more detailed insight into their function. Global expression studies were conducted using RNA and protein expression profiling of cells cultivated under aerobic, suboxic, and fumarate reducing conditions, phosphate limitation and UV irradiation. transcriptomic and proteomic analyses confidently identified 538 ''hypothetical'' genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all ''hypothetical'' proteins). Publicly available analysis tools and databases and our own expression data were applied to improve the annotation of these genes. The annotation results were scored using a seven-category schema that ranked both confidence and precision of the functional assignment. We identified homologs for nearly all of these ''hypothetical'' proteins (96%), thus allowing us to minimally classify them as ''conserved proteins''. Computational and/or experimental evidence provided more precise functional assignments for 297 genes (categories 1-4; 55%). These improved functional annotations will significantly widen our understanding of vital cellular processes including signal transduction, ion transport, secondary metabolism, and transcription, as well as structural elements, such as cellular membranes. We propose that this integrative approach offers a viable means to undertake the enormous challenge of characterizing the rapidly growing number of ''hypothetical'' proteins with each newly sequenced genome.

  2. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    SciTech Connect

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcine P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2009-03-17

    Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 HyP and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC–MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. One thousand two hundred and twelve of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes.

  3. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    PubMed Central

    Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J.; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J.; Campbell, Michael S.; Cavalier, David; Childs, Kevin L.; Clark, Teresa J.; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L.; Sanjaya; Simpson, Jeffrey P.; TerBush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M.; Hegg, Eric L.; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K.; Ohlrogge, John; Osteryoung, Katherine W.; Shachar-Hill, Yair; Sears, Barbara B.; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  4. Gene Ontology annotations and resources.

    PubMed

    Blake, J A; Dolan, M; Drabkin, H; Hill, D P; Li, Ni; Sitnikov, D; Bridges, S; Burgess, S; Buza, T; McCarthy, F; Peddinti, D; Pillai, L; Carbon, S; Dietze, H; Ireland, A; Lewis, S E; Mungall, C J; Gaudet, P; Chrisholm, R L; Fey, P; Kibbe, W A; Basu, S; Siegele, D A; McIntosh, B K; Renfro, D P; Zweifel, A E; Hu, J C; Brown, N H; Tweedie, S; Alam-Faruque, Y; Apweiler, R; Auchinchloss, A; Axelsen, K; Bely, B; Blatter, M -C; Bonilla, C; Bouguerleret, L; Boutet, E; Breuza, L; Bridge, A; Chan, W M; Chavali, G; Coudert, E; Dimmer, E; Estreicher, A; Famiglietti, L; Feuermann, M; Gos, A; Gruaz-Gumowski, N; Hieta, R; Hinz, C; Hulo, C; Huntley, R; James, J; Jungo, F; Keller, G; Laiho, K; Legge, D; Lemercier, P; Lieberherr, D; Magrane, M; Martin, M J; Masson, P; Mutowo-Muellenet, P; O'Donovan, C; Pedruzzi, I; Pichler, K; Poggioli, D; Porras Millán, P; Poux, S; Rivoire, C; Roechert, B; Sawford, T; Schneider, M; Stutz, A; Sundaram, S; Tognolli, M; Xenarios, I; Foulgar, R; Lomax, J; Roncaglia, P; Khodiyar, V K; Lovering, R C; Talmud, P J; Chibucos, M; Giglio, M Gwinn; Chang, H -Y; Hunter, S; McAnulla, C; Mitchell, A; Sangrador, A; Stephan, R; Harris, M A; Oliver, S G; Rutherford, K; Wood, V; Bahler, J; Lock, A; Kersey, P J; McDowall, D M; Staines, D M; Dwinell, M; Shimoyama, M; Laulederkind, S; Hayman, T; Wang, S -J; Petri, V; Lowry, T; D'Eustachio, P; Matthews, L; Balakrishnan, R; Binkley, G; Cherry, J M; Costanzo, M C; Dwight, S S; Engel, S R; Fisk, D G; Hitz, B C; Hong, E L; Karra, K; Miyasato, S R; Nash, R S; Park, J; Skrzypek, M S; Weng, S; Wong, E D; Berardini, T Z; Huala, E; Mi, H; Thomas, P D; Chan, J; Kishore, R; Sternberg, P; Van Auken, K; Howe, D; Westerfield, M

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  5. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    PubMed

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  6. The Saccharomyces Genome Database: Gene Product Annotation of Function, Process, and Component.

    PubMed

    Cherry, J Michael

    2015-12-01

    An ontology is a highly structured form of controlled vocabulary. Each entry in the ontology is commonly called a term. These terms are used when talking about an annotation. However, each term has a definition that, like the definition of a word found within a dictionary, provides the complete usage and detailed explanation of the term. It is critical to consult a term's definition because the distinction between terms can be subtle. The use of ontologies in biology started as a way of unifying communication between scientific communities and to provide a standard dictionary for different topics, including molecular functions, biological processes, mutant phenotypes, chemical properties and structures. The creation of ontology terms and their definitions often requires debate to reach agreement but the result has been a unified descriptive language used to communicate knowledge. In addition to terms and definitions, ontologies require a relationship used to define the type of connection between terms. In an ontology, a term can have more than one parent term, the term above it in an ontology, as well as more than one child, the term below it in the ontology. Many ontologies are used to construct annotations in the Saccharomyces Genome Database (SGD), as in all modern biological databases; however, Gene Ontology (GO), a descriptive system used to categorize gene function, is the most extensively used ontology in SGD annotations. Examples included in this protocol illustrate the structure and features of this ontology. PMID:26631125

  7. Insyght: navigating amongst abundant homologues, syntenies and gene functional annotations in bacteria, it's that symbol!

    PubMed Central

    Lacroix, Thomas; Loux, Valentin; Gendrault, Annie; Hoebeke, Mark; Gibrat, Jean-François

    2014-01-01

    High-throughput techniques have considerably increased the potential of comparative genomics whilst simultaneously posing many new challenges. One of those challenges involves efficiently mining the large amount of data produced and exploring the landscape of both conserved and idiosyncratic genomic regions across multiple genomes. Domains of application of these analyses are diverse: identification of evolutionary events, inference of gene functions, detection of niche-specific genes or phylogenetic profiling. Insyght is a comparative genomic visualization tool that combines three complementary displays: (i) a table for thoroughly browsing amongst homologues, (ii) a comparator of orthologue functional annotations and (iii) a genomic organization view designed to improve the legibility of rearrangements and distinctive loci. The latter display combines symbolic and proportional graphical paradigms. Synchronized navigation across multiple species and interoperability between the views are core features of Insyght. A gene filter mechanism is provided that helps the user to build a biologically relevant gene set according to multiple criteria such as presence/absence of homologues and/or various annotations. We illustrate the use of Insyght with scenarios. Currently, only Bacteria and Archaea are supported. A public instance is available at http://genome.jouy.inra.fr/Insyght. The tool is freely downloadable for private data set analysis. PMID:25249626

  8. Gene Ontology Annotations and Resources

    PubMed Central

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new ‘phylogenetic annotation’ process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  9. Computational algorithms to predict Gene Ontology annotations

    PubMed Central

    2015-01-01

    Background Gene function annotations, which are associations between a gene and a term of a controlled vocabulary describing gene functional features, are of paramount importance in modern biology. Datasets of these annotations, such as the ones provided by the Gene Ontology Consortium, are used to design novel biological experiments and interpret their results. Despite their importance, these sources of information have some known issues. They are incomplete, since biological knowledge is far from being definitive and it rapidly evolves, and some erroneous annotations may be present. Since the curation process of novel annotations is a costly procedure, both in economical and time terms, computational tools that can reliably predict likely annotations, and thus quicken the discovery of new gene annotations, are very useful. Methods We used a set of computational algorithms and weighting schemes to infer novel gene annotations from a set of known ones. We used the latent semantic analysis approach, implementing two popular algorithms (Latent Semantic Indexing and Probabilistic Latent Semantic Analysis) and propose a novel method, the Semantic IMproved Latent Semantic Analysis, which adds a clustering step on the set of considered genes. Furthermore, we propose the improvement of these algorithms by weighting the annotations in the input set. Results We tested our methods and their weighted variants on the Gene Ontology annotation sets of three model organism genes (Bos taurus, Danio rerio and Drosophila melanogaster ). The methods showed their ability in predicting novel gene annotations and the weighting procedures demonstrated to lead to a valuable improvement, although the obtained results vary according to the dimension of the input annotation set and the considered algorithm. Conclusions Out of the three considered methods, the Semantic IMproved Latent Semantic Analysis is the one that provides better results. In particular, when coupled with a proper

  10. Identification and functional annotation of lncRNA genes with hypermethylation in colorectal cancer.

    PubMed

    Liao, Qi; He, Weiling; Liu, Jianfa; Cen, Yi; Luo, Liang; Yu, Chengliang; Li, Yang; Chen, Sitong; Duan, Shiwei

    2015-11-10

    Colorectal cancer (CRC) is one of the leading causes of mortality worldwide. DNA methylation is an important epigenetic modification for CRC. Although currently a number of studies about DNA methylation of protein coding genes have been carried out, only a few are about the methylation of genes encoding the long noncoding RNAs (lncRNAs). In this study, we identified 761 lncRNA genes with DNA hypermethylation in CRC using a free MethylCap-seq dataset. Integration of lncRNA expression and methylation datasets showed that the expression of lncRNAs is negatively correlated with DNA methylation (p<0.01). Co-methylation network was also constructed to annotate the functions of unknown lncRNAs. Our results showed that a total of 364 lncRNAs were annotated with at least one GO biological process term. The current data-mining work is likely to provide informative clues for biological researchers to further understand the role of lncRNAs in the development of CRC. PMID:26172871

  11. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    PubMed Central

    Janssen, Sarah F.; Gorgels, Theo G. M. F.; Bossers, Koen; ten Brink, Jacoline B.; Essing, Anke H. W.; Nagtegaal, Martijn; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2012-01-01

    Purpose The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma. Methods We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity. Results The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (N)PE of 35 genes previously implicated in molecular mechanisms related to glaucoma. Conclusion Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma. PMID:23028713

  12. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation

    PubMed Central

    Hackl, Hubert; Burkard, Thomas Rainer; Sturn, Alexander; Rubio, Renee; Schleiffer, Alexander; Tian, Sun; Quackenbush, John; Eisenhaber, Frank; Trajanoski, Zlatko

    2005-01-01

    Background Large-scale transcription profiling of cell models and model organisms can identify novel molecular components involved in fat cell development. Detailed characterization of the sequences of identified gene products has not been done and global mechanisms have not been investigated. We evaluated the extent to which molecular processes can be revealed by expression profiling and functional annotation of genes that are differentially expressed during fat cell development. Results Mouse microarrays with more than 27,000 elements were developed, and transcriptional profiles of 3T3-L1 cells (pre-adipocyte cells) were monitored during differentiation. In total, 780 differentially expressed expressed sequence tags (ESTs) were subjected to in-depth bioinformatics analyses. The analysis of 3'-untranslated region sequences from 395 ESTs showed that 71% of the differentially expressed genes could be regulated by microRNAs. A molecular atlas of fat cell development was then constructed by de novo functional annotation on a sequence segment/domain-wise basis of 659 protein sequences, and subsequent mapping onto known pathways, possible cellular roles, and subcellular localizations. Key enzymes in 27 out of 36 investigated metabolic pathways were regulated at the transcriptional level, typically at the rate-limiting steps in these pathways. Also, coexpressed genes rarely shared consensus transcription-factor binding sites, and were typically not clustered in adjacent chromosomal regions, but were instead widely dispersed throughout the genome. Conclusions Large-scale transcription profiling in conjunction with sophisticated bioinformatics analyses can provide not only a list of novel players in a particular setting but also a global view on biological processes and molecular networks. PMID:16420668

  13. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes.

    PubMed

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R

    2015-09-01

    Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons. PMID:25988664

  14. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  15. Community gene annotation in practice

    PubMed Central

    Loveland, Jane E.; Gilbert, James G.R.; Griffiths, Ed; Harrow, Jennifer L.

    2012-01-01

    Manual annotation of genomic data is extremely valuable to produce an accurate reference gene set but is expensive compared with automatic methods and so has been limited to model organisms. Annotation tools that have been developed at the Wellcome Trust Sanger Institute (WTSI, http://www.sanger.ac.uk/.) are being used to fill that gap, as they can be used remotely and so open up viable community annotation collaborations. We introduce the ‘Blessed’ annotator and ‘Gatekeeper’ approach to Community Annotation using the Otterlace/ZMap genome annotation tool. We also describe the strategies adopted for annotation consistency, quality control and viewing of the annotation. Database URL: http://vega.sanger.ac.uk/index.html PMID:22434843

  16. The Ensembl gene annotation system.

    PubMed

    Aken, Bronwen L; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J; Murphy, Daniel N; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul; Searle, Stephen M J

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html. PMID:27337980

  17. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  18. Quality of Computationally Inferred Gene Ontology Annotations

    PubMed Central

    Škunca, Nives; Altenhoff, Adrian; Dessimoz, Christophe

    2012-01-01

    Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon—an important outcome given that >98% of all annotations are inferred without direct curation. PMID:22693439

  19. Facilitating functional annotation of chicken microarray data

    PubMed Central

    2009-01-01

    Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM) tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and will be updated on regular

  20. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models.

    PubMed

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; Carmona e Ferreira, Renata; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-12-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3'-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  1. Gene and alternative splicing annotation with AIR

    PubMed Central

    Florea, Liliana; Di Francesco, Valentina; Miller, Jason; Turner, Russell; Yao, Alison; Harris, Michael; Walenz, Brian; Mobarry, Clark; Merkulov, Gennady V.; Charlab, Rosane; Dew, Ian; Deng, Zuoming; Istrail, Sorin; Li, Peter; Sutton, Granger

    2005-01-01

    Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts. PMID:15632090

  2. Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Shao, Wenjun; Baumohl, Jason K.; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W.; Arkin, Adam P.

    2011-01-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  3. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions.

    PubMed

    Deutschbauer, Adam; Price, Morgan N; Wetmore, Kelly M; Shao, Wenjun; Baumohl, Jason K; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W; Arkin, Adam P

    2011-11-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  4. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  5. Morgan’s Legacy: Fruit Flies and the Functional Annotation of Conserved Genes

    PubMed Central

    Bellen, Hugo J.; Yamamoto, Shinya

    2016-01-01

    In 1915, “The Mechanism of Mendelian Heredity” was published by four prominent Drosophila geneticists. They discovered that genes form linkage groups on chromosomes inherited in a Mendelian fashion and laid the genetic foundation that promoted Drosophila as a model organism. Flies continue to offer great opportunities, including studies in the field of functional genomics. PMID:26406362

  6. A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.

    PubMed

    Yelton, Alexis P; Thomas, Brian C; Simmons, Sheri L; Wilmes, Paul; Zemla, Adam; Thelen, Michael P; Justice, Nicholas; Banfield, Jillian F

    2011-10-01

    During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application. PMID:22028637

  7. A Semi-Quantitative, Synteny-Based Method to Improve Functional Predictions for Hypothetical and Poorly Annotated Bacterial and Archaeal Genes

    PubMed Central

    Yelton, Alexis P.; Thomas, Brian C.; Simmons, Sheri L.; Wilmes, Paul; Zemla, Adam; Thelen, Michael P.; Justice, Nicholas; Banfield, Jillian F.

    2011-01-01

    During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application. PMID:22028637

  8. A Framework for Comparing Phenotype Annotations of Orthologous Genes

    PubMed Central

    Bodenreider, Olivier; Burgun, Anita

    2015-01-01

    Objectives Animal models are a key resource for the investigation of human diseases. In contrast to functional annotation, phenotype annotation is less standard, and comparing phenotypes across species remains challenging. The objective of this paper is to propose a framework for comparing phenotype annotations of orthologous genes based on the Medical Subject Headings (MeSH) indexing of biomedical articles in which these genes are discussed. Methods 17,769 pairs of orthologous genes (mouse and human) are downloaded from the Mouse Genome Informatics (MGI) system and linked to biomedical articles through Entrez Gene. MeSH index terms corresponding to diseases are extracted from Medline. Results 11,111 pairs of genes exhibited at least one phenotype annotation for each gene in the pair. Among these, 81% have at least one phenotype annotation in common, 80% have at least one annotation specific to the human gene and 84% have at least one annotation specific to the mouse gene. Four disease categories represent 54% of all phenotype annotations. Conclusions This framework supports the curation of phenotype annotation and the generation of research hypotheses based on comparative studies. PMID:20841896

  9. GIFtS: annotation landscape analysis with GeneCards

    PubMed Central

    Harel, Arye; Inger, Aron; Stelzer, Gil; Strichman-Almashanu, Liora; Dalah, Irina; Safran, Marilyn; Lancet, Doron

    2009-01-01

    Background Gene annotation is a pivotal component in computational genomics, encompassing prediction of gene function, expression analysis, and sequence scrutiny. Hence, quantitative measures of the annotation landscape constitute a pertinent bioinformatics tool. GeneCards® is a gene-centric compendium of rich annotative information for over 50,000 human gene entries, building upon 68 data sources, including Gene Ontology (GO), pathways, interactions, phenotypes, publications and many more. Results We present the GeneCards Inferred Functionality Score (GIFtS) which allows a quantitative assessment of a gene's annotation status, by exploiting the unique wealth and diversity of GeneCards information. The GIFtS tool, linked from the GeneCards home page, facilitates browsing the human genome by searching for the annotation level of a specified gene, retrieving a list of genes within a specified range of GIFtS value, obtaining random genes with a specific GIFtS value, and experimenting with the GIFtS weighting algorithm for a variety of annotation categories. The bimodal shape of the GIFtS distribution suggests a division of the human gene repertoire into two main groups: the high-GIFtS peak consists almost entirely of protein-coding genes; the low-GIFtS peak consists of genes from all of the categories. Cluster analysis of GIFtS annotation vectors provides the classification of gene groups by detailed positioning in the annotation arena. GIFtS also provide measures which enable the evaluation of the databases that serve as GeneCards sources. An inverse correlation is found (for GIFtS>25) between the number of genes annotated by each source, and the average GIFtS value of genes associated with that source. Three typical source prototypes are revealed by their GIFtS distribution: genome-wide sources, sources comprising mainly highly annotated genes, and sources comprising mainly poorly annotated genes. The degree of accumulated knowledge for a given gene measured by

  10. Functional Annotation of Cotesia congregata Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues

    PubMed Central

    Thézé, Julien; Cambier, Sébastien; Poulain, Julie; Da Silva, Corinne; Bézier, Annie; Musset, Karine; Moreau, Sébastien J. M.; Drezen, Jean-Michel

    2014-01-01

    ABSTRACT Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large

  11. Structural and functional annotation of the porcine immunome

    PubMed Central

    2013-01-01

    Background The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. Results The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated

  12. Gene Ontology annotation quality analysis in model eukaryotes

    PubMed Central

    Buza, Teresia J.; McCarthy, Fiona M.; Wang, Nan; Bridges, Susan M.; Burgess, Shane C.

    2008-01-01

    Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers’ ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases). PMID:18187504

  13. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    PubMed Central

    Simmons, Shaneka S.; Isokpehi, Raphael D.; Brown, Shyretha D.; McAllister, Donee L.; Hall, Charnia C.; McDuffy, Wanaki M.; Medley, Tamara L.; Udensi, Udensi K.; Rajnarayanan, Rajendram V.; Ayensu, Wellington K.; Cohly, Hari H.P.

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  14. Metagenomic gene annotation by a homology-independent approach

    SciTech Connect

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  15. JGI Plant Genomics Gene Annotation Pipeline

    SciTech Connect

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  16. The GATO gene annotation tool for research laboratories.

    PubMed

    Fujita, A; Massirer, K B; Durham, A M; Ferreira, C E; Sogayar, M C

    2005-11-01

    Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO) is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB. PMID:16258624

  17. The Gene Wiki: community intelligence applied to human gene annotation.

    PubMed

    Huss, Jon W; Lindenbaum, Pierre; Martone, Michael; Roberts, Donabel; Pizarro, Angel; Valafar, Faramarz; Hogenesch, John B; Su, Andrew I

    2010-01-01

    Annotating the function of all human genes is a critical, yet formidable, challenge. Current gene annotation efforts focus on centralized curation resources, but it is increasingly clear that this approach does not scale with the rapid growth of the biomedical literature. The Gene Wiki utilizes an alternative and complementary model based on the principle of community intelligence. Directly integrated within the online encyclopedia, Wikipedia, the goal of this effort is to build a gene-specific review article for every gene in the human genome, where each article is collaboratively written, continuously updated and community reviewed. Previously, we described the creation of Gene Wiki 'stubs' for approximately 9000 human genes. Here, we describe ongoing systematic improvements to these articles to increase their utility. Moreover, we retrospectively examine the community usage and improvement of the Gene Wiki, providing evidence of a critical mass of users and editors. Gene Wiki articles are freely accessible within the Wikipedia web site, and additional links and information are available at http://en.wikipedia.org/wiki/Portal:Gene_Wiki. PMID:19755503

  18. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    PubMed Central

    Araújo, Wagner L.; Nunes-Nesi, Adriano; Williams, Thomas C. R.

    2012-01-01

    The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics, and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review, we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g., photosynthesis, photorespiration, and nitrogen metabolism). We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications. PMID:22973288

  19. Systems developmental biology: the use of ontologies in annotating models and in identifying gene function within and across species

    PubMed Central

    2007-01-01

    Systems developmental biology is an approach to the study of embryogenesis that attempts to analyze complex developmental processes through integrating the roles of their molecular, cellular, and tissue participants within a computational framework. This article discusses ways of annotating these participants using standard terms and IDs now available in public ontologies (these are areas of hierarchical knowledge formalized to be computationally accessible) for tissues, cells, and processes. Such annotations bring two types of benefit. The first comes from using standard terms: This allows linkage to other resources that use them (e.g., GXD, the gene-expression [G-E] database for mouse development). The second comes from the annotation procedure itself: This can lead to the identification of common processes that are used in very different and apparently unrelated events, even in other organisms. One implication of this is the potential for identifying the genes underpinning common developmental processes in different tissues through Boolean analysis of their G-E profiles. While it is easiest to do this for single organisms, the approach is extendable to analyzing similar processes in different organisms. Although the full computational infrastructure for such an analysis has yet to be put in place, two examples are briefly considered as illustration. First, the early development of the mouse urogenital system shows how a line of development can be graphically formalized using ontologies. Second, Boolean analysis of the G-E profiles of the mesenchyme-to-epithelium transitions that take place during mouse development suggest Lhx1, Foxc1, and Meox1 as candidate transcription factors for mediating this process. PMID:17566825

  20. Systems developmental biology: the use of ontologies in annotating models and in identifying gene function within and across species.

    PubMed

    Bard, Jonathan

    2007-07-01

    Systems developmental biology is an approach to the study of embryogenesis that attempts to analyze complex developmental processes through integrating the roles of their molecular, cellular, and tissue participants within a computational framework. This article discusses ways of annotating these participants using standard terms and IDs now available in public ontologies (these are areas of hierarchical knowledge formalized to be computationally accessible) for tissues, cells, and processes. Such annotations bring two types of benefit. The first comes from using standard terms: This allows linkage to other resources that use them (e.g., GXD, the gene-expression [G-E] database for mouse development). The second comes from the annotation procedure itself: This can lead to the identification of common processes that are used in very different and apparently unrelated events, even in other organisms. One implication of this is the potential for identifying the genes underpinning common developmental processes in different tissues through Boolean analysis of their G-E profiles. While it is easiest to do this for single organisms, the approach is extendable to analyzing similar processes in different organisms. Although the full computational infrastructure for such an analysis has yet to be put in place, two examples are briefly considered as illustration. First, the early development of the mouse urogenital system shows how a line of development can be graphically formalized using ontologies. Second, Boolean analysis of the G-E profiles of the mesenchyme-to-epithelium transitions that take place during mouse development suggest Lhx1, Foxc1, and Meox1 as candidate transcription factors for mediating this process. PMID:17566825

  1. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  2. Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region.

    PubMed

    Lapidus, A; Galleron, N; Sorokin, A; Ehrlich, S D

    1997-11-01

    The 200 kb region of the Bacillus subtilis chromosome spanning from 255 to 275 degrees on the genetic map was sequenced. The strategy applied, based on use of yeast artificial chromosomes and multiplex Long Accurate PCR, proved to be very efficient for sequencing a large bacterial chromosome area. A total of 193 genes of this part of the chromosome was classified by level of knowledge and biological category of their functions. Five levels of gene function understanding are defined. These are: (i) experimental evidence is available of gene product or biological function; (ii) strong homology exists for the putative gene product with proteins from other organisms; (iii) some indication of the function can be derived from homologies with known proteins; (iv) the gene product can be clustered with hypothetical proteins; (v) no indication on the gene function exists. The percentage of detected genes in each category was: 20, 28, 20, 15 and 17, respectively. In the sequenced region, a high percentage of genes are implicated in transport and metabolic linking of glycolysis and the citric acid cycle. A functional connection of several genes from this region and the genes close to 140 degrees in the chromosome was also observed. PMID:9387221

  3. Considerations to improve functional annotations in biological databases.

    PubMed

    Benítez-Páez, Alfonso

    2009-12-01

    Despite the great effort to design efficient systems allowing the electronic indexation of information concerning genes, proteins, structures, and interactions published daily in scientific journals, some problems are still observed in specific tasks such as functional annotation. The annotation of function is a critical issue for bioinformatic routines, such as for instance, in functional genomics and the further prediction of unknown protein function, which are highly dependent of the quality of existing annotations. Some information management systems evolve to efficiently incorporate information from large-scale projects, but often, annotation of single records from the literature is difficult and slow. In this short report, functional characterizations of a representative sample of the entire set of uncharacterized proteins from Escherichia coli K12 was compiled from Swiss-Prot, PubMed, and EcoCyc and demonstrate a functional annotation deficit in biological databases. Some issues are postulated as causes of the lack of annotation, and different solutions are evaluated and proposed to avoid them. The hope is that as a consequence of these observations, there will be new impetus to improve the speed and quality of functional annotation and ultimately provide updated, reliable information to the scientific community. PMID:20050264

  4. Detection of gene annotations and protein-protein interaction associated disorders through transitive relationships between integrated annotations

    PubMed Central

    2015-01-01

    Background Increasingly high amounts of heterogeneous and valuable controlled biomolecular annotations are available, but far from exhaustive and scattered in many databases. Several annotation integration and prediction approaches have been proposed, but these issues are still unsolved. We previously created a Genomic and Proteomic Knowledge Base (GPKB) that efficiently integrates many distributed biomolecular annotation and interaction data of several organisms, including 32,956,102 gene annotations, 273,522,470 protein annotations and 277,095 protein-protein interactions (PPIs). Results By comprehensively leveraging transitive relationships defined by the numerous association data integrated in GPKB, we developed a software procedure that effectively detects and supplement consistent biomolecular annotations not present in the integrated sources. According to some defined logic rules, it does so only when the semantic type of data and of their relationships, as well as the cardinality of the relationships, allow identifying molecular biology compliant annotations. Thanks to controlled consistency and quality enforced on data integrated in GPKB, and to the procedures used to avoid error propagation during their automatic processing, we could reliably identify many annotations, which we integrated in GPKB. They comprise 3,144 gene to pathway and 21,942 gene to biological function annotations of many organisms, and 1,027 candidate associations between 317 genetic disorders and 782 human PPIs. Overall estimated recall and precision of our approach were 90.56 % and 96.61 %, respectively. Co-functional evaluation of genes with known function showed high functional similarity between genes with new detected and known annotation to the same pathway; considering also the new detected gene functional annotations enhanced such functional similarity, which resembled the one existing between genes known to be annotated to the same pathway. Strong evidence was also found in

  5. Functional Annotation of Rheumatoid Arthritis and Osteoarthritis Associated Genes by Integrative Genome-Wide Gene Expression Profiling Analysis

    PubMed Central

    Li, Zhan-Chun; Xiao, Jie; Peng, Jin-Liang; Chen, Jian-Wei; Ma, Tao; Cheng, Guang-Qi; Dong, Yu-Qi; Wang, Wei-li; Liu, Zu-De

    2014-01-01

    Background Rheumatoid arthritis (RA) and osteoarthritis (OA) are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. Methods We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. Results and Conclusion We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways) are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways) present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease. PMID:24551036

  6. Re-Annotation Is an Essential Step in Systems Biology Modeling of Functional Genomics Data

    PubMed Central

    van den Berg, Bart H. J.; McCarthy, Fiona M.; Lamont, Susan J.; Burgess, Shane C.

    2010-01-01

    One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data. PMID:20498845

  7. Functional Annotations of Paralogs: A Blessing and a Curse.

    PubMed

    Zallot, Rémi; Harrison, Katherine J; Kolaczkowski, Bryan; de Crécy-Lagard, Valérie

    2016-01-01

    Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. PMID:27618105

  8. Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: Bacillus indicus and Bacillus firmus.

    PubMed

    Steiger, Sabine; Perez-Fons, Laura; Cutting, Simon M; Fraser, Paul D; Sandmann, Gerhard

    2015-01-01

    Bacillus indicus and Bacillus firmus synthesize C30 carotenoids via farnesyl pyrophosphate, forming apophytoene as the first committed step in the pathway. The products of the pathways were methyl 4'-[6-O-acyl-glycosyl)oxy]-4,4'-diapolycopen-4-oic acid and 4,4'-diapolycopen-4,4'-dioic acid with putative glycosyl esters. The genomes of both bacteria were sequenced, and the genes for their early terpenoid and specific carotenoid pathways annotated. All genes for a functional 1-deoxy-d-xylulose 5-phosphate synthase pathway were identified in both species, whereas genes of the mevalonate pathway were absent. The genes for specific carotenoid synthesis and conversion were found on gene clusters which were organized differently in the two species. The genes involved in the formation of the carotenoid cores were assigned by functional complementation in Escherichia coli. This bacterium was co-transformed with a plasmid mediating the formation of the putative substrate and a second plasmid with the gene of interest. Carotenoid products in the transformants were determined by HPLC. Using this approach, we identified the genes for a 4,4'-diapophytoene synthase (crtM), 4,4'-diapophytoene desaturase (crtNa), 4,4'-diapolycopene ketolase (crtNb) and 4,4'-diapolycopene aldehyde oxidase (crtNc). The three crtN genes were closely related and belonged to the crtI gene family with a similar reaction mechanism of their enzyme products. Additional genes encoding glycosyltransferases and acyltransferases for the modification of the carotenoid skeleton of the diapolycopenoic acids were identified by comparison with the corresponding genes from other bacteria. PMID:25326460

  9. Functional annotation of hypothetical proteins – A review

    PubMed Central

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2006-01-01

    The complete human genome sequences in the public database provide ways to understand the blue print of life. As of June 29, 2006, 27 archaeal, 326 bacterial and 21 eukaryotes is complete genomes are available and the sequencing for 316 bacterial, 24 archaeal, 126 eukaryotic genomes are in progress. The traditional biochemical/molecular experiments can assign accurate functions for genes in these genomes. However, the process is time-consuming and costly. Despite several efforts, only 50-60 % of genes have been annotated in most completely sequenced genomes. Automated genome sequence analysis and annotation may provide ways to understand genomes. Thus, determination of protein function is one of the challenging problems of the post-genome era. This demands bioinformatics to predict functions of un-annotated protein sequences by developing efficient tools. Here, we discuss some of the recent and popular approaches developed in Bioinformatics to predict functions for hypothetical proteins. PMID:17597916

  10. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource. PMID:26434392

  11. A method for increasing expressivity of Gene Ontology annotations using a compositional approach

    PubMed Central

    2014-01-01

    Background The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. Results The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector–target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. Conclusions The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism’s gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction. PMID:24885854

  12. Computational annotation of genes differentially expressed along olive fruit development

    PubMed Central

    Galla, Giulio; Barcaccia, Gianni; Ramina, Angelo; Collani, Silvio; Alagna, Fiammetta; Baldoni, Luciana; Cultrera, Nicolò GM; Martinelli, Federico; Sebastiani, Luca; Tonutti, Pietro

    2009-01-01

    Background Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. Results mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all

  13. Critical Assessment of Function Annotation Meeting, 2011

    SciTech Connect

    Friedberg, Iddo

    2015-01-21

    The Critical Assessment of Function Annotation meeting was held July 14-15, 2011 at the Austria Conference Center in Vienna, Austria. There were 73 registered delegates at the meeting. We thank the DOE for this award. It helped us organize and support a scientific meeting AFP 2011 as a special interest group (SIG) meeting associated with the ISMB 2011 conference. The conference was held in Vienna, Austria, in July 2011. The AFP SIG was held on July 15-16, 2011 (immediately preceding the conference). The meeting consisted of two components, the first being a series of talks (invited and contributed) and discussion sections dedicated to protein function research, with an emphasis on the theory and practice of computational methods utilized in functional annotation. The second component provided a large-scale assessment of computational methods through participation in the Critical Assessment of Functional Annotation (CAFA).

  14. Systematic Functional Annotation and Visualization of Biological Networks.

    PubMed

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  15. Genomic Resources for Gene Discovery, Functional Genome Annotation, and Evolutionary Studies of Maize and Its Close Relatives

    PubMed Central

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S.S.; Kudrna, David A.; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A.; Luo, Meizhong

    2013-01-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics. PMID:24037269

  16. Effective function annotation through catalytic residue conservation.

    PubMed

    George, Richard A; Spriggs, Ruth V; Bartlett, Gail J; Gutteridge, Alex; MacArthur, Malcolm W; Porter, Craig T; Al-Lazikani, Bissan; Thornton, Janet M; Swindells, Mark B

    2005-08-30

    Because of the extreme impact of genome sequencing projects, protein sequences without accompanying experimental data now dominate public databases. Homology searches, by providing an opportunity to transfer functional information between related proteins, have become the de facto way to address this. Although a single, well annotated, close relationship will often facilitate sufficient annotation, this situation is not always the case, particularly if mutations are present in important functional residues. When only distant relationships are available, the transfer of function information is more tenuous, and the likelihood of encountering several well annotated proteins with different functions is increased. The consequence for a researcher is a range of candidate functions with little way of knowing which, if any, are correct. Here, we address the problem directly by introducing a computational approach to accurately identify and segregate related proteins into those with a functional similarity and those where function differs. This approach should find a wide range of applications, including the interpretation of genomics/proteomics data and the prioritization of targets for high-throughput structure determination. The method is generic, but here we concentrate on enzymes and apply high-quality catalytic site data. In addition to providing a series of comprehensive benchmarks to show the overall performance of our approach, we illustrate its utility with specific examples that include the correct identification of haptoglobin as a nonenzymatic relative of trypsin, discrimination of acid-d-amino acid ligases from a much larger ligase pool, and the successful annotation of BioH, a structural genomics target. PMID:16037208

  17. Sequencing, De Novo Assembly, and Annotation of the Transcriptome of the Endangered Freshwater Pearl Bivalve, Cristaria plicata, Provides Novel Insights into Functional Genes and Marker Discovery

    PubMed Central

    Kang, Se Won; Hwang, Hee-Ju; Park, So Young; Park, Eun Bi; Chung, Jong Min; Song, Dae Kwon; Kim, Changmu; Kim, Soonok; Lee, Jun Sang; Han, Yeon Soo; Park, Hong Seog; Lee, Yong Seok

    2016-01-01

    Background The freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae), is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS) technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction. Results The C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO) terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2) were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs) were identified from 61,141 unigenes (size of >1 kb) with the most abundant being dinucleotide repeats. Conclusions This dataset represents the first transcriptome analysis of the endangered

  18. HMM-Based Gene Annotation Methods

    SciTech Connect

    Haussler, David; Hughey, Richard; Karplus, Keven

    1999-09-20

    Development of new statistical methods and computational tools to identify genes in human genomic DNA, and to provide clues to their functions by identifying features such as transcription factor binding sites, tissue, specific expression and splicing patterns, and remove homologies at the protein level with genes of known function.

  19. Comprehensive comparative homeobox gene annotation in human and mouse

    PubMed Central

    Wilming, Laurens G.; Boychenko, Veronika; Harrow, Jennifer L.

    2015-01-01

    Homeobox genes are a group of genes coding for transcription factors with a DNA-binding helix-turn-helix structure called a homeodomain and which play a crucial role in pattern formation during embryogenesis. Many homeobox genes are located in clusters and some of these, most notably the HOX genes, are known to have antisense or opposite strand long non-coding RNA (lncRNA) genes that play a regulatory role. Because automated annotation of both gene clusters and non-coding genes is fraught with difficulty (over-prediction, under-prediction, inaccurate transcript structures), we set out to manually annotate all homeobox genes in the mouse and human genomes. This includes all supported splice variants, pseudogenes and both antisense and flanking lncRNAs. One of the areas where manual annotation has a significant advantage is the annotation of duplicated gene clusters. After comprehensive annotation of all homeobox genes and their antisense genes in human and in mouse, we found some discrepancies with the current gene set in RefSeq regarding exact gene structures and coding versus pseudogene locus biotype. We also identified previously un-annotated pseudogenes in the DUX, Rhox and Obox gene clusters, which helped us re-evaluate and update the gene nomenclature in these regions. We found that human homeobox genes are enriched in antisense lncRNA loci, some of which are known to play a role in gene or gene cluster regulation, compared to their mouse orthologues. Of the annotated set of 241 human protein-coding homeobox genes, 98 have an antisense locus (41%) while of the 277 orthologous mouse genes, only 62 protein coding gene have an antisense locus (22%), based on publicly available transcriptional evidence. PMID:26412852

  20. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  1. Gene ontology annotation by density and gravitation models.

    PubMed

    Hou, Wen-Juan; Lin, Kevin Hsin-Yih; Chen, Hsin-Hsi

    2006-01-01

    Gene Ontology (GO) is developed to provide standard vocabularies of gene products in different databases. The process of annotating GO terms to genes requires curators to read through lengthy articles. Methods for speeding up or automating the annotation process are thus of great importance. We propose a GO annotation approach using full-text biomedical documents for directing more relevant papers to curators. This system explores word density and gravitation relationships between genes and GO terms. Different density and gravitation models are built and several evaluation criteria are employed to assess the effects of the proposed methods. PMID:17503384

  2. JAFA: a protein function annotation meta-server

    PubMed Central

    Friedberg, Iddo; Harder, Tim; Godzik, Adam

    2006-01-01

    With the high number of sequences and structures streaming in from genomic projects, there is a need for more powerful and sophisticated annotation tools. Most problematic of the annotation efforts is predicting gene and protein function. Over the past few years there has been considerable progress in automated protein function prediction, using a diverse set of methods. Nevertheless, no single method reports all the information possible, and molecular biologists resort to ‘shopping around’ using different methods: a cumbersome and time-consuming practice. Here we present the Joined Assembly of Function Annotations, or JAFA server. JAFA queries several function prediction servers with a protein sequence and assembles the returned predictions in a legible, non-redundant format. In this manner, JAFA combines the predictions of several servers to provide a comprehensive view of what are the predicted functions of the proteins. JAFA also offers its own output, and the individual programs' predictions for further processing. JAFA is available for use from . PMID:16845030

  3. Software Suite for Gene and Protein Annotation Prediction and Similarity Search.

    PubMed

    Chicco, Davide; Masseroli, Marco

    2015-01-01

    In the computational biology community, machine learning algorithms are key instruments for many applications, including the prediction of gene-functions based upon the available biomolecular annotations. Additionally, they may also be employed to compute similarity between genes or proteins. Here, we describe and discuss a software suite we developed to implement and make publicly available some of such prediction methods and a computational technique based upon Latent Semantic Indexing (LSI), which leverages both inferred and available annotations to search for semantically similar genes. The suite consists of three components. BioAnnotationPredictor is a computational software module to predict new gene-functions based upon Singular Value Decomposition of available annotations. SimilBio is a Web module that leverages annotations available or predicted by BioAnnotationPredictor to discover similarities between genes via LSI. The suite includes also SemSim, a new Web service built upon these modules to allow accessing them programmatically. We integrated SemSim in the Bio Search Computing framework (http://www.bioinformatics.deib. polimi.it/bio-seco/seco/), where users can exploit the Search Computing technology to run multi-topic complex queries on multiple integrated Web services. Accordingly, researchers may obtain ranked answers involving the computation of the functional similarity between genes in support of biomedical knowledge discovery. PMID:26357324

  4. Eliciting the Functional Taxonomy from protein annotations and taxa

    PubMed Central

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-01-01

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507

  5. Eliciting the Functional Taxonomy from protein annotations and taxa.

    PubMed

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-01-01

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507

  6. Using the Gene Ontology to Annotate Key Players in Parkinson's Disease.

    PubMed

    Foulger, R E; Denny, P; Hardy, J; Martin, M J; Sawford, T; Lovering, R C

    2016-07-01

    The Gene Ontology (GO) is widely recognised as the gold standard bioinformatics resource for summarizing functional knowledge of gene products in a consistent and computable, information-rich language. GO describes cellular and organismal processes across all species, yet until now there has been a considerable gene annotation deficit within the neurological and immunological domains, both of which are relevant to Parkinson's disease. Here we introduce the Parkinson's disease GO Annotation Project, funded by Parkinson's UK and supported by the GO Consortium, which is addressing this deficit by providing GO annotation to Parkinson's-relevant human gene products, principally through expert literature curation. We discuss the steps taken to prioritise proteins, publications and cellular processes for annotation, examples of how GO annotations capture Parkinson's-relevant information, and the advantages that a topic-focused annotation approach offers to users. Building on the existing GO resource, this project collates a vast amount of Parkinson's-relevant literature into a set of high-quality annotations to be utilized by the research community. PMID:26825309

  7. A robust data-driven approach for gene ontology annotation.

    PubMed

    Li, Yanpeng; Yu, Hong

    2014-01-01

    Gene ontology (GO) and GO annotation are important resources for biological information management and knowledge discovery, but the speed of manual annotation became a major bottleneck of database curation. BioCreative IV GO annotation task aims to evaluate the performance of system that automatically assigns GO terms to genes based on the narrative sentences in biomedical literature. This article presents our work in this task as well as the experimental results after the competition. For the evidence sentence extraction subtask, we built a binary classifier to identify evidence sentences using reference distance estimator (RDE), a recently proposed semi-supervised learning method that learns new features from around 10 million unlabeled sentences, achieving an F1 of 19.3% in exact match and 32.5% in relaxed match. In the post-submission experiment, we obtained 22.1% and 35.7% F1 performance by incorporating bigram features in RDE learning. In both development and test sets, RDE-based method achieved over 20% relative improvement on F1 and AUC performance against classical supervised learning methods, e.g. support vector machine and logistic regression. For the GO term prediction subtask, we developed an information retrieval-based method to retrieve the GO term most relevant to each evidence sentence using a ranking function that combined cosine similarity and the frequency of GO terms in documents, and a filtering method based on high-level GO classes. The best performance of our submitted runs was 7.8% F1 and 22.2% hierarchy F1. We found that the incorporation of frequency information and hierarchy filtering substantially improved the performance. In the post-submission evaluation, we obtained a 10.6% F1 using a simpler setting. Overall, the experimental analysis showed our approaches were robust in both the two tasks. PMID:25425037

  8. Reevaluating Human Gene Annotation: A Second-Generation Analysis of Chromosome 22

    PubMed Central

    Collins, John E.; Goward, Melanie E.; Cole, Charlotte G.; Smink, Luc J.; Huckle, Elizabeth J.; Knowles, Sarah; Bye, Jacqueline M.; Beare, David M.; Dunham, Ian

    2003-01-01

    We report a second-generation gene annotation of human chromosome 22. Using expressed sequence databases, comparative sequence analysis, and experimental verification, we have extended genes, fused previously fragmented structures, and identified new genes. The total length in exons of annotation was increased by 74% over our previously published annotation and includes 546 protein-coding genes and 234 pseudogenes. Thirty-two potential protein-coding annotations are partial copies of other genes, and may represent duplications on an evolutionary path to change or loss of function. We also identified 31 non-protein-coding transcripts, including 16 possible antisense RNAs. By extrapolation, we estimate the human genome contains 29,000–36,000 protein-coding genes, 21,300 pseudogenes, and 1500 antisense RNAs. We suggest that our revised annotation criteria provide a paradigm for future annotation of the human genome. [Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to GenBank under accession nos. , -3, , , -2, , , , , -8, -6, , -81, -81, , , , , -3, -2, -2, , , , , , , -5, , , , , -7, , -8, –. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: J. Seilhamer, L. Stuve, H. Roest-Crollius, A. Levine, G. Slater, and J. Kent.] PMID:12529303

  9. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout.

    PubMed

    Salem, Mohamed; Paneru, Bam; Al-Tobasei, Rafet; Abdouni, Fatima; Thorgaard, Gary H; Rexroad, Caird E; Yao, Jianbo

    2015-01-01

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000-32,000 genes (35-71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome. PMID:25793877

  10. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks

    PubMed Central

    Daraselia, Nikolai; Yuryev, Anton; Egorov, Sergei; Mazo, Ilya; Ispolatov, Iaroslav

    2007-01-01

    Background Uncovering cellular roles of a protein is a task of tremendous importance and complexity that requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein functions, often referred to as its annotations, are believed to manifest themselves through topology of the networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins performing the same function are more likely to interact with each other than with proteins with other functions. However, since functional annotation and protein network topology are often studied separately, the direct relationship between them has not been comprehensively demonstrated. In addition to having the general biological significance, such demonstration would further validate the data extraction and processing methods used to compose protein annotation and protein-protein interactions datasets. Results We developed a method for automatic extraction of protein functional annotation from scientific text based on the Natural Language Processing (NLP) technology. For the protein annotation extracted from the entire PubMed, we evaluated the precision and recall rates, and compared the performance of the automatic extraction technology to that of manual curation used in public Gene Ontology (GO) annotation. In the second part of our presentation, we reported a large-scale investigation into the correspondence between communities in the literature-based protein networks and GO annotation groups of functionally related proteins. We found a comprehensive two-way match: proteins within biological annotation groups form significantly denser linked network clusters than expected by chance and, conversely, densely linked network communities exhibit a pronounced non-random overlap with GO groups. We also expanded the publicly available GO biological process annotation using the relations extracted by our NLP technology. An increase in the number

  11. GLAD: an Online Database of Gene List Annotation for Drosophila.

    PubMed

    Hu, Yanhui; Comjean, Aram; Perkins, Lizabeth A; Perrimon, Norbert; Mohr, Stephanie E

    2015-01-01

    We present a resource of high quality lists of functionally related Drosophila genes, e.g. based on protein domains (kinases, transcription factors, etc.) or cellular function (e.g. autophagy, signal transduction). To establish these lists, we relied on different inputs, including curation from databases or the literature and mapping from other species. Moreover, as an added curation and quality control step, we asked experts in relevant fields to review many of the lists. The resource is available online for scientists to search and view, and is editable based on community input. Annotation of gene groups is an ongoing effort and scientific need will typically drive decisions regarding which gene lists to pursue. We anticipate that the number of lists will increase over time; that the composition of some lists will grow and/or change over time as new information becomes available; and that the lists will benefit the scientific community, e.g. at experimental design and data analysis stages. Based on this, we present an easily updatable online database, available at www.flyrnai.org/glad, at which gene group lists can be viewed, searched and downloaded. PMID:26157507

  12. Dizeez: An Online Game for Human Gene-Disease Annotation

    PubMed Central

    Loguercio, Salvatore; Good, Benjamin M.; Su, Andrew I.

    2013-01-01

    Structured gene annotations are a foundation upon which many bioinformatics and statistical analyses are built. However the structured annotations available in public databases are a sparse representation of biological knowledge as a whole. The rate of biomedical data generation is such that centralized biocuration efforts struggle to keep up. New models for gene annotation need to be explored that expand the pace at which we are able to structure biomedical knowledge. Recently, online games have emerged as an effective way to recruit, engage and organize large numbers of volunteers to help address difficult biological challenges. For example, games have been successfully developed for protein folding (Foldit), multiple sequence alignment (Phylo) and RNA structure design (EteRNA). Here we present Dizeez, a simple online game built with the purpose of structuring knowledge of gene-disease associations. Preliminary results from game play online and at scientific conferences suggest that Dizeez is producing valid gene-disease annotations not yet present in any public database. These early results provide a basic proof of principle that online games can be successfully applied to the challenge of gene annotation. Dizeez is available at http://genegames.org. PMID:23951102

  13. Dizeez: an online game for human gene-disease annotation.

    PubMed

    Loguercio, Salvatore; Good, Benjamin M; Su, Andrew I

    2013-01-01

    Structured gene annotations are a foundation upon which many bioinformatics and statistical analyses are built. However the structured annotations available in public databases are a sparse representation of biological knowledge as a whole. The rate of biomedical data generation is such that centralized biocuration efforts struggle to keep up. New models for gene annotation need to be explored that expand the pace at which we are able to structure biomedical knowledge. Recently, online games have emerged as an effective way to recruit, engage and organize large numbers of volunteers to help address difficult biological challenges. For example, games have been successfully developed for protein folding (Foldit), multiple sequence alignment (Phylo) and RNA structure design (EteRNA). Here we present Dizeez, a simple online game built with the purpose of structuring knowledge of gene-disease associations. Preliminary results from game play online and at scientific conferences suggest that Dizeez is producing valid gene-disease annotations not yet present in any public database. These early results provide a basic proof of principle that online games can be successfully applied to the challenge of gene annotation. Dizeez is available at http://genegames.org. PMID:23951102

  14. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolides Biosynthesis

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Pathak, Sumya; Srivastava, Apeksha; Singh, Surya Pratap; Sangwan, Rajender Singh; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches. PMID:23667511

  15. CATH FunFHMMer web server: protein functional annotations using functional family assignments.

    PubMed

    Das, Sayoni; Sillitoe, Ian; Lee, David; Lees, Jonathan G; Dawson, Natalie L; Ward, John; Orengo, Christine A

    2015-07-01

    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence-structure-function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer. PMID:25964299

  16. CATH FunFHMMer web server: protein functional annotations using functional family assignments

    PubMed Central

    Das, Sayoni; Sillitoe, Ian; Lee, David; Lees, Jonathan G.; Dawson, Natalie L.; Ward, John; Orengo, Christine A.

    2015-01-01

    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence–structure–function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer. PMID:25964299

  17. GOChase-II: correcting semantic inconsistencies from Gene Ontology-based annotations for gene products

    PubMed Central

    2011-01-01

    Background The Gene Ontology (GO) provides a controlled vocabulary for describing genes and gene products. In spite of the undoubted importance of GO, several drawbacks associated with GO and GO-based annotations have been introduced. We identified three types of semantic inconsistencies in GO-based annotations; semantically redundant, biological-domain inconsistent and taxonomy inconsistent annotations. Methods To determine the semantic inconsistencies in GO annotation, we used the hierarchical structure of GO graph and tree structure of NCBI taxonomy. Twenty seven biological databases were collected for finding semantic inconsistent annotation. Results The distributions and possible causes of the semantic inconsistencies were investigated using twenty seven biological databases with GO-based annotations. We found that some evidence codes of annotation were associated with the inconsistencies. The numbers of gene products and species in a database that are related to the complexity of database management are also in correlation with the inconsistencies. Consequently, numerous annotation errors arise and are propagated throughout biological databases and GO-based high-level analyses. GOChase-II is developed to detect and correct both syntactic and semantic errors in GO-based annotations. Conclusions We identified some inconsistencies in GO-based annotation and provided software, GOChase-II, for correcting these semantic inconsistencies in addition to the previous corrections for the syntactic errors by GOChase-I. PMID:21342572

  18. Suppression subtractive hybridization (SSH) combined with bioinformatics method: an integrated functional annotation approach for analysis of differentially expressed immune-genes in insects

    PubMed Central

    Badapanda, Chandan

    2013-01-01

    The suppression subtractive hybridization (SSH) approach, a PCR based approach which amplifies differentially expressed cDNAs (complementary DNAs), while simultaneously suppressing amplification of common cDNAs, was employed to identify immuneinducible genes in insects. This technique has been used as a suitable tool for experimental identification of novel genes in eukaryotes as well as prokaryotes; whose genomes have been sequenced, or the species whose genomes have yet to be sequenced. In this article, I have proposed a method for in silico functional characterization of immune-inducible genes from insects. Apart from immune-inducible genes from insects, this method can be applied for the analysis of genes from other species, starting from bacteria to plants and animals. This article is provided with a background of SSH-based method taking specific examples from innate immune-inducible genes in insects, and subsequently a bioinformatics pipeline is proposed for functional characterization of newly sequenced genes. The proposed workflow presented here, can also be applied for any newly sequenced species generated from Next Generation Sequencing (NGS) platforms. PMID:23519487

  19. Functional annotation of colon cancer risk SNPs

    PubMed Central

    Yao, Lijing; Tak, Yu Gyoung; Berman, Benjamin P.; Farnham, Peggy J.

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for CRC. A molecular understanding of the functional consequences of this genetic variation has been complicated because each GWAS SNP is a surrogate for hundreds of other SNPs, most of which are located in non-coding regions. Here we use genomic and epigenomic information to test the hypothesis that the GWAS SNPs and/or correlated SNPs are in elements that regulate gene expression, and identify 23 promoters and 28 enhancers. Using gene expression data from normal and tumour cells, we identify 66 putative target genes of the risk-associated enhancers (10 of which were also identified by promoter SNPs). Employing CRISPR nucleases, we delete one risk-associated enhancer and identify genes showing altered expression. We suggest that similar studies be performed to characterize all CRC risk-associated enhancers. PMID:25268989

  20. Lynx web services for annotations and systems analysis of multi-gene disorders.

    PubMed

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia

    2014-07-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. PMID:24948611

  1. Lynx web services for annotations and systems analysis of multi-gene disorders

    PubMed Central

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J.; Foster, Ian T.; Gilliam, T. Conrad; Maltsev, Natalia

    2014-01-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. PMID:24948611

  2. Draft Genome Sequence and Gene Annotation of Stemphylium lycopersici Strain CIDEFI-216

    PubMed Central

    Franco, Mario E. E.; López, Silvina; Medina, Rocio; Saparrat, Mario C. N.

    2015-01-01

    Stemphylium lycopersici is a plant-pathogenic fungus that is widely distributed throughout the world. In tomatoes, it is one of the etiological agents of gray leaf spot disease. Here, we report the first draft genome sequence of S. lycopersici, including its gene structure and functional annotation. PMID:26404600

  3. Novel definition files for human GeneChips based on GeneAnnot

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Sirota, Alexandra; Safran, Marilyn; Shmoish, Michael; Ferrari, Sergio; Lancet, Doron; Danieli, Gian Antonio; Bicciato, Silvio

    2007-01-01

    Background Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence. Results We developed a novel set of custom Chip Definition Files (CDF) and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene. Conclusion GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from , along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results). PMID:18005434

  4. Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics

    DOE Data Explorer

    Lopez, David

    The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

  5. Transcriptome Assembly, Gene Annotation and Tissue Gene Expression Atlas of the Rainbow Trout

    PubMed Central

    Salem, Mohamed; Paneru, Bam; Al-Tobasei, Rafet; Abdouni, Fatima; Thorgaard, Gary H.; Rexroad, Caird E.; Yao, Jianbo

    2015-01-01

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome. PMID

  6. Comparative Analysis of Functional Metagenomic Annotation and the Mappability of Short Reads

    PubMed Central

    Carr, Rogan; Borenstein, Elhanan

    2014-01-01

    To assess the functional capacities of microbial communities, including those inhabiting the human body, shotgun metagenomic reads are often aligned to a database of known genes. Such homology-based annotation practices critically rely on the assumption that short reads can map to orthologous genes of similar function. This assumption, however, and the various factors that impact short read annotation, have not been systematically evaluated. To address this challenge, we generated an extremely large database of simulated reads (totaling 15.9 Gb), spanning over 500,000 microbial genes and 170 curated genomes and including, for many genomes, every possible read of a given length. We annotated each read using common metagenomic protocols, fully characterizing the effect of read length, sequencing error, phylogeny, database coverage, and mapping parameters. We additionally rigorously quantified gene-, genome-, and protocol-specific annotation biases. Overall, our findings provide a first comprehensive evaluation of the capabilities and limitations of functional metagenomic annotation, providing crucial goal-specific best-practice guidelines to inform future metagenomic research. PMID:25148512

  7. Proteomic Detection of Non-Annotated Protein-Coding Genes in Pseudomonas fluorescens Pf0-1

    SciTech Connect

    Kim, Wook; Silby, Mark W.; Purvine, Samuel O.; Nicoll, Julie S.; Hixson, Kim K.; Monroe, Matthew E.; Nicora, Carrie D.; Lipton, Mary S.; Levy, Stuart B.

    2009-12-24

    Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of (possible) functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations which predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes which were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologues in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.

  8. Annotation of human chromosome 21 for relevance to Down syndrome: gene structure and expression analysis.

    PubMed

    Gardiner, Katheleen; Slavov, Dobromir; Bechtel, Lawrence; Davisson, Muriel

    2002-06-01

    Down syndrome is caused by an extra copy of human chromosome 21 and the resultant dosage-related overexpression of genes contained within it. To efficiently direct experiments to determine specific gene-phenotype correlations, it is necessary to identify all genes within 21q and assess their functional associations and expression patterns. Analysis of the complete finished sequence of 21q resulted in annotated 225 genes and gene models, most of which were incomplete and/or had little or no experimental verification. Here we correct or complete the genomic structures of 16 genes, 4 of which were not reported in the annotation of the complete sequence. Our data include the identification of six genes encoding short or ambiguous open reading frames; the identification of three cases in which alternative splicing produces two structurally unrelated protein sequences; and the identification of six genes encoding proteins with functional motifs, two genes with unusually low similarity to their orthologous mouse proteins, and four genes with significant conservation in Drosophila melanogaster. We further demonstrate that an additional nine gene models represent bona fide transcripts and develop expression patterns for these genes plus nine additional novel chromosome 21 genes and four paralogous genes mapping elsewhere in the human genome. These data have implications for generating complete transcript maps of chromosome 21 and for the entire human genome, and for defining expression abnormalities in Down syndrome and mouse models. PMID:12036298

  9. COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets

    PubMed Central

    Bose, Tungadri; Haque, Mohammed Monzoorul; Reddy, CVSK; Mande, Sharmila S.

    2015-01-01

    Background Recent advances in sequencing technologies have resulted in an unprecedented increase in the number of metagenomes that are being sequenced world-wide. Given their volume, functional annotation of metagenomic sequence datasets requires specialized computational tools/techniques. In spite of having high accuracy, existing stand-alone functional annotation tools necessitate end-users to perform compute-intensive homology searches of metagenomic datasets against "multiple" databases prior to functional analysis. Although, web-based functional annotation servers address to some extent the problem of availability of compute resources, uploading and analyzing huge volumes of sequence data on a shared public web-service has its own set of limitations. In this study, we present COGNIZER, a comprehensive stand-alone annotation framework which enables end-users to functionally annotate sequences constituting metagenomic datasets. The COGNIZER framework provides multiple workflow options. A subset of these options employs a novel directed-search strategy which helps in reducing the overall compute requirements for end-users. The COGNIZER framework includes a cross-mapping database that enables end-users to simultaneously derive/infer KEGG, Pfam, GO, and SEED subsystem information from the COG annotations. Results Validation experiments performed with real-world metagenomes and metatranscriptomes, generated using diverse sequencing technologies, indicate that the novel directed-search strategy employed in COGNIZER helps in reducing the compute requirements without significant loss in annotation accuracy. A comparison of COGNIZER's results with pre-computed benchmark values indicate the reliability of the cross-mapping database employed in COGNIZER. Conclusion The COGNIZER framework is capable of comprehensively annotating any metagenomic or metatranscriptomic dataset from varied sequencing platforms in functional terms. Multiple search options in COGNIZER provide

  10. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data.

    PubMed

    Lohse, Marc; Nagel, Axel; Herter, Thomas; May, Patrick; Schroda, Michael; Zrenner, Rita; Tohge, Takayuki; Fernie, Alisdair R; Stitt, Mark; Usadel, Björn

    2014-05-01

    Next-generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan 'BIN' ontology, which is tailored for functional annotation of plant 'omics' data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan-to-GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator. PMID:24237261

  11. Formal modeling of Gene Ontology annotation predictions based on factor graphs

    NASA Astrophysics Data System (ADS)

    Spetale, Flavio; Murillo, Javier; Tapia, Elizabeth; Arce, Débora; Ponce, Sergio; Bulacio, Pilar

    2016-04-01

    Gene Ontology (GO) is a hierarchical vocabulary for gene product annotation. Its synergy with machine learning classification methods has been widely used for the prediction of protein functions. Current classification methods rely on heuristic solutions to check the consistency with some aspects of the underlying GO structure. In this work we formalize the GO is-a relationship through predicate logic. Moreover, an ontology model based on Forney Factor Graph (FFG) is shown on a general fragment of Cellular Component GO.

  12. Comparative genomics and functional annotation of bacterial transporters

    NASA Astrophysics Data System (ADS)

    Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2008-03-01

    Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of enzymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which includes substrate specificity and cellular role. We overview the main techniques of analysis of transporters' structure and function. We consider the most popular algorithms to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families, characterization of new families, and prediction of novel transport mechanisms.

  13. Functional Annotation and Comparative Analysis of a Zygopteran Transcriptome.

    PubMed

    Shanku, Alexander G; McPeek, Mark A; Kern, Andrew D

    2013-03-11

    In this paper we present a de novo assembly of the transcriptome of the damselfly, Enallagma hageni, through the use of 454 pyrosequencing. E. hageni is a member of the suborder Zygoptera within the order Odonata, and the Odonata are the basal lineage of the winged insects (Pterygota). To date, sequence data used in phylogenetic analysis of Enallagma species have been derived from either mtDNA or ribosomal nuclear DNA. This transcriptome contained 31,661 contigs that were assembled and translated into 14,813 individual open reading frames. Using these data, we constructed an extensive dataset of 634 orthologous nuclear protein-coding genes across 11 species of Arthropoda, and used Bayesian techniques to elucidate Enallagma's place in the Arthropod phylogenetic tree. Additionally, we demonstrate that the Enallagma transcriptome contains 169 genes that are evolving at rates that differ relative to the rest of the transcriptome (29 accelerated and 140 decreased), and through multiple Gene Ontology searches and clustering methods, we present the first functional-annotation of any palaeopteran's transcriptome in the literature. PMID:23550132

  14. Application of comparative biology in GO functional annotation: the mouse model.

    PubMed

    Drabkin, Harold J; Christie, Karen R; Dolan, Mary E; Hill, David P; Ni, Li; Sitnikov, Dmitry; Blake, Judith A

    2015-10-01

    The Gene Ontology (GO) is an important component of modern biological knowledge representation with great utility for computational analysis of genomic and genetic data. The Gene Ontology Consortium (GOC) consists of a large team of contributors including curation teams from most model organism database groups as well as curation teams focused on representation of data relevant to specific human diseases. Key to the generation of consistent and comprehensive annotations is the development and use of shared standards and measures of curation quality. The GOC engages all contributors to work to a defined standard of curation that is presented here in the context of annotation of genes in the laboratory mouse. Comprehensive understanding of the origin, epistemology, and coverage of GO annotations is essential for most effective use of GO resources. Here the application of comparative approaches to capturing functional data in the mouse system is described. PMID:26141960

  15. Assessing the quality of annotations in asthma gene expression experiments

    PubMed Central

    2010-01-01

    Background The amount of data deposited in the Gene Expression Omnibus (GEO) has expanded significantly. It is important to ensure that these data are properly annotated with clinical data and descriptions of experimental conditions so that they can be useful for future analysis. This study assesses the adequacy of documented asthma markers in GEO. Three objective measures (coverage, consistency and association) were used for evaluation of annotations contained in 17 asthma studies. Results There were 918 asthma samples with 20,640 annotated markers. Of these markers, only 10,419 had documented values (50% coverage). In one study carefully examined for consistency, there were discrepancies in drug name usage, with brand name and generic name used in different sections to refer to the same drug. Annotated markers showed adequate association with other relevant variables (i.e. the use of medication only when its corresponding disease state was present). Conclusions There is inadequate variable coverage within GEO and usage of terms lacks consistency. Association between relevant variables, however, was adequate. PMID:21044366

  16. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    PubMed Central

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  17. OryzaExpress: An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

    PubMed Central

    Hamada, Kazuki; Hongo, Kohei; Suwabe, Keita; Shimizu, Akifumi; Nagayama, Taishi; Abe, Reina; Kikuchi, Shunsuke; Yamamoto, Naoki; Fujii, Takaaki; Yokoyama, Koji; Tsuchida, Hiroko; Sano, Kazumi; Mochizuki, Takako; Oki, Nobuhiko; Horiuchi, Youko; Fujita, Masahiro; Watanabe, Masao; Matsuoka, Makoto; Kurata, Nori; Yano, Kentaro

    2011-01-01

    Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology. PMID:21186175

  18. Biocuration of functional annotation at the European nucleotide archive.

    PubMed

    Gibson, Richard; Alako, Blaise; Amid, Clara; Cerdeño-Tárraga, Ana; Cleland, Iain; Goodgame, Neil; Ten Hoopen, Petra; Jayathilaka, Suran; Kay, Simon; Leinonen, Rasko; Liu, Xin; Pallreddy, Swapna; Pakseresht, Nima; Rajan, Jeena; Rosselló, Marc; Silvester, Nicole; Smirnov, Dmitriy; Toribio, Ana Luisa; Vaughan, Daniel; Zalunin, Vadim; Cochrane, Guy

    2016-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is a repository for the submission, maintenance and presentation of nucleotide sequence data and related sample and experimental information. In this article we report on ENA in 2015 regarding general activity, notable published data sets and major achievements. This is followed by a focus on sustainable biocuration of functional annotation, an area which has particularly felt the pressure of sequencing growth. The importance of functional annotation, how it can be submitted and the shifting role of the biocurator in the context of increasing volumes of data are all discussed. PMID:26615190

  19. Biocuration of functional annotation at the European nucleotide archive

    PubMed Central

    Gibson, Richard; Alako, Blaise; Amid, Clara; Cerdeño-Tárraga, Ana; Cleland, Iain; Goodgame, Neil; ten Hoopen, Petra; Jayathilaka, Suran; Kay, Simon; Leinonen, Rasko; Liu, Xin; Pallreddy, Swapna; Pakseresht, Nima; Rajan, Jeena; Rosselló, Marc; Silvester, Nicole; Smirnov, Dmitriy; Toribio, Ana Luisa; Vaughan, Daniel; Zalunin, Vadim; Cochrane, Guy

    2016-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is a repository for the submission, maintenance and presentation of nucleotide sequence data and related sample and experimental information. In this article we report on ENA in 2015 regarding general activity, notable published data sets and major achievements. This is followed by a focus on sustainable biocuration of functional annotation, an area which has particularly felt the pressure of sequencing growth. The importance of functional annotation, how it can be submitted and the shifting role of the biocurator in the context of increasing volumes of data are all discussed. PMID:26615190

  20. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    SciTech Connect

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  1. Annotator: Post-processing Software for generating function-based signatures from quantitative mass spectrometry

    PubMed Central

    Sylvester, Juliesta E.; Bray, Tyler S.; Kron, Stephen J.

    2012-01-01

    Mass spectrometry is used to investigate global changes in protein abundance in cell lysates. Increasingly powerful methods of data collection have emerged over the past decade, but this has left researchers with the task of sifting through mountains of data for biologically significant results. Often, the end result is a list of proteins with no obvious quantitative relationships to define the larger context of changes in cell behavior. Researchers are often forced to perform a manual analysis from this list or to fall back on a range of disparate tools, which can hinder the communication of results and their reproducibility. To address these methodological problems we developed Annotator, an application that filters validated mass spectrometry data and applies a battery of standardized heuristic and statistical tests to determine significance. To address systems-level interpretations we incorporated UniProt and Gene Ontology keywords as statistical units of analysis, yielding quantitative information about changes in abundance for an entire functional category. This provides a consistent and quantitative method for formulating conclusions about cellular behavior, independent of network models or standard enrichment analyses. Annotator allows for “bottom-up” annotations that are based on experimental data and not inferred by comparison to external or hypothetical models. Annotator was developed as an independent post-processing platform that runs on all common operating systems, thereby providing a useful tool for establishing the inherently dynamic nature of functional annotations, which depend on results from on-going proteomic experiments. Annotator is available for download at http://people.cs.uchicago.edu/~tyler/annotator/annotator_desktop_0.1.tar.gz. PMID:22224429

  2. Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci

    PubMed Central

    Trynka, Gosia; Westra, Harm-Jan; Slowikowski, Kamil; Hu, Xinli; Xu, Han; Stranger, Barbara E.; Klein, Robert J.; Han, Buhm; Raychaudhuri, Soumya

    2015-01-01

    Identifying genomic annotations that differentiate causal from trait-associated variants is essential to fine mapping disease loci. Although many studies have identified non-coding functional annotations that overlap disease-associated variants, these annotations often colocalize, complicating the ability to use these annotations for fine mapping causal variation. We developed a statistical approach (Genomic Annotation Shifter [GoShifter]) to assess whether enriched annotations are able to prioritize causal variation. GoShifter defines the null distribution of an annotation overlapping an allele by locally shifting annotations; this approach is less sensitive to biases arising from local genomic structure than commonly used enrichment methods that depend on SNP matching. Local shifting also allows GoShifter to identify independent causal effects from colocalizing annotations. Using GoShifter, we confirmed that variants in expression quantitative trail loci drive gene-expression changes though DNase-I hypersensitive sites (DHSs) near transcription start sites and independently through 3′ UTR regulation. We also showed that (1) 15%–36% of trait-associated loci map to DHSs independently of other annotations; (2) loci associated with breast cancer and rheumatoid arthritis harbor potentially causal variants near the summits of histone marks rather than full peak bodies; (3) variants associated with height are highly enriched in embryonic stem cell DHSs; and (4) we can effectively prioritize causal variation at specific loci. PMID:26140449

  3. PROSITE, a protein domain database for functional characterization and annotation.

    PubMed

    Sigrist, Christian J A; Cerutti, Lorenzo; de Castro, Edouard; Langendijk-Genevaux, Petra S; Bulliard, Virginie; Bairoch, Amos; Hulo, Nicolas

    2010-01-01

    PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of these profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. PROSITE is largely used for the annotation of domain features of UniProtKB/Swiss-Prot entries. Among the 983 (DNA-binding) domains, repeats and zinc fingers present in Swiss-Prot (release 57.8 of 22 September 2009), 696 ( approximately 70%) are annotated with PROSITE descriptors using information from ProRule. In order to allow better functional characterization of domains, PROSITE developments focus on subfamily specific profiles and a new profile building method giving more weight to functionally important residues. Here, we describe AMSA, an annotated multiple sequence alignment format used to build a new generation of generalized profiles, the migration of ScanProsite to Vital-IT, a cluster of 633 CPUs, and the adoption of the Distributed Annotation System (DAS) to facilitate PROSITE data integration and interchange with other sources. The latest version of PROSITE (release 20.54, of 22 September 2009) contains 1308 patterns, 863 profiles and 869 ProRules. PROSITE is accessible at: http://www.expasy.org/prosite/. PMID:19858104

  4. PROSITE, a protein domain database for functional characterization and annotation

    PubMed Central

    Sigrist, Christian J. A.; Cerutti, Lorenzo; de Castro, Edouard; Langendijk-Genevaux, Petra S.; Bulliard, Virginie; Bairoch, Amos; Hulo, Nicolas

    2010-01-01

    PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of these profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. PROSITE is largely used for the annotation of domain features of UniProtKB/Swiss-Prot entries. Among the 983 (DNA-binding) domains, repeats and zinc fingers present in Swiss-Prot (release 57.8 of 22 September 2009), 696 (∼70%) are annotated with PROSITE descriptors using information from ProRule. In order to allow better functional characterization of domains, PROSITE developments focus on subfamily specific profiles and a new profile building method giving more weight to functionally important residues. Here, we describe AMSA, an annotated multiple sequence alignment format used to build a new generation of generalized profiles, the migration of ScanProsite to Vital-IT, a cluster of 633 CPUs, and the adoption of the Distributed Annotation System (DAS) to facilitate PROSITE data integration and interchange with other sources. The latest version of PROSITE (release 20.54, of 22 September 2009) contains 1308 patterns, 863 profiles and 869 ProRules. PROSITE is accessible at: http://www.expasy.org/prosite/. PMID:19858104

  5. CARMO: a comprehensive annotation platform for functional exploration of rice multi-omics data.

    PubMed

    Wang, Jiawei; Qi, Meifang; Liu, Jian; Zhang, Yijing

    2015-07-01

    High-throughput technology is gradually becoming a powerful tool for routine research in rice. Interpretation of biological significance from the huge amount of data is a critical but non-trivial task, especially for rice, for which gene annotations rely heavily on sequence similarity rather than direct experimental evidence. Here we describe the annotation platform for comprehensive annotation of rice multi-omics data (CARMO), which provides multiple web-based analysis tools for in-depth data mining and visualization. The central idea involves systematic integration of 1819 samples from omics studies and diverse sources of functional evidence (15 401 terms), which are further organized into gene sets and higher-level gene modules. In this way, the high-throughput data may easily be compared across studies and platforms, and integration of multiple types of evidence allows biological interpretation from the level of gene functional modules with high confidence. In addition, the functions and pathways for thousands of genes lacking description or validation may be deduced based on concerted expression of genes within the constructed co-expression networks or gene modules. Overall, CARMO provides comprehensive annotations for transcriptomic datasets, epi-genomic modification sites, single nucleotide polymorphisms identified from genome re-sequencing, and the large gene lists derived from these omics studies. Well-organized results, as well as multiple tools for interactive visualization, are available through a user-friendly web interface. Finally, we illustrate how CARMO enables biological insights using four examples, demonstrating that CARMO is a highly useful resource for intensive data mining and hypothesis generation based on rice multi-omics data. CARMO is freely available online (http://bioinfo.sibs.ac.cn/carmo). PMID:26040787

  6. Genome-Wide Functional Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning.

    PubMed

    Panwar, Bharat; Menon, Rajasree; Eksi, Ridvan; Li, Hong-Dong; Omenn, Gilbert S; Guan, Yuanfang

    2016-06-01

    The vast majority of human multiexon genes undergo alternative splicing and produce a variety of splice variant transcripts and proteins, which can perform different functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity of proteins. Most functional annotation algorithms have been developed at the gene level; the lack of isoform-level gold standards is an important intellectual limitation for currently available machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public domain greatly increases our ability to examine the functional annotation of genes at isoform level. In the present study, we used a multiple instance learning (MIL)-based approach for predicting the function of PCSVs. We used transcript-level expression values and gene-level functional associations from the Gene Ontology database. A support vector machine (SVM)-based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs performed better than single PCSV genes, and performance also improved when more examples were available to train the models. We demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web resource called "IsoFunc", which is freely available for the global scientific community through http://guanlab.ccmb.med.umich.edu/isofunc . PMID:27142340

  7. Is protein classification necessary? Towards alternative approaches to function annotation

    PubMed Central

    Petrey, Donald; Honig, Barry

    2009-01-01

    The current non-redundant protein sequence database contains over seven million entries and the number of individual functional domains is significantly larger than this value. The vast quantity of data associated with these proteins poses enormous challenges to any attempt at function annotation. Classification of proteins into sequence and structural groups has been widely used as an approach to simplifying the problem. In this article we question such strategies. We describe how the multi-functionality and structural diversity of even closely related proteins confounds efforts to assign function based on overall sequence or structural similarity. Rather, we suggest that strategies that avoid classification may offer a more robust approach to protein function annotation. PMID:19269161

  8. Data for constructing insect genome content matrices for phylogenetic analysis and functional annotation.

    PubMed

    Rosenfeld, Jeffrey; Foox, Jonathan; DeSalle, Rob

    2016-03-01

    Twenty one fully sequenced and well annotated insect genomes were used to construct genome content matrices for phylogenetic analysis and functional annotation of insect genomes. To examine the role of e-value cutoff in ortholog determination we used scaled e-value cutoffs and a single linkage clustering approach.. The present communication includes (1) a list of the genomes used to construct the genome content phylogenetic matrices, (2) a nexus file with the data matrices used in phylogenetic analysis, (3) a nexus file with the Newick trees generated by phylogenetic analysis, (4) an excel file listing the Core (CORE) genes and Unique (UNI) genes found in five insect groups, and (5) a figure showing a plot of consistency index (CI) versus percent of unannotated genes that are apomorphies in the data set for gene losses and gains and bar plots of gains and losses for four consistency index (CI) cutoffs. PMID:26862572

  9. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  10. Use of Gene Ontology Annotation to understand the peroxisome proteome in humans

    PubMed Central

    Mutowo-Meullenet, Prudence; Huntley, Rachael P.; Dimmer, Emily C.; Alam-Faruque, Yasmin; Sawford, Tony; Jesus Martin, Maria; O’Donovan, Claire; Apweiler, Rolf

    2013-01-01

    The Gene Ontology (GO) is the de facto standard for the functional description of gene products, providing a consistent, information-rich terminology applicable across species and information repositories. The UniProt Consortium uses both manual and automatic GO annotation approaches to curate UniProt Knowledgebase (UniProtKB) entries. The selection of a protein set prioritized for manual annotation has implications for the characteristics of the information provided to users working in a specific field or interested in particular pathways or processes. In this article, we describe an organelle-focused, manual curation initiative targeting proteins from the human peroxisome. We discuss the steps taken to define the peroxisome proteome and the challenges encountered in defining the boundaries of this protein set. We illustrate with the use of examples how GO annotations now capture cell and tissue type information and the advantages that such an annotation approach provides to users. Database URL: http://www.ebi.ac.uk/GOA/ and http://www.uniprot.org PMID:23327938

  11. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

    PubMed

    Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S

    2014-07-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599

  12. The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts.

    PubMed

    Yamasaki, Chisato; Murakami, Katsuhiko; Fujii, Yasuyuki; Sato, Yoshiharu; Harada, Erimi; Takeda, Jun-ichi; Taniya, Takayuki; Sakate, Ryuichi; Kikugawa, Shingo; Shimada, Makoto; Tanino, Motohiko; Koyanagi, Kanako O; Barrero, Roberto A; Gough, Craig; Chun, Hong-Woo; Habara, Takuya; Hanaoka, Hideki; Hayakawa, Yosuke; Hilton, Phillip B; Kaneko, Yayoi; Kanno, Masako; Kawahara, Yoshihiro; Kawamura, Toshiyuki; Matsuya, Akihiro; Nagata, Naoki; Nishikata, Kensaku; Noda, Akiko Ogura; Nurimoto, Shin; Saichi, Naomi; Sakai, Hiroaki; Sanbonmatsu, Ryoko; Shiba, Rie; Suzuki, Mami; Takabayashi, Kazuhiko; Takahashi, Aiko; Tamura, Takuro; Tanaka, Masayuki; Tanaka, Susumu; Todokoro, Fusano; Yamaguchi, Kaori; Yamamoto, Naoyuki; Okido, Toshihisa; Mashima, Jun; Hashizume, Aki; Jin, Lihua; Lee, Kyung-Bum; Lin, Yi-Chueh; Nozaki, Asami; Sakai, Katsunaga; Tada, Masahito; Miyazaki, Satoru; Makino, Takashi; Ohyanagi, Hajime; Osato, Naoki; Tanaka, Nobuhiko; Suzuki, Yoshiyuki; Ikeo, Kazuho; Saitou, Naruya; Sugawara, Hideaki; O'Donovan, Claire; Kulikova, Tamara; Whitfield, Eleanor; Halligan, Brian; Shimoyama, Mary; Twigger, Simon; Yura, Kei; Kimura, Kouichi; Yasuda, Tomohiro; Nishikawa, Tetsuo; Akiyama, Yutaka; Motono, Chie; Mukai, Yuri; Nagasaki, Hideki; Suwa, Makiko; Horton, Paul; Kikuno, Reiko; Ohara, Osamu; Lancet, Doron; Eveno, Eric; Graudens, Esther; Imbeaud, Sandrine; Debily, Marie Anne; Hayashizaki, Yoshihide; Amid, Clara; Han, Michael; Osanger, Andreas; Endo, Toshinori; Thomas, Michael A; Hirakawa, Mika; Makalowski, Wojciech; Nakao, Mitsuteru; Kim, Nam-Soon; Yoo, Hyang-Sook; De Souza, Sandro J; Bonaldo, Maria de Fatima; Niimura, Yoshihito; Kuryshev, Vladimir; Schupp, Ingo; Wiemann, Stefan; Bellgard, Matthew; Shionyu, Masafumi; Jia, Libin; Thierry-Mieg, Danielle; Thierry-Mieg, Jean; Wagner, Lukas; Zhang, Qinghua; Go, Mitiko; Minoshima, Shinsei; Ohtsubo, Masafumi; Hanada, Kousuke; Tonellato, Peter; Isogai, Takao; Zhang, Ji; Lenhard, Boris; Kim, Sangsoo; Chen, Zhu; Hinz, Ursula; Estreicher, Anne; Nakai, Kenta; Makalowska, Izabela; Hide, Winston; Tiffin, Nicola; Wilming, Laurens; Chakraborty, Ranajit; Soares, Marcelo Bento; Chiusano, Maria Luisa; Suzuki, Yutaka; Auffray, Charles; Yamaguchi-Kabata, Yumi; Itoh, Takeshi; Hishiki, Teruyoshi; Fukuchi, Satoshi; Nishikawa, Ken; Sugano, Sumio; Nomura, Nobuo; Tateno, Yoshio; Imanishi, Tadashi; Gojobori, Takashi

    2008-01-01

    Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of full-length cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB_4.6. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 (98.1%) protein-coding and 642 (1.9%) non-protein-coding loci; 858 (2.5%) transcribed loci overlapped with predicted pseudogenes. For all these transcripts and genes, we provide comprehensive annotation including gene structures, gene functions, alternative splicing variants, functional non-protein-coding RNAs, functional domains, predicted sub cellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs, co-localization with orphan diseases, gene expression profiles, orthologous genes, protein-protein interactions (PPI) and annotation for gene families. The current H-InvDB annotation resources consist of two main views: Transcript view and Locus view and eight sub-databases: the DiseaseInfo Viewer, H-ANGEL, the Clustering Viewer, G-integra, the TOPO Viewer, Evola, the PPI view and the Gene family/group. PMID:18089548

  13. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296

  14. miRDB: an online resource for microRNA target prediction and functional annotations.

    PubMed

    Wong, Nathan; Wang, Xiaowei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB. PMID:25378301

  15. Functional annotation of non-coding sequence variants

    PubMed Central

    Ritchie, Graham R. S.; Dunham, Ian; Zeggini, Eleftheria; Flicek, Paul

    2016-01-01

    Identifying functionally relevant variants against the background of ubiquitous genetic variation is a major challenge in human genetics. For variants that fall in protein-coding regions our understanding of the genetic code and splicing allow us to identify likely candidates, but interpreting variants that fall outside of genic regions is more difficult. Here we present a new tool, GWAVA, which supports prioritisation of non-coding variants by integrating a range of annotations. PMID:24487584

  16. Drosophila Gene Expression Pattern Annotation Using Sparse Features and Term-Term Interactions

    PubMed Central

    Ji, Shuiwang; Yuan, Lei; Li, Ying-Xin; Zhou, Zhi-Hua; Kumar, Sudhir; Ye, Jieping

    2010-01-01

    The Drosophila gene expression pattern images document the spatial and temporal dynamics of gene expression and they are valuable tools for explicating the gene functions, interaction, and networks during Drosophila embryogenesis. To provide text-based pattern searching, the images in the Berkeley Drosophila Genome Project (BDGP) study are annotated with ontology terms manually by human curators. We present a systematic approach for automating this task, because the number of images needing text descriptions is now rapidly increasing. We consider both improved feature representation and novel learning formulation to boost the annotation performance. For feature representation, we adapt the bag-of-words scheme commonly used in visual recognition problems so that the image group information in the BDGP study is retained. Moreover, images from multiple views can be integrated naturally in this representation. To reduce the quantization error caused by the bag-of-words representation, we propose an improved feature representation scheme based on the sparse learning technique. In the design of learning formulation, we propose a local regularization framework that can incorporate the correlations among terms explicitly. We further show that the resulting optimization problem admits an analytical solution. Experimental results show that the representation based on sparse learning outperforms the bag-of-words representation significantly. Results also show that incorporation of the term-term correlations improves the annotation performance consistently. PMID:21614142

  17. ParsEval: parallel comparison and analysis of gene structure annotations

    PubMed Central

    2012-01-01

    Background Accurate gene structure annotation is a fundamental but somewhat elusive goal of genome projects, as witnessed by the fact that (model) genomes typically undergo several cycles of re-annotation. In many cases, it is not only different versions of annotations that need to be compared but also different sources of annotation of the same genome, derived from distinct gene prediction workflows. Such comparisons are of interest to annotation providers, prediction software developers, and end-users, who all need to assess what is common and what is different among distinct annotation sources. We developed ParsEval, a software application for pairwise comparison of sets of gene structure annotations. ParsEval calculates several statistics that highlight the similarities and differences between the two sets of annotations provided. These statistics are presented in an aggregate summary report, with additional details provided as individual reports specific to non-overlapping, gene-model-centric genomic loci. Genome browser styled graphics embedded in these reports help visualize the genomic context of the annotations. Output from ParsEval is both easily read and parsed, enabling systematic identification of problematic gene models for subsequent focused analysis. Results ParsEval is capable of analyzing annotations for large eukaryotic genomes on typical desktop or laptop hardware. In comparison to existing methods, ParsEval exhibits a considerable performance improvement, both in terms of runtime and memory consumption. Reports from ParsEval can provide relevant biological insights into the gene structure annotations being compared. Conclusions Implemented in C, ParsEval provides the quickest and most feature-rich solution for genome annotation comparison to date. The source code is freely available (under an ISC license) at http://parseval.sourceforge.net/. PMID:22852583

  18. An Approach to Function Annotation for Proteins of Unknown Function (PUFs) in the Transcriptome of Indian Mulberry

    PubMed Central

    Dhanyalakshmi, K. H.; Naika, Mahantesha B. N.; Sajeevan, R. S.; Mathew, Oommen K.; Shafi, K. Mohamed; Sowdhamini, Ramanathan; N. Nataraja, Karaba

    2016-01-01

    The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas. PMID:26982336

  19. Association Between a Prognostic Gene Signature and Functional Gene Sets

    PubMed Central

    Hummel, Manuela; Metzeler, Klaus H.; Buske, Christian; Bohlander, Stefan K.; Mansmann, Ulrich

    2008-01-01

    Background The development of expression-based gene signatures for predicting prognosis or class membership is a popular and challenging task. Besides their stringent validation, signatures need a functional interpretation and must be placed in a biological context. Popular tools such as Gene Set Enrichment have drawbacks because they are restricted to annotated genes and are unable to capture the information hidden in the signature’s non-annotated genes. Methodology We propose concepts to relate a signature with functional gene sets like pathways or Gene Ontology categories. The connection between single signature genes and a specific pathway is explored by hierarchical variable selection and gene association networks. The risk score derived from an individual patient’s signature is related to expression patterns of pathways and Gene Ontology categories. Global tests are useful for these tasks, and they adjust for other factors. GlobalAncova is used to explore the effect on gene expression in specific functional groups from the interaction of the score and selected mutations in the patient’s genome. Results We apply the proposed methods to an expression data set and a corresponding gene signature for predicting survival in Acute Myeloid Leukemia (AML). The example demonstrates strong relations between the signature and cancer-related pathways. The signature-based risk score was found to be associated with development-related biological processes. Conclusions Many authors interpret the functional aspects of a gene signature by linking signature genes to pathways or relevant functional gene groups. The method of gene set enrichment is preferred to annotating signature genes to specific Gene Ontology categories. The strategies proposed in this paper go beyond the restriction of annotation and deepen the insights into the biological mechanisms reflected in the information given by a signature. PMID:19812786

  20. Annotation of proteins of unknown function: initial enzyme results.

    PubMed

    McKay, Talia; Hart, Kaitlin; Horn, Alison; Kessler, Haeja; Dodge, Greg; Bardhi, Keti; Bardhi, Kostandina; Mills, Jeffrey L; Bernstein, Herbert J; Craig, Paul A

    2015-03-01

    Working with a combination of ProMOL (a plugin for PyMOL that searches a library of enzymatic motifs for local structural homologs), BLAST and Pfam (servers that identify global sequence homologs), and Dali (a server that identifies global structural homologs), we have begun the process of assigning functional annotations to the approximately 3,500 structures in the Protein Data Bank that are currently classified as having "unknown function". Using a limited template library of 388 motifs, over 500 promising in silico matches have been identified by ProMOL, among which 65 exceptionally good matches have been identified. The characteristics of the exceptionally good matches are discussed. PMID:25630330

  1. Transcriptomal changes and functional annotation of the developing non-human primate choroid plexus

    PubMed Central

    Ek, C. Joakim; Nathanielsz, Peter; Li, Cun; Mallard, Carina

    2015-01-01

    The choroid plexuses are small organs that protrude into each brain ventricle producing cerebrospinal fluid that constantly bathes the brain. These organs differentiate early in development just after neural closure at a stage when the brain is little vascularized. In recent years the plexus has been shown to have a much more active role in brain development than previously appreciated thereby it can influence both neurogenesis and neural migration by secreting factors into the CSF. However, much of choroid plexus developmental function is still unclear. Most previous studies on this organ have been undertaken in rodents but translation into humans is not straightforward since they have a different timing of brain maturation processes. We have collected choroid plexus from three fetal gestational ages of a non-human primate, the baboon, which has much closer brain development to humans. The transcriptome of the plexuses was determined by next generation sequencing and Ingenuity Pathway Analysis software was used to annotate functions and enrichment of pathways of changes in the transcriptome. The number of unique transcripts decreased with development and the majority of differentially expressed transcripts were down-regulated through development suggesting a more complex and active plexus earlier in fetal development. The functional annotation indicated changes across widespread biological functions in plexus development. In particular we find age-dependent regulation of genes associated with annotation categories: Gene Expression, Development of Cardiovascular System, Nervous System Development and Molecular Transport. Our observations support the idea that the choroid plexus has roles in shaping brain development. PMID:25814924

  2. Transcriptomal changes and functional annotation of the developing non-human primate choroid plexus.

    PubMed

    Ek, C Joakim; Nathanielsz, Peter; Li, Cun; Mallard, Carina

    2015-01-01

    The choroid plexuses are small organs that protrude into each brain ventricle producing cerebrospinal fluid that constantly bathes the brain. These organs differentiate early in development just after neural closure at a stage when the brain is little vascularized. In recent years the plexus has been shown to have a much more active role in brain development than previously appreciated thereby it can influence both neurogenesis and neural migration by secreting factors into the CSF. However, much of choroid plexus developmental function is still unclear. Most previous studies on this organ have been undertaken in rodents but translation into humans is not straightforward since they have a different timing of brain maturation processes. We have collected choroid plexus from three fetal gestational ages of a non-human primate, the baboon, which has much closer brain development to humans. The transcriptome of the plexuses was determined by next generation sequencing and Ingenuity Pathway Analysis software was used to annotate functions and enrichment of pathways of changes in the transcriptome. The number of unique transcripts decreased with development and the majority of differentially expressed transcripts were down-regulated through development suggesting a more complex and active plexus earlier in fetal development. The functional annotation indicated changes across widespread biological functions in plexus development. In particular we find age-dependent regulation of genes associated with annotation categories: Gene Expression, Development of Cardiovascular System, Nervous System Development and Molecular Transport. Our observations support the idea that the choroid plexus has roles in shaping brain development. PMID:25814924

  3. The Effect of Human Genome Annotation Complexity on RNA-Seq Gene Expression Quantification

    PubMed Central

    Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    Next-generation sequencing (NGS) has brought human genomic research to an unprecedented era. RNA-Seq is a branch of NGS that can be used to quantify gene expression and depends on accurate annotation of the human genome (i.e., the definition of genes and all of their variants or isoforms). Multiple annotations of the human genome exist with varying complexity. However, it is not clear how the choice of genome annotation influences RNA-Seq gene expression quantification. We assess the effect of different genome annotations in terms of (1) mapping quality, (2) quantification variation, (3) quantification accuracy (i.e., by comparing to qRT-PCR data), and (4) the concordance of detecting differentially expressed genes. External validation with qRT-PCR suggests that more complex genome annotations result in higher quantification variation.

  4. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    SciTech Connect

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk; Hyatt, Doug; Pan, Chongle

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accurate comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.

  5. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    DOE PAGESBeta

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk; Hyatt, Doug; Pan, Chongle

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less

  6. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  7. Protein Function Annotation By Local Binding Site Surface Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Varela, Rocco; Jain, Ajay N.

    2013-01-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against approximately 60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that pre-dated query protein biochemical annotation for five out of the eight query proteins. A panel of twelve currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins. PMID:24166661

  8. Improving GENCODE reference gene annotation using a high-stringency proteogenomics workflow.

    PubMed

    Wright, James C; Mudge, Jonathan; Weisser, Hendrik; Barzine, Mitra P; Gonzalez, Jose M; Brazma, Alvis; Choudhary, Jyoti S; Harrow, Jennifer

    2016-01-01

    Complete annotation of the human genome is indispensable for medical research. The GENCODE consortium strives to provide this, augmenting computational and experimental evidence with manual annotation. The rapidly developing field of proteogenomics provides evidence for the translation of genes into proteins and can be used to discover and refine gene models. However, for both the proteomics and annotation groups, there is a lack of guidelines for integrating this data. Here we report a stringent workflow for the interpretation of proteogenomic data that could be used by the annotation community to interpret novel proteogenomic evidence. Based on reprocessing of three large-scale publicly available human data sets, we show that a conservative approach, using stringent filtering is required to generate valid identifications. Evidence has been found supporting 16 novel protein-coding genes being added to GENCODE. Despite this many peptide identifications in pseudogenes cannot be annotated due to the absence of orthogonal supporting evidence. PMID:27250503

  9. Improving GENCODE reference gene annotation using a high-stringency proteogenomics workflow

    PubMed Central

    Wright, James C.; Mudge, Jonathan; Weisser, Hendrik; Barzine, Mitra P.; Gonzalez, Jose M.; Brazma, Alvis; Choudhary, Jyoti S.; Harrow, Jennifer

    2016-01-01

    Complete annotation of the human genome is indispensable for medical research. The GENCODE consortium strives to provide this, augmenting computational and experimental evidence with manual annotation. The rapidly developing field of proteogenomics provides evidence for the translation of genes into proteins and can be used to discover and refine gene models. However, for both the proteomics and annotation groups, there is a lack of guidelines for integrating this data. Here we report a stringent workflow for the interpretation of proteogenomic data that could be used by the annotation community to interpret novel proteogenomic evidence. Based on reprocessing of three large-scale publicly available human data sets, we show that a conservative approach, using stringent filtering is required to generate valid identifications. Evidence has been found supporting 16 novel protein-coding genes being added to GENCODE. Despite this many peptide identifications in pseudogenes cannot be annotated due to the absence of orthogonal supporting evidence. PMID:27250503

  10. CoMAGC: a corpus with multi-faceted annotations of gene-cancer relations

    PubMed Central

    2013-01-01

    Background In order to access the large amount of information in biomedical literature about genes implicated in various cancers both efficiently and accurately, the aid of text mining (TM) systems is invaluable. Current TM systems do target either gene-cancer relations or biological processes involving genes and cancers, but the former type produces information not comprehensive enough to explain how a gene affects a cancer, and the latter does not provide a concise summary of gene-cancer relations. Results In this paper, we present a corpus for the development of TM systems that are specifically targeting gene-cancer relations but are still able to capture complex information in biomedical sentences. We describe CoMAGC, a corpus with multi-faceted annotations of gene-cancer relations. In CoMAGC, a piece of annotation is composed of four semantically orthogonal concepts that together express 1) how a gene changes, 2) how a cancer changes and 3) the causality between the gene and the cancer. The multi-faceted annotations are shown to have high inter-annotator agreement. In addition, we show that the annotations in CoMAGC allow us to infer the prospective roles of genes in cancers and to classify the genes into three classes according to the inferred roles. We encode the mapping between multi-faceted annotations and gene classes into 10 inference rules. The inference rules produce results with high accuracy as measured against human annotations. CoMAGC consists of 821 sentences on prostate, breast and ovarian cancers. Currently, we deal with changes in gene expression levels among other types of gene changes. The corpus is available at http://biopathway.org/CoMAGCunder the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0). Conclusions The corpus will be an important resource for the development of advanced TM systems on gene-cancer relations. PMID:24225062

  11. Augmented Annotation of the Schizosaccharomyces pombe Genome Reveals Additional Genes Required for Growth and Viability

    PubMed Central

    Bitton, Danny A.; Wood, Valerie; Scutt, Paul J.; Grallert, Agnes; Yates, Tim; Smith, Duncan L.; Hagan, Iain M.; Miller, Crispin J.

    2011-01-01

    Genome annotation is a synthesis of computational prediction and experimental evidence. Small genes are notoriously difficult to detect because the patterns used to identify them are often indistinguishable from chance occurrences, leading to an arbitrary cutoff threshold for the length of a protein-coding gene identified solely by in silico analysis. We report a systematic reappraisal of the Schizosaccharomyces pombe genome that ignores thresholds. A complete six-frame translation was compared to a proteome data set, the Pfam domain database, and the genomes of six other fungi. Thirty-nine novel loci were identified. RT-PCR and RNA-Seq confirmed transcription at 38 loci; 33 novel gene structures were delineated by 5′ and 3′ RACE. Expression levels of 14 transcripts fluctuated during meiosis. Translational evidence for 10 genes, evolutionary conservation data supporting 35 predictions, and distinct phenotypes upon ORF deletion (one essential, four slow-growth, two delayed-division phenotypes) suggest that all 39 predictions encode functional proteins. The popularity of S. pombe as a model organism suggests that this augmented annotation will be of interest in diverse areas of molecular and cellular biology, while the generality of the approach suggests widespread applicability to other genomes. PMID:21270388

  12. Toward a Functional Annotation of the Human Genome Using Artificial Transcription Factors

    PubMed Central

    Lee, Dong-ki; Park, Jin Woo; Kim, Youn-Jae; Kim, Jiwon; Lee, Yangsoon; Kim, Jeonglim; Kim, Jin-Soo

    2003-01-01

    We have developed a novel, high-throughput approach to collecting randomly perturbed gene-expression profiles from the human genome.A human 293 cell library that stably expresses randomly chosen zinc-finger transcription factors was constructed, and the expression profile of each cell line was obtained using cDNA microarray technology.Gene expression profiles from a total of 132 cell lines were collected and analyzed by (1) a simple clustering method based on expression-profile similarity, and (2) the shortest-path analysis method.These analyses identified a number of gene groups, and further investigation revealed that the genes that were grouped together had close biological relationships.The artificial transcription factor-based random genome perturbation method thus provides a novel functional genomic tool for annotation and classification of genes in the human genome and those of many other organisms. PMID:14656973

  13. Functional Annotation of Putative Regulatory Elements at Cancer Susceptibility Loci

    PubMed Central

    Rosse, Stephanie A; Auer, Paul L; Carlson, Christopher S

    2014-01-01

    Most cancer-associated genetic variants identified from genome-wide association studies (GWAS) do not obviously change protein structure, leading to the hypothesis that the associations are attributable to regulatory polymorphisms. Translating genetic associations into mechanistic insights can be facilitated by knowledge of the causal regulatory variant (or variants) responsible for the statistical signal. Experimental validation of candidate functional variants is onerous, making bioinformatic approaches necessary to prioritize candidates for laboratory analysis. Thus, a systematic approach for recognizing functional (and, therefore, likely causal) variants in noncoding regions is an important step toward interpreting cancer risk loci. This review provides a detailed introduction to current regulatory variant annotations, followed by an overview of how to leverage these resources to prioritize candidate functional polymorphisms in regulatory regions. PMID:25288875

  14. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.

    PubMed

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-06-20

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  15. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation

    PubMed Central

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-01-01

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  16. Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

    PubMed Central

    2011-01-01

    Background Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale. Results We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST. In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate. Conclusions We functionally annotated approximately 1

  17. RefSeq curation and annotation of antizyme and antizyme inhibitor genes in vertebrates.

    PubMed

    Rajput, Bhanu; Murphy, Terence D; Pruitt, Kim D

    2015-09-01

    Polyamines are ubiquitous cations that are involved in regulating fundamental cellular processes such as cell growth and proliferation; hence, their intracellular concentration is tightly regulated. Antizyme and antizyme inhibitor have a central role in maintaining cellular polyamine levels. Antizyme is unique in that it is expressed via a novel programmed ribosomal frameshifting mechanism. Conventional computational tools are unable to predict a programmed frameshift, resulting in misannotation of antizyme transcripts and proteins on transcript and genomic sequences. Correct annotation of a programmed frameshifting event requires manual evaluation. Our goal was to provide an accurately curated and annotated Reference Sequence (RefSeq) data set of antizyme transcript and protein records across a broad taxonomic scope that would serve as standards for accurate representation of these gene products. As antizyme and antizyme inhibitor proteins are functionally connected, we also curated antizyme inhibitor genes to more fully represent the elegant biology of polyamine regulation. Manual review of genes for three members of the antizyme family and two members of the antizyme inhibitor family in 91 vertebrate organisms resulted in a total of 461 curated RefSeq records. PMID:26170238

  18. RefSeq curation and annotation of antizyme and antizyme inhibitor genes in vertebrates

    PubMed Central

    Rajput, Bhanu; Murphy, Terence D.; Pruitt, Kim D.

    2015-01-01

    Polyamines are ubiquitous cations that are involved in regulating fundamental cellular processes such as cell growth and proliferation; hence, their intracellular concentration is tightly regulated. Antizyme and antizyme inhibitor have a central role in maintaining cellular polyamine levels. Antizyme is unique in that it is expressed via a novel programmed ribosomal frameshifting mechanism. Conventional computational tools are unable to predict a programmed frameshift, resulting in misannotation of antizyme transcripts and proteins on transcript and genomic sequences. Correct annotation of a programmed frameshifting event requires manual evaluation. Our goal was to provide an accurately curated and annotated Reference Sequence (RefSeq) data set of antizyme transcript and protein records across a broad taxonomic scope that would serve as standards for accurate representation of these gene products. As antizyme and antizyme inhibitor proteins are functionally connected, we also curated antizyme inhibitor genes to more fully represent the elegant biology of polyamine regulation. Manual review of genes for three members of the antizyme family and two members of the antizyme inhibitor family in 91 vertebrate organisms resulted in a total of 461 curated RefSeq records. PMID:26170238

  19. Using genomic annotations increases statistical power to detect eGenes

    PubMed Central

    Duong, Dat; Zou, Jennifer; Hormozdiari, Farhad; Sul, Jae Hoon; Ernst, Jason; Han, Buhm; Eskin, Eleazar

    2016-01-01

    Motivation: Expression quantitative trait loci (eQTLs) are genetic variants that affect gene expression. In eQTL studies, one important task is to find eGenes or genes whose expressions are associated with at least one eQTL. The standard statistical method to determine whether a gene is an eGene requires association testing at all nearby variants and the permutation test to correct for multiple testing. The standard method however does not consider genomic annotation of the variants. In practice, variants near gene transcription start sites (TSSs) or certain histone modifications are likely to regulate gene expression. In this article, we introduce a novel eGene detection method that considers this empirical evidence and thereby increases the statistical power. Results: We applied our method to the liver Genotype-Tissue Expression (GTEx) data using distance from TSSs, DNase hypersensitivity sites, and six histone modifications as the genomic annotations for the variants. Each of these annotations helped us detected more candidate eGenes. Distance from TSS appears to be the most important annotation; specifically, using this annotation, our method discovered 50% more candidate eGenes than the standard permutation method. Contact: buhm.han@amc.seoul.kr or eeskin@cs.ucla.edu PMID:27307612

  20. Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER.

    PubMed

    Aggarwal, Gautam; Ramaswamy, Ramakrishna

    2002-02-01

    We compare the annotation of three complete genomes using the ab initio methods of gene identification GeneScan and GLIMMER. The annotation given in GenBank, the standard against which these are compared, has been made using GeneMark. We find a number of novel genes which are predicted by both methods used here, as well as a number of genes that are predicted by GeneMark, but are not identified by either of the nonconsensus methods that we have used. The three organisms studied here are all prokaryotic species with fairly compact genomes. The Fourier measure forms the basis for an efficient non-consensus method for gene prediction, and the algorithm GeneScan exploits this measure. We have bench-marked this program as well as GLIMMER using 3 complete prokaryotic genomes. An effort has also been made to study the limitations of these techniques for complete genome analysis. GeneScan and GLIMMER are of comparable accuracy insofar as gene-identification is concerned, with sensitivities and specificities typically greater than 0.9. The number of false predictions (both positive and negative) is higher for GeneScan as compared to GLIMMER, but in a significant number of cases, similar results are provided by the two techniques. This suggests that there could be some as-yet unidentified additional genes in these three genomes, and also that some of the putative identifications made hitherto might require re-evaluation. All these cases are discussed in detail. PMID:11927773

  1. Differential annotation of tRNA genes with anticodon CAT in bacterial genomes

    PubMed Central

    Silva, Francisco J.; Belda, Eugeni; Talens, Santiago E.

    2006-01-01

    We have developed three strategies to discriminate among the three types of tRNA genes with anticodon CAT (tRNAIle, elongator tRNAMet and initiator tRNAfMet) in bacterial genomes. With these strategies, we have classified the tRNA genes from 234 bacterial and several organellar genomes. These sequences, in an aligned or unaligned format, may be used for the identification and annotation of tRNA (CAT) genes in other genomes. The first strategy is based on the position of the problem sequences in a phenogram (a tree-like network), the second on the minimum average number of differences against the tRNA sequences of the three types and the third on the search for the highest score value against the profiles of the three types of tRNA genes. The species with the maximum number of tRNAfMet and tRNAMet was Photobacterium profundum, whereas the genome of one Escherichia coli strain presented the maximum number of tRNAIle (CAT) genes. This last tRNA gene and tilS, encoding an RNA-modifying enzyme, are not essential in bacteria. The acquisition of a tRNAIle (TAT) gene by Mycoplasma mobile has led to the loss of both the tRNAIle (CAT) and the tilS genes. The new tRNA has appropriated the function of decoding AUA codons. PMID:17071718

  2. Systematic functional genomics resource and annotation for poplar.

    PubMed

    Si, Jingna; Zhao, Xiyang; Zhao, Xinyin; Wu, Rongling

    2015-08-01

    Poplar, as a model species for forestry research, has many excellent characteristics. Studies on functional genes have provided the foundation, at the molecular level, for improving genetic traits and cultivating elite lines. Although studies on functional genes have been performed for many years, large amounts of experimental data remain scattered across various reports and have not been unified via comprehensive statistical analysis. This problem can be addressed by employing bioinformatic methodology and technology to gather and organise data to construct a Poplar Functional Gene Database, containing data on 207 poplar functional genes. As an example, the authors investigated genes of Populus euphratica involved in the response to salt stress. Four small cDNA libraries were constructed and treated with 300 mM NaCl or pure water for 6 and 24 h. Using high-throughput sequencing, they identified conserved and novel miRNAs that were differentially expressed. Target genes were next predicted and detailed functional information derived using the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway analysis. This information provides a primary visual schema allowing us to understand the dynamics of the regulatory gene network responding to salt stress in Populus. PMID:26243833

  3. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua

    2015-12-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.

  4. An Integrative Method for Identifying the Over-Annotated Protein-Coding Genes in Microbial Genomes

    PubMed Central

    Yu, Jia-Feng; Xiao, Ke; Jiang, Dong-Ke; Guo, Jing; Wang, Ji-Hua; Sun, Xiao

    2011-01-01

    The falsely annotated protein-coding genes have been deemed one of the major causes accounting for the annotating errors in public databases. Although many filtering approaches have been designed for the over-annotated protein-coding genes, some are questionable due to the resultant increase in false negative. Furthermore, there is no webserver or software specifically devised for the problem of over-annotation. In this study, we propose an integrative algorithm for detecting the over-annotated protein-coding genes in microorganisms. Overall, an average accuracy of 99.94% is achieved over 61 microbial genomes. The extremely high accuracy indicates that the presented algorithm is efficient to differentiate the protein-coding genes from the non-coding open reading frames. Abundant analyses show that the predicting results are reliable and the integrative algorithm is robust and convenient. Our analysis also indicates that the over-annotated protein-coding genes can cause the false positive of horizontal gene transfers detection. The webserver of the proposed algorithm can be freely accessible from www.cbi.seu.edu.cn/RPGM. PMID:21903723

  5. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  6. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    PubMed

    Laurent, Georges St; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function incisto activate nearby genes. This effect while most pronounced in closely spaced vlincRNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  7. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    PubMed Central

    Das, Sayoni; Lee, David; Sillitoe, Ian; Dawson, Natalie L.; Lees, Jonathan G.; Orengo, Christine A.

    2015-01-01

    Motivation: Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. The superfamilies are sub-classified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer. Results: FunFHMMer generates more functionally coherent groupings of protein sequences than other domain-based protein classifications. This has been validated using known functional information. The conserved positions predicted by the FunFams are also found to be enriched in known functional residues. Moreover, the functional annotations provided by the FunFams are found to be more precise than other domain-based resources. FunFHMMer currently identifies 110 439 FunFams in 2735 superfamilies which can be used to functionally annotate > 16 million domain sequences. Availability and implementation: All FunFam annotation data are made available through the CATH webpages (http://www.cathdb.info). The FunFHMMer webserver (http://www.cathdb.info/search/by_funfhmmer) allows users to submit query sequences for assignment to a CATH FunFam. Contact: sayoni.das.12@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26139634

  8. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    PubMed Central

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  9. GeneSense: a new approach for human gene annotation integrated with protein-protein interaction networks

    PubMed Central

    Chen, Zhongzhong; Zhang, Tianhong; Lin, Jun; Yan, Zidan; Wang, Yongren; Zheng, Weiqiang; Weng, Kevin C.

    2014-01-01

    Virtually all cellular functions involve protein-protein interactions (PPIs). As an increasing number of PPIs are identified and vast amount of information accumulated, researchers are finding different ways to interrogate the data and understand the interactions in context. However, it is widely recognized that a significant portion of the data is scattered, redundant, not considered high quality, and not readily accessible to researchers in a systematic fashion. In addition, it is challenging to identify the optimal protein targets in the current PPI networks. The GeneSense server was developed to integrate gene annotation and PPI networks in an expandable architecture that incorporates selected databases with the aim to assemble, analyze, evaluate and disseminate protein-protein association information in a comprehensive and user-friendly manner. Three network models including nodenet, leafnet and loopnet are used to identify the optimal protein targets in the complex networks. GeneSense is freely available at www.biomedsense.org/genesense.php. PMID:24667292

  10. De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis.

    PubMed

    Hu, Li; Zhao, YaE; Yang, YuanJun; Niu, DongLing; Wang, RuiLing; Cheng, Juan; Yang, Fan

    2016-07-01

    The transcriptomic data of Sarcoptes is still lacking in the public database due to the difficulty in extracting high-quality RNA from tiny mites with thick chitin. In this study, total RNA was extracted from live Sarcoptes mites for quality assessment, RNA-Seq, functional annotation, and coding region (CD) prediction and verification. The results showed that the sample JMQ-lngm was qualified for cDNA library construction. Firstly, Agilent 2100 detection showed that the RNA baseline was smooth and the 18S peak was single. Second, the Illumina platform generated 65.78M clean reads and 20,826 unigenes with 35.43M were assembled, occupying 62.98 % of the 56.26M genome. In total, 15,034 unigenes were annotated in seven functional databases. Finally, 13,122 CDs were detected in the 20,826 unigenes, of which 70 complete CDs were matched with Sarcoptes manually in non-redundant nucleotide (NT). Three CDs with indels ≥10 bp were verified. Those results indicated that peritrophin sequences of JMQ-lngm missed 35 bp during the assembly; the pressure-sensitive sodium channel sequences of all the six Sarcoptes scabiei canis isolates were confirmed to be 90 bp shorter than that of a Sarcoptes scabiei hominis isolate; three introns remained in PH chlorine ion channel gating sequences of JMQ-lngm. Moreover, the allergen gene prediction for JMQ-lngm indicated that 61 unigenes were matched with 19 allergen genes of Dermatophagoides, of which Der 1, Der 3, Der 8, and Der 10 had been confirmed in NT. In conclusion, this study successfully completed the RNA-Seq and functional annotation of S. s. canis for the first time, which provides molecular data for future studies on the identification and pathogenic genes of Sarcoptidae. PMID:26997341

  11. Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction

    PubMed Central

    2015-01-01

    Background A vast amount of DNA variation is being identified by increasingly large-scale exome and genome sequencing projects. To be useful, variants require accurate functional annotation and a wide range of tools are available to this end. McCarthy et al recently demonstrated the large differences in prediction of loss-of-function (LoF) variation when RefSeq and Ensembl transcripts are used for annotation, highlighting the importance of the reference transcripts on which variant functional annotation is based. Results We describe a detailed analysis of the similarities and differences between the gene and transcript annotation in the GENCODE and RefSeq genesets. We demonstrate that the GENCODE Comprehensive set is richer in alternative splicing, novel CDSs, novel exons and has higher genomic coverage than RefSeq, while the GENCODE Basic set is very similar to RefSeq. Using RNAseq data we show that exons and introns unique to one geneset are expressed at a similar level to those common to both. We present evidence that the differences in gene annotation lead to large differences in variant annotation where GENCODE and RefSeq are used as reference transcripts, although this is predominantly confined to non-coding transcripts and UTR sequence, with at most ~30% of LoF variants annotated discordantly. We also describe an investigation of dominant transcript expression, showing that it both supports the utility of the GENCODE Basic set in providing a smaller set of more highly expressed transcripts and provides a useful, biologically-relevant filter for further reducing the complexity of the transcriptome. Conclusions The reference transcripts selected for variant functional annotation do have a large effect on the outcome. The GENCODE Comprehensive transcripts contain more exons, have greater genomic coverage and capture many more variants than RefSeq in both genome and exome datasets, while the GENCODE Basic set shows a higher degree of concordance with RefSeq and

  12. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.)

    PubMed Central

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-01-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. PMID:25362073

  13. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    PubMed

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938

  14. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production

    PubMed Central

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac

  15. Large-scale collection and annotation of gene models for date palm (Phoenix dactylifera, L.).

    PubMed

    Zhang, Guangyu; Pan, Linlin; Yin, Yuxin; Liu, Wanfei; Huang, Dawei; Zhang, Tongwu; Wang, Lei; Xin, Chengqi; Lin, Qiang; Sun, Gaoyuan; Ba Abdullah, Mohammed M; Zhang, Xiaowei; Hu, Songnian; Al-Mssallem, Ibrahim S; Yu, Jun

    2012-08-01

    The date palm (Phoenix dactylifera L.), famed for its sugar-rich fruits (dates) and cultivated by humans since 4,000 B.C., is an economically important crop in the Middle East, Northern Africa, and increasingly other places where climates are suitable. Despite a long history of human cultivation, the understanding of P. dactylifera genetics and molecular biology are rather limited, hindered by lack of basic data in high quality from genomics and transcriptomics. Here we report a large-scale effort in generating gene models (assembled expressed sequence tags or ESTs and mapped to a genome assembly) for P. dactylifera, using the long-read pyrosequencing platform (Roche/454 GS FLX Titanium) in high coverage. We built fourteen cDNA libraries from different P. dactylifera tissues (cultivar Khalas) and acquired 15,778,993 raw sequencing reads-about one million sequencing reads per library-and the pooled sequences were assembled into 67,651 non-redundant contigs and 301,978 singletons. We annotated 52,725 contigs based on the plant databases and 45 contigs based on functional domains referencing to the Pfam database. From the annotated contigs, we assigned GO (Gene Ontology) terms to 36,086 contigs and KEGG pathways to 7,032 contigs. Our comparative analysis showed that 70.6 % (47,930), 69.4 % (47,089), 68.4 % (46,441), and 69.3 % (47,048) of the P. dactylifera gene models are shared with rice, sorghum, Arabidopsis, and grapevine, respectively. We also assigned our gene models into house-keeping and tissue-specific genes based on their tissue specificity. PMID:22736259

  16. Creating reference gene annotation for the mouse C57BL6/J genome assembly.

    PubMed

    Mudge, Jonathan M; Harrow, Jennifer

    2015-10-01

    Annotation on the reference genome of the C57BL6/J mouse has been an ongoing project ever since the draft genome was first published. Initially, the principle focus was on the identification of all protein-coding genes, although today the importance of describing long non-coding RNAs, small RNAs, and pseudogenes is recognized. Here, we describe the progress of the GENCODE mouse annotation project, which combines manual annotation from the HAVANA group with Ensembl computational annotation, alongside experimental and in silico validation pipelines from other members of the consortium. We discuss the more recent incorporation of next-generation sequencing datasets into this workflow, including the usage of mass-spectrometry data to potentially identify novel protein-coding genes. Finally, we will outline how the C57BL6/J genebuild can be used to gain insights into the variant sites that distinguish different mouse strains and species. PMID:26187010

  17. High-performance web services for querying gene and variant annotation.

    PubMed

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-01-01

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community. PMID:27154141

  18. Draft Genome Sequence and Gene Annotation of the Uropathogenic Bacterium Proteus mirabilis Pr2921

    PubMed Central

    Giorello, F. M.; Romero, V.; Farias, J.; Scavone, P.; Umpiérrez, A.; Zunino, P.

    2016-01-01

    Here, we report the genome sequence of Proteus mirabilis Pr2921, a uropathogenic bacterium that can cause severe complicated urinary tract infections. After gene annotation, we identified two additional copies of ucaA, one of the most studied fimbrial protein genes, and other fimbriae related-proteins that are not present in P. mirabilis HI4320. PMID:27340058

  19. In Silico Functional Pathway Annotation of 86 Established Prostate Cancer Risk Variants

    PubMed Central

    Loo, Lenora W. M.; Fong, Aaron Y. W.; Cheng, Iona; Le Marchand, Loïc

    2015-01-01

    Heritability is one of the strongest risk factors of prostate cancer, emphasizing the importance of the genetic contribution towards prostate cancer risk. To date, 86 established prostate cancer risk variants have been identified by genome-wide association studies (GWAS). To determine if these risk variants are located near genes that interact together in biological networks or pathways contributing to prostate cancer initiation or progression, we generated gene sets based on proximity to the 86 prostate cancer risk variants. We took two approaches to generate gene lists. The first strategy included all immediate flanking genes, up- and downstream of the risk variant, regardless of distance from the index variant, and the second strategy included genes closest to the index GWAS marker and to variants in high LD (r2 ≥0.8 in Europeans) with the index variant, within a 100 kb window up- and downstream. Pathway mapping of the two gene sets supported the importance of the androgen receptor-mediated signaling in prostate cancer biology. In addition, the hedgehog and Wnt/β-catenin signaling pathways were identified in pathway mapping for the flanking gene set. We also used the HaploReg resource to examine the 86 risk loci and variants high LD (r2 ≥0.8) for functional elements. We found that there was a 12.8 fold (p = 2.9 x 10-4) enrichment for enhancer motifs in a stem cell line and a 4.4 fold (p = 1.1 x 10-3) enrichment of DNase hypersensitivity in a prostate adenocarcinoma cell line, indicating that the risk and correlated variants are enriched for transcriptional regulatory motifs. Our pathway-based functional annotation of the prostate cancer risk variants highlights the potential regulatory function that GWAS risk markers, and their highly correlated variants, exert on genes. Our study also shows that these genes may function cooperatively in key signaling pathways in prostate cancer biology. PMID:25658610

  20. A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS

    PubMed Central

    IONITA-LAZA, IULIANA; MCCALLUM, KENNETH; XU, BIN; BUXBAUM, JOSEPH

    2015-01-01

    Over the past few years, substantial effort has been put into the functional annotation of variation in human genome sequence. Such annotations can play a critical role in identifying putatively causal variants among the abundant natural variation that occurs at a locus of interest. The main challenges in using these various annotations include their large numbers, and their diversity. Here we develop an unsupervised approach to integrate these different annotations into one measure of functional importance (Eigen), that, unlike most existing methods, is not based on any labeled training data. We show that the resulting meta-score has better discriminatory ability using disease associated and putatively benign variants from published studies (in both coding and noncoding regions) compared with the recently proposed CADD score. Across varied scenarios, the Eigen score performs generally better than any single individual annotation, representing a powerful single functional score that can be incorporated in fine-mapping studies. PMID:26727659

  1. Protein variety and functional diversity: Swiss-Prot annotation in its biological context.

    PubMed

    Boeckmann, Brigitte; Blatter, Marie-Claude; Famiglietti, Livia; Hinz, Ursula; Lane, Lydie; Roechert, Bernd; Bairoch, Amos

    2005-01-01

    We all know that the dogma 'one gene, one protein' is obsolete. A functional protein and, likewise, a protein's ultimate function depend not only on the underlying genetic information but also on the ongoing conditions of the cellular system. Frequently the transcript, like the polypeptide, is processed in multiple ways, but only one or a few out of a multitude of possible variants are produced at a time. An overview on processes that can lead to sequence variety and structural diversity in eukaryotes is given. The UniProtKB/Swiss-Prot protein knowledgebase provides a wealth of information regarding protein variety, function and associated disorders. Examples for such annotation are shown and further ones are available at http://www.expasy.org/sprot/tutorial/examples_CRB. PMID:16286078

  2. PANDA: pathway and annotation explorer for visualizing and interpreting gene-centric data.

    PubMed

    Hart, Steven N; Moore, Raymond M; Zimmermann, Michael T; Oliver, Gavin R; Egan, Jan B; Bryce, Alan H; Kocher, Jean-Pierre A

    2015-01-01

    Objective. Bringing together genomics, transcriptomics, proteomics, and other -omics technologies is an important step towards developing highly personalized medicine. However, instrumentation has advances far beyond expectations and now we are able to generate data faster than it can be interpreted. Materials and Methods. We have developed PANDA (Pathway AND Annotation) Explorer, a visualization tool that integrates gene-level annotation in the context of biological pathways to help interpret complex data from disparate sources. PANDA is a web-based application that displays data in the context of well-studied pathways like KEGG, BioCarta, and PharmGKB. PANDA represents data/annotations as icons in the graph while maintaining the other data elements (i.e., other columns for the table of annotations). Custom pathways from underrepresented diseases can be imported when existing data sources are inadequate. PANDA also allows sharing annotations among collaborators. Results. In our first use case, we show how easy it is to view supplemental data from a manuscript in the context of a user's own data. Another use-case is provided describing how PANDA was leveraged to design a treatment strategy from the somatic variants found in the tumor of a patient with metastatic sarcomatoid renal cell carcinoma. Conclusion. PANDA facilitates the interpretation of gene-centric annotations by visually integrating this information with context of biological pathways. The application can be downloaded or used directly from our website: http://bioinformaticstools.mayo.edu/research/panda-viewer/. PMID:26038725

  3. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

    PubMed Central

    Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A

    2007-01-01

    The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretation of gene lists in a network context. PMID:17784955

  4. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis

    PubMed Central

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-01-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765

  5. Structural and Functional Annotation of the Porcine Immunome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. H...

  6. Mining locus tags in PubMed Central to improve microbial gene annotation

    PubMed Central

    2014-01-01

    Background The scientific literature contains millions of microbial gene identifiers within the full text and tables, but these annotations rarely get incorporated into public sequence databases. We propose to utilize the Open Access (OA) subset of PubMed Central (PMC) as a gene annotation database and have developed an R package called pmcXML to automatically mine and extract locus tags from full text, tables and supplements. Results We mined locus tags from 1835 OA publications in ten microbial genomes and extracted tags mentioned in 30,891 sentences in main text and 20,489 rows in tables. We identified locus tag pairs marking the start and end of a region such as an operon or genomic island and expanded these ranges to add another 13,043 tags. We also searched for locus tags in supplementary tables and publications outside the OA subset in Burkholderia pseudomallei K96243 for comparison. There were 168 publications containing 48,470 locus tags and 83% of mentions were from supplementary materials and 9% from publications outside the OA subset. Conclusions B. pseudomallei locus tags within the full text and tables of OA publications represent only a small fraction of the total mentions in the literature. For microbial genomes with very few functionally characterized proteins, the locus tags mentioned in supplementary tables and within ranges like genomic islands contain the majority of locus tags. Significantly, the functions in the R package provide access to additional resources in the OA subset that are not currently indexed or returned by searching PMC. PMID:24499370

  7. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    PubMed Central

    2011-01-01

    Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional

  8. RNA-Seq Analysis of Quercus pubescens Leaves: De Novo Transcriptome Assembly, Annotation and Functional Markers Development

    PubMed Central

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Fineschi, Silvia; Fini, Alessio; Ferrini, Francesco; Sebastiani, Federico

    2014-01-01

    Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG) resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs) were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences. PMID:25393112

  9. Overcoming function annotation errors in the Gram-positive pathogen Streptococcus suis by a proteomics-driven approach

    PubMed Central

    Rodríguez-Ortega, Manuel J; Luque, Inmaculada; Tarradas, Carmen; Bárcena, José A

    2008-01-01

    Background Annotation of protein-coding genes is a key step in sequencing projects. Protein functions are mainly assigned on the basis of the amino acid sequence alone by searching of homologous proteins. However, fully automated annotation processes often lead to wrong prediction of protein functions, and therefore time-intensive manual curation is often essential. Here we describe a fast and reliable way to correct function annotation in sequencing projects, focusing on surface proteomes. We use a proteomics approach, previously proven to be very powerful for identifying new vaccine candidates against Gram-positive pathogens. It consists of shaving the surface of intact cells with two proteases, the specific cleavage-site trypsin and the unspecific proteinase K, followed by LC/MS/MS analysis of the resulting peptides. The identified proteins are contrasted by computational analysis and their sequences are inspected to correct possible errors in function prediction. Results When applied to the zoonotic pathogen Streptococcus suis, of which two strains have been recently sequenced and annotated, we identified a set of surface proteins without cytoplasmic contamination: all the proteins identified had exporting or retention signals towards the outside and/or the cell surface, and viability of protease-treated cells was not affected. The combination of both experimental evidences and computational methods allowed us to determine that two of these proteins are putative extracellular new adhesins that had been previously attributed a wrong cytoplasmic function. One of them is a putative component of the pilus of this bacterium. Conclusion We illustrate the complementary nature of laboratory-based and computational methods to examine in concert the localization of a set of proteins in the cell, and demonstrate the utility of this proteomics-based strategy to experimentally correct function annotation errors in sequencing projects. This approach also contributes to

  10. Joint stage recognition and anatomical annotation of drosophila gene expression patterns

    PubMed Central

    Cai, Xiao; Wang, Hua; Huang, Heng; Ding, Chris

    2012-01-01

    Motivation: Staining the mRNA of a gene via in situ hybridization (ISH) during the development of a Drosophila melanogaster embryo delivers the detailed spatio-temporal patterns of the gene expression. Many related biological problems such as the detection of co-expressed genes, co-regulated genes and transcription factor binding motifs rely heavily on the analysis of these image patterns. To provide the text-based pattern searching for facilitating related biological studies, the images in the Berkeley Drosophila Genome Project (BDGP) study are annotated with developmental stage term and anatomical ontology terms manually by domain experts. Due to the rapid increase in the number of such images and the inevitable bias annotations by human curators, it is necessary to develop an automatic method to recognize the developmental stage and annotate anatomical terms. Results: In this article, we propose a novel computational model for jointly stage classification and anatomical terms annotation of Drosophila gene expression patterns. We propose a novel Tri-Relational Graph (TG) model that comprises the data graph, anatomical term graph, developmental stage term graph, and connect them by two additional graphs induced from stage or annotation label assignments. Upon the TG model, we introduce a Preferential Random Walk (PRW) method to jointly recognize developmental stage and annotate anatomical terms by utilizing the interrelations between two tasks. The experimental results on two refined BDGP datasets demonstrate that our joint learning method can achieve superior prediction results on both tasks than the state-of-the-art methods. Availability: http://ranger.uta.edu/%7eheng/Drosophila/ Contact: heng@uta.edu PMID:22689756

  11. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.

    PubMed

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  12. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle

    PubMed Central

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  13. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    PubMed

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  14. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences

    PubMed Central

    Huerta-Cepas, Jaime; Szklarczyk, Damian; Forslund, Kristoffer; Cook, Helen; Heller, Davide; Walter, Mathias C.; Rattei, Thomas; Mende, Daniel R.; Sunagawa, Shinichi; Kuhn, Michael; Jensen, Lars Juhl; von Mering, Christian; Bork, Peer

    2016-01-01

    eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de. PMID:26582926

  15. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.

    PubMed

    Huerta-Cepas, Jaime; Szklarczyk, Damian; Forslund, Kristoffer; Cook, Helen; Heller, Davide; Walter, Mathias C; Rattei, Thomas; Mende, Daniel R; Sunagawa, Shinichi; Kuhn, Michael; Jensen, Lars Juhl; von Mering, Christian; Bork, Peer

    2016-01-01

    eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de. PMID:26582926

  16. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization

    PubMed Central

    2014-01-01

    Background Coconut (Cocos nucifera L.) is one of the world’s most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. Results Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as

  17. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction

    PubMed Central

    2012-01-01

    Background Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. Results We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI’s BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. Conclusions We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other

  18. Functional-Network-Based Gene Set Analysis Using Gene-Ontology

    PubMed Central

    Chang, Billy; Kustra, Rafal; Tian, Weidong

    2013-01-01

    To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional network constructed using the functional annotations available from the gene ontology database. By benchmarking GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach that involves a complex integrated network. GOGANPA’s sole reliance on gene ontology further allows GOGANPA to be widely applicable to the analysis of any gene-ontology-annotated genome. PMID:23418449

  19. New in protein structure and function annotation: hotspots, single nucleotide polymorphisms and the 'Deep Web'.

    PubMed

    Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard

    2009-05-01

    The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation. PMID:19396742

  20. The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus

    PubMed Central

    Sayadi, Ahmed; Immonen, Elina; Bayram, Helen

    2016-01-01

    Despite their unparalleled biodiversity, the genomic resources available for beetles (Coleoptera) remain relatively scarce. We present an integrative and high quality annotated transcriptome of the beetle Callosobruchus maculatus, an important and cosmopolitan agricultural pest as well as an emerging model species in ecology and evolutionary biology. Using Illumina sequencing technology, we sequenced 492 million read pairs generated from 51 samples of different developmental stages (larvae, pupae and adults) of C. maculatus. Reads were de novo assembled using the Trinity software, into a single combined assembly as well as into three separate assemblies based on data from the different developmental stages. The combined assembly generated 218,192 transcripts and 145,883 putative genes. Putative genes were annotated with the Blast2GO software and the Trinotate pipeline. In total, 33,216 putative genes were successfully annotated using Blastx against the Nr (non-redundant) database and 13,382 were assigned to 34,100 Gene Ontology (GO) terms. We classified 5,475 putative genes into Clusters of Orthologous Groups (COG) and 116 metabolic pathways maps were predicted based on the annotation. Our analyses suggested that the transcriptional specificity increases with ontogeny. For example, out of 33,216 annotated putative genes, 51 were only expressed in larvae, 63 only in pupae and 171 only in adults. Our study illustrates the importance of including samples from several developmental stages when the aim is to provide an integrative and high quality annotated transcriptome. Our results will represent an invaluable resource for those working with the ecology, evolution and pest control of C. maculatus, as well for comparative studies of the transcriptomics and genomics of beetles more generally. PMID:27442123

  1. Annotating novel genes by integrating synthetic lethals and genomic information

    PubMed Central

    Schöner, Daniel; Kalisch, Markus; Leisner, Christian; Meier, Lukas; Sohrmann, Marc; Faty, Mahamadou; Barral, Yves; Peter, Matthias; Gruissem, Wilhelm; Bühlmann, Peter

    2008-01-01

    Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W) as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process. PMID:18194531

  2. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    SciTech Connect

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie; Yang, Xiaohan; Tuskan, Gerald A; Vogel, John

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  3. Genome Annotation of Burkholderia sp. SJ98 with Special Focus on Chemotaxis Genes

    PubMed Central

    Kumar, Shailesh; Vikram, Surendra; Raghava, Gajendra Pal Singh

    2013-01-01

    Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholderia sp. SJ98 was annotated using PGAAP pipeline that predicts 7,268 CDSs, 52 tRNAs and 3 rRNAs. Our analysis based on phylogenetic and comparative genomics suggest that Burkholderia sp. YI23 is closest neighbor of the strain SJ98. The genes involved in the chemotaxis of strain SJ98 were compared with genes of closely related Burkholderia strains (i.e. YI23, CCGE 1001, CCGE 1002, CCGE 1003) and with well characterized bacterium E. coli K12. It was found that strain SJ98 has 37 che genes including 19 methyl accepting chemotaxis proteins that involved in sensing of different attractants. Chemotaxis genes have been found in a cluster along with the flagellar motor proteins. We also developed a web resource that provides comprehensive information on strain SJ98 that includes all analysis data (http://crdd.osdd.net/raghava/genomesrs/burkholderia/). PMID:23940608

  4. An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome

    PubMed Central

    Hild, M; Beckmann, B; Haas, SA; Koch, B; Solovyev, V; Busold, C; Fellenberg, K; Boutros, M; Vingron, M; Sauer, F; Hoheisel, JD; Paro, R

    2004-01-01

    Background While the genome sequences for a variety of organisms are now available, the precise number of the genes encoded is still a matter of debate. For the human genome several stringent annotation approaches have resulted in the same number of potential genes, but a careful comparison revealed only limited overlap. This indicates that only the combination of different computational prediction methods and experimental evaluation of such in silico data will provide more complete genome annotations. In order to get a more complete gene content of the Drosophila melanogaster genome, we based our new D. melanogaster whole-transcriptome microarray, the Heidelberg FlyArray, on the combination of the Berkeley Drosophila Genome Project (BDGP) annotation and a novel ab initio gene prediction of lower stringency using the Fgenesh software. Results Here we provide evidence for the transcription of approximately 2,600 additional genes predicted by Fgenesh. Validation of the developmental profiling data by RT-PCR and in situ hybridization indicates a lower limit of 2,000 novel annotations, thus substantially raising the number of genes that make a fly. Conclusions The successful design and application of this novel Drosophila microarray on the basis of our integrated in silico/wet biology approach confirms our expectation that in silico approaches alone will always tend to be incomplete. The identification of at least 2,000 novel genes highlights the importance of gathering experimental evidence to discover all genes within a genome. Moreover, as such an approach is independent of homology criteria, it will allow the discovery of novel genes unrelated to known protein families or those that have not been strictly conserved between species. PMID:14709175

  5. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    PubMed Central

    Chen, Deyu

    2013-01-01

    The previous survey identified 70 basic helix-loop-helix (bHLH) proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO) enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families. PMID:24312906

  6. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    SciTech Connect

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to

  7. Functional annotation of an expressed sequence tag library from Haliotis diversicolor and analysis of its plant-like sequences.

    PubMed

    Jiang, Jing-Zhe; Zhang, Wei; Guo, Zhi-Xun; Cai, Chen-Chen; Su, You-Lu; Wang, Rui-Xuan; Wang, Jiang-Yong

    2011-09-01

    The small abalone, Haliotis diversicolor, is a widely distributed and cultured species in the subtropical coastal area of China. To identify and classify functional genes of this important species, a normalized expressed sequence tag (EST) library, including 7069 high quality ESTs from the total body of H. diversicolor, was analyzed. A total of 4781 unigenes were assembled and 2991 novel abalone genes were identified. The GC content, codon and amino acid usage of the transcriptome were analyzed. For the accurate annotation of the abalone library, different influencing factors were evaluated. The gene ontology (GO) database provided a higher annotation rate (69.6%), and sequences longer than 800bp were easily subjected to a BLAST search. The taxonomy of the BLAST results showed that lancelet and invertebrates are most closely related to abalone. Sixty-seven identified plant-like genes were further examined by reverse transcription-polymerase chain reaction (RT-PCR) and sequencing, only seven of these were real transcripts in abalone. Phylogenic trees were also constructed to illustrate the positions of two Cystatin sequences and one Calmodulin protein sequence identified in abalone. To perform functional classification, three different databases (GO, KEGG and COG) were used and 60 immune or disease-related unigenes were determined. This work has greatly enlarged the known gene pool of H. diversicolor and will have important implications for future molecular and genetic analyses in this organism. PMID:21867971

  8. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function.

    PubMed

    Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better

  9. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera.

    PubMed

    Kumar, Suresh

    2015-01-01

    Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency. PMID:25780274

  10. The power of EST sequence data: Relation to Acyrthosiphon pisum genome annotation and functional genomics initiatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes important to aphid biology, survival and reproduction were successfully identified by use of a genomics approach. We created and described the Sequencing, compilation, and annotation of the approxiamtely 525Mb nuclear genome of the pea aphid, Acyrthosiphon pisum, which represents an important ...

  11. MeSH key terms for validation and annotation of gene expression clusters

    SciTech Connect

    Rechtsteiner, A.; Rocha, L. M.

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  12. An atlas of bovine gene expression reveals novel distinctive tissue characteristics and evidence for improving genome annotation

    PubMed Central

    2010-01-01

    Background A comprehensive transcriptome survey, or gene atlas, provides information essential for a complete understanding of the genomic biology of an organism. We present an atlas of RNA abundance for 92 adult, juvenile and fetal cattle tissues and three cattle cell lines. Results The Bovine Gene Atlas was generated from 7.2 million unique digital gene expression tag sequences (300.2 million total raw tag sequences), from which 1.59 million unique tag sequences were identified that mapped to the draft bovine genome accounting for 85% of the total raw tag abundance. Filtering these tags yielded 87,764 unique tag sequences that unambiguously mapped to 16,517 annotated protein-coding loci in the draft genome accounting for 45% of the total raw tag abundance. Clustering of tissues based on tag abundance profiles generally confirmed ontology classification based on anatomy. There were 5,429 constitutively expressed loci and 3,445 constitutively expressed unique tag sequences mapping outside annotated gene boundaries that represent a resource for enhancing current gene models. Physical measures such as inferred transcript length or antisense tag abundance identified tissues with atypical transcriptional tag profiles. We report for the first time the tissue-specific variation in the proportion of mitochondrial transcriptional tag abundance. Conclusions The Bovine Gene Atlas is the deepest and broadest transcriptome survey of any livestock genome to date. Commonalities and variation in sense and antisense transcript tag profiles identified in different tissues facilitate the examination of the relationship between gene expression, tissue, and gene function. PMID:20961407

  13. miRFANs: an integrated database for Arabidopsis thaliana microRNA function annotations

    PubMed Central

    2012-01-01

    Background Plant microRNAs (miRNAs) have been revealed to play important roles in developmental control, hormone secretion, cell differentiation and proliferation, and response to environmental stresses. However, our knowledge about the regulatory mechanisms and functions of miRNAs remains very limited. The main difficulties lie in two aspects. On one hand, the number of experimentally validated miRNA targets is very limited and the predicted targets often include many false positives, which constrains us to reveal the functions of miRNAs. On the other hand, the regulation of miRNAs is known to be spatio-temporally specific, which increases the difficulty for us to understand the regulatory mechanisms of miRNAs. Description In this paper we present miRFANs, an online database for Arabidopsis thalianamiRNA function annotations. We integrated various type of datasets, including miRNA-target interactions, transcription factor (TF) and their targets, expression profiles, genomic annotations and pathways, into a comprehensive database, and developed various statistical and mining tools, together with a user-friendly web interface. For each miRNA target predicted by psRNATarget, TargetAlign and UEA target-finder, or recorded in TarBase and miRTarBase, the effect of its up-regulated or down-regulated miRNA on the expression level of the target gene is evaluated by carrying out differential expression analysis of both miRNA and targets expression profiles acquired under the same (or similar) experimental condition and in the same tissue. Moreover, each miRNA target is associated with gene ontology and pathway terms, together with the target site information and regulating miRNAs predicted by different computational methods. These associated terms may provide valuable insight for the functions of each miRNA. Conclusion First, a comprehensive collection of miRNA targets for Arabidopsis thaliana provides valuable information about the functions of plant miRNAs. Second, a

  14. Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.

    PubMed

    Sharma, Ashok K; Gupta, Ankit; Kumar, Sanjiv; Dhakan, Darshan B; Sharma, Vineet K

    2015-07-01

    Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annotate and classify proteins are extremely slow. Therefore, to achieve faster and accurate functional annotation, we have developed an orthology-based functional classifier 'Woods' by using a combination of machine learning and similarity-based approaches. Woods displayed a precision of 98.79% on independent genomic dataset, 96.66% on simulated metagenomic dataset and >97% on two real metagenomic datasets. In addition, it performed >87 times faster than BLAST on the two real metagenomic datasets. Woods can be used as a highly efficient and accurate classifier with high-throughput capability which facilitates its usability on large metagenomic datasets. PMID:25863333

  15. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    PubMed

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-01-01

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu. PMID:26015273

  16. Annotation and retrieval system of CAD models based on functional semantics

    NASA Astrophysics Data System (ADS)

    Wang, Zhansong; Tian, Ling; Duan, Wenrui

    2014-11-01

    CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. Therefore, a functional semantic-based CAD model annotation and retrieval method is proposed to support mechanical conceptual design and design reuse, inspire designer creativity through existing CAD models, shorten design cycle, and reduce costs. Firstly, the CAD model functional semantic ontology is constructed to formally represent the functional semantics of CAD models and describe the mechanical conceptual design space comprehensively and consistently. Secondly, an approach to represent CAD models as attributed adjacency graphs(AAG) is proposed. In this method, the geometry and topology data are extracted from STEP models. On the basis of AAG, the functional semantics of CAD models are annotated semi-automatically by matching CAD models that contain the partial features of which functional semantics have been annotated manually, thereby constructing CAD Model Repository that supports model retrieval based on functional semantics. Thirdly, a CAD model retrieval algorithm that supports multi-function extended retrieval is proposed to explore more potential creative design knowledge in the semantic level. Finally, a prototype system, called Functional Semantic-based CAD Model Annotation and Retrieval System(FSMARS), is implemented. A case demonstrates that FSMARS can successfully botain multiple potential CAD models that conform to the desired function. The proposed research addresses actual needs and presents a new way to acquire CAD models in the mechanical conceptual design phase.

  17. UniProt-DAAC: domain architecture alignment and classification, a new method for automatic functional annotation in UniProtKB

    PubMed Central

    Doğan, Tunca; MacDougall, Alistair; Saidi, Rabie; Poggioli, Diego; Bateman, Alex; O’Donovan, Claire; Martin, Maria J.

    2016-01-01

    Motivation: Similarity-based methods have been widely used in order to infer the properties of genes and gene products containing little or no experimental annotation. New approaches that overcome the limitations of methods that rely solely upon sequence similarity are attracting increased attention. One of these novel approaches is to use the organization of the structural domains in proteins. Results: We propose a method for the automatic annotation of protein sequences in the UniProt Knowledgebase (UniProtKB) by comparing their domain architectures, classifying proteins based on the similarities and propagating functional annotation. The performance of this method was measured through a cross-validation analysis using the Gene Ontology (GO) annotation of a sub-set of UniProtKB/Swiss-Prot. The results demonstrate the effectiveness of this approach in detecting functional similarity with an average F-score: 0.85. We applied the method on nearly 55.3 million uncharacterized proteins in UniProtKB/TrEMBL resulted in 44 818 178 GO term predictions for 12 172 114 proteins. 22% of these predictions were for 2 812 016 previously non-annotated protein entries indicating the significance of the value added by this approach. Availability and implementation: The results of the method are available at: ftp://ftp.ebi.ac.uk/pub/contrib/martin/DAAC/. Contact: tdogan@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153729

  18. Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology

    PubMed Central

    Fontana, Paolo; Cestaro, Alessandro; Velasco, Riccardo; Formentin, Elide; Toppo, Stefano

    2009-01-01

    Background Large-scale sequencing projects have now become routine lab practice and this has led to the development of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means for this task. Methodology We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms) that is able to process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be obtained by different methods and in this work we have based ARGOT processing on BLAST results. Conclusions The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and coverage. PMID:19247487

  19. BioGPS: building your own mash-up of gene annotations and expression profiles

    PubMed Central

    Wu, Chunlei; Jin, Xuefeng; Tsueng, Ginger; Afrasiabi, Cyrus; Su, Andrew I.

    2016-01-01

    BioGPS (http://biogps.org) is a centralized gene-annotation portal that enables researchers to access distributed gene annotation resources. This article focuses on the updates to BioGPS since our last paper (2013 database issue). The unique features of BioGPS, compared to those of other gene portals, are its community extensibility and user customizability. Users contribute the gene-specific resources accessible from BioGPS (‘plugins’), which helps ensure that the resource collection is always up-to-date and that it will continue expanding over time (since the 2013 paper, 162 resources have been added, for a 34% increase in the number of resources available). BioGPS users can create their own collections of relevant plugins and save them as customized gene-report pages or ‘layouts’ (since the 2013 paper, 488 user-created layouts have been added, for a 22% increase in the number of layouts). In addition, we recently updated the most popular plugin, the ‘Gene expression/activity chart’, to include ∼6000 datasets (from ∼2000 datasets) and we enhanced user interactivity. We also added a new ‘gene list’ feature that allows users to save query results for future reference. PMID:26578587

  20. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes.

    PubMed

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  1. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    DOE PAGESBeta

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genesmore » and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary

  2. BioBuilder as a database development and functional annotation platform for proteins

    PubMed Central

    Navarro, J Daniel; Talreja, Naveen; Peri, Suraj; Vrushabendra, BM; Rashmi, BP; Padma, N; Surendranath, Vineeth; Jonnalagadda, Chandra Kiran; Kousthub, PS; Deshpande, Nandan; Shanker, K; Pandey, Akhilesh

    2004-01-01

    Background The explosion in biological information creates the need for databases that are easy to develop, easy to maintain and can be easily manipulated by annotators who are most likely to be biologists. However, deployment of scalable and extensible databases is not an easy task and generally requires substantial expertise in database development. Results BioBuilder is a Zope-based software tool that was developed to facilitate intuitive creation of protein databases. Protein data can be entered and annotated through web forms along with the flexibility to add customized annotation features to protein entries. A built-in review system permits a global team of scientists to coordinate their annotation efforts. We have already used BioBuilder to develop Human Protein Reference Database , a comprehensive annotated repository of the human proteome. The data can be exported in the extensible markup language (XML) format, which is rapidly becoming as the standard format for data exchange. Conclusions As the proteomic data for several organisms begins to accumulate, BioBuilder will prove to be an invaluable platform for functional annotation and development of customizable protein centric databases. BioBuilder is open source and is available under the terms of LGPL. PMID:15099404

  3. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    PubMed Central

    Reuveni, Eli; Ramensky, Vasily E; Gross, Cornelius

    2007-01-01

    Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J) has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci (<10 Mb) the identification of candidate functional DNA sequence changes remains challenging due to the high density of sequence variation between strains. Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs) that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at ). For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse

  4. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    PubMed Central

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  5. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus.

    PubMed

    Takahashi, Paula; Xavier, Danilo J; Evangelista, Adriane F; Manoel-Caetano, Fernanda S; Macedo, Claudia; Collares, Cristhianna V A; Foss-Freitas, Maria C; Foss, Milton C; Rassi, Diane M; Donadi, Eduardo A; Passos, Geraldo A; Sakamoto-Hojo, Elza T

    2014-04-15

    Type 1 diabetes mellitus (T1DM) results from an autoimmune attack against the insulin-producing pancreatic β-cells, leading to elimination of insulin production. The exact cause of this disorder is still unclear. Although the differential expression of microRNAs (miRNAs), small non-coding RNAs that control gene expression in a post-transcriptional manner, has been identified in many diseases, including T1DM, only scarce information exists concerning miRNA expression profile in T1DM. Thus, we employed the microarray technology to examine the miRNA expression profiles displayed by peripheral blood mononuclear cells (PBMCs) from T1DM patients compared with healthy subjects. Total RNA extracted from PBMCs from 11 T1DM patients and nine healthy subjects was hybridized onto Agilent human miRNA microarray slides (V3), 8x15K, and expression data were analyzed on R statistical environment. After applying the rank products statistical test, the receiver-operating characteristic (ROC) curves were generated and the areas under the ROC curves (AUC) were calculated. To examine the functions of the differentially expressed (p-value<0.01, percentage of false-positives <0.05) miRNAs that passed the AUC cutoff value ≥ 0.90, the database miRWalk was used to predict their potential targets, which were afterwards submitted to the functional annotation tool provided by the Database for Annotation, Visualization, and Integrated Discovery (DAVID), version 6.7, using annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We found 57 probes, corresponding to 44 different miRNAs (35 up-regulated and 9 down-regulated), that were differentially expressed in T1DM and passed the AUC threshold of 0.90. The hierarchical clustering analysis indicated the discriminatory power of those miRNAs, since they were able to clearly distinguish T1DM patients from healthy individuals. Target prediction indicated that 47 candidate genes for T1DM are potentially regulated by

  6. Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin.

    PubMed

    Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B

    2016-07-01

    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci. PMID:27321945

  7. Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD) modules. This allows to properly position their second domain, called "effector domain", to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called "moonlighting" transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators), we describe both established (and usually well affordable) as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome. PMID:27453771

  8. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic mode...

  9. A New Semantic Functional Similarity over Gene Ontology.

    PubMed

    Jeong, Jong Cheol; Chen, Xuewen

    2015-01-01

    Identifying functionally similar or closely related genes and gene products has significant impacts on biological and clinical studies as well as drug discovery. In this paper, we propose an effective and practically useful method measuring both gene and gene product similarity by integrating the topology of gene ontology, known functional domains and their functional annotations. The proposed method is comprehensively evaluated through statistical analysis of the similarities derived from sequence, structure and phylogenetic profiles, and clustering analysis of disease genes clusters. Our results show that the proposed method clearly outperforms other conventional methods. Furthermore, literature analysis also reveals that the proposed method is both statistically and biologically promising for identifying functionally similar genes or gene products. In particular, we demonstrate that the proposed functional similarity metric is capable of discoverying new disease related genes or gene products. PMID:26357220

  10. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation.

    PubMed

    Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Neumann, Anna; Korsching, Eberhard

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific

  11. Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    SciTech Connect

    Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O.; Barrero, Roberto A.; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A.; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; de Fatima Bonaldo, Maria; Bono Hidemasa; Bromberg, Susan K.; Brookes, Anthony J.; Bruford, Elspeth; Carninci Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; Gopinath, Gopal R.; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba Rie; et al.

    2004-01-15

    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4 percent of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5 percent of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for nonprotein-coding RNA

  12. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach

    PubMed Central

    2014-01-01

    Background Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. β-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. Results Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. Conclusions BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world. PMID:24773703

  13. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

    PubMed Central

    2012-01-01

    Background Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is

  14. Genome-wide functional annotation of Phomopsis longicolla isolate MSPL 10-6.

    PubMed

    Darwish, Omar; Li, Shuxian; Matthews, Benjamin; Alkharouf, Nadim

    2016-06-01

    Phomopsis seed decay of soybean is caused primarily by the seed-borne fungal pathogen Phomopsis longicolla (syn. Diaporthe longicolla). This disease severely decreases soybean seed quality, reduces seedling vigor and stand establishment, and suppresses yield. It is one of the most economically important soybean diseases. In this study we annotated the entire genome of P. longicolla isolate MSPL 10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome-wide functional annotation of a seed borne fungal pathogen in the Diaporthe-Phomopsis complex. The P. longicolla genome annotation will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean-fungal interactions. The genome annotation will also be a valuable resource for the research and agricultural communities. It will aid in the development of new control strategies for this pathogen. The annotations can be found from: http://bioinformatics.towson.edu/phomopsis_longicolla/download.html. NCBI accession number is: AYRD00000000. PMID:27222801

  15. UniqTag: Content-Derived Unique and Stable Identifiers for Gene Annotation

    PubMed Central

    Jackman, Shaun D.; Bohlmann, Joerg; Birol, İnanç

    2015-01-01

    When working on an ongoing genome sequencing and assembly project, it is rather inconvenient when gene identifiers change from one build of the assembly to the next. The gene labelling system described here, UniqTag, addresses this common challenge. UniqTag assigns a unique identifier to each gene that is a representative k-mer, a string of length k, selected from the sequence of that gene. Unlike serial numbers, these identifiers are stable between different assemblies and annotations of the same data without requiring that previous annotations be lifted over by sequence alignment. We assign UniqTag identifiers to ten builds of the Ensembl human genome spanning eight years to demonstrate this stability. The implementation of UniqTag in Ruby and an R package are available at https://github.com/sjackman/uniqtag sjackman/uniqtag. The R package is also available from CRAN: install.packages ("uniqtag"). Supplementary material and code to reproduce it is available at https://github.com/sjackman/uniqtag-paper. PMID:26020645

  16. An Annotated Bibliography of Literature Dealing with Brain Functions and Brain Growth.

    ERIC Educational Resources Information Center

    Kryder, James S.

    This document discusses the problem of teachers who teach primarily to the left hemisphere of the brain, not allowing the right-brain dominant student to expand his creative ability. It presents information about brain structure and function for educators. A glossary of 25 terms is provided with sources of the definitions. Annotations summarizing…

  17. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    PubMed Central

    Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.

    2012-01-01

    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921

  18. De Novo Assembly, Gene Annotation, and Marker Discovery in Stored-Product Pest Liposcelis entomophila (Enderlein) Using Transcriptome Sequences

    PubMed Central

    Wei, Dan-Dan; Chen, Er-Hu; Ding, Tian-Bo; Chen, Shi-Chun; Dou, Wei; Wang, Jin-Jun

    2013-01-01

    Background As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. Methodology/Principal Findings We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. Conclusions/Significance We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance

  19. Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus

    PubMed Central

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID

  20. Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus.

    PubMed

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID

  1. Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase.

    PubMed

    Gaudet, P; Lane, L; Fey, P; Bridge, A; Poux, S; Auchincloss, A; Axelsen, K; Braconi Quintaje, S; Boutet, E; Brown, P; Coudert, E; Datta, R S; de Lima, W C; de Oliveira Lima, T; Duvaud, S; Farriol-Mathis, N; Ferro Rojas, S; Feuermann, M; Gateau, A; Hinz, U; Hulo, C; James, J; Jimenez, S; Jungo, F; Keller, G; Lemercier, P; Lieberherr, D; Moinat, M; Nikolskaya, A; Pedruzzi, I; Rivoire, C; Roechert, B; Schneider, M; Stanley, E; Tognolli, M; Sjölander, K; Bougueleret, L; Chisholm, R L; Bairoch, A

    2009-01-01

    UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the 'Dicty annotation marathon', a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations. PMID:20157489

  2. Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase

    PubMed Central

    Gaudet, P.; Lane, L.; Fey, P.; Bridge, A.; Poux, S.; Auchincloss, A.; Axelsen, K.; Braconi Quintaje, S.; Boutet, E.; Brown, P.; Coudert, E.; Datta, R.S.; de Lima, W.C.; de Oliveira Lima, T.; Duvaud, S.; Farriol-Mathis, N.; Ferro Rojas, S.; Feuermann, M.; Gateau, A.; Hinz, U.; Hulo, C.; James, J.; Jimenez, S.; Jungo, F.; Keller, G.; Lemercier, P.; Lieberherr, D.; Moinat, M.; Nikolskaya, A.; Pedruzzi, I.; Rivoire, C.; Roechert, B.; Schneider, M.; Stanley, E.; Tognolli, M.; Sjölander, K.; Bougueleret, L.; Chisholm, R.L.; Bairoch, A.

    2009-01-01

    UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations. PMID:20157489

  3. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complimented by transcriptome information that will enhance genome assembly and annotation. Previously, we reported a transcriptome reference sequence using a 19X coverage of Sanger and 454-pyrosequencing dat...

  4. Annotation and re-sequencing of genes from de novo transcriptome assembly of Abies alba (Pinaceae)1

    PubMed Central

    Roschanski, Anna M.; Fady, Bruno; Ziegenhagen, Birgit; Liepelt, Sascha

    2013-01-01

    • Premise of the study: We present a protocol for the annotation of transcriptome sequence data and the identification of candidate genes therein using the example of the nonmodel conifer Abies alba. • Methods and Results: A normalized cDNA library was built from an A. alba seedling. The sequencing on a 454 platform yielded more than 1.5 million reads that were de novo assembled into 25149 contigs. Two complementary approaches were applied to annotate gene fragments that code for (1) well-known proteins and (2) proteins that are potentially adaptively relevant. Primer development and testing yielded 88 amplicons that could successfully be resequenced from genomic DNA. • Conclusions: The annotation workflow offers an efficient way to identify potential adaptively relevant genes from the large quantity of transcriptome sequence data. The primer set presented should be prioritized for single-nucleotide polymorphism detection in adaptively relevant genes in A. alba. PMID:25202477

  5. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data.

    PubMed

    Yue, Jia-Xing; Li, Kun-Lung; Yu, Jr-Kai

    2015-12-01

    The generation of germline cells is a critical process in the reproduction of multicellular organisms. Studies in animal models have identified a common repertoire of genes that play essential roles in primordial germ cell (PGC) formation. However, comparative studies also indicate that the timing and regulation of this core genetic program vary considerably in different animals, raising the intriguing questions regarding the evolution of PGC developmental mechanisms in metazoans. Cephalochordates (commonly called amphioxus or lancelets) represent one of the invertebrate chordate groups and can provide important information about the evolution of developmental mechanisms in the chordate lineage. In this study, we used genome and transcriptome data to identify germline-related genes in two distantly related cephalochordate species, Branchiostoma floridae and Asymmetron lucayanum. Branchiostoma and Asymmetron diverged more than 120 MYA, and the most conspicuous difference between them is their gonadal morphology. We used important germline developmental genes in several model animals to search the amphioxus genome and transcriptome dataset for conserved homologs. We also annotated the assembled transcriptome data using Gene Ontology (GO) terms to facilitate the discovery of putative genes associated with germ cell development and reproductive functions in amphioxus. We further confirmed the expression of 14 genes in developing oocytes or mature eggs using whole mount in situ hybridization, suggesting their potential functions in amphioxus germ cell development. The results of this global survey provide a useful resource for testing potential functions of candidate germline-related genes in cephalochordates and for investigating differences in gonad developmental mechanisms between Branchiostoma and Asymmetron species. PMID:25847029

  6. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

  7. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN

    PubMed Central

    KIM, DOKYOON; LUCAS, ANASTASIA; GLESSNER, JOSEPH; VERMA, SHEFALI S.; BRADFORD, YUKI; LI, RUOWANG; FRASE, ALEX T.; HAKONARSON, HAKON; PEISSIG, PEGGY; BRILLIANT, MURRAY; RITCHIE, MARYLYN D.

    2015-01-01

    Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter – a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record – total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy number changes, the more likely that one or more target genes that influence disease risk and phenotypic severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the

  8. GeneLook: a novel ab initio gene identification system suitable for automated annotation of prokaryotic sequences.

    PubMed

    Nishi, Tatsunari; Ikemura, Toshimichi; Kanaya, Shigehiko

    2005-02-14

    With the rapid increases in the amounts of sequence data for prokaryotic genomes, it has become important to develop systems for automated and accurate genome annotation. We present herein a novel ab initio gene identification system, GeneLook, that predicts protein-coding open reading frames (ORFs) with high sensitivity and specificity with no prior knowledge of the sequence composition. The system predicts protein-coding ORFs in two stages, seed ORF selection and main prediction. In the selection of reliable seed ORFs containing at least 200 codons, GeneLook predicts translation start sites and operon structures through searches for ribosome-binding sites and a novel operon prediction algorithm. The codon and nucleotide frequencies of seed ORFs are then used to determine values for two new coding-potential parameters for identification of protein-coding ORFs of at least 34 codons and for another parameter that improves the prediction accuracy for GC-rich genomes. In the main prediction, GeneLook uses these parameters to identify the most likely genes of a given minimal length. We assessed the performance of GeneLook with two indices, sensitivity and specificity that are defined as true positives (TP)/(TP+false negatives) and TP/(TP+false positives), respectively. This system predicted protein-coding ORFs for Escherichia coli and Bacillus subtilis with sensitivities of 96.5% and 96.2%, respectively, and specificities of 96.9% and 96.1%, respectively. The system also identified 94.1% of annotated genes of the Pseudomonas aeruginosa genome, which is GC-rich, with high specificity (97.2%). Furthermore, GeneLook identified protein-coding ORFs with high accuracy from a wide variety of prokaryotic genomes. PMID:15716020

  9. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    PubMed Central

    2012-01-01

    Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest. PMID:23036012

  10. Using The ENCODE Resource For Functional Annotation Of Genetic Variants

    PubMed Central

    Pazin, Michael J.

    2015-01-01

    Summary This article illustrates the use of the Encyclopedia of DNA Elements (ENCODE) resource to generate or refine hypotheses from genomic data on disease and other phenotypic traits. First, the goals and history of ENCODE and related epigenomics projects are reviewed. Second, the rationale for ENCODE and the major data types used by ENCODE are briefly described, as are some standard heuristics for their interpretation. Third, the use of the ENCODE resource is examined. Standard use cases for ENCODE, accessing the ENCODE resource, and accessing data from related projects are discussed. Finally, access to resources from ENCODE and related epigenomics projects are reviewed. (Although the focus of this article is the use of ENCODE data, some of the same approaches can be used with the data from other projects.) While this article is focused on the case of interpreting genetic variation data, essentially the same approaches can be used with the ENCODE resource, or with data from other projects, to interpret epigenomic and gene regulation data, with appropriate modification (Rakyan et al. 2011; Ng et al. 2012). Such approaches could allow investigators to use genomic methods to study environmental and stochastic processes, in addition to genetic processes. PMID:25762420