Science.gov

Sample records for functional genomic resources

  1. Web-Based Arabidopsis Functional and Structural Genomics Resources

    PubMed Central

    Lu, Yan; Last, Robert L.

    2008-01-01

    As plant research moves to a “post-genomic” era, many diverse internet resources become available to the international research community. Arabidopsis thaliana, because of its small size, rapid life cycle and simple genome, has been a model system for decades, with much research funding and many projects devoted to creation of functional and structural genomics resources. Different types of data, including genome, transcriptome, proteome, phenome, metabolome and ionome are stored in these resources. In this chapter, a variety of genomics resources are introduced, with simple descriptions of how some can be accessed by laboratory researchers via the internet. PMID:22303243

  2. Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics.

    PubMed

    Xiong, Jie; Lu, Yuming; Feng, Jinmei; Yuan, Dongxia; Tian, Miao; Chang, Yue; Fu, Chengjie; Wang, Guangying; Zeng, Honghui; Miao, Wei

    2013-01-01

    The ciliated protozoan Tetrahymena thermophila is a useful unicellular model organism for studies of eukaryotic cellular and molecular biology. Researches on T. thermophila have contributed to a series of remarkable basic biological principles. After the macronuclear genome was sequenced, substantial progress has been made in functional genomics research on T. thermophila, including genome-wide microarray analysis of the T. thermophila life cycle, a T. thermophila gene network analysis based on the microarray data and transcriptome analysis by deep RNA sequencing. To meet the growing demands for the Tetrahymena research community, we integrated these data to provide a public access database: Tetrahymena functional genomics database (TetraFGD). TetraFGD contains three major resources, including the RNA-Seq transcriptome, microarray and gene networks. The RNA-Seq data define gene structures and transcriptome, with special emphasis on exon-intron boundaries; the microarray data describe gene expression of 20 time points during three major stages of the T. thermophila life cycle; the gene network data identify potential gene-gene interactions of 15 049 genes. The TetraFGD provides user-friendly search functions that assist researchers in accessing gene models, transcripts, gene expression data and gene-gene relationships. In conclusion, the TetraFGD is an important functional genomic resource for researchers who focus on the Tetrahymena or other ciliates. Database URL: http://tfgd.ihb.ac.cn/ PMID:23482072

  3. AgBase: a functional genomics resource for agriculture

    PubMed Central

    McCarthy, Fiona M; Wang, Nan; Magee, G Bryce; Nanduri, Bindu; Lawrence, Mark L; Camon, Evelyn B; Barrell, Daniel G; Hill, David P; Dolan, Mary E; Williams, W Paul; Luthe, Dawn S; Bridges, Susan M; Burgess, Shane C

    2006-01-01

    Background Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural research communities are smaller with limited funding compared to many model organism communities. Description To facilitate systems biology in these traditionally agricultural species we have established "AgBase", a curated, web-accessible, public resource for structural and functional annotation of agricultural genomes. The AgBase database includes a suite of computational tools to use GO annotations. We use standardized nomenclature following the Human Genome Organization Gene Nomenclature guidelines and are currently functionally annotating chicken, cow and sheep gene products using the Gene Ontology (GO). The computational tools we have developed accept and batch process data derived from different public databases (with different accession codes), return all existing GO annotations, provide a list of products without GO annotation, identify potential orthologs, model functional genomics data using GO and assist proteomics analysis of ESTs and EST assemblies. Our journal database helps prevent redundant manual GO curation. We encourage and publicly acknowledge GO annotations from researchers and provide a service for researchers interested in GO and analysis of functional genomics data. Conclusion The AgBase database is the first database dedicated to functional genomics and systems biology analysis for agriculturally important species and their pathogens. We use experimental data to improve structural annotation of genomes and to functionally characterize gene products. AgBase is also

  4. AgBase: a functional genomics resource for agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural species and their pathogens have sequenced genomes and more are in progress. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural ...

  5. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  6. Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics.

    PubMed

    Fei, Zhangjun; Joung, Je-Gun; Tang, Xuemei; Zheng, Yi; Huang, Mingyun; Lee, Je Min; McQuinn, Ryan; Tieman, Denise M; Alba, Rob; Klee, Harry J; Giovannoni, James J

    2011-01-01

    Tomato Functional Genomics Database (TFGD) provides a comprehensive resource to store, query, mine, analyze, visualize and integrate large-scale tomato functional genomics data sets. The database is functionally expanded from the previously described Tomato Expression Database by including metabolite profiles as well as large-scale tomato small RNA (sRNA) data sets. Computational pipelines have been developed to process microarray, metabolite and sRNA data sets archived in the database, respectively, and TFGD provides downloads of all the analyzed results. TFGD is also designed to enable users to easily retrieve biologically important information through a set of efficient query interfaces and analysis tools, including improved array probe annotations as well as tools to identify co-expressed genes, significantly affected biological processes and biochemical pathways from gene expression data sets and miRNA targets, and to integrate transcript and metabolite profiles, and sRNA and mRNA sequences. The suite of tools and interfaces in TFGD allow intelligent data mining of recently released and continually expanding large-scale tomato functional genomics data sets. TFGD is available at http://ted.bti.cornell.edu. PMID:20965973

  7. The Xenopus ORFeome: A resource that enables functional genomics

    PubMed Central

    Grant, Ian M.; Balcha, Dawit; Hao, Tong; Shen, Yun; Trivedi, Prasad; Patrushev, Ilya; Fortriede, Joshua D.; Karpinka, John B.; Liu, Limin; Zorn, Aaron M.; Stukenberg, P. Todd; Hill, David E.; Gilchrist, Michael J.

    2015-01-01

    Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5′ and 3′ end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling. PMID:26391338

  8. The Xenopus ORFeome: A resource that enables functional genomics.

    PubMed

    Grant, Ian M; Balcha, Dawit; Hao, Tong; Shen, Yun; Trivedi, Prasad; Patrushev, Ilya; Fortriede, Joshua D; Karpinka, John B; Liu, Limin; Zorn, Aaron M; Stukenberg, P Todd; Hill, David E; Gilchrist, Michael J

    2015-12-15

    Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling. PMID:26391338

  9. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  10. Development and characterization of genomics resources for leafy spurge: A model perennial weed for functional genomics studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High throughput genomics approaches to study weed biology have so far been limited to a small number of research groups within the weed science community. In most cases, these groups have relied on heterologous approaches, since resources needed for functional genomics studies within desired species...

  11. Systematic functional genomics resource and annotation for poplar.

    PubMed

    Si, Jingna; Zhao, Xiyang; Zhao, Xinyin; Wu, Rongling

    2015-08-01

    Poplar, as a model species for forestry research, has many excellent characteristics. Studies on functional genes have provided the foundation, at the molecular level, for improving genetic traits and cultivating elite lines. Although studies on functional genes have been performed for many years, large amounts of experimental data remain scattered across various reports and have not been unified via comprehensive statistical analysis. This problem can be addressed by employing bioinformatic methodology and technology to gather and organise data to construct a Poplar Functional Gene Database, containing data on 207 poplar functional genes. As an example, the authors investigated genes of Populus euphratica involved in the response to salt stress. Four small cDNA libraries were constructed and treated with 300 mM NaCl or pure water for 6 and 24 h. Using high-throughput sequencing, they identified conserved and novel miRNAs that were differentially expressed. Target genes were next predicted and detailed functional information derived using the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway analysis. This information provides a primary visual schema allowing us to understand the dynamics of the regulatory gene network responding to salt stress in Populus. PMID:26243833

  12. An Update on Soybean Functional Genomics and Microarray Resources for Gene Discovery and Crop Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA microarrays are powerful tools to analyze the expression patterns of thousands of genes simultaneously. We review recent soybean genomics projects that have produced public-sector resources for this important legume crop. As part of the NSF-sponsored “Soybean Functional Genomics Program”, we hav...

  13. Comprehensive Resources for Tomato Functional Genomics Based on the Miniature Model Tomato Micro-Tom

    PubMed Central

    Matsukura, C; Aoki, K; Fukuda, N; Mizoguchi, T; Asamizu, E; Saito, T; Shibata, D; Ezura, H

    2008-01-01

    Tomato (Solanum lycopersicum L., Solanaceae) is an excellent model plant for genomic research of solanaceous plants, as well as for studying the development, ripening, and metabolism of fruit. In 2003, the International Solanaceae Project (SOL, www.sgn.cornell.edu ) was initiated by members from more than 30 countries, and the tomato genome-sequencing project is currently underway. Genome sequence of tomato obtained by this project will provide a firm foundation for forthcoming genomic studies such as the comparative analysis of genes conserved among the Solanaceae species and the elucidation of the functions of unknown tomato genes. To exploit the wealth of the genome sequence information, there is an urgent need for novel resources and analytical tools for tomato functional genomics. Here, we present an overview of the development of genetic and genomic resources of tomato in the last decade, with a special focus on the activities of Japan SOL and the National Bio-Resource Project in the development of functional genomic resources of a model cultivar, Micro-Tom. PMID:19506732

  14. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  15. The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics

    PubMed Central

    Pipes, Lenore; Li, Sheng; Bozinoski, Marjan; Palermo, Robert; Peng, Xinxia; Blood, Phillip; Kelly, Sara; Weiss, Jeffrey M.; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Zumbo, Paul; Chen, Ronghua; Schroth, Gary P.; Mason, Christopher E.; Katze, Michael G.

    2013-01-01

    RNA-based next-generation sequencing (RNA-Seq) provides a tremendous amount of new information regarding gene and transcript structure, expression and regulation. This is particularly true for non-coding RNAs where whole transcriptome analyses have revealed that the much of the genome is transcribed and that many non-coding transcripts have widespread functionality. However, uniform resources for raw, cleaned and processed RNA-Seq data are sparse for most organisms and this is especially true for non-human primates (NHPs). Here, we describe a large-scale RNA-Seq data and analysis infrastructure, the NHP reference transcriptome resource (http://nhprtr.org); it presently hosts data from12 species of primates, to be expanded to 15 species/subspecies spanning great apes, old world monkeys, new world monkeys and prosimians. Data are collected for each species using pools of RNA from comparable tissues. We provide data access in advance of its deposition at NCBI, as well as browsable tracks of alignments against the human genome using the UCSC genome browser. This resource will continue to host additional RNA-Seq data, alignments and assemblies as they are generated over the coming years and provide a key resource for the annotation of NHP genomes as well as informing primate studies on evolution, reproduction, infection, immunity and pharmacology. PMID:23203872

  16. AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and Microsporidia species

    PubMed Central

    Aurrecoechea, Cristina; Barreto, Ana; Brestelli, John; Brunk, Brian P.; Caler, Elisabet V.; Fischer, Steve; Gajria, Bindu; Gao, Xin; Gingle, Alan; Grant, Greg; Harb, Omar S.; Heiges, Mark; Iodice, John; Kissinger, Jessica C.; Kraemer, Eileen T.; Li, Wei; Nayak, Vishal; Pennington, Cary; Pinney, Deborah F.; Pitts, Brian; Roos, David S.; Srinivasamoorthy, Ganesh; Stoeckert, Christian J.; Treatman, Charles; Wang, Haiming

    2011-01-01

    AmoebaDB (http://AmoebaDB.org) and MicrosporidiaDB (http://MicrosporidiaDB.org) are new functional genomic databases serving the amoebozoa and microsporidia research communities, respectively. AmoebaDB contains the genomes of three Entamoeba species (E. dispar, E. invadens and E. histolityca) and microarray expression data for E. histolytica. MicrosporidiaDB contains the genomes of Encephalitozoon cuniculi, E. intestinalis and E. bieneusi. The databases belong to the National Institute of Allergy and Infectious Diseases (NIAID) funded EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center family of integrated databases and assume the same architectural and graphical design as other EuPathDB resources such as PlasmoDB and TriTrypDB. Importantly they utilize the graphical strategy builder that affords a database user the ability to ask complex multi-data-type questions with relative ease and versatility. Genomic scale data can be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs, protein characteristics, phylogenetic relationships and functional data such as transcript (microarray and EST evidence) and protein expression data. Search strategies can be saved within a user’s profile for future retrieval and may also be shared with other researchers using a unique strategy web address. PMID:20974635

  17. A genome scale resource for in vivo tag-based protein function exploration in C. elegans

    PubMed Central

    Sarov, Mihail; Murray, John; Schanze, Kristin; Pozniakovski, Andrei; Niu, Wei; Angermann, Karolin; Hasse, Susanne; Rupprecht, Michaela; Vinis, Elisabeth; Tinney, Matthew; Preston, Elicia; Zinke, Andrea; Enst, Susanne; Teichgraber, Tina; Janette, Judith; Reis, Kadri; Janosch, Stephan; Schloissnig, Siegfried; Ejsmont, Radoslaw K.; Slightam, Cindie; Xu, Xiao; Kim, Stuart K.; Reinke, Valerie; Stewart, A. Francis; Snyder, Michael; Waterston, Robert; Hyman, Anthony A.

    2012-01-01

    Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in Biology. To enable systematic protein function interrogation in a multicelluar context, we built a genome-scale transgenic platform for in vivo expression of fluorescent and affinity tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering and next generation sequencing to generate a resource of 14637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins PMID:22901814

  18. Genomic Resources for Gene Discovery, Functional Genome Annotation, and Evolutionary Studies of Maize and Its Close Relatives

    PubMed Central

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S.S.; Kudrna, David A.; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A.; Luo, Meizhong

    2013-01-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics. PMID:24037269

  19. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    PubMed

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available. PMID:24661210

  20. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  1. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  2. The Eukaryotic Pathogen Databases: a functional genomic resource integrating data from human and veterinary parasites.

    PubMed

    Harb, Omar S; Roos, David S

    2015-01-01

    Over the past 20 years, advances in high-throughput biological techniques and the availability of computational resources including fast Internet access have resulted in an explosion of large genome-scale data sets "big data." While such data are readily available for download and personal use and analysis from a variety of repositories, often such analysis requires access to seldom-available computational skills. As a result a number of databases have emerged to provide scientists with online tools enabling the interrogation of data without the need for sophisticated computational skills beyond basic knowledge of Internet browser utility. This chapter focuses on the Eukaryotic Pathogen Databases (EuPathDB: http://eupathdb.org) Bioinformatic Resource Center (BRC) and illustrates some of the available tools and methods. PMID:25388105

  3. The Homeodomain Resource: a comprehensive collection of sequence, structure, interaction, genomic and functional information on the homeodomain protein family

    PubMed Central

    Moreland, R. Travis; Ryan, Joseph F.; Pan, Christopher; Baxevanis, Andreas D.

    2009-01-01

    The Homeodomain Resource is a curated collection of sequence, structure, interaction, genomic and functional information on the homeodomain family. The current version builds upon previous versions by the addition of new, complete sets of homeodomain sequences from fully sequenced genomes, the expansion of existing curated homeodomain information and the improvement of data accessibility through better search tools and more complete data integration. This release contains 1534 full-length homeodomain-containing sequences, 93 experimentally derived homeodomain structures, 101 homeodomain protein–protein interactions, 107 homeodomain DNA-binding sites and 206 homeodomain proteins implicated in human genetic disorders. Database URL: The Homeodomain Resource is freely available and can be accessed at http://research.nhgri.nih.gov/homeodomain/ PMID:20157477

  4. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans.

    PubMed

    Sarov, Mihail; Murray, John I; Schanze, Kristin; Pozniakovski, Andrei; Niu, Wei; Angermann, Karolin; Hasse, Susanne; Rupprecht, Michaela; Vinis, Elisabeth; Tinney, Matthew; Preston, Elicia; Zinke, Andrea; Enst, Susanne; Teichgraber, Tina; Janette, Judith; Reis, Kadri; Janosch, Stephan; Schloissnig, Siegfried; Ejsmont, Radoslaw K; Slightam, Cindie; Xu, Xiao; Kim, Stuart K; Reinke, Valerie; Stewart, A Francis; Snyder, Michael; Waterston, Robert H; Hyman, Anthony A

    2012-08-17

    Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins. PMID:22901814

  5. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  6. Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica

    PubMed Central

    Wu, Guo-Zhang; Shi, Qiu-Ming; Niu, Ya; Xing, Mei-Qing; Xue, Hong-Wei

    2008-01-01

    The Shanghai RAPESEED Database (RAPESEED, http://rapeseed.plantsignal.cn/) was created to provide the solid platform for functional genomics studies of oilseed crops with the emphasis on seed development and fatty acid metabolism. The RAPESEED includes the resource of 8462 unique ESTs, of which 3526 clones are with full length cDNA; the expression profiles of 8095 genes and the Serial Analysis of Gene Expression (SAGE, 23 895 unique tags) and tag-to-gene data during seed development. In addition, a total of ∼14 700 M3 mutant populations were generated by ethylmethanesulfonate (EMS) mutagenesis and related seed quality information was determined using the Foss NIR System. Further, the TILLING (Targeting Induced Local Lesions IN Genomes) platform was established based on the generated EMS mutant population. The relevant information was collected in RAPESEED database, which can be searched through keywords, nucleotide or protein sequences, or seed quality parameters, and downloaded. PMID:17916574

  7. Gramene 2013: Comparative plant genomics resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework fo...

  8. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  9. Panzea: A Database and Resource for Molecular and Functional Diversity in the Maize Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize, a classical model for genetic studies, is an important agronomic crop, and the genome is known to contain many natural differences in the DNA between different strains. On average, two randomly chosen maize lines have an average of one single nucleotide polymorphism (SNP) every ~100 bp; this...

  10. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics.

    PubMed

    Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav

    2015-01-01

    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. PMID:26102527

  11. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics

    PubMed Central

    Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav

    2015-01-01

    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI: http://dx.doi.org/10.7554/eLife.07103.001 PMID:26102527

  12. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions

    PubMed Central

    2013-01-01

    Background The moss Physcomitrella patens as a model species provides an important reference for early-diverging lineages of plants and the release of the genome in 2008 opened the doors to genome-wide studies. The usability of a reference genome greatly depends on the quality of the annotation and the availability of centralized community resources. Therefore, in the light of accumulating evidence for missing genes, fragmentary gene structures, false annotations and a low rate of functional annotations on the original release, we decided to improve the moss genome annotation. Results Here, we report the complete moss genome re-annotation (designated V1.6) incorporating the increased transcript availability from a multitude of developmental stages and tissue types. We demonstrate the utility of the improved P. patens genome annotation for comparative genomics and new extensions to the cosmoss.org resource as a central repository for this plant “flagship” genome. The structural annotation of 32,275 protein-coding genes results in 8387 additional loci including 1456 loci with known protein domains or homologs in Plantae. This is the first release to include information on transcript isoforms, suggesting alternative splicing events for at least 10.8% of the loci. Furthermore, this release now also provides information on non-protein-coding loci. Functional annotations were improved regarding quality and coverage, resulting in 58% annotated loci (previously: 41%) that comprise also 7200 additional loci with GO annotations. Access and manual curation of the functional and structural genome annotation is provided via the http://www.cosmoss.org model organism database. Conclusions Comparative analysis of gene structure evolution along the green plant lineage provides novel insights, such as a comparatively high number of loci with 5’-UTR introns in the moss. Comparative analysis of functional annotations reveals expansions of moss house-keeping and metabolic genes

  13. The CATH database: an extended protein family resource for structural and functional genomics

    PubMed Central

    Pearl, F. M. G.; Bennett, C. F.; Bray, J. E.; Harrison, A. P.; Martin, N.; Shepherd, A.; Sillitoe, I.; Thornton, J.; Orengo, C. A.

    2003-01-01

    The CATH database of protein domain structures (http://www.biochem.ucl.ac.uk/bsm/cath_new) currently contains 34 287 domain structures classified into 1383 superfamilies and 3285 sequence families. Each structural family is expanded with domain sequence relatives recruited from GenBank using a variety of efficient sequence search protocols and reliable thresholds. This extended resource, known as the CATH-protein family database (CATH-PFDB) contains a total of 310 000 domain sequences classified into 26 812 sequence families. New sequence search protocols have been designed, based on these intermediate sequence libraries, to allow more regular updating of the classification. Further developments include the adaptation of a recently developed method for rapid structure comparison, based on secondary structure matching, for domain boundary assignment. The philosophy behind CATHEDRAL is the recognition of recurrent folds already classified in CATH. Benchmarking of CATHEDRAL, using manually validated domain assignments, demonstrated that 43% of domains boundaries could be completely automatically assigned. This is an improvement on a previous consensus approach for which only 10–20% of domains could be reliably processed in a completely automated fashion. Since domain boundary assignment is a significant bottleneck in the classification of new structures, CATHEDRAL will also help to increase the frequency of CATH updates. PMID:12520050

  14. Fungal genome resources at NCBI.

    PubMed

    Robbertse, B; Tatusova, T

    2011-09-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  15. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

    PubMed

    Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S

    2014-07-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599

  16. Genomics and Bioinformatics Resources for Crop Improvement

    PubMed Central

    Mochida, Keiichi; Shinozaki, Kazuo

    2010-01-01

    Recent remarkable innovations in platforms for omics-based research and application development provide crucial resources to promote research in model and applied plant species. A combinatorial approach using multiple omics platforms and integration of their outcomes is now an effective strategy for clarifying molecular systems integral to improving plant productivity. Furthermore, promotion of comparative genomics among model and applied plants allows us to grasp the biological properties of each species and to accelerate gene discovery and functional analyses of genes. Bioinformatics platforms and their associated databases are also essential for the effective design of approaches making the best use of genomic resources, including resource integration. We review recent advances in research platforms and resources in plant omics together with related databases and advances in technology. PMID:20208064

  17. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  18. The Anadara trapezia transcriptome: a resource for molluscan physiological genomics.

    PubMed

    Prentis, Peter J; Pavasovic, Ana

    2014-12-01

    In this study we undertook deep sequencing of the blood cockle, Anadara trapezia, transcriptome to generate genomic resources for future functional genomics analyses. Over 27 million high quality paired end reads were assembled into 75024 contigs. Of these contigs, 29013 (38.7%) received significant BLASTx hits and gene ontology (GO) terms were assigned to 13718 of these sequences. This resource will facilitate physiological genomic studies to test the gene expression response of A. trapezia to various environmental stresses. PMID:25151889

  19. Genomic resources in fruit plants: an assessment of current status.

    PubMed

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants. PMID:24649925

  20. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  1. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  2. Tomato functional genomics database (TFGD): a comprehensive collection and analysis package for tomato functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato Functional Genomics Database (TFGD; http://ted.bti.cornell.edu) provides a comprehensive systems biology resource to store, mine, analyze, visualize and integrate large-scale tomato functional genomics datasets. The database is expanded from the previously described Tomato Expression Database...

  3. Gramene 2016: comparative plant genomics and pathway resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the data...

  4. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome. PMID:27151873

  5. Xenbase: a Xenopus biology and genomics resource

    PubMed Central

    Bowes, Jeff B.; Snyder, Kevin A.; Segerdell, Erik; Gibb, Ross; Jarabek, Chris; Noumen, Etienne; Pollet, Nicolas; Vize, Peter D.

    2008-01-01

    Xenbase (www.xenbase.org) is a model organism database integrating a diverse array of biological and genomic data on the frogs, Xenopus laevis and Xenopus (Silurana) tropicalis. Data is collected from other databases, high-throughput screens and the scientific literature and integrated into a number of database modules covering subjects such as community, literature, gene and genomic analysis. Gene pages are automatically assembled from data piped from the Entrez Gene, Gurdon Institute, JGI, Metazome, MGI, OMIM, PubMed, Unigene, Zfin, commercial suppliers and others. These data are then supplemented with in-house annotation. Xenbase has implemented the Gbrowse genome browser and also provides a BLAST service that allows users to specifically search either laevis or tropicalis DNA or protein targets. A table of Xenopus gene synonyms has been implemented and allows the genome, genes, publications and high-throughput gene expression data to be seamlessly integrated with other Xenopus data and to external database resources, making the wealth of developmental and functional data from the frog available to the broader research community. PMID:17984085

  6. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic mode...

  7. Genomics and functional genomics with haloarchaea.

    PubMed

    Soppa, J; Baumann, A; Brenneis, M; Dambeck, M; Hering, O; Lange, C

    2008-09-01

    The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed. PMID:18493745

  8. Gramene: a growing plant comparative genomics resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (www.gramene.org) is a curated genetic, genomic and comparative genome analysis resource for the major crop species, such as rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project, with all data and software freely downloadable through the ftp site ...

  9. Resources | Office of Cancer Genomics

    Cancer.gov

    OCG provides a variety of scientific and educational resources for both cancer researchers and members of the general public. These resources are divided into the following types: OCG-Supported Resources: Tools, databases, and reagents generated by initiated and completed OCG programs for researchers, educators, and students. (Note: Databases for current OCG programs are available through program-specific data matrices)

  10. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  11. Functional Genomics Tools for Papaya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the genome of papaya (Carica papaya L.) sequenced, the study of gene function is becoming an increasing priority. Our research is to develop an RNA-induced gene silencing tool for the study of functional genomics in papaya. We employed agrobacterium leaf infiltration to induce PTGS in '-glucuro...

  12. The coffee genome hub: a resource for coffee genomes

    PubMed Central

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  13. The coffee genome hub: a resource for coffee genomes.

    PubMed

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  14. New Genomic Resources for Orchardgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the initial requirements of utilizing genomic approaches in plant improvement is the availability of DNA sequence information. Toward the goal of generating sequence information for forage and pasture grasses, we are developing an EST library from orchardgrass, or cocksfoot (Dactylis glomera...

  15. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    PubMed

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes. PMID:26519405

  16. Phenotypic and genomic analysis of a fast neutron mutant population resource in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. We utilized fast neutron radiation to induce deletion mutations in the soybean genome and phenotypically screened the resulting population. We exposed approxim...

  17. Genomic and Breeding Resources of the Euphorbia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection of a limited number of model weeds and development of genomic-based tools and resources will facilitate studies on the ecology, biology, physiology and development of weedy species. Such studies will help answer fundamental questions of concern to weed scientists. However, to ensure the we...

  18. Genome-scale resources for Thermoanaerobacterium saccharolyticum

    DOE PAGESBeta

    Currie, Devin H.; Raman, Babu; Gowen, Christopher M.; Tschaplinski, Timothy J.; Land, Miriam L.; Brown, Steven D.; Covalla, Sean; Klingeman, Dawn Marie; Yang, Zamin Koo; Engle, Nancy L.; et al

    2015-06-26

    Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. For this research, a major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation.

  19. Developing genomic resources for the apiaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Apiaceae family includes carrot, celery, cilantro, dill, fennel and numerous other spice and medicinal crops. Carrot is the most economically important member of the Apiaceae with an annual value of $600 M in the United States alone. There are few genomic resources for carrot or other Apiaceae, ...

  20. Gramene 2016: comparative plant genomics and pathway resources

    PubMed Central

    Tello-Ruiz, Marcela K.; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M.; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A.; Huerta, Laura; Keays, Maria; Tang, Y. Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J.; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803

  1. Gramene 2016: comparative plant genomics and pathway resources.

    PubMed

    Tello-Ruiz, Marcela K; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A; Huerta, Laura; Keays, Maria; Tang, Y Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803

  2. Genomic resource development for shellfish of conservation concern.

    PubMed

    Timmins-Schiffman, Emma B; Friedman, Carolyn S; Metzger, Dave C; White, Samuel J; Roberts, Steven B

    2013-03-01

    Effective conservation of threatened species depends on the ability to assess organism physiology and population demography. To develop genomic resources to better understand the dynamics of two ecologically vulnerable species in the Pacific Northwest of the United States, larval transcriptomes were sequenced for the pinto abalone, Haliotis kamtschatkana kamtschatkana, and the Olympia oyster, Ostrea lurida. Based on comparative species analysis the Ostrea lurida transcriptome (41 136 contigs) is relatively complete. These transcriptomes represent the first significant contribution to genomic resources for both species. Genes are described based on biological function with particular attention to those associated with temperature change, oxidative stress and immune function. In addition, transcriptome-derived genetic markers are provided. Together, these resources provide valuable tools for future studies aimed at conservation of Haliotis kamtschatkana kamtschatkana, Ostrea lurida and related species. PMID:23280275

  3. Human genome protein function database.

    PubMed Central

    Sorenson, D. K.

    1991-01-01

    A database which focuses on the normal functions of the currently-known protein products of the Human Genome was constructed. Information is stored as text, figures, tables, and diagrams. The program contains built-in functions to modify, update, categorize, hypertext, search, create reports, and establish links to other databases. The semi-automated categorization feature of the database program was used to classify these proteins in terms of biomedical functions. PMID:1807638

  4. Reconciling resource utilization and resource selection functions.

    PubMed

    Hooten, Mevin B; Hanks, Ephraim M; Johnson, Devin S; Alldredge, Mat W

    2013-11-01

    1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error. PMID:23574332

  5. Reconciling resource utilization and resource selection functions

    USGS Publications Warehouse

    Hooten, Mevin B.; Hanks, Ephraim M.; Johnson, Devin S.; Alldredge, Mat W.

    2013-01-01

    Summary: 1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error.

  6. Development of chloroplast genomic resources for Cynara.

    PubMed

    Curci, Pasquale L; De Paola, Domenico; Sonnante, Gabriella

    2016-03-01

    In this study, new chloroplast (cp) resources were developed for the genus Cynara, using whole cp genomes from 20 genotypes, by means of high-throughput sequencing technologies. Our target species included seven globe artichokes, two cultivated cardoons, eight wild artichokes, and three other wild Cynara species (C. baetica, C. cornigera and C. syriaca). One complete cp genome was isolated using short reads from a whole-genome sequencing project, while the others were obtained by means of long-range PCR, for which primer pairs are provided here. A de novo assembly strategy combined with a reference-based assembly allowed us to reconstruct each cp genome. Comparative analyses among the newly sequenced genotypes and two additional Cynara cp genomes ('Brindisino' artichoke and C. humilis) retrieved from public databases revealed 126 parsimony informative characters and 258 singletons in Cynara, for a total of 384 variable characters. Thirty-nine SSR loci and 34 other INDEL events were detected. After data analysis, 37 primer pairs for SSR amplification were designed, and these molecular markers were subsequently validated in our Cynara genotypes. Phylogenetic analysis based on all cp variable characters provided the best resolution when compared to what was observed using only parsimony informative characters, or only short 'variable' cp regions. The evaluation of the molecular resources obtained from this study led us to support the 'super-barcode' theory and consider the total cp sequence of Cynara as a reliable and valuable molecular marker for exploring species diversity and examining variation below the species level. PMID:26354522

  7. MycoCosm, an Integrated Fungal Genomics Resource

    SciTech Connect

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  8. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  9. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    PubMed Central

    Simmons, Shaneka S.; Isokpehi, Raphael D.; Brown, Shyretha D.; McAllister, Donee L.; Hall, Charnia C.; McDuffy, Wanaki M.; Medley, Tamara L.; Udensi, Udensi K.; Rajnarayanan, Rajendram V.; Ayensu, Wellington K.; Cohly, Hari H.P.

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  10. Kiwifruit Information Resource (KIR): a comparative platform for kiwifruit genomics.

    PubMed

    Yue, Junyang; Liu, Jian; Ban, Rongjun; Tang, Wei; Deng, Lin; Fei, Zhangjun; Liu, Yongsheng

    2015-01-01

    The Kiwifruit Information Resource (KIR) is dedicated to maintain and integrate comprehensive datasets on genomics, functional genomics and transcriptomics of kiwifruit (Actinidiaceae). KIR serves as a central access point for existing/new genomic and genetic data. KIR also provides researchers with a variety of visualization and analysis tools. Current developments include the updated genome structure of Actinidia chinensis cv. Hongyang and its newest genome annotation, putative transcripts, gene expression, physical markers of genetic traits as well as relevant publications based on the latest genome assembly. Nine thousand five hundred and forty-seven new transcripts are detected and 21 132 old transcripts are changed. At the present release, the next-generation transcriptome sequencing data has been incorporated into gene models and splice variants. Protein-protein interactions are also identified based on experimentally determined orthologous interactions. Furthermore, the experimental results reported in peer-reviewed literature are manually extracted and integrated within a well-developed query page. In total, 122 identifications are currently associated, including commonly used gene names and symbols. All KIR datasets are helpful to facilitate a broad range of kiwifruit research topics and freely available to the research community. Database URL: http://bdg.hfut.edu.cn/kir/index.html. PMID:26656885

  11. Kiwifruit Information Resource (KIR): a comparative platform for kiwifruit genomics

    PubMed Central

    Yue, Junyang; Liu, Jian; Ban, Rongjun; Tang, Wei; Deng, Lin; Fei, Zhangjun; Liu, Yongsheng

    2015-01-01

    The Kiwifruit Information Resource (KIR) is dedicated to maintain and integrate comprehensive datasets on genomics, functional genomics and transcriptomics of kiwifruit (Actinidiaceae). KIR serves as a central access point for existing/new genomic and genetic data. KIR also provides researchers with a variety of visualization and analysis tools. Current developments include the updated genome structure of Actinidia chinensis cv. Hongyang and its newest genome annotation, putative transcripts, gene expression, physical markers of genetic traits as well as relevant publications based on the latest genome assembly. Nine thousand five hundred and forty-seven new transcripts are detected and 21 132 old transcripts are changed. At the present release, the next-generation transcriptome sequencing data has been incorporated into gene models and splice variants. Protein–protein interactions are also identified based on experimentally determined orthologous interactions. Furthermore, the experimental results reported in peer-reviewed literature are manually extracted and integrated within a well-developed query page. In total, 122 identifications are currently associated, including commonly used gene names and symbols. All KIR datasets are helpful to facilitate a broad range of kiwifruit research topics and freely available to the research community. Database URL: http://bdg.hfut.edu.cn/kir/index.html. PMID:26656885

  12. Floral gene resources from basal angiosperms for comparative genomics research

    PubMed Central

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and

  13. MorusDB: a resource for mulberry genomics and genome biology

    PubMed Central

    Li, Tian; Qi, Xiwu; Zeng, Qiwei; Xiang, Zhonghuai; He, Ningjia

    2014-01-01

    Mulberry is an important cultivated plant that has received the attention of biologists interested in sericulture and plant–insect interaction. Morus notabilis, a wild mulberry species with a minimal chromosome number is an ideal material for whole-genome sequencing and assembly. The genome and transcriptome of M. notabilis were sequenced and analyzed. In this article, a web-based and open-access database, the Morus Genome Database (MorusDB), was developed to enable easy-to-access and data mining. The MorusDB provides an integrated data source and an easy accession of mulberry large-scale genomic sequencing and assembly, predicted genes and functional annotations, expressed sequence tags (ESTs), transposable elements (TEs), Gene Ontology (GO) terms, horizontal gene transfers between mulberry and silkworm and ortholog and paralog groups. Transcriptome sequencing data for M. notabilis root, leaf, bark, winter bud and male flower can also be searched and downloaded. Furthermore, MorusDB provides an analytical workbench with some built-in tools and pipelines, such as BLAST, Search GO, Mulberry GO and Mulberry GBrowse, to facilitate genomic studies and comparative genomics. The MorusDB provides important genomic resources for scientists working with mulberry and other Moraceae species, which include many important fruit crops. Designed as a basic platform and accompanied by the SilkDB, MorusDB strives to be a comprehensive platform for the silkworm–mulberry interaction studies. Database URL: http://morus.swu.edu.cn/morusdb. PMID:24923822

  14. Success stories in genomic medicine from resource-limited countries.

    PubMed

    Mitropoulos, Konstantinos; Al Jaibeji, Hayat; Forero, Diego A; Laissue, Paul; Wonkam, Ambroise; Lopez-Correa, Catalina; Mohamed, Zahurin; Chantratita, Wasun; Lee, Ming Ta Michael; Llerena, Adrian; Brand, Angela; Ali, Bassam R; Patrinos, George P

    2015-01-01

    In recent years, the translation of genomic discoveries into mainstream medical practice and public health has gained momentum, facilitated by the advent of new technologies. However, there are often major discrepancies in the pace of implementation of genomic medicine between developed and developing/resource-limited countries. The main reason does not only lie in the limitation of resources but also in the slow pace of adoption of the new findings and the poor understanding of the potential that this new discipline offers to rationalize medical diagnosis and treatment. Here, we present and critically discuss examples from the successful implementation of genomic medicine in resource-limited countries, focusing on pharmacogenomics, genome informatics, and public health genomics, emphasizing in the latter case genomic education, stakeholder analysis, and economics in pharmacogenomics. These examples can be considered as model cases and be readily replicated for the wide implementation of pharmacogenomics and genomic medicine in other resource-limited environments. PMID:26081768

  15. Functional Insights from Structural Genomics

    SciTech Connect

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  16. Genomic resources in mungbean for future breeding programs

    PubMed Central

    Kim, Sue K.; Nair, Ramakrishnan M.; Lee, Jayern; Lee, Suk-Ha

    2015-01-01

    Among the legume family, mungbean (Vigna radiata) has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A) and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata) has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement. PMID:26322067

  17. GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes.

    PubMed

    Kim, Mara; Cooper, Brian A; Venkat, Rohit; Phillips, Julie B; Eidem, Haley R; Hirbo, Jibril; Nutakki, Sashank; Williams, Scott M; Muglia, Louis J; Capra, J Anthony; Petren, Kenneth; Abbot, Patrick; Rokas, Antonis; McGary, Kriston L

    2016-01-01

    Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy. PMID:26567549

  18. GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes

    PubMed Central

    Kim, Mara; Cooper, Brian A.; Venkat, Rohit; Phillips, Julie B.; Eidem, Haley R.; Hirbo, Jibril; Nutakki, Sashank; Williams, Scott M.; Muglia, Louis J.; Capra, J. Anthony; Petren, Kenneth; Abbot, Patrick; Rokas, Antonis; McGary, Kriston L.

    2016-01-01

    Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy. PMID:26567549

  19. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  20. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics

    PubMed Central

    Rai, Aswathy N.; Epperson, William B.; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches. PMID:26526746

  1. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics.

    PubMed

    Rai, Aswathy N; Epperson, William B; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches. PMID:26526746

  2. Update on RefSeq microbial genomes resources

    PubMed Central

    Tatusova, Tatiana; Ciufo, Stacy; Federhen, Scott; Fedorov, Boris; McVeigh, Richard; O'Neill, Kathleen; Tolstoy, Igor; Zaslavsky, Leonid

    2015-01-01

    NCBI RefSeq genome collection http://www.ncbi.nlm.nih.gov/genome represents all three major domains of life: Eukarya, Bacteria and Archaea as well as Viruses. Prokaryotic genome sequences are the most rapidly growing part of the collection. During the year of 2014 more than 10 000 microbial genome assemblies have been publicly released bringing the total number of prokaryotic genomes close to 30 000. We continue to improve the quality and usability of the microbial genome resources by providing easy access to the data and the results of the pre-computed analysis, and improving analysis and visualization tools. A number of improvements have been incorporated into the Prokaryotic Genome Annotation Pipeline. Several new features have been added to RefSeq prokaryotic genomes data processing pipeline including the calculation of genome groups (clades) and the optimization of protein clusters generation using pan-genome approach. PMID:25510495

  3. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource. PMID:26434392

  4. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  5. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max (L.) Merrill) genome. Approximately 120,000 soybea...

  6. Genomic resources and their influence on the detection of the signal of positive selection in genome scans.

    PubMed

    Manel, S; Perrier, C; Pratlong, M; Abi-Rached, L; Paganini, J; Pontarotti, P; Aurelle, D

    2016-01-01

    Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful, for example, in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genome sequences are also becoming increasingly available, allowing better processing of short-read data, offering physical localization of variants, and improving haplotype reconstruction and data imputation. Ultimately, genome sequences are also becoming the raw material for selection inferences. Here, we discuss how the increasing availability of such genomic resources, notably genome sequences, influences the detection of signals of selection. Mainly, increasing data density and having the information of physical linkage data expand genome scans by (i) improving the overall quality of the data, (ii) helping the reconstruction of demographic history for the population studied to decrease false-positive rates and (iii) improving the statistical power of methods to detect the signal of selection. Of particular importance, the availability of a high-quality reference genome can improve the detection of the signal of selection by (i) allowing matching the potential candidate loci to linked coding regions under selection, (ii) rapidly moving the investigation to the gene and function and (iii) ensuring that the highly variable regions of the genomes that include functional genes are also investigated. For all those reasons, using reference genomes in genome scan analyses is highly recommended. PMID:26562485

  7. Defining Genome Maintenance Pathways using Functional Genomic Approaches

    PubMed Central

    Bansbach, Carol E.; Cortez, David

    2011-01-01

    Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities. PMID:21787120

  8. The Functional Genomics Initiative at Oak Ridge National Laboratory

    SciTech Connect

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  9. BrucellaBase: Genome information resource.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-09-01

    Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. PMID:27164438

  10. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  11. Open chromatin reveals the functional maize genome.

    PubMed

    Rodgers-Melnick, Eli; Vera, Daniel L; Bass, Hank W; Buckler, Edward S

    2016-05-31

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  12. CottonDB: A resource for cotton genome research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CottonDB (http://cottondb.org/) is a database and web resource for cotton genomic and genetic research. Created in 1995, CottonDB was among the first plant genome databases established by the USDA-ARS. Accessed through a website interface, the database aims to be a convenient, inclusive medium of ...

  13. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects

    PubMed Central

    Saunders, Rebecca E.; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. Database URL: http://hts.cancerresearchuk.org/db/public PMID:24122843

  14. Genome resource banking of biomedically important laboratory animals.

    PubMed

    Agca, Yuksel

    2012-11-01

    Genome resource banking is the systematic collection, storage, and redistribution of biomaterials in an organized, logistical, and secure manner. Genome cryobanks usually contain biomaterials and associated genomic information essential for progression of biomedicine, human health, and research. In that regard, appropriate genome cryobanks could provide essential biomaterials for both current and future research projects in the form of various cell types and tissues, including sperm, oocytes, embryos, embryonic or adult stem cells, induced pluripotent stem cells, and gonadal tissues. In addition to cryobanked germplasm, cryobanking of DNA, serum, blood products, and tissues from scientifically, economically, and ecologically important species has become a common practice. For revitalization of the whole organism, cryopreserved germplasm in conjunction with assisted reproductive technologies, offer a powerful approach for research model management, as well as assisting in animal production for agriculture, conservation, and human reproductive medicine. Recently, many developed and developing countries have allocated substantial resources to establish genome resources banks which are responsible for safeguarding scientifically, economically, and ecologically important wild type, mutant, and transgenic plants, fish, and local livestock breeds, as well as wildlife species. This review is dedicated to the memory of Dr. John K. Critser, who has made profound contributions to the science of cryobiology and establishment of genome research and resources centers for mice, rats, and swine. Emphasis will be given to application of genome resource banks to species with substantial contributions to the advancement of biomedicine and human health. PMID:22981880

  15. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources

    PubMed Central

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/ PMID:26589635

  16. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    PubMed

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. PMID:26589635

  17. Functional genomics and cancer drug target discovery.

    PubMed

    Moody, Susan E; Boehm, Jesse S; Barbie, David A; Hahn, William C

    2010-06-01

    The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer. PMID:20521217

  18. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes

    PubMed Central

    Hamilton, John P.; Neeno-Eckwall, Eric C.; Adhikari, Bishwo N.; Perna, Nicole T.; Tisserat, Ned; Leach, Jan E.; Lévesque, C. André; Buell, C. Robin

    2011-01-01

    The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu. PMID:22120664

  19. Resources for Biological Annotation of the Drosophila Genome

    SciTech Connect

    Gerald M. Rubin

    2005-08-08

    This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.

  20. PhytoPath: an integrative resource for plant pathogen genomics.

    PubMed

    Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian

    2016-01-01

    PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. PMID:26476449

  1. PhytoPath: an integrative resource for plant pathogen genomics

    PubMed Central

    Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D.; Staines, Daniel M.; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian

    2016-01-01

    PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. PMID:26476449

  2. Assembly: a resource for assembled genomes at NCBI.

    PubMed

    Kitts, Paul A; Church, Deanna M; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D; Pruitt, Kim D; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  3. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  4. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    PubMed Central

    2011-01-01

    Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives

  5. StaphyloBase: a specialized genomic resource for the staphylococcal research community.

    PubMed

    Heydari, Hamed; Mutha, Naresh V R; Mahmud, Mahafizul Imran; Siow, Cheuk Chuen; Wee, Wei Yee; Wong, Guat Jah; Yazdi, Amir Hessam; Ang, Mia Yang; Choo, Siew Woh

    2014-01-01

    With the advent of high-throughput sequencing technologies, many staphylococcal genomes have been sequenced. Comparative analysis of these strains will provide better understanding of their biology, phylogeny, virulence and taxonomy, which may contribute to better management of diseases caused by staphylococcal pathogens. We developed StaphyloBase with the goal of having a one-stop genomic resource platform for the scientific community to access, retrieve, download, browse, search, visualize and analyse the staphylococcal genomic data and annotations. We anticipate this resource platform will facilitate the analysis of staphylococcal genomic data, particularly in comparative analyses. StaphyloBase currently has a collection of 754 032 protein-coding sequences (CDSs), 19 258 rRNAs and 15 965 tRNAs from 292 genomes of different staphylococcal species. Information about these features is also included, such as putative functions, subcellular localizations and gene/protein sequences. Our web implementation supports diverse query types and the exploration of CDS- and RNA-type information in detail using an AJAX-based real-time search system. JBrowse has also been incorporated to allow rapid and seamless browsing of staphylococcal genomes. The Pairwise Genome Comparison tool is designed for comparative genomic analysis, for example, to reveal the relationships between two user-defined staphylococcal genomes. A newly designed Pathogenomics Profiling Tool (PathoProT) is also included in this platform to facilitate comparative pathogenomics analysis of staphylococcal strains. In conclusion, StaphyloBase offers access to a range of staphylococcal genomic resources as well as analysis tools for comparative analyses. Database URL: http://staphylococcus.um.edu.my/. PMID:24578355

  6. From genome to function: the Arabidopsis aquaporins

    PubMed Central

    Quigley, Francoise; Rosenberg, Joshua M; Shachar-Hill, Yair; Bohnert, Hans J

    2002-01-01

    Background In the post-genomic era newly sequenced genomes can be used to deduce organismal functions from our knowledge of other systems. Here we apply this approach to analyzing the aquaporin gene family in Arabidopsis thaliana. The aquaporins are intrinsic membrane proteins that have been characterized as facilitators of water flux. Originally termed major intrinsic proteins (MIPs), they are now also known as water channels, glycerol facilitators and aqua-glyceroporins, yet recent data suggest that they facilitate the movement of other low-molecular-weight metabolites as well. Results The Arabidopsis genome contains 38 sequences with homology to aquaporin in four subfamilies, termed PIP, TIP, NIP and SIP. We have analyzed aquaporin family structure and expression using the A. thaliana genome sequence, and introduce a new NMR approach for the purpose of analyzing water movement in plant roots in vivo. Conclusions Our preliminary data indicate a strongly transcellular component for the flux of water in roots. PMID:11806824

  7. Functional genomics of tomato: opportunities and challenges in post-genome NGS era.

    PubMed

    Kumar, Rahul; Khurana, Ashima

    2014-12-01

    The Tomato Genome Sequencing Project represented a landmark venture in the history of sequencing projects where both Sanger's and next-generation sequencing (NGS) technologies were employed, and a highly accurate and one of the best assembled plant genomes along with a draft of the wild relative, Solanum pimpinellifolium, were released in 2012. However, the functional potential of the major portion of this newly generated resource is still undefined. The very first challenge before scientists working on tomato functional biology is to exploit this high-quality reference sequence for tapping of the wealth of genetic variants for improving agronomic traits in cultivated tomatoes. The sequence data generated recently by 150 Tomato Genome Consortium would further uncover the natural alleles present in different tomato genotypes. Therefore, we found it relevant to have a fresh outlook on tomato functional genomics in the context of application of NGS technologies in its post-genome sequencing phase. Herein, we provide an overview how NGS technologies vis-a-vis available reference sequence have assisted each other for their mutual improvement and how their combined use could further facilitate the development of other 'omics' tools, required to propel the Solanaceae research. Additionally, we highlight the challenges associated with the application of these cutting-edge technologies. PMID:25431420

  8. Quantitative prediction of genome-wide resource allocation in bacteria.

    PubMed

    Goelzer, Anne; Muntel, Jan; Chubukov, Victor; Jules, Matthieu; Prestel, Eric; Nölker, Rolf; Mariadassou, Mahendra; Aymerich, Stéphane; Hecker, Michael; Noirot, Philippe; Becher, Dörte; Fromion, Vincent

    2015-11-01

    Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by simplifying hypotheses. Here, we show that the constraint-based modeling method Resource Balance Analysis (RBA), calibrated using genome-wide absolute protein quantification data, accurately predicts resource allocation in the model bacterium Bacillus subtilis for a wide range of growth conditions. The regulation of most cellular processes is consistent with the objective of growth rate maximization except for a few suboptimal processes which likely integrate more complex objectives such as coping with stressful conditions and survival. As a proof of principle by using simulations, we illustrated how calibrated RBA could aid rational design of strains for maximizing protein production, offering new opportunities to investigate design principles in prokaryotes and to exploit them for biotechnological applications. PMID:26498510

  9. Functional genomics of the chicken - a model organism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken has reached model organism status after genome sequencing and development of high-throughput tools for the exploration of functional elements of the genome. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scal...

  10. An evolutionary classification of genomic function.

    PubMed

    Graur, Dan; Zheng, Yichen; Azevedo, Ricardo B R

    2015-03-01

    The pronouncements of the ENCODE Project Consortium regarding "junk DNA" exposed the need for an evolutionary classification of genomic elements according to their selected-effect function. In the classification scheme presented here, we divide the genome into "functional DNA," that is, DNA sequences that have a selected-effect function, and "rubbish DNA," that is, sequences that do not. Functional DNA is further subdivided into "literal DNA" and "indifferent DNA." In literal DNA, the order of nucleotides is under selection; in indifferent DNA, only the presence or absence of the sequence is under selection. Rubbish DNA is further subdivided into "junk DNA" and "garbage DNA." Junk DNA neither contributes to nor detracts from the fitness of the organism and, hence, evolves under selective neutrality. Garbage DNA, on the other hand, decreases the fitness of its carriers. Garbage DNA exists in the genome only because natural selection is neither omnipotent nor instantaneous. Each of these four functional categories can be 1) transcribed and translated, 2) transcribed but not translated, or 3) not transcribed. The affiliation of a DNA segment to a particular functional category may change during evolution: Functional DNA may become junk DNA, junk DNA may become garbage DNA, rubbish DNA may become functional DNA, and so on; however, determining the functionality or nonfunctionality of a genomic sequence must be based on its present status rather than on its potential to change (or not to change) in the future. Changes in functional affiliation are divided into pseudogenes, Lazarus DNA, zombie DNA, and Jekyll-to-Hyde DNA. PMID:25635041

  11. A public resource facilitating clinical use of genomes

    PubMed Central

    Ball, Madeleine P.; Thakuria, Joseph V.; Zaranek, Alexander Wait; Clegg, Tom; Rosenbaum, Abraham M.; Wu, Xiaodi; Angrist, Misha; Bhak, Jong; Bobe, Jason; Callow, Matthew J.; Cano, Carlos; Chou, Michael F.; Chung, Wendy K.; Douglas, Shawn M.; Estep, Preston W.; Gore, Athurva; Hulick, Peter; Labarga, Alberto; Lee, Je-Hyuk; Lunshof, Jeantine E.; Kim, Byung Chul; Kim, Jong-Il; Li, Zhe; Murray, Michael F.; Nilsen, Geoffrey B.; Peters, Brock A.; Raman, Anugraha M.; Rienhoff, Hugh Y.; Robasky, Kimberly; Wheeler, Matthew T.; Vandewege, Ward; Vorhaus, Daniel B.; Yang, Joyce L.; Yang, Luhan; Aach, John; Ashley, Euan A.; Drmanac, Radoje; Kim, Seong-Jin; Li, Jin Billy; Peshkin, Leonid; Seidman, Christine E.; Seo, Jeong-Sun; Zhang, Kun; Rehm, Heidi L.; Church, George M.

    2012-01-01

    Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved “open consent” process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain—we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research. PMID:22797899

  12. Non-coding genome functions in diabetes.

    PubMed

    Cebola, Inês; Pasquali, Lorenzo

    2016-01-01

    Most of the genetic variation associated with diabetes, through genome-wide association studies, does not reside in protein-coding regions, making the identification of functional variants and their eventual translation to the clinic challenging. In recent years, high-throughput sequencing-based methods have enabled genome-scale high-resolution epigenomic profiling in a variety of human tissues, allowing the exploration of the human genome outside of the well-studied coding regions. These experiments unmasked tens of thousands of regulatory elements across several cell types, including diabetes-relevant tissues, providing new insights into their mechanisms of gene regulation. Regulatory landscapes are highly dynamic and cell-type specific and, being sensitive to DNA sequence variation, can vary with individual genomes. The scientific community is now in place to exploit the regulatory maps of tissues central to diabetes etiology, such as pancreatic progenitors and adult islets. This giant leap forward in the understanding of pancreatic gene regulation is revolutionizing our capacity to discriminate between functional and non-functional non-coding variants, opening opportunities to uncover regulatory links between sequence variation and diabetes susceptibility. In this review, we focus on the non-coding regulatory landscape of the pancreatic endocrine cells and provide an overview of the recent developments in this field. PMID:26438568

  13. A transgenic perspective on plant functional genomics.

    PubMed

    Pereira, A

    2000-01-01

    Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops. PMID:11131004

  14. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect

    Yin, Hengfu; Chen, Rick; Yang, Jun; Weston, David; Chen, Jay; Muchero, Wellington; Ye, Ning; Tschaplinski, Timothy J; Wullschleger, Stan D; Cheng, Zong-Ming; Tuskan, Gerald A; Yang, Xiaohan

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  15. Extracting meaning from functional genomics experiments

    SciTech Connect

    Quackenbush, John . E-mail: johnq@jimmy.harvard.edu

    2005-09-01

    The completion of draft genome sequences for human, mouse, rat, and an increasing number of other species, has provided us with preliminary gene catalogues for many organisms of medical and scientific interests. Interpreting these gene lists in the context of the organism's underlying biology, however, remains difficult. The development of DNA microarrays provided one potential source of data to help interpret gene function; by profiling global patterns of gene expression across diverse conditions, it was hoped that we might be able to develop insight into biological function. But the power of these functional genomics assays, as well as assays in proteomics and metabolomics, is that they primarily give us lists of differentially expressed genes that can be correlated with particular phenotypic states, but which remain difficult to link mechanistically to the biology driving the phenotype.

  16. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics.

    PubMed

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-06-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584

  17. A New System for Comparative Functional Genomics of Saccharomyces Yeasts

    PubMed Central

    Caudy, Amy A.; Guan, Yuanfang; Jia, Yue; Hansen, Christina; DeSevo, Chris; Hayes, Alicia P.; Agee, Joy; Alvarez-Dominguez, Juan R.; Arellano, Hugo; Barrett, Daniel; Bauerle, Cynthia; Bisaria, Namita; Bradley, Patrick H.; Breunig, J. Scott; Bush, Erin; Cappel, David; Capra, Emily; Chen, Walter; Clore, John; Combs, Peter A.; Doucette, Christopher; Demuren, Olukunle; Fellowes, Peter; Freeman, Sam; Frenkel, Evgeni; Gadala-Maria, Daniel; Gawande, Richa; Glass, David; Grossberg, Samuel; Gupta, Anita; Hammonds-Odie, Latanya; Hoisos, Aaron; Hsi, Jenny; Hsu, Yu-Han Huang; Inukai, Sachi; Karczewski, Konrad J.; Ke, Xiaobo; Kojima, Mina; Leachman, Samuel; Lieber, Danny; Liebowitz, Anna; Liu, Julia; Liu, Yufei; Martin, Trevor; Mena, Jose; Mendoza, Rosa; Myhrvold, Cameron; Millian, Christian; Pfau, Sarah; Raj, Sandeep; Rich, Matt; Rokicki, Joe; Rounds, William; Salazar, Michael; Salesi, Matthew; Sharma, Rajani; Silverman, Sanford; Singer, Cara; Sinha, Sandhya; Staller, Max; Stern, Philip; Tang, Hanlin; Weeks, Sharon; Weidmann, Maxwell; Wolf, Ashley; Young, Carmen; Yuan, Jie; Crutchfield, Christopher; McClean, Megan; Murphy, Coleen T.; Llinás, Manuel; Botstein, David; Troyanskaya, Olga G.; Dunham, Maitreya J.

    2013-01-01

    Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast. PMID:23852385

  18. Using CAVE technology for functional genomics studies.

    PubMed

    Sensen, Christoph W

    2002-01-01

    We have established the first Java 3D-enabled CAVE (CAVE automated virtual environment). The Java application programming interface allows the complete separation of the program development from the program execution, opening new application domains for the CAVE technology. Programs can be developed on any Java-enabled computer platform, including Windows, Macintosh, and Linux workstations, and executed in the CAVE without modification. The introduction of Java, one of the major programming environments for bioinformatics, into the CAVE environment allows the rapid development applications for genome research, especially for the analysis of the spatial and temporal data that are being produced by functional genomics experiments. The CAVE technology will play a major role in the modeling of biological systems that is necessary to understand how these systems are organized and how they function. PMID:12614491

  19. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy

    PubMed Central

    Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen

    2016-01-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production

  20. Orchidstra: an integrated orchid functional genomics database.

    PubMed

    Su, Chun-lin; Chao, Ya-Ting; Yen, Shao-Hua; Chen, Chun-Yi; Chen, Wan-Chieh; Chang, Yao-Chien Alex; Shih, Ming-Che

    2013-02-01

    A specialized orchid database, named Orchidstra (URL: http://orchidstra.abrc.sinica.edu.tw), has been constructed to collect, annotate and share genomic information for orchid functional genomics studies. The Orchidaceae is a large family of Angiosperms that exhibits extraordinary biodiversity in terms of both the number of species and their distribution worldwide. Orchids exhibit many unique biological features; however, investigation of these traits is currently constrained due to the limited availability of genomic information. Transcriptome information for five orchid species and one commercial hybrid has been included in the Orchidstra database. Altogether, these comprise >380,000 non-redundant orchid transcript sequences, of which >110,000 are protein-coding genes. Sequences from the transcriptome shotgun assembly (TSA) were obtained either from output reads from next-generation sequencing technologies assembled into contigs, or from conventional cDNA library approaches. An annotation pipeline using Gene Ontology, KEGG and Pfam was built to assign gene descriptions and functional annotation to protein-coding genes. Deep sequencing of small RNA was also performed for Phalaenopsis aphrodite to search for microRNAs (miRNAs), extending the information archived for this species to miRNA annotation, precursors and putative target genes. The P. aphrodite transcriptome information was further used to design probes for an oligonucleotide microarray, and expression profiling analysis was carried out. The intensities of hybridized probes derived from microarray assays of various tissues were incorporated into the database as part of the functional evidence. In the future, the content of the Orchidstra database will be expanded with transcriptome data and genomic information from more orchid species. PMID:23324169

  1. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection.

    PubMed

    Duitama, Jorge; Silva, Alexander; Sanabria, Yamid; Cruz, Daniel Felipe; Quintero, Constanza; Ballen, Carolina; Lorieux, Mathias; Scheffler, Brian; Farmer, Andrew; Torres, Edgar; Oard, James; Tohme, Joe

    2015-01-01

    Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa. We identified repetitive elements and recurrent copy number variation covering about 200 Mbp of the rice genome. Genotyping of over 18 million polymorphic locations within O. sativa allowed us to reconstruct the individual haplotype patterns shaping the genomic background of elite varieties used by farmers throughout the Americas. Based on a reconstruction of the alleles for the gene GBSSI, we could identify novel genetic markers for selection of varieties with high amylose content. We expect that both the analysis methods and the genomic information described here would be of great use for the rice research community and for other groups carrying on similar sequencing efforts in other crops. PMID:25923345

  2. Whole Genome Sequencing of Elite Rice Cultivars as a Comprehensive Information Resource for Marker Assisted Selection

    PubMed Central

    Duitama, Jorge; Silva, Alexander; Sanabria, Yamid; Cruz, Daniel Felipe; Quintero, Constanza; Ballen, Carolina; Lorieux, Mathias; Scheffler, Brian; Farmer, Andrew; Torres, Edgar; Oard, James; Tohme, Joe

    2015-01-01

    Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa. We identified repetitive elements and recurrent copy number variation covering about 200 Mbp of the rice genome. Genotyping of over 18 million polymorphic locations within O. sativa allowed us to reconstruct the individual haplotype patterns shaping the genomic background of elite varieties used by farmers throughout the Americas. Based on a reconstruction of the alleles for the gene GBSSI, we could identify novel genetic markers for selection of varieties with high amylose content. We expect that both the analysis methods and the genomic information described here would be of great use for the rice research community and for other groups carrying on similar sequencing efforts in other crops. PMID:25923345

  3. Functional genomics for food fermentation processes.

    PubMed

    Smid, E J; Hugenholtz, J

    2010-01-01

    This review describes recent scientific and technological drivers of food fermentation research. In addition, a number of practical implications of the results of this development will be highlighted. The first part of the manuscript elaborates on the message that genome sequence information gives us an unprecedented view on the biodiversity of microbes in food fermentation. This information can be made applicable for tailoring relevant characteristics of food products through fermentation. The second part deals with the integration of genome sequence data into metabolic models and the use of these models for a number of topics that are relevant for food fermentation processes. The final part will be about metagenomics approaches to reveal the complexity and understand the functionality of undefined complex microbial consortia used in a diverse range of food fermentation processes. PMID:22129346

  4. InsectBase: a resource for insect genomes and transcriptomes.

    PubMed

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  5. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  6. Exploring the Yeast Acetylome Using Functional Genomics

    PubMed Central

    Duffy, Supipi Kaluarachchi; Friesen, Helena; Baryshnikova, Anastasia; Lambert, Jean-Philippe; Chong, Yolanda T.; Figeys, Daniel; Andrews, Brenda

    2014-01-01

    SUMMARY Lysine acetylation is a dynamic posttranslational modification with a well-defined role in regulating histones. The impact of acetylation on other cellular functions remains relatively uncharacterized. We explored the budding yeast acetylome with a functional genomics approach, assessing the effects of gene overexpression in the absence of lysine deacetylases (KDACs). We generated a network of 463 synthetic dosage lethal (SDL) interactions involving class I and II KDACs, revealing many cellular pathways regulated by different KDACs. A biochemical survey of genes interacting with the KDAC RPD3 identified 72 proteins acetylated in vivo. In-depth analysis of one of these proteins, Swi4, revealed a role for acetylation in G1-specific gene expression. Acetylation of Swi4 regulates interaction with its partner Swi6, both components of the SBF transcription factor. This study expands our view of the yeast acetylome, demonstrates the utility of functional genomic screens for exploring enzymatic pathways, and provides functional information that can be mined for future studies. PMID:22579291

  7. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and instructional materials can…

  8. SGR: an online genomic resource for the woodland strawberry

    PubMed Central

    2013-01-01

    Background Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system and an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. ×ananassa), and the extant genome exhibits synteny with other commercially important members of the Rosaceae family such as apple and peach. To provide a molecular description of floral organ and fruit development at the resolution of specific tissues and cell types, RNAs from flowers and early developmental stage fruit tissues of the inbred F. vesca line YW5AF7 were extracted and the resulting cDNA libraries sequenced using an Illumina HiSeq2000. To enable easy access as well as mining of this two-dimensional (stage and tissue) transcriptome dataset, a web-based database, the Strawberry Genomic Resource (SGR), was developed. Description SGR is a web accessible database that contains sample description, sample statistics, gene annotation, and gene expression analysis. This information can be accessed publicly from a web-based interface at http://bioinformatics.towson.edu/strawberry/Default.aspx. The SGR website provides user friendly search and browse capabilities for all the data stored in the database. Users are able to search for genes using a gene ID or description or obtain differentially expressed genes by entering different comparison parameters. Search results can be downloaded in a tabular format compatible with Microsoft excel application. Aligned reads to individual genes and exon/intron structures are displayed using the genome browser, facilitating gene re-annotation by individual users. Conclusions The SGR database was developed to facilitate dissemination and data mining of extensive floral and fruit transcriptome data in the woodland strawberry. It enables users to mine the data in different ways to study different pathways or biological processes during

  9. Genomic Resources Notes accepted 1 February 2015 - 31 March 2015.

    PubMed

    Arthofer, Wolfgang; Bertini, Laura; Caruso, Carla; Cicconardi, Francesco; Delph, Lynda F; Fields, Peter D; Ikeda, Minoru; Minegishi, Yuki; Proietti, Silvia; Ritthammer, Heike; Schlick-Steiner, Birgit C; Steiner, Florian M; Wachter, Gregor A; Wagner, Herbert C; Weingartner, Laura A

    2015-07-01

    This article documents the public availability of (i) raw transcriptome sequence data, assembled contigs and BLAST hits of the Antarctic plant Colobanthus quitensis grown in two different climatic conditions, (ii) the draft genome sequence data (raw reads, assembled contigs and unassembled reads) and RAD-tag read data of the marbled flounder Pseudopleuronectes yokohamae, (iii) transcriptome resources from four white campion (Silene latifolia) individuals from two morphologically divergent populations and (iv) nuclear DNA markers from 454 sequencing of reduced representation libraries (RRL) based on amplified fragment length polymorphism (AFLP) PCR products of four species of ants in the genus Tetramorium. PMID:26095006

  10. Development of peanut EST (expressed sequence tag)-based genomic resources and tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. Peanut Genome Initiative (PGI) has widely recognized the need for peanut genome tools and resources development for mitigating peanut allergens and food safety. Genomics such as Expressed Sequence Tag (EST), microarray technologies, and whole genome sequencing provides robotic tools for profili...

  11. Development of peanut expessed sequence tag-based genomic resources and tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. Peanut Genome Initiative (PGI) has widely recognized the need for peanut genome tools and resources development for mitigating peanut allergens and food safety. Genomics such as Expressed Sequence Tag (EST), microarray technologies, and whole genome sequencing provides robotic tools for profili...

  12. More genomic resources for less-studied crops.

    PubMed

    Varshney, Rajeev K; Glaszmann, Jean-Christophe; Leung, Hei; Ribaut, Jean-Marcel

    2010-09-01

    Many of the crop species considered to be minor on a global scale, yet are important locally for food security in the developing world, have remained less-studied crops. Recent years have witnessed the development of large-scale genomic and genetic resources, including simple sequence repeat, single nucleotide polymorphism and diversity array technology markers, expressed sequence tags or transcript reads, bacterial artificial chromosome libraries, genetic and physical maps, and genetic stocks with rich genetic diversity, such as core reference sets and introgression lines in these crops. These resources have the potential to accelerate gene discovery and initiate molecular breeding in these crops, thereby enhancing crop productivity to ensure food security in developing countries. PMID:20692061

  13. The plant glycosyltransferase clone collection for functional genomics.

    PubMed

    Lao, Jeemeng; Oikawa, Ai; Bromley, Jennifer R; McInerney, Peter; Suttangkakul, Anongpat; Smith-Moritz, Andreia M; Plahar, Hector; Chiu, Tsan-Yu; González Fernández-Niño, Susana M; Ebert, Berit; Yang, Fan; Christiansen, Katy M; Hansen, Sara F; Stonebloom, Solomon; Adams, Paul D; Ronald, Pamela C; Hillson, Nathan J; Hadi, Masood Z; Vega-Sánchez, Miguel E; Loqué, Dominique; Scheller, Henrik V; Heazlewood, Joshua L

    2014-08-01

    The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate-Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell-wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full-length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/. PMID:24905498

  14. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission. PMID:27270106

  15. From bacterial genome to functionality; case bifidobacteria.

    PubMed

    Ventura, Marco; O'Connell-Motherway, Mary; Leahy, Sinead; Moreno-Munoz, Jose Antonio; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-11-30

    The availability of complete bacterial genome sequences has significantly furthered our understanding of the genetics, physiology and biochemistry of the microorganisms in question, particularly those that have commercially important applications. Bifidobacteria are among such microorganisms, as they constitute mammalian commensals of biotechnological significance due to their perceived role in maintaining a balanced gastrointestinal (GIT) microflora. Bifidobacteria are therefore frequently used as health-promoting or probiotic components in functional food products. A fundamental understanding of the metabolic activities employed by these commensal bacteria, in particular their capability to utilize a wide range of complex oligosaccharides, can reveal ways to provide in vivo growth advantages relative to other competing gut bacteria or pathogens. Furthermore, an in depth analysis of adaptive responses to nutritional or environmental stresses may provide methodologies to retain viability and improve functionality during commercial preparation, storage and delivery of the probiotic organism. PMID:17629975

  16. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA

    PubMed Central

    Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world’s population. Rhizoctonia solani is a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10 489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL: http://genedenovoweb.ticp.net:81/rsia/index.php PMID:27022158

  17. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA.

    PubMed

    Chen, Lei; Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world's population. Rhizoctonia solaniis a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10,489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL:http://genedenovoweb.ticp.net:81/rsia/index.php. PMID:27022158

  18. The function of genomes in bioenergetic organelles.

    PubMed Central

    Allen, John F

    2003-01-01

    Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence. PMID:12594916

  19. openSNP–A Crowdsourced Web Resource for Personal Genomics

    PubMed Central

    Greshake, Bastian; Bayer, Philipp E.; Rausch, Helge; Reda, Julia

    2014-01-01

    Genome-Wide Association Studies are widely used to correlate phenotypic traits with genetic variants. These studies usually compare the genetic variation between two groups to single out certain Single Nucleotide Polymorphisms (SNPs) that are linked to a phenotypic variation in one of the groups. However, it is necessary to have a large enough sample size to find statistically significant correlations. Direct-To-Consumer (DTC) genetic testing can supply additional data: DTC-companies offer the analysis of a large amount of SNPs for an individual at low cost without the need to consult a physician or geneticist. Over 100,000 people have already been genotyped through Direct-To-Consumer genetic testing companies. However, this data is not public for a variety of reasons and thus cannot be used in research. It seems reasonable to create a central open data repository for such data. Here we present the web platform openSNP, an open database which allows participants of Direct-To-Consumer genetic testing to publish their genetic data at no cost along with phenotypic information. Through this crowdsourced effort of collecting genetic and phenotypic information, openSNP has become a resource for a wide area of studies, including Genome-Wide Association Studies. openSNP is hosted at http://www.opensnp.org, and the code is released under MIT-license at http://github.com/gedankenstuecke/snpr. PMID:24647222

  20. The personal genome browser: visualizing functions of genetic variants.

    PubMed

    Juan, Liran; Teng, Mingxiang; Zang, Tianyi; Hao, Yafeng; Wang, Zhenxing; Yan, Chengwu; Liu, Yongzhuang; Li, Jie; Zhang, Tianjiao; Wang, Yadong

    2014-07-01

    Advances in high-throughput sequencing technologies have brought us into the individual genome era. Projects such as the 1000 Genomes Project have led the individual genome sequencing to become more and more popular. How to visualize, analyse and annotate individual genomes with knowledge bases to support genome studies and personalized healthcare is still a big challenge. The Personal Genome Browser (PGB) is developed to provide comprehensive functional annotation and visualization for individual genomes based on the genetic-molecular-phenotypic model. Investigators can easily view individual genetic variants, such as single nucleotide variants (SNVs), INDELs and structural variations (SVs), as well as genomic features and phenotypes associated to the individual genetic variants. The PGB especially highlights potential functional variants using the PGB built-in method or SIFT/PolyPhen2 scores. Moreover, the functional risks of genes could be evaluated by scanning individual genetic variants on the whole genome, a chromosome, or a cytoband based on functional implications of the variants. Investigators can then navigate to high risk genes on the scanned individual genome. The PGB accepts Variant Call Format (VCF) and Genetic Variation Format (GVF) files as the input. The functional annotation of input individual genome variants can be visualized in real time by well-defined symbols and shapes. The PGB is available at http://www.pgbrowser.org/. PMID:24799434

  1. The personal genome browser: visualizing functions of genetic variants

    PubMed Central

    Juan, Liran; Teng, Mingxiang; Zang, Tianyi; Hao, Yafeng; Wang, Zhenxing; Yan, Chengwu; Liu, Yongzhuang; Li, Jie; Zhang, Tianjiao; Wang, Yadong

    2014-01-01

    Advances in high-throughput sequencing technologies have brought us into the individual genome era. Projects such as the 1000 Genomes Project have led the individual genome sequencing to become more and more popular. How to visualize, analyse and annotate individual genomes with knowledge bases to support genome studies and personalized healthcare is still a big challenge. The Personal Genome Browser (PGB) is developed to provide comprehensive functional annotation and visualization for individual genomes based on the genetic–molecular–phenotypic model. Investigators can easily view individual genetic variants, such as single nucleotide variants (SNVs), INDELs and structural variations (SVs), as well as genomic features and phenotypes associated to the individual genetic variants. The PGB especially highlights potential functional variants using the PGB built-in method or SIFT/PolyPhen2 scores. Moreover, the functional risks of genes could be evaluated by scanning individual genetic variants on the whole genome, a chromosome, or a cytoband based on functional implications of the variants. Investigators can then navigate to high risk genes on the scanned individual genome. The PGB accepts Variant Call Format (VCF) and Genetic Variation Format (GVF) files as the input. The functional annotation of input individual genome variants can be visualized in real time by well-defined symbols and shapes. The PGB is available at http://www.pgbrowser.org/. PMID:24799434

  2. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease.

    PubMed

    Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu

    2016-06-01

    MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. PMID:26919060

  3. Soybean Knowledge Base (SoyKB): a Web Resource for Soybean Translational Genomics

    SciTech Connect

    Joshi, Trupti; Patil, Kapil; Fitzpatrick, Michael R.; Franklin, Levi D.; Yao, Qiuming; Cook, Jeffrey R.; Wang, Zhem; Libault, Marc; Brechenmacher, Laurent; Valliyodan, Babu; Wu, Xiaolei; Cheng, Jianlin; Stacey, Gary; Nguyen, Henry T.; Xu, Dong

    2012-01-17

    Background: Soybean Knowledge Base (SoyKB) is a comprehensive all-inclusive web resource for soybean translational genomics. SoyKB is designed to handle the management and integration of soybean genomics, transcriptomics, proteomics and metabolomics data along with annotation of gene function and biological pathway. It contains information on four entities, namely genes, microRNAs, metabolites and single nucleotide polymorphisms (SNPs). Methods: SoyKB has many useful tools such as Affymetrix probe ID search, gene family search, multiple gene/ metabolite search supporting co-expression analysis, and protein 3D structure viewer as well as download and upload capacity for experimental data and annotations. It has four tiers of registration, which control different levels of access to public and private data. It allows users of certain levels to share their expertise by adding comments to the data. It has a user-friendly web interface together with genome browser and pathway viewer, which display data in an intuitive manner to the soybean researchers, producers and consumers. Conclusions: SoyKB addresses the increasing need of the soybean research community to have a one-stop-shop functional and translational omics web resource for information retrieval and analysis in a user-friendly way. SoyKB can be publicly accessed at http://soykb.org/.

  4. Microbial Genome Analysis and Comparisons: Web-based Protocols and Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully annotated genome sequences of many microorganisms are publicly available as a resource. However, in-depth analysis of these genomes using specialized tools is required to derive meaningful information. We describe here the utility of three powerful publicly available genome databases and ana...

  5. DEVELOPMENT OF GENOMIC RESOURCES FOR GARLIC AND ONION: GOALS OF A FUNDED USDA-IFAFS GRANT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enormous genomic resources are being developed for model plants such as Arabidopsis and rice. However, it is not clear how broadly these genomic resources can be applied to the genetic improvement of more distantly related plants. Asparagus, garlic, and onion are the most economically important no...

  6. Current and future resources for functional metagenomics

    PubMed Central

    Lam, Kathy N.; Cheng, Jiujun; Engel, Katja; Neufeld, Josh D.; Charles, Trevor C.

    2015-01-01

    Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries—physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research. PMID:26579102

  7. flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection

    PubMed Central

    Stanley, Craig E.; Kulathinal, Rob J.

    2016-01-01

    With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster’s breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1–1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info. We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of

  8. flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-01-01

    With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster's breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1-1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of

  9. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  10. GeneProf data: a resource of curated, integrated and reusable high-throughput genomics experiments

    PubMed Central

    Halbritter, Florian; Kousa, Anastasia I.; Tomlinson, Simon R.

    2014-01-01

    GeneProf Data (http://www.geneprof.org) is an open web resource for analysed functional genomics experiments. We have built up a large collection of completely processed RNA-seq and ChIP-seq studies by carefully and transparently reanalysing and annotating high-profile public data sets. GeneProf makes these data instantly accessible in an easily interpretable, searchable and reusable manner and thus opens up the path to the advantages and insights gained from genome-scale experiments to a broader scientific audience. Moreover, GeneProf supports programmatic access to these data via web services to further facilitate the reuse of experimental data across tools and laboratories. PMID:24174536

  11. A genome-wide resource for the analysis of protein localisation in Drosophila.

    PubMed

    Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; K J, Vinay Vikas; Krishnan, R T; Krishnamoorthy, Aishwarya; Ferreira, Irene R S; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank

    2016-01-01

    The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. PMID:26896675

  12. Gramene: A Resource for Comparative Analysis of Plants Genomes and Pathways.

    PubMed

    Tello-Ruiz, Marcela Karey; Stein, Joshua; Wei, Sharon; Youens-Clark, Ken; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene is an integrated informatics resource for accessing, visualizing, and comparing plant genomes and biological pathways. Originally targeting grasses, Gramene has grown to host annotations for economically important and research model crops, including wheat, potato, tomato, banana, grape, poplar, and Chlamydomonas. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. This chapter outlines system requirements for end users and database hosting, data types and basic navigation within Gramene, and provides examples of how to (1) view a phylogenetic tree for a family of transcription factors, (2) explore genetic variation in the orthologues of a gene with a known trait association, and (3) upload, visualize, and privately share end user data into a new genome browser track.Moreover, this is the first publication describing Gramene's new web interface-intended to provide a simplified portal to the most complete and up-to-date set of plant genome and pathway annotations. PMID:26519404

  13. MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data.

    PubMed

    Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine

    2013-01-01

    MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269

  14. STINGRAY: system for integrated genomic resources and analysis

    PubMed Central

    2014-01-01

    Background The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. Findings STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. Conclusion STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/. PMID:24606808

  15. CucCAP - Developing genomic resources for the cucurbit community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. cucurbit community has initiated a USDA-SCRI funded cucurbit genomics project, CucCAP: Leveraging applied genomics to increase disease resistance in cucurbit crops. Our primary objectives are: develop genomic and bioinformatic breeding tool kits for accelerated crop improvement across the...

  16. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  17. Retroelements and their impact on genome evolution and functioning.

    PubMed

    Gogvadze, Elena; Buzdin, Anton

    2009-12-01

    Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition. PMID:19649766

  18. What everybody should know about the rat genome and its online resources.

    PubMed

    Twigger, Simon N; Pruitt, Kim D; Fernández-Suárez, Xosé M; Karolchik, Donna; Worley, Kim C; Maglott, Donna R; Brown, Garth; Weinstock, George; Gibbs, Richard A; Kent, Jim; Birney, Ewan; Jacob, Howard J

    2008-05-01

    It has been four years since the original publication of the draft sequence of the rat genome. Five groups are now working together to assemble, annotate and release an updated version of the rat genome. As the prevailing model for physiology, complex disease and pharmacological studies, there is an acute need for the rat's genomic resources to keep pace with the rat's prominence in the laboratory. In this commentary, we describe the current status of the rat genome sequence and the plans for its impending 'upgrade'. We then cover the key online resources providing access to the rat genome, including the new SNP views at Ensembl, the RefSeq and Genes databases at the US National Center for Biotechnology Information, Genome Browser at the University of California Santa Cruz and the disease portals for cardiovascular disease and obesity at the Rat Genome Database. PMID:18443589

  19. A Functional Simulator of Spacecraft Resources

    NASA Technical Reports Server (NTRS)

    Liceaga, Carlos A.; Troutman, Patrick A.

    1997-01-01

    The SPAcecraft SIMulator (SPASIM) simulates the functions and resources of a spacecraft to quickly perform Phase A trade-off analyses and uncover any operational bottlenecks during any part of the mission. Failure modes and operational contingencies can be evaluated allowing optimization for a range of mission scenarios. The payloads and subsystems are simulated, using a hierarchy of graphical models, in terms of how their functions affect resources such as propellant, power, and data. Any of the inputs and outputs of the payloads and subsystems can be plotted during the simulation. Most trade-off analyses, including those that compare current versus advanced technology, can be performed by changing values in the parameter menus. However, when a component is replaced by one with a different functional architecture, its graphical model can also be modified or replaced by drawing from a component library. SPASIM has been validated using several spacecraft designs which were at least at the Critical Design Review level. The user and programmer guide, including figures, is available on line as a hyper text document. This is an easy-to-use and expand tool which is based on MATLAB and SIMULINK. It runs on SGI workstations and PCs under Windows 95 or NT.

  20. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii

    PubMed Central

    2012-01-01

    lines with an average deletion frequency of ~10% were identified for developing high density marker scaffolds of the D-genome. Conclusions The RH panel reported here is the first developed for any wild ancestor of a major cultivated plant species. The results provided insight into various aspects of RH mapping in plants, including the genetically effective cell number for wheat (for the first time) and the potential implementation of this technique in other plant species. This RH panel will be an invaluable resource for mapping gene based markers, developing a complete marker scaffold for the whole genome sequence assembly, fine mapping of markers and functional characterization of genes and gene networks present on the D-genome. PMID:23127207

  1. The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation

    PubMed Central

    Adler, Priit; Aksoy, Irène; Anastassiadis, Konstantinos; Bader, Michael; Billon, Nathalie; Boeuf, Hélène; Bourillot, Pierre-Yves; Buchholz, Frank; Dani, Christian; Doss, Michael Xavier; Forrester, Lesley; Gitton, Murielle; Henrique, Domingos; Hescheler, Jürgen; Himmelbauer, Heinz; Hübner, Norbert; Karantzali, Efthimia; Kretsovali, Androniki; Lubitz, Sandra; Pradier, Laurent; Rai, Meena; Reimand, Jüri; Rolletschek, Alexandra; Sachinidis, Agapios; Savatier, Pierre; Stewart, Francis; Storm, Mike P.; Trouillas, Marina; Vilo, Jaak; Welham, Melanie J.; Winkler, Johannes; Wobus, Anna M.; Hatzopoulos, Antonis K.

    2009-01-01

    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the “Functional Genomics in Embryonic Stem Cells” consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in “Expression Waves” and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells. PMID:19727443

  2. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  3. Partnering for functional genomics research conference: Abstracts of poster presentations

    SciTech Connect

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  4. PlantGDB: A Resource for Comparative Plant Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PlantGDB (http://www.plantgdb.org/) is a genomics database encompassing sequence data for green plants (Viridiplantae). PlantGDB provides annotated transcript assemblies for >100 plant species, with transcripts mapped to their cognate genomic context where available, integrated with a variety of seq...

  5. Genomic resources for valuable woody ornamental landscape plants such as hydrangea macrophylla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New and improved ornamental landscape plants are typically produced by conventional breeding. Unfortunately, long generation times for woody plants can significantly slow progress. Incorporating genomic and biotechnology resources provides more information when designing breeding strategies and ac...

  6. The Bemisia tabaci functional genomic project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci, the genome of the whitefly and its expression has not been investigated on a large scale. To address this general shortage of information, we have constructed several cDNA libraries from virulifurous and non-viruliferous whiteflies. A cDNA spotted microarray was constructed in parall...

  7. Strawberry Part 3 - structural and functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The area of strawberry genomics is rapidly changing because of the burgeoning interest in, and need for, reference plants for the Rosaceae family, which contains many important fruit, nut, ornamental and wood crops, including peach, apple, almond, rose and cherry. This chapter describes the current...

  8. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    PubMed Central

    Jung, Kyongyong; Park, Jongsun; Choi, Jaeyoung; Park, Bongsoo; Kim, Seungill; Ahn, Kyohun; Choi, Jaehyuk; Choi, Doil; Kang, Seogchan; Lee, Yong-Hwan

    2008-01-01

    Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB) integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets) and 34 plant and animal (38 datasets) species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site . PMID:19055845

  9. Transposable elements in fish functional genomics: technical challenges and perspectives

    PubMed Central

    Parinov, Serguei; Emelyanov, Alexander

    2007-01-01

    The recent introduction of several transposable elements in zebrafish opens new frontiers for genetic manipulation in this important vertebrate model. This review discusses transposable elements as mutagenesis tools for fish functional genomics. We review various mutagenesis strategies that were previously applied in other genetic models, such as Drosophila, Arabidopsis, and mouse, that may be beneficial if applied in fish. We also discuss the forthcoming challenges of high-throughput functional genomics in fish. PMID:18047698

  10. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  11. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  12. Development of genomic resources for Pacific Herring through targeted transcriptome pyrosequencing.

    PubMed

    Roberts, Steven B; Hauser, Lorenz; Seeb, Lisa W; Seeb, James E

    2012-01-01

    Pacific herring (Clupea pallasii) support commercially and culturally important fisheries but have experienced significant additional pressure from a variety of anthropogenic and environmental sources. In order to provide genomic resources to facilitate organismal and population level research, high-throughput pyrosequencing (Roche 454) was carried out on transcriptome libraries from liver and testes samples taken in Prince William Sound, the Bering Sea, and the Gulf of Alaska. Over 40,000 contigs were identified with an average length of 728 bp. We describe an annotated transcriptome as well as a workflow for single nucleotide polymorphism (SNP) discovery and validation. A subset of 96 candidate SNPs chosen from 10,933 potential SNPs, were tested using a combination of Sanger sequencing and high-resolution melt-curve analysis. Five SNPs supported between-ocean-basin differentiation, while one SNP associated with immune function provided high differentiation between Prince William Sound and Kodiak Island within the Gulf of Alaska. These genomic resources provide a basis for environmental physiology studies and opportunities for marker development and subsequent population structure analysis. PMID:22383979

  13. Coordinated international action to accelerate genome-to-phenome with FAANG, The Functional Annotation of Animal Genomes project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the organization of a nascent international effort - the "Functional Annotation of ANimal Genomes" project - whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species....

  14. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  15. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  16. Megx.net: integrated database resource for marine ecological genomics.

    PubMed

    Kottmann, Renzo; Kostadinov, Ivalyo; Duhaime, Melissa Beth; Buttigieg, Pier Luigi; Yilmaz, Pelin; Hankeln, Wolfgang; Waldmann, Jost; Glöckner, Frank Oliver

    2010-01-01

    Megx.net is a database and portal that provides integrated access to georeferenced marker genes, environment data and marine genome and metagenome projects for microbial ecological genomics. All data are stored in the Microbial Ecological Genomics DataBase (MegDB), which is subdivided to hold both sequence and habitat data and global environmental data layers. The extended system provides access to several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a million small and large subunit ribosomal RNA sequences. With the refined Genes Mapserver, all data can be interactively visualized on a world map and statistics describing environmental parameters can be calculated. Sequence entries have been curated to comply with the proposed minimal standards for genomes and metagenomes (MIGS/MIMS) of the Genomic Standards Consortium. Access to data is facilitated by Web Services. The updated megx.net portal offers microbial ecologists greatly enhanced database content, and new features and tools for data analysis, all of which are freely accessible from our webpage http://www.megx.net. PMID:19858098

  17. Megx.net: integrated database resource for marine ecological genomics

    PubMed Central

    Kottmann, Renzo; Kostadinov, Ivalyo; Duhaime, Melissa Beth; Buttigieg, Pier Luigi; Yilmaz, Pelin; Hankeln, Wolfgang; Waldmann, Jost; Glöckner, Frank Oliver

    2010-01-01

    Megx.net is a database and portal that provides integrated access to georeferenced marker genes, environment data and marine genome and metagenome projects for microbial ecological genomics. All data are stored in the Microbial Ecological Genomics DataBase (MegDB), which is subdivided to hold both sequence and habitat data and global environmental data layers. The extended system provides access to several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a million small and large subunit ribosomal RNA sequences. With the refined Genes Mapserver, all data can be interactively visualized on a world map and statistics describing environmental parameters can be calculated. Sequence entries have been curated to comply with the proposed minimal standards for genomes and metagenomes (MIGS/MIMS) of the Genomic Standards Consortium. Access to data is facilitated by Web Services. The updated megx.net portal offers microbial ecologists greatly enhanced database content, and new features and tools for data analysis, all of which are freely accessible from our webpage http://www.megx.net. PMID:19858098

  18. A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes

    PubMed Central

    Bergström, Anders; Simpson, Jared T.; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N.; Moses, Alan M.; Louis, Edward J.; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-01-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies. PMID:24425782

  19. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit.

    PubMed

    Calafiore, Roberta; Ruggieri, Valentino; Raiola, Assunta; Rigano, Maria M; Sacco, Adriana; Hassan, Mohamed I; Frusciante, Luigi; Barone, Amalia

    2016-01-01

    The tomato is a model species for fleshy fruit development and ripening, as well as for genomics studies of others Solanaceae. Many genetic and genomics resources, including databases for sequencing, transcriptomics and metabolomics data, have been developed and are today available. The purpose of the present work was to uncover new genes and/or alleles that determine ascorbic acid and carotenoids accumulation, by exploiting one Solanum pennellii introgression lines (IL7-3) harboring quantitative trait loci (QTL) that increase the content of these metabolites in the fruit. The higher ascorbic acid and carotenoids content in IL7-3 was confirmed at three fruit developmental stages. The tomato genome reference sequence and the recently released S. pennellii genome sequence were investigated to identify candidate genes (CGs) that might control ascorbic acid and carotenoids accumulation. First of all, a refinement of the wild region borders in the IL7-3 was achieved by analyzing CAPS markers designed in our laboratory. Afterward, six CGs associated to ascorbic acid and one with carotenoids metabolism were identified exploring the annotation and the Gene Ontology terms of genes included in the region. Variants between the sequence of the wild and the cultivated alleles of these genes were investigated for their functional relevance and their potential effects on the protein sequences were predicted. Transcriptional levels of CGs in the introgression region were extracted from RNA-Seq data available for the entire S. pennellii introgression lines collection and verified by Real-Time qPCR. Finally, seven IL7-3 sub-lines were genotyped using 28 species-specific markers and then were evaluated for metabolites content. These analyses evidenced a significant decrease in transcript abundance for one 9-cis-epoxycarotenoid dioxygenase and one L-ascorbate oxidase homolog, whose role in the accumulation of carotenoids and ascorbic acid is discussed. Comprehensively, the reported

  20. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit

    PubMed Central

    Calafiore, Roberta; Ruggieri, Valentino; Raiola, Assunta; Rigano, Maria M.; Sacco, Adriana; Hassan, Mohamed I.; Frusciante, Luigi; Barone, Amalia

    2016-01-01

    The tomato is a model species for fleshy fruit development and ripening, as well as for genomics studies of others Solanaceae. Many genetic and genomics resources, including databases for sequencing, transcriptomics and metabolomics data, have been developed and are today available. The purpose of the present work was to uncover new genes and/or alleles that determine ascorbic acid and carotenoids accumulation, by exploiting one Solanum pennellii introgression lines (IL7-3) harboring quantitative trait loci (QTL) that increase the content of these metabolites in the fruit. The higher ascorbic acid and carotenoids content in IL7-3 was confirmed at three fruit developmental stages. The tomato genome reference sequence and the recently released S. pennellii genome sequence were investigated to identify candidate genes (CGs) that might control ascorbic acid and carotenoids accumulation. First of all, a refinement of the wild region borders in the IL7-3 was achieved by analyzing CAPS markers designed in our laboratory. Afterward, six CGs associated to ascorbic acid and one with carotenoids metabolism were identified exploring the annotation and the Gene Ontology terms of genes included in the region. Variants between the sequence of the wild and the cultivated alleles of these genes were investigated for their functional relevance and their potential effects on the protein sequences were predicted. Transcriptional levels of CGs in the introgression region were extracted from RNA-Seq data available for the entire S. pennellii introgression lines collection and verified by Real-Time qPCR. Finally, seven IL7-3 sub-lines were genotyped using 28 species-specific markers and then were evaluated for metabolites content. These analyses evidenced a significant decrease in transcript abundance for one 9-cis-epoxycarotenoid dioxygenase and one L-ascorbate oxidase homolog, whose role in the accumulation of carotenoids and ascorbic acid is discussed. Comprehensively, the reported

  1. Functional diversity in resource use by fungi.

    PubMed

    McGuire, Krista L; Bent, Elizabeth; Borneman, James; Majumder, Arundhati; Allison, Steven D; Tresederi, Kathleen K

    2010-08-01

    Fungi influence nutrient cycling in terrestrial ecosystems, as they are major regulators of decomposition and soil respiration. However, little is known about the substrate preferences of individual fungal species outside of laboratory culture studies. If active fungi differ in their substrate preferences in situ, then changes in fungal diversity due to global change may dramatically influence nutrient cycling in ecosystems. To test the responses of individual fungal taxa to specific substrates, we used a nucleotide-analogue procedure in the boreal forest of Alaska (USA). Specifically, we added four organic N compounds commonly found in plant litter (arginine, glutamate, lignocellulose, and tannin-protein) to litterbags filled with decomposed leaf litter (black spruce and aspen) and assessed the responses of active fungal species using qPCR (quantitative polymerase chain reaction), oligonucleotide fingerprinting of rRNA genes, and sequencing. We also compared the sequences from our experiment with a concurrent warming experiment to see if active fungi that targeted more recalcitrant compounds would respond more positively to soil warming. We found that individual fungal taxa responded differently to substrate additions and that active fungal communities were different across litter types (spruce vs. aspen). Active fungi that targeted lignocellulose also responded positively to experimental warming. Additionally, resource-use patterns in different fungal taxa were genetically correlated, suggesting that it may be possible to predict the ecological function of active fungal communities based on genetic information. Together, these results imply that fungi are functionally diverse and that reductions in fungal diversity may have consequences for ecosystem functioning. PMID:20836454

  2. Comparative genomics and functional annotation of bacterial transporters

    NASA Astrophysics Data System (ADS)

    Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2008-03-01

    Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of enzymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which includes substrate specificity and cellular role. We overview the main techniques of analysis of transporters' structure and function. We consider the most popular algorithms to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families, characterization of new families, and prediction of novel transport mechanisms.

  3. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics

    PubMed Central

    Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.

    2015-01-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  4. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics.

    PubMed

    Tzika, Athanasia C; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C

    2015-06-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the "Reptilian Transcriptomes Database 2.0," which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  5. The Human Resources Function and the Growing Company.

    ERIC Educational Resources Information Center

    Arthur, Diane

    1987-01-01

    Discusses factors in a changing society that will make it necessary for companies to revamp their human resources function. Topics include technology, demographics, emerging career categories, human resources planning, benefits, legal trends, and training and development. Tells how to revamp the human resources function. (CH)

  6. New resources inform study of genome size, content, and organization in nonavian reptiles

    PubMed Central

    Janes, Daniel E.; Organ, Christopher; Valenzuela, Nicole

    2008-01-01

    Genomic resources for studies of nonavian reptiles have recently improved and will reach a new level of access once the genomes of the painted turtle (Chrysemys picta) and the green anole (Anolis carolinensis) have been published. Eleven speakers gathered for a symposium on reptilian genomics and evolutionary genetics at the 2008 meeting of the Society for Integrative and Comparative Biology in San Antonio, Texas. Presentations described results of reptilian genetic studies concerning molecular evolution, chromosomal evolution, genomic architecture, population dynamics, endocrinology and endocrine disruption, and the evolution of developmental mechanisms. The presented studies took advantage of the recent generation of genetic and genomic tools and resources. Novel findings demonstrated the positive impact made by the improved availability of resources like genome annotations and bacterial artificial chromosomes (BACs). The symposium was timely and important because it provided a vehicle for the dissemination of novel findings that advance the field. Moreover, this meeting fostered the synergistic interaction of the participants as a group, which is anticipated to encourage the funding and creation of further resources such as additional BAC libraries and genomic projects. Novel data have already been collected and studies like those presented in this symposium promise to shape and improve our understanding of overall amniote evolution. Additional reptilian taxa such as the American alligator (Alligator mississippiensis), tuatara (Sphenodon punctatus), and garter snake (Thamnophis sirtalis) should be the foci of future genomic projects. We hope that the following articles in this volume will help promote these efforts by describing the conclusions and the potential that the improvement of genomic resources for nonavian reptiles can continue having in this important area of integrative and comparative biology. PMID:21669805

  7. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  8. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  9. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis.

    PubMed

    Aurrecoechea, Cristina; Brestelli, John; Brunk, Brian P; Carlton, Jane M; Dommer, Jennifer; Fischer, Steve; Gajria, Bindu; Gao, Xin; Gingle, Alan; Grant, Greg; Harb, Omar S; Heiges, Mark; Innamorato, Frank; Iodice, John; Kissinger, Jessica C; Kraemer, Eileen; Li, Wei; Miller, John A; Morrison, Hilary G; Nayak, Vishal; Pennington, Cary; Pinney, Deborah F; Roos, David S; Ross, Chris; Stoeckert, Christian J; Sullivan, Steven; Treatman, Charles; Wang, Haiming

    2009-01-01

    GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.org) family of functional genomic databases. GiardiaDB and TrichDB employ the same framework as other EuPathDB sites (CryptoDB, PlasmoDB and ToxoDB), supporting fully integrated and searchable databases. Genomic-scale data available via these resources may be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs and other protein characteristics. Functional queries may also be formulated, based on transcript and protein expression data from a variety of platforms. Phylogenetic relationships may also be interrogated. The ability to combine the results from independent queries, and to store queries and query results for future use facilitates complex, genome-wide mining of functional genomic data. PMID:18824479

  10. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis

    PubMed Central

    Aurrecoechea, Cristina; Brestelli, John; Carlton, Jane M.; Dommer, Jennifer; Fischer, Steve; Gajria, Bindu; Gao, Xin; Gingle, Alan; Harb, Omar S.; Heiges, Mark; Innamorato, Frank; Iodice, John; Kissinger, Jessica C.; Kraemer, Eileen; Li, Wei; Miller, John A.; Morrison, Hilary G.; Nayak, Vishal; Pennington, Cary; Pinney, Deborah F.; Roos, David S.; Ross, Chris; Sullivan, Steven; Treatman, Charles; Wang, Haiming

    2009-01-01

    GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.org) family of functional genomic databases. GiardiaDB and TrichDB employ the same framework as other EuPathDB sites (CryptoDB, PlasmoDB and ToxoDB), supporting fully integrated and searchable databases. Genomic-scale data available via these resources may be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs and other protein characteristics. Functional queries may also be formulated, based on transcript and protein expression data from a variety of platforms. Phylogenetic relationships may also be interrogated. The ability to combine the results from independent queries, and to store queries and query results for future use facilitates complex, genome-wide mining of functional genomic data. PMID:18824479

  11. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  12. High-throughput functional genomics using CRISPR-Cas9

    PubMed Central

    Shalem, Ophir; Sanjana, Neville E.; Zhang, Feng

    2015-01-01

    Forward genetic screens are powerful tools for the discovery and functional annotation of genetic elements. Recently, the RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has been combined with genome-scale guide RNA libraries for unbiased, phenotypic screening. In this Review, we describe recent advances using Cas9 for genome-scale screens, including knockout approaches that inactivate genomic loci and strategies that modulate transcriptional activity. We discuss practical aspects of screen design, provide comparisons with RNA interference (RNAi) screening, and outline future applications and challenges. PMID:25854182

  13. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences

    PubMed Central

    Holmes, Christina; Carlson, Siobhan M.; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-01

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics. PMID:27134568

  14. Distinguishing between "function" and "effect" in genome biology.

    PubMed

    Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan

    2014-05-01

    Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. PMID:24814287

  15. The Integrated Microbial Genomes (IMG) System: An Expanding Comparative Analysis Resource

    SciTech Connect

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2009-09-13

    The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at .

  16. The Protein Information Resource: an integrated public resource of functional annotation of proteins

    PubMed Central

    Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.

    2002-01-01

    The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247

  17. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes

    PubMed Central

    Kim, Tae-Min; Xi, Ruibin; Luquette, Lovelace J.; Park, Richard W.; Johnson, Mark D.; Park, Peter J.

    2013-01-01

    A large database of copy number profiles from cancer genomes can facilitate the identification of recurrent chromosomal alterations that often contain key cancer-related genes. It can also be used to explore low-prevalence genomic events such as chromothripsis. In this study, we report an analysis of 8227 human cancer copy number profiles obtained from 107 array comparative genomic hybridization (CGH) studies. Our analysis reveals similarity of chromosomal arm-level alterations among developmentally related tumor types as well as a number of co-occurring pairs of arm-level alterations. Recurrent (“pan-lineage”) focal alterations identified across diverse tumor types show an enrichment of known cancer-related genes and genes with relevant functions in cancer-associated phenotypes (e.g., kinase and cell cycle). Tumor type-specific (“lineage-restricted”) alterations and their enriched functional categories were also identified. Furthermore, we developed an algorithm for detecting regions in which the copy number oscillates rapidly between fixed levels, indicative of chromothripsis. We observed these massive genomic rearrangements in 1%–2% of the samples with variable tumor type-specific incidence rates. Taken together, our comprehensive view of copy number alterations provides a framework for understanding the functional significance of various genomic alterations in cancer genomes. PMID:23132910

  18. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    PubMed Central

    Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  19. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    PubMed

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  20. Construction of genome-wide physical BAC contigs using mapped cDNA as probes: Toward an integrated BAC library resource for genome sequencing and analysis. Annual report, July 1995--January 1997

    SciTech Connect

    Mitchell, S.C.; Bocskai, D.; Cao, Y.

    1997-12-31

    The goal of human genome project is to characterize and sequence entire genomes of human and several model organisms, thus providing complete sets of information on the entire structure of transcribed, regulatory and other functional regions for these organisms. In the past years, a number of useful genetic and physical markers on human and mouse genomes have been made available along with the advent of BAC library resources for these organisms. The advances in technology and resource development made it feasible to efficiently construct genome-wide physical BAC contigs for human and other genomes. Currently, over 30,000 mapped STSs and 27,000 mapped Unigenes are available for human genome mapping. ESTs and cDNAs are excellent resources for building contig maps for two reasons. Firstly, they exist in two alternative forms--as both sequence information for PCR primer pairs, and cDoreen genomic libraries efficiently for large number of DNA probes by combining over 100 cDNA probes in each hybridization. Second, the linkage and order of genes are rather conserved among human, mouse and other model organisms. Therefore, gene markers have advantages over random anonymous STSs in building maps for comparative genomic studies.

  1. New Genomic Resources for Pasture and Range Grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the initial requirements of utilizing genomic approaches in plant improvements is the availability of DNA sequence information. Toward the goal of generating sequence information for forage and pasture grasses, we are developing EST libraries from orchardgrass (Dactylis glomerata) and sever...

  2. Genomic resources for identification of the minimal N2 -fixing symbiotic genome.

    PubMed

    diCenzo, George C; Zamani, Maryam; Milunovic, Branislava; Finan, Turlough M

    2016-09-01

    The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF. PMID:26768651

  3. First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement

    PubMed Central

    Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro

    2014-01-01

    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding. PMID:25386735

  4. Budding off: bringing functional genomics to Candida albicans.

    PubMed

    Anderson, Matthew Z; Bennett, Richard J

    2016-03-01

    Candidaspecies are the most prevalent human fungal pathogens, withCandida albicansbeing the most clinically relevant species.Candida albicansresides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation ofC. albicansvirulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and withinCandidaspecies), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics inC. albicansand discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. PMID:26424829

  5. Functional genomics of Plasmodium falciparum using metabolic modelling and analysis

    PubMed Central

    Oppenheim, Rebecca D.; Soldati-Favre, Dominique; Hatzimanikatis, Vassily

    2013-01-01

    Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets. PMID:23793264

  6. RNAi and functional genomics in plant parasitic nematodes.

    PubMed

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses. PMID:19400649

  7. Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources.

    PubMed

    Dudycha, Jeffry L; Brandon, Christopher S; Deitz, Kevin C

    2012-02-01

    Consumer-resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation, and/or allocation. To identify relevant candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. Fourteen genes were differentially regulated with respect to resources, including genes involved in gut processes, resource allocation, and activities with no obvious connection to resource exploitation. Three genes were differentially regulated in both ecotypes; the others may play a role in ecological divergence. Genes clearly linked to gut processes include two peritrophic matrix proteins, a Niemann-Pick type C2 gene, and a chymotrypsin. A pancreatic lipase, an epoxide hydrolase, a neuroparsin, and an UDP-dependent glucuronyltransferase are potentially involved in resource allocation through effects on energy processing and storage or hormone pathways. We performed quantitative rt-PCR for eight genes in independent samples of three clones of each of the two ecotypes. Though these largely confirmed observed differential regulation, some genes' expression was highly variable among clones. Our results demonstrate the value of matching the level of biological replication in

  8. Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources

    PubMed Central

    Dudycha, Jeffry L; Brandon, Christopher S; Deitz, Kevin C

    2012-01-01

    Consumer–resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation, and/or allocation. To identify relevant candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. Fourteen genes were differentially regulated with respect to resources, including genes involved in gut processes, resource allocation, and activities with no obvious connection to resource exploitation. Three genes were differentially regulated in both ecotypes; the others may play a role in ecological divergence. Genes clearly linked to gut processes include two peritrophic matrix proteins, a Niemann–Pick type C2 gene, and a chymotrypsin. A pancreatic lipase, an epoxide hydrolase, a neuroparsin, and an UDP-dependent glucuronyltransferase are potentially involved in resource allocation through effects on energy processing and storage or hormone pathways. We performed quantitative rt-PCR for eight genes in independent samples of three clones of each of the two ecotypes. Though these largely confirmed observed differential regulation, some genes’ expression was highly variable among clones. Our results demonstrate the value of matching the level of biological replication

  9. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot.

    PubMed

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-01-01

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species. PMID:26901189

  10. Using Genomic Resources to Guide Research Directions. The Arabinogalactan Protein Gene Family as a Test Case1

    PubMed Central

    Schultz, Carolyn J.; Rumsewicz, Michael P.; Johnson, Kim L.; Jones, Brian J.; Gaspar, Yolanda M.; Bacic, Antony

    2002-01-01

    Arabinogalactan proteins (AGPs) are extracellular hydroxyproline-rich proteoglycans implicated in plant growth and development. The protein backbones of AGPs are rich in proline/hydroxyproline, serine, alanine, and threonine. Most family members have less than 40% similarity; therefore, finding family members using Basic Local Alignment Search Tool searches is difficult. As part of our systematic analysis of AGP function in Arabidopsis, we wanted to make sure that we had identified most of the members of the gene family. We used the biased amino acid composition of AGPs to identify AGPs and arabinogalactan (AG) peptides in the Arabidopsis genome. Different criteria were used to identify the fasciclin-like AGPs. In total, we have identified 13 classical AGPs, 10 AG-peptides, three basic AGPs that include a short lysine-rich region, and 21 fasciclin-like AGPs. To streamline the analysis of genomic resources to assist in the planning of targeted experimental approaches, we have adopted a flow chart to maximize the information that can be obtained about each gene. One of the key steps is the reformatting of the Arabidopsis Functional Genomics Consortium microarray data. This customized software program makes it possible to view the ratio data for all Arabidopsis Functional Genomics Consortium experiments and as many genes as desired in a single spreadsheet. The results for reciprocal experiments are grouped to simplify analysis and candidate AGPs involved in development or biotic and abiotic stress responses are readily identified. The microarray data support the suggestion that different AGPs have different functions. PMID:12177459

  11. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot

    PubMed Central

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-01-01

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species. PMID:26901189

  12. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  13. Functional Genomic Analysis of C. elegans Molting

    PubMed Central

    Frand, Alison R; Russel, Sascha

    2005-01-01

    Although the molting cycle is a hallmark of insects and nematodes, neither the endocrine control of molting via size, stage, and nutritional inputs nor the enzymatic mechanism for synthesis and release of the exoskeleton is well understood. Here, we identify endocrine and enzymatic regulators of molting in C. elegans through a genome-wide RNA-interference screen. Products of the 159 genes discovered include annotated transcription factors, secreted peptides, transmembrane proteins, and extracellular matrix enzymes essential for molting. Fusions between several genes and green fluorescent protein show a pulse of expression before each molt in epithelial cells that synthesize the exoskeleton, indicating that the corresponding proteins are made in the correct time and place to regulate molting. We show further that inactivation of particular genes abrogates expression of the green fluorescent protein reporter genes, revealing regulatory networks that might couple the expression of genes essential for molting to endocrine cues. Many molting genes are conserved in parasitic nematodes responsible for human disease, and thus represent attractive targets for pesticide and pharmaceutical development. PMID:16122351

  14. Functional genomics identifies drivers of medulloblastoma dissemination.

    PubMed

    Mumert, Michael; Dubuc, Adrian; Wu, Xiaochong; Northcott, Paul A; Chin, Steven S; Pedone, Carolyn A; Taylor, Michael D; Fults, Daniel W

    2012-10-01

    Medulloblastomas are malignant brain tumors that arise in the cerebellum in children and disseminate via the cerebrospinal fluid to the leptomeningeal spaces of the brain and spinal cord. Challenged by the poor prognosis for patients with metastatic dissemination, pediatric oncologists have developed aggressive treatment protocols, combining surgery, craniospinal radiation, and high-dose chemotherapy, that often cause disabling neurotoxic effects in long-term survivors. Insights into the genetic control of medulloblastoma dissemination have come from transposon insertion mutagenesis studies. Mobilizing the Sleeping Beauty transposon in cerebellar neural progenitor cells caused widespread dissemination of typically nonmetastatic medulloblastomas in Patched(+/-) mice, in which Shh signaling is hyperactive. Candidate metastasis genes were identified by sequencing the insertion sites and then mapping these sequences back to the mouse genome. To determine whether genes located at transposon insertion sites directly caused medulloblastomas to disseminate, we overexpressed candidate genes in Nestin(+) neural progenitors in the cerebella of mice by retroviral transfer in combination with Shh. We show here that ectopic expression of Eras, Lhx1, Ccrk, and Akt shifted the in vivo growth characteristics of Shh-induced medulloblastomas from a localized pattern to a disseminated pattern in which tumor cells seeded the leptomeningeal spaces of the brain and spinal cord. PMID:22875024

  15. A genome-wide resource for the analysis of protein localisation in Drosophila

    PubMed Central

    Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; KJ, Vinay Vikas; Krishnan, RT; Krishnamoorthy, Aishwarya; Ferreira, Irene RS; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank

    2016-01-01

    The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI: http://dx.doi.org/10.7554/eLife.12068.001 PMID:26896675

  16. Genomic Resources Notes accepted 1 April 2015 - 31 May 2015.

    PubMed

    Almeida-Val, Vera Maria Fonseca; Boscari, E; Coelho, Maria Manuela; Congiu, L; Grapputo, A; Grosso, Ana Rita; Jesus, Tiago Filipe; Luebert, Federico; Mansion, Guilhem; Muller, Ludo A H; Töre, Demet; Vidotto, M; Zane, L

    2015-09-01

    This article documents the public availability of transcriptomic resources for (i) the stellate sturgeon Acipenser stellatus, (ii) the flowering plant Campanula gentilis and (iii) two endemic Iberian fish, Squalius carolitertii and Squalius torgalensis. PMID:26261041

  17. Genomic Resources Notes Accepted 1 August 2015 - 31 September 2015.

    PubMed

    Kohler, Annegret; Kremer, Antoine; Le Provost, Grégoire; Lesur, Isabelle; Lin, Gonhua; Martin, Francis; Plomion, Christophe; Wu, Aiguo; Zhao, Fang

    2016-01-01

    This article documents the public availability of transcriptomic resources for (i) the Hazelnut tree (Corylus avellana L.) and (ii) the oriental rat flea and primary plague vector, Xenopsylla cheopis. PMID:26768197

  18. What's that gene (or protein)? Online resources for exploring functions of genes, transcripts, and proteins

    PubMed Central

    Hutchins, James R. A.

    2014-01-01

    The genomic era has enabled research projects that use approaches including genome-scale screens, microarray analysis, next-generation sequencing, and mass spectrometry–based proteomics to discover genes and proteins involved in biological processes. Such methods generate data sets of gene, transcript, or protein hits that researchers wish to explore to understand their properties and functions and thus their possible roles in biological systems of interest. Recent years have seen a profusion of Internet-based resources to aid this process. This review takes the viewpoint of the curious biologist wishing to explore the properties of protein-coding genes and their products, identified using genome-based technologies. Ten key questions are asked about each hit, addressing functions, phenotypes, expression, evolutionary conservation, disease association, protein structure, interactors, posttranslational modifications, and inhibitors. Answers are provided by presenting the latest publicly available resources, together with methods for hit-specific and data set–wide information retrieval, suited to any genome-based analytical technique and experimental species. The utility of these resources is demonstrated for 20 factors regulating cell proliferation. Results obtained using some of these are discussed in more depth using the p53 tumor suppressor as an example. This flexible and universally applicable approach for characterizing experimental hits helps researchers to maximize the potential of their projects for biological discovery. PMID:24723265

  19. MicrobesOnline: an integrated portal for comparative and functional genomics

    SciTech Connect

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  20. MicrobesOnline: an integrated portal for comparative and functional genomics

    SciTech Connect

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  1. MicrobesOnline: an integrated portal for comparative and functional genomics.

    PubMed

    Dehal, Paramvir S; Joachimiak, Marcin P; Price, Morgan N; Bates, John T; Baumohl, Jason K; Chivian, Dylan; Friedland, Greg D; Huang, Katherine H; Keller, Keith; Novichkov, Pavel S; Dubchak, Inna L; Alm, Eric J; Arkin, Adam P

    2010-01-01

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html. PMID:19906701

  2. The Genomic Threading Database: a comprehensive resource for structural annotations of the genomes from key organisms.

    PubMed

    McGuffin, Liam J; Street, Stefano A; Bryson, Kevin; Sørensen, Søren-Aksel; Jones, David T

    2004-01-01

    Currently, the Genomic Threading Database (GTD) contains structural assignments for the proteins encoded within the genomes of nine eukaryotes and 101 prokaryotes. Structural annotations are carried out using a modified version of GenTHREADER, a reliable fold recognition method. The Gen THREADER annotation jobs are distributed across multiple clusters of processors using grid technology and the predictions are deposited in a relational database accessible via a web interface at http://bioinf.cs.ucl.ac.uk/GTD. Using this system, up to 84% of proteins encoded within a genome can be confidently assigned to known folds with 72% of the residues aligned. On average in the GTD, 64% of proteins encoded within a genome are confidently assigned to known folds and 58% of the residues are aligned to structures. PMID:14681393

  3. Update on Genomic Databases and Resources at the National Center for Biotechnology Information.

    PubMed

    Tatusova, Tatiana

    2016-01-01

    The National Center for Biotechnology Information (NCBI), as a primary public repository of genomic sequence data, collects and maintains enormous amounts of heterogeneous data. Data for genomes, genes, gene expressions, gene variation, gene families, proteins, and protein domains are integrated with the analytical, search, and retrieval resources through the NCBI website, text-based search and retrieval system, provides a fast and easy way to navigate across diverse biological databases.Comparative genome analysis tools lead to further understanding of evolution processes quickening the pace of discovery. Recent technological innovations have ignited an explosion in genome sequencing that has fundamentally changed our understanding of the biology of living organisms. This huge increase in DNA sequence data presents new challenges for the information management system and the visualization tools. New strategies have been designed to bring an order to this genome sequence shockwave and improve the usability of associated data. PMID:27115625

  4. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes.

    PubMed

    Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  5. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    PubMed Central

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  6. GeneWeaver: finding consilience in heterogeneous cross-species functional genomics data.

    PubMed

    Bubier, Jason A; Phillips, Charles A; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2015-10-01

    A persistent challenge lies in the interpretation of consensus and discord from functional genomics experimentation. Harmonizing and analyzing this data will enable investigators to discover relations of many genes to many diseases, and from many phenotypes and experimental paradigms to many diseases through their genomic substrates. The GeneWeaver.org system provides a platform for cross-species integration and interrogation of heterogeneous curated and experimentally derived functional genomics data. GeneWeaver enables researchers to store, share, analyze, and compare results of their own genome-wide functional genomics experiments in an environment containing rich companion data obtained from major curated repositories, including the Mouse Genome Database and other model organism databases, along with derived data from highly specialized resources, publications, and user submissions. The data, largely consisting of gene sets and putative biological networks, are mapped onto one another through gene identifiers and homology across species. A versatile suite of interactive tools enables investigators to perform a variety of set analysis operations to find consilience among these often noisy experimental results. Fast algorithms enable real-time analysis of large queries. Specific applications include prioritizing candidate genes for quantitative trait loci, identifying biologically valid mouse models and phenotypic assays for human disease, finding the common biological substrates of related diseases, classifying experiments and the biological concepts they represent from empirical data, and applying patterns of genomic evidence to implicate novel genes in disease. These results illustrate an alternative to strict emphasis on replicability, whereby researchers classify experimental results to identify the conditions that lead to their similarity. PMID:26092690

  7. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  8. Genomic Functionalization: The Next Revolution In Biology

    SciTech Connect

    Anderson, Peter; Schoeniger, Joseph S.; Imbro, Paula M.

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  9. Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and Ds Insertion Mutagenesis

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2011-01-01

    Rice pollen and seed development are directly related to grain yield. To further improve rice yield, it is important for us to functionally annotate the genes controlling pollen/seed development and to use them for rice breeding. Here we first carried out a genome-wide expression analysis with an emphasis on genes being involved in rice pollen and seed development. Based on the transcript profiling, we have identified and functionally classified 82 highly expressed pollen-specific, 12 developing seed-specific and 19 germinating seed-specific genes. We then presented the utilization of the maize transposon Dissociation (Ds) insertion lines for functional genomics of rice pollen and seed development and as alternative germplasm resources for rice breeding. We have established a two-element Activator/Dissociation (Ac/Ds) gene trap tagging system and generated around 20,000 Ds insertion lines. We have subjected these lines for screens to obtain high and low yield Ds insertion lines. Some interesting lines have been obtained with higher yield or male sterility. Flanking Sequence Tags (FSTs) analyses showed that these Ds-tagged genes encoded various proteins including transcription factors, transport proteins, unknown functional proteins and so on. They exhibited diversified expression patterns. Our results suggested that rice could be improved not only by introducing foreign genes but also by knocking out its endogenous genes. This finding might provide a new way for rice breeder to further improve rice varieties. PMID:21209789

  10. Functional genomic response of apple to fire blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this project is to use a functional genomic analysis to characterize the response of apple (Malus x domestica) to fire blight disease and in doing so, identify new opportunities for improving fire blight resistance. cDNA suppression subtractive hybridization and cDNA-AFLP analysis were ...

  11. Performing integrative functional genomics analysis in GeneWeaver.org.

    PubMed

    Jay, Jeremy J; Chesler, Elissa J

    2014-01-01

    Functional genomics experiments and analyses give rise to large sets of results, each typically quantifying the relation of molecular entities including genes, gene products, polymorphisms, and other genomic features with biological characteristics or processes. There is tremendous utility and value in using these data in an integrative fashion to find convergent evidence for the role of genes in various processes, to identify functionally similar molecular entities, or to compare processes based on their genomic correlates. However, these gene-centered data are often deposited in diverse and non-interoperable stores. Therefore, integration requires biologists to implement computational algorithms and harmonization of gene identifiers both within and across species. The GeneWeaver web-based software system brings together a large data archive from diverse functional genomics data with a suite of combinatorial tools in an interactive environment. Account management features allow data and results to be shared among user-defined groups. Users can retrieve curated gene set data, upload, store, and share their own experimental results and perform integrative analyses including novel algorithmic approaches for set-set integration of genes and functions. PMID:24233775

  12. Development of a TILLING Population for Sorghum Functional Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need for a systematically mutagenized population to link gene function to sequence is becoming increasingly urgent as the sorghum genome sequencing is completed. A project was initiated to generate Annotated Individually-pedigreed Mutagenized Sorghum (AIMS) lines using (EMS) ethyl methane sulf...

  13. MELOGEN: an EST database for melon functional genomics

    PubMed Central

    Gonzalez-Ibeas, Daniel; Blanca, José; Roig, Cristina; González-To, Mireia; Picó, Belén; Truniger, Verónica; Gómez, Pedro; Deleu, Wim; Caño-Delgado, Ana; Arús, Pere; Nuez, Fernando; Garcia-Mas, Jordi; Puigdomènech, Pere; Aranda, Miguel A

    2007-01-01

    Background Melon (Cucumis melo L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs) from eight normalized cDNA libraries from different tissues in different physiological conditions. Results We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs) and 10,614 unclustered sequences (singletons). Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs) and 356 single nucleotide polymorphisms (SNPs) were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs) in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. Conclusion The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN) which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of sequences constitutes

  14. Resurrection of DNA function in vivo from an extinct genome.

    PubMed

    Pask, Andrew J; Behringer, Richard R; Renfree, Marilyn B

    2008-01-01

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600

  15. Resurrection of DNA Function In Vivo from an Extinct Genome

    PubMed Central

    Pask, Andrew J.; Behringer, Richard R.; Renfree, Marilyn B.

    2008-01-01

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600

  16. The functional matrix hypothesis revisited. 3. The genomic thesis.

    PubMed

    Moss, M L

    1997-09-01

    Although the initial versions of the functional matrix hypothesis (FMH) theoretically posited the ontogenetic primacy of "function," it is only in recent years that advances in the morphogenetic, engineering, and computer sciences provided an integrated experimental and numerical data base that permitted recent significant revisions of the FMH--revisions that strongly support the primary role of function in craniofacial growth and development. Acknowledging that the currently dominant scientific paradigm suggests that genomic, instead of epigenetic (functional) factors, regulate (cause, control) such growth, an analysis of this continuing controversy was deemed useful. Accordingly the method of dialectical analysis, is employed, stating a thesis, an antithesis, and a resolving synthesis based primarily on an extensive review of the pertinent current literature. This article extensively reviews the genomic hypothesis and offers a critique intended to remove some of the unintentional conceptual obscurantism that has recently come to surround it. PMID:9294365

  17. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025

    PubMed Central

    Bruford, Michael W.; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J.; Amaral, Andreia J.; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F.; Hall, Stephen J. G.; Hanotte, Olivier; Hassan, Faiz-ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A.; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L.; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that “…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity.” However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are

  18. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025.

    PubMed

    Bruford, Michael W; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J; Amaral, Andreia J; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F; Hall, Stephen J G; Hanotte, Olivier; Hassan, Faiz-Ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that "…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity." However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are

  19. A whole-genome, radiation hybrid mapping resource of hexaploid wheat.

    PubMed

    Tiwari, Vijay K; Heesacker, Adam; Riera-Lizarazu, Oscar; Gunn, Hilary; Wang, Shichen; Wang, Yi; Gu, Young Q; Paux, Etienne; Koo, Dal-Hoe; Kumar, Ajay; Luo, Ming-Cheng; Lazo, Gerard; Zemetra, Robert; Akhunov, Eduard; Friebe, Bernd; Poland, Jesse; Gill, Bikram S; Kianian, Shahryar; Leonard, Jeffrey M

    2016-04-01

    Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species. PMID:26945524

  20. A Functional Genomics Approach to Tanshinone Biosynthesis Provides Stereochemical Insights

    PubMed Central

    2009-01-01

    Tanshinones are abietane-type norditerpenoid quinone natural products that are the bioactive components of the Chinese medicinal herb Salvia miltiorrhiza Bunge. The initial results from a functional genomics-based investigation of tanshinone biosynthesis, specifically the functional identification of the relevant diterpene synthases from S. miltiorrhiza, are reported. The cyclohexa-1,4-diene arrangement of the distal ring poises the resulting miltiradiene for the ensuing aromatization and hydroxylation to ferruginol suggested for tanshinone biosynthesis. PMID:19905026

  1. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights.

    PubMed

    Gao, Wei; Hillwig, Matthew L; Huang, Luqi; Cui, Guanghong; Wang, Xueyong; Kong, Jianqiang; Yang, Bin; Peters, Reuben J

    2009-11-19

    Tanshinones are abietane-type norditerpenoid quinone natural products that are the bioactive components of the Chinese medicinal herb Salvia miltiorrhiza Bunge. The initial results from a functional genomics-based investigation of tanshinone biosynthesis, specifically the functional identification of the relevant diterpene synthases from S. miltiorrhiza, are reported. The cyclohexa-1,4-diene arrangement of the distal ring poises the resulting miltiradiene for the ensuing aromatization and hydroxylation to ferruginol suggested for tanshinone biosynthesis. PMID:19905026

  2. Biomedical applications and studies of molecular evolution: a proposal for a primate genomic library resource.

    PubMed

    Eichler, Evan E; DeJong, Pieter J

    2002-05-01

    The anticipated completion of two of the most biomedically relevant genomes, mouse and human, within the next three years provides an unparalleled opportunity for the large-scale exploration of genome evolution. Targeted sequencing of genomic regions in a panel of primate species and comparison to reference genomes will provide critical insight into the nature of single-base pair variation, mechanisms of chromosomal rearrangement, patterns of selection, and species adaptation. Although not recognized as model "genetic organisms" because of their longevity and low fecundity, 30 of the approximately 300 primate species are targets of biomedical research. The existence of a human reference sequence and genomic primate BAC libraries greatly facilitates the recovery of genes/genomic regions of high biological interest because of an estimated maximum neutral nucleotide sequence divergence of 25%. Primate species, therefore, may be regarded as the ideal model "genomic organisms". Based on existing BAC library resources, we propose the construction of a panel of primate BAC libraries from phylogenetic anchor species for the purpose of comparative medicine as well as studies of genome evolution. PMID:11997334

  3. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions

    PubMed Central

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. PMID:26989155

  4. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions.

    PubMed

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. PMID:26989155

  5. Using The ENCODE Resource For Functional Annotation Of Genetic Variants

    PubMed Central

    Pazin, Michael J.

    2015-01-01

    Summary This article illustrates the use of the Encyclopedia of DNA Elements (ENCODE) resource to generate or refine hypotheses from genomic data on disease and other phenotypic traits. First, the goals and history of ENCODE and related epigenomics projects are reviewed. Second, the rationale for ENCODE and the major data types used by ENCODE are briefly described, as are some standard heuristics for their interpretation. Third, the use of the ENCODE resource is examined. Standard use cases for ENCODE, accessing the ENCODE resource, and accessing data from related projects are discussed. Finally, access to resources from ENCODE and related epigenomics projects are reviewed. (Although the focus of this article is the use of ENCODE data, some of the same approaches can be used with the data from other projects.) While this article is focused on the case of interpreting genetic variation data, essentially the same approaches can be used with the ENCODE resource, or with data from other projects, to interpret epigenomic and gene regulation data, with appropriate modification (Rakyan et al. 2011; Ng et al. 2012). Such approaches could allow investigators to use genomic methods to study environmental and stochastic processes, in addition to genetic processes. PMID:25762420

  6. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  7. VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics.

    PubMed

    Megy, Karine; Emrich, Scott J; Lawson, Daniel; Campbell, David; Dialynas, Emmanuel; Hughes, Daniel S T; Koscielny, Gautier; Louis, Christos; Maccallum, Robert M; Redmond, Seth N; Sheehan, Andrew; Topalis, Pantelis; Wilson, Derek

    2012-01-01

    VectorBase (http://www.vectorbase.org) is a NIAID-supported bioinformatics resource for invertebrate vectors of human pathogens. It hosts data for nine genomes: mosquitoes (three Anopheles gambiae genomes, Aedes aegypti and Culex quinquefasciatus), tick (Ixodes scapularis), body louse (Pediculus humanus), kissing bug (Rhodnius prolixus) and tsetse fly (Glossina morsitans). Hosted data range from genomic features and expression data to population genetics and ontologies. We describe improvements and integration of new data that expand our taxonomic coverage. Releases are bi-monthly and include the delivery of preliminary data for emerging genomes. Frequent updates of the genome browser provide VectorBase users with increasing options for visualizing their own high-throughput data. One major development is a new population biology resource for storing genomic variations, insecticide resistance data and their associated metadata. It takes advantage of improved ontologies and controlled vocabularies. Combined, these new features ensure timely release of multiple types of data in the public domain while helping overcome the bottlenecks of bioinformatics and annotation by engaging with our user community. PMID:22135296

  8. Neocaridina denticulata: A Decapod Crustacean Model for Functional Genomics.

    PubMed

    Mykles, Donald L; Hui, Jerome H L

    2015-11-01

    A decapod crustacean model is needed for understanding the molecular mechanisms underlying physiological processes, such as reproduction, sex determination, molting and growth, immunity, regeneration, and response to stress. Criteria for selection are: life-history traits, adult size, availability and ease of culture, and genomics and genetic manipulation. Three freshwater species are considered: cherry shrimp, Neocaridina denticulata; red swamp crayfish, Procambarus clarkii; and redclaw crayfish, Cherax quadricarinatus. All three are readily available, reproduce year round, and grow rapidly. The crayfish species require more space for culture than does N. denticulata. The transparent cuticle of cherry shrimp provides for direct assessment of reproductive status, stage of molt, and tissue-specific expression of reporter genes, and facilitates screening of mutations affecting phenotype. Moreover, a preliminary genome of N. denticulata is available and efforts toward complete genome sequencing and transcriptome sequencing have been initiated. Neocaridina denticulata possesses the best combination of traits that make it most suitable as a model for functional genomics. The next step is to obtain the complete genome sequence and to develop molecular technologies for the screening of mutants and for manipulating tissue-specific gene expression. PMID:26002561

  9. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    SciTech Connect

    Nierman, William C.

    2000-02-14

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phred Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.

  10. Genome-scale resources for Thermoanaerobacterium saccharolyticum

    SciTech Connect

    Currie, Devin H.; Raman, Babu; Gowen, Christopher M.; Tschaplinski, Timothy J.; Land, Miriam L.; Brown, Steven D.; Covalla, Sean; Klingeman, Dawn Marie; Yang, Zamin Koo; Engle, Nancy L.; Johnson, Courtney M.; Rodriguez, Miguel A.; Shaw, A. Joe; Kenealy, William R.; Lynd, Lee R.; Fong, Stephen S.; Mielenz, Jonathan R.; Davison, Brian H.; Hogsett, David A.; Herring, Christopher D.

    2015-06-26

    Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. For this research, a major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation.

  11. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  12. Tomato genomic resources database: an integrated repository of useful tomato genomic information for basic and applied research.

    PubMed

    Suresh, B Venkata; Roy, Riti; Sahu, Kamlesh; Misra, Gopal; Chattopadhyay, Debasis

    2014-01-01

    Tomato Genomic Resources Database (TGRD) allows interactive browsing of tomato genes, micro RNAs, simple sequence repeats (SSRs), important quantitative trait loci and Tomato-EXPEN 2000 genetic map altogether or separately along twelve chromosomes of tomato in a single window. The database is created using sequence of the cultivar Heinz 1706. High quality single nucleotide polymorphic (SNP) sites between the genes of Heinz 1706 and the wild tomato S. pimpinellifolium LA1589 are also included. Genes are classified into different families. 5'-upstream sequences (5'-US) of all the genes and their tissue-specific expression profiles are provided. Sequences of the microRNA loci and their putative target genes are catalogued. Genes and 5'-US show presence of SSRs and SNPs. SSRs located in the genomic, genic and 5'-US can be analysed separately for the presence of any particular motif. Primer sequences for all the SSRs and flanking sequences for all the genic SNPs have been provided. TGRD is a user-friendly web-accessible relational database and uses CMAP viewer for graphical scanning of all the features. Integration and graphical presentation of important genomic information will facilitate better and easier use of tomato genome. TGRD can be accessed as an open source repository at http://59.163.192.91/tomato2/. PMID:24466070

  13. Tomato Genomic Resources Database: An Integrated Repository of Useful Tomato Genomic Information for Basic and Applied Research

    PubMed Central

    Suresh, B. Venkata; Roy, Riti; Sahu, Kamlesh; Misra, Gopal; Chattopadhyay, Debasis

    2014-01-01

    Tomato Genomic Resources Database (TGRD) allows interactive browsing of tomato genes, micro RNAs, simple sequence repeats (SSRs), important quantitative trait loci and Tomato-EXPEN 2000 genetic map altogether or separately along twelve chromosomes of tomato in a single window. The database is created using sequence of the cultivar Heinz 1706. High quality single nucleotide polymorphic (SNP) sites between the genes of Heinz 1706 and the wild tomato S. pimpinellifolium LA1589 are also included. Genes are classified into different families. 5′-upstream sequences (5′-US) of all the genes and their tissue-specific expression profiles are provided. Sequences of the microRNA loci and their putative target genes are catalogued. Genes and 5′-US show presence of SSRs and SNPs. SSRs located in the genomic, genic and 5′-US can be analysed separately for the presence of any particular motif. Primer sequences for all the SSRs and flanking sequences for all the genic SNPs have been provided. TGRD is a user-friendly web-accessible relational database and uses CMAP viewer for graphical scanning of all the features. Integration and graphical presentation of important genomic information will facilitate better and easier use of tomato genome. TGRD can be accessed as an open source repository at http://59.163.192.91/tomato2/. PMID:24466070

  14. Towards a TILLING platform for functional genomics in Piel de Sapo melons

    PubMed Central

    2011-01-01

    Background The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group. Results A new ethyl methanesulfonate-mutagenized (EMS) melon population was generated for the first time in an andromonoecious non-climacteric inodorus Piel de Sapo genetic background. Diverse mutant phenotypes in seedlings, vines and fruits were observed, some of which were of possible commercial interest. The population was first screened for mutations in three target genes involved in disease resistance and fruit quality (Cm-PDS, Cm-eIF4E and Cm-eIFI(iso)4E). The same genes were also tilled in the available monoecious and climacteric cantalupensis EMS melon population. The overall mutation density in this first Piel de Sapo TILLING platform was estimated to be 1 mutation/1.5 Mb by screening four additional genes (Cm-ACO1, Cm-NOR, Cm-DET1 and Cm-DHS). Thirty-three point mutations were found for the seven gene targets, six of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was demonstrated for a loss-of-function mutation in the Phytoene desaturase gene, which is involved in carotenoid biosynthesis. Conclusions The TILLING approach was successful at providing new mutations in the genetic background of Piel de Sapo in most of the analyzed genes, even in genes for which natural variation is extremely low. This new resource will facilitate reverse genetics studies in non-climacteric melons, contributing materially to future genomic and breeding studies. PMID:21834982

  15. AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome

    PubMed Central

    Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis

    2015-01-01

    AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635

  16. Functional genomics of Lactobacillus casei establishment in the gut

    PubMed Central

    Licandro-Seraut, Hélène; Scornec, Hélène; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J.

    2014-01-01

    Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis. PMID:25024222

  17. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  18. An Introduction to the China Rice Functional Genomics Program

    PubMed Central

    Xu, Zhihong

    2002-01-01

    The China Rice Functional Genomics Program (CRFGP) was initiated in 1999 by the Ministry of Science and Technology of China under the National Basic Sciences Initiative and was expected to last for an initial period of five years. The CRFGP involves 20 research groups from the Chinese Academy of Sciences and some major universities and focuses on the identification of genes controlling flowering, plant architecture, fertility, reproduction, metabolic controls and stress responses in rice through a combinatorial approach based on genetics, molecular biology and functional genomics as well as the generation of intellectual properties related to crop breeding and improvements. We will briefly describe the mission of the CRFGP as well as its recent progress. PMID:18628891

  19. The ethics of functional genomics: same, same, but different?

    PubMed

    Hoeyer, Klaus; Koch, Lene

    2006-09-01

    Respect for human life--a notion of worth uniting all members of the human race--constitutes a sense of anthropocentrism that has long been the justification for the enrollment of animals in experimentation executed to develop therapies to alleviate human suffering. Currently, however, advances in functional genomics are causing a qualitative transformation of the rationale for medical research performed on animals. The notion of human distinctness is being fundamentally challenged when gene sequences similar to those found in humans are identified in different species. In this Opinion article, we would like to highlight an inherent tension brought about by the current developments in functional genomics: a tension between the scientific and the ethical status of gene sequences. Is it reasonable to argue that they are the same for all practical purposes but different in ethical status? PMID:16843557

  20. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Reeve, Wayne

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  1. Unlocking Holocentric Chromosomes: New Perspectives from Comparative and Functional Genomics?

    PubMed Central

    Mandrioli, Mauro; Manicardi, Gian Carlo

    2012-01-01

    The presence of chromosomes with diffuse centromeres (holocentric chromosomes) has been reported in several taxa since more than fifty years, but a full understanding of their origin is still lacking. Comparative and functional genomics are nowadays furnishing new data to better understand holocentric chromosome evolution thus opening new perspectives to analyse karyotype rearrangements in species with holocentric chromosomes in particular evidencing unusual common features, such as the uniform GC content and gene distribution along chromosomes. PMID:23372420

  2. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    PubMed

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. PMID:26192091

  3. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure. PMID:27587776

  4. Functional Genomics in the Study of Mind-Body Therapies

    PubMed Central

    Niles, Halsey; Mehta, Darshan H.; Corrigan, Alexandra A.; Bhasin, Manoj K.; Denninger, John W.

    2014-01-01

    Background Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. Methods We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. Results We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. Conclusion In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes—from epigenomics to proteomics and metabolomics. PMID:25598735

  5. Genomic leftovers: identifying novel microsatellites, over-represented motifs and functional elements in the human genome.

    PubMed

    Fonville, Natalie C; Velmurugan, Karthik Raja; Tae, Hongseok; Vaksman, Zalman; McIver, Lauren J; Garner, Harold R

    2016-01-01

    The human genome is 99% complete. This study contributes to filling the 1% gap by enriching previously unknown repeat regions called microsatellites (MST). We devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 colorectal cell lines and 16 normal human samples to illustrate its utility in identifying contigs from reads that do not map to the genome reference. The analysis of these samples yielded 790 novel extra-referential concordant contigs that are observed in more than one sample. We searched for evidence of functional elements in the concordant contigs in two ways: (1) BLAST-ing each contig against normal RNA-Seq samples, (2) Checking for predicted functional elements using GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant contigs predicted by GlimmerHMM to have functional elements, 6 had at least one exact RNA-Seq match. BLAST-ing these novel contigs against all publically available sequences confirmed that they were found in human and chimpanzee BAC and FOSMID clones sequenced as part of the original human genome project. These extra-referential contigs predominantly contained pentameric repeats, especially two motifs: AATGG and GTGGA. PMID:27278669

  6. Genomic leftovers: identifying novel microsatellites, over-represented motifs and functional elements in the human genome

    PubMed Central

    Fonville, Natalie C.; Velmurugan, Karthik Raja; Tae, Hongseok; Vaksman, Zalman; McIver, Lauren J.; Garner, Harold R.

    2016-01-01

    The human genome is 99% complete. This study contributes to filling the 1% gap by enriching previously unknown repeat regions called microsatellites (MST). We devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 colorectal cell lines and 16 normal human samples to illustrate its utility in identifying contigs from reads that do not map to the genome reference. The analysis of these samples yielded 790 novel extra-referential concordant contigs that are observed in more than one sample. We searched for evidence of functional elements in the concordant contigs in two ways: (1) BLAST-ing each contig against normal RNA-Seq samples, (2) Checking for predicted functional elements using GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant contigs predicted by GlimmerHMM to have functional elements, 6 had at least one exact RNA-Seq match. BLAST-ing these novel contigs against all publically available sequences confirmed that they were found in human and chimpanzee BAC and FOSMID clones sequenced as part of the original human genome project. These extra-referential contigs predominantly contained pentameric repeats, especially two motifs: AATGG and GTGGA. PMID:27278669

  7. INFRAFRONTIER: a European resource for studying the functional basis of human disease.

    PubMed

    Raess, Michael; de Castro, Ana Ambrosio; Gailus-Durner, Valérie; Fessele, Sabine; Hrabě de Angelis, Martin

    2016-08-01

    Ageing research and more generally the study of the functional basis of human diseases profit enormously from the large-scale approaches and resources in mouse functional genomics: systematic targeted mutation of the mouse genome, systemic phenotyping in mouse clinics, and the archiving and distribution of the mouse resources in public repositories. INFRAFRONTIER, the European research infrastructure for the development, systemic phenotyping, archiving and distribution of mammalian models, offers access to sustainable mouse resources for biomedical research. INFRAFRONTIER promotes the global sharing of high-quality resources and data and thus contributes to data reproducibility and animal welfare. INFRAFRONTIER puts great effort into international standardisation and quality control and into technology development to improve and expand experimental protocols, reduce the use of animals in research and increase the reproducibility of results. In concert with the research community and the International Mouse Phenotyping Consortium (IMPC), INFRAFRONTIER is currently developing new pilot platforms and services for the research on ageing and age-related diseases. PMID:27262858

  8. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii

    PubMed Central

    Ramage, Elizabeth; Weiss, Eli J.; Radey, Matthew; Hayden, Hillary S.; Held, Kiara G.; Huse, Holly K.; Zurawski, Daniel V.; Brittnacher, Mitchell J.; Manoil, Colin

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. PMID:25845845

  9. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus).

    PubMed

    Lea, Amanda J; Altmann, Jeanne; Alberts, Susan C; Tung, Jenny

    2016-04-01

    Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole-blood DNA methylation levels in two sets of wild baboons: (i) 'wild-feeding' baboons that foraged naturally in a savanna environment and (ii) 'Lodge' baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course. PMID:26508127

  10. Resources

    MedlinePlus

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  11. Zebrafish models for the functional genomics of neurogenetic disorders.

    PubMed

    Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre

    2011-03-01

    In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. PMID:20887784

  12. Event-based text mining for biology and functional genomics.

    PubMed

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  13. Whole-genome sequence-based analysis of thyroid function

    PubMed Central

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J.; Traglia, Michela; Brown, Suzanne J.; Mullin, Benjamin H.; Shihab, Hashem A.; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R.; Beilby, John P.; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D.; Hui, Jennie; Lim, Ee M.; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R.B.; Bell, Jordana T.; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L.; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M.; Naitza, Silvia; Walsh, John P.; Spector, Tim; Davey Smith, George; Durbin, Richard; Brent Richards, J.; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J.; Wilson, Scott G.; Turki, Saeed Al; Anderson, Carl; Anney, Richard; Antony, Dinu; Artigas, Maria Soler; Ayub, Muhammad; Balasubramaniam, Senduran; Barrett, Jeffrey C.; Barroso, Inês; Beales, Phil; Bentham, Jamie; Bhattacharya, Shoumo; Birney, Ewan; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Bounds, Rebecca; Boustred, Chris; Breen, Gerome; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Ciampi, Antonio; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Day-Williams, Aaron; Day, Ian N.M.; Down, Thomas; Du, Yuanping; Dunham, Ian; Edkins, Sarah; Ellis, Peter; Evans, David; Faroogi, Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David R.; Flicek, Paul; Flyod, James; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Geihs, Matthias; Geschwind, Daniel; Griffin, Heather; Grozeva, Detelina; Guo, Xueqin; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Howie, Bryan; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro; Jackson, David K.; Jamshidi, Yalda; Jing, Tian; Joyce, Chris; Kaye, Jane; Keane, Thomas; Keogh, Julia; Kemp, John; Kennedy, Karen; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Liang, Jieqin; Lin, Hong; Li, Rui; Li, Yingrui; Liu, Ryan; Lönnqvist, Jouko; Lopes, Margarida; Lotchkova, Valentina; MacArthur, Daniel; Marchini, Jonathan; Maslen, John; Massimo, Mangino; Mathieson, Iain; Marenne, Gaëlle; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew G.; McQuillin, Andrew; Metrustry, Sarah; Mitchison, Hannah; Moayyeri, Alireza; Morris, James; Muntoni, Francesco; Northstone, Kate; O'Donnovan, Michael; Onoufriadis, Alexandros; O'Rahilly, Stephen; Oualkacha, Karim; Owen, Michael J.; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Pietilainen, Olli; Plagnol, Vincent; Quaye, Lydia; Quai, Michael A.; Raymond, Lucy; Rehnström, Karola; Richards, Brent; Ring, Susan; Ritchie, Graham R.S.; Roberts, Nicola; Savage, David B.; Scambler, Peter; Schiffels, Stephen; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shin, So-Youn; Skuse, David; Small, Kerrin; Southam, Lorraine; Spasic-Boskovic, Olivera; Clair, David St; Stalker, Jim; Stevens, Elizabeth; Pourcian, Beate St; Sun, Jianping; Suvisaari, Jaana; Tachmazidou, Ionna; Tobin, Martin D.; Valdes, Ana; Kogelenberg, Margriet Van; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walters, James T.R.; Wang, Guangbiao; Wang, Jun; Wang, Yu; Ward, Kirsten; Wheeler, Elanor; Whyte, Tamieka; Williams, Hywel; Williamson, Kathleen A.; Wilson, Crispian; Wong, Kim; Xu, ChangJiang; Yang, Jian; Zhang, Fend; Zhang, Pingbo

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10−9) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10−14). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10−9) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10−11). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function. PMID:25743335

  14. Kluyveromyces lactis genome harbours a functional linker histone encoding gene.

    PubMed

    Staneva, Dessislava; Georgieva, Milena; Miloshev, George

    2016-06-01

    Linker histones are essential components of chromatin in eukaryotes. Through interactions with linker DNA and nucleosomes they facilitate folding and maintenance of higher-order chromatin structures and thus delicately modulate gene activity. The necessity of linker histones in lower eukaryotes appears controversial and dubious. Genomic data have shown that Schizosaccharomyces pombe does not possess genes encoding linker histones while Kluyveromyces lactis has been reported to have a pseudogene. Regarding this controversy, we have provided the first direct experimental evidence for the existence of a functional linker histone gene, KlLH1, in K. lactis genome. Sequencing of KlLH1 from both genomic DNA and copy DNA confirmed the presence of an intact open reading frame. Transcription and splicing of the KlLH1 sequence as well as translation of its mRNA have been studied. In silico analysis revealed homology of KlLH1p to the histone H1/H5 protein family with predicted three domain structure characteristic for the linker histones of higher eukaryotes. This strongly proves that the yeast K. lactis does indeed possess a functional linker histone gene thus entailing the evolutionary preservation and significance of linker histones. The nucleotide sequences of KlLH1 are deposited in the GenBank under accession numbers KT826576, KT826577 and KT826578. PMID:27189369

  15. Event-based text mining for biology and functional genomics

    PubMed Central

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  16. A functional isopenicillin N synthase in an animal genome.

    PubMed

    Roelofs, Dick; Timmermans, Martijn J T N; Hensbergen, Paul; van Leeuwen, Hans; Koopman, Jessica; Faddeeva, Anna; Suring, Wouter; de Boer, Tjalf E; Mariën, Janine; Boer, Remon; Bovenberg, Roel; van Straalen, Nico M

    2013-03-01

    Horizontal transfer of genes is widespread among prokaryotes, but is less common between microorganisms and animals. Here, we present evidence for the presence of a gene encoding functional isopenicillin N synthase, an enzyme in the β-lactam antibiotics biosynthesis pathway, in the genome of the soil-living collembolan species, Folsomia candida (FcIPNS). At present, this gene is only known from bacteria and fungi, as is the capacity to produce β-lactam antibiotics. The FcIPNS gene was located on two genomic contigs, was physically linked to a predicted insect ATP-binding cassette transporter gene, and contained three introns each flanked by eukaryotic splicing recognition sites (GT/AG). Homology searches revealed no similarity between these introns and the FcIPNS regions of bacteria or fungi. All amino acids conserved across bacteria and fungi were also conserved in F. candida. Recombinant FcIPNS was able to convert its substrate amino δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine into isopenicillin N, providing strong evidence that FcIPNS is functional. Phylogenetic analysis clustered FcIPNS outside the bacterial IPNS clade, and also outside the fungal IPNS clade, suggesting an ancient gene transfer followed by divergence in the F. candida genome. In conclusion, the data suggest that the soil-living collembolan F. candida has assimilated the capacity for antibacterial activity by horizontal gene transfer, which may be an important adaptive trait in the microbe-dominated soil ecosystem. PMID:23204388

  17. Whole-genome sequence-based analysis of thyroid function.

    PubMed

    Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J; Traglia, Michela; Brown, Suzanne J; Mullin, Benjamin H; Shihab, Hashem A; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R; Beilby, John P; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D; Hui, Jennie; Lim, Ee M; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R B; Bell, Jordana T; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M; Naitza, Silvia; Walsh, John P; Spector, Tim; Davey Smith, George; Durbin, Richard; Richards, J Brent; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J; Wilson, Scott G

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function. PMID:25743335

  18. Functional genomics in osteoarthritis: Past, present, and future

    PubMed Central

    Steinberg, Julia

    2016-01-01

    ABSTRACT Osteoarthritis (OA) is a common complex disease of high public health burden. OA is characterized by the degeneration of affected joints leading to pain and reduced mobility. Over the last few years, several studies have focused on the genomic changes underpinning OA. Here, we provide a comprehensive overview of genome‐wide, non‐hypothesis‐driven functional genomics (methylation, gene, and protein expression) studies of knee and hip OA in humans. Individual studies have generally been limited in sample size and hence power, and have differed in their approaches; nonetheless, some common themes have started to emerge, notably the role played by biological processes related to the extracellular matrix, immune response, the WNT pathway, angiogenesis, and skeletal development. Larger‐scale studies and streamlined, robust methodologies will be needed to further elucidate the biological etiology of OA going forward. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1105–1110, 2016. PMID:27176659

  19. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus).

    PubMed

    Thanh, Nguyen Minh; Jung, Hyungtaek; Lyons, Russell E; Njaci, Isaac; Yoon, Byoung-Ha; Chand, Vincent; Tuan, Nguyen Viet; Thu, Vo Thi Minh; Mather, Peter

    2015-10-01

    Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species. PMID:25979246

  20. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes

    PubMed Central

    Wyffels, Jennifer; L. King, Benjamin; Vincent, James; Chen, Chuming; Wu, Cathy H.; Polson, Shawn W.

    2014-01-01

    Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes.  In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate.  SkateBase ( http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources. PMID:25309735

  1. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes.

    PubMed

    Wyffels, Jennifer; King, Benjamin L; Vincent, James; Chen, Chuming; Wu, Cathy H; Polson, Shawn W

    2014-01-01

    Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes.  In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate.  SkateBase ( http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources. PMID:25309735

  2. Integrative pathway genomics of lung function and airflow obstruction.

    PubMed

    Gharib, Sina A; Loth, Daan W; Soler Artigas, María; Birkland, Timothy P; Wilk, Jemma B; Wain, Louise V; Brody, Jennifer A; Obeidat, Ma'en; Hancock, Dana B; Tang, Wenbo; Rawal, Rajesh; Boezen, H Marike; Imboden, Medea; Huffman, Jennifer E; Lahousse, Lies; Alves, Alexessander C; Manichaikul, Ani; Hui, Jennie; Morrison, Alanna C; Ramasamy, Adaikalavan; Smith, Albert Vernon; Gudnason, Vilmundur; Surakka, Ida; Vitart, Veronique; Evans, David M; Strachan, David P; Deary, Ian J; Hofman, Albert; Gläser, Sven; Wilson, James F; North, Kari E; Zhao, Jing Hua; Heckbert, Susan R; Jarvis, Deborah L; Probst-Hensch, Nicole; Schulz, Holger; Barr, R Graham; Jarvelin, Marjo-Riitta; O'Connor, George T; Kähönen, Mika; Cassano, Patricia A; Hysi, Pirro G; Dupuis, Josée; Hayward, Caroline; Psaty, Bruce M; Hall, Ian P; Parks, William C; Tobin, Martin D; London, Stephanie J

    2015-12-01

    Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease. PMID:26395457

  3. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    PubMed

    Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my. PMID:27138013

  4. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform

    PubMed Central

    Zheng, Wenning; Paterson, Ian C.; Mutha, Naresh V. R.; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A.; Jakubovics, Nicholas S.; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my. PMID:27138013

  5. Evaluating sustainability of watershed resources management through wetland functional analysis

    SciTech Connect

    Zalidis, G.C.; Gerakis, A. . Lab. of Applied Soil Science)

    1999-08-01

    Unsustainable agricultural policies and water and soil resource schemes have drained two thirds of Mediterranean wetlands since 1920. An outstanding example is Karla in Greece, a former internationally important wetland that was drained in 1962 causing environmental, social, and water and soil problems. The objective of this study was to assess the functions and values of Karla, at three periods of its history, and to relate them to major events in the management of the water and soil resources of its watershed. Information on wetland and watershed features was collected from historical records and field visits. The results showed that the wetland in its pristine state had performed five functions to a high degree, one (groundwater recharge) to a moderate degree, and one (flood storage) to a low degree. Flood-control works, uncontrolled pumping, etc., in 1936--1961 degraded all functions except microclimate modification while, the bird support function was moderately altered. Drainage works in 1962 left a very small artificially flooded wetland with only four functions performed to an insignificant degree. Value degradation followed function degradation. It was concluded that past resource management has been nonintegrated. No consideration was given to the multiple functions and values of Karla. Previous restoration proposals involved the reinstatement of one or two functions only. The appropriate restoration scheme for Karla must be multiobjective and based on the integrated resource management of its own and the neighboring watersheds.

  6. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature

    PubMed Central

    Sengupta, Sonali; Majumder, Arun Lahiri

    2014-01-01

    Some areas in plant abiotic stress research are not frequently addressed by genomic and molecular tools. One such area is the cross reaction of gravitational force with upward capillary pull of water and the mechanical-functional trade-off in plant vasculature. Although frost, drought and flooding stress greatly impact these physiological processes and consequently plant performance, the genomic and molecular basis of such trade-off is only sporadically addressed and so is its adaptive value. Embolism resistance is an important multiple stress- opposition trait and do offer scopes for critical insight to unravel and modify the input of living cells in the process and their biotechnological intervention may be of great importance. Vascular plants employ different physiological strategies to cope with embolism and variation is observed across the kingdom. The genomic resources in this area have started to emerge and open up possibilities of synthesis, validation and utilization of the new knowledge-base. This review article assesses the research till date on this issue and discusses new possibilities for bridging physiology and genomics of a plant, and foresees its implementation in crop science. PMID:24904619

  7. Genome-wide functional annotation of Phomopsis longicolla isolate MSPL 10-6.

    PubMed

    Darwish, Omar; Li, Shuxian; Matthews, Benjamin; Alkharouf, Nadim

    2016-06-01

    Phomopsis seed decay of soybean is caused primarily by the seed-borne fungal pathogen Phomopsis longicolla (syn. Diaporthe longicolla). This disease severely decreases soybean seed quality, reduces seedling vigor and stand establishment, and suppresses yield. It is one of the most economically important soybean diseases. In this study we annotated the entire genome of P. longicolla isolate MSPL 10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome-wide functional annotation of a seed borne fungal pathogen in the Diaporthe-Phomopsis complex. The P. longicolla genome annotation will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean-fungal interactions. The genome annotation will also be a valuable resource for the research and agricultural communities. It will aid in the development of new control strategies for this pathogen. The annotations can be found from: http://bioinformatics.towson.edu/phomopsis_longicolla/download.html. NCBI accession number is: AYRD00000000. PMID:27222801

  8. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis

    NASA Astrophysics Data System (ADS)

    Pan, Xiong; Lin, Dunli; Zheng, Yuan; Zhang, Qian; Yin, Yuanming; Cai, Lin; Fang, Hua; Yu, Yunlong

    2016-02-01

    A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment.

  9. Family resources study: part 1: family resources, family function and caregiver strain in childhood cancer

    PubMed Central

    2011-01-01

    Background Severe illness can disrupt family life, cause family dysfunction, strain resources, and cause caregiver burden. The family's ability to cope with crises depends on their resources. This study sought to assess families of children with cancer in terms of family function-dysfunction, family caregiver strain and the adequacy of family resources using a new family resources assessment instrument. Methods This is a cross-sectional study involving 90 Filipino family caregivers of children undergoing cancer treatment. This used a self-administered questionnaire composed of a new 12-item family resources questionnaire (SCREEM-RES) based on the SCREEM method of analysis, Family APGAR to assess family function-dysfunction; and Modified Caregiver Strain Index to assess strain in caring for the patient. Results More than half of families were either moderately or severely dysfunctional. Close to half of caregivers were either predisposed to strain or experienced severe strain, majority disclosed that their families have inadequate economic resources; many also report inaccessibility to medical help in the community and insufficient educational resources to understand and care for their patients. Resources most often reported as adequate were: family's faith and religion; help from within the family and from health providers. SCREEM-RES showed to be reliable with Cronbach's alpha of 0.80. There is good inter-item correlation between items in each domain: 0.24-0.70. Internal consistency reliability for each domain was also good: 0.40-0.92. Using 2-point scoring system, Cronbach's alpha were slightly lower: full scale (0.70) and for each domain 0.26-.82. Results showed evidence of association between family resources and family function based on the family APGAR but none between family resources and caregiver strain and between family function and caregiver strain. Conclusion Many Filipino families of children with cancer have inadequate resources, especially economic

  10. AgBase: a unified resource for functional analysis in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of functional genomics (transcriptomics and proteomics) datasets is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation. To facilitate systems biology in these species we have established the curated, web-accessib...

  11. Functional Requirements for Information Resource Provenance on the Web

    SciTech Connect

    McCusker, James P.; Lebo, Timothy; Graves, Alvaro; Difranzo, Dominic; Pinheiro da Silva, Paulo; McGuinness, Deborah L.

    2012-06-19

    We provide a means to formally explain the relationship between HTTP URLs and the representations returned when they are requested. According to existing World Wide Web architecture, the URL serves as an identier for a semiotic referent while the document returned via HTTP serves as a representation of the same referent. This begins with two sides of a semiotic triangle; the third side is the relationship between the URL and the representation received. We complete this description by extending the library science resource model Functional Requirements for Bibliographic Resources (FRBR) with cryptographic message and content digests to create a Functional Requirements for Information Resources (FRIR). We show how applying the FRIR model to HTTP GET and POST transactions disambiguates the many relationships between a given URL and all representations received from its request, provides fine-grained explanations that are complementary to existing explanations of web resources, and integrates easily into the emerging W3C provenance standard.

  12. Resources

    MedlinePlus

    ... Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - resources Gastrointestinal disorders - resources Hearing impairment - resources ...

  13. Interactions of photosynthesis with genome size and function.

    PubMed

    Raven, John A; Beardall, John; Larkum, Anthony W D; Sánchez-Baracaldo, Patricia

    2013-07-19

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280-320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements. PMID:23754816

  14. Interactions of photosynthesis with genome size and function

    PubMed Central

    Raven, John A.; Beardall, John; Larkum, Anthony W. D.; Sánchez-Baracaldo, Patricia

    2013-01-01

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements PMID:23754816

  15. Computational methods and resources for the interpretation of genomic variants in cancer

    PubMed Central

    2015-01-01

    The recent improvement of the high-throughput sequencing technologies is having a strong impact on the detection of genetic variations associated with cancer. Several institutions worldwide have been sequencing the whole exomes and or genomes of cancer patients in the thousands, thereby providing an invaluable collection of new somatic mutations in different cancer types. These initiatives promoted the development of methods and tools for the analysis of cancer genomes that are aimed at studying the relationship between genotype and phenotype in cancer. In this article we review the online resources and computational tools for the analysis of cancer genome. First, we describe the available repositories of cancer genome data. Next, we provide an overview of the methods for the detection of genetic variation and computational tools for the prioritization of cancer related genes and causative somatic variations. Finally, we discuss the future perspectives in cancer genomics focusing on the impact of computational methods and quantitative approaches for defining personalized strategies to improve the diagnosis and treatment of cancer. PMID:26111056

  16. Introns: The Functional Benefits of Introns in Genomes.

    PubMed

    Jo, Bong-Seok; Choi, Sun Shim

    2015-12-01

    The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced. PMID:26865841

  17. Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data

    PubMed Central

    Nariai, Naoki; Kolaczyk, Eric D.; Kasif, Simon

    2007-01-01

    Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI) data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins) represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO) terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function. PMID:17396164

  18. Regulation of Genome Architecture and Function by Polycomb Proteins.

    PubMed

    Entrevan, Marianne; Schuettengruber, Bernd; Cavalli, Giacomo

    2016-07-01

    Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes. PMID:27198635

  19. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    PubMed

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950

  20. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    PubMed Central

    Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah

    2016-01-01

    Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950

  1. Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics

    DOE Data Explorer

    Lopez, David

    The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

  2. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Crow, John [National Center for Genome Resources

    2013-01-25

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  3. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India.

    PubMed

    Agarwal, Pinky; Parida, Swarup K; Raghuvanshi, Saurabh; Kapoor, Sanjay; Khurana, Paramjit; Khurana, Jitendra P; Tyagi, Akhilesh K

    2016-12-01

    Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact. PMID:26743769

  4. Genome-wide survey for biologically functional pseudogenes.

    PubMed

    Svensson, Orjan; Arvestad, Lars; Lagergren, Jens

    2006-05-01

    According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3), and one from the Spinocerebellar ataxia type 1 protein (ATX1). Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios. PMID:16680195

  5. A Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins

    PubMed Central

    Slagowski, Naomi L; Kramer, Roger W; Morrison, Monica F; LaBaer, Joshua; Lesser, Cammie F

    2008-01-01

    Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to

  6. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  7. Vitigene: A database for grape genomics and genetic resources delivery that benefits grape growers and scientific communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new grape genomic database was established for ‘Native American Grape Species’ as a genomic resource (http://vitigene.famu.edu:9082/eclient/ IDMLogon2.jsp). The new database hosts genetic information collected from disease tolerant/resistant grapevine endemic to North America, and is a valuable re...

  8. "Reverse Genomics" Predicts Function of Human Conserved Noncoding Elements.

    PubMed

    Marcovitz, Amir; Jia, Robin; Bejerano, Gill

    2016-05-01

    Evolutionary changes in cis-regulatory elements are thought to play a key role in morphological and physiological diversity across animals. Many conserved noncoding elements (CNEs) function as cis-regulatory elements, controlling gene expression levels in different biological contexts. However, determining specific associations between CNEs and related phenotypes is a challenging task. Here, we present a computational "reverse genomics" approach that predicts the phenotypic functions of human CNEs. We identify thousands of human CNEs that were lost in at least two independent mammalian lineages (IL-CNEs), and match their evolutionary profiles against a diverse set of phenotypes recently annotated across multiple mammalian species. We identify 2,759 compelling associations between human CNEs and a diverse set of mammalian phenotypes. We discuss multiple CNEs, including a predicted ear element near BMP7, a pelvic CNE in FBN1, a brain morphology element in UBE4B, and an aquatic adaptation forelimb CNE near EGR2, and provide a full list of our predictions. As more genomes are sequenced and more traits are annotated across species, we expect our method to facilitate the interpretation of noncoding mutations in human disease and expedite the discovery of individual CNEs that play key roles in human evolution and development. PMID:26744417

  9. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution.

    PubMed

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-01-01

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans. PMID:26154478

  10. Functional Genome Screening to Elucidate the Colistin Resistance Mechanism

    PubMed Central

    Kumar, Mohit; Gupta, Ashutosh; Sahoo, Rajesh Kumar; Jena, Jayanti; Debata, Nagen Kumar; Subudhi, Enketeswara

    2016-01-01

    Antibiogram profile of 1590 clinical bacterial isolates based on thirteen different antimicrobial compounds showed that 1.6% of the bacterial isolates are multidrug resistant. Distribution pattern based on 16S rRNA sequence analysis showed that Pseudomonas aeruginosa constituted the largest group (83.6%) followed by Burkholderia pseudomallei sp. A191 (5.17%), Staphylococcus sp. A261 (3.45%). Among the various antibiotics used, colistin appeared to be the most effective against the Gram negative bacteria. Burkholderia pseudomallei sp. A191 and Pseudomonas aeruginosa sp. A111 showed resistance to 1500 μg/ml and 750 μg/ml of colistin respectively which constitutes 7.7% of the bacterial population. A functional genomics strategy was employed to discover the molecular support for colistin resistance in Burkholderia pseudomallei sp. A191. A pUC plasmid-based genomic expression library was constructed with an estimated library size of 2.1 × 107bp. Five colistin resistant clones were obtained after functional screening of the library. Analysis of DNA sequence of five colistin resistant clones showed homology to two component regularity systems (TCRS) encoding for a histidine kinase (mrgS) and its regulatory component (mrgR). Cross complementation assay showed that mutations in mrgS were sufficient enough to confer colistin resistant phenotype in a sensitive strain. PMID:26988670

  11. AIMS Library - A community resource for sorghum genomic studies and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sorghum genome sequence is completed. A systematically mutagenized population linking gene function to sequence is becoming increasingly urgent. A project was initiated to develop an Annotated Individually-pedigreed Mutagenized Sorghum (AIMS) library using (EMS) ethyl methane sulfonate for sel...

  12. Target Selection and Determination of Function in Structural Genomics

    PubMed Central

    Watson, James D.; Todd, Annabel E.; Bray, James; Laskowski, Roman A.; Edwards, Aled; Joachimiak, Andrzej; Orengo, Christine A.; Thornton, Janet M.

    2011-01-01

    Summary The first crucial step in any structural genomics project is the selection and prioritization of target proteins for structure determination. There may be a number of selection criteria to be satisfied, including that the proteins have novel folds, that they be representatives of large families for which no structure is known, and so on. The better the selection at this stage, the greater is the value of the structures obtained at the end of the experimental process. This value can be further enhanced once the protein structures have been solved if the functions of the given proteins can also be determined. Here we describe the methods used at either end of the experimental process: firstly, sensitive sequence comparison techniques for selecting a high-quality list of target proteins, and secondly the various computational methods that can be applied to the eventual 3D structures to determine the most likely biochemical function of the proteins in question. PMID:12880206

  13. Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

    PubMed Central

    2011-01-01

    Background Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale. Results We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST. In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate. Conclusions We functionally annotated approximately 1

  14. A conditional knockout resource for the genome–wide study of mouse gene function

    PubMed Central

    Skarnes, William C.; Rosen, Barry; West, Anthony P.; Koutsourakis, Manousos; Bushell, Wendy; Iyer, Vivek; Mujica, Alejandro O.; Thomas, Mark; Harrow, Jennifer; Cox, Tony; Jackson, David; Severin, Jessica; Biggs, Patrick; Fu, Jun; Nefedov, Michael; de Jong, Pieter J.; Stewart, A. Francis; Bradley, Allan

    2013-01-01

    Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome. PMID:21677750

  15. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond1

    PubMed Central

    Mueller, Lukas A.; Solow, Teri H.; Taylor, Nicolas; Skwarecki, Beth; Buels, Robert; Binns, John; Lin, Chenwei; Wright, Mark H.; Ahrens, Robert; Wang, Ying; Herbst, Evan V.; Keyder, Emil R.; Menda, Naama; Zamir, Dani; Tanksley, Steven D.

    2005-01-01

    The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond. PMID:16010005

  16. Resourcing the Training and Development Function. IES Report.

    ERIC Educational Resources Information Center

    Carter, A.; Hirsh, W.; Aston, J.

    A study explored current practice in organizing and resourcing training and development (T&D) using survey responses from over 100 major private and public sector employers and case studies of T&D functions in 6 organizations. Business drivers for T&D were senior management as customers; diagnosis of training as "the solution;" individual…

  17. Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression.

    PubMed

    Garcia-Vedrenne, Ana Elisa; Groner, Maya; Page-Karjian, Annie; Siegmund, Gregor-Fausto; Singhal, Sonia; Sziklay, Jamie; Roberts, Steven

    2013-01-01

    Understanding how environmental changes influence the pathogenicity and virulence of infectious agents is critical for predicting epidemiological patterns of disease. Thraustochytrids, part of the larger taxonomic class Labyrinthulomycetes, contain several highly pathogenic species, including the hard clam pathogen quahog parasite unknown (QPX). QPX has been associated with large-scale mortality events along the northeastern coast of North America. Growth and physiology of QPX is temperature-dependent, and changes in local temperature profiles influence pathogenicity. In this study we characterize the partial genome of QPX and examine the influence of temperature on gene expression. Genes involved in several biological processes are differentially expressed upon temperature change, including those associated with altered growth and metabolism and virulence. The genomic and transcriptomic resources developed in this study provide a foundation for better understanding virulence, pathogenicity and life history of thraustochytrid pathogens. PMID:24069279

  18. Development of Genomic Resources for a thraustochytrid Pathogen and Investigation of Temperature Influences on Gene Expression

    PubMed Central

    Garcia-Vedrenne, Ana Elisa; Groner, Maya; Page-Karjian, Annie; Siegmund, Gregor-Fausto; Singhal, Sonia; Sziklay, Jamie; Roberts, Steven

    2013-01-01

    Understanding how environmental changes influence the pathogenicity and virulence of infectious agents is critical for predicting epidemiological patterns of disease. Thraustochytrids, part of the larger taxonomic class Labyrinthulomycetes, contain several highly pathogenic species, including the hard clam pathogen quahog parasite unknown (QPX). QPX has been associated with large-scale mortality events along the northeastern coast of North America. Growth and physiology of QPX is temperature-dependent, and changes in local temperature profiles influence pathogenicity. In this study we characterize the partial genome of QPX and examine the influence of temperature on gene expression. Genes involved in several biological processes are differentially expressed upon temperature change, including those associated with altered growth and metabolism and virulence. The genomic and transcriptomic resources developed in this study provide a foundation for better understanding virulence, pathogenicity and life history of thraustochytrid pathogens. PMID:24069279

  19. GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies.

    PubMed

    Beck, Tim; Hastings, Robert K; Gollapudi, Sirisha; Free, Robert C; Brookes, Anthony J

    2014-07-01

    To facilitate broad and convenient integrative visualization of and access to GWAS data, we have created the GWAS Central resource (http://www.gwascentral.org). This database seeks to provide a comprehensive collection of summary-level genetic association data, structured both for maximal utility and for safe open access (i.e., non-directional signals to fully preclude research subject identification). The resource emphasizes on advanced tools that allow comparison and discovery of relevant data sets from the perspective of genes, genome regions, phenotypes or traits. Tested markers and relevant genomic features can be visually interrogated across up to 16 multiple association data sets in a single view, starting at a chromosome-wide view and increasing in resolution down to individual bases. In addition, users can privately upload and view their own data as temporary files. Search and display utility is further enhanced by exploiting phenotype ontology annotations to allow genetic variants associated with phenotypes and traits of interest to be precisely identified, across all studies. Data submissions are accepted from individual researchers, groups and consortia, whereas we also actively gather data sets from various public sources. As a result, the resource now provides over 67 million P-values for over 1600 studies, making it the world's largest openly accessible online collection of summary-level GWAS association information. PMID:24301061

  20. Functional conservation of Rel binding sites in drosophilid genomes

    PubMed Central

    Copley, Richard R.; Totrov, Maxim; Linnell, Jane; Field, Simon; Ragoussis, Jiannis; Udalova, Irina A.

    2007-01-01

    Evolutionary constraints on gene regulatory elements are poorly understood: Little is known about how the strength of transcription factor binding correlates with DNA sequence conservation, and whether transcription factor binding sites can evolve rapidly while retaining their function. Here we use the model of the NFKB/Rel-dependent gene regulation in divergent Drosophila species to examine the hypothesis that the functional properties of authentic transcription factor binding sites are under stronger evolutionary constraints than the genomic background. Using molecular modeling we compare tertiary structures of the Drosophila Rel family proteins Dorsal, Dif, and Relish and demonstrate that their DNA-binding and protein dimerization domains undergo distinct rates of evolution. The accumulated amino acid changes, however, are unlikely to affect DNA sequence recognition and affinity. We employ our recently developed microarray-based experimental platform and principal coordinates statistical analysis to quantitatively and systematically profile DNA binding affinities of three Drosophila Rel proteins to 10,368 variants of the NFKB recognition sequences. We then correlate the evolutionary divergence of gene regulatory regions with differences in DNA binding affinities. Genome-wide analyses reveal a significant increase in the number of conserved Rel binding sites in promoters of developmental and immune genes. Significantly, the affinity of Rel proteins to these sites was higher than to less conserved sites and was maintained by the conservation of the DNA binding site sequence (static conservation) or in some cases despite significantly diverged sequences (dynamic conservation). We discuss how two types of conservation may contribute to the stabilization and optimization of a functional gene regulatory code in evolution. PMID:17785540

  1. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    PubMed Central

    Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J.; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J.; Campbell, Michael S.; Cavalier, David; Childs, Kevin L.; Clark, Teresa J.; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L.; Sanjaya; Simpson, Jeffrey P.; TerBush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M.; Hegg, Eric L.; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K.; Ohlrogge, John; Osteryoung, Katherine W.; Shachar-Hill, Yair; Sears, Barbara B.; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  2. Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

    PubMed Central

    Menossi, M.; Silva-Filho, M. C.; Vincentz, M.; Van-Sluys, M.-A.; Souza, G. M.

    2008-01-01

    Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs. PMID:18273390

  3. Simple repetitive sequences in the genome: structure and functional significance.

    PubMed

    Brahmachari, S K; Meera, G; Sarkar, P S; Balagurumoorthy, P; Tripathi, J; Raghavan, S; Shaligram, U; Pataskar, S

    1995-09-01

    The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized. PMID:8582360

  4. Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints

    PubMed Central

    Diament, Alon; Tuller, Tamir

    2015-01-01

    The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models. PMID:26000633

  5. A System for Dosage-Based Functional Genomics in Poplar[OPEN

    PubMed Central

    2015-01-01

    Altering gene dosage through variation in gene copy number is a powerful approach to addressing questions regarding gene regulation, quantitative trait loci, and heterosis, but one that is not easily applied to sexually transmitted species. Elite poplar (Populus spp) varieties are created through interspecific hybridization, followed by clonal propagation. Altered gene dosage relationships are believed to contribute to hybrid performance. Clonal propagation allows for replication and maintenance of meiotically unstable ploidy or structural variants and provides an alternative approach to investigating gene dosage effects not possible in sexually propagated species. Here, we built a genome-wide structural variation system for dosage-based functional genomics and breeding of poplar. We pollinated Populus deltoides with gamma-irradiated Populus nigra pollen to produce >500 F1 seedlings containing dosage lesions in the form of deletions and insertions of chromosomal segments (indel mutations). Using high-precision dosage analysis, we detected indel mutations in ∼55% of the progeny. These indels varied in length, position, and number per individual, cumulatively tiling >99% of the genome, with an average of 10 indels per gene. Combined with future phenotype and transcriptome data, this population will provide an excellent resource for creating and characterizing dosage-based variation in poplar, including the contribution of dosage to quantitative traits and heterosis. PMID:26320226

  6. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    SciTech Connect

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  7. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica

    PubMed Central

    Kube, Michael; Chernikova, Tatyana N.; Al-Ramahi, Yamal; Beloqui, Ana; Lopez-Cortez, Nieves; Guazzaroni, María-Eugenia; Heipieper, Hermann J.; Klages, Sven; Kotsyurbenko, Oleg R.; Langer, Ines; Nechitaylo, Taras Y.; Lünsdorf, Heinrich; Fernández, Marisol; Juárez, Silvia; Ciordia, Sergio; Singer, Alexander; Kagan, Olga; Egorova, Olga; Alain Petit, Pierre; Stogios, Peter; Kim, Youngchang; Tchigvintsev, Anatoli; Flick, Robert; Denaro, Renata; Genovese, Maria; Albar, Juan P.; Reva, Oleg N.; Martínez-Gomariz, Montserrat; Tran, Hai; Ferrer, Manuel; Savchenko, Alexei; Yakunin, Alexander F.; Yakimov, Michail M.; Golyshina, Olga V.; Reinhardt, Richard; Golyshin, Peter N.

    2013-01-01

    Ubiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis—the paradigm of mesophilic hydrocarbonoclastic bacteria—O. antarctica has a larger genome that has witnessed massive gene-transfer events. We identify an array of alkane monooxygenases, osmoprotectants, siderophores and micronutrient-scavenging pathways. We also show that at low temperatures, the main protein-folding machine Cpn60 functions as a single heptameric barrel that uses larger proteins as substrates compared with the classical double-barrel structure observed at higher temperatures. With 11 protein crystal structures, we further report the largest set of structures from one psychrotolerant organism. The most common structural feature is an increased content of surface-exposed negatively charged residues compared to their mesophilic counterparts. Our findings are relevant in the context of microbial cold-adaptation mechanisms and the development of strategies for oil-spill mitigation in cold environments. PMID:23877221

  8. Sequencing and Analysis of Common Bean ESTs. Building a Foundation for Functional Genomics1[w

    PubMed Central

    Ramírez, Mario; Graham, Michelle A.; Blanco-López, Lourdes; Silvente, Sonia; Medrano-Soto, Arturo; Blair, Matthew W.; Hernández, Georgina; Vance, Carroll P.; Lara, Miguel

    2005-01-01

    Although common bean (Phaseolus vulgaris) is the most important grain legume in the developing world for human consumption, few genomic resources exist for this species. The objectives of this research were to develop expressed sequence tag (EST) resources for common bean and assess nodule gene expression through high-density macroarrays. We sequenced a total of 21,026 ESTs derived from 5 different cDNA libraries, including nitrogen-fixing root nodules, phosphorus-deficient roots, developing pods, and leaves of the Mesoamerican genotype, Negro Jamapa 81. The fifth source of ESTs was a leaf cDNA library derived from the Andean genotype, G19833. Of the total high-quality sequences, 5,703 ESTs were classified as singletons, while 10,078 were assembled into 2,226 contigs producing a nonredundant set of 7,969 different transcripts. Sequences were grouped according to 4 main categories, metabolism (34%), cell cycle and plant development (11%), interaction with the environment (19%), and unknown function (36%), and further subdivided into 15 subcategories. Comparisons to other legume EST projects suggest that an entirely different repertoire of genes is expressed in common bean nodules. Phaseolus-specific contigs, gene families, and single nucleotide polymorphisms were also identified from the EST collection. Functional aspects of individual bean organs were reflected by the 20 contigs from each library composed of the most redundant ESTs. The abundance of transcripts corresponding to selected contigs was evaluated by RNA blots to determine whether gene expression determined by laboratory methods correlated with in silico expression. Evaluation of root nodule gene expression by macroarrays and RNA blots showed that genes related to nitrogen and carbon metabolism are integrated for ureide production. Resources developed in this project provide genetic and genomic tools for an international consortium devoted to bean improvement. PMID:15824284

  9. Comparative genomics of pectinacetylesterases: Insight on function and biology

    PubMed Central

    de Souza, Amancio José; Pauly, Markus

    2015-01-01

    Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses. PMID:26237162

  10. Comparative genomics of pectinacetylesterases: Insight on function and biology.

    PubMed

    de Souza, Amancio José; Pauly, Markus

    2015-01-01

    Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses. PMID:26237162

  11. From genomes to function: haloarchaea as model organisms.

    PubMed

    Soppa, Jörg

    2006-03-01

    Haloarchaea are adapted to high-salt environments and accumulate equally high salt concentrations in the cytoplasm. The genomes of representatives of six haloarchaeal genera have been fully or partially sequenced, allowing the analysis of haloarchaeal properties in silico. Transcriptome and proteome analyses have been established for Halobacterium salinarum and Haloferax volcanii. Genetic systems are available including methods that allow the fast in-frame deletion or modification of chromosomal genes. The high-efficiency transformation system of Hf. volcanii allows the isolation of genes essential for a biological process by complementation of loss-of-function mutants. For the analysis of haloarchaeal biology many molecular genetic, biochemical, structural and cell biological methods have been adapted to application at high salt concentrations. Recently it has become clear that several different mechanisms allow the adaptation of proteins to the high salt concentration of the cytoplasm. Taken together, the wealth of techniques available make haloarchaea excellent archaeal model species. PMID:16514139

  12. Functional genomics of tomato in a post-genome-sequencing phase

    PubMed Central

    Aoki, Koh; Ogata, Yoshiyuki; Igarashi, Kaori; Yano, Kentaro; Nagasaki, Hideki; Kaminuma, Eli; Toyoda, Atsushi

    2013-01-01

    Completion of tomato genome sequencing project has broad impacts on genetic and genomic studies of tomato and Solanaceae plants. The reference genome sequence derived from Solanum lycopersicum cv ‘Heinz 1706’ serves as the firm basis for sequencing-based approaches to tomato genomics. In this article, we first present a brief summary of the genome sequencing project and a summary of the reference genome sequence. We then focus on recent progress in transcriptome sequencing and small RNA sequencing and show how the reference genome sequence makes these analyses more comprehensive than before. We discuss the potential of in-depth analysis that is based on DNA methylome sequencing and transcription start-site detection. Finally, we describe the current status of efforts to resequence S. lycopersicum cultivars to demonstrate how resequencing can allow the use of intraspecific genomic diversity for detailed phenotyping and breeding. PMID:23641177

  13. Identifying blood biomarkers for mood disorders using convergent functional genomics.

    PubMed

    Le-Niculescu, H; Kurian, S M; Yehyawi, N; Dike, C; Patel, S D; Edenberg, H J; Tsuang, M T; Salomon, D R; Nurnberger, J I; Niculescu, A B

    2009-02-01

    There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state. PMID:18301394

  14. Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758)

    PubMed Central

    2011-01-01

    Background The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi). Results A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls. Conclusions These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations. PMID:21310032

  15. Functional Analysis of Shewanella, a cross genome comparison.

    SciTech Connect

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  16. Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries.

    PubMed

    Saski, Christopher A; Bhattacharjee, Ranjana; Scheffler, Brian E; Asiedu, Robert

    2015-01-01

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches

  17. Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries

    PubMed Central

    Saski, Christopher A.; Bhattacharjee, Ranjana; Scheffler, Brian E.; Asiedu, Robert

    2015-01-01

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches

  18. GIANT API: an application programming interface for functional genomics

    PubMed Central

    Roberts, Andrew M.; Wong, Aaron K.; Fisk, Ian; Troyanskaya, Olga G.

    2016-01-01

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035

  19. GIANT API: an application programming interface for functional genomics.

    PubMed

    Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G

    2016-07-01

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035

  20. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  1. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource

    PubMed Central

    Parida, Swarup K.; Verma, Mohit; Yadav, Santosh K.; Ambawat, Supriya; Das, Shouvik; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Development of informative polymorphic simple sequence repeat (SSR) markers at a genome-wide scale is essential for efficient large-scale genotyping applications. We identified genome-wide 1835 SSRs showing polymorphism between desi and kabuli chickpea. A total of 1470 polymorphic SSR markers from diverse coding and non-coding regions of the chickpea genome were developed. These physically mapped SSR markers exhibited robust amplification efficiency (73.9%) and high intra- and inter-specific polymorphic potential (63.5%), thereby suggesting their immense use in various genomics-assisted breeding applications. The SSR markers particularly derived from intergenic and intronic sequences revealed high polymorphic potential. Using the mapped SSR markers, a wider functional molecular diversity (16–94%, mean: 68%), and parentage- and cultivar-specific admixed domestication pattern and phylogenetic relationships in a structured population of desi and kabuli chickpea genotypes was evident. The intra-specific polymorphism (47.6%) and functional molecular diversity (65%) potential of polymorphic SSR markers developed in our study is much higher than that of previous documentations. Finally, we have developed a user-friendly web resource, Chickpea Microsatellite Database (CMsDB; http://www.nipgr.res.in/CMsDB.html), which provides public access to the data and results reported in this study. The developed informative SSR markers can serve as a resource for various genotyping applications, including genetic enhancement studies in chickpea. PMID:26347762

  2. Genome-wide end-sequenced BAC resources for the NOD/MrkTac☆ and NOD/ShiLtJ☆☆ mouse genomes

    PubMed Central

    Steward, Charles A.; Humphray, Sean; Plumb, Bob; Jones, Matthew C.; Quail, Michael A.; Rice, Stephen; Cox, Tony; Davies, Rob; Bonfield, James; Keane, Thomas M.; Nefedov, Michael; de Jong, Pieter J.; Lyons, Paul; Wicker, Linda; Todd, John; Hayashizaki, Yoshihide; Gulban, Omid; Danska, Jayne; Harrow, Jen; Hubbard, Tim; Rogers, Jane; Adams, David J.

    2010-01-01

    Non-obese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D) due to the progressive loss of insulin-secreting β-cells by an autoimmune driven process. NOD mice represent a valuable tool for studying the genetics of T1D and for evaluating therapeutic interventions. Here we describe the development and characterization by end-sequencing of bacterial artificial chromosome (BAC) libraries derived from NOD/MrkTac (DIL NOD) and NOD/ShiLtJ (CHORI-29), two commonly used NOD substrains. The DIL NOD library is composed of 196,032 BACs and the CHORI-29 library is composed of 110,976 BACs. The average depth of genome coverage of the DIL NOD library, estimated from mapping the BAC end-sequences to the reference mouse genome sequence, was 7.1-fold across the autosomes and 6.6-fold across the X chromosome. Clones from this library have an average insert size of 150 kb and map to over 95.6% of the reference mouse genome assembly (NCBIm37), covering 98.8% of Ensembl mouse genes. By the same metric, the CHORI-29 library has an average depth over the autosomes of 5.0-fold and 2.8-fold coverage of the X chromosome, the reduced X chromosome coverage being due to the use of a male donor for this library. Clones from this library have an average insert size of 205 kb and map to 93.9% of the reference mouse genome assembly, covering 95.7% of Ensembl genes. We have identified and validated 191,841 single nucleotide polymorphisms (SNPs) for DIL NOD and 114,380 SNPs for CHORI-29. In total we generated 229,736,133 bp of sequence for the DIL NOD and 121,963,211 bp for the CHORI-29. These BAC libraries represent a powerful resource for functional studies, such as gene targeting in NOD embryonic stem (ES) cell lines, and for sequencing and mapping experiments. PMID:19909804

  3. ERP (enterprise resource planning) systems can streamline healthcare business functions.

    PubMed

    Jenkins, E K; Christenson, E

    2001-05-01

    Enterprise resource planning (ERP) software applications are designed to facilitate the systemwide integration of complex processes and functions across a large enterprise consisting of many internal and external constituents. Although most currently available ERP applications generally are tailored to the needs of the manufacturing industry, many large healthcare systems are investigating these applications. Due to the significant differences between manufacturing and patient care, ERP-based systems do not easily translate to the healthcare setting. In particular, the lack of clinical standardization impedes the use of ERP systems for clinical integration. Nonetheless, an ERP-based system can help a healthcare organization integrate many functions, including patient scheduling, human resources management, workload forecasting, and management of workflow, that are not directly dependent on clinical decision making. PMID:11351810

  4. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis

    PubMed Central

    Pan, Xiong; Lin, Dunli; Zheng, Yuan; Zhang, Qian; Yin, Yuanming; Cai, Lin; Fang, Hua; Yu, Yunlong

    2016-01-01

    A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment. PMID:26888254

  5. The MiST2 database: a comprehensive genomics resource on microbial signal transduction

    PubMed Central

    Ulrich, Luke E.; Zhulin, Igor B.

    2010-01-01

    The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extracytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 157 draft bacterial and archaeal genomes, which collectively contain more than 245 000 signal transduction proteins. The majority (66%) of these are one-component systems, followed by two-component proteins (26%), chemotaxis (6%), and finally ECF factors (2%). PMID:19900966

  6. GeNemo: a search engine for web-based functional genomic data.

    PubMed

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-01

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. PMID:27098038

  7. Octamer-binding transcription factors: genomics and functions.

    PubMed

    Zhao, Feng-Qi

    2013-01-01

    The Octamer-binding proteins (Oct) are a group of highly conserved transcription factors that specifically bind to the octamer motif (ATGCAAAT) and closely related sequences in promoters and enhancers of a wide variety of genes. Oct factors belong to the larger family of POU domain factors that are characterized by the presence of an amino-terminal specific subdomain (POUS) and a carboxyl-terminal homeo-subdomain (POUH). Eleven Oct proteins have been named (Oct1-11), and currently, eight genes encoding Oct proteins (Oct1, Oct2, Oct3/4, Oct6, Oct7, Oct8, Oct9, and Oct11) have been cloned. Oct1 and Oct2 are widely expressed in adult tissues, while other Oct proteins are much more restricted in their expression patterns. Oct proteins are implicated in crucial and versatile biological events, such as embryogenesis, neurogenesis, immunity, and body glucose and amino acid metabolism. The aberrant expression and null function of Oct proteins have also been linked to various diseases, including deafness, diabetes and cancer. In this review, I will report both the genomic structure and major functions of individual Oct proteins in physiological and pathological processes. PMID:23747866

  8. Metabolomic Functional Analysis of Bacterial Genomes: Final Report

    SciTech Connect

    Arp, Daniel J; Sayavedra-Soto, Luis A

    2008-01-01

    The availability of the complete DNA sequence of the bacterial genome of Nitrosomonas europaea offered the opportunity for unprecedented and detailed investigations of function. We studied the function of genes involved in carbohydrate and Fe metabolism. N. europaea has genes for the synthesis and degradation of glycogen and sucrose but cannot grow on substrates other than ammonia and CO2. Granules of glycogen were detected in whole cells by electron microscopy and quantified in cell-free extracts by enzymatic methods. The cellular glycogen and sucrose content varied depending on the composition of the growth medium and cellular growth stage. N. europaea also depends heavily on iron for metabolism of ammonia, is particularly interesting since it lacks genes for siderophore production, and has genes with only low similarity to known iron reductases, yet grows relatively well in medium containing low Fe. By comparing the transcriptomes of cells grown in iron-replete medium versus iron-limited medium, 247 genes were identified as differentially expressed. Mutant strains deficient in genes for sucrose, glycogen and iron metabolism were created and are being used to further our understanding of ammonia oxidizing bacteria.

  9. Genome-wide identification and characterization of functional neuronal activity-dependent enhancers

    PubMed Central

    Malik, Athar N.; Vierbuchen, Thomas; Hemberg, Martin; Rubin, Alex A.; Ling, Emi; Couch, Cameron H.; Stroud, Hume; Spiegel, Ivo; Farh, Kyle Kai-How; Harmin, David A.; Greenberg, Michael E.

    2015-01-01

    SUMMARY Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in mouse cortical neurons. We find that the subset of enhancers enriched for monomethylation of histone H3 lysine 4 (H3K4me1) and binding of the transcriptional co-activator CREBBP (CBP) that shows increased acetylation of histone H3 lysine 27 (H3K27ac) upon membrane depolarization of cortical neurons functions to regulate activity-dependent transcription. A subset of these enhancers appears to require binding of FOS, which previously was thought to bind primarily to promoters. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function and provide a resource of functional cis-regulatory elements that may give insight into the genetic variants that contribute to brain development and disease. PMID:25195102

  10. Bovine Genome Database: new tools for gleaning function from the Bos taurus genome.

    PubMed

    Elsik, Christine G; Unni, Deepak R; Diesh, Colin M; Tayal, Aditi; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies. PMID:26481361

  11. Bovine Genome Database: new tools for gleaning function from the Bos taurus genome

    PubMed Central

    Elsik, Christine G.; Unni, Deepak R.; Diesh, Colin M.; Tayal, Aditi; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies. PMID:26481361

  12. A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism

    PubMed Central

    Carayol, Jérôme; Schellenberg, Gerard D.; Dombroski, Beth; Amiet, Claire; Génin, Bérengère; Fontaine, Karine; Rousseau, Francis; Vazart, Céline; Cohen, David; Frazier, Thomas W.; Hardan, Antonio Y.; Dawson, Geraldine; Rio Frio, Thomas

    2014-01-01

    Autism spectrum disorders (ASD) are highly heritable complex neurodevelopmental disorders with a 4:1 male: female ratio. Common genetic variation could explain 40–60% of the variance in liability to autism. Because of their small effect, genome-wide association studies (GWASs) have only identified a small number of individual single-nucleotide polymorphisms (SNPs). To increase the power of GWASs in complex disorders, methods like convergent functional genomics (CFG) have emerged to extract true association signals from noise and to identify and prioritize genes from SNPs using a scoring strategy combining statistics and functional genomics. We adapted and applied this approach to analyze data from a GWAS performed on families with multiple children affected with autism from Autism Speaks Autism Genetic Resource Exchange (AGRE). We identified a set of 133 candidate markers that were localized in or close to genes with functional relevance in ASD from a discovery population (545 multiplex families); a gender specific genetic score (GS) based on these common variants explained 1% (P = 0.01 in males) and 5% (P = 8.7 × 10−7 in females) of genetic variance in an independent sample of multiplex families. Overall, our work demonstrates that prioritization of GWAS data based on functional genomics identified common variants associated with autism and provided additional support for a common polygenic background in autism. PMID:24600472

  13. Beyond the dna: a prototype for functional genomics

    SciTech Connect

    Albala, J

    2000-03-02

    A prototype oligonucleotide ''functional chip'' has been developed to screen novel DNA repair proteins for their ability to bind or alter different forms of DNA. This chip has been developed as a functional genomics screen for analysis of protein-DNA interactions for novel proteins identified from the Human Genome Project The process of novel gene identification that has ensued as a consequence of available sequence information is remarkable. The challenge how lies in determining the function of newly identified gene products in a time-and cost-effective high-throughput manner. The functional chip is generated by the robotic application of DNA spotted in a microarray format onto a glass slide. Individual proteins are then analyzed against the different form of DNA bound to the slide. Several prototype functional chips were designed to contain various DNA fragments tethered to a glass slide for analysis of protein-DNA binding or enzymatic activity of known proteins. The technology has been developed to screen novel, putative DNA repair proteins for their ability to bind various types of DNA alone and in concert with protein partners. An additional scheme has been devised to screen putative repair enzymes for their ability to process different types of DNA molecules. Current methods to analyze gene expression primarily utilize either of two technologies. The oligonucleotide chip, pioneered by Fodor and co-workers and Affymetrix, Inc., consists of greater than 64,000 oligonucleotides attached in situ to a glass support. The oligonucleotide chip has been used primarily to identify specific mutations in a given gene by hybridization against a fluorescently-labeled substrate. The second method is the microarray, whereby DNA targets are systematically arranged on a glass slide and then hybridized with fluorescently-labeled complex targets for gene expression analysis (Jordan, 1998). By this technique, a large amount of information can be obtained examining global

  14. Computational approaches to identify functional genetic variants in cancer genomes

    PubMed Central

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris; Ritchie, Graham R.S.; Creixell, Pau; Karchin, Rachel; Vazquez, Miguel; Fink, J. Lynn; Kassahn, Karin S.; Pearson, John V.; Bader, Gary; Boutros, Paul C.; Muthuswamy, Lakshmi; Ouellette, B.F. Francis; Reimand, Jüri; Linding, Rune; Shibata, Tatsuhiro; Valencia, Alfonso; Butler, Adam; Dronov, Serge; Flicek, Paul; Shannon, Nick B.; Carter, Hannah; Ding, Li; Sander, Chris; Stuart, Josh M.; Stein, Lincoln D.; Lopez-Bigas, Nuria

    2014-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. PMID:23900255

  15. Functional genomics of seed dormancy in wheat: advances and prospects.

    PubMed

    Gao, Feng; Ayele, Belay T

    2014-01-01

    Seed dormancy is a mechanism underlying the inability of viable seeds to germinate under optimal environmental conditions. To achieve rapid and uniform germination, wheat and other cereal crops have been selected against dormancy. As a result, most of the modern commercial cultivars have low level of seed dormancy and are susceptible to preharvest sprouting when wet and moist conditions occur prior to harvest. As it causes substantial loss in grain yield and quality, preharvest sprouting is an ever-present major constraint to the production of wheat. The significance of the problem emphasizes the need to incorporate an intermediate level of dormancy into elite wheat cultivars, and this requires detailed dissection of the mechanisms underlying the regulation of seed dormancy and preharvest sprouting. Seed dormancy research in wheat often involves after-ripening, a period of dry storage during which seeds lose dormancy, or comparative analysis of seeds derived from dormant and non-dormant cultivars. The increasing development in wheat genomic resources along with the application of transcriptomics, proteomics, and metabolomics approaches in studying wheat seed dormancy have extended our knowledge of the mechanisms acting at transcriptional and post-transcriptional levels. Recent progresses indicate that some of the molecular mechanisms are associated with hormonal pathways, epigenetic regulations, targeted oxidative modifications of seed mRNAs and proteins, redox regulation of seed protein thiols, and modulation of translational activities. Given that preharvest sprouting is closely associated with seed dormancy, these findings will significantly contribute to the designing of efficient strategies for breeding preharvest sprouting tolerant wheat. PMID:25309557

  16. Genome-wide Association Study of Porcine Hematological Parameters in a Large White × Minzhu F2 Resource Population

    PubMed Central

    Luo, Weizhen; Chen, Shaokang; Cheng, Duxue; Wang, Ligang; Li, Yong; Ma, Xiaojun; Song, Xin; Liu, Xin; Li, Wen; Liang, Jing; Yan, Hua; Zhao, Kebin; Wang, Chuduan; Wang, Lixian; Zhang, Longchao

    2012-01-01

    Hematological traits, which are important indicators of immune function in animals, have been commonly examined as biomarkers of disease and disease severity in humans and animals. Genome-wide significant quantitative trait loci (QTLs) provide important information for use in breeding programs of animals such as pigs. QTLs for hematological parameters (hematological traits) have been detected in pig chromosomes, although these are often mapped by linkage analysis to large intervals making identification of the underlying mutation problematic. Single nucleotide polymorphisms (SNPs) are the common form of genetic variation among individuals and are thought to account for the majority of inherited traits. In this study, a genome-wide association study (GWAS) was performed to detect regions of association with hematological traits in a three-generation resource population produced by intercrossing Large White boars and Minzhu sows during the period from 2007 to 2011. Illumina PorcineSNP60 BeadChip technology was used to genotype each animal and seven hematological parameters were measured (hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC) and red blood cell volume distribution width (RDW)). Data were analyzed in a three step Genome-wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) method. A total of 62 genome-wide significant and three chromosome-wide significant SNPs associated with hematological parameters were detected in this GWAS. Seven and five SNPs were associated with HCT and HGB, respectively. These SNPs were all located within the region of 34.6-36.5 Mb on SSC7. Four SNPs within the region of 43.7-47.0 Mb and fifty-five SNPs within the region of 42.2-73.8 Mb on SSC8 showed significant association with MCH and MCV, respectively. At chromosome-wide significant level, one SNP at 29.2 Mb on SSC1

  17. Methylococcus capsulatus (Bath) from genome to protein function, and vice versa.

    PubMed

    Karlsen, Odd A; Berven, Frode S; Bagstevold, June I; Larsen, Oivind; Jensen, Harald B

    2011-01-01

    The genome sequence of Methylococcus capsulatus (Bath), considered a model methylotroph, was published in 2004 [Ward, N., et al. (2004). Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol.2, e303]. In the postgenomic era, the challenge is to determine the gene function, and to this end, genomics must be complemented with proteomic approaches. This chapter describes some experimental and computational approaches we have used and developed for the exploration of the genome and proteome of M. capsulatus (Bath). PMID:21419915

  18. The alpha sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes.

    PubMed Central

    Spaete, R R; Mocarski, E S

    1985-01-01

    Although herpes simplex virus (HSV) 1 and human cytomegalovirus (CMV) differ remarkably in their biological characteristics and do not share nucleotide sequence homology, they have in common a genome structure that undergoes sequence isomerization of the long (L) and short (S) components. We have demonstrated that the similarity in their genome structures extends to the existence of an alpha sequence in the CMV genome as previously defined for the HSV genome. As such, the alpha sequence is predicted to participate as a cis-replication signal in four viral functions: (i) inversion, (ii) circularization, (iii) amplification, and (iv) cleavage and packaging of progeny viral DNA. We have constructed a chimeric HSV-CMV amplicon (herpesvirus cis replication functions carried on an Escherichia coli plasmid vector) substituting CMV DNA sequences for the HSV cleavage/packaging signal in a test of the ability of this CMV L-S junction sequence to provide the cis signal for cleavage/packaging in HSV 1-infected cells. We demonstrate that the alpha sequence of CMV DNA functions as a cleavage/packaging signal for HSV defective genomes. We show the structure of this sequence and provide a functional demonstration of cross complementation in replication signals which have been preserved over evolutionary time in these two widely divergent human herpesviruses. Images PMID:2987533

  19. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  20. GWIDD: a comprehensive resource for genome-wide structural modeling of protein-protein interactions

    PubMed Central

    2012-01-01

    Protein-protein interactions are a key component of life processes. The knowledge of the three-dimensional structure of these interactions is important for understanding protein function. Genome-Wide Docking Database (http://gwidd.bioinformatics.ku.edu) offers an extensive source of data for structural studies of protein-protein complexes on genome scale. The current release of the database combines the available experimental data on the structure and characteristics of protein interactions with structural modeling of protein complexes for 771 organisms spanned over the entire universe of life from viruses to humans. The interactions are stored in a relational database with user-friendly interface that includes various search options. The search results can be interactively previewed; the structures, downloaded, along with the interaction characteristics. PMID:23245398

  1. Comparative and Functional Genomics in Identifying Aflatoxin Biosynthetic Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of genes involved in aflatoxin biosynthesis through Aspergillus flavus genomics has been actively pursued. A. flavus Expressed Sequence Tags (EST’s) and whole genome sequencing have been completed. Groups of genes that are potentially involved in aflatoxin production have been profi...

  2. APPLICATION OF FUNCTIONAL GENOMICS TO INNOVATIONS OF CROP PROTECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in the life sciences in the post-genomics age is currently undergoing a dramatic transformation. Genome-scale methods are revolutionizing the study of plant-pest interactions and are revealing a complex process (including direct resistance genes and regulatory networks) involved in plant d...

  3. Bioadhesion in ascidians: a developmental and functional genomics perspective

    PubMed Central

    Pennati, Roberta; Rothbächer, Ute

    2015-01-01

    The development of bioadhesives inspired from marine animals is a promising approach to generate new tissue-compatible medical components. A number of marine species, through their adhesive properties, also represent significant foulers that become increasingly problematic to aquaculture, shipping or local biodiversity. In order to develop more sophisticated man-made glues and/or efficient fouling resistant surfaces, it is important to understand the mechanical, structural and molecular properties of adhesive organs in selected species. Ascidians are marine invertebrates with larvae that opportunistically attach to almost any type of submerged surface to undergo metamorphosis into permanently sessile adults. Not only do they represent a globally important fouling organism, but they are becoming increasingly popular as model organisms for developmental biology. The latter is due to their phylogenetic position as the sister group to the vertebrates and their cellular and molecular accessibility for experimentation. In this paper, we review the mechanisms of larval adhesion in ascidians and draw conclusions from comparative analyses of selected species. We further discuss how knowledge from a developmental and functional genomics point of view can advance our understanding of cellular and molecular signatures and their hierarchical usage in animal adhesive organs. PMID:25657840

  4. Prospects for identifying functional variation across the genome

    PubMed Central

    Macdonald, Stuart J.; Long, Anthony D.

    2005-01-01

    The genetic factors contributing to complex trait variation may reside in regulatory, rather than protein-coding portions of the genome. Within noncoding regions, SNPs in regulatory elements are more likely to contribute to phenotypic variation than those in nonregulatory regions. Thus, it is important to be able to identify and annotate noncoding regulatory elements. DNA conservation among diverged species successfully identifies noncoding regulatory regions. However, because rapidly evolving regulatory regions will not generally be conserved across species, these will not detected by using purely conservation-based methods. Here we describe additional approaches that can be used to identify putative regulatory elements via signatures of nonneutral evolution. An examination of the pattern of polymorphism both within and between populations of Drosophila melanogaster, as well as divergence with its sibling species Drosophila simulans, across 24.2 kb of noncoding DNA identifies several nonneutrally evolving regions not identified by conservation. Because different methods tag different regions, it appears that the methods are complementary. Patterns of variation at different elements are consistent with the action of selective sweeps, balancing selection, or population differentiation. Together with regions conserved between D. melanogaster and Drosophila pseudoobscura, we tag 5.3 kb of noncoding DNA as potentially regulatory. Ninety-seven of the 408 common noncoding SNPs surveyed are within putatively regulatory regions. If these methods collectively identify the majority of functional noncoding polymorphisms, genotyping only these SNPs in an association mapping framework would reduce genotyping effort for noncoding regions 4-fold. PMID:15851675

  5. Generation of RCAS vectors useful for functional genomic analyses.

    PubMed

    Loftus, S K; Larson, D M; Watkins-Chow, D; Church, D M; Pavan, W J

    2001-10-31

    Avian leukosis type A virus-derived retroviral vectors have been used to introduce genes into cells expressing the corresponding avian receptor tv-a. This includes the use of Replication-Competent Avian sarcoma-leukosis virus (ASLV) long terminal repeat (LTR) with Splice acceptor (RCAS) vectors in the analysis of avian development, human and murine cell cultures, murine cell lineage studies and cancer biology. Previously, cloning of genes into this virus was difficult due to the large size of the vector and sparse cloning sites. To overcome some of the disadvantages of traditional cloning using the RCASBP-Y vector, we have modified the RCASBP-Y to incorporate "Gateway" site-specific recombination cloning of genes into the construct, either with or without HA epitope tags. We have found the repetitive "att" sequences, which are the targets for site-specific recombination, do not impair the production of infectious viral particles or the expression of the gene of interest. This is the first instance of site-specific recombination being used to generate retroviral gene constructs. These viral constructs will allow for the efficient transfer and expression of cDNAs needed for functional genomic analyses. PMID:11759842

  6. The power of EST sequence data: Relation to Acyrthosiphon pisum genome annotation and functional genomics initiatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes important to aphid biology, survival and reproduction were successfully identified by use of a genomics approach. We created and described the Sequencing, compilation, and annotation of the approxiamtely 525Mb nuclear genome of the pea aphid, Acyrthosiphon pisum, which represents an important ...

  7. Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7.

    PubMed

    Rey, Andrés; Silva-Quintero, Laura; Dussán, Jenny

    2016-09-01

    Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41. PMID:27419068

  8. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics

    PubMed Central

    Hart, Traver; Brown, Kevin R; Sircoulomb, Fabrice; Rottapel, Robert; Moffat, Jason

    2014-01-01

    Technological advancement has opened the door to systematic genetics in mammalian cells. Genome-scale loss-of-function screens can assay fitness defects induced by partial gene knockdown, using RNA interference, or complete gene knockout, using new CRISPR techniques. These screens can reveal the basic blueprint required for cellular proliferation. Moreover, comparing healthy to cancerous tissue can uncover genes that are essential only in the tumor; these genes are targets for the development of specific anticancer therapies. Unfortunately, progress in this field has been hampered by off-target effects of perturbation reagents and poorly quantified error rates in large-scale screens. To improve the quality of information derived from these screens, and to provide a framework for understanding the capabilities and limitations of CRISPR technology, we derive gold-standard reference sets of essential and nonessential genes, and provide a Bayesian classifier of gene essentiality that outperforms current methods on both RNAi and CRISPR screens. Our results indicate that CRISPR technology is more sensitive than RNAi and that both techniques have nontrivial false discovery rates that can be mitigated by rigorous analytical methods. PMID:24987113

  9. Functional Genomics Reveals Linkers Critical for Influenza Virus Polymerase

    PubMed Central

    Wang, Lulan; Wu, Aiping; Wang, Yao E.; Quanquin, Natalie; Li, Chunfeng; Wang, Jingfeng; Chen, Hsiang-Wen; Liu, Suyang; Liu, Ping; Zhang, Hong; Qin, F. Xiao-Feng

    2015-01-01

    ABSTRACT Influenza virus mRNA synthesis by the RNA-dependent RNA polymerase involves binding and cleavage of capped cellular mRNA by the PB2 and PA subunits, respectively, and extension of viral mRNA by PB1. However, the mechanism for such a dynamic process is unclear. Using high-throughput mutagenesis and sequencing analysis, we have not only generated a comprehensive functional map for the microdomains of individual subunits but also have revealed the PA linker to be critical for polymerase activity. This PA linker binds to PB1 and also forms ionic interactions with the PA C-terminal channel. Nearly all mutants with five-amino-acid insertions in the linker were nonviable. Our model further suggests that the PA linker plays an important role in the conformational changes that occur between stages that favor capped mRNA binding and cleavage and those associated with viral mRNA synthesis. IMPORTANCE The RNA-dependent RNA polymerase of influenza virus consists of the PB1, PB2, and PA subunits. By combining genome-wide mutagenesis analysis with the recently discovered crystal structure of the influenza polymerase heterotrimer, we generated a comprehensive functional map of the entire influenza polymerase complex. We identified the microdomains of individual subunits, including the catalytic domains, the interaction interfaces between subunits, and nine linkers interconnecting different domains. Interestingly, we found that mutants with five-amino-acid insertions in individual linkers were nonviable, suggesting the critical roles these linkers play in coordinating spatial relationships between the subunits. We further identified an extended PA linker that binds to PB1 and also forms ionic interactions with the PA C-terminal channel. PMID:26719244

  10. Open access resources for genome-wide association mapping in rice.

    PubMed

    McCouch, Susan R; Wright, Mark H; Tung, Chih-Wei; Maron, Lyza G; McNally, Kenneth L; Fitzgerald, Melissa; Singh, Namrata; DeClerck, Genevieve; Agosto-Perez, Francisco; Korniliev, Pavel; Greenberg, Anthony J; Naredo, Ma Elizabeth B; Mercado, Sheila Mae Q; Harrington, Sandra E; Shi, Yuxin; Branchini, Darcy A; Kuser-Falcão, Paula R; Leung, Hei; Ebana, Kowaru; Yano, Masahiro; Eizenga, Georgia; McClung, Anna; Mezey, Jason

    2016-01-01

    Increasing food production is essential to meet the demands of a growing human population, with its rising income levels and nutritional expectations. To address the demand, plant breeders seek new sources of genetic variation to enhance the productivity, sustainability and resilience of crop varieties. Here we launch a high-resolution, open-access research platform to facilitate genome-wide association mapping in rice, a staple food crop. The platform provides an immortal collection of diverse germplasm, a high-density single-nucleotide polymorphism data set tailored for gene discovery, well-documented analytical strategies, and a suite of bioinformatics resources to facilitate biological interpretation. Using grain length, we demonstrate the power and resolution of our new high-density rice array, the accompanying genotypic data set, and an expanded diversity panel for detecting major and minor effect QTLs and subpopulation-specific alleles, with immediate implications for rice improvement. PMID:26842267

  11. Open access resources for genome-wide association mapping in rice

    PubMed Central

    McCouch, Susan R.; Wright, Mark H.; Tung, Chih-Wei; Maron, Lyza G.; McNally, Kenneth L.; Fitzgerald, Melissa; Singh, Namrata; DeClerck, Genevieve; Agosto-Perez, Francisco; Korniliev, Pavel; Greenberg, Anthony J.; Naredo, Ma. Elizabeth B.; Mercado, Sheila Mae Q.; Harrington, Sandra E.; Shi, Yuxin; Branchini, Darcy A.; Kuser-Falcão, Paula R.; Leung, Hei; Ebana, Kowaru; Yano, Masahiro; Eizenga, Georgia; McClung, Anna; Mezey, Jason

    2016-01-01

    Increasing food production is essential to meet the demands of a growing human population, with its rising income levels and nutritional expectations. To address the demand, plant breeders seek new sources of genetic variation to enhance the productivity, sustainability and resilience of crop varieties. Here we launch a high-resolution, open-access research platform to facilitate genome-wide association mapping in rice, a staple food crop. The platform provides an immortal collection of diverse germplasm, a high-density single-nucleotide polymorphism data set tailored for gene discovery, well-documented analytical strategies, and a suite of bioinformatics resources to facilitate biological interpretation. Using grain length, we demonstrate the power and resolution of our new high-density rice array, the accompanying genotypic data set, and an expanded diversity panel for detecting major and minor effect QTLs and subpopulation-specific alleles, with immediate implications for rice improvement. PMID:26842267

  12. Maps of cis-Regulatory Nodes in Megabase Long Genome Segments are an Inevitable Intermediate Step Toward Whole Genome Functional Mapping

    PubMed Central

    Nikolaev, Lev G; Akopov, Sergey B; Chernov, Igor P; Sverdlov, Eugene D

    2007-01-01

    The availability of complete human and other metazoan genome sequences has greatly facilitated positioning and analysis of various genomic functional elements, with initial emphasis on coding sequences. However, complete functional maps of sequenced eukaryotic genomes should include also positions of all non-coding regulatory elements. Unfortunately, experimental data on genomic positions of a multitude of regulatory sequences, such as enhancers, silencers, insulators, transcription terminators, and replication origins are very limited, especially at the whole genome level. Since most genomic regulatory elements (e.g. enhancers) are generally gene-, tissue-, or cell-specific, the prediction of these elements by computational methods is difficult and often ambiguous. Therefore, the development of high-throughput experimental approaches for identifying and mapping genomic functional elements is highly desirable. At the same time, the creation of whole-genome map of hundreds of thousands of regulatory elements in several hundreds of tissue/cell types is presently far beyond our capabilities. A possible alternative for the whole genome approach is to concentrate efforts on individual genomic segments and then to integrate the data obtained into a whole genome functional map. Moreover, the maps of polygenic fragments with functional cis-regulatory elements would provide valuable data on complex regulatory systems, including their variability and evolution. Here, we reviewed experimental approaches to the realization of these ideas, including our own developments of experimental techniques for selection of cis-acting functionally active DNA fragments from large (megabase-sized) segments of mammalian genomes. PMID:18660850

  13. Maps of cis-Regulatory Nodes in Megabase Long Genome Segments are an Inevitable Intermediate Step Toward Whole Genome Functional Mapping.

    PubMed

    Nikolaev, Lev G; Akopov, Sergey B; Chernov, Igor P; Sverdlov, Eugene D

    2007-04-01

    The availability of complete human and other metazoan genome sequences has greatly facilitated positioning and analysis of various genomic functional elements, with initial emphasis on coding sequences. However, complete functional maps of sequenced eukaryotic genomes should include also positions of all non-coding regulatory elements. Unfortunately, experimental data on genomic positions of a multitude of regulatory sequences, such as enhancers, silencers, insulators, transcription terminators, and replication origins are very limited, especially at the whole genome level. Since most genomic regulatory elements (e.g. enhancers) are generally gene-, tissue-, or cell-specific, the prediction of these elements by computational methods is difficult and often ambiguous. Therefore, the development of high-throughput experimental approaches for identifying and mapping genomic functional elements is highly desirable. At the same time, the creation of whole-genome map of hundreds of thousands of regulatory elements in several hundreds of tissue/cell types is presently far beyond our capabilities. A possible alternative for the whole genome approach is to concentrate efforts on individual genomic segments and then to integrate the data obtained into a whole genome functional map. Moreover, the maps of polygenic fragments with functional cis-regulatory elements would provide valuable data on complex regulatory systems, including their variability and evolution. Here, we reviewed experimental approaches to the realization of these ideas, including our own developments of experimental techniques for selection of cis-acting functionally active DNA fragments from large (megabase-sized) segments of mammalian genomes. PMID:18660850

  14. PlasmoView: A Web-based Resource to Visualise Global Plasmodium falciparum Genomic Variation

    PubMed Central

    Preston, Mark D.; Assefa, Samuel A.; Ocholla, Harold; Sutherland, Colin J.; Borrmann, Steffen; Nzila, Alexis; Michon, Pascal; Hien, Tran Tinh; Bousema, Teun; Drakeley, Christopher J.; Zongo, Issaka; Ouédraogo, Jean-Bosco; Djimde, Abdoulaye A.; Doumbo, Ogobara K.; Nosten, Francois; Fairhurst, Rick M.; Conway, David J.; Roper, Cally; Clark, Taane G.

    2014-01-01

    Malaria is a global public health challenge, with drug resistance a major barrier to disease control and elimination. To meet the urgent need for better treatments and vaccines, a deeper knowledge of Plasmodium biology and malaria epidemiology is required. An improved understanding of the genomic variation of malaria parasites, especially the most virulent Plasmodium falciparum (Pf) species, has the potential to yield new insights in these areas. High-throughput sequencing and genotyping is generating large amounts of genomic data across multiple parasite populations. The resulting ability to identify informative variants, particularly single-nucleotide polymorphisms (SNPs), will lead to the discovery of intra- and inter-population differences and thus enable the development of genetic barcodes for diagnostic assays and clinical studies. Knowledge of genetic variability underlying drug resistance and other differential phenotypes will also facilitate the identification of novel mutations and contribute to surveillance and stratified medicine applications. The PlasmoView interactive web-browsing tool enables the research community to visualise genomic variation and annotation (eg, biological function) in a geographic setting. The first release contains over 600 000 high-quality SNPs in 631 Pf isolates from laboratory strains and four malaria-endemic regions (West Africa, East Africa, Southeast Asia and Oceania). PMID:24338354

  15. Evolution and function of genomic imprinting in plants

    PubMed Central

    Rodrigues, Jessica A.; Zilberman, Daniel

    2015-01-01

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. PMID:26680300

  16. The most deviated codon position in AT-rich bacterial genomes: a function related analysis.

    PubMed

    Ma, Bin-Guang; Chen, Ling-Ling

    2005-10-01

    We have performed systematic study on more than 120 archaeal and bacterial genomes. Based on the index proposed in the current paper, clear patterns are observed showing the relation between the base compositional deviation at three codon positions and the genomic GC content. For AT-rich genomes, the Most Deviated Codon Position (MDCP) is the 1st codon position, while for GC-rich genomes, MDCP appears at the 2nd or 3rd codon position alternatively. According to MDCP, the CDSs of a genome can be classified into two types: typical and atypical. In AT-rich genomes the typical represent the majority and account for about 3/4 of all the CDSs. Based on the functional classification of COG database, the two types of CDSs are examined. An apparent bias of distribution is observed that the CDSs with the function of 'information processing' are more likely to present in typical type. PMID:16060688

  17. A Functional Genomic Approach to Chlorinated Ethenes Bioremediation

    NASA Astrophysics Data System (ADS)

    Lee, P. K.; Brodie, E. L.; MacBeth, T. W.; Deeb, R. A.; Sorenson, K. S.; Andersen, G. L.; Alvarez-Cohen, L.

    2007-12-01

    With the recent advances in genomic sciences, a knowledge-based approach can now be taken to optimize the bioremediation of trichloroethene (TCE). During the bioremediation of a heterogeneous subsurface, it is vital to identify and quantify the functionally important microorganisms present, characterize the microbial community and measure their physiological activity. In our field experiments, quantitative PCR (qPCR) was coupled with reverse-transcription (RT) to analyze both copy numbers and transcripts expressed by the 16S rRNA gene and three reductive dehalogenase (RDase) genes as biomarkers of Dehalococcoides spp. in the groundwater of a TCE-DNAPL site at Ft. Lewis (WA) that was serially subjected to biostimulation and bioaugmentation. Genes in the Dehalococcoides genus were targeted as they are the only known organisms that can completely dechlorinate TCE to the innocuous product ethene. Biomarker quantification revealed an overall increase of more than three orders of magnitude in the total Dehalococcoides population and quantification of the more liable and stringently regulated mRNAs confirmed that Dehalococcoides spp. were active. Parallel with our field experiments, laboratory studies were conducted to explore the physiology of Dehalococcoides isolates in order to develop relevant biomarkers that are indicative of the metabolic state of cells. Recently, we verified the function of the nitrogenase operon in Dehalococcoides sp. strain 195 and nitrogenase-encoding genes are ideal biomarker targets to assess cellular nitrogen requirement. To characterize the microbial community, we applied a high-density phylogenetic microarray (16S PhyloChip) that simultaneous monitors over 8,700 unique taxa to track the bacterial and archaeal populations through different phases of treatment. As a measure of species richness, 1,300 to 1,520 taxa were detected in groundwater samples extracted during different stages of treatment as well as in the bioaugmentation culture. We

  18. Identification of functional lox sites in the plastid genome.

    PubMed

    Corneille, Sylvie; Lutz, Kerry A; Azhagiri, Arun K; Maliga, Pal

    2003-09-01

    Our objective was to test whether or not cyclization recombination (CRE), the P1 phage site-specific recombinase, induces genome rearrangements in plastids. Testing was carried out in tobacco plants in which a DNA sequence, located between two inversely oriented locus of X-over of P1 (loxP) sites, underwent repeated cycles of inversions as a means of monitoring CRE activity. We report here that CRE mediates deletions between loxP sites and plastid DNA sequences in the 3'rps12 gene leader (lox-rps12) or in the psbA promoter core (lox-psbA). We also observed deletions between two directly oriented lox-psbA sites, but not between lox-rps12 sites. Deletion via duplicated rRNA operon promoter (Prrn) sequences was also frequent in CRE-active plants. However, CRE-mediated recombination is probably not directly involved, as no recombination junction between loxP and Prrn could be observed. Tobacco plants carrying deleted genomes as a minor fraction of the plastid genome population were fertile and phenotypically normal, suggesting that the absence of deleted genome segments was compensated by gene expression from wild-type copies. The deleted plastid genomes disappeared in the seed progeny lacking CRE. Observed plastid genome rearrangements are specific to engineered plastid genomes, which contain at least one loxP site or duplicated psbA promoter sequences. The wild-type plastid genome is expected to be stable, even if CRE is present in the plastid. PMID:12969428

  19. Functional profiling of cyanobacterial genomes and its role in ecological adaptations.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Somvanshi, Pallavi; Rai, Anil

    2016-09-01

    With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations. PMID:27408818

  20. Identification of blood biomarkers for psychosis using convergent functional genomics.

    PubMed

    Kurian, S M; Le-Niculescu, H; Patel, S D; Bertram, D; Davis, J; Dike, C; Yehyawi, N; Lysaker, P; Dustin, J; Caligiuri, M; Lohr, J; Lahiri, D K; Nurnberger, J I; Faraone, S V; Geyer, M A; Tsuang, M T; Schork, N J; Salomon, D R; Niculescu, A B

    2011-01-01

    There are to date no objective clinical laboratory blood tests for psychotic disease states. We provide proof of principle for a convergent functional genomics (CFG) approach to help identify and prioritize blood biomarkers for two key psychotic symptoms, one sensory (hallucinations) and one cognitive (delusions). We used gene expression profiling in whole blood samples from patients with schizophrenia and related disorders, with phenotypic information collected at the time of blood draw, then cross-matched the data with other human and animal model lines of evidence. Topping our list of candidate blood biomarkers for hallucinations, we have four genes decreased in expression in high hallucinations states (Fn1, Rhobtb3, Aldh1l1, Mpp3), and three genes increased in high hallucinations states (Arhgef9, Phlda1, S100a6). All of these genes have prior evidence of differential expression in schizophrenia patients. At the top of our list of candidate blood biomarkers for delusions, we have 15 genes decreased in expression in high delusions states (such as Drd2, Apoe, Scamp1, Fn1, Idh1, Aldh1l1), and 16 genes increased in high delusions states (such as Nrg1, Egr1, Pvalb, Dctn1, Nmt1, Tob2). Twenty-five of these genes have prior evidence of differential expression in schizophrenia patients. Predictive scores, based on panels of top candidate biomarkers, show good sensitivity and negative predictive value for detecting high psychosis states in the original cohort as well as in three additional cohorts. These results have implications for the development of objective laboratory tests to measure illness severity and response to treatment in devastating disorders such as schizophrenia. PMID:19935739

  1. High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources

    PubMed Central

    2013-01-01

    Background Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. Results Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. Conclusions The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes. PMID:23924375

  2. Genomic resources for water yam (Dioscorea alata L.): analyses of EST-Sequences, De Novo sequencing and GBS libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources such as SSRs, SNPs and InDels in several model and non-model plant species. Yam (Dioscorea spp.) i...

  3. Functional Classification of Natural Resources for Valuing Natural Resources in Korea

    NASA Astrophysics Data System (ADS)

    Choi, H.; Lee, W.; Kwak, H.

    2013-12-01

    The ecosystem services concept emphasizes not only regulating services, but also supporting, provisioning, and cultural/social services according to the Millennium Ecosystem Assessment (MA). While the spatial and quantifying of ecosystem services is becoming increasingly recognized for natural resources conservation, however, due to methodological challenges, ecosystem services quantification is rarely considered in Republic of Korea (ROK). This study matches appropriate indicators, data and mapping for describing respective states, quantification and ecosystem valuation. The results were analyzed with statistical and GIS-based techniques. We classified the ecosystem services function based on reference to the literature, interviews and a modified approach compared to the MA, the Economics of Ecosystems and Biodiversity (TEEB). For quantifying values, we subdivided land cover types using ecological features and normalized numerical information of provisioning services, regulating services and cultural services. Resulting hotspots of ecosystem services are related to landscape features and land cover types in ROK. The mapping results show hotspots of ecosystem services where high level of ecosystem services is distributed - around Baekdudaegan protected area (Gangwon, Gyeongbuk Province, Chungbuk, Jeonam Province). n addition, the results of our study show that ecosystem services function - especially, fostering water resources, erosion control, air quality and pollution control in terrestrial ecosystems - can contribute to planning management policy for ecosystem based management at regional scale.

  4. Resource Allocation for Maximizing Prediction Accuracy and Genetic Gain of Genomic Selection in Plant Breeding: A Simulation Experiment

    PubMed Central

    Lorenz, Aaron J.

    2013-01-01

    Allocating resources between population size and replication affects both genetic gain through phenotypic selection and quantitative trait loci detection power and effect estimation accuracy for marker-assisted selection (MAS). It is well known that because alleles are replicated across individuals in quantitative trait loci mapping and MAS, more resources should be allocated to increasing population size compared with phenotypic selection. Genomic selection is a form of MAS using all marker information simultaneously to predict individual genetic values for complex traits and has widely been found superior to MAS. No studies have explicitly investigated how resource allocation decisions affect success of genomic selection. My objective was to study the effect of resource allocation on response to MAS and genomic selection in a single biparental population of doubled haploid lines by using computer simulation. Simulation results were compared with previously derived formulas for the calculation of prediction accuracy under different levels of heritability and population size. Response of prediction accuracy to resource allocation strategies differed between genomic selection models (ridge regression best linear unbiased prediction [RR-BLUP], BayesCπ) and multiple linear regression using ordinary least-squares estimation (OLS), leading to different optimal resource allocation choices between OLS and RR-BLUP. For OLS, it was always advantageous to maximize population size at the expense of replication, but a high degree of flexibility was observed for RR-BLUP. Prediction accuracy of doubled haploid lines included in the training set was much greater than of those excluded from the training set, so there was little benefit to phenotyping only a subset of the lines genotyped. Finally, observed prediction accuracies in the simulation compared well to calculated prediction accuracies, indicating these theoretical formulas are useful for making resource allocation

  5. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment.

    PubMed

    Lorenz, Aaron J

    2013-03-01

    Allocating resources between population size and replication affects both genetic gain through phenotypic selection and quantitative trait loci detection power and effect estimation accuracy for marker-assisted selection (MAS). It is well known that because alleles are replicated across individuals in quantitative trait loci mapping and MAS, more resources should be allocated to increasing population size compared with phenotypic selection. Genomic selection is a form of MAS using all marker information simultaneously to predict individual genetic values for complex traits and has widely been found superior to MAS. No studies have explicitly investigated how resource allocation decisions affect success of genomic selection. My objective was to study the effect of resource allocation on response to MAS and genomic selection in a single biparental population of doubled haploid lines by using computer simulation. Simulation results were compared with previously derived formulas for the calculation of prediction accuracy under different levels of heritability and population size. Response of prediction accuracy to resource allocation strategies differed between genomic selection models (ridge regression best linear unbiased prediction [RR-BLUP], BayesCπ) and multiple linear regression using ordinary least-squares estimation (OLS), leading to different optimal resource allocation choices between OLS and RR-BLUP. For OLS, it was always advantageous to maximize population size at the expense of replication, but a high degree of flexibility was observed for RR-BLUP. Prediction accuracy of doubled haploid lines included in the training set was much greater than of those excluded from the training set, so there was little benefit to phenotyping only a subset of the lines genotyped. Finally, observed prediction accuracies in the simulation compared well to calculated prediction accuracies, indicating these theoretical formulas are useful for making resource allocation

  6. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome

    PubMed Central

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Abstract Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of “domestication” of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci. PMID:25853282

  7. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome.

    PubMed

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci. PMID:25853282

  8. Draft Genome Sequence of Lactobacillus reuteri Strain CRL 1098, an Interesting Candidate for Functional Food Development

    PubMed Central

    Torres, Andrea C.; Suárez, Nadia E.; Font, Graciela; Saavedra, Lucila

    2016-01-01

    We report here the draft genome sequence of Lactobacillus reuteri strain CRL 1098. This strain represents an interesting candidate for functional food development because of its proven probiotic properties. The draft genome sequence is composed of 1,969,471 bp assembled into 45 contigs and an average G+C content of 38.8%. PMID:27563038

  9. The PlantsP and PlantsT Functional Genomics Databases.

    PubMed

    Tchieu, Jason H; Fana, Fariba; Fink, J Lynn; Harper, Jeffrey; Nair, T Murlidharan; Niedner, R Hannes; Smith, Douglas W; Steube, Kenneth; Tam, Tobey M; Veretnik, Stella; Wang, Degeng; Gribskov, Michael

    2003-01-01

    PlantsP and PlantsT allow users to quickly gain a global understanding of plant phosphoproteins and plant membrane transporters, respectively, from evolutionary relationships to biochemical function as well as a deep understanding of the molecular biology of individual genes and their products. As one database with two functionally different web interfaces, PlantsP and PlantsT are curated plant-specific databases that combine sequence-derived information with experimental functional-genomics data. PlantsP focuses on proteins involved in the phosphorylation process (i.e., kinases and phosphatases), whereas PlantsT focuses on membrane transport proteins. Experimentally, PlantsP provides a resource for information on a collection of T-DNA insertion mutants (knockouts) in each kinase and phosphatase, primarily in Arabidopsis thaliana, and PlantsT uniquely combines experimental data regarding mineral composition (derived from inductively coupled plasma atomic emission spectroscopy) of mutant and wild-type strains. Both databases provide extensive information on motifs and domains, detailed information contributed by individual experts in their respective fields, and descriptive information drawn directly from the literature. The databases incorporate a unique user annotation and review feature aimed at acquiring expert annotation directly from the plant biology community. PlantsP is available at http://plantsp.sdsc.edu and PlantsT is available at http://plantst.sdsc.edu. PMID:12520018

  10. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    PubMed Central

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  11. InterPro: an integrated documentation resource for protein families, domains and functional sites.

    PubMed

    Mulder, Nicola J; Apweiler, Rolf; Attwood, Terri K; Bairoch, Amos; Bateman, Alex; Binns, David; Biswas, Margaret; Bradley, Paul; Bork, Peer; Bucher, Phillip; Copley, Richard; Courcelle, Emmanuel; Durbin, Richard; Falquet, Laurent; Fleischmann, Wolfgang; Gouzy, Jerome; Griffith-Jones, Sam; Haft, Daniel; Hermjakob, Henning; Hulo, Nicolas; Kahn, Daniel; Kanapin, Alexander; Krestyaninova, Maria; Lopez, Rodrigo; Letunic, Ivica; Orchard, Sandra; Pagni, Marco; Peyruc, David; Ponting, Chris P; Servant, Florence; Sigrist, Christian J A

    2002-09-01

    The exponential increase in the submission of nucleotide sequences to the nucleotide sequence database by genome sequencing centres has resulted in a need for rapid, automatic methods for classification of the resulting protein sequences. There are several signature and sequence cluster-based methods for protein classification, each resource having distinct areas of optimum application owing to the differences in the underlying analysis methods. In recognition of this, InterPro was developed as an integrated documentation resource for protein families, domains and functional sites, to rationalise the complementary efforts of the individual protein signature database projects. The member databases - PRINTS, PROSITE, Pfam, ProDom, SMART and TIGRFAMs - form the InterPro core. Related signatures from each member database are unified into single InterPro entries. Each InterPro entry includes a unique accession number, functional descriptions and literature references, and links are made back to the relevant member database(s). Release 4.0 of InterPro (November 2001) contains 4,691 entries, representing 3,532 families, 1,068 domains, 74 repeats and 15 sites of post-translational modification (PTMs) encoded by different regular expressions, profiles, fingerprints and hidden Markov models (HMMs). Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (2,141,621 InterPro hits from 586,124 SWISS-PROT and TrEMBL protein sequences). The database is freely accessible for text- and sequence-based searches. PMID:12230031

  12. Synergies between assisted reproduction technologies and functional genomics.

    PubMed

    Loi, Pasqualino; Toschi, Paola; Zacchini, Federica; Ptak, Grazyna; Scapolo, Pier A; Capra, Emanuele; Stella, Alessandra; Marsan, Paolo Ajmone; Williams, John L

    2016-01-01

    This review, is a synopsis of advanced reproductive technologies in farm animals, including the discussion of their limiting factors as revealed by the study of offspring derived from embryos produced in vitro and through cloning. These studies show that the problems of epigenetic mis-programming, which were reported in the initial stages of assisted reproduction, still persist. The importance of whole-genome analyses, including the methylome and transcriptome, in improving embryo biotechnologies in farm animals, are discussed. Genome editing approaches for the improvement of economically-relevant traits in farm animals are also described. Efficient farm animal embryo biotechnologies, including cloning and the most recent technologies such as genome editing, will effectively complement the latest strategies to accelerate genetic improvement of farm animals. PMID:27481215

  13. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans.

    PubMed

    Sarov, Mihail; Schneider, Susan; Pozniakovski, Andrei; Roguev, Assen; Ernst, Susanne; Zhang, Youming; Hyman, A Anthony; Stewart, A Francis

    2006-10-01

    We present a new concept in DNA engineering based on a pipeline of serial recombineering steps in liquid culture. This approach is fast, straightforward and facilitates simultaneous processing of multiple samples in parallel. We validated the approach by generating green fluorescent protein (GFP)-tagged transgenes from Caenorhabditis briggsae genomic clones in a multistep pipeline that takes only 4 d. The transgenes were engineered with minimal disturbance to the natural genomic context so that the correct level and pattern of expression will be secured after transgenesis. An example transgene for the C. briggsae ortholog of lin-59 was used for ballistic transformation in Caenorhabditis elegans. We show that the cross-species transgene is correctly expressed and rescues RNA interference (RNAi)-mediated knockdown of the endogenous C. elegans gene. The strategy that we describe adapts the power of recombineering in Escherichia coli for fluent DNA engineering to a format that can be directly scaled up for genomic projects. PMID:16990816

  14. Epiviz: interactive visual analytics for functional genomics data

    PubMed Central

    Chelaru, Florin; Smith, Llewellyn; Goldstein, Naomi; Bravo, Héctor Corrada

    2014-01-01

    Visualization is an integral aspect of genomics data analysis where the output of procedures performed in computing environments like Bioconductor is often visualized. Algorithmic-statistical analysis and interactive visualization are usually disjoint but are most effective when used iteratively. We introduce tools that provide this tight-knit integration: Epiviz (http://epiviz.cbcb.umd.edu), a web-based genome browser, and the Epivizr Bioconductor package allowing interactive, extensible and reproducible visualization within a state-of-the-art data analysis platform. PMID:25086505

  15. Functional Genomics Tools for Haemonchus contortus and Lessons From Other Helminths.

    PubMed

    Britton, C; Roberts, B; Marks, N D

    2016-01-01

    The availability of genome and transcriptome data for parasitic nematodes, including Haemonchus contortus, has highlighted the need to develop functional genomics tools. Comparative genomic analysis, particularly using data from the free-living nematode Caenorhabditis elegans, can help predict gene function. Reliable approaches to study function directly in parasitic nematodes are currently lacking. However, gene knockdown by RNA interference (RNAi) is being successfully used in schistosome and planarian species to define gene functions. Lessons from these systems may be applied to improve RNAi in H. contortus. Previous studies in H. contortus and related nematodes demonstrated reliable RNAi-mediated silencing of some genes, but not others. Current data suggest that susceptibility to RNAi in these nematodes is limited to genes expressed in sites accessible to the environment, such as the gut, amphids and excretory cell. Therefore, RNAi is functional in H. contortus, but improvements are needed to develop this system as a functional genomics platform. Here, we summarize RNAi studies on H. contortus and discuss the optimization of RNA delivery and improvements to culture methods to enhance larval development, protein turnover and the induction of phenotypic effects in vitro. The transgenic delivery of RNA or dominant-negative gene constructs and the recently developed CRISPR/Cas genome-editing technique are considered as potential alternative approaches for gene knockout. This is a key time to devote greater effort in progressing from genome to function, to improve our understanding of the biology of Haemonchus and identify novel targets for parasite control. PMID:27238014

  16. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    PubMed

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken. PMID:18629153

  17. Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries

    PubMed Central

    Gaida, Stefan M.; Sandoval, Nicholas R.; Nicolaou, Sergios A.; Chen, Yili; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.

    2015-01-01

    A key limitation in using heterologous genomic or metagenomic libraries in functional genomics and genome engineering is the low expression of heterologous genes in screening hosts, such as Escherichia coli. To overcome this limitation, here we generate E. coli strains capable of recognizing heterologous promoters by expressing heterologous sigma factors. Among seven sigma factors tested, RpoD from Lactobacillus plantarum (Lpl) appears to be able of initiating transcription from all sources of DNA. Using the promoter GFP-trap concept, we successfully screen several heterologous and metagenomic DNA libraries, thus enlarging the genomic space that can be functionally sampled in E. coli. For an application, we show that screening fosmid-based Lpl genomic libraries in an E. coli strain with a chromosomally integrated Lpl rpoD enables the identification of Lpl genetic determinants imparting strong ethanol tolerance in E. coli. Transcriptome analysis confirms increased expression of heterologous genes in the engineered strain. PMID:25944046

  18. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  19. EXPLOITING GENOME DATA TO UNDERSTAND THE FUNCTION, REGULATION AND EVOLUTIONARY ORIGINS OF TOXICOLOGICALLY RELEVANT GENES

    EPA Science Inventory

    The wealth of new information coming from the many genome sequencing projects is providing unprecedented opportunities for major advances in all areas of biology, including the environmental health sciences. To facilitate this discovery process, experts in the fields of function...

  20. MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa

    PubMed Central

    D'Onorio de Meo, Paolo; D'Antonio, Mattia; Griggio, Francesca; Lupi, Renato; Borsani, Massimiliano; Pavesi, Giulio; Castrignanò, Tiziana; Pesole, Graziano; Gissi, Carmela

    2012-01-01

    The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa. PMID:22123747

  1. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  2. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  3. Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

    PubMed Central

    Wang, Wenming; Tanurdzic, Milos; Luo, Meizhong; Sisneros, Nicholas; Kim, Hye Ran; Weng, Jing-Ke; Kudrna, Dave; Mueller, Christopher; Arumuganathan, K; Carlson, John; Chapple, Clint; de Pamphilis, Claude; Mandoli, Dina; Tomkins, Jeff; Wing, Rod A; Banks, Jo Ann

    2005-01-01

    Background The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants. Results Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes. Conclusion The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution. PMID:15955246

  4. GenomicusPlants: A Web Resource to Study Genome Evolution in Flowering Plants

    PubMed Central

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Roest Crollius, Hugues

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces (‘views’) are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes ‘painted’ with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. PMID:25432975

  5. Functional genomics bridges the gap between quantitative genetics and molecular biology

    PubMed Central

    Lappalainen, Tuuli

    2015-01-01

    Deep characterization of molecular function of genetic variants in the human genome is becoming increasingly important for understanding genetic associations to disease and for learning to read the regulatory code of the genome. In this paper, I discuss how recent advances in both quantitative genetics and molecular biology have contributed to understanding functional effects of genetic variants, lessons learned from eQTL studies, and future challenges in this field. PMID:26430152

  6. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 82489 high-quality genome-wide SNPs from 93 wild and cultivated Cicer accessions through integrated reference genome- and de novo-based GBS assays. High intra- and inter-specific polymorphic potential (66–85%) and broader natural allelic diversity (6–64%) detected by genome-wide SNPs among accessions signify their efficacy for monitoring introgression and transferring target trait-regulating genomic (gene) regions/allelic variants from wild to cultivated Cicer gene pools for genetic improvement. The population-specific assignment of wild Cicer accessions pertaining to the primary gene pool are more influenced by geographical origin/phenotypic characteristics than species/gene-pools of origination. The functional significance of allelic variants (non-synonymous and regulatory SNPs) scanned from transcription factors and stress-responsive genes in differentiating wild accessions (with potential known sources of yield-contributing and stress tolerance traits) from cultivated desi and kabuli accessions, fine-mapping/map-based cloning of QTLs and determination of LD patterns across wild and cultivated gene-pools are suitably elucidated. The correlation between phenotypic (agromorphological traits) and molecular diversity-based admixed domestication patterns within six structured populations of wild and cultivated accessions via genome-wide SNPs was apparent. This suggests utility of whole genome SNPs as a potential resource for identifying naturally selected trait-regulating genomic targets/functional allelic variants adaptive to diverse agroclimatic regions for genetic enhancement of cultivated gene-pools. PMID:26208313

  7. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. PMID:27231054

  8. Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera.

    PubMed

    Degnan, Patrick H; Ochman, Howard; Moran, Nancy A

    2011-09-01

    Analyses of genome reduction in obligate bacterial symbionts typically focus on the removal and retention of protein-coding regions, which are subject to ongoing inactivation and deletion. However, these same forces operate on intergenic spacers (IGSs) and affect their contents, maintenance, and rates of evolution. IGSs comprise both non-coding, non-functional regions, including decaying pseudogenes at varying stages of recognizability, as well as functional elements, such as genes for sRNAs and regulatory control elements. The genomes of Buchnera and other small genome symbionts display biased nucleotide compositions and high rates of sequence evolution and contain few recognizable regulatory elements. However, IGS lengths are highly correlated across divergent Buchnera genomes, suggesting the presence of functional elements. To identify functional regions within the IGSs, we sequenced two Buchnera genomes (from aphid species Uroleucon ambrosiae and Acyrthosiphon kondoi) and applied a phylogenetic footprinting approach to alignments of orthologous IGSs from a total of eight Buchnera genomes corresponding to six aphid species. Inclusion of these new genomes allowed comparative analyses at intermediate levels of divergence, enabling the detection of both conserved elements and previously unrecognized pseudogenes. Analyses of these genomes revealed that 232 of 336 IGS alignments over 50 nucleotides in length displayed substantial sequence conservation. Conserved alignment blocks within these IGSs encompassed 88 Shine-Dalgarno sequences, 55 transcriptional terminators, 5 Sigma-32 binding sites, and 12 novel small RNAs. Although pseudogene formation, and thus IGS formation, are ongoing processes in these genomes, a large proportion of intergenic spacers contain functional sequences. PMID:21912528

  9. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    DOE PAGESBeta

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk; Hyatt, Doug; Pan, Chongle

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less

  10. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    SciTech Connect

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk; Hyatt, Doug; Pan, Chongle

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accurate comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.

  11. The Exomes of the NCI-60 Panel: a Genomic Resource for Cancer Biology and Systems Pharmacology

    PubMed Central

    Abaan, Ogan D.; Polley, Eric C.; Davis, Sean R.; Zhu, Yuelin J.; Bilke, Sven; Walker, Robert L.; Pineda, Marbin; Gindin, Yevgeniy; Jiang, Yuan; Reinhold, William C.; Holbeck, Susan L.; Simon, Richard M.; Doroshow, James H.; Pommier, Yves; Meltzer, Paul S.

    2016-01-01

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. This panel has generated the most extensive cancer pharmacology database worldwide. In addition, these cell lines have been intensely investigated, providing a unique platform for hypothesis driven research focused on enhancing our understanding of tumor biology. Here, we report a comprehensive analysis of coding variants in the NCI-60 panel of cell lines identified by whole exome sequencing (WES), providing a list of possible cancer specific variants for the community. Furthermore, we identify pharmacogenomic correlations between specific variants in genes like TP53, BRAF, ERBBs and ATAD5 and anti-cancer agents such as nutlin, vemurafenib, erlotinib and bleomycin demonstrating one of many ways the data could be utilized to validate and generate novel hypotheses for further investigation. As new cancer genes are identified through large-scale sequencing studies, the data presented here for the NCI-60 will be an invaluable resource for identifying cell lines with mutations in such genes for hypothesis driven research. To enhance the utility of the data for the greater research community, the genomic variants are freely available in different formats and from multiple sources including the CellMiner and Ingenuity websites. PMID:23856246

  12. De novo transcriptome sequencing facilitates genomic resource generation in Tinospora cordifolia.

    PubMed

    Singh, Rakesh; Kumar, Rajesh; Mahato, Ajay Kumar; Paliwal, Ritu; Singh, Amit Kumar; Kumar, Sundeep; Marla, Soma S; Kumar, Ashok; Singh, Nagendra K

    2016-09-01

    Tinospora cordifolia is known for its medicinal properties owing to the presence of useful constituents such as terpenes, glycosides, steroids, alkaloids, and flavonoids belonging to secondary metabolism origin. However, there is little information available pertaining to critical genomic elements (ESTs, molecular markers) necessary for judicious exploitation of its germplasm. We employed 454 GS-FLX pyrosequencing of entire transcripts and altogether ∼25 K assembled transcripts or Expressed sequence tags (ESTs) were identified. As the interest in T. cordifolia is primarily due to its secondary metabolite constituents, the ESTs pertaining to terpenoids biosynthetic pathway were identified in the present study. Additionally, several ESTs were assigned to different transcription factor families. To validate our transcripts dataset, the novel EST-SSR markers were generated to assess the genetic diversity among germplasm of T. cordifolia. These EST-SSR markers were found to be polymorphic and the dendrogram based on dice similarity index revealed three distinct clustering of accessions. The present study demonstrates effectiveness in using both NEWBLER and MIRA sequence read assembler software for enriching transcript-dataset and thus enables better exploitation of EST resources for mining candidate genes and designing molecular markers. PMID:27465295

  13. Computational tools and resources for prediction and analysis of gene regulatory regions in the chick genome

    PubMed Central

    Khan, Mohsin A. F.; Soto-Jimenez, Luz Mayela; Howe, Timothy; Streit, Andrea; Sosinsky, Alona; Stern, Claudio D.

    2013-01-01

    The discovery of cis-regulatory elements is a challenging problem in bioinformatics, owing to distal locations and context-specific roles of these elements in controlling gene regulation. Here we review the current bioinformatics methodologies and resources available for systematic discovery of cis-acting regulatory elements and conserved transcription factor binding sites in the chick genome. In addition, we propose and make available, a novel workflow using computational tools that integrate CTCF analysis to predict putative insulator elements, enhancer prediction and TFBS analysis. To demonstrate the usefulness of this computational workflow, we then use it to analyze the locus of the gene Sox2 whose developmental expression is known to be controlled by a complex array of cis-acting regulatory elements. The workflow accurately predicts most of the experimentally verified elements along with some that have not yet been discovered. A web version of the CTCF tool, together with instructions for using the workflow can be accessed from http://toolshed.g2.bx.psu.edu/view/mkhan1980/ctcf_analysis. For local installation of the tool, relevant Perl scripts and instructions are provided in the directory named “code” in the supplementary materials. PMID:23355428

  14. Databases of genomic variation and phenotypes: existing resources and future needs

    PubMed Central

    Johnston, Jennifer J.; Biesecker, Leslie G.

    2013-01-01

    Massively parallel sequencing (MPS) has become an important tool for identifying medically significant variants in both research and the clinic. Accurate variation and genotype–phenotype databases are critical in our ability to make sense of the vast amount of information that MPS generates. The purpose of this review is to summarize the state of the art of variation and genotype–phenotype databases, how they can be used, and opportunities to improve these resources. Our working assumption is that the objective of the clinical genomicist is to identify highly penetrant variants that could explain existing disease or predict disease risk for individual patients or research participants. We have detailed how current databases contribute to this goal providing frequency data, literature reviews and predictions of causation for individual variants. For variant annotation, databases vary greatly in their ease of use, the use of standard mutation nomenclature, the comprehensiveness of the variant cataloging and the degree of expert opinion. Ultimately, we need a dynamic and comprehensive reference database of medically important variants that is easily cross referenced to exome and genome sequence data and allows for an accumulation of expert opinion. PMID:23962721

  15. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

    PubMed

    Abaan, Ogan D; Polley, Eric C; Davis, Sean R; Zhu, Yuelin J; Bilke, Sven; Walker, Robert L; Pineda, Marbin; Gindin, Yevgeniy; Jiang, Yuan; Reinhold, William C; Holbeck, Susan L; Simon, Richard M; Doroshow, James H; Pommier, Yves; Meltzer, Paul S

    2013-07-15

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. This panel has generated the most extensive cancer pharmacology database worldwide. In addition, these cell lines have been intensely investigated, providing a unique platform for hypothesis-driven research focused on enhancing our understanding of tumor biology. Here, we report a comprehensive analysis of coding variants in the NCI-60 panel of cell lines identified by whole exome sequencing, providing a list of possible cancer specific variants for the community. Furthermore, we identify pharmacogenomic correlations between specific variants in genes such as TP53, BRAF, ERBBs, and ATAD5 and anticancer agents such as nutlin, vemurafenib, erlotinib, and bleomycin showing one of many ways the data could be used to validate and generate novel hypotheses for further investigation. As new cancer genes are identified through large-scale sequencing studies, the data presented here for the NCI-60 will be an invaluable resource for identifying cell lines with mutations in such genes for hypothesis-driven research. To enhance the utility of the data for the greater research community, the genomic variants are freely available in different formats and from multiple sources including the CellMiner and Ingenuity websites. PMID:23856246

  16. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium species)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  17. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    PubMed Central

    Jiang, Zhi J; Castoe, Todd A; Austin, Christopher C; Burbrink, Frank T; Herron, Matthew D; McGuire, Jimmy A; Parkinson, Christopher L; Pollock, David D

    2007-01-01

    Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence. Results We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs. Conclusion Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and

  18. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  19. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  20. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.

    PubMed

    Linkeviciute, Viktorija; Rackham, Owen J L; Gough, Julian; Oates, Matt E; Fang, Hai

    2015-12-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of 'architecture plasticity potential' - the capacity to form distinct domain architectures - both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  1. Discovery of biological networks from diverse functional genomic data

    PubMed Central

    Myers, Chad L; Robson, Drew; Wible, Adam; Hibbs, Matthew A; Chiriac, Camelia; Theesfeld, Chandra L; Dolinski, Kara; Troyanskaya, Olga G

    2005-01-01

    We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web. PMID:16420673

  2. Insights into the Malpighian tubule from functional genomics.

    PubMed

    Dow, Julian A T

    2009-02-01

    Classical physiological study of the Malpighian tubule has led to a detailed understanding of fluid transport and its control across several species. With the sequencing of the Drosophila genome, and the concurrent development of post-genomic technologies such as microarrays, proteomics, metabolomics and systems biology, completely unexpected roles for the insect Malpighian tubule have emerged. As the insect body plan is simpler than that of mammals, tasks analogous to those performed by multiple mammalian organ systems must be shared out among insect tissues. As well as the classical roles in osmoregulation, the Malpighian tubule is highly specialized for organic solute transport, and for metabolism and detoxification. In Drosophila, the adult Malpighian tubule is the key tissue for defence against insecticides such as DDT; and it can also detect and mount an autonomous defence against bacterial invasion. While it is vital to continue to set insights obtained in Drosophila into the context of work in other species, the combination of post-genomic technologies and physiological validation can provide insights that might not otherwise have been apparent for many years. PMID:19151219

  3. A Roadmap for Functional Structural Variants in the Soybean Genome

    PubMed Central

    Anderson, Justin E.; Kantar, Michael B.; Kono, Thomas Y.; Fu, Fengli; Stec, Adrian O.; Song, Qijian; Cregan, Perry B.; Specht, James E.; Diers, Brian W.; Cannon, Steven B.; McHale, Leah K.; Stupar, Robert M.

    2014-01-01

    Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for gene models that have retained paralogs since the last whole genome duplication event, compared with genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits. PMID:24855315

  4. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics.

    PubMed

    Lufino, Michele M P; Edser, Pauline A H; Quail, Michael A; Rice, Stephen; Adams, David J; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  5. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  6. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Cancer.gov

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  7. The Arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome.

    PubMed

    Berardini, Tanya Z; Reiser, Leonore; Li, Donghui; Mezheritsky, Yarik; Muller, Robert; Strait, Emily; Huala, Eva

    2015-08-01

    The Arabidopsis Information Resource (TAIR) is a continuously updated, online database of genetic and molecular biology data for the model plant Arabidopsis thaliana that provides a global research community with centralized access to data for over 30,000 Arabidopsis genes. TAIR's biocurators systematically extract, organize, and interconnect experimental data from the literature along with computational predictions, community submissions, and high throughput datasets to present a high quality and comprehensive picture of Arabidopsis gene function. TAIR provides tools for data visualization and analysis, and enables ordering of seed and DNA stocks, protein chips, and other experimental resources. TAIR actively engages with its users who contribute expertise and data that augments the work of the curatorial staff. TAIR's focus in an extensive and evolving ecosystem of online resources for plant biology is on the critically important role of extracting experimentally based research findings from the literature and making that information computationally accessible. In response to the loss of government grant funding, the TAIR team founded a nonprofit entity, Phoenix Bioinformatics, with the aim of developing sustainable funding models for biological databases, using TAIR as a test case. Phoenix has successfully transitioned TAIR to subscription-based funding while still keeping its data relatively open and accessible. PMID:26201819

  8. Data for constructing insect genome content matrices for phylogenetic analysis and functional annotation.

    PubMed

    Rosenfeld, Jeffrey; Foox, Jonathan; DeSalle, Rob

    2016-03-01

    Twenty one fully sequenced and well annotated insect genomes were used to construct genome content matrices for phylogenetic analysis and functional annotation of insect genomes. To examine the role of e-value cutoff in ortholog determination we used scaled e-value cutoffs and a single linkage clustering approach.. The present communication includes (1) a list of the genomes used to construct the genome content phylogenetic matrices, (2) a nexus file with the data matrices used in phylogenetic analysis, (3) a nexus file with the Newick trees generated by phylogenetic analysis, (4) an excel file listing the Core (CORE) genes and Unique (UNI) genes found in five insect groups, and (5) a figure showing a plot of consistency index (CI) versus percent of unannotated genes that are apomorphies in the data set for gene losses and gains and bar plots of gains and losses for four consistency index (CI) cutoffs. PMID:26862572

  9. Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding.

    PubMed

    Joshi, Trupti; Fitzpatrick, Michael R; Chen, Shiyuan; Liu, Yang; Zhang, Hongxin; Endacott, Ryan Z; Gaudiello, Eric C; Stacey, Gary; Nguyen, Henry T; Xu, Dong

    2014-01-01

    Soybean Knowledge Base (http://soykb.org) is a comprehensive web resource developed for bridging soybean translational genomics and molecular breeding research. It provides information for six entities including genes/proteins, microRNAs/sRNAs, metabolites, single nucleotide polymorphisms, plant introduction lines and traits. It also incorporates many multi-omics datasets including transcriptomics, proteomics, metabolomics and molecular breeding data, such as quantitative trait loci, traits and germplasm information. Soybean Knowledge Base has a new suite of tools such as In Silico Breeding Program for soybean breeding, which includes a graphical chromosome visualizer for ease of navigation. It integrates quantitative trait loci, traits and germplasm information along with genomic variation data, such as single nucleotide polymorphisms, insertions, deletions and genome-wide association studies data, from multiple soybean cultivars and Glycine soja. PMID:24136998

  10. High Throughput Technologies for Functional Analysis of Archael Genomics

    SciTech Connect

    El-Sayed, Najib M. A.

    1998-09-25

    The specific aims of this project were as follows: (1) to design primers to each predicted open reading frame (ORF) in M. jannaschii and M. thermoautotrophicum to allow the amplification of a unique target sequence that will represent the corresponding coding region on a complete genome chip (2) to amplify each target sequence from M. jannaschii and M. thermoautotrophicum and verify that these PCR products are the expected DNA fragment (3) to establish a relational database that will track the production of target DNAs and the nucleotide sequence used to represent each ORF.

  11. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses.

    PubMed

    Herniou, Elisabeth A; Huguet, Elisabeth; Thézé, Julien; Bézier, Annie; Periquet, Georges; Drezen, Jean-Michel

    2013-09-19

    The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites. PMID:23938758

  12. The BEAF-32 insulator coordinates genome organization and function during the evolution of Drosophila species

    PubMed Central

    Yang, Jingping; Ramos, Edward; Corces, Victor G.

    2012-01-01

    Understanding the relationship between genome organization and expression is central to understanding genome function. Closely apposed genes in a head-to-head orientation share the same upstream region and are likely to be coregulated. Here we identify the Drosophila BEAF-32 insulator as a cis regulatory element separating close head-to-head genes with different transcription regulation modes. We then compare the binding landscapes of the BEAF-32 insulator protein in four different Drosophila genomes and highlight the evolutionarily conserved presence of this protein between close adjacent genes. We find that changes in binding of BEAF-32 to sites in the genome of different Drosophila species correlate with alterations in genome organization caused by DNA rearrangements or genome size expansion. The cross-talk between BEAF-32 genomic distribution and genome organization contributes to new gene-expression profiles, which in turn translate into specific and distinct phenotypes. The results suggest a mechanism for the establishment of differences in transcription patterns during evolution. PMID:22895281

  13. Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics

    PubMed Central

    Ji, Yuan; Biernacka, Joanna M.; Hebbring, Scott; Chai, Yubo; Jenkins, Gregory D.; Batzler, Anthony; Snyder, Karen A.; Drews, Maureen S.; Desta, Zeruesenay; Flockhart, David; Mushiroda, Taisei; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Schaid, Daniel; Weinshilboum, Richard M.; Mrazek, David A.

    2014-01-01

    A genome-wide association (GWA) study of treatment outcomes (response and remission) of selective serotonin reuptake inhibitors (SSRIs) was conducted using 529 subjects with major depressive disorder (MDD). While no SNP associations reached the genome-wide level of significance, 14 SNPs of interest were identified for functional analysis. The rs11144870 SNP in riboflavin kinase (RFK) gene on chromosome 9 was associated with eight week treatment response (OR = 0.42, p = 1.04×10−6). The rs915120 SNP in the G protein-coupled receptor kinase 5 (GRK5) gene on chromosome 10 was associated with eight week remission (OR = 0.50, p = 1.15×10−5). Both SNPs were shown to influence transcription by a reporter gene assay and to alter nuclear protein binding using an electrophoretic mobility shift assay. This report represents an example of joining functional genomics with traditional GWA study results derived from a GWA analysis of SSRI treatment outcomes. The goal of this analytic strategy is to provide insights into the potential relevance of biologically plausible observed associations. PMID:22907730

  14. Genetic screens and functional genomics using CRISPR/Cas9 technology.

    PubMed

    Hartenian, Ella; Doench, John G

    2015-04-01

    Functional genomics attempts to understand the genome by perturbing the flow of information from DNA to RNA to protein, in order to learn how gene dysfunction leads to disease. CRISPR/Cas9 technology is the newest tool in the geneticist's toolbox, allowing researchers to edit DNA with unprecedented ease, speed and accuracy, and representing a novel means to perform genome-wide genetic screens to discover gene function. In this review, we first summarize the discovery and characterization of CRISPR/Cas9, and then compare it to other genome engineering technologies. We discuss its initial use in screening applications, with a focus on optimizing on-target activity and minimizing off-target effects. Finally, we comment on future challenges and opportunities afforded by this technology. PMID:25728500

  15. Re-Annotation Is an Essential Step in Systems Biology Modeling of Functional Genomics Data

    PubMed Central

    van den Berg, Bart H. J.; McCarthy, Fiona M.; Lamont, Susan J.; Burgess, Shane C.

    2010-01-01

    One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data. PMID:20498845

  16. Comparative functional genomic analysis of Pasteurellaceae adhesins using phage display.

    PubMed

    Mullen, Lisa M; Nair, Sean P; Ward, John M; Rycroft, Andrew N; Williams, Rachel J; Henderson, Brian

    2007-05-16

    The Pasteurellaceae contain a number of important animal pathogens. Although related, the various members of this family cause a diversity of pathology in a wide variety of organ systems. Adhesion is an important virulence factor in bacterial infections. Surprisingly little is known about the adhesins of the Pasteurellaceae. To attempt to identify the genes coding for adhesins to some key components of the hosts extracellular matrix molecules, phage display libraries of fragmented genomic DNA from Haemophilus influenzae, Actinobacillus pleuropneumoniae, Pasteurella multocida and Aggregatibacter actinomycetemcomitans, were prepared in the phage display vector pG8SAET. The libraries were screened against human or porcine fibronectin, serum albumin or a commercial extracellular matrix containing type IV collagen, laminin and heparin sulphate. Four genes encoding putative adhesins were identified. These genes code for: (i) a 34 kDa human serum albumin binding protein from Haemophilus influenzae; (ii) a 12.8 kDa fibronectin-binding protein from Pasteurella multocida; (iii) a 13.7 kDa fibronectin-binding protein from A. actinomycetemcomitans; (iv) a 9.5 kDa serum albumin-binding protein from A. pleuropneumoniae. None of these genes have previously been proposed to code for adhesins. The applications of phage display with whole bacterial genomes to identify genes encoding novel adhesins in this family of bacteria are discussed. PMID:17258409

  17. Colibri: a functional data base for the Escherichia coli genome.

    PubMed Central

    Médigue, C; Viari, A; Hénaut, A; Danchin, A

    1993-01-01

    Several data libraries have been created to organize all the data obtained worldwide about the Escherichia coli genome. Because the known data now amount to more than 40% of the whole genome sequence, it has become necessary to organize the data in such a way that appropriate procedures can associate knowledge produced by experiments about each gene to its position on the chromosome and its relation to other relevant genes, for example. In addition, global properties of genes, affected by the introduction of new entries, should be present as appropriate description fields. A data base, implemented on Macintosh by using the data base management system 4th Dimension, is described. It is constructed around a core constituted by known contigs of E. coli sequences and links data collected in general libraries (unmodified) to data associated with evolving knowledge (with modifiable fields). Biologically significant results obtained through the coupling of appropriate procedures (learning or statistical data analysis) are presented. The data base is available through a 4th Dimension runtime and through FTP on Internet. It has been regularly updated and will be systematically linked to other E. coli data bases (M. Kroger, R. Wahl, G. Schachtel, and P. Rice, Nucleic Acids Res. 20(Suppl.):2119-2144, 1992; K. E. Rudd, W. Miller, C. Werner, J. Ostell, C. Tolstoshev, and S. G. Satterfield, Nucleic Acids Res. 19:637-647, 1991) in the near future. Images PMID:8246843

  18. Robust Automatic Breast Cancer Staging Using A Combination of Functional Genomics and Image-Omics

    PubMed Central

    Su, Hai; Shen, Yong; Xing, Fuyong; Qi, Xin; Hirshfield, Kim M.; Yang, Lin; Foran, David J.

    2016-01-01

    Breast cancer is one of the leading cancers worldwide. Precision medicine is a new trend that systematically examines molecular and functional genomic information within each patient's cancer to identify the patterns that may affect treatment decisions and potential outcomes. As a part of precision medicine, computer-aided diagnosis enables joint analysis of functional genomic information and image from pathological images. In this paper we propose an integrated framework for breast cancer staging using image-omics and functional genomic information. The entire biomedical imaging informatics framework consists of image-omics extraction, feature combination, and classification. First, a robust automatic nuclei detection and segmentation is presented to identify tumor regions, delineate nuclei boundaries and calculate a set of image-based morphological features; next, the low dimensional image-omics is obtained through principal component analysis and is concatenated with the functional genomic features identified by a linear model. A support vector machine for differentiating stage I breast cancer from other stages are learned. We experimentally demonstrate that compared with a single type of representation (image-omics), the combination of image-omics and functional genomic feature can improve the classification accuracy by 3%. PMID:26737959

  19. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions

    PubMed Central

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R.

    2016-01-01

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover ‘functional 3D hotspots’, regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 – known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. PMID:26869583

  20. Functional genomics of human brain development and implications for autism spectrum disorders

    PubMed Central

    Ziats, M N; Grosvenor, L P; Rennert, O M

    2015-01-01

    Transcription of the inherited DNA sequence into copies of messenger RNA is the most fundamental process by which the genome functions to guide development. Encoded sequence information, inherited epigenetic marks and environmental influences all converge at the level of mRNA gene expression to allow for cell-type-specific, tissue-specific, spatial and temporal patterns of expression. Thus, the transcriptome represents a complex interplay between inherited genomic structure, dynamic experiential demands and external signals. This property makes transcriptome studies uniquely positioned to provide insight into complex genetic–epigenetic–environmental processes such as human brain development, and disorders with non-Mendelian genetic etiologies such as autism spectrum disorders. In this review, we describe recent studies exploring the unique functional genomics profile of the human brain during neurodevelopment. We then highlight two emerging areas of research with great potential to increase our understanding of functional neurogenomics—non-coding RNA expression and gene interaction networks. Finally, we review previous functional genomics studies of autism spectrum disorder in this context, and discuss how investigations at the level of functional genomics are beginning to identify convergent molecular mechanisms underlying this genetically heterogeneous disorder. PMID:26506051

  1. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  2. Comparative Genome Analysis in the Integrated Microbial Genomes(IMG) System

    SciTech Connect

    Kyrpides, Nikos C.; Markowitz, Victor M.

    2006-03-01

    Comparative genome analysis is critical for the effectiveexploration of a rapidly growing number of complete and draft sequencesfor microbial genomes. The Integrated Microbial Genomes (IMG) system(img.jgi.doe.gov) has been developed as a community resource thatprovides support for comparative analysis of microbial genomes in anintegrated context. IMG allows users to navigate the multidimensionalmicrobial genome data space and focus their analysis on a subset ofgenes, genomes, and functions of interest. IMG provides graphicalviewers, summaries and occurrence profile tools for comparing genes,pathways and functions (terms) across specific genomes. Genes can befurther examined using gene neighborhoods and compared with sequencealignment tools.

  3. Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes.

    PubMed

    Dunn, John J; McCorkle, Sean R; Everett, Logan; Anderson, Carl W

    2007-01-01

    Because paired-end genomic signature tags are sequenced-based, they have the potential to become an alternate tool to tiled microarray hybridization as a method for genome-wide localization of transcription factors and other sequence-specific DNA binding proteins. As outlined here the method also can be used for global analysis of DNA methylation. One advantage of this approach is the ability to easily switch between different genome types without having to fabricate a new microarray for each and every DNA type. However, the method does have some disadvantages. Among the most rate-limiting steps of our PE-GST protocol are the need to concatemerize the diTAGs, size fractionate them and then clone them prior to sequencing. This is usually followed by additional steps to amplify and size select for long (> or = 500) concatemer inserts prior to sequencing. These time-consuming steps are important for standard DNA sequencing as they increase efficiency approximately 20-30-fold since each amplified concatemer can now provide information on multiple tags; the limitation on data acqui- sition is read length during sequencing. However, the development of new sequencing methods such as Life Sciences' 454 new nanotechnology-based sequencing instrument (41) could increase tag sequencing efficiency by several orders of magnitude (> or = 100,000 diTAG reads/run), which is sufficient to provide in-depth global analysis of all ChIP PE-GSTs in a single run. This is because the lengths of our paired-end diTAGs (approximately 60 bp) fall well within the region of high accuracy for read lengths on this instrument. In principle, sequence analysis of diTAGs could begin as soon as they are generated, thereby completely bypassing the need for the concatemerization, sizing, downstream cloning steps and sequencing template purification. In addition, our protocol places any one of several unique four-base long nucleotide sequences, such as GATC, between each and every diTAG pair, which could

  4. Genome-scale phylogenetic function annotation of large and diverse protein families

    PubMed Central

    Engelhardt, Barbara E.; Jordan, Michael I.; Srouji, John R.; Brenner, Steven E.

    2011-01-01

    The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise predictions compared to the earlier version on a carefully studied family and on a collection of 100 protein families. We have added an approximation method to SIFTER 2.0 and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family, previously inaccessible to the SIFTER framework because of the 66 possible molecular functions, SIFTER achieved 47.4% accuracy on experimental data (where BLAST achieved 34.0%). Finally, we used SIFTER to annotate all of the Schizosaccharomyces pombe proteins with experimental functional characterizations, based on annotations from proteins in 46 fungal genomes. SIFTER precisely predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with four current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0%, and 5.7% of these proteins. We use both precision-recall curves and ROC analyses to compare these genome-scale predictions across the different methods and to assess performance on different types of applications. SIFTER 2.0 is capable of predicting protein molecular function for large and functionally diverse protein families using an approximate statistical model, enabling phylogenetics-based protein function prediction for genome-wide analyses. The code for SIFTER and protein family data are available at http://sifter.berkeley.edu. PMID:21784873

  5. Structural and functional genome analysis using extended chromatin

    SciTech Connect

    Heaf, T.; Ward, D.C.

    1994-09-01

    Highly extended linear chromatin fibers (ECFs) produced by detergent and high-salt lysis and stretching of nuclear chromatin across the surface of a glass slide can by hybridized over physical distances of at least several Mb. This allows long-range FISH analysis of the human genome with excellent DNA resolution (<10 kb/{mu}m). The insertion of Alu elements which are more than 50-fold underrepresented in centromeres can be seen within and near long tandem arrays of alpha-satellite DNA. Long tracts of trinucleotide repeats, i.e. (CCA){sub n}, can be localized within larger genomic regions. The combined application of BrdU incorporation and ECFs allows one to study the spatio-temporal distribution of DNA replication sites in finer detail. DNA synthesis occurs at multiple discrete sites within Mb arrays of alpha-satellite. Replicating DNA is tightly associated with the nuclear matrix and highly resistant to stretching out, while ECFs containing newly replicated DNA are easily released. Asynchrony in replication timing is accompanied by differences in condensation of homologous DNA segments. Extended chromatin reveals differential packaging of active and inactive DNA. Upon transcriptional inactivation by AMD, the normally compact rRNA genes become much more susceptible to decondensation procedures. By extending the chromatin from pachytene spermatocytes, meiotic pairing and genetic exchange between homologs can be visualized directly. Histone depletion by high salt and detergent produces loop chromatin surrounding the nuclear matrix in a halo-like fashion. DNA halos can be used to map nuclear matrix attachment sites in somatic cells and in mature sperm. Alpha-satellite containing DNA loops appear to be attached to the sperm-cell matrix by CENP-B boxes, short 17 bp sequences found in a subset of alpha satellite monomers. Sperm telomeres almost always appear as hybridization doublets, suggesting the presence of already replicated chromosome ends.

  6. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  7. FveGD: an online resource for diploid strawberry (fragaria vesca) genomics data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system that is an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. xananassa) and...

  8. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics

    PubMed Central

    Yuan, Hui; Peng, Li; Han, Zhong; Xie, Juan-Juan; Liu, Xi-Peng

    2015-01-01

    Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms. PMID:26441878

  9. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    PubMed

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-01-01

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu. PMID:26015273

  10. The GLOBE 3D Genome Platform - towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function.

    PubMed

    Knoch, Tobias A; Lesnussa, Michael; Kepper, Nick; Eussen, Hubert B; Grosveld, Frank G

    2009-01-01

    Genomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the general sequential, three-dimensional and regulatory organization. Here, we present the GLOBE 3D Genome Platform a completely novel grid based virtual "paper" tool and in fact the first system-biological genome browser integrating the holistic complexity of genomes in a single easy comprehensible platform: Based on a detailed study of biophysical and IT requirements, every architectural level from sequence to morphology of one or several genomes can be approached in a real and in a symbolic representation simultaneously and navigated by continuous scale-free zooming within a unique three-dimensional OpenGL and grid driven environment. In principle an unlimited number of multi-dimensional data sets can be visualized, customized in terms of arrangement, shape, colour, and texture etc. as well as accessed and annotated individually or in groups using internal or external data bases/facilities. Any information can be searched and correlated by importing or calculating simple relations in real-time using grid resources. A general correlation and application platform for more complex correlative analysis and a front-end for system-biological simulations both using again the huge capabilities of grid infrastructures is currently under development. Hence, the GLOBE 3D Genome Platform is an example of a grid based approach towards a virtual desktop for genomic work combining the three fundamental distributed resources: i) visual data representation, ii) data access and management, and iii) data analysis and creation. Thus, the GLOBE 3D Genome Platform is the novel system-biology oriented information system urgently needed to access, present, annotate, and to simulate the holistic genome

  11. NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis

    PubMed Central

    2009-01-01

    Background Genome sequences, now available for most pathogens, hold promise for the rational design of new therapies. However, biological resources for genome-scale identification of gene function (notably genes involved in pathogenesis) and/or genes essential for cell viability, which are necessary to achieve this goal, are often sorely lacking. This holds true for Neisseria meningitidis, one of the most feared human bacterial pathogens that causes meningitis and septicemia. Results By determining and manually annotating the complete genome sequence of a serogroup C clinical isolate of N. meningitidis (strain 8013) and assembling a library of defined mutants in up to 60% of its non-essential genes, we have created NeMeSys, a biological resource for Neisseria meningitidis systematic functional analysis. To further enhance the versatility of this toolbox, we have manually (re)annotated eight publicly available Neisseria genome sequences and stored all these data in a publicly accessible online database. The potential of NeMeSys for narrowing the gap between sequence and function is illustrated in several ways, notably by performing a functional genomics analysis of the biogenesis of type IV pili, one of the most widespread virulence factors in bacteria, and by identifying through comparative genomics a complete biochemical pathway (for sulfur metabolism) that may potentially be important for nasopharyngeal colonization. Conclusions By improving our capacity to understand gene function in an important human pathogen, NeMeSys is expected to contribute to the ongoing efforts aimed at understanding a prokaryotic cell comprehensively and eventually to the design of new therapies. PMID:19818133

  12. Draft Genome Sequence of Bacillus pumilus BA06, a Producer of Alkaline Serine Protease with Leather-Dehairing Function

    PubMed Central

    Zhao, Chuan-Wu; Wang, Hai-Yan; Zhang, Yi-Zheng

    2012-01-01

    Bacillus pumilus BA06 was isolated from the proteinaceous soil and produced an extracellular alkaline protease with leather-dehairing function. The genome of BA06 was sequenced. The comparative genome analysis indicated that strain BA06 is different in genome from the other B. pumilus strains, with limited insertions, deletions, and rearrangements. PMID:23144411

  13. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    PubMed

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  14. Enhancing Genome-Wide Copy Number Variation Identification by High Density Array CGH Using Diverse Resources of Pig Breeds

    PubMed Central

    Wang, Jiying; Jiang, Jicai; Wang, Haifei; Kang, Huimin; Zhang, Qin; Liu, Jian-Feng

    2014-01-01

    Copy number variations (CNVs) are important forms of genomic variation, and have attracted extensive attentions in humans as well as domestic animals. In the study, using a custom-designed 2.1 M array comparative genomic hybridization (aCGH), genome-wide CNVs were identified among 12 individuals from diverse pig breeds, including one Asian wild population, six Chinese indigenous breeds and two modern commercial breeds (Yorkshire and Landrace), with one individual of the other modern commercial breed, Duroc, as the reference. A total of 1,344 CNV regions (CNVRs) were identified, covering 47.79 Mb (∼1.70%) of the pig genome. The length of these CNVRs ranged from 3.37 Kb to 1,319.0 Kb with a mean of 35.56 Kb and a median of 11.11 Kb. Compared with similar studies reported, most of the CNVRs (74.18%) were firstly identified in present study. In order to confirm these CNVRs, 21 CNVRs were randomly chosen to be validated by quantitative real time PCR (qPCR) and a high rate (85.71%) of confirmation was obtained. Functional annotation of CNVRs suggested that the identified CNVRs have important function, and may play an important role in phenotypic and production traits difference among various breeds. Our results are essential complementary to the CNV map in the pig genome, which will provide abundant genetic markers to investigate association studies between various phenotypes and CNVs in pigs. PMID:24475311

  15. A searchable, whole genome resource designed for protein variant analysis in diverse lineages of U.S. beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key feature of a gene's function is the variety of protein isoforms it encodes in a population. However, the genetic diversity in bovine whole genome databases tends to be underrepresented because these databases contain an abundance of sequence from the most influential sires. Our first aim was ...

  16. Toward a Functional Annotation of the Human Genome Using Artificial Transcription Factors

    PubMed Central

    Lee, Dong-ki; Park, Jin Woo; Kim, Youn-Jae; Kim, Jiwon; Lee, Yangsoon; Kim, Jeonglim; Kim, Jin-Soo

    2003-01-01

    We have developed a novel, high-throughput approach to collecting randomly perturbed gene-expression profiles from the human genome.A human 293 cell library that stably expresses randomly chosen zinc-finger transcription factors was constructed, and the expression profile of each cell line was obtained using cDNA microarray technology.Gene expression profiles from a total of 132 cell lines were collected and analyzed by (1) a simple clustering method based on expression-profile similarity, and (2) the shortest-path analysis method.These analyses identified a number of gene groups, and further investigation revealed that the genes that were grouped together had close biological relationships.The artificial transcription factor-based random genome perturbation method thus provides a novel functional genomic tool for annotation and classification of genes in the human genome and those of many other organisms. PMID:14656973

  17. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    PubMed

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound. PMID:27492417

  18. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction

    PubMed Central

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A.; Lyons, Russell E.; Salin, Krishna R.; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B.

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  19. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction.

    PubMed

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A; Lyons, Russell E; Salin, Krishna R; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world's most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  20. RoBuST: an integrated genomics resource for the root and bulb crop families Apiaceae and Alliaceae

    PubMed Central

    2010-01-01

    Background Root and bulb vegetables (RBV) include carrots, celeriac (root celery), parsnips (Apiaceae), onions, garlic, and leek (Alliaceae)—food crops grown globally and consumed worldwide. Few data analysis platforms are currently available where data collection, annotation and integration initiatives are focused on RBV plant groups. Scientists working on RBV include breeders, geneticists, taxonomists, plant pathologists, and plant physiologists who use genomic data for a wide range of activities including the development of molecular genetic maps, delineation of taxonomic relationships, and investigation of molecular aspects of gene expression in biochemical pathways and disease responses. With genomic data coming from such diverse areas of plant science, availability of a community resource focused on these RBV data types would be of great interest to this scientific community. Description The RoBuST database has been developed to initiate a platform for collecting and organizing genomic information useful for RBV researchers. The current release of RoBuST contains genomics data for 294 Alliaceae and 816 Apiaceae plant species and has the following features: (1) comprehensive sequence annotations of 3663 genes 5959 RNAs, 22,723 ESTs and 11,438 regulatory sequence elements from Apiaceae and Alliaceae plant families; (2) graphical tools for visualization and analysis of sequence data; (3) access to traits, biosynthetic pathways, genetic linkage maps and molecular taxonomy data associated with Alliaceae and Apiaceae plants; and (4) comprehensive plant splice signal repository of 659,369 splice signals collected from 6015 plant species for comparative analysis of plant splicing patterns. Conclusions RoBuST, available at http://robust.genome.com, provides an integrated platform for researchers to effortlessly explore and analyze genomic data associated with root and bulb vegetables. PMID:20691054

  1. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms

    PubMed Central

    Rampal, Raajit; Ahn, Jihae; Abdel-Wahab, Omar; Nahas, Michelle; Wang, Kai; Lipson, Doron; Otto, Geoff A.; Yelensky, Roman; Hricik, Todd; McKenney, Anna Sophia; Chiosis, Gabriela; Chung, Young Rock; Pandey, Suveg; van den Brink, Marcel R. M.; Armstrong, Scott A.; Dogan, Ahmet; Intlekofer, Andrew; Manshouri, Taghi; Park, Christopher Y.; Verstovsek, Srdan; Rapaport, Franck; Stephens, Philip J.; Miller, Vincent A.; Levine, Ross L.

    2014-01-01

    Patients with myeloproliferative neoplasms (MPNs) are at significant, cumulative risk of leukemic transformation to acute myeloid leukemia (AML), which is associated with adverse clinical outcome and resistance to standard AML therapies. We performed genomic profiling of post-MPN AML samples; these studies demonstrate somatic tumor protein 53 (TP53) mutations are common in JAK2V617F-mutant, post-MPN AML but not in chronic-phase MPN and lead to clonal dominance of JAK2V617F/TP53-mutant leukemic cells. Consistent with these data, expression of JAK2V617F combined with Tp53 loss led to fully penetrant AML in vivo. JAK2V617F-mutant, Tp53-deficient AML was characterized by an expanded megakaryocyte erythroid progenitor population that was able to propagate the disease in secondary recipients. In vitro studies revealed that post-MPN AML cells were sensitive to decitabine, the JAK1/2 inhibitor ruxolitinib, or the heat shock protein 90 inhibitor 8-(6-iodobenzo[d][1.3]dioxol-5-ylthio)-9-(3-(isopropylamino)propyl)-9H-purine-6-amine (PU-H71). Treatment with ruxolitinib or PU-H71 improved survival of mice engrafted with JAK2V617F-mutant, Tp53-deficient AML, demonstrating therapeutic efficacy for these targeted therapies and providing a rationale for testing these therapies in post-MPN AML. PMID:25516983

  2. Functional and Genomic Analyses of Alpha-Solenoid Proteins

    PubMed Central

    Fournier, David; Palidwor, Gareth A.; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H.; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A.

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/. PMID:24278209

  3. A functional genomic perspective on human well-being

    PubMed Central

    Fredrickson, Barbara L.; Grewen, Karen M.; Coffey, Kimberly A.; Algoe, Sara B.; Firestine, Ann M.; Arevalo, Jesusa M. G.; Cole, Steven W.

    2013-01-01

    To identify molecular mechanisms underlying the prospective health advantages associated with psychological well-being, we analyzed leukocyte basal gene expression profiles in 80 healthy adults who were assessed for hedonic and eudaimonic well-being, as well as potentially confounded negative psychological and behavioral factors. Hedonic and eudaimonic well-being showed similar affective correlates but highly divergent transcriptome profiles. Peripheral blood mononuclear cells from people with high levels of hedonic well-being showed up-regulated expression of a stress-related conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes and decreased expression of genes involved in antibody synthesis and type I IFN response. In contrast, high levels of eudaimonic well-being were associated with CTRA down-regulation. Promoter-based bioinformatics implicated distinct patterns of transcription factor activity in structuring the observed differences in gene expression associated with eudaimonic well-being (reduced NF-κB and AP-1 signaling and increased IRF and STAT signaling). Transcript origin analysis identified monocytes, plasmacytoid dendritic cells, and B lymphocytes as primary cellular mediators of these dynamics. The finding that hedonic and eudaimonic well-being engage distinct gene regulatory programs despite their similar effects on total well-being and depressive symptoms implies that the human genome may be more sensitive to qualitative variations in well-being than are our conscious affective experiences. PMID:23898182

  4. An integrative functional genomics approach for discovering biomarkers in schizophrenia

    PubMed Central

    Mamdani, Firoza; Macciardi, Fabio

    2011-01-01

    Schizophrenia (SZ) is a complex disorder resulting from both genetic and environmental causes with a lifetime prevalence world-wide of 1%; however, there are no specific, sensitive and validated biomarkers for SZ. A general unifying hypothesis has been put forward that disease-associated single nucleotide polymorphisms (SNPs) from genome-wide association study (GWAS) are more likely to be associated with gene expression quantitative trait loci (eQTL). We will describe this hypothesis and review primary methodology with refinements for testing this paradigmatic approach in SZ. We will describe biomarker studies of SZ and testing enrichment of SNPs that are associated both with eQTLs and existing GWAS of SZ. SZ-associated SNPs that overlap with eQTLs can be placed into gene–gene expression, protein–protein and protein–DNA interaction networks. Further, those networks can be tested by reducing/silencing the gene expression levels of critical nodes. We present pilot data to support these methods of investigation such as the use of eQTLs to annotate GWASs of SZ, which could be applied to the field of biomarker discovery. Those networks that have association with SNP markers, especially cis-regulated expression, might lead to a more clear understanding of important candidate genes that predispose to disease and alter expression. This method has general application to many complex disorders. PMID:22155586

  5. Genomic landscape of megakaryopoiesis and platelet function defects

    PubMed Central

    Bianchi, Elisa; Norfo, Ruggiero; Pennucci, Valentina; Zini, Roberta

    2016-01-01

    Megakaryopoiesis is a complex, stepwise process that takes place largely in the bone marrow. At the apex of the hierarchy, hematopoietic stem cells undergo a number of lineage commitment decisions that ultimately lead to the production of polyploid megakaryocytes. On average, megakaryocytes release 1011 platelets per day into the blood that repair vascular injuries and prevent excessive bleeding. This differentiation process is tightly controlled by exogenous and endogenous factors, which have been the topics of intense research in the hematopoietic field. Indeed, a skewing of megakaryocyte commitment and differentiation may entail the onset of myeloproliferative neoplasms and other preleukemic disorders together with acute megakaryoblastic leukemia, whereas quantitative or qualitative defects in platelet production can lead to inherited platelet disorders. The recent advent of next-generation sequencing has prompted mapping of the genomic landscape of these conditions to provide an accurate view of the underlying lesions. The aims of this review are to introduce the physiological pathways of megakaryopoiesis and to present landmark studies on acquired and inherited disorders that target them. These studies have not only introduced a new era in the fields of molecular medicine and targeted therapies but may also provide us with a better understanding of the mechanisms underlying normal megakaryopoiesis and thrombopoiesis that can inform efforts to create alternative sources of megakaryocytes and platelets. PMID:26787733

  6. A functional genomic perspective on human well-being.

    PubMed

    Fredrickson, Barbara L; Grewen, Karen M; Coffey, Kimberly A; Algoe, Sara B; Firestine, Ann M; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2013-08-13

    To identify molecular mechanisms underlying the prospective health advantages associated with psychological well-being, we analyzed leukocyte basal gene expression profiles in 80 healthy adults who were assessed for hedonic and eudaimonic well-being, as well as potentially confounded negative psychological and behavioral factors. Hedonic and eudaimonic well-being showed similar affective correlates but highly divergent transcriptome profiles. Peripheral blood mononuclear cells from people with high levels of hedonic well-being showed up-regulated expression of a stress-related conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes and decreased expression of genes involved in antibody synthesis and type I IFN response. In contrast, high levels of eudaimonic well-being were associated with CTRA down-regulation. Promoter-based bioinformatics implicated distinct patterns of transcription factor activity in structuring the observed differences in gene expression associated with eudaimonic well-being (reduced NF-κB and AP-1 signaling and increased IRF and STAT signaling). Transcript origin analysis identified monocytes, plasmacytoid dendritic cells, and B lymphocytes as primary cellular mediators of these dynamics. The finding that hedonic and eudaimonic well-being engage distinct gene regulatory programs despite their similar effects on total well-being and depressive symptoms implies that the human genome may be more sensitive to qualitative variations in well-being than are our conscious affective experiences. PMID:23898182

  7. Bioactive Functions of Milk Proteins: a Comparative Genomics Approach.

    PubMed

    Sharp, Julie A; Modepalli, Vengama; Enjapoori, Ashwanth Kumar; Bisana, Swathi; Abud, Helen E; Lefevre, Christophe; Nicholas, Kevin R

    2014-12-01

    The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease. New animal models with unique reproductive strategies are now becoming increasingly relevant to search for these factors. PMID:26115887

  8. Antarctic Notothenioid Fishes: Genomic Resources and Strategies for Analyzing an Adaptive Radiation

    PubMed Central

    Detrich, H. W.; Amemiya, Chris T.

    2010-01-01

    The perciform suborder Notothenoidei provides a compelling opportunity to study the adaptive radiation of a marine species-flock in the cold Southern Ocean that surrounds Antarctica. To facilitate genome-level studies of the diversification of these fishes, we present estimates of the genome sizes of 11 Antarctic species and describe the production of high-quality bacterial artificial chromosome (BAC) libraries for two, the red-blooded notothen Notothenia coriiceps and the white-blooded icefish Chaenocephalus aceratus. Our results indicate that evolution of phylogenetically derived notothenioid families (e.g., the crown group Channichthyidae [icefishes]), was accompanied by genome expansion. Six species from the basal family Nototheniidae had C-values between 0.98 and 1.20 pg, a range that is consistent with the genome sizes of proposed outgroups (e.g., percids) of the notothenioid suborder. In contrast, four icefishes had C-values in the range 1.66–1.83 pg. The BAC libraries VMRC-19 (N. coriiceps) and VMRC-21 (C. aceratus) comprise 12× and 10× coverage of the respective genomes and have average insert sizes of 138 and 168 kb. Paired BAC-end reads representing ∼0.1% of each genome showed that the repetitive element landscapes of the two genomes (13.4% of the N. coriiceps genome and 14.5% for C. aceratus) were similar. The availability of these high-quality and well-characterized BAC libraries sets the stage for targeted genomic analyses of the unusual anatomical and physiological adaptations of the notothenioids, some of which mimic human diseases. Here we consider the evolution of secondary pelagicism by various taxa of the group and illustrate the utility of Antarctic icefishes as an evolutionary-mutant model of human osteopenia (low-mineral density of bones). PMID:21082069

  9. Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics.

    PubMed

    Teotia, Sachin; Singh, Deepali; Tang, Xiaoqing; Tang, Guiliang

    2016-02-01

    Genome sequencing has not only extended our understanding of the blueprints of many plant species but has also revealed the secrets of coding and non-coding genes. We present here a brief introduction to and personal account of key RNA-based technologies, as well as their development and applications for functional genomics of plant coding and non-coding genes, with a focus on short tandem target mimics (STTMs), artificial microRNAs (amiRNAs), and CRISPR/Cas9. In addition, their use in multiplex technologies for the functional dissection of gene networks is discussed. PMID:26774589

  10. SorghumFDB: sorghum functional genomics database with multidimensional network analysis

    PubMed Central

    Tian, Tian; You, Qi; Zhang, Liwei; Yi, Xin; Yan, Hengyu; Xu, Wenying; Su, Zhen

    2016-01-01

    Sorghum (Sorghum bicolor [L.] Moench) has excellent agronomic traits and biological properties, such as heat and drought-tolerance. It is a C4 grass and potential bioenergy-producing plant, which makes it an important crop worldwide. With the sorghum genome sequence released, it is essential to establish a sorghum functional genomics data mining platform. We collected genomic data and some functional annotations to construct a sorghum functional genomics database (SorghumFDB). SorghumFDB integrated knowledge of sorghum gene family classifications (transcription regulators/factors, carbohydrate-active enzymes, protein kinases, ubiquitins, cytochrome P450, monolignol biosynthesis related enzymes, R-genes and organelle-genes), detailed gene annotations, miRNA and target gene information, orthologous pairs in the model plants Arabidopsis, rice and maize, gene loci conversions and a genome browser. We further constructed a dynamic network of multidimensional biological relationships, comprised of the co-expression data, protein–protein interactions and miRNA-target pairs. We took effective measures to combine the network, gene set enrichment and motif analyses to determine the key regulators that participate in related metabolic pathways, such as the lignin pathway, which is a major biological process in bioenergy-producing plants. Database URL: http://structuralbiology.cau.edu.cn/sorghum/index.html. PMID:27352859

  11. Marine organism cell biology and regulatory sequence discoveryin comparative functional genomics.

    PubMed

    Barnes, David W; Mattingly, Carolyn J; Parton, Angela; Dowell, Lori M; Bayne, Christopher J; Forrest, John N

    2004-10-01

    The use of bioinformatics to integrate phenotypic and genomic data from mammalian models is well established as a means of understanding human biology and disease. Beyond direct biomedical applications of these approaches in predicting structure-function relationships between coding sequences and protein activities, comparative studies also promote understanding of molecular evolution and the relationship between genomic sequence and morphological and physiological specialization. Recently recognized is the potential of comparative studies to identify functionally significant regulatory regions and to generate experimentally testable hypotheses that contribute to understanding mechanisms that regulate gene expression, including transcriptional activity, alternative splicing and transcript stability. Functional tests of hypotheses generated by computational approaches require experimentally tractable in vitro systems, including cell cultures. Comparative sequence analysis strategies that use genomic sequences from a variety of evolutionarily diverse organisms are critical for identifying conserved regulatory motifs in the 5'-upstream, 3'-downstream and introns of genes. Genomic sequences and gene orthologues in the first aquatic vertebrate and protovertebrate organisms to be fully sequenced (Fugu rubripes, Ciona intestinalis, Tetraodon nigroviridis, Danio rerio) as well as in the elasmobranchs, spiny dogfish shark (Squalus acanthias) and little skate (Raja erinacea), and marine invertebrate models such as the sea urchin (Strongylocentrotus purpuratus) are valuable in the prediction of putative genomic regulatory regions. Cell cultures have been derived for these and other model species. Data and tools resulting from these kinds of studies will contribute to understanding transcriptional regulation of biomedically important genes and provide new avenues for medical therapeutics and disease prevention. PMID:19003267

  12. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening

    PubMed Central

    Agrotis, Alexander; Ketteler, Robin

    2015-01-01

    CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening. PMID:26442115

  13. SorghumFDB: sorghum functional genomics database with multidimensional network analysis.

    PubMed

    Tian, Tian; You, Qi; Zhang, Liwei; Yi, Xin; Yan, Hengyu; Xu, Wenying; Su, Zhen

    2016-01-01

    Sorghum (Sorghum bicolor [L.] Moench) has excellent agronomic traits and biological properties, such as heat and drought-tolerance. It is a C4 grass and potential bioenergy-producing plant, which makes it an important crop worldwide. With the sorghum genome sequence released, it is essential to establish a sorghum functional genomics data mining platform. We collected genomic data and some functional annotations to construct a sorghum functional genomics database (SorghumFDB). SorghumFDB integrated knowledge of sorghum gene family classifications (transcription regulators/factors, carbohydrate-active enzymes, protein kinases, ubiquitins, cytochrome P450, monolignol biosynthesis related enzymes, R-genes and organelle-genes), detailed gene annotations, miRNA and target gene information, orthologous pairs in the model plants Arabidopsis, rice and maize, gene loci conversions and a genome browser. We further constructed a dynamic network of multidimensional biological relationships, comprised of the co-expression data, protein-protein interactions and miRNA-target pairs. We took effective measures to combine the network, gene set enrichment and motif analyses to determine the key regulators that participate in related metabolic pathways, such as the lignin pathway, which is a major biological process in bioenergy-producing plants.Database URL: http://structuralbiology.cau.edu.cn/sorghum/index.html. PMID:27352859

  14. Huvariome: a web server resource of whole genome next-generation sequencing allelic frequencies to aid in pathological candidate gene selection

    PubMed Central

    2012-01-01

    related genes which have a homozygous genotype in the reference cohorts. This database allows the users to see which selected variants are common variants (> 5% minor allele frequency) in the Huvariome core samples, thus aiding in the selection of potentially pathogenic variants by filtering out common variants that are not listed in one of the other public genomic variation databases. The no-call rate and the accuracy of allele calling in Huvariome provides the user with the possibility of identifying platform dependent errors associated with specific regions of the human genome. Conclusion Huvariome is a simple to use resource for validation of resequencing results obtained by NGS experiments. The high sequence coverage and low error rates provide scientists with the ability to remove false positive results from pedigree studies. Results are returned via a web interface that displays location-based genetic variation frequency, impact on protein function, association with known genetic variations and a quality score of the variation base derived from Huvariome Core and the Diversity Panel data. These results may be used to identify and prioritize rare variants that, for example, might be disease relevant. In testing the accuracy of the Huvariome database, alleles of a selection of ambiguously called coding single nucleotide variants were successfully predicted in all cases. Data protection of individuals is ensured by restricted access to patient derived genomes from the host institution which is relevant for future molecular diagnostics. PMID:23164068

  15. Functional and Comparative Genomics of Lignocellulose Degradation by Schizophyllum commune

    SciTech Connect

    Ohm, Robin A.; Lee, Hanbyul; Park, Hongjae; Brewer, Heather M.; Carver, Akiko; Copeland, Alex; Grimwood, Jane; Lindquist, Erika; Lipzen, Anna; Martin, Joel; Purvine, Samuel O.; Schackwitz, Wendy; Tegelaar, Martin; Tritt, Andrew; Baker, Scott; Choi, In-Geol; Lugones, Luis G.; Wosten, Han A. B.; Grigoriev, Igor V.

    2014-03-14

    The Basidiomycete fungus Schizophyllum commune is a wood-decaying fungus and is used as a model system to study lignocellulose degradation. Version 3.0 of the genome assembly filled 269 of 316 sequence gaps and added 680 kb of sequence. This new assembly was reannotated using RNAseq transcriptomics data, and this resulted in 3110 (24percent) more genes. Two additional S. commune strains with different wood-decaying properties were sequenced, from Tattone (France) and Loenen (The Netherlands). Sequence comparison shows remarkably high sequence diversity between the strains. The overall SNP rate of > 100 SNPs/kb is among the highest rates of within-species polymorphisms in Basidiomycetes. Some well-described proteins like hydrophobins and transcription factors have less than 70percent sequence identity among the strains. Some chromosomes are better conserved than others and in some cases large parts of chromosomes are missing from one or more strains. Gene expression on glucose, cellulose and wood was analyzed in two S. commune strains. Overall, gene expression correlated between the two strains, but there were some notable exceptions. Of particular interest are CAZymes (carbohydrate-active enzymes) that are regulated in different ways in the different strains. In both strains the transcription factor Fsp1 was strongly up-regulated during growth on cellulose and wood, when compared to glucose. Over-expression of Fsp1 using a constitutive promoter resulted in higher cellulose and xylose-degrading enzyme activity, which suggests that Fsp1 is involved in regulating CAZyme gene expression. Two CAZyme genes (of family GH61 and GH11) were shown to be strongly up-regulated during growth on cellulose, compared to glucose. Proteomics on the secreted proteins in the growth medium confirmed this. A promoter analysis revealed the shortest active promoters for these two genes, as well as putative transcription factor binding sites.

  16. Functional and cancer genomics of ASXL family members

    PubMed Central

    Katoh, M

    2013-01-01

    Additional sex combs-like (ASXL)1, ASXL2 and ASXL3 are human homologues of the Drosophila Asx gene that are involved in the regulation or recruitment of the Polycomb-group repressor complex (PRC) and trithorax-group (trxG) activator complex. ASXL proteins consist of ASXN, ASXH, ASXM1, ASXM2 and PHD domains. ASXL1 directly interacts with BAP1, KDM1A (LSD1), NCOA1 and nuclear hormone receptors (NHRs), such as retinoic acid receptors, oestrogen receptor and androgen receptor. ASXL family members are epigenetic scaffolding proteins that assemble epigenetic regulators and transcription factors to specific genomic loci with histone modifications. ASXL1 is involved in transcriptional repression through an interaction with PRC2 and also contributes to transcriptional regulation through interactions with BAP1 and/or NHR complexes. Germ-line mutations of human ASXL1 and ASXL3 occur in Bohring-Opitz and related syndromes. Amplification and overexpression of ASXL1 occur in cervical cancer. Truncation mutations of ASXL1 occur in colorectal cancers with microsatellite instability (MSI), malignant myeloid diseases, chronic lymphocytic leukaemia, head and neck squamous cell carcinoma, and liver, prostate and breast cancers; those of ASXL2 occur in prostate cancer, pancreatic cancer and breast cancer and those of ASXL3 are observed in melanoma. EPC1-ASXL2 gene fusion occurs in adult T-cell leukaemia/lymphoma. The prognosis of myeloid malignancies with misregulating truncation mutations of ASXL1 is poor. ASXL family members are assumed to be tumour suppressive or oncogenic in a context-dependent manner. PMID:23736028

  17. Interspecific Chromosome Substitution Lines as Genetic Resources for Improvement, Trait Analyses and Genomic Inference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three of the research areas likely to very significantly impact genetic improvement of cotton are interspecific introgression, genetic dissection of complex traits and sequencing of [AD] genomes. Interspecific introgression is expected to increase genetic diversity of breeding germplasm, creating op...

  18. Genome-wide discovery of functional transcription factor binding sites by comparative genomics: The case of Stat3

    PubMed Central

    Vallania, Francesco; Schiavone, Davide; Dewilde, Sarah; Pupo, Emanuela; Garbay, Serge; Calogero, Raffaele; Pontoglio, Marco; Provero, Paolo; Poli, Valeria

    2009-01-01

    The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. However, the use of high throughput experimental methods, such as ChIP-chip and ChIP-sequencing, is limited by their high cost and strong dependence on cellular type and context. We developed a computational method for the genome-wide identification of functional transcription factor binding sites based on positional weight matrices, comparative genomics, and gene expression profiling. The method was applied to Stat3, a transcription factor playing crucial roles in inflammation, immunity and oncogenesis, and able to induce distinct subsets of target genes in different cell types or conditions. A newly generated positional weight matrix enabled us to assign affinity scores of high specificity, as measured by EMSA competition assays. Phylogenetic conservation with 7 vertebrate species was used to select the binding sites most likely to be functional. Validation was carried out on predicted sites within genes identified as differentially expressed in the presence or absence of Stat3 by microarray analysis. Twelve of the fourteen sites tested were bound by Stat3 in vivo, as assessed by Chromatin Immunoprecipitation, allowing us to identify 9 Stat3 transcriptional targets. Given its high validation rate, and the availability of large transcription factor-dependent gene expression datasets obtained under diverse experimental conditions, our approach appears to be a valid alternative to high-throughput experimental assays for the discovery of novel direct targets of transcription factors. PMID:19282476

  19. Variable reproducibility in genome-scale public data: A case study using ENCODE ChIP sequencing resource

    PubMed Central

    Devailly, Guillaume; Mantsoki, Anna; Michoel, Tom; Joshi, Anagha

    2015-01-01

    Genome-wide data is accumulating in an unprecedented way in the public domain. Re-mining this data shows great potential to generate novel hypotheses. However this approach is dependent on the quality (technical and biological) of the underlying data. Here we performed a systematic analysis of chromatin immunoprecipitation (ChIP) sequencing data of transcription and epigenetic factors from the enc