Science.gov

Sample records for functional intraflagellar transport

  1. Functional coordination of intraflagellar transport motors.

    PubMed

    Ou, Guangshuo; Blacque, Oliver E; Snow, Joshua J; Leroux, Michel R; Scholey, Jonathan M

    2005-07-28

    Cilia have diverse roles in motility and sensory reception, and defects in cilia function contribute to ciliary diseases such as Bardet-Biedl syndrome (BBS). Intraflagellar transport (IFT) motors assemble and maintain cilia by transporting ciliary precursors, bound to protein complexes called IFT particles, from the base of the cilium to their site of incorporation at the distal tip. In Caenorhabditis elegans, this is accomplished by two IFT motors, kinesin-II and osmotic avoidance defective (OSM)-3 kinesin, which cooperate to form two sequential anterograde IFT pathways that build distinct parts of cilia. By observing the movement of fluorescent IFT motors and IFT particles along the cilia of numerous ciliary mutants, we identified three genes whose protein products mediate the functional coordination of these motors. The BBS proteins BBS-7 and BBS-8 are required to stabilize complexes of IFT particles containing both of the IFT motors, because IFT particles in bbs-7 and bbs-8 mutants break down into two subcomplexes, IFT-A and IFT-B, which are moved separately by kinesin-II and OSM-3 kinesin, respectively. A conserved ciliary protein, DYF-1, is specifically required for OSM-3 kinesin to dock onto and move IFT particles, because OSM-3 kinesin is inactive and intact IFT particles are moved by kinesin-II alone in dyf-1 mutants. These findings implicate BBS ciliary disease proteins and an OSM-3 kinesin activator in the formation of two IFT pathways that build functional cilia. PMID:16049494

  2. Intraflagellar transport: keeping the motors coordinated.

    PubMed

    Cole, Douglas G

    2005-10-11

    Intraflagellar transport is a conserved delivery system that services eukaryotic cilia and flagella. Recent work in the nematode Caenorhabditis elegans has identified proteins required for the functional coordination of intraflagellar transport motors and their cargoes. PMID:16213810

  3. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton

    PubMed Central

    Yuan, Xue; Serra, Rosa A.; Yang, Shuying

    2014-01-01

    Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes. PMID:24961486

  4. An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes.

    PubMed

    Li, Chunmei; Inglis, Peter N; Leitch, Carmen C; Efimenko, Evgeni; Zaghloul, Norann A; Mok, Calvin A; Davis, Erica E; Bialas, Nathan J; Healey, Michael P; Héon, Elise; Zhen, Mei; Swoboda, Peter; Katsanis, Nicholas; Leroux, Michel R

    2008-03-01

    MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development. PMID:18369462

  5. Intraflagellar transport complex structure and cargo interactions

    PubMed Central

    2013-01-01

    Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia, as well as the proper function of ciliary motility and signaling. IFT is powered by molecular motors that move along the axonemal microtubules, carrying large complexes of IFT proteins that travel together as so-called trains. IFT complexes likely function as adaptors that mediate interactions between anterograde/retrograde motors and ciliary cargoes, facilitating cargo transport between the base and tip of the cilium. Here, we provide an up-to-date review of IFT complex structure and architecture, and discuss how interactions with cargoes and motors may be achieved. PMID:23945166

  6. Functional genomics of intraflagellar transport-associated proteins in C. elegans.

    PubMed

    Inglis, Peter N; Blacque, Oliver E; Leroux, Michel R

    2009-01-01

    The nematode Caenorhabditis elegans presents numerous advantages for the identification and molecular analysis of intraflagellar transport (IFT)-associated proteins, which play a critical role in the formation of cilia. Many proteins were first described as participating in IFT in this organism, including IFTA-1 (IFT121), DYF-1 (fleer/IFT70), DYF-2 (IFT144), DYF-3 (Qilin), DYF-11 (MIP-T3/IFT54), DYF-13, XBX-1 (dynein light intermediate chain), XBX-2 (dynein light chain), CHE-13 (IFT57/HIPPI), orthologs of Bardet-Biedl syndrome proteins, and potential regulatory protein, IFTA-2 (RABL5/IFT22). Transgenic animals bearing green fluorescent protein (GFP)-tagged proteins can be generated with ease, and in vivo imaging of IFT in both wild-type and cilia mutant strains can be performed quickly. The analyses permit detailed information on the localization and dynamic properties (velocities along the ciliary axoneme) of the relevant proteins, providing insights into their potential functions in processes such as anterograde and retrograde transport and cilium formation, as well as association with distinct modules of the IFT machinery (e.g., IFT subcomplexes A or B). Behavioral studies of the corresponding IFT-associated gene mutants further enable an understanding of the ciliary role of the proteins-e.g., in chemosensation, lipid homeostasis, lifespan control, and signaling-in a multicellular animal. In this chapter, we discuss how C. elegans can be used for the identification and characterization of IFT-associated proteins, focusing on methods for the generation of GFP-tagged IFT reporter strains, time-lapse microscopy, and IFT rate measurements. PMID:20409822

  7. Components of Intraflagellar Transport Complex A Function Independently of the Cilium to Regulate Canonical Wnt Signaling in Drosophila.

    PubMed

    Balmer, Sophie; Dussert, Aurore; Collu, Giovanna M; Benitez, Elvira; Iomini, Carlo; Mlodzik, Marek

    2015-09-28

    The development of multicellular organisms requires the precisely coordinated regulation of an evolutionarily conserved group of signaling pathways. Temporal and spatial control of these signaling cascades is achieved through networks of regulatory proteins, segregation of pathway components in specific subcellular compartments, or both. In vertebrates, dysregulation of primary cilia function has been strongly linked to developmental signaling defects, yet it remains unclear whether cilia sequester pathway components to regulate their activation or cilia-associated proteins directly modulate developmental signaling events. To elucidate this question, we conducted an RNAi-based screen in Drosophila non-ciliated cells to test for cilium-independent loss-of-function phenotypes of ciliary proteins in developmental signaling pathways. Our results show no effect on Hedgehog signaling. In contrast, our screen identified several cilia-associated proteins as functioning in canonical Wnt signaling. Further characterization of specific components of Intraflagellar Transport complex A uncovered a cilia-independent function in potentiating Wnt signals by promoting β-catenin/Armadillo activity. PMID:26364750

  8. Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function

    SciTech Connect

    Michaud III, Edward J; Haycraft, Courtney J; Aydin Son, Yesim; Zhang, Qihong; Yoder, Bradley

    2005-01-01

    Intraflagellar transport (IFT) proteins are essential for cilia assembly and have recently been associated with a number of developmental processes, such as left-right axis specification and limb and neural tube patterning. Genetic studies indicate that IFT proteins are required for Sonic hedgehog (Shh)signaling downstream of the Smoothened and Patched membrane proteins but upstream of the Glioma (Gli) transcription factors. However, the role that IFT proteins play in transduction of Shh signaling and the importance of cilia in this process remain unknown. Here we provide insights into the mechanism by which defects in an IFT protein, Tg737/Polaris, affect Shh signaling in the murine limb bud. Our data show that loss of Tg737 results in altered Gli3 processing that abrogates Gli3-mediated repression of Gli1 transcriptional activity. In contrast to the conclusions drawn from genetic analysis, the activity of Gli1 and truncated forms of Gli3 (Gli3R) are unaffected in Tg737 mutants at the molecular level, indicating that Tg737/Polaris is differentially involved in specific activities of the Gli proteins. Most important, a negative regulator of Shh signaling, Suppressor of fused, and the three full-length Gli transcription factors localize to the distal tip of cilia in addition to the nucleus. Thus, our data support a model where cilia have a direct role in Gli processing and Shh signal transduction.

  9. Prostaglandin signaling regulates ciliogenesis by modulating intraflagellar transport

    PubMed Central

    Jin, Daqing; Ni, Terri T.; Sun, Jianjian; Wan, Haiyan; Amack, Jeffrey D.; Yu, Guangju; Fleming, Jonathan; Chiang, Chin; Li, Wenyan; Papierniak, Anna; Cheepala, Satish; Conseil, Gwenaëlle; Cole, Susan P.C.; Zhou, Bin; Drummond, Iain A.; Schuetz, John D.; Malicki, Jarema; Zhong, Tao P.

    2014-01-01

    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signaling cascades that regulate cilia formation remain incompletely understood. Here we report that prostaglandin signaling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants display ciliogenesis defects, and lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme Cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates cAMP-mediated signaling cascade, are required for cilia formation and elongation. Importantly, PGE2 signaling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signaling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis. PMID:25173977

  10. Unexpected Roles for Ciliary Kinesins and Intraflagellar Transport Proteins.

    PubMed

    Pooranachandran, Niedharsan; Malicki, Jarema J

    2016-06-01

    Transport of proteins in the ciliary shaft is driven by microtubule-dependent motors, kinesins. Prior studies suggested that the heterotrimeric ciliary kinesin may be dispensable for certain aspects of transport in specialized cilia of vertebrate photoreceptor cells. To test this possibility further, we analyzed the mutant phenotype of the zebrafish kif3a gene, which encodes the common motor subunit of heterotrimeric ciliary kinesins. Cilia are absent in all organs examined, leading to the conclusion that kif3a is indispensable for ciliogenesis in all cells, including photoreceptors. Unexpectedly, kif3a function precedes ciliogenesis as ciliary basal bodies are mispositioned in mutant photoreceptors. This phenotype is much less pronounced in intraflagellar transport (IFT) mutants and reveals that kif3a has a much broader role than previously assumed. Despite the severity of their basal body phenotype, kif3a mutant photoreceptors survive longer compared to those in IFT mutants, which display much weaker basal body mispositioning. This effect is absent in kif3a;IFT double mutants, indicating that IFT proteins have ciliary transport-independent roles, which add to the severity of their photoreceptor phenotype. kif3a is dispensable for basal body docking in otic vesicle sensory epithelia and, surprisingly, short cilia form in mechanosensory cristae even in the absence of kif3a In contrast to Kif3a, the functions of the Kif3c-related protein, encoded by the kif3c-like (kif3cl) gene, and the homodimeric ciliary kinesin, kif17, are dispensable for photoreceptor morphogenesis. These studies demonstrate unexpected new roles for both ciliary heterotrimeric kinesins and IFT particle genes and clarify the function of kif17, the homodimeric ciliary kinesin gene. PMID:27038111

  11. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

    PubMed Central

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-01-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex. PMID:24989795

  12. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.

    PubMed

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-09-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex. PMID:24989795

  13. Spatial Distribution of Intraflagellar Transport Proteins in Vertebrate Photoreceptors

    PubMed Central

    Luby-Phelps, Katharine; Fogerty, Joseph; Baker, Sheila A.; Pazour, Gregory J.; Besharse, Joseph C.

    2008-01-01

    Intraflagellar transport (IFT) of a ∼17S particle containing at least 16 distinct polypeptides is required for the assembly and maintenance of cilia and flagella. Although both genetic and biochemical evidence suggest a role for IFT in vertebrate photoreceptors, the spatial distribution of IFT proteins within photoreceptors remains poorly defined. We have evaluated the distribution of 4 IFT proteins using a combination of immunocytochemistry and rod-specific over-expression of GFP tagged IFT proteins. Endogenous IFT proteins are most highly concentrated within the inner segment, around the basal body, and within the outer segment IFT proteins are localized in discrete particles along the entire length of the axoneme. IFT52-GFP and IFT57-GFP mimicked this pattern in transgenic Xenopus. PMID:17931679

  14. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  15. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  16. Microtubule doublets are double-track railways for intraflagellar transport trains.

    PubMed

    Stepanek, Ludek; Pigino, Gaia

    2016-05-01

    The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components. PMID:27151870

  17. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery.

    PubMed

    Toriyama, Michinori; Lee, Chanjae; Taylor, S Paige; Duran, Ivan; Cohn, Daniel H; Bruel, Ange-Line; Tabler, Jacqueline M; Drew, Kevin; Kelly, Marcus R; Kim, Sukyoung; Park, Tae Joo; Braun, Daniela A; Pierquin, Ghislaine; Biver, Armand; Wagner, Kerstin; Malfroot, Anne; Panigrahi, Inusha; Franco, Brunella; Al-Lami, Hadeel Adel; Yeung, Yvonne; Choi, Yeon Ja; Duffourd, Yannis; Faivre, Laurence; Rivière, Jean-Baptiste; Chen, Jiang; Liu, Karen J; Marcotte, Edward M; Hildebrandt, Friedhelm; Thauvin-Robinet, Christel; Krakow, Deborah; Jackson, Peter K; Wallingford, John B

    2016-06-01

    Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. Ciliopathies are a spectrum of human diseases resulting from defects in cilia structure or function. The mechanisms regulating the assembly of ciliary multiprotein complexes and the transport of these complexes to the base of cilia remain largely unknown. Combining proteomics, in vivo imaging and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy and Wdpcp), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector), and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy-associated protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with ciliopathies in human patients. PMID:27158779

  18. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes.

    PubMed

    Wei, Qing; Xu, Qingwen; Zhang, Yuxia; Li, Yujie; Zhang, Qing; Hu, Zeng; Harris, Peter C; Torres, Vicente E; Ling, Kun; Hu, Jinghua

    2013-01-01

    Sensory organelle cilia have critical roles in mammalian embryonic development and tissue homeostasis. Intraflagellar transport (IFT) machinery is required for the assembly and maintenance of cilia. Yet, how this large complex passes through the size-dependent barrier at the ciliary base remains enigmatic. Here we report that FBF1, a highly conserved transition fibre protein, is required for the ciliary import of assembled IFT particles at the ciliary base. We cloned dyf-19, the Caenorhabditis elegans homologue of human FBF1, in a whole-genome screen for ciliogenesis mutants. DYF-19 localizes specifically to transition fibres and interacts directly with the IFT-B component DYF-11/IFT54. Although not a structural component of transition fibres, DYF-19 is required for the transit of assembled IFT particles through the ciliary base. Furthermore, we found that human FBF1 shares conserved localization and function with its worm counterpart. We conclude that FBF1 is a key functional transition fibre component that actively facilitates the ciliary entry of assembled IFT machinery. PMID:24231678

  19. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia.

    PubMed

    Patel-King, Ramila S; Gilberti, Renée M; Hom, Erik F Y; King, Stephen M

    2013-09-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle-like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  20. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length.

    PubMed

    Fort, Cécile; Bonnefoy, Serge; Kohl, Linda; Bastin, Philippe

    2016-08-01

    Intraflagellar transport (IFT) is required for construction of most cilia and flagella. Here, we used electron microscopy, immunofluorescence and live video microscopy to show that IFT is absent or arrested in the mature flagellum of Trypanosoma brucei upon RNA interference (RNAi)-mediated knockdown of IFT88 and IFT140, respectively. Flagella assembled prior to RNAi did not shorten, showing that IFT is not essential for the maintenance of flagella length. Although the ultrastructure of the axoneme was not visibly affected, flagellar beating was strongly reduced and the distribution of several flagellar components was drastically modified. The R subunit of the protein kinase A was no longer concentrated in the flagellum but was largely found in the cell body whereas the kinesin 9B motor was accumulating at the distal tip of the flagellum. In contrast, the distal tip protein FLAM8 was dispersed along the flagellum. This reveals that IFT also functions in maintaining the distribution of some flagellar proteins after construction of the organelle is completed. PMID:27343245

  1. Why motor proteins team up - Intraflagellar transport in C. elegans cilia

    PubMed Central

    Mijalkovic, Jona; Prevo, Bram; Peterman, Erwin J. G.

    2016-01-01

    ABSTRACT Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subsequently drives IFT in the opposite, retrograde direction, thereby recycling both kinesins. While it is evident that at least a retrograde and an anterograde motor are necessary to drive IFT, it has remained puzzling why 2 same-polarity kinesins are employed. Recently, we addressed this question by combining advanced genome-engineering tools with ultrasensitive, quantitative fluorescence microscopy to study IFT with single-molecule sensitivity.1,2 Using this combination of approaches, we uncovered a differentiation in kinesin-2 function, in which the slower kinesin-II operates as an ‘importer’, loading IFT trains into the cilium before gradually handing them over to the faster OSM-3. OSM-3 subsequently acts as a long-range ‘transporter’, driving the IFT trains toward the tip. The two kinesin-2 motors combine their unique motility properties to achieve something neither motor can achieve on its own; that is to optimize the amount of cargo inside the cilium. In this commentary, we provide detailed insight into the rationale behind our research approach and comment on our recent findings. Moreover, we discuss the role of IFT dynein and provide an outlook on future studies. PMID:27384150

  2. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis.

    PubMed

    Yang, Ning; Li, Li; Eguether, Thibaut; Sundberg, John P; Pazour, Gregory J; Chen, Jiang

    2015-06-15

    Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma. PMID:26023097

  3. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis

    PubMed Central

    Yang, Ning; Li, Li; Eguether, Thibaut; Sundberg, John P.; Pazour, Gregory J.; Chen, Jiang

    2015-01-01

    Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma. PMID:26023097

  4. Dissecting the Sequential Assembly and Localization of Intraflagellar Transport Particle Complex B in Chlamydomonas

    PubMed Central

    Richey, Elizabeth A.; Qin, Hongmin

    2012-01-01

    Intraflagellar transport (IFT), the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact complex B, but such complex is highly unstable and prone to degradation. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, in ift88 mutant cells, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies. In addition, in bld2 mutant, the IFT complex B proteins still localize to the proximal ends of defective centrioles which completely lack transition fibers. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism. PMID:22900094

  5. Intraflagellar Transport/Hedgehog-Related Signaling Components Couple Sensory Cilium Morphology and Serotonin Biosynthesis in Caenorhabditis elegans

    PubMed Central

    Moussaif, Mustapha; Sze, Ji Ying

    2009-01-01

    Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery. PMID:19339602

  6. TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella

    PubMed Central

    Ishikawa, Hiroaki; Ide, Takahiro; Yagi, Toshiki; Jiang, Xue; Hirono, Masafumi; Sasaki, Hiroyuki; Yanagisawa, Haruaki; Wemmer, Kimberly A; Stainier, Didier YR; Qin, Hongmin; Kamiya, Ritsu; Marshall, Wallace F

    2014-01-01

    Cilia/flagella are assembled and maintained by the process of intraflagellar transport (IFT), a highly conserved mechanism involving more than 20 IFT proteins. However, the functions of individual IFT proteins are mostly unclear. To help address this issue, we focused on a putative IFT protein TTC26/DYF13. Using live imaging and biochemical approaches we show that TTC26/DYF13 is an IFT complex B protein in mammalian cells and Chlamydomonas reinhardtii. Knockdown of TTC26/DYF13 in zebrafish embryos or mutation of TTC26/DYF13 in C. reinhardtii, produced short cilia with abnormal motility. Surprisingly, IFT particle assembly and speed were normal in dyf13 mutant flagella, unlike in other IFT complex B mutants. Proteomic and biochemical analyses indicated a particular set of proteins involved in motility was specifically depleted in the dyf13 mutant. These results support the concept that different IFT proteins are responsible for different cargo subsets, providing a possible explanation for the complexity of the IFT machinery. DOI: http://dx.doi.org/10.7554/eLife.01566.001 PMID:24596149

  7. Retrograde Intraflagellar Transport Mutants Identify Complex A Proteins With Multiple Genetic Interactions in Chlamydomonas reinhardtii

    PubMed Central

    Iomini, Carlo; Li, Linya; Esparza, Jessica M.; Dutcher, Susan K.

    2009-01-01

    The intraflagellar transport machinery is required for the assembly of cilia. It has been investigated by biochemical, genetic, and computational methods that have identified at least 21 proteins that assemble into two subcomplexes. It has been hypothesized that complex A is required for retrograde transport. Temperature-sensitive mutations in FLA15 and FLA17 show defects in retrograde intraflagellar transport (IFT) in Chlamydomonas. We show that IFT144 and IFT139, two complex A proteins, are encoded by FLA15 and FLA17, respectively. The fla15 allele is a missense mutation in a conserved cysteine and the fla17 allele is an in-frame deletion of three exons. The flagellar assembly defect of each mutant is rescued by the respective transgenes. In fla15 and fla17 mutants, bulges form in the distal one-third of the flagella at the permissive temperature and this phenotype is also rescued by the transgenes. These bulges contain the complex B component IFT74/72, but not α-tubulin or p28, a component of an inner dynein arm, which suggests specificity with respect to the proteins that accumulate in these bulges. IFT144 and IFT139 are likely to interact with each other and other proteins on the basis of three distinct genetic tests: (1) Double mutants display synthetic flagellar assembly defects at the permissive temperature, (2) heterozygous diploid strains exhibit second-site noncomplemention, and (3) transgenes confer two-copy suppression. Since these tests show different levels of phenotypic sensitivity, we propose they illustrate different gradations of gene interaction between complex A proteins themselves and with a complex B protein (IFT172). PMID:19720863

  8. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport

    PubMed Central

    Huet, Diego; Blisnick, Thierry; Perrot, Sylvie; Bastin, Philippe

    2014-01-01

    The construction of cilia and flagella depends on intraflagellar transport (IFT), the bidirectional movement of two protein complexes (IFT-A and IFT-B) driven by specific kinesin and dynein motors. IFT-B and kinesin are associated to anterograde transport whereas IFT-A and dynein participate to retrograde transport. Surprisingly, the small GTPase IFT27, a member of the IFT-B complex, turns out to be essential for retrograde cargo transport in Trypanosoma brucei. We reveal that this is due to failure to import both the IFT-A complex and the IFT dynein into the flagellar compartment. To get further molecular insight about the role of IFT27, GDP- or GTP-locked versions were expressed in presence or absence of endogenous IFT27. The GDP-locked version is unable to enter the flagellum and to interact with other IFT-B proteins and its sole expression prevents flagellum formation. These findings demonstrate that a GTPase-competent IFT27 is required for association to the IFT complex and that IFT27 plays a role in the cargo loading of the retrograde transport machinery. DOI: http://dx.doi.org/10.7554/eLife.02419.001 PMID:24843028

  9. Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia

    PubMed Central

    Williams, Corey L.; McIntyre, Jeremy C.; Norris, Stephen R.; Jenkins, Paul M.; Zhang, Lian; Pei, Qinglin; Verhey, Kristen; Martens, Jeffrey R.

    2014-01-01

    Cilia dysfunction underlies a class of human diseases with variable penetrance in different organ systems. Across eukaryotes, intraflagellar transport (IFT) facilitates cilia biogenesis and cargo trafficking, but our understanding of mammalian IFT is insufficient. Here we perform live analysis of cilia ultrastructure, composition and cargo transport in native mammalian tissue using olfactory sensory neurons. Proximal and distal axonemes of these neurons show no bias towards IFT kinesin-2 choice, and Kif17 homodimer is dispensable for distal segment IFT. We identify Bardet–Biedl syndrome proteins (BBSome) as bona fide constituents of IFT in olfactory sensory neurons, and show that they exist in 1:1 stoichiometry with IFT particles. Conversely, subpopulations of peripheral membrane proteins, as well as transmembrane olfactory signalling pathway components, are capable of IFT but with significantly less frequency and/or duration. Our results yield a model for IFT and cargo trafficking in native mammalian cilia and may explain the penetrance of specific ciliopathy phenotypes in olfactory neurons. PMID:25504142

  10. Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella.

    PubMed

    Vannuccini, Elisa; Paccagnini, Eugenio; Cantele, Francesca; Gentile, Mariangela; Dini, Daniele; Fino, Federica; Diener, Dennis; Mencarelli, Caterina; Lupetti, Pietro

    2016-05-15

    Intraflagellar transport (IFT) is responsible for the bidirectional trafficking of molecular components required for the elongation and maintenance of eukaryotic cilia and flagella. Cargo is transported by IFT 'trains', linear rows of multiprotein particles moved by molecular motors along the axonemal doublets. We have previously described two structurally distinct categories of 'long' and 'short' trains. Here, we analyse the relative number of these trains throughout flagellar regeneration and show that long trains are most abundant at the beginning of flagellar growth whereas short trains gradually increase in number as flagella elongate. These observations are incompatible with the previous hypothesis that short trains are derived solely from the reorganization of long trains at the flagellar tip. We demonstrate with electron tomography the existence of two distinct ultrastructural organizations for the short trains, we name these 'narrow' and 'wide', and provide the first 3D model of the narrow short trains. These trains are characterized by tri-lobed units, which repeat longitudinally every 16 nm and contact protofilament 7 of the B-tubule. Functional implications of the new structural evidence are discussed. PMID:27044756

  11. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm

    PubMed Central

    San Agustin, Jovenal T.; Pazour, Gregory J.; Witman, George B.

    2015-01-01

    Drosophila sperm are unusual in that they do not require the intraflagellar transport (IFT) system for assembly of their flagella. In the mouse, the IFT proteins are very abundant in testis, but we here show that mature sperm are completely devoid of them, making the importance of IFT to mammalian sperm development unclear. To address this question, we characterized spermiogenesis and fertility in the Ift88Tg737Rpw mouse. This mouse has a hypomorphic mutation in the gene encoding the IFT88 subunit of the IFT particle. This mutation is highly disruptive to ciliary assembly in other organs. Ift88−/− mice are completely sterile. They produce ∼350-fold fewer sperm than wild-type mice, and the remaining sperm completely lack or have very short flagella. The short flagella rarely have axonemes but assemble ectopic microtubules and outer dense fibers and accumulate improperly assembled fibrous sheath proteins. Thus IFT is essential for the formation but not the maintenance of mammalian sperm flagella. PMID:26424803

  12. Subunit Interactions and Organization of the Chlamydomonas reinhardtii Intraflagellar Transport Complex A Proteins*

    PubMed Central

    Behal, Robert H.; Miller, Mark S.; Qin, Hongmin; Lucker, Ben F.; Jones, Alexis; Cole, Douglas G.

    2012-01-01

    Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ∼2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components. PMID:22170070

  13. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis

    PubMed Central

    Yang, Shuying; Wang, Changdong

    2012-01-01

    Intraflagellar transport (IFT) proteins are essential for the assembly and maintenance of cilia, which play important roles in development and homeostasis. IFT80 is a newly defined IFT protein. Partial mutation of IFT80 in humans causes diseases such as Jeune asphyxiating thoracic dystrophy (JATD) and short rib polydactyly (SRP) type III with abnormal skeletal development. However, the role and mechanism of IFT80 in osteogenesis is unknown. Here, we first detected IFT80 expression pattern and found that IFT80 was highly expressed in mouse long bone, skull, and during osteoblast differentiation. By using lentivirus-mediated RNA interference (RNAi) technology to silence IFT80 in murine mesenchymal progenitor cell line-C3H10T1/2 and bone marrow derived stromal cells, we found that silencing IFT80 led to either shortening or loss of cilia and the decrease of Arl13b expression - a small GTPase that is localized in cilia. Additionally, silencing IFT80 blocked the expression of osteoblast markers and significantly inhibited ALP activity and cell mineralization. We further found that IFT80 silencing inhibited the expression of Gli2, a critical transcriptional factor in the hedgehog signaling pathway. Overexpression of Gli2 rescued the deficiency of osteoblast differentiation from IFT80-silenced cells, and dramatically promoted osteoblast differentiation. Moreover, introduction of Smo agonist (SAG) promotes osteoblast differentiation, which was partially inhibited by IFT80 silencing. Thus, these results suggested that IFT80 plays an important role in osteogenesis through regulating Hedgehog/Gli signal pathways. PMID:22771375

  14. Regulation of Cilium Length and Intraflagellar Transport by the RCK-Kinases ICK and MOK in Renal Epithelial Cells

    PubMed Central

    Broekhuis, Joost R.; Verhey, Kristen J.; Jansen, Gert

    2014-01-01

    Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed. PMID

  15. The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1.

    PubMed

    Bell, Leslie R; Stone, Steven; Yochem, John; Shaw, Jocelyn E; Herman, Robert K

    2006-07-01

    The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cloning of dyf-6, daf-10, and osm-1 are described here. The daf-10 and osm-1 gene products resemble each other and contain WD and WAA repeats. DYF-6, the product of a complex locus, lacks known motifs, but orthologs are present in flies and mammals. Phenotypic analysis of dyf-6 mutants expressing an OSM-6::GFP reporter indicates that the cilia of the amphid and phasmid dendritic endings are foreshortened. Consistent with genetic mosaic analysis, which indicates that dyf-6 functions in neurons of the amphid sensilla, DYF-6::GFP is expressed in amphid and phasmid neurons. Movement of DYF-6::GFP within the ciliated endings of the neurons indicates that DYF-6 is involved in IFT. In addition, IFT can be observed in dauer larvae. PMID:16648645

  16. Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences

    PubMed Central

    2013-01-01

    Cilia and flagella perform diverse roles in motility and sensory perception, and defects in their construction or their function are responsible for human genetic diseases termed ciliopathies. Cilia and flagella construction relies on intraflagellar transport (IFT), the bi-directional movement of ‘trains’ composed of protein complexes found between axoneme microtubules and the flagellum membrane. Although extensive information about IFT components and their mode of action were discovered in the green algae Chlamydomonas reinhardtii, other model organisms have revealed further insights about IFT. This is the case of Trypanosoma brucei, a flagellated protist responsible for sleeping sickness that is turning out to be an emerging model for studying IFT. In this article, we review different aspects of IFT, based on studies of Chlamydomonas and Trypanosoma. Data available from both models are examined to ask challenging questions about IFT such as the initiation of flagellum construction, the setting-up of IFT and the mode of formation of IFT trains, and their remodeling at the tip as well as their recycling at the base. Another outstanding question is the individual role played by the multiple IFT proteins. The use of different models, bringing their specific biological and experimental advantages, will be invaluable in order to obtain a global understanding of IFT. PMID:24289478

  17. Dysfunction of intraflagellar transport-A causes hyperphagia-induced obesity and metabolic syndrome

    PubMed Central

    Jacobs, Damon T.; Silva, Luciane M.; Allard, Bailey A.; Schonfeld, Michael P.; Chatterjee, Anindita; Talbott, George C.

    2016-01-01

    ABSTRACT Primary cilia extend from the plasma membrane of most vertebrate cells and mediate signaling pathways. Ciliary dysfunction underlies ciliopathies, which are genetic syndromes that manifest multiple clinical features, including renal cystic disease and obesity. THM1 (also termed TTC21B or IFT139) encodes a component of the intraflagellar transport-A complex and mutations in THM1 have been identified in 5% of individuals with ciliopathies. Consistent with this, deletion of murine Thm1 during late embryonic development results in cystic kidney disease. Here, we report that deletion of murine Thm1 during adulthood results in obesity, diabetes, hypertension and fatty liver disease, with gender differences in susceptibility to weight gain and metabolic dysfunction. Pair-feeding of Thm1 conditional knock-out mice relative to control littermates prevented the obesity and related disorders, indicating that hyperphagia caused the obese phenotype. Thm1 ablation resulted in increased localization of adenylyl cyclase III in primary cilia that were shortened, with bulbous distal tips on neurons of the hypothalamic arcuate nucleus, an integrative center for signals that regulate feeding and activity. In pre-obese Thm1 conditional knock-out mice, expression of anorexogenic pro-opiomelanocortin (Pomc) was decreased by 50% in the arcuate nucleus, which likely caused the hyperphagia. Fasting of Thm1 conditional knock-out mice did not alter Pomc nor orexogenic agouti-related neuropeptide (Agrp) expression, suggesting impaired sensing of changes in peripheral signals. Together, these data indicate that the Thm1-mutant ciliary defect diminishes sensitivity to feeding signals, which alters appetite regulation and leads to hyperphagia, obesity and metabolic disease. PMID:27482817

  18. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella.

    PubMed

    Harris, J Aaron; Liu, Yi; Yang, Pinfen; Kner, Peter; Lechtreck, Karl F

    2016-01-15

    The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein-tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia. PMID:26631555

  19. Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia.

    PubMed

    Efimenko, Evgeni; Blacque, Oliver E; Ou, Guangshuo; Haycraft, Courtney J; Yoder, Bradley K; Scholey, Jonathan M; Leroux, Michel R; Swoboda, Peter

    2006-11-01

    The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mutant phenotypes and by sequencing of mutant alleles. Loss of DYF-2 function selectively affects the assembly and motility of different IFT components and leads to defects in cilia structure and chemosensation in the nematode. Based on these observations, and the analysis of DYF-2 movement in a Bardet-Biedl syndrome mutant with partially disrupted IFT particles, we conclude that DYF-2 can associate with IFT particle complex B. At the same time, mutations in dyf-2 can interfere with the function of complex A components, suggesting an important role of this protein in the assembly of the IFT particle as a whole. Importantly, the mouse orthologue of DYF-2, WDR19, also localizes to cilia, pointing to an important evolutionarily conserved role for this WDR protein in cilia development and function. PMID:16957054

  20. Single-particle imaging reveals intraflagellar transport–independent transport and accumulation of EB1 in Chlamydomonas flagella

    PubMed Central

    Harris, J. Aaron; Liu, Yi; Yang, Pinfen; Kner, Peter; Lechtreck, Karl F.

    2016-01-01

    The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein–tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia. PMID:26631555

  1. The Intraflagellar Transport Protein IFT27 Promotes BBSome Exit from Cilia through the GTPase ARL6/BBS3

    PubMed Central

    Liew, Gerald M.; Ye, Fan; Nager, Andrew R.; Murphy, J. Patrick; Lee, Jaclyn S.; Aguiar, Mike; Breslow, David K.; Gygi, Steven P.; Nachury, Maxence V.

    2014-01-01

    SUMMARY The sorting of signaling receptors into and out of cilia relies on the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, and on the intraflagellar transport (IFT) machinery. GTP loading onto the Arf-like GTPase ARL6/BBS3 drives assembly of a membrane-apposed BBSome coat that promotes cargo entry into cilia, yet how and where ARL6 is activated remains elusive. Here, we show that the Rab-like GTPase IFT27/RABL4, a known component of IFT complex B, promotes the exit of BBSome and associated cargoes from cilia. Unbiased proteomics and biochemical reconstitution assays show that, upon disengagement from the rest of IFT-B, IFT27 directly interacts with the nucleotide-free form of ARL6. Furthermore, IFT27 prevents aggregation of nucleotide-free ARL6 in solution. Thus, we propose that IFT27 separates from IFT-B inside cilia to promote ARL6 activation, BBSome coat assembly and subsequent ciliary exit, mirroring the process by which BBSome mediates cargo entry into cilia. PMID:25443296

  2. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly

    PubMed Central

    Taschner, Michael; Kotsis, Fruzsina; Braeuer, Philipp; Kuehn, E. Wolfgang

    2014-01-01

    Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the crystal structures of C. reinhardtii IFT70/52 and Tetrahymena IFT52/46 subcomplexes. The 2.5-Å resolution IFT70/52 structure shows that IFT52330–370 is buried deeply within the IFT70 tetratricopeptide repeat superhelix. Furthermore, the polycystic kidney disease protein IFT88 binds IFT52281–329 in a complex that interacts directly with IFT70/IFT52330–381 in trans. The structure of IFT52C/IFT46C was solved at 2.3 Å resolution, and we show that it is essential for IFT-B core integrity by mediating interaction between IFT88/70/52/46 and IFT81/74/27/25/22 subcomplexes. Consistent with this, overexpression of mammalian IFT52C in MDCK cells is dominant-negative and causes IFT protein mislocalization and disrupted ciliogenesis. These data further rationalize several ciliogenesis phenotypes of IFT mutant strains. PMID:25349261

  3. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex.

    PubMed

    Katoh, Yohei; Terada, Masaya; Nishijima, Yuya; Takei, Ryota; Nozaki, Shohei; Hamada, Hiroshi; Nakayama, Kazuhisa

    2016-05-20

    Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex. PMID:26980730

  4. Interaction of mouse TTC30/DYF-1 with multiple intraflagellar transport complex B proteins and KIF17.

    PubMed

    Howard, Paul W; Jue, Shall F; Maurer, Richard A

    2013-08-15

    Intraflagellar transport (IFT) is a microtubule based system that supports the assembly and maintenance of cilia. Genetic and biochemical studies have identified two distinct complexes containing multiple proteins that are part of the IFT machinery. In this study we prepared mouse pituitary cells that expressed an epitope-tagged IFT protein and immuno-purified the IFT B complex from these cells. Mass spectrometry analysis of the isolated complex led to identification of a number of well known components of the IFT B complex. In addition, peptides corresponding to mouse tetratricopeptide repeat proteins, TTC30A1, TTC30A2 and TTC30B were identified. The mouse Ttc30A1, Ttc30A2, Ttc30B genes are orthologs of Caenorhabditis elegans dyf-1, which is required for assembly of the distal segment of the cilia. We used co-immunoprecipitation studies to provide evidence that, TTC30A1, TTC30A2 or TTC30B can be incorporated into a complex with a known IFT B protein, IFT52. We also found that TTC30B can interact with mouse KIF17, a kinesin which participates in IFT. In vitro expression in a cell-free system followed by co-immunoprecipitation also provided evidence that TTC30B can directly interact with several different IFT B complex proteins. The findings support the view that mouse TTC30A1, TTC30A2 and TTC30B can contribute to the IFT B complex, likely through interactions with multiple IFT proteins and also suggest a possible link to the molecular motor, KIF17 to support transport of cargo during IFT. PMID:23810713

  5. Interaction of mouse TTC30/DYF-1 with multiple intraflagellar transport complex B proteins and KIF17

    PubMed Central

    Howard, Paul W.; Jue, Shall F.; Maurer, Richard A.

    2013-01-01

    Intraflagellar transport (IFT) is a microtubule based system that supports the assembly and maintenance of cilia. Genetic and biochemical studies have identified two distinct complexes containing multiple proteins that are part of the IFT machinery. In this study we prepared mouse pituitary cells that expressed an epitope-tagged IFT protein and immuno-purified the IFT B complex from these cells. Mass spectrometry analysis of the isolated complex led to identification of a number of well known components of the IFT B complex. In addition, peptides corresponding to mouse tetratricopeptide repeat proteins, TTC30A1, TTC30A2 and TTC30B were identified. The mouse Ttc30A1, Ttc30A2, Ttc30B genes are orthologs of Caenorhabditis elegans dyf-1, which is required for assembly of the distal segment of the cilia. We used co-immunoprecipitation studies to provide evidence that, TTC30A1, TTC30A2 or TTC30B can be incorporated into a complex with a known IFT B protein, IFT52. We also found that TTC30B can interact with mouse KIF17, a kinesin which participates in IFT. In vitro expression in a cell-free system followed by co-immunoprecipitation also provided evidence that TTC30B can directly interact with several different IFT B complex proteins. The findings support the view that mouse TTC30A1, TTC30A2 and TTC30B can contribute to the IFT B complex, likely through interactions with multiple IFT proteins and also suggest a possible link to the molecular motor, KIF17 to support transport of cargo during IFT. PMID:23810713

  6. Ciliary intraflagellar transport protein 80 balances canonical versus non-canonical hedgehog signaling for osteoblast differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutation of different IFT proteins cause numerous different clinical bone disorders accompanied with or without the disruption of cilia formation. Currently, there is no any effective treatment for these disorders due to lack of understanding in the function and mechanism of these proteins. IFT80 is...

  7. Biochemical analysis of PIFTC3, the Trypanosoma brucei orthologue of nematode DYF-13, reveals interactions with established and putative intraflagellar transport components.

    PubMed

    Franklin, Joseph B; Ullu, Elisabetta

    2010-10-01

    DYF-13, originally identified in Caenorhabditis elegans within a collection of dye-filling chemosensory mutants, is one of several proteins that have been classified as putatively involved in intraflagellar transport (IFT), the bidirectional movement of protein complexes along cilia and flagella and specifically in anterograde IFT. Although genetic studies have highlighted a fundamental role of DYF-13 in nematode sensory cilium and trypanosome flagellum biogenesis, biochemical studies on DYF-13 have lagged behind. Here, we show that in Trypanosoma brucei the orthologue to DYF-13, PIFTC3, participates in a macromolecular complex of approximately 660 kDa. Mass spectroscopy of affinity-purified PIFTC3 revealed several components of IFT complex B as well as orthologues of putative IFT factors DYF-1, DYF-3, DYF-11/Elipsa and IFTA-2. DYF-11 was further analysed and shown to be concentrated near the basal bodies and in the flagellum, and to be required for flagellum elongation. In addition, by coimmunoprecipitation we detected an interaction between DYF-13 and IFT122, a component of IFT complex A, which is required for retrograde transport. Thus, our biochemical analysis supports the model, proposed by genetic analysis in C. elegans, that the trypanosome orthologue of DYF-13 plays a central role in the IFT mechanism. PMID:20923419

  8. The FLA3 KAP Subunit Is Required for Localization of Kinesin-2 to the Site of Flagellar Assembly and Processive Anterograde Intraflagellar TransportV⃞

    PubMed Central

    Mueller, Joshua; Perrone, Catherine A.; Bower, Raqual; Cole, Douglas G.; Porter, Mary E.

    2005-01-01

    Intraflagellar transport (IFT) is a bidirectional process required for assembly and maintenance of cilia and flagella. Kinesin-2 is the anterograde IFT motor, and Dhc1b/Dhc2 drives retrograde IFT. To understand how either motor interacts with the IFT particle or how their activities might be coordinated, we characterized a ts mutation in the Chlamydomonas gene encoding KAP, the nonmotor subunit of Kinesin-2. The fla3-1 mutation is an amino acid substitution in a conserved C-terminal domain. fla3-1 strains assemble flagella at 21°C, but cannot maintain them at 33°C. Although the Kinesin-2 complex is present at both 21 and 33°C, the fla3-1 Kinesin-2 complex is not efficiently targeted to or retained in the basal body region or flagella. Video-enhanced DIC microscopy of fla3-1 cells shows that the frequency of anterograde IFT particles is significantly reduced. Anterograde particles move at near wild-type velocities, but appear larger and pause more frequently in fla3-1. Transformation with an epitope-tagged KAP gene rescues all of the fla3-1 defects and results in preferential incorporation of tagged KAP complexes into flagella. KAP is therefore required for the localization of Kinesin-2 at the site of flagellar assembly and the efficient transport of anterograde IFT particles within flagella. PMID:15616187

  9. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex.

    PubMed

    Taschner, Michael; Weber, Kristina; Mourão, André; Vetter, Melanie; Awasthi, Mayanka; Stiegler, Marc; Bhogaraju, Sagar; Lorentzen, Esben

    2016-04-01

    Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT-B complex consists of 9-10 stably associated core subunits and six "peripheral" subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six "peripheral"IFT-B subunits of Chlamydomonas reinhardtiias recombinant proteins and show that they form a stable complex independently of the IFT-B core. We suggest a nomenclature of IFT-B1 (core) and IFT-B2 (peripheral) for the two IFT-B subcomplexes. We demonstrate that IFT88, together with the N-terminal domain of IFT52, is necessary to bridge the interaction between IFT-B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT-B1/IFT-B2 complex formation. Furthermore, we show that of the three IFT-B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ-tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface-exposed residues. PMID:26912722

  10. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    PubMed Central

    Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso

    2009-01-01

    Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668

  11. Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport.

    PubMed

    Phirke, Prasad; Efimenko, Evgeni; Mohan, Swetha; Burghoorn, Jan; Crona, Filip; Bakhoum, Mathieu W; Trieb, Maria; Schuske, Kim; Jorgensen, Erik M; Piasecki, Brian P; Leroux, Michel R; Swoboda, Peter

    2011-09-01

    Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function. PMID:21740898

  12. Proton transport and cell function.

    PubMed Central

    Ives, H E; Rector, F C

    1984-01-01

    The past five years have witnessed an explosion of information on the many and varied roles of H+ transport in cell function. H+ transport is involved in three broad areas of cell function: (a) maintenance and alteration of intracellular pH for initiation of specific cellular events, (b) generation of pH gradients in localized regions of the cell, including gradients involved in energy transduction, and (c) transepithelial ion transport. These processes each involve one or more of several H+ translocating mechanisms. The first section of this review will discuss these H+ translocating mechanisms and the second part will deal with the cellular functions controlled by H+ transport. PMID:6321552

  13. Mifepristone modulates serotonin transporter function

    PubMed Central

    Li, Chaokun; Shan, Linlin; Li, Xinjuan; Wei, Linyu; Li, Dongliang

    2014-01-01

    Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glucocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly understood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the serotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression. PMID:25206868

  14. Functional insights of nucleocytoplasmic transport in plants

    PubMed Central

    Tamura, Kentaro; Hara-Nishimura, Ikuko

    2014-01-01

    Plant nucleocytoplasmic transport beyond the nuclear envelope is important not only for basic cellular functions but also for growth, development, hormonal signaling, and responses to environmental stimuli. Key components of this transport system include nuclear transport receptors and nucleoporins. The functional and physical interactions between receptors and the nuclear pore in the nuclear membrane are indispensable for nucleocytoplasmic transport. Recently, several groups have reported various plant mutants that are deficient in factors involved in nucleocytoplasmic transport. Here, we summarize the current state of knowledge about nucleocytoplasmic transport in plants, and we review the plant-specific regulation and roles of this process in plants. PMID:24765097

  15. Functional Analysis of Arabidopsis Sucrose Transporters

    SciTech Connect

    John M. Ward

    2009-03-31

    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter from companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.

  16. Mapping the functional yeast ABC transporter interactome.

    PubMed

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D; San Luis, Bryan-Joseph; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F; Zhang, Zhaolei; Paumi, Christian M; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-09-01

    ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  17. Phosphate transporters and their function.

    PubMed

    Biber, Jürg; Hernando, Nati; Forster, Ian

    2013-01-01

    Plasma phosphate concentration is maintained within a relatively narrow range by control of renal reabsorption of filtered inorganic phosphate (P(i)). P(i) reabsorption is a transcellular process that occurs along the proximal tubule. P(i) flux at the apical (luminal) brush border membrane represents the rate-limiting step and is mediated by three Na(+)-dependent P(i) cotransporters (members of the SLC34 and SLC20 families). The putative proteins responsible for basolateral P(i) flux have not been identified. The transport mechanism of the two kidney-specific SLC34 proteins (NaPi-IIa and NaPi-IIc) and of the ubiquitously expressed SLC20 protein (PiT-2) has been studied by heterologous expression to reveal important differences in kinetics, stoichiometry, and substrate specificity. Studies on the regulation of the abundance of the respective proteins highlight significant differences in the temporal responses to various hormonal and nonhormonal factors that can influence P(i) homeostasis. The phenotypes of mice deficient in NaPi-IIa and NaPi-IIc indicate that NaPi-IIa is responsible for most P(i) renal reabsorption. In contrast, in the human kidney, NaPi-IIc appears to have a relatively greater role. The physiological relevance of PiT-2 to P(i) reabsorption remains to be elucidated. PMID:23398154

  18. Peroxisomal ABC transporters: functions and mechanism

    PubMed Central

    Baker, Alison; Carrier, David J.; Schaedler, Theresia; Waterham, Hans R.; van Roermund, Carlo W.; Theodoulou, Frederica L.

    2015-01-01

    Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The β-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for β-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of β-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes. PMID:26517910

  19. Safflower extracts functionally regulate monoamine transporters.

    PubMed

    Zhao, Gang; Zheng, Xiang-Wei; Gai, Yue; Chu, Wen-Jing; Qin, Guo-Wei; Guo, Li-He

    2009-07-01

    Safflower (HH), the dry flower of Carthamus tinctorius L., has long been used to empirically treat neuropsychological disorders such as stroke and major depression in traditional Chinese medicine, and recently been proven effective for regulating levels of dopamine and serotonin in new-born rat brain. The present study assessed whether HH would be bioactive for functionally regulating monoamine transporters using in vitro drug-screening cell lines. Our current results showed that all solvent-extracted HH fractions, in different degrees, markedly increased both dopamine uptake by Chinese hamster ovary (CHO) cells stably expressing dopamine transporter (DAT) and norepinephrine uptake by CHO cells expressing norepinephrine transporter (NET), and also showed that chloroform (HC), ethyl acetate (HE), and n-butyl alcohol extract strikingly depressed serotonin uptake by CHO cells expressing serotonin transporter (SERT); wherein, the potencies of ethanol extract, HC, HE, and aqueous extract to up-regulate dopamine/norepinephrine uptake and potency of HE to inhibit serotonin uptake were relatively stronger. Further investigation revealed that the enhancement of dopamine/norepinephrine uptake by HC and HE was dependent of DAT/NET activity, and the HE-induced inhibition of serotonin uptake was typical of competition. Thus, HH extracts are novel monoamine transporter modulators functioning as DAT/NET activators and/or SERT inhibitors, and would likely improve neuropsychological disorders through regulating monoamine-transporter activity. PMID:19527825

  20. Particulate distribution function evolution for ejecta transport

    SciTech Connect

    Hammerberg, James Edward; Plohr, Bradley J

    2010-01-01

    The time evolution of the ejecta distribution function in a gas is discussed in the context of the recent experiments of W. Buttler and M. Zellner for well characterized Sn surfaces. Evolution equations are derived for the particulate distribution function when the dominant gas-particle interaction in is particulate drag. In the approximation of separability of the distribution function in velocity and size, the solution for the time dependent distribution function is a Fredholm integral equation of the first kind whose kernel is expressible in terms of the vacuum time dependent velocity distribution function measured with piezo probes or Asay foils. The solution of this equation in principle gives the size distribution function. We discuss the solution of this equation and the results of the Buttler - Zellner experiments. These suggest that correlations in velocity and size are necessary for a complete description of the transport dala. The solutions presented also represent an analytic test problem for the calculated distribution function in ejecta transport implementations.

  1. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  2. Functionalization mediates heat transport in graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y.; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A.; Lambert, Colin J.; Liu, Johan; Volz, Sebastian

    2016-04-01

    The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ~28 °C for a chip operating at 1,300 W cm-2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.

  3. Functionalization mediates heat transport in graphene nanoflakes.

    PubMed

    Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A; Lambert, Colin J; Liu, Johan; Volz, Sebastian

    2016-01-01

    The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime. PMID:27125636

  4. Functionalization mediates heat transport in graphene nanoflakes

    PubMed Central

    Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y.; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A.; Lambert, Colin J.; Liu, Johan; Volz, Sebastian

    2016-01-01

    The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm−2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene–graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime. PMID:27125636

  5. Functional polymers for anhydrous proton transport

    NASA Astrophysics Data System (ADS)

    Chikkannagari, Nagamani

    Anhydrous proton conducting polymers are highly sought after for applications in high temperature polymer electrolyte membrane fuel cells (PEMFCs). N-heterocycles (eg. imidazole, triazole, and benzimidazole), owing to their amphoteric nature, have been widely studied to develop efficient anhydrous proton transporting polymers. The proton conductivity of N-heterocyclic polymers is influenced by several factors and the design and development of polymers with a delicate balance among various synergistic and competing factors to provide appreciable proton conductivities has been a challenging task. In this thesis, the proton transport (PT) characteristics of polymers functionalized with two diverse classes of functional groups--- N-heterocycles and phenols have been investigated and efforts have been made to develop the molecular design criteria for the design and development of efficient proton transporting functional groups and polymers. The proton conduction pathway in 1H-1,2,3-triazole polymers is probed by employing structurally analogous N-heterocyclic (triazole, imidazole, and pyrazole) and benz-N-heterocyclic (benzotriazole, benzimidazole, and benzopyrazole) polymers. Imidazole-like pathway was found to dominate the proton conductivity of triazole and pyrazole-like pathway makes only a negligible contribution, if any. Polymers containing benz-N-heterocycles exhibited higher proton conductivity than those with the corresponding N-heterocycles. Pyrazole-like functional groups, i.e. the molecules with two nitrogen atoms adjacent to each other, were found not to be good candidates for PT applications. A new class of proton transporting functional groups, phenols, has been introduced for anhydrous PT. One of the highlighting features of phenols over N-heterocycles is that the hydrogen bond donor/acceptor reorientation can happen on a single -OH site, allowing for facile reorientational dynamics in Grotthuss PT and enhanced proton conductivities in phenolic polymers

  6. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  7. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice.

    PubMed

    Karam, Alice; Tebbe, Lars; Weber, Chantal; Messaddeq, Nadia; Morlé, Laurette; Kessler, Pascal; Wolfrum, Uwe; Trottier, Yvon

    2015-08-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia--including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells--which exert various functions during tissue development and homeostasis. In the photoreceptor cilium, HTT is present in all subciliary compartments from the base of the cilium and adjacent centriole to the tip of the axoneme. In HD mice, photoreceptor cilia are abnormally elongated, have hyperacetylated alpha-tubulin and show mislocalization of the intraflagellar transport proteins IFT57 and IFT88. As a consequence, intraflagellar transport function is perturbed and leads to aberrant accumulation of outer segment proteins in the photoreceptor cell bodies and disruption of outer segment integrity, all of which precede overt cell death. Strikingly, endogenous mouse HTT is strongly reduced in cilia and accumulates in photoreceptor cell bodies, suggesting that HTT loss function contributes to structural and functional defects of photoreceptor cilia in HD mouse. Our results indicate that cilia pathology participates in HD physiopathology and may represent a therapeutic target. PMID:25989602

  8. Cytochrome f function in photosynthetic electron transport.

    PubMed Central

    Whitmarsh, J; Cramer, W A

    1979-01-01

    The questions of whether the stoichiometry of the turnover of cytochrome f, and the time-course of its reduction subsequent to a light flash, are consistent with efficient function in noncyclic electron transport have been investigated. Measurements were made of the absorbance change at the 553-nm alpha-band maximum relative to a reference wavelength. In the dark cytochrome f is initially fully reduced, oxidized by a 0.3-s flash, and reduced again in the dark period after the flash. In the presence of gramicidin at 18 degrees C, the dark reduction was characterized by a half-time of 25-30 ms, stoichiometries of cytochrome f:chlorophyll and P700:chlorophyll of 1:670 and 1:640, respectively, and a short time delay. The time delay in the dark reduction of cytochrome f, which is expected for a component in an intermediate position in the chain, becomes more apparent in the presence of valinomycin and K+. Under these conditions the half-time for cytochrome f dark reduction is 130-150 ms, and the delay is approximately equal to 20 ms. The measured value for the activation energy of the dark reduction of cytochrome f (11 +/- 1 kcal/mol) is the same as that for noncyclic electron transport in steady-state light. A sigmoidal time-course for the reduction of cytochrome f has been calculated for a simple linear electron transport chain. The kinetics for reduction of cytochrome f predicted by the calculation, in the presence of valinomycin and K+, are in reasonably good agreement with the experimental data. There is an appreciable amount of data in the literature to document complex properties of cytochrome f after illumination with short flashes, and evidence for complexity in a light-minus-dark transition. The data presented here, obtained after a long flash that should establish steady-state conditions, either fulfill or are consistent with the basic criteria for efficient function of cytochrome f in noncyclic electron transport. PMID:262417

  9. Density-Functional Theory of Thermal Transport

    NASA Astrophysics Data System (ADS)

    Eich, F. G.; Principi, A.; di Ventra, M.; Vignale, G.

    2014-03-01

    We have recently introduced a non-equilibrium density-functional theory of local temperature and associated energy density that is suitable for the study of thermoelectric phenomena from first principles. This theory rests on a local temperature field coupled to the energy-density operator. Here we apply the theory to a simple two-terminal setup, in which the terminals are held at different temperatures. We show that our treatment becomes equivalent to the standard Landauer-Büttiker formulation of thermal transport in the non-interacting limit. We gratefully acknowledge support from DOE under Grant No. DE-FG02-05ER46203 (FGE, AP, GV) and DE-FG02-05ER46204 (MD).

  10. Electron transport through functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bruque, Nicolas; Pandey, Rajeev; Khalid Ashraf, Md.; Lake, Roger

    2008-03-01

    Single molecule functionalization of single walled carbon nanotubes (CNT)s by B. R. Goldsmith, et. al. [1] and single molecule bridges of single wall CNTs by X. Guo, et. al. [2] are elegant examples of CNT contacts to individual molecules for electronic applications. CNTs are of the same physical size as the molecule they contact providing a well-defined covalent bond between CNT electrodes and a molecule. The above two systems are studied to determine how a chemical absorbate and linker influence transport through metallic CNTs. The first system consists of a stand alone metallic CNT with a single oxygen adsorption site, matching a proposed final chemical process for a HNO3 oxidation and reduction process. The second system consists of a CNT-Amide-(CH)n-Amide-CNT structure in which both CNTs are metallic. Transmission calculations, using our DFT (FIREBALL)-NEGF code show that the amide linker suppresses transmission compared to a direct CNT-polyene linkage studied in [3]. 1. B. R. Goldsmith, et. al., Science, 315, 77 (2007). 2. X. Guo, et. al. Science, 311, 356 (2006). 3. N. Bruque, et. al. Phys. Rev. B, 76, 205322 (2007).

  11. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

    PubMed Central

    Saier, Milton H.

    2000-01-01

    A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional

  12. Comparative genomics and functional annotation of bacterial transporters

    NASA Astrophysics Data System (ADS)

    Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2008-03-01

    Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of enzymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which includes substrate specificity and cellular role. We overview the main techniques of analysis of transporters' structure and function. We consider the most popular algorithms to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families, characterization of new families, and prediction of novel transport mechanisms.

  13. WDR19: An ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome

    PubMed Central

    Coussa, RG; Otto, EA; Gee, H-Y; Arthurs, P; Ren, H; Lopez, I; Keser, V; Fu, Q; Faingold, R; Khan, A; Schwartzentruber, J; Majewski, J; Hildebrandtand, F; Koenekoop, RK

    2014-01-01

    Autosomal recessive retinitis pigmentosa (arRP) is a clinically and genetically heterogeneous retinal disease that causes blindness. Our purpose was to identify the causal gene, describe the phenotype and delineate the mutation spectrum in a consanguineous Quebec arRP family. We performed Arrayed Primer Extension (APEX) technology to exclude ~500 arRP mutations in ~20 genes. Homozygosity mapping [single nucleotide polymorphism (SNP) genotyping] identified 10 novel significant homozygous regions. We performed next generation sequencing and whole exome capture. Sanger sequencing provided cosegregation. We screened another 150 retinitis pigmentosa (RP) and 200 patients with Senior-Løken Syndrome (SLS). We identified a novel missense mutation in WDR19, c.2129T>C which lead to a p.Leu710Ser. We found the same mutation in a second Quebec arRP family. Interestingly, two of seven affected members of the original family developed ‘sub-clinical’ renal cysts. We hypothesized that more severe WDR19 mutations may lead to severe ciliopathies and found seven WDR19 mutations in five SLS families. We identified a new gene for both arRP and SLS. WDR19 is a ciliary protein associated with the intraflagellar transport machinery. We are currently investigating the full extent of the mutation spectrum. Our findings are crucial in expanding the understanding of childhood blindness and identifying new genes. PMID:23683095

  14. Ion channels and transporters in lymphocyte function and immunity

    PubMed Central

    Feske, Stefan; Skolnik, Edward Y.; Prakriya, Murali

    2013-01-01

    Preface Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of T and B cells. They modulate the cytoplasmic concentrations of diverse cations such as calcium, magnesium and zinc, which function as second messengers to regulate critical lymphocyte effector functions including cytokine production, differentiation and cytotoxicity. The repertoire of ion conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels as well as magnesium and zinc transporters. This review discusses the roles of several ions channels and transporters in lymphocyte function and immunity. PMID:22699833

  15. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  16. Control of machine functions or transport systems

    SciTech Connect

    Woodley, M.D.; Lee, M.J.; Jaeger, J.; King, A.S.

    1983-01-01

    A computer code, COMFORT, has been developed at SLAC for on-line calculation of the strengths of magnetic elements in an electron storage ring or transport beam line, subject to first order fitting constraints on the ring or beam line parameters. This code can also be used off-line as an interactive lattice or beam line design tool.

  17. Microstructure and Transport Studies of Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Gamble, Ron; Lewis, Darryl; Seifu, Dereje; Camacho, Jorge; Strongin, Myron; Zhang, Liyuan

    2011-03-01

    The microstructure and transport studies of fuctionalized graphene are reported. These studies reveal that the minimum conductivity is sample dependent and within the range (2-12) e 2 /h independent of gate voltage. The variation of the minimum conductivity is attributed to sample impurities, apparent in Atomic Force Microscopy and Raman Spectroscopy. The Raman peaks are in general consistent with graphene, but show shifts in the G and 2D peaks. These shifts are associated with strain and doping. The dependence of the current (I) on the bias voltage (VSD) is linear for most samples. The current dependence on gate voltage (Vg) curves show asymmetric behavior, showing the imbalance between the hole and electron carriers. A 16 A deposition of Fe leads to a significant modification in the transport properties due mostly the formation of iron oxide. The AFM clearly shows the formation of Fe clusters. DOE/NSF Faculty-Student Teams Program.

  18. Dissection of Transporter Function: From Genetics to Structure.

    PubMed

    Diallinas, G

    2016-09-01

    Transporters are transmembrane proteins mediating the selective uptake or efflux of solutes, metabolites, drugs, or ions across cellular membranes. Despite their immense biological importance in cell nutrition, communication, signaling, and homeostasis, their study remains technically difficult mostly due to their lipid-embedded nature. The study of eukaryotic transporters presents additional complexity due to multiple subcellular control mechanisms that operate to ensure proper membrane traffic, membrane localization, and turnover. Model fungi present unique genetic tools to study eukaryotic transporter function. This review highlights how fungal transporter genetics combined with new methodologies for assaying their cellular expression and function as well as recent structural approaches have led to the functional dissection of selected transporter paradigms in Aspergillus nidulans. PMID:27430403

  19. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology. PMID:20103563

  20. Regulation of ABC Transporter Function Via Phosphorylation by Protein Kinases

    PubMed Central

    Stolarczyk, Elzbieta I.; Reiling, Cassandra J.; Paumi, Christian M.

    2011-01-01

    ATP-binding cassette (ABC) transporters are multispanning membrane proteins that utilize ATP to move a broad range of substrates across cellular membranes. ABC transporters are involved in a number of human disorders and diseases [1]. Overexpression of a subset of the transporters has been closely linked to multidrug resistance in both bacteria and viruses and in cancer. A poorly understood and important aspect of ABC transporter biology is the role of phosphorylation as a mechanism to regulate transporter function. In this review, we summarize the current literature addressing the role of phosphorylation in regulating ABC transporter function. A comprehensive list of all the phosphorylation sites that have been identified for the human ABC transporters is presented, and we discuss the role of individual kinases in regulating transporter function. We address the potential pitfalls and difficulties associated with identifying phosphorylation sites and the corresponding kinase(s), and we discuss novel techniques that may circumvent these problems. We conclude by providing a brief perspective on studying ABC transporter phosphorylation. PMID:21118091

  1. Thermodynamics of Ionic Transport through Functionalized Membranes

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit; Qu, Siyi; Dilenschneider, Theodore; Phillip, William A.; Whitmer, Jonathan K.

    Through microphase separation of block copolymers, highly porous solid membranes may be assembled. Further functionalization with amine and sulfonic acid groups has demonstrated promise in exquisitely controlling the flux of charged species, and in particular multivalent ions. Using coarse-grained molecular simulations, we explore the essential thermodynamics underlying salt rejection in charge-functionalized membranes, and develop a model capable of linking the performance of these membranes to their molecular character through free energy calculations.

  2. Rab6 functions in polarized transport in Drosophila photoreceptors

    PubMed Central

    Satoh, Takunori; Nakamura, Yuri; Satoh, Akiko K.

    2016-01-01

    ABSTRACT Selective membrane transport pathways are essential for cells in situ to construct and maintain a polarized structure comprising multiple plasma membrane domains, which is essential for their specific cellular functions. Genetic screening in Drosophila photoreceptors harboring multiple plasma membrane domains enables the identification of genes involved in polarized transport pathways. Our genome-wide high-throughput screening identified a Rab6-null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with an intact basolateral transport. Although the functions of Rab6 in the Golgi apparatus are well known, its function in polarized transport is unexpected. The mutant phenotype and localization of Rab6 strongly indicate that Rab6 regulates transport between the trans-Golgi network (TGN) and recycling endosomes (REs): basolateral cargos are segregated at the TGN before Rab6 functions, but cargos going to multiple apical domains are sorted at REs. Both the medial-Golgi resident protein Metallophosphoesterase (MPPE) and the TGN marker GalT::CFP exhibit diffused co-localized distributions in Rab6-deficient cells, suggesting they are trapped in the retrograde transport vesicles returning to trans-Golgi cisternae. Hence, we propose that Rab6 regulates the fusion of retrograde transport vesicles containing medial, trans-Golgi resident proteins to the Golgi cisternae, which causes Golgi maturation to REs. PMID:27116570

  3. Role of glutathione transport processes in kidney function

    SciTech Connect

    Lash, Lawrence H. . E-mail: l.h.lash@wayne.edu

    2005-05-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles.

  4. Rare Mutations in Renal Sodium and Potassium Transporter Genes Exhibit Impaired Transport Function

    PubMed Central

    Welling, Paul A.

    2014-01-01

    Purpose of review Recent efforts to explore the genetic underpinnings of hypertension revealed rare mutations in kidney salt transport genes contribute to blood pressure variation and hypertension susceptibility in the general population. The current review focuses on these latest findings, highlighting a discussion about the rare mutations and how they affect transport function. Recent findings Rare mutations that confer a low blood pressure trait and resistance to hypertension have recently been extensively studied. Physiological and biochemical analyses of the effected renal salt transport molecules (NKCC2 (SLC12A1), ROMK (KCNJ1), and NCC (SLC12A3)) revealed that most of the mutations do, in fact, cause a loss of transport function. The mutations disrupt transport by many different mechanisms, including altering biosynthetic processing, trafficking, ion transport, and regulation. Summary New insights into the genetic basis of hypertension have recently emerged, supporting a major role of rare, rather than common, gene variants. Many different rare mutations have been found to affect the functions of different salt transporter genes by different mechanisms, yet all confer the same blood pressure phenotype. These studies reinforce the critical roles of the kidney, and renal salt transport in blood pressure regulation and hypertension. PMID:24253496

  5. Tryptophan Transport in Human Fibroblast Cells—A Functional Characterization

    PubMed Central

    Vumma, Ravi; Johansson, Jessica; Lewander, Tommy; Venizelos, Nikolaos

    2011-01-01

    There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation may be disturbed transport of tryptophan (precursor for serotonin synthesis) across cell membranes. Human fibroblast cells offer an advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters of tryptophan in fibroblast cell lines from healthy controls. Tryptophan kinetic parameters (Vmax and Km) at low and high concentrations were measured in fibroblasts using the cluster tray method. Uptake of 3H (5)-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM) had low affinity and high Vmax and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. In comparison, tryptophan transport at low concentration (50 nM) had higher affinity, lower Vmax and approximately 80% of tryptophan uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly sodium (Na+) dependent, while uptake at high substrate concentration was mainly Na+ independent. A series of different transporter inhibitors had varying inhibitory effects on tryptophan uptake. This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate concentrations of tryptophan. PMID:22084600

  6. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction

    PubMed Central

    Rudnick, Gary; Krämer, Reinhard; Blakely, Randy D.; Murphy, Dennis L.

    2014-01-01

    The human SLC6 family is composed of approximately 20 structurally related symporters (co-transporters) that use the transmembrane electrochemical gradient to actively import their substrates into cells. Approximately half of the substrates of these transporters are amino acids, with others transporting biogenic amines and/or closely related compounds, such as nutrients and compatible osmolytes. In this short review, five leaders in the field discuss a number of currently important research themes that involve SLC6 transporters, highlighting the integrative role they play across a wide spectrum of different functions. The first essay, by Gary Rudnick, describes the molecular mechanism of their coupled transport which is being progressively better understood based on new crystal structures, functional studies, and modeling. Next, the question of multiple levels of transporter regulation is discussed by Reinhard Krämer, in the context of osmoregulation and stress response by the related bacterial betaine transporter BetP. The role of selected members of the human SLC6 family that function as nutrient amino acid transporters is then reviewed by François Verrey. He discusses how some of these transporters mediate the active uptake of (essential) amino acids into epithelial cells of the gut and the kidney tubule to support systemic amino acid requirements, whereas others are expressed in specific cells to support their specialized metabolism and/or growth. The most extensively studied members of the human SLC6 family are neurotransmitter reuptake transporters, many of which are important drug targets for the treatment of neuropsychiatric disorders. Randy Blakely discusses the role of posttranscriptional modifications of these proteins in regulating transporter subcellular localization and activity state. Finally, Dennis Murphy reviews how natural gene variants and mouse genetic models display consistent behavioral alterations that relate to altered extracellular

  7. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect

    Shappert, L.B.; Attaway, C.R.; Pope, R.B. ); Best, R.E.; Danese, F.L. ); Dixon, L.D. , Martinez, GA ); Jones, R.H. , Los Gatos, CA ); Klimas, M.J. ); Peterson, R.W

    1992-03-01

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  8. Structure and Function of SLC4 Family HCO3- Transporters

    PubMed Central

    Liu, Ying; Yang, Jichun; Chen, Li-Ming

    2015-01-01

    The solute carrier SLC4 family consists of 10 members, nine of which are HCO3- transporters, including three Na+-independent Cl−/HCO3- exchangers AE1, AE2, and AE3, five Na+-coupled HCO3- transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as “AE4” whose Na+-dependence remains controversial. The SLC4 HCO3- transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters. PMID:26648873

  9. Optimal-transport formulation of electronic density-functional theory

    NASA Astrophysics Data System (ADS)

    Buttazzo, Giuseppe; De Pascale, Luigi; Gori-Giorgi, Paola

    2012-06-01

    The most challenging scenario for Kohn-Sham density-functional theory, that is, when the electrons move relatively slowly trying to avoid each other as much as possible because of their repulsion (strong-interaction limit), is reformulated here as an optimal transport (or mass transportation theory) problem, a well-established field of mathematics and economics. In practice, we show that to solve the problem of finding the minimum possible internal repulsion energy for N electrons in a given density ρ(r) is equivalent to find the optimal way of transporting N-1 times the density ρ into itself, with the cost function given by the Coulomb repulsion. We use this link to set the strong-interaction limit of density-functional theory on firm ground and to discuss the potential practical aspects of this reformulation.

  10. Thyroid hormone transporters--functions and clinical implications.

    PubMed

    Bernal, Juan; Guadaño-Ferraz, Ana; Morte, Beatriz

    2015-07-01

    The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations. PMID:25942657

  11. Ceramide-induced alterations in dopamine transporter function.

    PubMed

    Riddle, Evan L; Rau, Kristi S; Topham, Matthew K; Hanson, Glen R; Fleckenstein, Annette E

    2003-01-01

    The purpose of this study was to determine the effects of ceramide on dopamine and serotonin (5-HT, 5-hydroxytryptamine) transporters. Exposure of rat striatal synaptosomes to C2-ceramide caused a reversible, concentration-dependent decrease in plasmalemmal dopamine uptake. In contrast, ceramide exposure increased striatal 5-HT synaptosomal uptake. This increase did not appear to be due to an increased uptake by the 5-HT transporter. Rather, the increase appeared to result from an increase in 5-HT transport through the dopamine transporter, an assertion evidenced by findings that this increase: (1) does not occur in hippocampal synaptosomes (i.e., a preparation largely devoid of dopamine transporters), (2) occurs in striatal synaptosomes prepared from para-chloroamphetamine-treated rats (i.e., a preparation lacking 5-HT transporters), (3) is attenuated by pretreatment with methylphenidate (i.e., a relatively selective dopamine reuptake inhibitor) and (4) is inhibited by exposure to exogenous dopamine (i.e., which presumably competes for uptake with 5-HT). Taken together, these results reveal that ceramide is a novel modulator of monoamine transporter function, and may alter the affinity of dopamine transporters for its primary substrate. PMID:12498904

  12. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters.

    PubMed

    Münster-Wandowski, Agnieszka; Zander, Johannes-Friedrich; Richter, Karin; Ahnert-Hilger, Gudrun

    2016-01-01

    The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH(+) driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters. PMID:26909036

  13. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters

    PubMed Central

    Münster-Wandowski, Agnieszka; Zander, Johannes-Friedrich; Richter, Karin; Ahnert-Hilger, Gudrun

    2016-01-01

    The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters. PMID:26909036

  14. Transport properties of water at functionalized molecular interfaces

    PubMed Central

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-01-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface. PMID:19791920

  15. Transport properties of water at functionalized molecular interfaces

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-09-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface.

  16. Importin α: a key molecule in nuclear transport and non-transport functions.

    PubMed

    Miyamoto, Yoichi; Yamada, Kohji; Yoneda, Yoshihiro

    2016-08-01

    Importin α performs the indispensable role of ferrying proteins from the cytoplasm into the nucleus with a transport carrier, importin β1. Mammalian cells from mouse or human contain either six or seven importin α subtypes, respectively, each with a tightly regulated expression. Therefore, the combination of subtype expression in a cell defines distinct signaling pathways to achieve progressive changes in gene expression essential for cellular events, such as differentiation. Recent studies reveal that, in addition to nucleocytoplasmic transport, importin αs also serve non-transport functions. In this review, we first discuss the physiological significance of importin α as a nuclear transport regulator, and then focus on the functional diversities of importin αs based on their specific subcellular and cellular localizations, such as the nucleus and plasma membrane. These findings enrich our knowledge of how importin αs actively contribute to various cellular events. PMID:27289017

  17. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  18. Sodium-Dependent Phosphate Transporters in Osteoclast Differentiation and Function

    PubMed Central

    Dolder, Silvia; Siegrist, Mark; Wagner, Carsten A.; Biber, Jürg; Hernando, Nati; Hofstetter, Willy

    2015-01-01

    Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies. PMID:25910236

  19. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  20. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology

    PubMed Central

    Jentsch, Thomas J

    2015-01-01

    Abstract After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl− channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl− channels and vesicular Cl−/H+-exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel. PMID:25590607

  1. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology.

    PubMed

    Jentsch, Thomas J

    2015-09-15

    After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl(-) channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl(-) channels and vesicular Cl(-) /H(+) -exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel. PMID:25590607

  2. The straggling Green's function method for ion transport

    NASA Astrophysics Data System (ADS)

    Walker, Steven Andrew

    For many years work has been conducted on developing a concise theory and method for HZE ion transport capable of being validated in the laboratory. Previous attempts have ignored dispersion and energy downshift associated with nuclear fragmentation and energy and range straggling. Here we present a Green's function approach to ion transport that incorporates these missing elements. This work forms the basis for a new version of GRNTRN, a Green's function transport code. Comparisons of GRNTRN predictions and laboratory results for an 56Fe ion beam with average energy at the target of one GeV/amu or more are presented for various targets. Quantities compared are the energy deposited spectra for an Aluminum target and Graphite-Epoxy mix target, the fraction of primary beam surviving and track average LET for these and various other targets.

  3. Density Functional Theory with Dissipation: Transport through Single Molecules

    SciTech Connect

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  4. Adjoint Function: Physical Basis of Variational & Perturbation Theory in Transport

    Energy Science and Technology Software Center (ESTSC)

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Importance: The Adjoint Function: The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems, North-Holland Publishing Company - Amsterdam, 582 pages, 1966 Introduction: Continuous Systems and the Variational Principle 1. The Fundamental Variational Principle 2. The Importance Function 3. Adjoint Equations 4. Variational Methods 5. Perturbation and Iterative Methods 6. Non-Linear Theory

  5. Beyond Genotype: Serotonin Transporter Epigenetic Modification Predicts Human Brain Function

    PubMed Central

    Nikolova, Yuliya S.; Koenen, Karestan C.; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L.; Sibille, Etienne; Williamson, Douglas E.; Hariri, Ahmad R.

    2014-01-01

    We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

  6. Molecular approach to intracellular cargo transport

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2010-03-01

    Landmark discoveries in the study of cytoplasmic motors have been made through advances in single molecule biophysics and detailed mechanistic models exist for kinesin and dynein. However, the function of motors in physiological conditions has not been carefully tested. In cells, more than few dyneins can attach to the same cargo and interact with the opposite polarity motors of kinesin. To study the molecular crosstalk between the motors, we have used intraflagellar transport (IFT) in Chlamydomonas reinhardtii as a model system. Ultrahigh spatio-temporal tracking of single cargo movement showed that IFT particles move for long distances unidirectionally with 8 nm increments, agreeing with measured step sizes of kinesin and dynein. To measure how many motors transport each cargo, we have linked large polystyrene beads to internal IFT particles through a transmembrane protein. Force measurements indicated that, on average, 3-4 motors transport cargoes in each direction. The results showed that IFT motors are tightly coordinated and might be involved in recycling each other to the appropriate end of the flagellum.

  7. Function of prokaryotic and eukaryotic ABC proteins in lipid transport.

    PubMed

    Pohl, Antje; Devaux, Philippe F; Herrmann, Andreas

    2005-03-21

    ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry. PMID:15749056

  8. Transport Function of Rice Amino Acid Permeases (AAPs).

    PubMed

    Taylor, Margaret R; Reinders, Anke; Ward, John M

    2015-07-01

    The transport function of four rice (Oryza sativa) amino acid permeases (AAPs), OsAAP1 (Os07g04180), OsAAP3 (Os06g36180), OsAAP7 (Os05g34980) and OsAAP16 (Os12g08090), was analyzed by expression in Xenopus laevis oocytes and electrophysiology. OsAAP1, OsAAP7 and OsAAP16 functioned, similarly to Arabidopsis AAPs, as general amino acid permeases. OsAAP3 had a distinct substrate specificity compared with other rice or Arabidopsis AAPs. OsAAP3 transported the basic amino acids lysine and arginine well but selected against aromatic amino acids. The transport of basic amino acids was further analyzed for OsAAP1 and OsAAP3, and the results support the transport of both neutral and positively charged forms of basic amino acids by the rice AAPs. Cellular localization using the tandem enhanced green fluorescent protein (EGFP)-red fluorescent protein (RFP) reporter pHusion showed that OsAAP1 and OsAAP3 localized to the plasma membrane after transient expression in onion epidermal cells or stable expression in Arabidopsis. PMID:25907566

  9. Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins

    PubMed Central

    Chadwick, Alexandra C.; Holme, Rebecca L.; Chen, Yiliang; Thomas, Michael J.; Sorci-Thomas, Mary G.; Silverstein, Roy L.; Pritchard, Kirkwood A.; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway. PMID:25849485

  10. A functional calcium-transporting ATPase encoded by chlorella viruses.

    PubMed

    Bonza, Maria Cristina; Martin, Holger; Kang, Ming; Lewis, Gentry; Greiner, Timo; Giacometti, Sonia; Van Etten, James L; De Michelis, Maria Ida; Thiel, Gerhard; Moroni, Anna

    2010-10-01

    Calcium-transporting ATPases (Ca(2+) pumps) are major players in maintaining calcium homeostasis in the cell and have been detected in all cellular organisms. Here, we report the identification of two putative Ca(2+) pumps, M535L and C785L, encoded by chlorella viruses MT325 and AR158, respectively, and the functional characterization of M535L. Phylogenetic and sequence analyses place the viral proteins in group IIB of P-type ATPases even though they lack a typical feature of this class, a calmodulin-binding domain. A Ca(2+) pump gene is present in 45 of 47 viruses tested and is transcribed during virus infection. Complementation analysis of the triple yeast mutant K616 confirmed that M535L transports calcium ions and, unusually for group IIB pumps, also manganese ions. In vitro assays show basal ATPase activity. This activity is inhibited by vanadate, but, unlike that of other Ca(2+) pumps, is not significantly stimulated by either calcium or manganese. The enzyme forms a (32)P-phosphorylated intermediate, which is inhibited by vanadate and not stimulated by the transported substrate Ca(2+), thus confirming the peculiar properties of this viral pump. To our knowledge this is the first report of a functional P-type Ca(2+)-transporting ATPase encoded by a virus. PMID:20573858

  11. Functional characterization of a xylose transporter in Aspergillus nidulans

    PubMed Central

    2014-01-01

    Background The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A. nidulans encode a multiplicity of sugar transporters with broad affinities for hexose and pentose sugars. Saccharomyces cerevisiae, which has a long history of use in industrial fermentation processes, is not able to efficiently transport or metabolize pentose sugars (e.g. xylose). Subsequently, the aim of this study was to identify xylose-transporters from A. nidulans, as potential candidates for introduction into S. cerevisiae in order to improve xylose utilization. Results In this study, we identified the A. nidulans xtrD (xylose transporter) gene, which encodes a Major Facilitator Superfamily (MFS) transporter, and which was specifically induced at the transcriptional level by xylose in a XlnR-dependent manner, while being partially repressed by glucose in a CreA-dependent manner. We evaluated the ability of xtrD to functionally complement the S. cerevisiae EBY.VW4000 strain which is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae, XtrD was targeted to the plasma membrane and its expression was able to restore growth on xylose, glucose, galactose, and mannose as single carbon sources, indicating that this transporter accepts multiple sugars as a substrate. XtrD has a high affinity for xylose, and may be a high affinity xylose transporter. We were able to select a S. cerevisiae mutant strain that had increased xylose transport when expressing the xtrD gene. Conclusions This study characterized the regulation and substrate specificity of an A. nidulans transporter that represents a good candidate for further directed

  12. Functional Monomerization of a ClC-Type Fluoride Transporter

    PubMed Central

    Last, Nicholas B.; Miller, Christopher

    2016-01-01

    Anion channels and antiporters of the ClC superfamily have been found to be exclusively dimeric in nature, even though each individual monomer contains the complete transport pathway. Here, we describe the destabilization through mutagenesis of the dimer interface of a bacterial F−/H+ antiporter, ClCF-eca. Several mutations that produce monomer/dimer equilibrium of the normally dimeric transporter were found, simply by shortening a hydrophobic side chain in some cases. One mutation, L376W, leads to a wholly monomeric variant that shows full activity. Furthermore, we discovered a naturally destabilized homologue, ClCF-rla, which undergoes partial monomerization in detergent without additional mutations. These results, in combination with the previous functional monomerization of the distant relative ClC-ec1, demonstrate that the monomer alone is the functional unit for several clades of the ClC superfamily. PMID:26449639

  13. Functional Monomerization of a ClC-Type Fluoride Transporter.

    PubMed

    Last, Nicholas B; Miller, Christopher

    2015-11-01

    Anion channels and antiporters of the ClC superfamily have been found to be exclusively dimeric in nature, even though each individual monomer contains the complete transport pathway. Here, we describe the destabilization through mutagenesis of the dimer interface of a bacterial F(-)/H(+) antiporter, ClC(F)-eca. Several mutations that produce monomer/dimer equilibrium of the normally dimeric transporter were found, simply by shortening a hydrophobic side chain in some cases. One mutation, L376W, leads to a wholly monomeric variant that shows full activity. Furthermore, we discovered a naturally destabilized homologue, ClC(F)-rla, which undergoes partial monomerization in detergent without additional mutations. These results, in combination with the previous functional monomerization of the distant relative ClC-ec1, demonstrate that the monomer alone is the functional unit for several clades of the ClC superfamily. PMID:26449639

  14. Approximate Green's function methods for HZE transport in multilayered materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.

  15. Oxygen radicals diminish dopamine transporter function in rat striatum.

    PubMed

    Fleckenstein, A E; Metzger, R R; Beyeler, M L; Gibb, J W; Hanson, G R

    1997-09-01

    Incubation of striatal synaptosomes with the oxygen radical generating enzyme, xanthine oxidase, decreased [3H]dopamine uptake: an effect attributable to a decreased Vmax. Concurrent incubation with the superoxide radical scavenger, superoxide dismutase, abolished the xanthine oxidase-induced decrease. These results indicate that, like methamphetamine administration in vivo, reactive oxygen species diminish dopamine transporter function in vitro. The significance of these findings to mechanisms responsible for effects of methamphetamine is discussed. PMID:9346337

  16. Controlled Transport of Functionalized Nanochannel though Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Kuksenok, Olga; Balazs, Anna C.

    2012-02-01

    Via the Dissipative Particle Dynamics approach, we study the directed transport of a transmembrane nanochannel to a desired location within a lipid bilayer. Each nanochannel encompasses an ABA architecture, with a hydrophobic shaft (B) with two hydrophilic ends (A). One of the ends of the nanochannel is functionalized with hydrophilic functional groups, or hairs. The hydrophilic hairs serve a dual role: (a) control transport across the membrane barrier, and (b) enable the channel relocation to a specific membrane site. Our system comprises a lipid membrane with an embedded transmembrane nanochannel with the hairs extending into solution. First, we hold a suitably functionalized pipette above the membrane while the nanochannel freely diffuses within the membrane. For an optimal range of parameters, we demonstrate that the hairs find the pipette and spontaneously anchor onto it. We then show that by moving the pipette for a range of velocities, we can effectively transport the channel to any location within the membrane. This prototype assembly can provide guidelines for designing a number of systems for biomimetic applications.

  17. Pharmaceutical excipients influence the function of human uptake transporting proteins.

    PubMed

    Engel, Anett; Oswald, Stefan; Siegmund, Werner; Keiser, Markus

    2012-09-01

    Although pharmaceutical excipients are supposed to be pharmacologically inactive, solubilizing agents like Cremophor EL have been shown to interact with cytochrome P450 (CYP)-dependent drug metabolism as well as efflux transporters such as P-glycoprotein (ABCB1) and multidrug resistance associated protein 2 (ABCC2). However, knowledge about their influence on the function of uptake transporters important in drug disposition is very limited. In this study we investigated the in vitro influence of polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol HS 15 (SOL), and Cremophor EL (CrEL) on the organic anion transporting polypeptides (OATP) 1A2, OATP2B1, OATP1B1, and OATP1B3 and the Na(+)/taurocholate cotransporting polypeptide (NTCP). In stably transfected human embryonic kidney cells we analyzed the competition of the excipients with the uptake of bromosulfophthalein in OATP1B1, OATP1B3, OATP2B1, and NTCP, estrone-3-sulfate (E(3)S) in OATP1A2, OATP1B1, and OATP2B1, estradiol-17β-glucuronide in OATP1B3, and taurocholate (TA) in OATP1A2 and NTCP cells. SOL and CrEL were the most potent inhibitors of all transporters with the strongest effect on OATP1A2, OATP1B3, and OATP2B1 (IC(50) < 0.01%). HPCD also strongly inhibited all transport proteins but only for substrates containing a sterane-backbone. Finally, PEG seems to be a selective and potent modulator of OATP1A2 with IC(50) values of 0.05% (TA) and 0.14% (E(3)S). In conclusion, frequently used solubilizing agents were shown to interact substantially with intestinal and hepatic uptake transporters which should be considered in drug development. However, the clinical relevance of these findings needs to be evaluated in further in vivo studies. PMID:22808947

  18. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  19. A Green's function method for heavy ion beam transport.

    PubMed

    Shinn, J L; Wilson, J W; Schimmerling, W; Shavers, M R; Miller, J; Benton, E V; Frank, A L; Badavi, F F

    1995-08-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively. PMID:7480630

  20. Genetic characterization of glucose transporter function in Leishmania mexicana

    PubMed Central

    Burchmore, Richard J. S.; Rodriguez-Contreras, Dayana; McBride, Kathleen; Barrett, Michael P.; Modi, Govind; Sacks, David; Landfear, Scott M.

    2003-01-01

    Both insect and mammalian life cycle stages of Leishmania mexicana take up glucose and express all three isoforms encoded by the LmGT glucose transporter gene family. To evaluate glucose transporter function in intact parasites, a null mutant line has been created by targeted disruption of the LmGT locus that encompasses the LmGT1, LmGT2, and LmGT3 genes. This Δlmgt null mutant exhibited no detectable glucose transport activity. The growth rate of the Δlmgt knockout in the promastigote stage was reduced to a rate comparable with that of WT cells grown in the absence of glucose. Δlmgt cells also exhibited dramatically reduced infectivity to macrophages, demonstrating that expression of LmGT isoforms is essential for viability of amastigotes. Furthermore, WT L. mexicana were not able to grow as axenic culture form amastigotes if glucose was withdrawn from the medium, implying that glucose is an essential nutrient in this life cycle stage. Expression of either LmGT2 or LmGT3, but not of LmGT1, in Δlmgt null mutants significantly restored growth as promastigotes, but only LmGT3 expression substantially rescued amastigote growth in macrophages. Subcellular localization of the three isoforms was investigated in Δlmgt cells expressing individual LmGT isoforms. Using anti-LmGT antiserum and GFP-tagged LmGT fusion proteins, LmGT2 and LmGT3 were localized to the cell body, whereas LmGT1 was localized specifically to the flagellum. These results establish that each glucose transporter isoform has distinct biological functions in the parasite. PMID:12651954

  1. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    PubMed

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field. PMID:27014281

  2. Functional expression of sodium-glucose transporters in cancer

    PubMed Central

    Scafoglio, Claudio; Hirayama, Bruce A.; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A.; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R.; Wright, Ernest M.

    2015-01-01

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  3. Functional expression of sodium-glucose transporters in cancer.

    PubMed

    Scafoglio, Claudio; Hirayama, Bruce A; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R; Wright, Ernest M

    2015-07-28

    Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283

  4. Multicellularity and the functional interdependence of motility and molecular transport.

    PubMed

    Solari, Cristian A; Ganguly, Sujoy; Kessler, John O; Michod, Richard E; Goldstein, Raymond E

    2006-01-31

    Benefits, costs, and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella yields propulsion important in phototaxis and chemotaxis. It has not been generally appreciated that for the larger colonies flagellar stirring of boundary layers and remote transport are fundamental for maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. Here, we describe experiments that quantify the role of advective dynamics in enhancing productivity in germ soma-differentiated colonies. First, experiments with suspended deflagellated colonies of Volvox carteri show that forced advection improves productivity. Second, particle imaging velocimetry of fluid motion around colonies immobilized by micropipette aspiration reveals flow fields with very large characteristic velocities U extending to length scales exceeding the colony radius R. For a typical metabolite diffusion constant D, the associated Peclet number Pe = 2UR/D > 1, indicative of the dominance of advection over diffusion, with striking augmentation at the cell division stage. Near the colony surface, flows generated by flagella can be chaotic, exhibiting mixing due to stretching and folding. These results imply that hydrodynamic transport external to colonies provides a crucial boundary condition, a source for supplying internal diffusional dynamics. PMID:16421211

  5. Intact Lysosome Transport and Phagosome Function Despite Kinectin Deficiency

    PubMed Central

    Plitz, Thomas; Pfeffer, Klaus

    2001-01-01

    The mechanism of cargo coupling to kinesin motor proteins is a fundamental issue in organelle transport along microtubules. Kinectin has been postulated to function as a membrane anchor protein that attaches various organelles to the prototype motor protein kinesin. To verify the biological relevance of kinectin in vivo, the murine kinectin gene was disrupted by homologous recombination. Unexpectedly, kinectin-deficient mice were viable and fertile, and no gross abnormalities were observed up to 1 year of age. The assembly of the endoplasmic reticulum was essentially unaffected in kinectin-deficient cells. Mitochondria appeared to be correctly distributed throughout the cytoplasm along the microtubules. Furthermore, the stationary distribution and the bidirectional movement of lysosomes did not depend on kinectin. Kinectin-deficient phagocytes internalized and cleared bacteria, indicating that phagosome trafficking and maturation are functional without kinectin. Thus, these data unequivocally indicate that kinectin is not essential for trafficking of lysosomes, phagosomes, and mitochondria in vivo. PMID:11486041

  6. Nucleoside transporter expression and function in cultured mouse astrocytes.

    PubMed

    Peng, Liang; Huang, Rong; Yu, Albert C H; Fung, King Y; Rathbone, Michel P; Hertz, Leif

    2005-10-01

    Uptake of purine and pyrimidine nucleosides in astrocytes is important for several reasons: (1) uptake of nucleosides contributes to nucleic acid synthesis; (2) astrocytes synthesize AMP, ADP, and ATP from adenosine and GTP from guanosine; and (3) adenosine and guanosine function as neuromodulators, whose effects are partly terminated by cellular uptake. It has previously been shown that adenosine is rapidly accumulated by active uptake in astrocytes (Hertz and Matz, Neurochem Res 14:755-760, 1989), but the ratio between active uptake and metabolism-driven uptake of adenosine is unknown, as are uptake characteristics for guanosine. The present study therefore aims at providing detailed information of nucleoside transport and transporters in primary cultures of mouse astrocytes. Reverse transcription-polymerase chain reaction identified the two equilibrative nucleoside transporters, ENT1 and ENT2, together with the concentrative nucleoside transporter CNT2, whereas CNT3 was absent, and CNT1 expression could not be investigated. Uptake studies of tritiated thymidine, formycin B, guanosine, and adenosine (3-s uptakes at 1-4 degrees C to study diffusional uptake and 1-60-min uptakes at 37 degrees C to study concentrative uptake) demonstrated a fast diffusional uptake of all four nucleosides, a small, Na(+)-independent and probably metabolism-driven uptake of thymidine (consistent with DNA synthesis), larger metabolism-driven uptakes of guanosine (consistent with synthesis of DNA, RNA, and GTP) and especially of adenosine (consistent with rapid nucleotide synthesis), and Na(+)-dependent uptakes of adenosine (consistent with its concentrative uptake) and guanosine, rendering neuromodulator uptake independent of nucleoside metabolism. Astrocytes are accordingly well suited for both intense nucleoside metabolism and metabolism-independent uptake to terminate neuromodulator effects of adenosine and guanosine. PMID:15892125

  7. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  8. Characteristics and Possible Functions of Mitochondrial Ca2+ Transport Mechanisms

    PubMed Central

    Gunter, Thomas E.; Sheu, Shey-Shing

    2009-01-01

    Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca2+ concentration ([Ca2+]m) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca2+]m also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca2+]m can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca2+ is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca2+ pulses or transients. Mitochondria can also sequester Ca2+ from these transients so as to modify the shape of Ca2+ signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca2+ transport mechanisms and the PTP. The characteristics of these mechanisms of Ca2+ transport and a discussion of how they might function are described in this paper. PMID:19161975

  9. Filtered density function approach for reactive transport in groundwater

    NASA Astrophysics Data System (ADS)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2016-04-01

    Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater

  10. Density Functional Theory Calculations of Mass Transport in UO2

    SciTech Connect

    Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.

    2012-06-26

    In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models

  11. Perinatal reduction of functional serotonin transporters results in developmental delay.

    PubMed

    Kroeze, Yvet; Dirven, Bart; Janssen, Stefan; Kröhnke, Marijke; Barte, Ramona M; Middelman, Anthonieke; van Bokhoven, Hans; Zhou, Huiqing; Homberg, Judith R

    2016-10-01

    While there is strong evidence from rodent and human studies that a reduction in serotonin transporter (5-HTT) function in early-life can increase the risk for several neuropsychiatric disorders in adulthood, the effects of reduced 5-HTT function on behavior across developmental stages are underinvestigated. To elucidate how perinatal pharmacological and lifelong genetic inactivation of the 5-HTT affects behavior across development, we conducted a battery of behavioral tests in rats perinatally exposed to fluoxetine or vehicle and in 5-HTT(-/-) versus 5-HTT(+/+) rats. We measured motor-related behavior, olfactory function, grooming behavior, sensorimotor gating, object directed behavior and novel object recognition in the first three postnatal weeks and if possible the tests were repeated in adolescence and adulthood. We also measured developmental milestones such as eye opening, reflex development and body weight. We observed that both pharmacological and genetic inactivation of 5-HTT resulted in a developmental delay. Except for hypo-locomotion, most of the observed early-life effects were normalized later in life. In adolescence and adulthood we observed object directed behavior and decreased novel object recognition in the 5-HTT(-/-) rats, which might be related to the lifelong inactivation of 5-HTT. Together, these data provide an important contribution to the understanding of the effects of perinatal and lifelong 5-HTT inactivation on behavior across developmental stages. PMID:27208789

  12. An improved Green's function for ion beam transport.

    PubMed

    Tweed, J; Wilson, J W; Tripathi, R K

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. PMID:15880918

  13. An Improved Green's Function for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2003-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for the high charge and energy (HZE) by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.

  14. An improved Green's function for ion beam transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. Multicellularity and the Functional Interdependence of Motility and Molecular Transport

    NASA Astrophysics Data System (ADS)

    Solari, C.; Ganguly, S.; Kessler, J. O.; Michod, R.; Goldstein, R. E.

    2006-03-01

    Benefits, costs and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella yields propulsion important in phototaxis and chemotaxis. It has not been generally appreciated that for the larger colonies, flagellar stirring of boundary layers and remote transport are fundamental for maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. We describe experiments that quantify the role of advective dynamics in enhancing productivity in germ-soma differentiated colonies. First, experiments with suspended deflagellated colonies of Volvox carteri show that forced advection improves productivity. Second, Particle Imaging Velocimetry of fluid motion around colonies reveals flow fields with very large characteristic velocities U extending to length scales comparable to the colony radius R. For a typical metabolite diffusion constant D, the Peclet number Pe=2UR/D 1, indicative of the dominance of advection over diffusion, with striking augmentation at the cell division stage.

  16. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  17. Formation and function of the manchette and flagellum during spermatogenesis.

    PubMed

    Lehti, M S; Sironen, A

    2016-04-01

    The last phase of spermatogenesis involves spermatid elongation (spermiogenesis), where the nucleus is remodeled by chromatin condensation, the excess cytoplasm is removed and the acrosome and sperm tail are formed. Protein transport during spermatid elongation is required for correct formation of the sperm tail and acrosome and shaping of the head. Two microtubular-based protein delivery platforms transport proteins to the developing head and tail: the manchette and the sperm tail axoneme. The manchette is a transient skirt-like structure surrounding the elongating spermatid head and is only present during spermatid elongation. In this review, we consider current understanding of the assembly, disassembly and function of the manchette and the roles of these processes in spermatid head shaping and sperm tail formation. Recent studies have shown that at least some of the structural proteins of the sperm tail are transported through the intra-manchette transport to the basal body at the base of the developing sperm tail and through the intra-flagellar transport to the construction site in the flagellum. This review focuses on the microtubule-based mechanisms involved and the consequences of their disruption in spermatid elongation. PMID:26792866

  18. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  19. Norepinephrine transporter function and autonomic control of metabolism.

    PubMed

    Boschmann, Michael; Schroeder, Christoph; Christensen, Niels Juel; Tank, Jens; Krupp, Goetz; Biaggioni, Italo; Klaus, Susanne; Sharma, Arya M; Luft, Friedrich C; Jordan, Jens

    2002-11-01

    Genetic variability, numerous medications, and some illicit drugs influence norepinephrine transporter (NET) function; however, the metabolic consequences of NET inhibition are poorly understood. We performed a randomized, double-blind, cross-over trial in 15 healthy subjects who ingested 8 mg of the selective NET inhibitor reboxetine or placebo. Energy expenditure and substrate oxidation rates were determined by indirect calorimetry before and during iv infusion of 0.25, 0.5, 1, and 2 micro g isoproterenol/min. Adipose tissue metabolism was studied by microdialysis before and during local isoproterenol perfusion. At rest, energy expenditure and substrate oxidation rates did not differ between reboxetine and placebo treatment. At 1 micro g/min isoproterenol, energy expenditure was significantly increased in men (+15%) and women (+20%) with both reboxetine and placebo treatment. However, carbohydrate oxidation rate was significantly higher with reboxetine compared with placebo. Baseline and isoproterenol-stimulated adipose tissue blood flow was about 2-fold higher with reboxetine vs. placebo. Furthermore, glucose supply and metabolism was significantly increased and lipid mobilization much more stimulated in adipose tissue under reboxetine when compared with placebo at all isoproterenol concentrations used. We conclude that acute NET inhibition increases adipose tissue glucose uptake and metabolism. While lipid mobilization is increased, overall lipid oxidation is decreased during beta-adrenergic stimulation. This effect cannot be explained by increased systemic or adipose tissue norepinephrine concentrations. Instead, NET inhibition may sensitize adipose tissue to beta-adrenergic stimulation. PMID:12414883

  20. Galectin-4 interacts with the drug transporter human concentrative nucleoside transporter 3 to regulate its function.

    PubMed

    Fernández-Calotti, Paula; Casulleras, Olga; Antolin, María; Guarner, Francisco; Pastor-Anglada, Marçal

    2016-02-01

    The intracellular N-terminal domain of the nucleoside and drug transporter human concentrative nucleoside transporter (hCNT)3 was used as bait in a glutathione S-transferase pull-down approach, to identify hCNT3 protein partners, using human colon homogenates as a prey source. Galectin (Gal)-4 was identified as a potential hCNT3 partner in the colon. The biochemical validation of the Gal-4-hCNT3 interaction was verified by targeted pull-down assays and coimmunoprecipitation experiments in HT-29 cells, which endogenously express hCNT3 and Gal-4. Furthermore, Gal-4 was shown to colocalize with hCNT3 in HT-29 cells. The biologic significance of this interaction was obtained from experiments in which Gal-4 was knocked down, showing that this protein is a regulator of hCNT3 trafficking and retention at the cell membrane, reducing its plasma membrane location by 70%. Conversely, the addition of Gal-4 increased hCNT3 location at the plasma membrane by 77%, thereby demonstrating that this lectin modulates hCNT3 function in colonic cells. The integrity of this partnership may be clinically relevant, because hCNT3 may be responsible for the translocation of thiopurines, such as 6-mercaptopurine, a front-line treatment in inflammatory bowel disease. The expression of Gal-4 and hCNT3 proteins is not impaired in inflamed colon from patients with Crohn's disease, thereby anticipating the integrity of this system for drug targeting. PMID:26481311

  1. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  2. Mitogen-stimulated and rapamycin-sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells.

    PubMed

    Wilson-O'Brien, Amy L; Dehaan, Carrie L; Rogers, Suzanne

    2008-03-01

    We hypothesized that glucose transporter 12 (GLUT12) is involved in regulation of glucose flux in distal renal tubules in response to elevated glucose. We used the Madin-Darby canine kidney polarized epithelial cell model and neutralizing antibodies to analyze GLUT12 targeting and directional GLUT12-mediated glucose transport. At physiological glucose concentrations, GLUT12 was localized to a perinuclear position. High glucose and serum treatment resulted in GLUT12 localization to the apical membrane. This mitogen-stimulated targeting of GLUT12 was inhibited by rapamycin, the specific inhibitor of mammalian target of rapamycin (mTOR). The functional role of GLUT12 was also examined. We constructed a GLUT12 cDNA containing a c-Myc epitope tag in the fifth exofacial loop. Assays of glucose transport at the apical membrane were performed using Transwell filters. By comparing transport assays in the presence of neutralizing anti-c-Myc monoclonal antibody, we specifically measured GLUT12-mediated glucose transport at the apical surface. GLUT12-mediated glucose transport was mitogen dependent and rapamycin sensitive. Our results implicate mTOR signaling in a novel pathway of glucose transporter protein targeting and glucose transport. Activity of the mTOR pathway has been associated with diabetic kidney disease. Our results provide evidence for a link between GLUT12 protein trafficking, glucose transport and signaling molecules central to the control of metabolic disease processes. PMID:18039784

  3. ‘Transient’ Genetic Suppression Facilitates Generation of Hexose Transporter Null Mutants in Leishmania mexicana

    PubMed Central

    Feng, Xiuhong; Rodriguez-Contreras, Dayana; Polley, Tamsen; Lye, Lon-Fye; Scott, David; Burchmore, Richard J.S.; Beverley, Stephen M.; Landfear, Scott M.

    2012-01-01

    Summary The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2, and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in WT parasites. These data suggested a model where this 29–40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed ORFs covering the 29–40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms. PMID:23170981

  4. Functional characterization of nucleoside transporter gene replacements in Leishmania donovani.

    PubMed

    Liu, Wei; Boitz, Jan M; Galazka, Jon; Arendt, Cassandra S; Carter, Nicola S; Ullman, Buddy

    2006-12-01

    Leishmania donovani express two nucleoside transporters of non-overlapping ligand selectivity. To evaluate the physiological role of nucleoside transporters in L. donovani, homozygous null mutants of the genes encoding the LdNT1 adenosine-pyrimidine nucleoside transporter and the LdNT2 inosine-guanosine transporter were created singly and in combination by single targeted gene replacement followed by selection for loss-of-heterozygosity. The mutant alleles were verified by Southern blotting, and the effects of gene replacement on transport phenotype were evaluated by rapid sampling transport measurements and by drug resistance profiles. The Deltaldnt1, Deltaldnt2, and Deltaldnt1/Deltaldnt2 mutants were all capable of proliferation in defined culture medium supplemented with any of a spectrum of purine nucleobases or nucleosides, except that a Deltaldnt2 lesion conferred an inability to efficiently salvage exogenous xanthosine, a newly discovered ligand of LdNT2. Each of the three knockout strains was viable as promastigotes and axenic amastigotes and capable of maintaining an infection in J774 and bone marrow-derived murine macrophages. These genetic studies demonstrate: (1) that L. donovani promastigotes, axenic amastigotes, and tissue amastigotes are viable in the absence of nucleoside transport; (2) that nucleoside transporters are not essential for sustaining an infection in mammalian host cells; (3) that the phagolysosome of macrophages is likely to contain purines that are not LdNT1 or LdNT2 ligands, i.e., nucleobases. Furthermore, the Deltaldnt1, Deltaldnt2, and Deltaldnt1/Deltaldnt2 knockouts offer a unique genetically defined null background for the biochemical and genetic characterization of nucleoside transporter genes and cDNAs from phylogenetically diverse species and of genetically manipulated LdNT1 and LdNT2 constructs. PMID:17050001

  5. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles.

    PubMed

    Ou, Guangshuo; Koga, Makato; Blacque, Oliver E; Murayama, Takashi; Ohshima, Yasumi; Schafer, Jenny C; Li, Chunmei; Yoder, Bradley K; Leroux, Michel R; Scholey, Jonathan M

    2007-05-01

    Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis. PMID:17314406

  6. SLC6 Transporters: Structure, Function, Regulation, Disease Association and Therapeutics

    PubMed Central

    Bala, Pramod Akula; Foster, James; Carvelli, Lucia; Henry, L. Keith

    2012-01-01

    The SLC6 family of secondary active transporters are integral membrane solute carrier proteins characterized by the Na+-dependent translocation of small amino acid or amino acid-like substrates. SLC6 transporters, which include the serotonin, dopamine, norepinephrine, GABA, taurine, creatine, as well as amino acid transporters, are associated with a number of human diseases and disorders making this family a critical target for therapeutic development. In addition, several members of this family are directly involved in the action of drugs of abuse such as cocaine, amphetamines, and ecstasy. Recent advances providing structural insight into this family have vastly accelerated our ability to study these proteins and their involvement in complex biological processes. PMID:23506866

  7. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  8. Functional genomics of the cilium, a sensory organelle.

    PubMed

    Blacque, Oliver E; Perens, Elliot A; Boroevich, Keith A; Inglis, Peter N; Li, Chunmei; Warner, Adam; Khattra, Jaswinder; Holt, Rob A; Ou, Guangshuo; Mah, Allan K; McKay, Sheldon J; Huang, Peter; Swoboda, Peter; Jones, Steve J M; Marra, Marco A; Baillie, David L; Moerman, Donald G; Shaham, Shai; Leroux, Michel R

    2005-05-24

    Cilia and flagella play important roles in many physiological processes, including cell and fluid movement, sensory perception, and development. The biogenesis and maintenance of cilia depend on intraflagellar transport (IFT), a motility process that operates bidirectionally along the ciliary axoneme. Disruption in IFT and cilia function causes several human disorders, including polycystic kidneys, retinal dystrophy, neurosensory impairment, and Bardet-Biedl syndrome (BBS). To uncover new ciliary components, including IFT proteins, we compared C. elegans ciliated neuronal and nonciliated cells through serial analysis of gene expression (SAGE) and screened for genes potentially regulated by the ciliogenic transcription factor, DAF-19. Using these complementary approaches, we identified numerous candidate ciliary genes and confirmed the ciliated-cell-specific expression of 14 novel genes. One of these, C27H5.7a, encodes a ciliary protein that undergoes IFT. As with other IFT proteins, its ciliary localization and transport is disrupted by mutations in IFT and bbs genes. Furthermore, we demonstrate that the ciliary structural defect of C. elegans dyf-13(mn396) mutants is caused by a mutation in C27H5.7a. Together, our findings help define a ciliary transcriptome and suggest that DYF-13, an evolutionarily conserved protein, is a novel core IFT component required for cilia function. PMID:15916950

  9. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters.

    PubMed

    Jaehme, Michael; Slotboom, Dirk Jan

    2015-09-01

    Many bacteria can take up vitamins from the environment via specific transport machineries. Uptake is essential for organisms that lack complete vitamin biosynthesis pathways, but even in the presence of biosynthesis routes uptake is likely preferred, because it is energetically less costly. Pnu transporters represent a class of membrane transporters for a diverse set of B-type vitamins. They were identified 30 years ago and catalyze transport by the mechanism of facilitated diffusion, without direct coupling to ATP hydrolysis or transport of coupling ions. Instead, directionality is achieved by metabolic trapping, in which the vitamin substrate is converted into a derivative that cannot be transported, for instance by phosphorylation. The recent crystal structure of the nicotinamide riboside transporter PnuC has provided the first insights in substrate recognition and selectivity. Here, we will summarize the current knowledge about the function, structure, and evolution of Pnu transporters. Additionally, we will highlight their role for potential biotechnological and pharmaceutical applications. PMID:26352203

  10. Functions of Ion Transport Peptide and Ion Transport Peptide-Like in the Red Flour Beetle Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ion transport peptide (ITP) and ITP-like (ITPL) are highly conserved neuropeptides in insects and crustaceans. We investigated the alternatively spliced variants of ITP/ITPL in Tribolium castaneum to understand their functions. We identified three alternatively spliced transcripts named itp, itpl-...

  11. Creatine transporter deficiency: Novel mutations and functional studies.

    PubMed

    Ardon, O; Procter, M; Mao, R; Longo, N; Landau, Y E; Shilon-Hadass, A; Gabis, L V; Hoffmann, C; Tzadok, M; Heimer, G; Sada, S; Ben-Zeev, B; Anikster, Y

    2016-09-01

    X-linked cerebral creatine deficiency (MIM 300036) is caused by deficiency of the creatine transporter encoded by the SLC6A8 gene. Here we report three patients with this condition from Israel. These unrelated patients were evaluated for global developmental delays and language apraxia. Borderline microcephaly was noted in one of them. Diagnosis was prompted by brain magnetic resonance imaging and spectroscopy which revealed normal white matter distribution, but absence of the creatine peak in all three patients. Biochemical testing indicated normal plasma levels of creatine and guanidinoacetate, but an increased urine creatine/creatinine ratio. The diagnosis was confirmed by demonstrating absent ([14])C-creatine transport in fibroblasts. Molecular studies indicated that the first patient is hemizygous for a single nucleotide change substituting a single amino acid (c.619 C > T, p.R207W). Expression studies in HeLa cells confirmed the causative role of the R207W substitution. The second patient had a three base pair deletion in the SLC6A8 gene (c.1222_1224delTTC, p.F408del) as well as a single base change (c.1254 + 1G > A) at a splicing site in the intron-exon junction of exon 8, the latter occurring de novo. The third patient, had a three base pair deletion (c.1006_1008delAAC, p.N336del) previously reported in other patients with creatine transporter deficiency. These three patients are the first reported cases of creatine transporter deficiency in Israel. PMID:27408820

  12. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  13. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    PubMed Central

    Guh, Ying-Jey; Lin, Chia-Hao; Hwang, Pung-Pung

    2015-01-01

    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na+ uptake/H+ secretion/NH4+ excretion, Ca2+ uptake, Na+/Cl- uptake, K+ secretion, and Cl- uptake/HCO3- secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields. PMID:26600749

  14. Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters.

    PubMed

    Schothorst, Joep; Kankipati, Harish Nag; Conrad, Michaela; Samyn, Dieter R; Van Zeebroeck, Griet; Popova, Yulia; Rubio-Texeira, Marta; Persson, Bengt L; Thevelein, Johan M

    2013-11-01

    In the yeast Saccharomyces cerevisiae several nutrient transporters have been identified that possess an additional function as nutrient receptor. These transporters are induced when yeast cells are starved for their substrate, which triggers entry into stationary phase and acquirement of a low protein kinase A (PKA) phenotype. Re-addition of the lacking nutrient triggers exit from stationary phase and sudden activation of the PKA pathway, the latter being mediated by the nutrient transceptors. At the same time, the transceptors are ubiquitinated, endocytosed and sorted to the vacuole for breakdown. Investigation of the signaling function of the transceptors has provided a new read-out and new tools for gaining insight into the functionality of transporters. Identification of amino acid residues that bind co-transported ions in symporters has been challenging because the inactivation of transport by site-directed mutagenesis is not conclusive with respect to the cause of the inactivation. The discovery of nontransported agonists of the signaling function in transceptors has shown that transport is not required for signaling. Inactivation of transport with maintenance of signaling in transceptors supports that a true proton-binding residue was mutagenised. Determining the relationship between transport and induction of endocytosis has also been challenging, since inactivation of transport by mutagenesis easily causes loss of all affinity for the substrate. The use of analogues with different combinations of transport and signaling capacities has revealed that transport, ubiquitination and endocytosis can be uncoupled in several unexpected ways. The results obtained are consistent with transporters undergoing multiple substrate-induced conformational changes, which allow interaction with different accessory proteins to trigger specific downstream events. PMID:24114446

  15. Effects of various pharmacological agents on the function of norepinephrine transporter.

    PubMed

    Satoh, Noriaki; Toyohira, Yumiko; Takahashi, Keita; Yanagihara, Nobuyuki

    2015-03-01

    The norepinephrine transporter is selectively expressed in noradrenergic nerve terminals, where it can exert spatial and temporal control over the action of norepinephrine. The norepinephrine transporter mediates the termination of neurotransmission via the reuptake of norepinephrine released into the extracellular milieu. In the present brief review, we report our recent studies about the effects of various pharmacological agents such as fasudil, nicotine, pentazocine, ketamine and genistein on norepinephrine transporter function. PMID:25787100

  16. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth.

    PubMed

    Yamori, Wataru; Shikanai, Toshiharu

    2016-04-29

    The light reactions in photosynthesis drive both linear and cyclic electron transport around photosystem I (PSI). Linear electron transport generates both ATP and NADPH, whereas PSI cyclic electron transport produces ATP without producing NADPH. PSI cyclic electron transport is thought to be essential for balancing the ATP/NADPH production ratio and for protecting both photosystems from damage caused by stromal overreduction. Two distinct pathways of cyclic electron transport have been proposed in angiosperms: a major pathway that depends on the PROTON GRADIENT REGULATION 5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1) proteins, which are the target site of antimycin A, and a minor pathway mediated by the chloroplast NADH dehydrogenase-like (NDH) complex. Recently, the regulation of PSI cyclic electron transport has been recognized as essential for photosynthesis and plant growth. In this review, we summarize the possible functions and importance of the two pathways of PSI cyclic electron transport. PMID:26927905

  17. SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms

    PubMed Central

    Bhutia, Yangzom D.; Babu, Ellappan; Ramachandran, Sabarish; Yang, Shengping; Thangaraju, Muthusamy; Ganapathy, Vadivel

    2016-01-01

    The role of plasma membrane transporters in cancer is receiving increasing attention in recent years. Several transporters for essential nutrients are up-regulated in cancer and serve as tumour promoters. Transporters could also function as tumour suppressors. To date, four transporters belonging to the SLC gene family have been identified as tumour suppressors. SLC5A8 is a Na+-coupled transporter for monocarboxylates. Among its substrates are the bacterial fermentation products butyrate and propionate and the ubiquitous metabolite pyruvate. The tumour-suppressive function of this transporter relates to the ability of butyrate, propionate and pyruvate to inhibit histone deacetylases (HDAC). SLC5A8 functions as a tumour suppressor in most tissues studied thus far, and provides a molecular link to Warburg effect, a characteristic feature in most cancers. It also links colonic bacteria and dietary fibre to the host. SLC26A3 as a tumour suppressor is restricted to colon; it is a Cl-/HCO3- exchanger, facilitating the efflux of HCO3-. The likely mechanism for the tumour-suppressive function of SLC26A3 is related to intracellular pH regulation. SLC39A1 is a Zn2+ transporter and its role in tumour suppression has been shown in prostate. Zn2+ is present at high concentrations in normal prostate where it elicits its tumour-suppressive function. SLC22A18 is possibly an organic cation transporter, but the identity of its physiological substrates is unknown. As such, there is no information on molecular pathways responsible for the tumour-suppressive function of this transporter. It is likely that additional SLC transporters will be discovered as tumour suppressors in the future. PMID:27118869

  18. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family

    PubMed Central

    2010-01-01

    Background In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. Results We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT) isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. Conclusions The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth. PMID:20487568

  19. Functional expression of the Chlorella hexose transporter in Schizosaccharomyces pombe.

    PubMed Central

    Sauer, N; Caspari, T; Klebl, F; Tanner, W

    1990-01-01

    Schizosaccharomyces pombe cells were transformed with an S. pombe expression vector containing a full-length cDNA of the Chlorella hexose transporter. The transformed cells accumulated 3-O-methylglucose up to 10-fold, whereas wild-type S. pombe and control transformants could only equilibrate this sugar analogue. In a pH-jump experiment, in which extracellular pH was lowered by 1.9 units, the accumulation ratio was increased in transformed cells but not in control cells. This result indicates that the gene product, Chlorella H+/glucose-symporter protein, and a pH gradient suffice for active sugar uptake. Km values for glucose, 6-deoxyglucose, and 3-O-methylglucose of 1.5 x 10(-5) M, 2.7 x 10(-4) M, and 1.0 x 10(-3) M, respectively, were identical in Chlorella and in S. pombe cells transformed with Chlorella cDNA and approximately 100-fold lower than those of the endogenous transport system of S. pombe. Images PMID:11607110

  20. Functional characterization of a putative disaccharide membrane transporter in crustacean intestine.

    PubMed

    Likely, Rasheda; Johnson, Eric; Ahearn, Gregory A

    2015-02-01

    Transepithelial absorption of dietary sucrose in the American lobster, Homarus americanus, was investigated by mounting an intestine in a perfusion chamber to characterize mucosal to serosal (MS) (14)C-sucrose transport. These fluxes were measured by adding varying concentrations of (14)C-sucrose to the perfusate and monitoring their appearance in the bathing solution. Transepithelial (14)C-sucrose transport was the combination of a hyperbolic function of luminal concentration, following Michaelis-Menten kinetics, and apparent diffusion. The kinetic constants of the putative sucrose transporter were KM = 20.50 ± 6.00 µM and J max = 1.81 ± 0.50 pmol/cm(2) × min. Phloridzin, an inhibitor of Na(+)-dependent mucosal glucose transport, decreased MS (14)C-sucrose transport. Decreased MS (14)C-sucrose transport also occurred in the presence of luminal trehalose, a disaccharide containing D-glucose moieties. Thin-layer chromatography (TLC) identified the chemical nature of radioactively labeled sugars in the bath following transepithelial transport. TLC revealed (14)C-sucrose was transported across the intestine largely intact with no (14)C-glucose or (14)C-fructose appearing in the serosal bath or luminal perfusate. Only 13% of bath radioactivity was volatile metabolites. Results suggest that disaccharide sugars can be transported intact across crustacean intestine and support the occurrence of a functional disaccharide membrane transporter. PMID:25416426

  1. Kymographic Analysis of Transport in an Individual Neuronal Sensory Cilium in Caenorhabditis elegans.

    PubMed

    O'Hagan, Robert; Barr, Maureen M

    2016-01-01

    Intraflagellar Transport (IFT) is driven by molecular motors that travel upon microtubule-based ciliary axonemes. In the single-celled alga Chlamydomonas reinhardtii, movement of a single anterograde IFT motor, heterotrimeric kinesin-II, is required to generate two identical motile flagella. The function of this canonical anterograde IFT motor is conserved among all eukaryotes, yet multicellular organisms can generate cilia of diverse structures and functions, ranging from simple threadlike non-motile primary cilia to the elaborate cilia that make up rod and cone photoreceptors in the retina. An emerging theme is that additional molecular motors modulate the canonical IFT machinery to give rise to differing ciliary morphologies. Therefore, a complete understanding of the trafficking of ciliary receptors, as well as the biogenesis, maintenance, specialization, and function of cilia, requires the characterization of motor molecules.Here, we describe in detail our method for measuring the motility of proteins in cilia or dendrites of C. elegans male-specific CEM ciliated sensory neurons using time-lapse microscopy and kymography of green fluorescent protein (GFP)-tagged motors, receptors, and cargos. We describe, as a specific example, OSM-3::GFP puncta moving in cilia, but also include (Fig. 1) with settings that have worked well for us measuring movement of heterotrimeric kinesin-II, IFT particles, and the polycystin TRP channel PKD-2. PMID:27514919

  2. Empirical sediment transport function predicting seepage erosion undercutting for cohesive bank failure prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remains a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including ...

  3. Architecture and function of IFT complex proteins in ciliogenesis

    PubMed Central

    Taschner, Michael; Bhogaraju, Sagar; Lorentzen, Esben

    2014-01-01

    Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT. PMID:22118932

  4. Transport functions of nitrogen up to 26,000 K

    NASA Technical Reports Server (NTRS)

    Hermann, W.; Schade, E.

    1980-01-01

    The current field strength characteristic, E(1), and a large number of radial temperature distributions, T(r,I), measured in a 5 mm N2 cascade arc at normal pressure are used to evaluate the transport properties of nitrogen up to 26,000 K. The electrical conductivity sigma (T) and the Coulomb cross section are determined directly from the E(I) and several T(r,I) curves. Between 10,000 and 15,000 K the radiative energy flux for different arc current, the thermal conductivity, and from this the charge exchange cross section are determined in a good approximation utilizing the large number of measured temperature distributions. It turns out, that at the highest measured arc current, i.e., 570 A, in the axial region of the arc about 95% of the supplied energy is carried off by radiation.

  5. Transport on Riemannian manifold for functional connectivity-based classification.

    PubMed

    Ng, Bernard; Dressler, Martin; Varoquaux, Gaël; Poline, Jean Baptiste; Greicius, Michael; Thirion, Bertrand

    2014-01-01

    We present a Riemannian approach for classifying fMRI connectivity patterns before and after intervention in longitudinal studies. A fundamental difficulty with using connectivity as features is that covariance matrices live on the positive semi-definite cone, which renders their elements inter-related. The implicit independent feature assumption in most classifier learning algorithms is thus violated. In this paper, we propose a matrix whitening transport for projecting the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. We show on real data that our approach provides significantly higher classification accuracy than directly using Pearson's correlation. We further propose a non-parametric scheme for identifying significantly discriminative connections from classifier weights. Using this scheme, a number of neuroanatomically meaningful connections are found, whereas no significant connections are detected with pure permutation testing. PMID:25485405

  6. A kinome wide screen identifies novel kinases involved in regulation of monoamine transporter function.

    PubMed

    Vuorenpää, Anne; Ammendrup-Johnsen, Ina; Jørgensen, Trine N; Gether, Ulrik

    2016-09-01

    The high affinity transporters for the monoamine neurotransmitters, dopamine, norepinephrine, and serotonin, play a key role in controlling monoaminergic neurotransmission. It is believed that the transporters (DAT, NET and SERT, respectively) are subject to tight regulation by the cellular signaling machinery to maintain monoaminergic homeostasis. Kinases constitute a pivotal role in cellular signaling, however, the regulation of monoamine transporters by the entire ensemble of kinases is unknown. Here, we perform a whole human kinome RNA interference screen to identify novel kinases involved in regulation of monoamine transporter function and surface expression. A primary screen in HEK 293 cells stably expressing DAT or SERT with siRNAs against 573 human kinases revealed 93 kinases putatively regulating transporter function. All 93 hits, which also included kinases previously implicated in monoamine transporter regulation, such as Protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), were validated with a new set of siRNAs in a secondary screen. In this screen we assessed both changes in uptake and surface expression leading to selection of 11 kinases for further evaluation in HEK 293 cells transiently expressing DAT, SERT or NET. Subsequently, three kinases; salt inducible kinase 3 (SIK3), cAMP-dependent protein kinase catalytic subunit alpha (PKA C-α) and protein kinase X-linked (PrKX); were selected for additional exploration in catecholaminergic CATH.a differentiated cells (CAD) and rat chromocytoma (PC12) cells. Whereas SIK3 likely transcriptionally regulated expression of the three transfected transporters, depletion of PKA C-α was shown to decrease SERT function. Depletion of PrKX caused decreased surface expression and function of DAT without changing protein levels, suggesting that PrKX stabilizes the transporter at the cell surface. Summarized, our data provide novel insight into kinome regulation of the monoamine transporters and

  7. Glutamine transporters in mammalian cells and their functions in physiology and cancer.

    PubMed

    Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-10-01

    The SLC (solute carrier)-type transporters (~400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26724577

  8. Functional Characterization of a Hexose Transporter from Root Endophyte Piriformospora indica

    PubMed Central

    Rani, Mamta; Raj, Sumit; Dayaman, Vikram; Kumar, Manoj; Dua, Meenakshi; Johri, Atul K.

    2016-01-01

    Understanding the mechanism of photosynthate transfer at symbiotic interface by fungal monosaccharide transporter is of substantial importance. The carbohydrate uptake at the apoplast by the fungus is facilitated by PiHXT5 hexose transporter in root endophytic fungus Piriformospora indica. The putative PiHXT5 belongs to MFS superfamily with 12 predicted transmembrane helices. It possess sugar transporter PFAM motif (PF0083) and MFS superfamily domain (PS50850). It contains the signature tags related to glucose transporter GLUT1 of human erythrocyte. PiHXT5 is regulated in response to mutualism as well as glucose concentration. We have functionally characterized PiHXT5 by complementation of hxt-null mutant of Saccharomyces cerevisiae EBY.VW4000. It is involved in transport of multiple sugars ranging from D-glucose, D-fructose, D-xylose, D-mannose, D-galactose with decreasing affinity. The uncoupling experiments indicate that it functions as H+/glucose co-transporter. Further, pH dependence analysis suggests that it functions maximum between pH 5 and 6. The expression of PiHXT5 is dependent on glucose concentration and was found to be expressed at low glucose levels (1 mM) which indicate its role as a high affinity glucose transporter. Our study on this sugar transporter will help in better understanding of carbon metabolism and flow in this agro-friendly fungus. PMID:27499747

  9. Electron transport calculations with Wannier functions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Wushi; Lopez-Bezanilla, Alejandro; Littlewood, Peter; Andreas Roelofs'group at Argonne National Lab Collaboration

    The vertical stacking of 2D materials forming van der Waals heterostructures (vdWHs) exhibits a wide range of interesting properties. A combined approach based on the Green's function formalism and a mean-field description of the electronic structure is used to calculate vertical electron transport in vdWHs. Tight-binding parameters obtained from Maximally Localized Wannier Functions enable us to model quantum electron transport at low computational costs. Our analysis of electron transport efficiencies provides the foundation and motivation for experimental works.

  10. Functional Characterization of Dipeptide Transport System in Human Jejunum

    PubMed Central

    Adibi, Siamak A.; Soleimanpour, Mohammad R.

    1974-01-01

    The present studies were performed to determine whether dipeptide absorption in human jejunum exhibits the characteristics of carrier-mediated transport. 15-cm jejunal segments from human volunteers were perfused with test solutions containing varying amounts of either glycylglycine, glycylleucine, glycine, leucine, glycylglycine with leucine or glycine, glycylglycine with glycylleucine, or glycylleucine with an equimolar mixture of free glycine and leucine. Jejunal absorption rates of both glycylglycine and glycylleucine followed the kinetics of a saturable process. The Km value in millimoles/liter of glycylglycine was significantly greater than the Km value of glycylleucine (43.3±2.6 vs. 26.8±5.9, P < 0.05); and the Km value of glycine was also significantly greater than the Km value of leucine (42.7±7.5 vs. 20.4±5.4, P < 0.05). While overlapping occurred among the Km values of free amino acids and dipeptides, the transport kinetics of dipeptides were characterized by higher Vmax values (in micromoles per minute per 15 centimeters) than those of free amino acids. For example, the Vmax values for glycylglycine and glycine were 837±62 and 590±56, respectively (P < 0.02). While jejunal absorption rates of glycylglycine were not significantly affected by free leucine or free glycine, they were competitively inhibited by glycylleucine. The jejunal absorption rate of glycylleucine was not significantly altered by an equimolar mixture of free glycine and leucine. The selective absorption of dipeptides was investigated by infusing three equimolar mixtures, each containing two different dipeptides. Among the three dipeptides examined, glycylglycine was the least absorbed. There was no significant difference between the absorption of glycylleucine and leucylglycine. The above studies suggest that absorption of both glycylglycine and glycylleucine is mediated by a carrier which is not shared with free neutral amino acids; and that both COOH- and NH2-terminal amino

  11. Water transport through functionalized nanotubes with tunable hydrophobicity

    SciTech Connect

    Moskowitz, Ian; Snyder, Mark A.; Mittal, Jeetain

    2014-11-14

    Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ≈ 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f – an approximately linear increase in flux as a function of f for f < 0.4, and almost no change in flux for higher f values, similar to the change in water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.

  12. Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function.

    PubMed

    Raja, Mobeen; Kinne, Rolf K H

    2015-01-01

    Two families of glucose transporter - the Na(+)-dependent glucose cotransporter-1 (SGLT family) and the facilitated diffusion glucose transporter family (GLUT family) - play a crucial role in the translocation of glucose across the epithelial cell membrane. How genetic mutations cause life-threatening diseases like GLUT1-deficiency syndrome (GLUT1-DS) is not well understood. In this review, we have combined previous functional data with our in silico analyses of the bacterial homologue of GLUT members, XylE (an outward-facing, partly occluded conformation) and previously proposed GLUT1 homology model (an inward-facing conformation). A variety of native and mutant side chain interactions were modeled to highlight the potential roles of mutations in destabilizing protein-protein interaction hence triggering structural and functional defects. This study sets the stage for future studies of the structural properties that mediate GLUT1 dysfunction and further suggests that both SGLT and GLUT families share conserved domains that stabilize the transporter structure/function via a similar mechanism. PMID:25863194

  13. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport.

    PubMed

    Xia, Xiudong; Fan, Xiaorong; Wei, Jia; Feng, Huimin; Qu, Hongye; Xie, Dan; Miller, Anthony J; Xu, Guohua

    2015-01-01

    Plant proteins belonging to the NPF (formerly NRT1/PTR) family are well represented in every genome and function in transporting a wide variety of substrates. In this study, we showed that rice OsNPF2.4 is located in the plasma membrane and is expressed mainly in the epidermis, xylem parenchyma, and phloem companion cells. Functional analysis in oocytes showed that OsNPF2.4 is a pH-dependent, low-affinity NO₃⁻ transporter. Short-term (¹⁵NO₃⁻) influx rate, long-term NO₃⁻ acquisition by root, and upward transfer from root to shoot were decreased by disruption of OsNPF2.4 and increased by OsNPF2.4 overexpression under high NO₃⁻ supply. Moreover, the redistribution of NO₃⁻ in the mutants in comparison with the wild type from the oldest leaf to other organs, particularly to N-starved roots, was dramatically changed. Knockout of OsNPF2.4 decreased rice growth and potassium (K) concentration in xylem sap, root, culm, and sheath, but increased the shoot:root ratio of tissue K under higher NO₃⁻. We conclude that OsNPF2.4 functions in acquisition and long-distance transport of NO₃⁻ , and that altering its expression has an indirect effect on K recycling between the root and shoot. PMID:25332358

  14. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  15. Pyrethroid pesticide-induced alterations in dopamine transporter function

    PubMed Central

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM–100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD. PMID:16005927

  16. Membrane Protein Transport in Photoreceptors: The Function of PDEδ

    PubMed Central

    Baehr, Wolfgang

    2014-01-01

    This lecture details the elucidation of cGMP phosphodiesterase (PDEδ), discovered 25 years ago by Joe Beavo at the University of Washington. PDEδ, once identified as a fourth PDE6 subunit, is now regarded as a promiscuous prenyl-binding protein and important chaperone of prenylated small G proteins of the Ras superfamily and prenylated proteins of phototransduction. Alfred Wittinghofer's group in Germany showed that PDEδ forms an immunoglobulin-like β-sandwich fold that is closely related in structure to other lipid-binding proteins, for example, Uncoordinated 119 (UNC119) and RhoGDI. His group cocrystallized PDEδ with ARL (Arf-like) 2GTP, and later with farnesylated Rheb (ras homolog expressed in brain). PDEδ specifically accommodates farnesyl and geranylgeranyl moieties in the absence of bound protein. Germline deletion of the Pde6d gene encoding PDEδ impeded transport of rhodopsin kinase (GRK1) and PDE6 to outer segments, causing slowly progressing, recessive retinitis pigmentosa. A rare PDE6D null allele in human patients, discovered by Tania Attié-Bitach in France, specifically impeded trafficking of farnesylated phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase (INPP5E) to cilia, causing severe syndromic ciliopathy (Joubert syndrome). Binding of cargo to PDEδ is controlled by Arf-like proteins, ARL2 and ARL3, charged with guanosine-5′-triphosphate (GTP). Arf-like proteins 2 and 3 are unprenylated small GTPases that serve as cargo displacement factors. The lifetime of ARL3GTP is controlled by its GTPase-activating protein, retinitis pigmentosa protein 2 (RP2), which accelerates GTPase activity up to 90,000-fold. RP2 null alleles in human patients are associated with severe X-linked retinitis pigmentosa (XLRP). Germline deletion of RP2 in mouse, however, causes only a mild form of XLRP. Absence of RP2 prolongs the activity of ARL3GTP that, in turn, impedes PDE6δ–cargo interactions and trafficking of prenylated protein to the outer

  17. A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae

    PubMed Central

    Bidossi, Alessandro; Mulas, Laura; Decorosi, Francesca; Colomba, Leonarda; Ricci, Susanna; Pozzi, Gianni; Deutscher, Josef; Viti, Carlo; Oggioni, Marco Rinaldo

    2012-01-01

    The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium∶solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection. PMID:22428019

  18. The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans.

    PubMed

    Bacaj, Taulant; Lu, Yun; Shaham, Shai

    2008-02-01

    Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function. PMID:18245347

  19. Fuzzy Multi-Objective Transportation Planning with Modified S-Curve Membership Function

    NASA Astrophysics Data System (ADS)

    Peidro, D.; Vasant, P.

    2009-08-01

    In this paper, the S-Curve membership function methodology is used in a transportation planning decision (TPD) problem. An interactive method for solving multi-objective TPD problems with fuzzy goals, available supply and forecast demand is developed. The proposed method attempts simultaneously to minimize the total production and transportation costs and the total delivery time with reference to budget constraints and available supply, machine capacities at each source, as well as forecast demand and warehouse space constraints at each destination. We compare in an industrial case the performance of S-curve membership functions, representing uncertainty goals and constraints in TPD problems, with linear membership functions.

  20. Adenosine transporters and receptors: key elements for retinal function and neuroprotection.

    PubMed

    Dos Santos-Rodrigues, Alexandre; Pereira, Mariana R; Brito, Rafael; de Oliveira, Nádia A; Paes-de-Carvalho, Roberto

    2015-01-01

    Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. PMID:25817878

  1. Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns.

    PubMed

    Tian, Yuan; Gao, Bin; Wang, Yu; Morales, Verónica L; Carpena, Rafael Muñoz; Huang, Qingguo; Yang, Liuyan

    2012-04-30

    Knowledge of the fate and transport of functionalized carbon nanotubes (CNTs) in porous media is crucial to understand their environmental impacts. In this study, laboratory column and modeling experiments were conducted to mechanistically compare the retention and transport of two types of functionalized CNTs (i.e., single-walled nanotubes and multi-walled nanotubes) in acid-cleaned, baked, and natural sand under unfavorable conditions. The CNTs were highly mobile in the acid-cleaned sand columns but showed little transport in the both natural and baked sand columns. In addition, the retention of the CNTs in the both baked and natural sand was strong and almost irreversible even after reverse, high-velocity, or surfactant flow flushing. Both experimental and modeling results showed that pH is one of the factors dominating CNT retention and transport in natural and baked sand. Retention of the functionalized CNTs in the natural and baked sand columns reduced dramatically when the system pH increased. Our results suggest that the retention and transport of the functionalized CNTs in natural sand porous media were mainly controlled by strong surface deposition through the electrostatic and/or hydrogen-bonding attractions between surface function groups of the CNTs and metal oxyhydroxide impurities on the sand surfaces. PMID:22361629

  2. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  3. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite.

    PubMed

    Kenthirapalan, Sanketha; Waters, Andrew P; Matuschewski, Kai; Kooij, Taco W A

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  4. mRNA transport in yeast: time to reinvestigate the functions of the nucleolus.

    PubMed Central

    Schneiter, R; Kadowaki, T; Tartakoff, A M

    1995-01-01

    Nucleocytoplasmic transport of mRNA is vital to gene expression and may prove to be key to its regulation. Genetic approaches in Saccharomyces cerevisiae have led to the identification of conditional mutants defective in mRNA transport. Mutations in approximately two dozen genes result in accumulation of transcripts, trapped at various sites in the nucleus, as detected by in situ hybridization. Phenotypic and molecular analyses of many of these mRNA transport mutants suggest that, in yeast, the function of the nucleus is not limited to the biogenesis of pre-ribosomes but may also be important for transport of poly(A)+ RNA. A similar function of the animal cell nucleolus is suggested by several observations. Images PMID:7626803

  5. Functional analysis of the rice vacuolar zinc transporter OsMTP1

    PubMed Central

    Menguer, Paloma K.; Farthing, Emily; Peaston, Kerry A.; Ricachenevsky, Felipe Klein; Fett, Janette Palma; Williams, Lorraine E.

    2013-01-01

    Heavy metal homeostasis is maintained in plant cells by specialized transporters which compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 is a member of the cation diffusion facilitator (CDF)/metal tolerance protein (MTP) family of metal cation transporters in Oryza sativa, which is closely related to Arabidopsis thaliana MTP1. Functional complementation of the Arabidopsis T-DNA insertion mutant mtp1-1 demonstrates that OsMTP1 transports Zn in planta and localizes at the tonoplast. When heterologously expressed in the yeast mutant zrc1 cot1, OsMTP1 complemented its Zn hypersensitivity and was also localized to the vacuole. OsMTP1 alleviated, to some extent, the Co sensitivity of this mutant, rescued the Fe hypersensitivity of the ccc1 mutant at low Fe concentrations, and restored growth of the Cd-hypersensitive mutant ycf1 at low Cd concentrations. These results suggest that OsMTP1 transports Zn but also Co, Fe, and Cd, possibly with lower affinity. Site-directed mutagenesis studies revealed two substitutions in OsMTP1 that alter the transport function of this protein. OsMTP1 harbouring a substitution of Leu82 to a phenylalanine can still transport low levels of Zn, with an enhanced affinity for Fe and Co, and a gain of function for Mn. A substitution of His90 with an aspartic acid completely abolishes Zn transport but improves Fe transport in OsMTP1. These amino acid residues are important in determining substrate specificity and may be a starting point for refining transporter activity in possible biotechnological applications, such as biofortification and phytoremediation. PMID:23761487

  6. The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11.

    PubMed

    Loganathan, Sampath K; Lukowski, Chris M; Casey, Joseph R

    2016-01-15

    Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl(-)/HCO3(-) exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function. PMID:26582474

  7. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    PubMed Central

    Brandoni, Anabel; Hazelhoff, María Herminia; Bulacio, Romina Paula; Torres, Adriana Mónica

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct. The absorption, distribution and elimination of drugs are impaired during this pathology. Prolonged cholestasis may alter both liver and kidney function. Lactam antibiotics, diuretics, non-steroidal anti-inflammatory drugs, several antiviral drugs as well as endogenous compounds are classified as organic anions. The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds. It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions. The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis, such as multidrug resistance-associated protein 2, organic anion transporting polypeptide 1, organic anion transporter 3, bilitranslocase, bromosulfophthalein/bilirubin binding protein, organic anion transporter 1 and sodium dependent bile salt transporter. The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions. PMID:23197884

  8. Electronic and transport properties edge functionalized graphene nanoribbons-An ab initio approach

    SciTech Connect

    Chauhan, Satyendra Singh; Srivastava, Pankaj; Shrivastva, A. K.

    2014-04-24

    With the help of ab initio approach we have investigated the electronic and transport properties of edge functionalized zigzag graphene nanoribbons using density functional theory. We have studied the energetic stability and Fermi energy of ZGNRs. We have reported that the edge functionalization of zigzag graphene nanoribbons can break the degeneracy that can be used to promote the onset of a semiconducting to metal transition or a half metal to semiconducting state. The edge functionalization also promotes a metal-semimetal transition. It has also been observed that the transmission spectrum of the edge functionalized ZGNRs are different from those of pristine.

  9. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.

    2015-09-01

    The effects of surface functionalization on the electronic transport properties of the MXene compound Ti3C2 are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Fluorinated, oxidized and hydroxylated surfaces are considered and the obtained results are compared with the ones for the pristine MXene. It is found that the surface termination has a considerable impact on the electronic transport in MXene. For example, the fluorinated sample shows the largest transmission, whereas surface oxidation results in a considerable reduction of the electronic transmission. The current in the former sample can be up to 4 times larger for a given bias voltage as compared to the case of bare MXene. The increased transmission originates from the extended electronic states and smaller variations of the electrostatic potential profile. Our findings can be useful in designing MXene-based anode materials for energy storage applications, where enhanced electronic transport will be an asset.

  10. Isolation and functional characterization of the PfNT1 nucleoside transporter gene from Plasmodium falciparum.

    PubMed

    Carter, N S; Ben Mamoun, C; Liu, W; Silva, E O; Landfear, S M; Goldberg, D E; Ullman, B

    2000-04-01

    Plasmodium falciparum, the causative agent of the most lethal form of human malaria, is incapable of de novo purine synthesis, and thus, purine acquisition from the host is an indispensable nutritional requirement. This purine salvage process is initiated by the transport of preformed purines into the parasite. We have identified a gene encoding a nucleoside transporter from P. falciparum, PfNT1, and analyzed its function and expression during intraerythrocytic parasite development. PfNT1 predicts a polypeptide of 422 amino acids with 11 transmembrane domains that is homologous to other members of the equilibrative nucleoside transporter family. Southern analysis and BLAST searching of The Institute for Genomic Research (TIGR) malaria data base indicate that PfNT1 is a single copy gene located on chromosome 14. Northern analysis of RNA from intraerythrocytic stages of the parasite demonstrates that PfNT1 is expressed throughout the asexual life cycle but is significantly elevated during the early trophozoite stage. Functional expression of PfNT1 in Xenopus laevis oocytes significantly increases their ability to take up naturally occurring D-adenosine (K(m) = 13.2 microM) and D-inosine (K(m) = 253 microM). Significantly, PfNT1, unlike the mammalian nucleoside transporters, also has the capacity to transport the stereoisomer L-adenosine (K(m) > 500 microM). Inhibition studies with a battery of purine and pyrimidine nucleosides and bases as well as their analogs indicate that PfNT1 exhibits a broad substrate specificity for purine and pyrimidine nucleosides. These data provide compelling evidence that PfNT1 encodes a functional purine/pyrimidine nucleoside transporter whose expression is strongly developmentally regulated in the asexual stages of the P. falciparum life cycle. Moreover, the unusual ability to transport L-adenosine and the vital contribution of purine transport to parasite survival makes PfNT1 an attractive target for therapeutic evaluation. PMID

  11. Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter

    PubMed Central

    Jacques, Ismaele; Andrews, Norma W.; Huynh, Chau

    2010-01-01

    Leishmania amazonensis LIT1 was identified based on homology with IRT1, a ferrous iron transporter from Arabidopsis thaliana. Δlit1 Leishmania amazonensis are defective in intracellular replication and lesion formation in vivo, a virulence phenotype attributed to defective intracellular iron acquisition. Here we functionally characterize LIT1, directly demonstrating that it functions as a ferrous iron membrane transporter from the ZIP family. Conserved residues in the predicted transmembrane domains II, IV, V and VII of LIT1 are essential for iron transport in yeast, including histidines that were proposed to function as metal ligands in ZIP transporters. LIT1 also contains two regions within the predicted intracellular loop that are not found in Arabidopsis IRT1. Deletion of region I inhibited LIT1 expression on the surface of Leishmania promastigotes. Deletion of region II did not interfere with LIT1 trafficking to the surface, but abolished its iron transport capacity when expressed in yeast. Mutagenesis revealed two motifs within region II, HGHQH and TPPRDM, that are independently required for iron transport by LIT1. D263 was identified as a key residue required for iron transport within the TPPRDM motif, while P260 and P261 were dispensable. Deletion of proline-rich regions within region I and between regions I and II did not affect iron transport in yeast, but in Leishmania amazonensis were not able to rescue the intracellular growth of Δlit1 parasites, or their ability to form lesions in mice. These results are consistent with a potential role of the unique intracellular loop of LIT1 in intracellular regulation by Leishmania-specific factors. PMID:20025906

  12. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function. PMID:18942157

  13. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation.

    PubMed

    Vermaas, J V; Trebesch, N; Mayne, C G; Thangapandian, S; Shekhar, M; Mahinthichaichan, P; Baylon, J L; Jiang, T; Wang, Y; Muller, M P; Shinn, E; Zhao, Z; Wen, P-C; Tajkhorshid, E

    2016-01-01

    Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory. PMID:27497175

  14. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    SciTech Connect

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  15. Inflammatory Regulation of ATP Binding Cassette Efflux Transporter Expression and Function in Microglia

    PubMed Central

    Gibson, Christopher J.; Hossain, Muhammad M.; Richardson, Jason R.

    2012-01-01

    ATP-binding cassette (ABC) efflux transporters, including multidrug resistance protein 1 (Mdr1), breast cancer resistance protein (Bcrp), and multidrug resistance-associated proteins (Mrps) extrude chemicals from the brain. Although ABC transporters are critical for blood-brain barrier integrity, less attention has been placed on the regulation of these proteins in brain parenchymal cells such as microglia. Prior studies demonstrate that inflammation after lipopolysaccharide (LPS) treatment alters transporter expression in the livers of mice. Here, we sought to determine the effects of inflammation on the expression and function of transporters in microglia. To test this, the expression and function of ABC efflux transport proteins were quantified in mouse BV-2 microglial cells in response to activation with LPS. Intracellular retention of fluorescent rhodamine 123, Hoechst 33342, and calcein acetoxymethyl ester was increased in LPS-treated microglia, suggesting that the functions of Mdr1, Bcrp, and Mrps were decreased, respectively. LPS reduced Mdr1, Bcrp, and Mrp4 mRNA and protein expression between 40 and 70%. Conversely, LPS increased expression of Mrp1 and Mrp5 mRNA and protein. Immunofluorescent staining confirmed reduced Bcrp and Mrp4 and elevated Mrp1 and Mrp5 protein in activated microglia. Pharmacological inhibition of nuclear factor κB (NF-κB) transcriptional signaling attenuated down-regulation of Mdr1a mRNA and potentiated up-regulation of Mrp5 mRNA in LPS-treated cells. Together, these data suggest that LPS stimulates microglia and impairs efflux of prototypical ABC transporter substrates by altering mRNA and protein expression, in part through NF-κB signaling. Decreased transporter efflux function in microglia may lead to the retention of toxic chemicals and aberrant cell-cell communication during neuroinflammation. PMID:22942241

  16. Hypothesis about the function of membrane-buried proline residues in transport proteins.

    PubMed Central

    Brandl, C J; Deber, C M

    1986-01-01

    In a survey of the bilayer-spanning regions of integral membrane proteins, membrane-buried proline residues were found in nearly all transport proteins examined, whereas membrane-buried regions of nontransport proteins were largely devoid of intramembranous proline residues. When amino acids from the complete sequences of representative sets of transport and nontransport membrane proteins were analyzed for the distribution of proline residues between aqueous vs. membranous domains, proline was shown to be selectively excluded from membranous domains of the nontransport proteins, in accord with expectation from energetic and structural considerations. In contrast, proline residues in transport proteins were evenly distributed between aqueous and membranous domains, consistent with the notion that functional membrane-buried proline residues are selectively included in transport proteins. As cis peptide bonds involving proline arise in proteins and have been implicated in protein dynamic processes, the cis-trans isomerization of an Xaa-Pro peptide bond (Xaa = unspecified amino acid) buried within the membrane--and the resulting redirection of the protein chain--is proposed to provide the reversible conformational change requisite for the regulation (opening/closing) of a transport channel. Parallel to this function, the relatively negative character of the carbonyl groups of Xaa-Pro peptide bonds may promote their participation as intramembranous liganding sites for positive species in proton/cation transport processes. PMID:3456574

  17. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles

    SciTech Connect

    Gao Xiaoling; Wang Tao; Wu Bingxian; Chen Jun; Chen Jiyao; Yue Yang; Dai Ning; Chen Hongzhuan Jiang Xinguo

    2008-12-05

    Successful drug delivery by functionalized nanocarriers largely depends on their efficient intracellular transport which has not yet been fully understood. We developed a new tracking technique by encapsulating quantum dots into the core of wheat germ agglutinin-conjugated nanoparticles (WGA-NP) to track cellular transport of functionalized nanocarriers. The resulting nanoparticles showed no changes in particle size, zeta potential or biobinding activity, and the loaded probe presented excellent photostability and tracking ability. Taking advantage of these properties, cellular transport profiles of WGA-NP in Caco-2 cells was demonstrated. The cellular uptake begins with binding of WGA to its receptor at the cell surface. The subsequent endocytosis happened in a cytoskeleton-dependent manner and by means of clathrin and caveolae-mediated mechanisms. After endosome creating, transport occurs to both trans-Golgi and lysosome. Our study provides new evidences for quantum dots as a cellular tracking probe of nanocarriers and helps understand intracellular transport profile of lectin-functionalized nanoparticles.

  18. Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution.

    PubMed Central

    Saier, M H

    1994-01-01

    Three-dimensional structures have been elucidated for very few integral membrane proteins. Computer methods can be used as guides for estimation of solute transport protein structure, function, biogenesis, and evolution. In this paper the application of currently available computer programs to over a dozen distinct families of transport proteins is reviewed. The reliability of sequence-based topological and localization analyses and the importance of sequence and residue conservation to structure and function are evaluated. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific transport protein families is also evaluated. Channel proteins are proposed to be functionally related to carriers. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes. The possible significance of this apparent topological convergence is discussed. PMID:8177172

  19. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1.

    PubMed

    Sasaki, Shotaro; Futagi, Yuya; Kobayashi, Masaki; Ogura, Jiro; Iseki, Ken

    2015-01-23

    Thyrotropin-releasing hormone is a tripeptide that consists of 5-oxoproline, histidine, and proline. The peptide is rapidly metabolized by various enzymes. 5-Oxoproline is produced by enzymatic hydrolysis in a variety of peptides. Previous studies showed that 5-oxoproline could become a possible biomarker for autism spectrum disorders. Here we demonstrate the involvement of SLC16A1 in the transport of 5-oxoproline. An SLC16A1 polymorphism (rs1049434) was recently identified. However, there is no information about the effect of the polymorphism on SLC16A1 function. In this study, the polymorphism caused an observable change in 5-oxoproline and lactate transport via SLC16A1. The Michaelis constant (Km) was increased in an SLC16A1 mutant compared with that in the wild type. In addition, the proton concentration required to produce half-maximal activation of transport activity (K0.5, H (+)) was increased in the SLC16A1 mutant compared with that in the wild type. Furthermore, we examined the transport of 5-oxoproline in T98G cells as an astrocyte cell model. Despite the fact that 5-oxoproline is an amino acid derivative, Na(+)-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport. Based on our findings, we conclude that H(+)-coupled 5-oxoproline transport is mediated solely by SLC16A1 in the cells. PMID:25371203

  20. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    SciTech Connect

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M. )

    1989-11-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K{sub m}, low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus.

  1. Insect glycerol transporters evolved by functional co-option and gene replacement

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan

    2015-01-01

    Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829

  2. Insect glycerol transporters evolved by functional co-option and gene replacement.

    PubMed

    Finn, Roderick Nigel; Chauvigné, François; Stavang, Jon Anders; Belles, Xavier; Cerdà, Joan

    2015-01-01

    Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects. PMID:26183829

  3. Evaluation of a functional model for simulating boron transport in soil

    SciTech Connect

    Corwin, D.L.; Goldberg, S.; David, A.

    1999-10-01

    There has been renewed interest in the application of functional models to the transport of nonpoint source pollutants at polypedon and watershed scales because of the ease of their coupling to a geographic information system and to the accepted organizational hierarchy of pedogenetic modeling approaches. However, very little work has been done to evaluate the performance of a functional transient-state model for the transport of a reactive solute over an extensive study period. Subsequently, the functional model TETrans (Trace Element Transport) was evaluated for model performance with boron (B) transport data collected from a meso-scale soil lysimeter column over a 1,000-day study period. Because the ability to simulate water flow has been evaluated previously for TETrans, the focus of this evaluation centered around the performance of various functional models of B adsorption used as subroutines within the TETrans model, including the (1) Freundlich, (2) kinetic Freundlich, (3) Langmuir, (4) temperature-dependent Langmuir, and (5) pH-dependent Keren adsorption isotherm equations. Model performance was evaluated with statistical functions, specifically the Average Absolute Prediction Error, the Root Mean Square Error, the Reduced Error Estimate and the Coefficient of Residual Mass, and graphic displays of observed and predicted B concentration profiles. Even though no single adsorption isotherm equation, when coupled to TETrans, could be considered poor in its performance, results indicated that the order of model performance was the pH-dependent Keren equation first, followed by the temperature-dependent Langmuir and kinetic Freundlich equations, the Freundlich equation, and, finally, the Langmuir equation. Overall, the TETrans model was able to simulate the transport of B with deviations because no functional adsorption equation incorporated all the influences of pH, ionic strength, temperature, and kinetic effects into a single equation. The inability to

  4. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas.

    PubMed

    Reck, Jaimee; Schauer, Alexandria M; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A; Porter, Mary E

    2016-08-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  5. Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics1[W

    PubMed Central

    Bock, Kevin W.; Honys, David; Ward, John M.; Padmanaban, Senthilkumar; Nawrocki, Eric P.; Hirschi, Kendal D.; Twell, David; Sze, Heven

    2006-01-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter∷β-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development. PMID:16607029

  6. Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics.

    SciTech Connect

    Bock KW; D Honys; JM. Ward; S Padmanaban; EP Nawrocki; KD Hirschi; D Twell; H Sze

    2006-01-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. About 1269 genes encoding classified transporters were collected from the Arabidopsis thaliana genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3 and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9); while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, were developmentally-regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::GUS analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.

  7. Functional expression and cellular distribution of diastrophic dysplasia sulfate transporter (DTDST) gene mutations in HEK cells.

    PubMed

    Karniski, Lawrence P

    2004-10-01

    Defects in sulfate transport in chondrocytes lead to undersulfation of the cartilage extracellular matrix proteoglycans. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene have been linked to four chondrodysplasias of varying severity. To characterize disease-causing mutations of DTDST, we expressed DTDST-mediated sulfate transport in mammalian HEK-293 cells and determined that the wild-type protein is glycosylated and localized to the cell plasma membrane. Four mutations, A715V, C653S, Q454P and R279W, stimulated sulfate transport at rates only 39-62% of wild-type DTDST. These four mutations were expressed on the plasma membrane of the cell, but the amount of expressed protein was reduced when compared with wild-type DTDST. The Q454P mutant is unique in that it is not properly glycosylated in HEK cells. There was no difference in sulfate transport activity between cells transfected with either the DeltaV340 or the G678V mutations and control HEK cells. Furthermore, the G678V mutation is not expressed along the plasma membrane, but is trapped within the cytoplasm. When comparing the sulfate transport capacity of each DTDST mutation with the chondrodysplasia in which it has been identified, we find that individuals with severe achondrogenesis 1B phenotype have null mutations on both DTDST alleles. Heterozygotes for both a null mutation and a partial-function mutation result in either atelosteogenesis type 2 or DTD, whereas the milder, recessive multiple epiphyseal dysplasia phenotype is homozygous for partial-function mutations. In contrast to previous studies in Xenopus laevis oocytes, we find a strong correlation between the severity of the phenotype and the level of residual transport function in mammalian cells. PMID:15294877

  8. Identification and Functional Characterization of the Caenorhabditis elegans Riboflavin Transporters rft-1 and rft-2

    PubMed Central

    Biswas, Arundhati; Elmatari, Daniel; Rothman, Jason; LaMunyon, Craig W.; Said, Hamid M.

    2013-01-01

    Two potential orthologs of the human riboflavin transporter 3 (hRFVT3) were identified in the C. elegans genome, Y47D7A.16 and Y47D7A.14, which share 33.7 and 30.5% identity, respectively, with hRFVT3. The genes are tandemly arranged, and we assign them the names rft-1 (for Y47D7A.16) and rft-2 (for Y47D7A.14). Functional characterization of the coding sequences in a heterologous expression system demonstrated that both were specific riboflavin transporters, although the rft-1 encoded protein had greater transport activity. A more detailed examination of rft-1 showed its transport of riboflavin to have an acidic pH dependence, saturability (apparent Km = 1.4±0.5 µM), inhibition by riboflavin analogues, and Na+ independence. The expression of rft-1 mRNA was relatively higher in young larvae than in adults, and mRNA expression dropped in response to RF supplementation. Knocking down the two transporters individually via RNA interference resulted in a severe loss of fertility that was compounded in a double knockdown. Transcriptional fusions constructed with two fluorophores (rft-1::GFP, and rft-2::mCherry) indicated that rft-1 is expressed in the intestine and a small subset of neuronal support cells along the entire length of the animal. Expression of rft-2 is localized mainly to the intestine and pharynx. We also observed a drop in the expression of the two reporters in animals that were maintained in high riboflavin levels. These results report for the first time the identification of two riboflavin transporters in C. elegans and demonstrate their expression and importance to metabolic function in worms. Absence of transporter function renders worms sterile, making them useful in understanding human disease associated with mutations in hRFVT3. PMID:23483992

  9. Functional genetic variants in the vesicular monoamine transporter 1 (VMAT1) modulate emotion processing

    PubMed Central

    Lohoff, Falk W.; Hodge, Rachel; Narasimhan, Sneha; Nall, Aleksandra; Ferraro, Thomas N.; Mickey, Brian J.; Heitzeg, Mary M.; Langenecker, Scott A.; Zubieta, Jon-Kar; Bogdan, Ryan; Nikolova, Yuliya S.; Drabant, Emily; Hariri, Ahmad R.; Bevilacqua, Laura; Goldman, David; Doyle, Glenn A.

    2012-01-01

    SUMMARY Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits, and risk for psychopathology. PMID:23337945

  10. Functional Evidence of Multidrug Resistance Transporters (MDR) in Rodent Olfactory Epithelium

    PubMed Central

    Molinas, Adrien; Sicard, Gilles; Jakob, Ingrid

    2012-01-01

    Background P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. Principal Findings Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG). In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. Conclusions The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential

  11. Interplay between group function of kinesin based transport and lipid bilayer mobility

    NASA Astrophysics Data System (ADS)

    Lopes, Joseph; Hirst, Linda; Xu, Jing

    2015-03-01

    Motor proteins, discovered in recent decades, are important building blocks to life. These molecular machines transport cargo and although indispensable to cell function, are not well understood at present. Single kinesin transport properties have been documented, but their group function remains unknown. In this project, the properties of kinesin-based transport by multiple motors are investigated in-vitro to establish a link between travel distance and lipid diffusion in the vesicle membrane. In the experiments, silica beads coated in a supported lipid membrane and giant lipid vesicles are transported along a microtubule by embedded kinesin motors. In an alternate geometry, this system can be inverted, whereby motors are bound to a surface of a lipid bilayer and microtubules are deposited. We have characterized motor function with respect to the fluidity of the membrane. To measure the diffusion properties of different membranes, planar lipid bilayers are prepared on silica slides and supported by bovine serum albumin protein. To establish a diffusion constant at room temperature for the lipid membrane we use the FRAP technique (fluorescence recovery after photobleaching). Using this method we can investigate if there is any interplay between group travel function and membrane fluidity.

  12. A seepage erosion sediment transport function and geometric headcut relationships for predicting seepage erosion undercutting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remain a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including n...

  13. Molecular parameters and transmembrane transport mechanism of imidazolium-functionalized binols.

    PubMed

    Vidal, Marc; Schmitzer, Andreea

    2014-08-01

    We describe the molecular parameters governing the transmembrane activity of imidazolium-functionalized anion transporters and present a detailed mechanistic study. These ionophores adopt a mobile-carrier mechanism for short methyl and butyl chains, a combined mobile-carrier/transmembrane-pore mechanism for octyl and dodecyl chains, and form transmembrane aggregates for hexadecyl chains. PMID:25043746

  14. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...

  15. First-principles quantum transport with electron-vibration interactions: A maximally localized Wannier functions approach

    NASA Astrophysics Data System (ADS)

    Kim, Sejoong; Marzari, Nicola

    2013-06-01

    We present a first-principles approach for inelastic quantum transport calculations based on maximally localized Wannier functions. Electronic-structure properties are obtained from density-functional theory in a plane-wave basis, and electron-vibration coupling strengths and vibrational properties are determined with density-functional perturbation theory. Vibration-induced inelastic transport properties are calculated with nonequilibrium Green's function techniques; since these are based on a localized orbital representation we use maximally localized Wannier functions. Our formalism is applied first to investigate inelastic transport in a benzene molecular junction connected to monoatomic carbon chains. In this benchmark system the electron-vibration self-energy is calculated either in the self-consistent Born approximation or by lowest-order perturbation theory. It is observed that upward and downward conductance steps occur, which can be understood using multieigenchannel scattering theory and symmetry conditions. In a second example, where the monoatomic carbon chain electrode is replaced with a (3,3) carbon nanotube, we focus on the nonequilibrium vibration populations driven by the conducting electrons using a semiclassical rate equation and highlight and discuss in detail the appearance of vibrational cooling as a function of bias and the importance of matching the vibrational density of states of the conductor and the leads to minimize joule heating and breakdown.

  16. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth.

    PubMed

    Gallant, Pamela; Malutan, Tabita; McLean, Heather; Verellen, LouAnn; Caveney, Stanley; Donly, Cam

    2003-02-01

    A cDNA was cloned from the cabbage looper Trichoplusia ni based on similarity to other cloned dopamine transporters (DATs). The total nucleotide sequence is 3.8 kb in length and contains an open reading frame for a protein of 612 amino acids. The predicted moth DAT protein (TrnDAT) has greatest amino acid sequence identity with Drosophila melanogasterDAT (73%) and Caenorhabditis elegansDAT (51%). TrnDAT shares only 45% amino acid sequence identity with an octopamine transporter (TrnOAT) cloned recently from this moth. The functional properties of TrnDAT and TrnOAT were compared through transient heterologous expression in Sf9 cells. Both transporters have similar transport affinities for DA (Km 2.43 and 2.16 micro m, respectively). However, the competitive substrates octopamine and tyramine are more potent blockers of [3H]dopamine (DA) uptake by TrnOAT than by TrnDAT. D-Amphetamine is a strong inhibitor and l-norepinephrine a weak inhibitor of both transporters. TrnDAT-mediated DA uptake is approximately 100-fold more sensitive to selective blockers of vertebrate transporters of dopamine and norepinephrine, such as nisoxetine, nomifensine and dibenzazepine antidepressants, than TrnOAT-mediated DA uptake. TrnOAT is 10-fold less sensitive to cocaine than TrnDAT. None of the 15 monoamine uptake blockers tested was TrnOAT-selective. In situ hybridization shows that TrnDAT and TrnOAT transcripts are expressed by different sets of neurons in caterpillar brain and ventral nerve cord. These results show that the caterpillar CNS contains both a phenolamine transporter and a catecholamine transporter whereas in the three invertebrates whose genomes have been completely sequenced only a dopamine-selective transporter is found. PMID:12581206

  17. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  18. N-Glycosylation is required for Na{sup +}-dependent vitamin C transporter functionality

    SciTech Connect

    Subramanian, Veedamali S. Marchant, Jonathan S.; Reidling, Jack C.; Said, Hamid M.

    2008-09-12

    The human sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2) mediate cellular uptake of ascorbic acid. Both these transporters contain potential sites for N-glycosylation in their extracellular domains (Asn-138, Asn-144 [hSVCT1]; Asn-188, Asn-196 [hSVCT2]), however the role of N-glycosylation in transporter function is unexplored. On the basis of the result that tunicamycin decreased {sup 14}C-ascorbic acid uptake in HepG2 cells, we systematically ablated all consensus N-glycosylation sites in hSVCT1 and hSVCT2 to resolve any effects on ascorbic acid uptake, transporter expression and targeting. We show that removal of individual N-glycosylation sites significantly impairs protein expression and consequently ascorbic acid uptake for hSVCT1 mutants (N138Q is retained intracellularly) and for hSVCT2 mutants (all of which reach the cell surface). N-Glycosylation is therefore essential for vitamin C transporter functionality.

  19. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules

    PubMed Central

    Girard, Jean-Philippe; Baekkevold, Espen S.; Feliu, Jacques; Brandtzaeg, Per; Amalric, François

    1999-01-01

    High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV. PMID:10535998

  20. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    SciTech Connect

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-15

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  1. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein.

    PubMed

    Huang, Q Q; Yao, S Y; Ritzel, M W; Paterson, A R; Cass, C E; Young, J D

    1994-07-01

    Expression screening in Xenopus oocytes was used to isolate a cDNA from rat jejunal epithelium encoding a Na(+)-dependent nucleoside transport protein (named cNT1). The cDNA sequence of cNT1 predicts a protein of 648 amino acids (relative molecular mass 71,000) with 14 potential transmembrane domains. Data base searches indicate significant sequence similarity to the NUPC proton/nucleoside symporter of Escherichia coli. There is no sequence similarity between cNT1 and proteins of mammalian origin. Functionally, cNT1 exhibited the transport characteristics of the nucleoside transport system cit (selective for pyrimidine nucleosides and adenosine) and accepted both 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC) as permeants (Km = 0.49 and 0.51 mM, respectively). The demonstration of transport of AZT by cNT1 expressed in Xenopus oocytes provides the first direct evidence that AZT enters cells by transporter-mediated processes, as well as by passive diffusion. Consistent with the tissue distribution of system cit transport activity, transcripts for cNT1 were detected in kidney as well as jejunum. cNT1 therefore belongs to a potential new gene family and may be involved in the intestinal absorption and renal handling of pyrimidine nucleoside analogs used to treat acquired immunodeficiency syndrome (AIDS). PMID:8027026

  2. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-01

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  3. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    SciTech Connect

    Agueda, N.; Sanahuja, B.; Vainio, R.

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  4. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  5. Effects of endotoxin exposure on cationic amino acid transporter function in ovine peripheral blood mononuclear cells.

    PubMed

    Clark, Megan F; Reade, Michael C; Boyd, C A R; Young, J Duncan

    2003-03-01

    Rodent models of sepsis differ from clinical human disease in that humans make substantially less whole-body nitric oxide and have different cellular responses to endotoxin. Sheep, when exposed to endotoxin, behave in a manner more similar to humans. Many studies of rodent peripheral blood mononuclear cells (PBMCs) exposed to endotoxin demonstrate increased cationic amino acid transporter function (particularly through the y+ transporter) to supply arginine substrate to upregulated nitric oxide synthase. Whether this is true in sheep is not known. We have studied cationic amino acid transport in sheep PBMCs stimulated with endotoxin, using labelled lysine. PBMCs stimulated both in vitro and in vivo show an initial reduction in total and y+ lysine transport (after 1-2 h exposure to endotoxin): a previously undescribed effect of endotoxin. In in vitro activated cells, the reduction in y+ transport was prevented by the lipoxygenase inhibitor, nordihydroguaretic acid (NDGA), and the phospholipase inhibitor 4-bromophenacyl bromide (4-BPAB), but not cyclohexamide or a number of other inhibitors of intracellular second-messenger pathways. In contrast after 14 h incubation, the expected increase in total and y+ lysine transport was seen. The increase in y+ transport could be prevented by cyclohexamide, dexamethasone, ibuprofen, the protein kinase C inhibitor sphingosine, NDGA and 4-BPAB. These results suggest that in response to endotoxin exposure there is an initial decrease in y+ activity mediated by a lipoxygenase product, followed by a substantial increase in y+ activity mediated by the products of either cyclo-oxygenase or lipoxygenase. Cyclo-oxygenase and/or lipoxygenase inhibition might be useful in reducing arginine transport, and hence nitric oxide production, in these cells. PMID:12621525

  6. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  7. Characterization of Tetratricopeptide Repeat-Containing Proteins Critical for Cilia Formation and Function

    PubMed Central

    Xu, Yanan; Cao, Jingli; Huang, Shan; Feng, Di; Zhang, Wei; Zhu, Xueliang; Yan, Xiumin

    2015-01-01

    Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT), consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC) proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes. How many TTC proteins are cilia-related and how they function, however, remain unclear. Here we show that twenty TTC genes were upregulated by at least 2-fold during the differentiation of cultured mouse tracheal epithelial cells (MTECs) into multiciliated cells. Our systematic screen in zebrafish identified four novel TTC genes, ttc4, -9c, -36, and -39c, that are critical for cilia formation and motility. Accordingly, their zebrafish morphants displayed typical ciliopathy-related phenotypes, including curved body, abnormal otolith, hydrocephalus, and defective left-right patterning. The morphants of ttc4 and ttc25, a known cilia-related gene, additionally showed pronephric cyst formation. Immunoprecipitation indicated associations of TTC4, -9c, -25, -36, and -39c with components or entire complexes of IFT-A, IFT-B, or BBSome, implying their participations in IFT or IFT-related activities. Our results provide a global view for the relationship between TTC proteins and cilia. PMID:25860617

  8. Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules

    PubMed Central

    Linck, Richard; Fu, Xiaofeng; Lin, Jianfeng; Ouch, Christna; Schefter, Alexandra; Steffen, Walter; Warren, Peter; Nicastro, Daniela

    2014-01-01

    Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated α-tubulin, β-tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ∼5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems. PMID:24794867

  9. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome

    PubMed Central

    Taylor, S. Paige; Dantas, Tiago J.; Duran, Ivan; Wu, Sulin; Lachman, Ralph S.; Nelson, Stanley F.; Cohn, Daniel H.; Vallee, Richard B.; Krakow, Deborah

    2015-01-01

    The short rib polydactyly syndromes (SRPS) are a heterogeneous group of autosomal recessive, perinatal-lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs, and poly-dactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify additional SRPS genes and further unravel the functional basis for IFT. We perform whole exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable-length, including hyperelongated, cilia, Hedgehog pathway impairment, and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation, and skeletogenesis. PMID:26077881

  10. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

    PubMed

    Jiang, Li; Tam, Beatrice M; Ying, Guoxing; Wu, Sen; Hauswirth, William W; Frederick, Jeanne M; Moritz, Orson L; Baehr, Wolfgang

    2015-12-01

    In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3. PMID:26229057

  11. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  12. Lipopolysaccharide (LPS) disrupts particle transport, cilia function and sperm motility in an ex vivo oviduct model

    PubMed Central

    O’Doherty, A. M.; Di Fenza, M.; Kölle, S.

    2016-01-01

    The oviduct functions in the transportation of gametes to the site of fertilization (the ampulla) and is the site of early embryonic development. Alterations of this early developmental environment, such as the presence of sexually transmitted pathogens, may affect oviduct function leading to reduced fertilization rates and contribute to compromised embryonic development. In this study, sperm interactions, particle transport speed (PTS) and cilia beat frequency (CBF) in the ampulla following exposure to lipopolysaccharide (LPS), a constituent of the sexually transmitted pathogens Chlamydia trachomatis and Chlamydia abortus, was investigated. Three complementary experiments were performed to analyse; (1) bound sperm motility and cilia function (2) transport velocity in the oviduct and (3) the expression of genes related to immune function and inflammatory response (CASP3, CD14, MYD88, TLR4 and TRAF6). The motility of bound sperm was significantly lower in ampullae that were exposed to LPS. CBF and PTS significantly increased after treatment with LPS for 2 hours. Finally, gene expression analysis revealed that CASP3 and CD14 were significantly upregulated and TLR4 trended towards increased expression following treatment with LPS. These findings provide an insight on the impact of LPS on the oviduct sperm interaction, and have implications for both male and female fertility. PMID:27079521

  13. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species.

    PubMed

    Orellana, Ariel; Moraga, Carol; Araya, Macarena; Moreno, Adrian

    2016-08-14

    Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species. PMID:27261257

  14. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells. PMID:24553865

  15. Functional expression of rat GLUT 1 glucose transporter in Dictyostelium discoideum.

    PubMed Central

    Cohen, N R; Knecht, D A; Lodish, H F

    1996-01-01

    To facilitate expression of the rat GLUT 1 glucose transporter cDNA in Dictyostelium discoideum, we mutated the 5' end of the coding sequence such that the codons for the first ten amino acids conformed to preferred Dictyostelium codon usage. As determined by Western-blot analysis, a population of Dictyostelium transformed with the mutated cDNA expressed nonglycosylated GLUT 1 protein. Cell lines expressing GLUT 1 transport radiolabelled 2-deoxy-D-glucose at a rate 6-10 times that of cell lines transformed with vector alone. The initial rate of inward transport of 2-deoxy-D-glucose was stimulated several-fold by the presence of unlabelled glucose in the Dictyostelium cytoplasm, exemplifying the trans-activation of GLUT 1 transport characteristic of GLUT 1 present in erythrocyte membranes. The K(m) and Ki values for 2-deoxy-D-glucose, D-glucose, D-mannose and D-galactose were 3.7 mM, 2.6 mM, 11 mM and 30 mM respectively, similar to the values for GLUT 1 expressed in mammalian cells. L-Glucose and L-galactose, which are not transported by GLUT 1, do not inhibit uptake of 2-deoxy-D-glucose in Dictyostelium expressing GLUT 1. Thus, even though GLUT 1 expressed in Dictyostelium is not N-glycosylated, it transports hexoses normally; this is the first example of functional expression of a mammalian transport protein in this lower eukaryote. PMID:8645185

  16. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  17. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed

    Miller, D S

    1987-04-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. PMID:3297665

  18. Aquatic models for the study of renal transport function and pollutant toxicity

    SciTech Connect

    Miller, D.S.

    1987-04-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed (1) by other anionic xenobiotics that compete for secretory transport sites and (2) by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity and tissue heterogeneity that limit transport studies in proximal tubule.

  19. Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops

    PubMed Central

    Khelashvili, George; Weinstein, Harel

    2015-01-01

    The physiological functions of neurotransmitter:sodium symporters (NSS) in reuptake of neurotransmitters from the synapse into the presynaptic nerve have been shown to be complemented by their involvement, together with non-plasma membrane neurotransmitter transporters, in the reverse transport of substrate (efflux) in response to psychostimulants. Recent experimental evidence implicates highly anionic phosphatidylinositol 4,5-biphosphate (PIP2) lipids in such functions of the serotonin (SERT) and dopamine (DAT) transporters. Thus, for both SERT and DAT, neurotransmitter efflux has been shown to be strongly regulated by the presence of PIP2 lipids in the plasma membrane, and the electrostatic interaction of the N-terminal region of DAT with the negatively charged PIP2 lipids. We examine the experimentally established phenotypes in a structural context obtained from computational modeling based on recent crystallographic data. The results are shown to set the stage for a mechanistic understanding of physiological actions of neurotransmitter transporters in the NSS family of membrane proteins. PMID:25847498

  20. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  1. ADP modifies the function of the glucose transporter: studies with reconstituted liposomes.

    PubMed Central

    Sofue, M; Yoshimura, Y; Nishida, M; Kawada, J

    1993-01-01

    Modification of function of the glucose transporter by nucleotides was studied by using liposomes reconstituted with the human erythrocyte glucose transporter. ADP enclosed in the liposomes inhibited the uptake of D-glucose and nicotinamide in a dose-dependent manner, but other enclosed nucleotides (ATP, AMP, CDP, GDP, UDP) showed no effect on the uptake of both. Only intraliposomal ADP was effective, and extra-liposomal ADP was not, under our experimental conditions. Intraliposomal ADP did not change Km, but decreased Vmax to approximately one-third of control for uptake of both D-glucose and nicotinamide. However, the binding and the affinity of cytochalasin B to the reconstituted liposomes were not affected by intraliposomal ADP. The uptake of uridine was not changed in the presence of ADP, indicating that the nucleoside transporter co-existing in the liposomal membranes is not regulated by ADP. Human erythrocytes whose intracellular ATP was decreased by Ca2+ ionophore A23187 also showed decreased uptake of 2-deoxy-D-glucose and nicotinamide. This phenomenon was very similar to that found in the liposomes. These findings suggest the possibility that the function of the glucose transporter is directly and negatively modified by an increased concentration of intracellular ADP. PMID:8318016

  2. Tuning the electron transport of molecular junctions by chemically functionalizing anchoring groups: First-principles study

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Shigeru; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan

    2012-06-01

    In this first-principles study, we present density-functional calculations of the electronic structures and electron transport properties of organic molecular junctions with several anchoring groups containing atoms with different electronegativities, i.e., benzenediboronate (BDB), benzenedicarboxylate (BDC), and dinitrobenzene (DNB) molecular junctions sandwiched between two Cu(110) electrodes. The electronic-structure calculations exhibit a significant difference in the density of states not only at the anchoring groups but also at the aromatic rings of the molecular junctions, suggesting that the electron transport is specific for each system. Our transport calculations show that the BDB and DNB molecular junctions have finite electron transmissions at the zero-bias limit while the BDC molecular junction has a negligible electron transmission. Moreover, for the BDB and DNB systems, the electron transmission channels around the Fermi energy reveal fingerprint features, which provide specific functionalities for the molecular junctions. Therefore, our theoretical results demonstrate the possibility to precisely tune the electron transport properties of molecular junctions by engineering the anchoring groups at the single-atom level.

  3. Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops.

    PubMed

    Khelashvili, George; Weinstein, Harel

    2015-09-01

    The physiological functions of neurotransmitter:sodium symporters (NSS) in reuptake of neurotransmitters from the synapse into the presynaptic nerve have been shown to be complemented by their involvement, together with non-plasma membrane neurotransmitter transporters, in the reverse transport of substrate (efflux) in response to psychostimulants. Recent experimental evidence implicates highly anionic phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids in such functions of the serotonin (SERT) and dopamine (DAT) transporters. Thus, for both SERT and DAT, neurotransmitter efflux has been shown to be strongly regulated by the presence of PIP(2) lipids in the plasma membrane, and the electrostatic interaction of the N-terminal region of DAT with the negatively charged PIP(2) lipids. We examine the experimentally established phenotypes in a structural context obtained from computational modeling based on recent crystallographic data. The results are shown to set the stage for a mechanistic understanding of physiological actions of neurotransmitter transporters in the NSS family of membrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25847498

  4. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    PubMed

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. PMID:25747281

  5. Expression and functional analysis of mussel taurine transporter, as a key molecule in cellular osmoconforming.

    PubMed

    Hosoi, Masatomi; Takeuchi, Kazuharu; Sawada, Hideki; Toyohara, Haruhiko

    2005-11-01

    Most aquatic invertebrates adapt to environmental osmotic changes primarily by the cellular osmoconforming process, in which osmolytes accumulated in their cells play an essential role. Taurine is one of the most widely utilized osmolytes and the most abundant in many molluscs. Here, we report the structure, function and expression of the taurine transporter in the Mediterranean blue mussel (muTAUT), as a key molecule in the cellular osmoconforming process. Deduced amino acid sequence identity among muTAUT and vertebrate taurine transporters is lower (47-51%) than that among vertebrate taurine transporters (>78%). muTAUT has a lower affinity and specificity for taurine and a requirement for higher NaCl concentration than vertebrate taurine transporters. This seems to reflect the internal environment of the mussel; higher NaCl and taurine concentrations. In addition to the hyperosmotic induction that has been reported for cloned taurine transporters, the increase in muTAUT mRNA was unexpectedly observed under hypoosmolality, which was depressed by the addition of taurine to ambient seawater. In view of the decrease in taurine content in mussel tissue under conditions of hypoosmolality reported previously, our results lead to the conclusion that muTAUT does not respond directly to hypoosmolality, but to the consequent decrease in taurine content. By immunohistochemistry, intensive expression of muTAUT was observed in the gill and epithelium of the mantle, which were directly exposed to intensive osmotic changes of ambient seawater. PMID:16272243

  6. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    PubMed

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. PMID:23414066

  7. Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics.

    PubMed

    Mullen, Anna; Hall, Jenny; Diegel, Janika; Hassan, Isa; Fey, Adam; MacMillan, Fraser

    2016-06-15

    During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated. PMID:27284059

  8. Isolation of Functional Golgi-derived Vesicles with a Possible Role in Retrograde Transport

    PubMed Central

    Love, Harold D.; Lin, Chung-Chih; Short, Craig S.; Ostermann, Joachim

    1998-01-01

    Secretory proteins enter the Golgi apparatus when transport vesicles fuse with the cis-side and exit in transport vesicles budding from the trans-side. Resident Golgi enzymes that have been transported in the cis-to-trans direction with the secretory flow must be recycled constantly by retrograde transport in the opposite direction. In this study, we describe the functional characterization of Golgi-derived transport vesicles that were isolated from tissue culture cells. We found that under the steady-state conditions of a living cell, a fraction of resident Golgi enzymes was found in vesicles that could be separated from cisternal membranes. These vesicles appeared to be depleted of secretory cargo. They were capable of binding to and fusion with isolated Golgi membranes, and after fusion their enzymatic contents most efficiently processed cargo that had just entered the Golgi apparatus. Those results indicate a possible role for these structures in recycling of Golgi enzymes in the Golgi stack. PMID:9456315

  9. Sugar transporters in the black truffle Tuber melanosporum: from gene prediction to functional characterization.

    PubMed

    Ceccaroli, Paola; Saltarelli, Roberta; Polidori, Emanuela; Barbieri, Elena; Guescini, Michele; Ciacci, Caterina; Stocchi, Vilberto

    2015-08-01

    In a natural forest ecosystem, ectomycorrhiza formation is a way for soil fungi to obtain carbohydrates from their host plants. However, our knowledge of sugar transporters in ectomycorrhizal ascomycetous fungi is limited. To bridge this gap we used data obtained from the sequenced genome of the ectomycorrhizal fungus Tuber melanosporum Vittad. to search for sugar transporters. Twenty-three potential hexose transporters were found, and three of them (Tmelhxt1, Tmel2281 and Tmel131), differentially expressed during the fungus life cycle, were investigated. The heterologous expression of Tmelhxt1 and Tmel2281 in an hxt-null Saccharomyces cerevisiae strain restores the growth in glucose and fructose. The functional characterization and expression profiles of Tmelhxt1 and Tmel2281 in the symbiotic phase suggest that they are high affinity hexose transporters at the plant-fungus interface. On the contrary, Tmel131 is preferentially expressed in the fruiting body and its inability to restore the S. cerevisiae mutant strain growth led us to hypothesize that it could be involved in the transport of alternative carbon sources important for a hypothetical saprophytic strategy for the complete maturation of the carpophore. PMID:26021705

  10. Using time-dependent density functional theory in real time for calculating electronic transport

    NASA Astrophysics Data System (ADS)

    Schaffhauser, Philipp; Kümmel, Stephan

    2016-01-01

    We present a scheme for calculating electronic transport within the propagation approach to time-dependent density functional theory. Our scheme is based on solving the time-dependent Kohn-Sham equations on grids in real space and real time for a finite system. We use absorbing and antiabsorbing boundaries for simulating the coupling to a source and a drain. The boundaries are designed to minimize the effects of quantum-mechanical reflections and electrical polarization build-up, which are the major obstacles when calculating transport by applying an external bias to a finite system. We show that the scheme can readily be applied to real molecules by calculating the current through a conjugated molecule as a function of time. By comparing to literature results for the conjugated molecule and to analytic results for a one-dimensional model system we demonstrate the reliability of the concept.

  11. Functional Size of Photosynthetic Electron Transport Chain Determined by Radiation Inactivation 1

    PubMed Central

    Pan, Run Sun; Chien, Lee Feng; Wang, May Yun; Tsai, Mai Yu; Pan, Rong Long; Hsu, Ban Dar

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II (H2O to methylviologen) was 623 ± 37 kilodaltons; for photosystem II (H2O to dimethylquinone/ferricyanide), 174 ± 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 ± 11 kilodaltons. The difference between 364 ± 22 (the sum of 174 ± 11 and 190 ± 11) kilodaltons and 623 ± 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b6/f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed. PMID:16665649

  12. Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients.

    PubMed

    Tang, Xiaojing; Brown, Matthew R; Cogal, Andrea G; Gauvin, Daniel; Harris, Peter C; Lieske, John C; Romero, Michael F; Chang, Min-Hwang

    2016-04-01

    Dent disease type 1, an X-linked inherited kidney disease is caused by mutations in electrogenic Cl(-)/H(+) exchanger, ClC-5. We functionally studied the most frequent mutation (S244L) and two mutations recently identified in RKSC patients, Q629X and R345W. We also studied T657S, which has a high minor-allele frequency (0.23%) in the African-American population, was published previously as pathogenic to cause Dent disease. The transport properties of CLC-5 were electrophysiologically characterized. WT and ClC-5 mutant currents were inhibited by pH 5.5, but not affected by an alkaline extracellular solution (pH 8.5). The T657S and R345W mutations showed the same anion selectivity sequence as WT ClC-5 (SCN(-)>NO3(-)≈Cl(-)>Br(-)>I(-)). However, the S244L and Q629X mutations abolished this anion conductance sequence. Cell surface CLC-5 expression was quantified using extracellular HA-tagged CLC-5 and a chemiluminescent immunoassay. Cellular localization of eGFP-tagged CLC-5 proteins was also examined in HEK293 cells with organelle-specific fluorescent probes. Functional defects of R345W and Q629X mutations were caused by the trafficking of the protein to the plasma membrane since proteins were mostly retained in the endoplasmic reticulum, and mutations showed positive correlations between surface expression and transport function. In contrast, although the S244L transport function was significantly lower than WT, cell surface, early endosome, and endoplasmic reticulum expression was equal to that of WT CLC-5. Function and trafficking of T657S was equivalent to the WT CLC-5 suggesting this is a benign variant rather than pathogenic. These studies demonstrate the useful information that can be gained by detailed functional studies of mutations predicted to be pathogenic. PMID:27117801

  13. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  14. The ABCG2 efflux transporter from rabbit placenta: Cloning and functional characterization.

    PubMed

    Halwachs, Sandra; Kneuer, Carsten; Gohlsch, Katrin; Müller, Marian; Ritz, Vera; Honscha, Walther

    2016-02-01

    In human placenta, the ATP-binding cassette efflux transporter ABCG2 is highly expressed in syncytiotrophoblast cells and mediates cellular excretion of various drugs and toxins. Hence, physiological ABCG2 activity substantially contributes to the fetoprotective placenta barrier function during gestation. Developmental toxicity studies are often performed in rabbit. However, despite its toxicological relevance, there is no data so far on functional ABCG2 expression in this species. Therefore, we cloned ABCG2 from placenta tissues of chinchilla rabbit. Sequencing showed 84-86% amino acid sequence identity to the orthologues from man, rat and mouse. We transduced the rabbit ABCG2 clone (rbABCG2) in MDCKII cells and stable rbABCG2 gene and protein expression was shown by RT-PCR and Western blot analysis. The rbABCG2 efflux activity was demonstrated with the Hoechst H33342 assay using the specific ABCG2 inhibitor Ko143. We further tested the effect of established human ABCG2 (hABCG2) drug substrates including the antibiotic danofloxacin or the histamine H2-receptor antagonist cimetidine on H33342 accumulation in MDCKII-rbABCG2 or -hABCG2 cells. Human therapeutic plasma concentrations of all tested drugs caused a comparable competitive inhibition of H33342 excretion in both ABCG2 clones. Altogether, we first showed functional expression of the ABCG2 efflux transporter in rabbit placenta. Moreover, our data suggest a similar drug substrate spectrum of the rabbit and the human ABCG2 efflux transporter. PMID:26907376

  15. Multi-term approximation to the Boltzmann transport equation for electron energy distribution functions in nitrogen

    NASA Astrophysics Data System (ADS)

    Feng, Yue

    Plasma is currently a hot topic and it has many significant applications due to its composition of both positively and negatively charged particles. The energy distribution function is important in plasma science since it characterizes the ability of the plasma to affect chemical reactions, affect physical outcomes, and drive various applications. The Boltzmann Transport Equation is an important kinetic equation that provides an accurate basis for characterizing the distribution function---both in energy and space. This dissertation research proposes a multi-term approximation to solve the Boltzmann Transport Equation by treating the relaxation process using an expansion of the electron distribution function in Legendre polynomials. The elastic and 29 inelastic cross sections for electron collisions with nitrogen molecules (N2) and singly ionized nitrogen molecules ( N+2 ) have been used in this application of the Boltzmann Transport Equation. Different numerical methods have been considered to compare the results. The numerical methods discussed in this thesis are the implicit time-independent method, the time-dependent Euler method, the time-dependent Runge-Kutta method, and finally the implicit time-dependent relaxation method by generating the 4-way grid with a matrix solver. The results show that the implicit time-dependent relaxation method is the most accurate and stable method for obtaining reliable results. The results were observed to match with the published experimental data rather well.

  16. Numerical Methods for a Kohn-Sham Density Functional Model Based on Optimal Transport.

    PubMed

    Chen, Huajie; Friesecke, Gero; Mendl, Christian B

    2014-10-14

    In this paper, we study numerical discretizations to solve density functional models in the "strictly correlated electrons" (SCE) framework. Unlike previous studies, our work is not restricted to radially symmetric densities. In the SCE framework, the exchange-correlation functional encodes the effects of the strong correlation regime by minimizing the pairwise Coulomb repulsion, resulting in an optimal transport problem. We give a mathematical derivation of the self-consistent Kohn-Sham-SCE equations, construct an efficient numerical discretization for this type of problem for N = 2 electrons, and apply it to the H2 molecule in its dissociating limit. PMID:26588133

  17. Study of Transport Properties in Armchair Graphyne Nanoribbons: A Density Functional Approach

    NASA Astrophysics Data System (ADS)

    Golafrooz Shahri, S.; Roknabadi, M. R.; Shahtahmasebi, N.; Behdani, M.

    2016-07-01

    In present paper, the non-equilibrium Green function (NEGF) method along with the density functional theory (DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne (γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.

  18. Workshop on Functional Requirements for the Modeling of Fate and Transport of Waterborne CBRN Materials

    SciTech Connect

    Giles, GE

    2005-02-03

    The purpose of this Workshop on ''Functional Requirements for the Modeling of Fate and Transport of Waterborne CBRN Materials'' was to solicit functional requirements for tools that help Incident Managers plan for and deal with the consequences of industrial or terrorist releases of materials into the nation's waterways and public water utilities. Twenty representatives attended and several made presentations. Several hours of discussions elicited a set of requirements. These requirements were summarized in a form for the attendees to vote on their highest priority requirements. These votes were used to determine the prioritized requirements that are reported in this paper and can be used to direct future developments.

  19. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance

    PubMed Central

    Dietrich, Christoph G; Götze, Oliver; Geier, Andreas

    2016-01-01

    Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests. PMID:26755861

  20. Human erythrocyte nucleoside transporter ENT1 functions at ice-cold temperatures.

    PubMed

    Takano, Mikihisa; Kimura, Eri; Suzuki, Satoshi; Nagai, Junya; Yumoto, Ryoko

    2010-01-01

    The functionality of human erythrocyte nucleoside transporter ENT1 was examined at ice-cold temperatures (ICT; measured temperature, 0.5-0.7 degrees C) using rightside-out membrane vesicles (ROVs). The uptake of uridine, an ENT1 substrate, showed saturation kinetics and was inhibited by S-(4-nitrobenzyl)-6-thioinosine (NBMPR), a specific ENT1 inhibitor, at both 23 degrees C and ICT. [3H]Uridine uptake was markedly trans-stimulated by preloading ROVs with unlabeled uridine or ribavirin, another ENT1 substrate, and the overshoot phenomenon was observed at ICT. Similarly, [3H]ribavirin uptake was markedly trans-stimulated by unlabeled ribavirin or uridine at ICT. The trans-stimulated uptake of [3H]uridine at ICT was inhibited by ENT1 inhibitors/substrates such as NBMPR, dipyridamole, adenosine, and ribavirin in a concentration-dependent manner. The inhibition of [3H]uridine uptake by NBMPR and dipyridamole at ICT was also observed in intact red blood cells. Like uridine uptake, [3H]D-glucose uptake by ROVs, which is mediated by facilitative glucose transporter GLUT1, was trans-stimulated by unlabeled D-glucose at ICT, and the overshoot phenomenon was observed. In contrast, the ability of ATP-dependent transport of 5-(and-6)-carboxy-2',7'-dichlorofluorescein via multidrug resistance-associated protein 5 in inside-out membrane vesicles disappeared at ICT. These results clearly indicate that human erythrocyte transporters such as ENT1 function even at very low temperatures near 0 degrees C. The significance of these findings in transporter research is discussed. PMID:20814156

  1. EFFECT OF CLINICAL MUTATIONS ON FUNCTIONALITY OF THE HUMAN RIBOFLAVIN TRANSPORTER-2 (hRFT-2)

    PubMed Central

    Nabokina, Svetlana M.; Subramanian, Veedamali S.; Said, Hamid M.

    2012-01-01

    The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by ponto-bulbar palsy, bilateral sensorineural deafness, and respiratory insufficiency. Recent genetic studies have identified mutations in the C20orf54 gene, which encodes the human riboflavin (RF) transporter -2 (hRFT-2) and suggested their link to the manifestation of BVVLS. However, there is nothing currently known about the effect of these mutations on functionality of hRFT-2, a protein that is expressed in a variety of tissues with high expression in the intestine. We addressed this issue using the human-derived intestinal epithelial Caco-2 cells. Our results showed significant (P < 0.01) impairment in RF uptake by Caco-2 cells transiently expressing W17R, P28T, E36K, E71K, and R132W (but not L350M) hRFT-2 mutants. This impairment in RF transport was not due to a decrease in transcription and/or translation of hRFT-2, since mRNA and protein levels of the carrier were similar in cells expressing the mutants and wild-type hRFT-2. Confocal images of live Caco-2 cells transiently transfected with hRFT-2 mutants (fused with green fluorescent protein) showed the P28T, E36K, E71K, and R132W mutants were retained within the endoplasmic reticulum, while the W17R and L350M mutants were expressed at the cell membrane; cell surface expression of the W17R mutant was further confirmed by direct determination of cell surface transporter density. These results show for the first time that some of the BVVLS associated mutations in hRFT-2 affect the transporter functionality and that this effect is mediated via alterations in membrane targeting and/or activity of the transporter. PMID:22273710

  2. Effect of clinical mutations on functionality of the human riboflavin transporter-2 (hRFT-2).

    PubMed

    Nabokina, Svetlana M; Subramanian, Veedamali S; Said, Hamid M

    2012-04-01

    The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by ponto-bulbar palsy, bilateral sensorineural deafness, and respiratory insufficiency. Recent genetic studies have identified mutations in the C20orf54 gene, which encodes the human riboflavin (RF) transporter -2 (hRFT-2) and suggested their link to the manifestation of BVVLS. However, there is nothing currently known about the effect of these mutations on functionality of hRFT-2, a protein that is expressed in a variety of tissues with high expression in the intestine. We addressed this issue using the human-derived intestinal epithelial Caco-2 cells. Our results showed significant (P<0.01) impairment in RF uptake by Caco-2 cells transiently expressing W17R, P28T, E36K, E71K, and R132W (but not L350M) hRFT-2 mutants. This impairment in RF transport was not due to a decrease in transcription and/or translation of hRFT-2, since mRNA and protein levels of the carrier were similar in cells expressing the mutants and wild-type hRFT-2. Confocal images of live Caco-2 cells transiently transfected with hRFT-2 mutants (fused with green fluorescent protein) showed the P28T, E36K, E71K, and R132W mutants were retained within the endoplasmic reticulum, while the W17R and L350M mutants were expressed at the cell membrane; cell surface expression of the W17R mutant was further confirmed by direct determination of cell surface transporter density. These results show for the first time that some of the BVVLS associated mutations in hRFT-2 affect the transporter functionality and that this effect is mediated via alterations in membrane targeting and/or activity of the transporter. PMID:22273710

  3. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport

    PubMed Central

    Le, Michelle H.; Weissmiller, April M.; Monte, Louise; Lin, Po Han; Hexom, Tia C.; Natera, Orlangie; Wu, Chengbiao; Rissman, Robert A.

    2016-01-01

    Stress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer’s disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr) and chronic (2hr) CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF), this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD. PMID:26790099

  4. Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells

    PubMed Central

    Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-Riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with Km and Vmax values of 19 ± 3 µM and 0.235 ± 0.012 picomoles/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca++/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-Riboflavin. Apical and baso-lateral uptake of [3H]-Riboflavin clearly indicate that riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. Blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. PMID:22683359

  5. A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport.

    PubMed

    Markadieu, Nicolas; San-Cristobal, Pedro; Nair, Anil V; Verkaart, Sjoerd; Lenssen, Ellen; Tudpor, Kukiat; van Zeeland, Femke; Loffing, Johannes; Bindels, René J M; Hoenderop, Joost G J

    2012-09-15

    Studying the molecular regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for understanding how the kidney contributes to blood pressure regulation. Until now, a native mammalian cell model to investigate this transporter remained unknown. Our aim here is to establish, for the first time, a primary distal convoluted tubule (DCT) cell culture exhibiting transcellular thiazide-sensitive Na(+) transport. Because parvalbumin (PV) is primarily expressed in the DCT, where it colocalizes with NCC, kidneys from mice expressing enhanced green-fluorescent protein (eGFP) under the PV gene promoter (PV-eGFP-mice) were employed. The Complex Object Parametric Analyzer and Sorter (COPAS) was used to sort fluorescent PV-positive tubules from these kidneys, which were then seeded onto permeable supports. After 6 days, DCT cell monolayers developed transepithelial resistance values of 630 ± 33 Ω·cm(2). The monolayers also established opposing transcellular concentration gradients of Na(+) and K(+). Radioactive (22)Na(+) flux experiments showed a net apical-to-basolateral thiazide-sensitive Na(+) transport across the monolayers. Both hypotonic low-chloride medium and 1 μM angiotensin II increased this (22)Na(+) transport significantly by four times, which could be totally blocked by 100 μM hydrochlorothiazide. Angiotensin II-stimulated (22)Na(+) transport was also inhibited by 1 μM losartan. Furthermore, NCC present in the DCT monolayers was detected by immunoblot and immunocytochemistry studies. In conclusion, a murine primary DCT culture was established which expresses functional thiazide-sensitive Na(+)-Cl(-) transport. PMID:22759396

  6. Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells.

    PubMed

    Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-08-15

    Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of a riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with K(m) and V(max) values of 19 ± 3 μM and 0.235 ± 0.012 pmol/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca(++)/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-riboflavin. Apical and baso-lateral uptake of [3H]-riboflavin clearly indicates that a riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to a riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. The blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. PMID:22683359

  7. Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major.

    PubMed

    Capul, Althea A; Barron, Tamara; Dobson, Deborah E; Turco, Salvatore J; Beverley, Stephen M

    2007-05-11

    In the protozoan parasite Leishmania, abundant surface and secreted molecules, such as lipophosphoglycan (LPG) and proteophosphoglycans (PPGs), contain extensive galactose in the form of phosphoglycans (PGs) based on (Gal-Man-PO(4)) repeating units. PGs are synthesized in the parasite Golgi apparatus and require transport of cytoplasmic nucleotide sugar precursors to the Golgi lumen by nucleotide sugar transporters (NSTs). GDP-Man transport is mediated by the LPG2 gene product, and here we focused on transporters for UDP-Gal. Data base mining revealed 12 candidate NST genes in the L. major genome, including LPG2 as well as a candidate endoplasmic reticulum UDP-glucose transporter (HUT1L) and several pseudogenes. Gene knock-out studies established that two genes (LPG5A and LPG5B) encoded UDP-Gal NSTs. Although the single lpg5A(-) and lpg5B(-) mutants produced PGs, an lpg5A(-)/5B(-) double mutant was completely deficient. PG synthesis was restored in the lpg5A(-)/5B(-) mutant by heterologous expression of the human UDP-Gal transporter, and heterologous expression of LPG5A and LPG5B rescued the glycosylation defects of the mammalian Lec8 mutant, which is deficient in UDP-Gal uptake. Interestingly, the LPG5A and LPG5B functions overlap but are not equivalent, since the lpg5A(-) mutant showed a partial defect in LPG but not PPG phosphoglycosylation, whereas the lpg5B(-) mutant showed a partial defect in PPG but not LPG phosphoglycosylation. Identification of these key NSTs in Leishmania will facilitate the dissection of glycoconjugate synthesis and its role(s) in the parasite life cycle and further our understanding of NSTs generally. PMID:17347153

  8. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.

    PubMed

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W; Argüello, José M

    2011-06-01

    Cu(+)-ATPases play a key role in bacterial Cu(+) homeostasis by participating in Cu(+) detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P(1B-1) type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu(+) with high affinity in a trigonal planar geometry. The cytoplasmic Cu(+) chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu(+) is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu(+)-ATPases drive cytoplasmic Cu(+) efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu(+)-efflux pumps responsible for Cu(+) tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments. PMID:21210186

  9. Tryptophan 415 Is Critical for the Cholesterol Transport Functions of Scavenger Receptor BI.

    PubMed

    Holme, Rebecca L; Miller, James J; Nicholson, Kay; Sahoo, Daisy

    2016-01-12

    High density lipoproteins (HDL) are anti-atherogenic particles, primarily due to their role in the reverse cholesterol transport pathway whereby HDL delivers cholesteryl esters (CE) to the liver for excretion upon interaction with its receptor, scavenger receptor BI (SR-BI). We designed experiments to test the hypothesis that one or more of the eight highly conserved tryptophan (Trp; W) residues in SR-BI are critical for mediating function. We created a series of Trp-to-phenylalanine (Phe, F) mutant receptors, as well as Trp-less SR-BI (ΔW-SR-BI), and assessed their ability to mediate cholesterol transport. Wild-type (WT) or mutant SR-BI receptors were transiently expressed in COS-7 cells, and cell surface expression was confirmed. Next, we showed that Trp-less- and W415F-SR-BI had significantly decreased abilities to bind HDL and promote selective uptake of HDL-CE, albeit with higher selective uptake efficiency as compared to WT-SR-BI. Interestingly, only Trp-less-, but not W415F-SR-BI, showed an impaired ability to mediate efflux of free cholesterol (FC). Furthermore, both W415F- and Trp-less-SR-BI were unable to reorganize plasma membrane pools of FC based on lack of sensitivity to exogenous cholesterol oxidase. Restoration of Trp 415 into the Trp-less-SR-BI background was unable to rescue Trp-less-SR-BI's impaired functions, suggesting that Trp 415 is critical, but not sufficient for full receptor function. Furthermore, with the exception of Trp 262, restoration of individual extracellular Trp residues, in combination with Trp 415, into the Trp-less-SR-BI background partially rescued SR-BI function, indicating that Trp 415 must be present in combination with other Trp residues for proper cholesterol transport functions. PMID:26652912

  10. A Novel Flow Cytometric HTS Assay Reveals Functional Modulators of ATP Binding Cassette Transporter ABCB6

    PubMed Central

    Chavan, Hemantkumar; Young, Susan; Ma, Xiaochao; Waller, Anna; Garcia, Matthew; Perez, Dominique; Chavez, Stephanie; Strouse, Jacob J.; Haynes, Mark K.; Bologa, Cristian G.; Oprea, Tudor I.; Tegos, George P.; Sklar, Larry A.; Krishnamurthy, Partha

    2012-01-01

    ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6’s ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity. PMID:22808084

  11. Vitamin C Function in the Brain: Vital Role of the Ascorbate Transporter (SVCT2)

    PubMed Central

    Harrison, Fiona E.; May, James M.

    2009-01-01

    Ascorbate (vitamin C) is a vital antioxidant molecule in the brain. However, it also has a number of other important functions, participating as a co-factor in several enzyme reactions including catecholamine synthesis, collagen production and regulation of HIF-1α. Ascorbate is transported into the brain and neurons via the Sodium-dependent Vitamin C Transporter-2 (SVCT2), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters of the GLUT family. Once in cells, it is rapidly reduced to ascorbate. The highest concentrations of ascorbate in the body are found in the brain and neuroendocrine tissues such as adrenal, although the brain is the most difficult organ to deplete of ascorbate. Combined with regional asymmetry in ascorbate distribution within different brain areas, these facts suggest an important role for ascorbate in the brain. Ascorbate is proposed as a neuromodulator of glutamatergic, dopaminergic, cholinergic and GABAergic transmission and related behaviors. Neurodegenerative diseases typically involve high levels of oxidative stress and thus ascorbate has been posited to have potential therapeutic roles against ischemic stroke, Alzheimer's disease, Parkinson's disease and Huntingdon's disease. PMID:19162177

  12. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport.

    PubMed

    Shi, Ya-Fei; Wang, Da-Li; Wang, Chao; Culler, Angela Hendrickson; Kreiser, Molly A; Suresh, Jayanti; Cohen, Jerry D; Pan, Jianwei; Baker, Barbara; Liu, Jian-Zhong

    2015-09-01

    Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant. PMID:25917173

  13. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor

    PubMed Central

    Kanno, Yuri; Hanada, Atsushi; Chiba, Yasutaka; Ichikawa, Takanari; Nakazawa, Miki; Matsui, Minami; Koshiba, Tomokazu; Kamiya, Yuji; Seo, Mitsunori

    2012-01-01

    Movement of the plant hormone abscisic acid (ABA) within plants has been documented; however, the molecular mechanisms that regulate ABA transport are not fully understood. By using a modified yeast two-hybrid system, we screened Arabidopsis cDNAs capable of inducing interactions between the ABA receptor PYR/PYL/RCAR and PP2C protein phosphatase under low ABA concentrations. By using this approach, we identified four members of the NRT1/PTR family as candidates for ABA importers. Transport assays in yeast and insect cells demonstrated that at least one of the candidates ABA-IMPORTING TRANSPORTER (AIT) 1, which had been characterized as the low-affinity nitrate transporter NRT1.2, mediates cellular ABA uptake. Compared with WT, the ait1/nrt1.2 mutants were less sensitive to exogenously applied ABA during seed germination and/or postgermination growth, whereas overexpression of AIT1/NRT1.2 resulted in ABA hypersensitivity in the same conditions. Interestingly, the inflorescence stems of ait1/nrt1.2 had a lower surface temperature than those of the WT because of excess water loss from open stomata. We detected promoter activities of AIT1/NRT1.2 around vascular tissues in inflorescence stems, leaves, and roots. These data suggest that the function of AIT1/NRT1.2 as an ABA importer at the site of ABA biosynthesis is important for the regulation of stomatal aperture in inflorescence stems. PMID:22645333

  14. Tangeretin, a citrus pentamethoxyflavone, antagonizes ABCB1-mediated multidrug resistance by inhibiting its transport function.

    PubMed

    Feng, Sen-Ling; Yuan, Zhong-Wen; Yao, Xiao-Jun; Ma, Wen-Zhe; Liu, Liang; Liu, Zhong-Qiu; Xie, Ying

    2016-08-01

    Multidrug resistance (MDR) and tumor metastasis are the main causes of chemotherapeutic treatment failure and mortality in cancer patients. In this study, at achievable nontoxic plasma concentrations, citrus flavonoid tangeretin has been shown to reverse ABCB1-mediated cancer resistance to a variety of chemotherapeutic agents effectively. Co-treatment of cells with tangeretin and paclitaxel activated apoptosis as well as arrested cell cycle at G2/M-phase. Tangeretin profoundly inhibited the ABCB1 transporter activity since it significantly increased the intracellular accumulation of doxorubicin, and flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the expression of ABCB1. Moreover, it stimulated the ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. The molecular docking results indicated a favorable binding of tangeretin with the transmemberane region site 1 of homology modeled ABCB1 transporter. The overall results demonstrated that tangeretin could sensitize ABCB1-overexpressing cancer cells to chemotherapeutical agents by directly inhibiting ABCB1 transporter function, which encouraged further animal and clinical studies in the treatment of resistant cancers. PMID:27058921

  15. ZINC AND ZINC TRANSPORTERS IN NORMAL PROSTATE FUNCTION AND THE PATHOGENESIS OF PROSTATE CANCER

    PubMed Central

    Franklin, Renty B.; Milon, Beatrice; Feng, Pei; Costello, Leslie C.

    2015-01-01

    Zinc is an essential metal for all cells. It plays a role in a wide variety of physiological and biochemical processes. In the prostate epithelial cell the accumulation of high cellular zinc is a specialized function that is necessary for these cells to carry out the major physiological functions of production and secretion of citrate. The production of citrate and its secretion into prostatic fluid is a differentiated function of the prostate epithelial cells that is apparently important for reproduction. The loss of citrate and zinc accumulation is the most consistent and persistent characteristic of prostate malignancy. This characteristic of prostate cancer indicates that the lost ability of the malignant cells to accumulate zinc and citrate is an important factor in the development and progression of malignancy. The lost ability of the epithelial cells to accumulate zinc and thus to also accumulate citrate is the result of decreased expression of specific zinc uptake transporters. The purpose of this presentation is to review the current understanding of zinc and zinc homeostasis in the prostate and the role of zinc and zinc transporters in the normal function of the prostate and the pathogenesis of prostate cancer. PMID:15970489

  16. Lactate Transport and Receptor Actions in Retina: Potential Roles in Retinal Function and Disease.

    PubMed

    Kolko, Miriam; Vosborg, Fia; Henriksen, Ulrik L; Hasan-Olive, Md Mahdi; Diget, Elisabeth Holm; Vohra, Rupali; Gurubaran, Iswariya Raja Sridevi; Gjedde, Albert; Mariga, Shelton Tendai; Skytt, Dorte M; Utheim, Tor Paaske; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-06-01

    In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions, such as excitability, metabolism and inflammation. Recent publications predict effects of the lactate receptor on neurodegeneration. Neurodegenerative diseases in retina, where the retinal ganglion cells die, notably glaucoma and diabetic retinopathy, may be linked to disturbed lactate homeostasis. Pilot studies reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect neurons and prevent or counteract glaucoma as well as other retinal diseases. PMID:26677077

  17. A Biochemical and Functional Protein Complex Involving Dopamine Synthesis and Transport into Synaptic Vesicles

    PubMed Central

    Cartier, Etienne A.; Parra, Leonardo A.; Baust, Tracy B.; Quiroz, Marisol; Salazar, Gloria; Faundez, Victor; Egaña, Loreto; Torres, Gonzalo E.

    2010-01-01

    Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT2) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT2 physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT2, whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT1 and with overexpressed VMAT2. GST pull-down assays further identified three cytosolic domains of VMAT2 involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT2. Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT2-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT2/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT2-mediated transport into vesicles. PMID:19903816

  18. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus

    PubMed Central

    2013-01-01

    Background Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. Results Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. Conclusions P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae. PMID:23514356

  19. Protein Adsorption and Transport in Polymer-Functionalized Ion-Exchangers

    PubMed Central

    Lenhoff, Abraham M.

    2012-01-01

    A wide variety of stationary phases is available for use in preparative chromatography of proteins, covering different base matrices, pore structures and modes of chromatography. There has recently been significant growth in the number of such materials in which the base matrix is derivatized to add a covalently attached or grafted polymer layer or, in some cases, a hydrogel that fills the pore space. This review summarizes the main structural and functional features of ion exchangers of this kind, which represent the largest class of such materials. Although the adsorption and transport properties may generally be used operationally and modeled phenomenologically using the same methods as are used for proteins in conventional media, there are noteworthy mechanistic differences in protein behavior in these adsorbents. A fundamental difference in protein retention is that it may be portrayed as partitioning into a three-dimensional polymer phase rather than adsorption at an extended two-dimensional surface, as applies in more conventional media. Beyond this partitioning behavior, however, the polymer-functionalized media often display rapid intraparticle transport that, while qualitatively comparable to that in conventional media, is sufficiently rapid quantitatively under certain conditions that it can lead to clear benefits in key measures of performance such as the dynamic binding capacity. Although possible mechanistic bases for the retention and transport properties are discussed, appreciable areas of uncertainty make detailed mechanistic modeling very challenging, and more detailed experimental characterization is likely to be more productive. PMID:21752388

  20. Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia

    PubMed Central

    Jin, Xiao-Tao; Galvan, Adriana; Wichmann, Thomas; Smith, Yoland

    2011-01-01

    GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABAA receptor-mediated postsynaptic tonic and phasic inhibition in the hippocampus, cerebral cortex and cerebellum. Taking into consideration the key role of GABAergic transmission within basal ganglia networks, and the importance for these systems to be properly balanced to mediate normal basal ganglia function, we analyzed in detail the localization and function of GAT-1 and GAT-3 in the globus pallidus of normal and Parkinsonian animals, in order to further understand the substrate and possible mechanisms by which GABA transporters may regulate basal ganglia outflow, and may become relevant targets for new therapeutic approaches for the treatment of basal ganglia-related disorders. In this review, we describe the general features of GATs in the basal ganglia, and give a detailed account of recent evidence that GAT-1 and GAT-3 regulation can have a major impact on the firing rate and pattern of basal ganglia neurons through pre- and post-synaptic GABAA- and GABAB-receptor-mediated effects. PMID:21847373

  1. Linking suspended sediment transport metrics with fish functional traits in the Northwestern Great Plains (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.; Simon, A.; Klimetz, L.

    2009-12-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning

  2. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1.

    PubMed Central

    Lu, Y P; Li, Z S; Drozdowicz, Y M; Hortensteiner, S; Martinoia, E; Rea, P A

    1998-01-01

    Three ATP binding cassette (ABC) transporter-like activities directed toward large amphipathic organic anions have recently been identified on the vacuolar membrane of plant cells. These are the Mg-ATP-energized, vanadate-inhibitable vacuolar accumulation of glutathione S-conjugates (GS conjugates), chlorophyll catabolites, and bile acids, respectively. Although each of these activities previously had been assigned to distinct pumps in native plant membranes, we describe here the molecular cloning, physical mapping, and heterologous expression of a gene, AtMRP2, from Arabidopsis thaliana that encodes a multispecific ABC transporter competent in the transport of both GS conjugates and chlorophyll catabolites. Unlike its isoform, AtMRP1, which transports the model Brassica napus chlorophyll catabolite transporter substrate Bn-NCC-1 at low efficiency, heterologously expressed AtMRP2 has the facility for simultaneous high-efficiency parallel transport of GS conjugates and Bn-NCC-1. The properties of AtMRP2 therefore establish a basis for the manipulation of two previously identified plant ABC transporter activities and provide an explanation for how the comparable transporter in native plant membranes would be systematically mistaken for two distinct transporters. These findings are discussed with respect to the functional organization of AtMRP2, the inability of AtMRP2 and AtMRP1 to transport the model bile acid transporter substrate taurocholate (despite the pronounced sensitivity of both to direct inhibition by this agent), the differential patterns of expression of their genes in the intact plant, and the high capacity of AtMRP2 for the transport of glutathionated herbicides and anthocyanins. PMID:9490749

  3. Function and expression of ATP-binding cassette transporters in cultured human Y79 retinoblastoma cells.

    PubMed

    Ishikawa, Yuka; Nagai, Junya; Okada, Yumi; Sato, Koya; Yumoto, Ryoko; Takano, Mikihisa

    2010-01-01

    The aim of this study was to reveal the expression and function of P-glycoprotein and multidrug resistance-associated proteins (MRP), members of the ATP-binding cassette (ABC) superfamily of drug transporters, in cultured human Y79 retinoblastoma cells. ABC transporter mRNA expression was evaluated by conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR analyses. Cellular accumulation of rhodamine 123 (P-glycoprotein substrate), calcein (MRP substrate), and doxorubicin (P-glycoprotein/MRP substrate) was analyzed by fluorometry. Conventional RT-PCR analysis showed the expression of multidrug resistance 1 (MDR1), MRP1, MRP2 and lung resistance-related protein (LRP) mRNAs. Real-time RT-PCR analysis revealed that the expression levels of the MDR1 and MRP2 genes in Y79 cells were much lower than those in human intestinal cell line Caco-2, while the expression level of MRP1 was higher than that in Caco-2 cells. The accumulation of rhodamine 123 was not enhanced by verapamil or reversin 205, inhibitors of P-glycoprotein, indicating no function of P-glycoprotein in Y79 cells. The accumulation of calcein was significantly increased by various MRP inhibitors including probenecid, indicating that MRP functions in Y79 cells. The accumulation of doxorubicin was increased in the presence of metabolic inhibitors (10 mM 2-deoxyglucose and 5 mM sodium azide). However, most MRP inhibitors such as probenecid and indomethacin did not affect doxorubicin accumulation, while cyclosporin A and taclorimus significantly increased doxorubicin accumulation. These results suggest that MRP, but not P-glycoprotein, functions in Y79 cells, and that the efflux of doxorubicin from Y79 cells may be due to an ATP-dependent transporter, which has not been identified yet. PMID:20190417

  4. Nonlinear electronic transport in nanoscopic devices: nonequilibrium Green's functions versus scattering approach

    NASA Astrophysics Data System (ADS)

    Hernández, Alexis R.; Lewenkopf, Caio H.

    2013-04-01

    We study the nonlinear elastic quantum electronic transport properties of nanoscopic devices using the nonequilibrium Green's function (NEGF) method. The Green's function method allows us to expand the I- V characteristics of a given device to arbitrary powers of the applied voltages. By doing so, we are able to relate the NEGF method to the scattering approach, showing their similarities and differences and calculate the conductance coefficients to arbitrary order. We demonstrate that the electronic current given by NEGF is gauge invariant to all orders in powers of V, and discuss the requirements for gauge invariance in the standard density functional theory (DFT) implementations in molecular electronics. We also analyze the symmetries of the nonlinear conductance coefficients with respect to a magnetic field inversion and the violation of the Onsager reciprocity relations with increasing source-drain bias.

  5. Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81

    PubMed Central

    Bhogaraju, Sagar; Cajanek, Lukas; Fort, Cécile; Blisnick, Thierry; Weber, Kristina; Taschner, Michael; Mizuno, Naoko; Lamla, Stefan; Bastin, Philippe; Nigg, Erich A.; Lorentzen, Esben

    2015-01-01

    Intraflagellar transport (IFT) of ciliary precursors such as tubulin from the cytoplasm to the ciliary tip is involved in the construction of the cilium, a hairlike organelle found on most eukaryotic cells. However, the molecular mechanisms of IFT are poorly understood. Here, we found that the two core IFT proteins IFT74 and IFT81 form a tubulin-binding module and mapped the interaction to a calponin homology domain of IFT81 and a highly basic domain in IFT74. Knockdown of IFT81 and rescue experiments with point mutants showed that tubulin binding by IFT81 was required for ciliogenesis in human cells. PMID:23990561

  6. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete

    PubMed Central

    Montanini, Barbara; Viscomi, Arturo R.; Bolchi, Angelo; Martin, Yusé; Siverio, José M.; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2005-01-01

    Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (Km=4.7 μM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils. PMID:16201972

  7. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete.

    PubMed

    Montanini, Barbara; Viscomi, Arturo R; Bolchi, Angelo; Martin, Yusé; Siverio, José M; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2006-02-15

    Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (K(m)=4.7 microM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils. PMID:16201972

  8. Membrane Transporters for Sulfated Steroids in the Human Testis - Cellular Localization, Expression Pattern and Functional Analysis

    PubMed Central

    Wapelhorst, Britta; Grosser, Gary; Günther, Sabine; Alber, Jörg; Döring, Barbara; Kliesch, Sabine; Weidner, Wolfgang; Galuska, Christina E.; Hartmann, Michaela F.; Wudy, Stefan A.; Bergmann, Martin; Geyer, Joachim

    2013-01-01

    Sulfated steroid hormones are commonly considered to be biologically inactive metabolites, but may be reactivated by the steroid sulfatase into biologically active free steroids, thereby having regulatory function via nuclear androgen and estrogen receptors which are widespread in the testis. However, a prerequisite for this mode of action would be a carrier-mediated import of the hydrophilic steroid sulfate molecules into specific target cells in reproductive tissues such as the testis. In the present study we detected predominant expression of the Sodium-dependent Organic Anion Transporter (SOAT), the Organic Anion Transporting Polypeptide 6A1, and the Organic Solute Carrier Partner 1 in human testis biopsies. All of these showed significantly lower or even absent mRNA expression in severe disorders of spermatogenesis (arrest at the level of spermatocytes or spermatogonia, Sertoli cell only syndrome). Only SOAT was significantly lower expressed in biopsies showing hypospermatogenesis. By use of immunohistochemistry SOAT was localized to germ cells at various stages in human testis biopsies showing normal spermatogenesis. SOAT immunoreactivity was detected in zygotene primary spermatocytes of stage V, pachytene spermatocytes of all stages (I–V), secondary spermatocytes of stage VI, and round spermatids (step 1 and step 2) in stages I and II. Furthermore, SOAT transport function for steroid sulfates was analyzed with a novel liquid chromatography tandem mass spectrometry procedure capable of profiling steroid sulfate molecules from cell lysates. With this technique, the cellular inward-directed SOAT transport was verified for the established substrates dehydroepiandrosterone sulfate and estrone-3-sulfate. Additionally, β-estradiol-3-sulfate and androstenediol-3-sulfate were identified as novel SOAT substrates. PMID:23667501

  9. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene.

    PubMed

    Montpetit, Jonatan; Vivancos, Julien; Mitani-Ueno, Namiki; Yamaji, Naoki; Rémus-Borel, Wilfried; Belzile, François; Ma, Jian Feng; Bélanger, Richard R

    2012-05-01

    Silicon (Si) is known to be beneficial to plants, namely in alleviating biotic and abiotic stresses. The magnitude of such positive effects is associated with a plant's natural ability to absorb Si. Many grasses can accumulate as much as 10% on a dry weight basis while most dicots, including Arabidopsis, will accumulate less than 0.1%. In this report, we describe the cloning and functional characterization of TaLsi1, a wheat Si transporter gene. In addition, we developed a heterologous system for the study of Si uptake in plants by introducing TaLsi1 and OsLsi1, its ortholog in rice, into Arabidopsis, a species with a very low innate Si uptake capacity. When expressed constitutively under the control of the CaMV 35S promoter, both TaLsi1 and OsLsi1 were expressed in cells of roots and shoots. Such constitutive expression of TaLsi1 or OsLsi1 resulted in a fourfold to fivefold increase in Si accumulation in transformed plants compared to WT. However, this Si absorption caused deleterious symptoms. When the wheat transporter was expressed under the control of a root-specific promoter (a boron transporter gene (AtNIP5;1) promoter), a similar increase in Si absorption was noted but the plants did not exhibit symptoms and grew normally. These results demonstrate that TaLsi1 is indeed a functional Si transporter as its expression in Arabidopsis leads to increased Si uptake, but that this expression must be confined to root cells for healthy plant development. The availability of this heterologous expression system will facilitate further studies into the mechanisms and benefits of Si uptake. PMID:22351076

  10. Chloroplast Iron Transport Proteins – Function and Impact on Plant Physiology

    PubMed Central

    López-Millán, Ana F.; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today’s cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field. PMID:27014281

  11. Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions

    PubMed Central

    Tohge, Takayuki; Fernie, Alisdair R.

    2014-01-01

    Whole genome sequencing and the relative ease of transcript profiling have facilitated the collection and data warehousing of immense quantities of expression data. However, a substantial proportion of genes are not yet functionally annotated a problem which is particularly acute for transport proteins. In Arabidopsis, for example, only a minor fraction of the estimated 700 intracellular transporters have been identified at the molecular genetic level. Furthermore it is only within the last couple of years that critical genes such as those encoding the final transport step required for the long distance transport of sucrose and the first transporter of the core photorespiratory pathway have been identified. Here we will describe how transcriptional coordination between genes of known function and non-annotated genes allows the identification of putative transporters on the premise that such co-expressed genes tend to be functionally related. We will additionally extend this to include the expansion of this approach to include phenotypic information from other levels of cellular organization such as proteomic and metabolomic data and provide case studies wherein this approach has successfully been used to fill knowledge gaps in important metabolic pathways and physiological processes. PMID:24672529

  12. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective

    PubMed Central

    Kimura, Tomoki; Kambe, Taiho

    2016-01-01

    Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009

  13. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer's disease.

    PubMed

    Takahashi, Kou; Kong, Qiongman; Lin, Yuchen; Stouffer, Nathan; Schulte, Delanie A; Lai, Liching; Liu, Qibing; Chang, Ling-Chu; Dominguez, Sky; Xing, Xuechao; Cuny, Gregory D; Hodgetts, Kevin J; Glicksman, Marcie A; Lin, Chien-Liang Glenn

    2015-03-01

    Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer's disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD. PMID:25711212

  14. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  15. Relating Snow Transport to Ecosystem Structure and Function: Lessons from Libby Flats

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Reiners, W. A.

    2003-12-01

    The effects of variable snow cover on ecosystem structure and function have been well-documented in cold, temperate ecosystems, especially in high-elevation treeline and alpine landscapes where long, windy winters can produce dramatic variations in snow depths over short distances. Additionally, wind directions, snowfall, and resultant snow-distribution patterns are essentially the same year after year, allowing for relatively steady state environmental conditions and ecosystem properties. These chronic and heterogeneous snow-cover patterns have been associated with ecosystem structure (e.g., plant species distributions, soil characteristics) and function (e.g., decomposition, primary production, nutrient cycling, water balance) in systems where winters are long and most precipitation falls as snow. We sought to determine the impacts of a heterogeneous snow distribution on ecosystem properties in a 6.25 km2 upper-treeline ecotone, called Libby Flats, in south-central Wyoming. This involved modeling and validating snow accumulation, ablation, and meltwater flow spatially coupled with observations of snow depth and density, soil moisture, soil temperature, plant species composition and cover, biomass, gross decomposition, and gopher activity. Model simulations successfully represented the general spatial patterns of snow redistribution and ablation, but field measurements pointed the way for model improvements. Dominant cover types varied with snow depth, meltwater flow, and soil temperature. Decomposition rates changed with soil moisture, soil temperature, snow depth, and length of time covered by snow. Gopher activity was inversely related to soil moisture and positively related to soil depth, soil temperature, snow water equivalent, and graminoid biomass. The role of snow in this landscape is best understood as a function of transport. Transport of snow and snow meltwater play distinctive roles in the spatial patterns of cover within the Libby Flats landscape

  16. Efficient transmembrane anion transport mediated by a bis(imidazolyl)-functionalized bis(choloyl) conjugate.

    PubMed

    Li, Zhi; Deng, Li-Qun; Chen, Yun; Wu, Tao; Chen, Wen-Hua

    2016-08-01

    A bis(imidazolyl)-functionalized bis(choloyl) conjugate was synthesized and assessed for its transmembrane anionophoric activity by means of chloride ion selective electrode technique and pyranine assays. The results indicate that under the assay conditions, this conjugate was capable of mediating the symport of proton and anions, presumably via a channel mechanism. In addition, this compound was found to exhibit much higher anionophoric activity than the analogue without imidazolyl groups, revealing the significant role of the imidazolyl groups in the anion transport process. PMID:27289317

  17. Charge transport properties of CN-substituted furan based organic semiconductor: A density functional study

    NASA Astrophysics Data System (ADS)

    Sahoo, Smruti Ranjan; Sahu, Sridhar; Sharma, Sagar

    2016-05-01

    We report a density functional study for charge transport properties of substituted furan molecule. Reorganization energy(λ), charge transfer integral(t) and mobility(μ) have been studied along with their structural properties within the framework of dimmer model. We found the electron withdrawing -CN groups decrease the reorganization energy and band gap of the conjugated molecules, resulting in more electron injection across the barrier and hence assigning n-type characteristics to the system. Furthermore, substitution of -CN group is also found to enhance the electron mobility of oligomer as compared to monomer unit and the bare furan molecule.

  18. Variational Determination of the Neutron Integral Transport Equation Eigenvalues Using Space Asymptotic Trial Functions

    NASA Astrophysics Data System (ADS)

    Colombo, V.; Ravetto, P.; Sumini, M.

    1988-08-01

    An approximate determination of the critical eigenvalue of the neutron transport equation in integral form, within both the one speed and energy multigroup models, for a homogeneous medium, is achieved by means of a variational technique. The space asymptotic solutions for both the direct and adjoint problems are used as trial functions. A variational procedure is also developed and numerically exploited within the Fourier transformed domain, where noticeable theoretical features can be demonstrated. It is evidenced that excellent results can be obtained with little computational effort, and a set of critical calculations in plane geometry is presented and discussed.

  19. Variational determination of the neutron integral transport equation eigenvalues using space asymptotic trial functions

    SciTech Connect

    Colombo, V.; Ravetto, P.; Sumini, M.

    1988-08-01

    An approximate determination of the critical eigenvalue of the neutron transport equation in integral form, within both the one speed and energy multigroup models, for a homogeneous medium, is achieved by means of a variational technique. The space asymptotic solutions for both the direct and adjoint problems are used as trial functions. A variational procedure is also developed and numerically exploited within the Fourier transformed domain, where noticeable theoretical features can be demonstrated. It is evidenced that excellent results can be obtained with little computational effort, and a set of critical calculations in plane geometry is presented and discussed. copyright 1988 Academic Press, Inc.

  20. Structure-Function Analysis of Peroxisomal ATP-binding Cassette Transporters Using Chimeric Dimers*

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; Van Roermund, Carlo W.; Lopez, Tatiana E.; Dias, Alexandre M. M.; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J.; Trompier, Doriane; Savary, Stéphane

    2014-01-01

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters. PMID:25043761

  1. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  2. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    NASA Astrophysics Data System (ADS)

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  3. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health

    PubMed Central

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-01-01

    Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention

  4. A New Endogenous Overexpression System of Multidrug Transporters of Candida albicans Suitable for Structural and Functional Studies

    PubMed Central

    Banerjee, Atanu; Khandelwal, Nitesh K.; Sanglard, Dominique; Prasad, Rajendra

    2016-01-01

    Fungal pathogens have a robust array of multidrug transporters which aid in active expulsion of drugs and xenobiotics to help them evade toxic effects of drugs. Thus, these transporters impose a major impediment to effective chemotherapy. Although the Saccharomyces cerevisiae strain AD1-8u− has catered well to the need of an overexpression system to study drug transport by multidrug transporters of Candida albicans, artifacts associated with a heterologous system could not be excluded. To avoid the issue, we exploited a azole-resistant clinical isolate of C. albicans to develop a new system devoid of three major multidrug transporters (Cdr1p, Cdr2p, and Mdr1p) for the overexpression of multidrug transporters under native hyperactive CDR1 promoter due to gain of function (GOF) mutation in TAC1. The study deals with overexpression and functional characterization of representatives of two major classes of multidrug transporters, Cdr1p and Mdr1p, to prove the functionality of this newly developed endogenous expression system. Expression of native Cdr1 and Mdr1 protein in C. albicans cells was confirmed by confocal microscopy and immunodetection and resulted in increased resistance to the putative substrates as compared to control. The system was further validated by overexpressing a few key mutant variants of Cdr1p and Mdr1p. Together, our data confirms the utility of new endogenous overexpression system which is devoid of artifactual factors as most suited for functional characterization of multidrug transporter proteins of C. albicans. PMID:26973635

  5. Revealing the Molecular Structure and the Transport Mechanism at the Base of Primary Cilia Using Superresolution STED Microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Tung-Lin

    The primary cilium is an organelle that serves as a signaling center of the cell and is involved in the hedgehog signaling, cAMP pathway, Wnt pathways, etc. Ciliary function relies on the transportation of molecules between the primary cilium and the cell, which is facilitated by intraflagellar transport (IFT). IFT88, one of the important IFT proteins in complex B, is known to play a role in the formation and maintenance of cilia in various types of organisms. The ciliary transition zone (TZ), which is part of the gating apparatus at the ciliary base, is home to a large number of ciliopathy molecules. Recent studies have identified important regulating elements for TZ gating in cilia. However, the architecture of the TZ region and its arrangement relative to intraflagellar transport (IFT) proteins remain largely unknown, hindering the mechanistic understanding of the regulation processes. One of the major challenges comes from the tiny volume at the ciliary base packed with numerous proteins, with the diameter of the TZ close to the diffraction limit of conventional microscopes. Using a series of stimulated emission depletion (STED) superresolution images mapped to electron microscopy images, we analyzed the structural organization of the ciliary base. Subdiffraction imaging of TZ components defines novel geometric distributions of RPGRIP1L, MKS1, CEP290, TCTN2 and TMEM67, shedding light on their roles in TZ structure, assembly, and function. We found TCTN2 at the outmost periphery of the TZ close to the ciliary membrane, with a 227+/-18 nm diameter. TMEM67 was adjacent to TCTN2, with a 205+/-20 nm diameter. RPGRIP1L was localized toward the axoneme at the same axial level as TCTN2 and TMEM67, with a 165+/-8 nm diameter. MKS1 was situated between TMEM67 and RPGRIP1L, with an 186+/-21 nm diameter. Surprisingly, CEP290 was localized at the proximal side of the TZ close to the distal end of the centrin-labeled basal body. The lateral width was unexpectedly close to

  6. Critical comparison of electrode models in density functional theory based quantum transport calculations

    NASA Astrophysics Data System (ADS)

    Jacob, D.; Palacios, J. J.

    2011-01-01

    We study the performance of two different electrode models in quantum transport calculations based on density functional theory: parametrized Bethe lattices and quasi-one-dimensional wires or nanowires. A detailed account of implementation details in both the cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that the parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi-one-dimensional electrodes for large enough cross-sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is the case for carbon nanotubes, graphene nanoribbons, or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox ALACANT and are publicly available.

  7. The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations

    PubMed Central

    Henderson, Beric R.

    2012-01-01

    Inherited mutations in the BRCA1 gene predispose to a higher risk of breast/ovarian cancer. The BRCA1 tumor suppressor is a 1863 amino acid protein with multiple protein interaction domains that facilitate its roles in regulating DNA repair and maintenance, cell cycle progression, transcription, and cell survival/apoptosis. BRCA1 was first identified as a nuclear phosphoprotein, but has since been shown to contain different transport sequences including nuclear export and nuclear localization signals that enable it to shuttle between specific sites within the nucleus and cytoplasm, including DNA repair foci, centrosomes, and mitochondria. BRCA1 nuclear transport and ubiquitin E3 ligase enzymatic activity are tightly regulated by the BRCA1 dimeric binding partner BARD1 and further modulated by cancer mutations and diverse signaling pathways. This paper will focus on the transport, dynamics, and multiple intracellular destinations of BRCA1 with emphasis on how regulation of these events has impact on, and determines, a broad range of important cellular functions. PMID:24278741

  8. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bühler, Nicole; Hagiwara, Daisuke

    2015-01-01

    Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth. PMID:26116213

  9. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2.

    PubMed

    Panapruksachat, Siribun; Iwatani, Shun; Oura, Takahiro; Vanittanakom, Nongnuch; Chindamporn, Ariya; Niimi, Kyoko; Niimi, Masakazu; Lamping, Erwin; Cannon, Richard D; Kajiwara, Susumu

    2016-07-01

    Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump. PMID:26782644

  10. FUN26 (function unknown now 26) protein from saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Duggan, Kelli D; Roe-Žurž, Zygy; Schmitz, Hannah; Burleson, Carter; Hays, Franklin A

    2014-08-29

    Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2')- and C(5')-positions on the ribose sugar and is not stimulated by a membrane pH differential. [(3)H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [(3)H]adenosine or [(3)H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system. PMID:25035431

  11. FUN26 (Function Unknown Now 26) Protein from Saccharomyces cerevisiae Is a Broad Selectivity, High Affinity, Nucleoside and Nucleobase Transporter*

    PubMed Central

    Boswell-Casteel, Rebba C.; Johnson, Jennifer M.; Duggan, Kelli D.; Roe-Žurž, Zygy; Schmitz, Hannah; Burleson, Carter; Hays, Franklin A.

    2014-01-01

    Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2′)- and C(5′)-positions on the ribose sugar and is not stimulated by a membrane pH differential. [3H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [3H]adenosine or [3H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system. PMID:25035431

  12. Identification of high-level functional/system requirements for future civil transports

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In order to accommodate the rapid growth in commercial aviation throughout the remainder of this century, the Federal Aviation Administration (FAA) is faced with a formidable challenge to upgrade and/or modernize the National Airspace System (NAS) without compromising safety or efficiency. A recurring theme in both the Aviation System Capital Investment Plan (CIP), which has replaced the NAS Plan, and the new FAA Plan for Research, Engineering, and Development (RE&D) rely on the application of new technologies and a greater use of automation. Identifying the high-level functional and system impacts of such modernization efforts on future civil transport operational requirements, particularly in terms of cockpit functionality and information transfer, was the primary objective of this project. The FAA planning documents for the NAS of the 2005 era and beyond were surveyed; major aircraft functional capabilities and system components required for such an operating environment were identified. A hierarchical structured analysis of the information processing and flows emanating from such functional/system components were conducted and the results documented in graphical form depicting the relationships between functions and systems.

  13. Serotonin Transporter Promoter Gain-of-Function Genotypes Are Linked to Obsessive-Compulsive Disorder

    PubMed Central

    Hu, Xian-Zhang; Lipsky, Robert H.; Zhu, Guanshan; Akhtar, Longina A.; Taubman, Julie; Greenberg, Benjamin D.; Xu, Ke; Arnold, Paul D.; Richter, Margaret A.; Kennedy, James L.; Murphy, Dennis L.; Goldman, David

    2006-01-01

    A functional serotonin transporter promoter polymorphism, HTTLPR, alters the risk of disease as well as brain morphometry and function. Here, we show that HTTLPR is functionally triallelic. The LG allele, which is the L allele with a common G substitution, creates a functional AP2 transcription-factor binding site. Expression assays in 62 lymphoblastoid cell lines representing the six genotypes and in transfected raphe-derived cells showed codominant allele action and low, nearly equivalent expression for the S and LG alleles, accounting for more variation in HTT expression than previously recognized. The gain-of-function LALA genotype was approximately twice as common in 169 whites with obsessive-compulsive disorder (OCD) than in 253 ethnically matched controls. We performed a replication study in 175 trios consisting of probands with OCD and their parents. The LA allele was twofold overtransmitted to the patients with OCD. The HTTLPR LALA genotype exerts a moderate (1.8-fold) effect on risk of OCD, which crystallizes the evidence that the HTT gene has a role in OCD. PMID:16642437

  14. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    PubMed

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. PMID:27284052

  15. Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4.

    PubMed

    Kraft, Thomas E; Hresko, Richard C; Hruz, Paul W

    2015-12-01

    The insulin-responsive facilitative glucose transporter GLUT4 is of fundamental importance for maintenance of glucose homeostasis. Despite intensive effort, the ability to express and purify sufficient quantities of structurally and functionally intact protein for biophysical analysis has previously been exceedingly difficult. We report here the development of novel methods to express, purify, and functionally reconstitute GLUT4 into detergent micelles and proteoliposomes. Rat GLUT4 containing FLAG and His tags at the amino and carboxy termini, respectively, was engineered and stably transfected into HEK-293 cells. Overexpression in suspension culture yielded over 1.5 mg of protein per liter of culture. Systematic screening of detergent solubilized GLUT4-GFP fusion protein via fluorescent-detection size exclusion chromatography identified lauryl maltose neopentyl glycol (LMNG) as highly effective for isolating monomeric GLUT4 micelles. Preservation of structural integrity and ligand binding was demonstrated via quenching of tryptophan fluorescence and competition of ATB-BMPA photolabeling by cytochalasin B. GLUT4 was reconstituted into lipid nanodiscs and proper folding was confirmed. Reconstitution of purified GLUT4 with amphipol A8-35 stabilized the transporter at elevated temperatures for extended periods of time. Functional activity of purified GLUT4 was confirmed by reconstitution of LMNG-purified GLUT4 into proteoliposomes and measurement of saturable uptake of D-glucose over L-glucose. Taken together, these data validate the development of an efficient means to generate milligram quantities of stable and functionally intact GLUT4 that is suitable for a wide array of biochemical and biophysical analyses. PMID:26402434

  16. Discovering Thiamine Transporters as Targets of Chloroquine Using a Novel Functional Genomics Strategy

    PubMed Central

    Huang, Zhiwei; Srinivasan, Sankaranarayanan; Zhang, Jianhuai; Chen, Kaifu; Li, Yongxiang; Li, Wei; Quiocho, Florante A.; Pan, Xuewen

    2012-01-01

    Chloroquine (CQ) and other quinoline-containing antimalarials are important drugs with many therapeutic benefits as well as adverse effects. However, the molecular targets underlying most such effects are largely unknown. By taking a novel functional genomics strategy, which employs a unique combination of genome-wide drug-gene synthetic lethality (DGSL), gene-gene synthetic lethality (GGSL), and dosage suppression (DS) screens in the model organism Saccharomyces cerevisiae and is thus termed SL/DS for simplicity, we found that CQ inhibits the thiamine transporters Thi7, Nrt1, and Thi72 in yeast. We first discovered a thi3Δ mutant as hypersensitive to CQ using a genome-wide DGSL analysis. Using genome-wide GGSL and DS screens, we then found that a thi7Δ mutation confers severe growth defect in the thi3Δ mutant and that THI7 overexpression suppresses CQ-hypersensitivity of this mutant. We subsequently showed that CQ inhibits the functions of Thi7 and its homologues Nrt1 and Thi72. In particular, the transporter activity of wild-type Thi7 but not a CQ-resistant mutant (Thi7T287N) was completely inhibited by the drug. Similar effects were also observed with other quinoline-containing antimalarials. In addition, CQ completely inhibited a human thiamine transporter (SLC19A3) expressed in yeast and significantly inhibited thiamine uptake in cultured human cell lines. Therefore, inhibition of thiamine uptake is a conserved mechanism of action of CQ. This study also demonstrated SL/DS as a uniquely effective methodology for discovering drug targets. PMID:23209439

  17. Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.

    PubMed

    Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T

    2015-09-15

    Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. PMID:26005123

  18. Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes

    PubMed Central

    Sprenger, Richard R.; Fontijn, Ruud D.; van Marle, Jan; Pannekoek, Hans; Horrevoets, Anton J. G.

    2006-01-01

    Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (∼5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane. PMID:16886909

  19. Function of a p24 Heterodimer in Morphogenesis and Protein Transport in Penicillium oxalicum

    PubMed Central

    Wang, Fangzhong; Liu, Kuimei; Han, Lijuan; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2015-01-01

    The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi. In this study, four p24 proteins were identified in Penicillium oxalicum. Six p24 double-deletion strains were constructed, and further studies were carried out with the ΔerpΔpδ strain. The experimental results suggested that Erp and Pδ form a p24 heterodimer in vivo. This p24 heterodimer participates in important morphogenetic events, including sporulation, hyphal growth, and lateral branching. The results suggested that the p24 heterodimer mediates protein transport, particularly that of cellobiohydrolase. Analysis of the intracellular proteome revealed that the ΔerpΔpδ double mutant is under secretion stress due to attempts to remove proteins that are jammed in the endomembrane system. These results suggest that the p24 heterodimer participates in morphogenesis and protein transport. Compared with P. oxalicum Δerp, a greater number of cellular physiological pathways were impaired in ΔerpΔpδ. This finding may provide new insights into the secretory pathways of filamentous fungi. PMID:26149342

  20. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    PubMed Central

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  1. Structure and function of the mannitol permease of the Escherichia coli phosphotransferase sugar transport system

    SciTech Connect

    Stephan, M.M.

    1988-01-01

    The mannitol permease, or mannitol enzyme II, is responsible for the phosphorylation and transmembrane transport of the hexitol mannitol via the phosphotransferase sugar transport system (PTS) in Escherichia coli. Neither the detailed molecular mechanisms by which this protein carries out these functions nor its three dimensional structure in the membrane are known. An in vivo selective radiolabeling system was used to study the enzyme's subunits interactions as they related to function, as well as its membrane topography, by polyacrylamide gel electrophoresis. The intramembrane topography of the mannitol enzyme II was investigated using proteases as probes of enzyme structure in the membrane. The enzyme was found to have two distinct domains, a very hydrophobic, membrane-bound, N-terminal domain, and a relatively hyprophilic C-terminal domain which protrudes into the cytoplasm. The membrane-bound domain was further dissected, and an extra-membrane loop region was identified using peptide-specific antibodies. The cytoplasmic domain was found to contain a site of covalent phosphorylation using (/sup 32/p)-labeled PEP, as well as the binding site for the phosphodonor HPr.

  2. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function.

    PubMed

    Chen, Gin-Fu; Sudhahar, Varadarajan; Youn, Seock-Won; Das, Archita; Cho, Jaehyung; Kamiya, Tetsuro; Urao, Norifumi; McKinney, Ronald D; Surenkhuu, Bayasgalan; Hamakubo, Takao; Iwanari, Hiroko; Li, Senlin; Christman, John W; Shantikumar, Saran; Angelini, Gianni D; Emanueli, Costanza; Ushio-Fukai, Masuko; Fukai, Tohru

    2015-01-01

    Copper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia. Atox1-deficient mice show impaired limb perfusion recovery with reduced arteriogenesis, angiogenesis, and recruitment of inflammatory cells. In vivo intravital microscopy, bone marrow reconstitution, and Atox1 gene transfer in Atox1(-/-) mice show that Atox1 in endothelial cells (ECs) is essential for neovascularization and recruitment of inflammatory cells which release VEGF and TNFα. Mechanistically, Atox1-depleted ECs demonstrate that Cu chaperone function of Atox1 mediated through Cu transporter ATP7A is required for VEGF-induced angiogenesis via activation of Cu enzyme lysyl oxidase. Moreover, Atox1 functions as a Cu-dependent transcription factor for NADPH oxidase organizer p47phox, thereby increasing ROS-NFκB-VCAM-1/ICAM-1 expression and monocyte adhesion in ECs inflamed with TNFα in an ATP7A-independent manner. These findings demonstrate a novel linkage between Atox1 and NADPH oxidase involved in inflammatory neovascularization and suggest Atox1 as a potential therapeutic target for treatment of ischemic disease. PMID:26437801

  3. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics.

    PubMed

    Hirokawa, Nobutaka; Noda, Yasuko

    2008-07-01

    Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules. PMID:18626067

  4. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function

    PubMed Central

    Chen, Gin-Fu; Sudhahar, Varadarajan; Youn, Seock-Won; Das, Archita; Cho, Jaehyung; Kamiya, Tetsuro; Urao, Norifumi; McKinney, Ronald D.; Surenkhuu, Bayasgalan; Hamakubo, Takao; Iwanari, Hiroko; Li, Senlin; Christman, John W.; Shantikumar, Saran; Angelini, Gianni D.; Emanueli, Costanza; Ushio-Fukai, Masuko; Fukai, Tohru

    2015-01-01

    Copper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia. Atox1-deficient mice show impaired limb perfusion recovery with reduced arteriogenesis, angiogenesis, and recruitment of inflammatory cells. In vivo intravital microscopy, bone marrow reconstitution, and Atox1 gene transfer in Atox1−/− mice show that Atox1 in endothelial cells (ECs) is essential for neovascularization and recruitment of inflammatory cells which release VEGF and TNFα. Mechanistically, Atox1-depleted ECs demonstrate that Cu chaperone function of Atox1 mediated through Cu transporter ATP7A is required for VEGF-induced angiogenesis via activation of Cu enzyme lysyl oxidase. Moreover, Atox1 functions as a Cu-dependent transcription factor for NADPH oxidase organizer p47phox, thereby increasing ROS-NFκB-VCAM-1/ICAM-1 expression and monocyte adhesion in ECs inflamed with TNFα in an ATP7A-independent manner. These findings demonstrate a novel linkage between Atox1 and NADPH oxidase involved in inflammatory neovascularization and suggest Atox1 as a potential therapeutic target for treatment of ischemic disease. PMID:26437801

  5. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    PubMed

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  6. Arv1 lipid transporter function is conserved between pathogenic and nonpathogenic fungi

    PubMed Central

    Gallo-Ebert, Christina; McCourt, Paula C.; Donigan, Melissa; Villasmil, Michelle L.; Chen, WeiWei; Pandya, Devanshi; Franco, Judith; Romano, Desiree; Chadwick, Sean; Gygax, Scott; Nickels, Joseph T.

    2011-01-01

    The lipid transporter Arv1 regulates sterol trafficking, and glycosylphosphatidylinositol and sphingolipid biosyntheses in Saccharomyces cerevisiae. ScArv1 contains an Arv1 homology domain (AHD) that is conserved at the amino acid level in the pathogenic fungal species, Candida albicans and Candida glabrata. Here we show S. cerevisiae cells lacking Arv1 are highly susceptible to antifungal drugs. In the presence of drug, Scarv1 cells are unable to induce ERG gene expression, have an altered pleiotrophic drug response, and are defective in multi-drug resistance efflux pump expression. All phenotypes are remediated by ectopic expression of CaARV1 or CgARV1. The AHDs of these pathogenic fungi are required for specific drug tolerance, demonstrating conservation of function. In order to understand how Arv1 regulates antifungal susceptibility, we examined sterol trafficking. CaARV1/CgARV1 expression suppressed the sterol trafficking defect of Scarv1 cells. Finally, we show that C. albicans arv1/arv1 cells are avirulent using a BALB/c disseminated mouse model. We suggest that overall cell survival in response to antifungal treatment requires the lipid transporter function of Arv1. PMID:22142782

  7. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  8. Individual differences in impulsive action and dopamine transporter function in rat orbitofrontal cortex.

    PubMed

    Yates, J R; Darna, M; Beckmann, J S; Dwoskin, L P; Bardo, M T

    2016-01-28

    Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). Rats were first tested both for impulsive action in a cued go/no-go task and for impulsive choice in a delay-discounting task. Following behavioral evaluation, in vitro [(3)H]DA uptake assays were performed in OFC and mPFC isolated from individual rats. Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action. PMID:26608122

  9. The Role of Sphingosine-1-phosphate Transporter Spns2 in Immune System Function

    PubMed Central

    Nijnik, Anastasia; Clare, Simon; Hale, Christine; Chen, Jing; Raisen, Claire; Mottram, Lynda; Lucas, Mark; Estabel, Jeanne; Ryder, Edward; Adissu, Hibret; Adams, Niels C.; Ramirez-Solis, Ramiro; White, Jacqueline K.; Steel, Karen P.; Dougan, Gordon; Hancock, Robert E.W.

    2012-01-01

    Sphingosine-1-phosphate (S1P) is lipid messenger involved in the regulation of embryonic development, immune system functions, and many other physiological processes. However the mechanisms of S1P transport across cellular membranes remain poorly understood with several ATP-binding cassette family members and the spinster 2 (Spns2) member of the major facilitator superfamily known to mediate S1P transport in cell culture. Spns2 was also shown to control S1P activities in zebrafish in vivo and to play a critical role in zebrafish cardiovascular development. However the in vivo roles of Spns2 in mammals and its involvement in the different S1P-dependent physiological processes have not been investigated. Here we characterized Spns2-null mouse line carrying the Spns2tm1a(KOMP)Wtsi allele (Spns2tm1a). The Spns2tm1a/tm1a animals were viable, indicating a divergence in Spns2 function from its zebrafish orthologue. However the immunological phenotype of the Spns2tm1a/tm1a mice closely mimicked the phenotypes of partial S1P deficiency and impaired S1P-dependent lymphocyte trafficking, with a depletion of lymphocytes in circulation, an increase in mature single-positive T cells in the thymus, and a selective reduction in mature B cells in the spleen and bone marrow. Spns2 activity in the non-hematopoietic cells was critical for normal lymphocyte development and localization. Overall Spns2tm1a/tm1a resulted in impaired humoral immune responses to immunization. This work thus demonstrated a physiological role for Spns2 in mammalian immune system functions but not in cardiovascular development. Other components of the S1P signaling network are investigated as drug targets for immunosuppressive therapy, but the selective action of Spns2 may present an advantage in this regard. PMID:22664872

  10. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897

  11. Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism

    NASA Astrophysics Data System (ADS)

    Barraud, Sylvain

    2009-09-01

    Various theoretical formulations are proposed for investigating the carrier transport in nanoscale electronic devices. In this paper, a discrete formulation of the Wigner transport equation (WTE) for the self-consistent simulation of phase-coherent quantum transport in silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) devices is presented. The device is simulated using an effective-mass Hamiltonian within the mode-space approximation. The numerical scheme proposed in this work solves self-consistently three dimensional Poisson's equation, two dimensional Schrödinger's equation in each cross-sectional plane of the nanowire, and the steady-state one dimensional WTE for each conduction mode to handle the quantum transport along the channel. Details on numerical implementation of the Wigner function method are given, and the results are compared with those of the nonequilibrium Green's function (NEGF) method in the ballistic limit. The calculations of current-voltage electrical characteristics of surround-gated silicon nanowires are performed using both NEGF and WTE formulations. The good agreement observed between these approaches means that a direct solution of the WTE is an accurate simulation method for modeling the ballistic quantum transport in silicon nanowire MOSFETs.

  12. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation

    PubMed Central

    2013-01-01

    Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361

  13. "Sticky"-Ends-Guided Creation of Functional Hollow Nanopores for Guest Encapsulation and Water Transport.

    PubMed

    Huo, Yanping; Zeng, Huaqiang

    2016-05-17

    Commercial uses of water-transporting aquaporins for seawater desalination and wastewater reclamation/reuse are being investigated in both academia and the industry. Presently, structural complexity, stability, scalability, and activity reconstitution of these costly channel proteins still present substantial challenges to scientists and engineers. An attractive strategy is to develop robust synthetic water channels able to mimic the water-transporting function of aquaporins for utility in the making of next generation of water channel-based biomimetic porous membranes for various water purification applications. In sharp contrast to burgeoning development in constructing synthetic ion channels over the past four decades, very limited progress has been made in the area of synthetic water channels. A handful of such examples include the first report by Percec in 2007 (Percec et al. J. Am. Chem. Soc. 2007, 129, 11698-11699), which was followed by Barboiu in 2011 (Barboiu et al. Angew. Chem., Int. Ed. 2011, 50, 11366-11372), Gong and Hou in 2012 (Gong et al. Nat. Commun. 2012, 3, 949; Hou et al. J. Am. Chem. Soc. 2012, 134, 8384-8387), and Zeng in 2014 (Zeng et al. J. Am. Chem. Soc. 2014, 136, 14270-14276). Radically deviating from the fact that the discovery of novel synthetic channel systems with desired transport selectivity is most often empirical and very often serendipitous, we have instead adopted a more rational designer approach whereby molecular building blocks have been carefully designed from scratch to perform their intended built-in functions. Our designer journey started in 2008, two years after I started leading a group at the National University of Singapore. Since then, we have been actively investigating the use of designed water-binding "aquafoldamers" to construct synthetic water channels for the rapid and selective transport of water molecules ideally with the exclusion of all other nonproton molecular species. Toward this goal, we designed and

  14. Reserpine-induced Reduction in Norepinephrine Transporter Function Requires Catecholamine Storage Vesicles

    PubMed Central

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A.

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5 min decreased [3H]NE uptake capacity, an effect characterized by a robust decrease in the Vmax of the transport of [3H]NE. As expected, reserpine did not displace the binding of [3H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [3H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [3H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca2+/Ca2+-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [3H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, α-methyl-p-tyrosine, increased [3H]NE uptake and eliminated the inhibitory effects of reserpine on [3H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca2+-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. PMID:20176067

  15. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  16. Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods.

    PubMed

    Pujol-Giménez, Jonai; Pérez, Alejandra; Reyes, Alejandro M; Loo, Donald D F; Lostao, Maria Pilar

    2015-06-15

    GLUT12 is a member of the facilitative family of glucose transporters. The goal of this study was to characterize the functional properties of GLUT12, expressed in Xenopus laevis oocytes, using radiotracer and electrophysiological methods. Our results showed that GLUT12 is a facilitative sugar transporter with substrate selectivity: d-glucose ≥ α-methyl-d-glucopyranoside (α-MG) > 2-deoxy-d-glucose(2-DOG) > d-fructose = d-galactose. α-MG is a characteristic substrate of the Na(+)/glucose (SGLT) family and has not been shown to be a substrate of any of the GLUTs. In the absence of sugar, (22)Na(+) was transported through GLUT12 at a higher rate (40%) than noninjected oocytes, indicating that there is a Na(+) leak through GLUT12. Genistein, an inhibitor of GLUT1, also inhibited sugar uptake by GLUT12. Glucose uptake was increased by the PKA activator 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) but not by the PKC activator phorbol-12-myristate-13-acetate (PMA). In high K(+) concentrations, glucose uptake was blocked. Addition of glucose to the external solution induced an inward current with a reversal potential of approximately -15 mV and was blocked by Cl(-) channel blockers, indicating the current was carried by Cl(-) ions. The sugar-activated Cl(-) currents were unaffected by genistein. In high external K(+) concentrations, sugar-activated Cl(-) currents were also blocked, indicating that GLUT12 activity is voltage dependent. Furthermore, glucose-induced current was increased by the PKA activator 8-Br-cAMP but not by the PKC activator PMA. These new features of GLUT12 are very different from those described for other GLUTs, indicating that GLUT12 must have a specific physiological role within glucose homeostasis, still to be discovered. PMID:25855082

  17. Functional analysis of CHX21: a putative sodium transporter in Arabidopsis.

    PubMed

    Hall, D; Evans, A R; Newbury, H J; Pritchard, J

    2006-01-01

    The functional role of CHX21, a member of the Arabidopsis thaliana CHX cation transporter family, has been investigated in plants growing under "ideal" conditions and in the presence of elevated NaCl levels. In public databases, AtCHX21 (At2g31910) is annotated as a putative Na+/H+ antiporter. In this study, Southern analysis was used to identify a genotype that contained a single transposon insertion within its genome; using PCR, this insertion was shown to be within the CHX21 locus. No CHX21 transcript was detectable in Atchx21 (mutant) plants using RT-PCR. In the absence of salt stress, Atchx21 showed significant quantitative differences from the wild type (AtCHX21) in development with respect to characters such as rosette width and flowering time. In the presence of 50 mM NaCl, (i) roots of Atchx21 elongated more slowly than the wild type, (ii) the leaf sap Na+ concentration was significantly lower in Atchx21 compared with the wild type, and (iii) the concentra) in the xylem was lower compared with the wild type. The concentration of Na+ exported from the leaf in the phloem was unchanged. Thus, loading of Na+ into the root xylem could explain changes in leaf concentration of Na+. This hypothesis was supported by immunolocalization which demonstrated that the AtCHX21 transporter could only be detected in root endodermal cells. Immunogold labelling of ultra-thin sections, followed by transmission electron microscopy, demonstrated the localization of the protein in the plasma membrane. The data demonstrate that the CHX21 transporter may play a role in regulation of xylem Na+ concentration and, consequently, Na+ accumulation in the leaf. PMID:16513816

  18. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  19. Identification and functional characterization of K+ transporters encoded by Legionella pneumophila kup genes

    PubMed Central

    Hori, Juliana I.; Pereira, Marcelo S.F.; Roy, Craig R.; Nagai, Hiroki; Zamboni, Dario S.

    2013-01-01

    Summary Legionnaires’ disease is an emerging, severe, pneumonia-like illness caused by the Gram-negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication. Here, we investigate three L. pneumophila genes with high similarity to the E. coli K+ transporters. These three genes were expressed by L. pneumophila and have been designated kupA, kupB and kupC. Investigation using the L. pneumophila kup mutants revealed that kupA is involved in K+ acquisition during axenic growth. The kupA mutants replicated efficiently in rich axenic media, but poorly in a chemically defined medium. The kupA mutants were defective in the recruitment of polyubiquitinated proteins to the Legionella-containing vacuole that is formed in macrophages and displayed an intracellular multiplication defect during the replication in Acanthamoeba castellanii and in mouse macrophages. We found that bafilomycin treatment of macrophages was able to rescue the growth defects of kupA mutants, but it did not influence the replication of wild-type bacteria. The defects identified in kupA mutants of L. pneumophila were complemented by the expression E. coli trkD/Kup gene in trans, a bona fide K+ transporter encoded by E. coli. Collectively, our data indicate that KupA is a functional K+ transporter expressed by L. pneumophila that facilitates the bacterial replication intracellularly and in nutrient-limited conditions. PMID:23848378

  20. Nonequillibrium Green's function analysis of interwell transport and scattering in monopolar lasers

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Chen, Wanqiang; Stroscio, Michael; Register, Leonard F.

    2006-06-01

    Transport and scattering is examined in a simple coupled double-well model of infrared monopolar lasers via a nonequilibrium Green’s function (NEGF) based analysis. Roughly speaking, in such lasers a more or less three level system is formed where electrons are injected into the first excited state subband of a leading well, decay via photon emission to intermediate ideally resonant-state subbands resulting from coupling of the ground state subband of the leading well to the first excited state subband of the trailing well, and subsequently, preferably quickly to allow population inversion between the initial and intermediate state, decay via phonon emission to the ground state subband of the trailing well. Golden Rule based analysis is widely used to model scattering including in this system. Implicit in its use is a random-phase approximation among the final states. However when scattering processes appear to produce not only changes in energy states but also real-space transport as between the wells here, this approximation can become suspect. In this work the affects of this approximation on scattering-induced population and depopulation of intermediate level(s) are addressed and overcome using a NEGF technique that allows consideration of transport and scattering absent the Golden Rule and associated random phase approxmiations. It is found that as the barrier becomes thick, the Golden Rule approximation can overestimate the depopulation rate of the intermediate levels. Through changes in the homogeneous broadening of the photon transition associated with changes in the depopulation rates of the intermediate level(s), the variations in barrier thickness could also have additional effects on population inversion and gain not apparent through Golden Rule calculations. Accordingly, barrier thickness is found to also be a potentially critical parameter for optimizing device performance.

  1. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells

    PubMed Central

    Raghunayakula, Sarita; Subramonian, Divya; Dasso, Mary; Kumar, Rita; Zhang, Xiang-Dong

    2015-01-01

    Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological significance of the

  2. Pep7p provides a novel protein that functions in vesicle-mediated transport between the yeast Golgi and endosome.

    PubMed Central

    Webb, G C; Zhang, J; Garlow, S J; Wesp, A; Riezman, H; Jones, E W

    1997-01-01

    Saccharomyces cerevisiae pep7 mutants are defective in transport of soluble vacuolar hydrolases to the lysosome-like vacuole. PEP7 is a nonessential gene that encodes a hydrophilic protein of 515 amino acids. A cysteine-rich tripartite motif in the N-terminal half of the polypeptide shows striking similarity to sequences found in many other eukaryotic proteins. Several of these proteins are thought to function in the vacuolar/lysosomal pathway. Mutations that change highly conserved cysteine residues in this motif lead to a loss of Pep7p function. Kinetic studies demonstrate that Pep7p function is required for the transport of the Golgi-precursors of the soluble hydrolases carboxypeptidase Y, proteinase A, and proteinase B to the endosome. Integral membrane hydrolase alkaline phosphatase is transported to the vacuole by a parallel intracellular pathway that does not require Pep7p function. pep7 mutants accumulate a 40-60-nm vesicle population, suggesting that Pep7p functions in a vesicle consumption step in vesicle-mediated transport of soluble hydrolases to the endosome. Whereas pep7 mutants demonstrate no defects in endocytic uptake at the plasma membrane, the mutants demonstrate defects in transport of receptor-mediated macromolecules through the endocytic pathway. Localization studies indicate that Pep7p is found both as a soluble cytoplasmic protein and associated with particulate fractions. We conclude that Pep7p functions as a novel regulator of vesicle docking and/or fusion at the endosome. Images PMID:9168472

  3. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes.

    PubMed

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-05-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis. PMID:25690737

  4. Transcellular transport of fluorescein in hepatocyte monolayers: evidence for functional polarity of cells in culture.

    PubMed Central

    Barth, C A; Schwarz, L R

    1982-01-01

    The rat liver in vivo transfers bile salts, proteins, and dyes from blood into bile. It is the purpose of this communication to demonstrate the maintenance of this transcellular transport in cultured adult rat hepatocytes. Two minutes after adding fluorescein (20 microgram/ml) to the culture medium, maximal cellular fluorescence was observed through the fluorescence microscope. Subsequently, intercellular clefts showed a steadily increasing fluorescence with a maximum between 5 and 20 min, resulting in a brightly fluorescent network of intercellular gaps. The following observations are taken as evidence that these findings reflect cellular uptake and canalicular secretion of the dye. First, the same sequence of observations was made upon addition of fluorescein diacetate (a nonfluorescent precursor of fluorescein), proving that the compound had been taken up and metabolized in the cells to fluorescein before secretion into intercellular clefts. Second, preincubation of the monolayers with the cholestatic bile salt taurolithocholate (100 mumol/liter) suppressed almost completely intercellular but not cellular fluorescence. It is concluded that hepatocytes in culture show a functional polarity permitting the transcellular transport of substances bound for biliary secretion. Images PMID:6956908

  5. Functional elements in the minimal promoter of the human proton-coupled folate transporter

    SciTech Connect

    Stark, Michal; Gonen, Nitzan; Assaraf, Yehuda G.

    2009-10-09

    The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1 kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157 bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 and AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.

  6. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells

    SciTech Connect

    Raviv, Y.; Pollard, H.B.; Bruggemann, E.P.; Pastan, I.; Gottesman, M.M. )

    1990-03-05

    A 170,000-Da glycoprotein (P170 multidrug transporter) becomes specifically labeled in multidrug-resistant human KB carcinoma cells by the photolabile lipophilic membrane probe 5-(125I)iodonaphthalene-1-azide ((125I)INA) when photoactivation of the probe is triggered by energy transfer from intracellular doxorubicin or rhodamine 123. In contrast, in drug-sensitive cells, drug-induced specific labeling of membrane proteins with (125I)INA was not observed. Instead, multiple membrane proteins became labeled in a nonspecific manner. This phenomenon of drug-induced specific labeling of P170 by (125I)INA is observed only in living cells, but not in purified membrane vesicles or lysed cells. It is generated by doxorubicin and rhodamine 123, drugs that are chromophores and to which the cells exhibit resistance; but it is not observed with other drugs or dyes. Verapamil, a calcium channel blocker which reverses resistance to doxorubicin, also abolishes doxorubicin-induced specific (125I)INA labeling of P170. These results reveal that a specific interaction between P170 and doxorubicin takes place in living cells and demonstrate that P170 is directly involved in the mechanism of drug resistance in vivo. They also provide a possible means to label functional domains in the multidrug transporter. The results demonstrate that photosensitized (125I)INA labeling is a technique which provides sufficient spatial and time resolution to detect specific intracellular interactions between chromophores and proteins in vivo.

  7. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport.

    PubMed

    Costaguta, G; Stefan, C J; Bensen, E S; Emr, S D; Payne, G S

    2001-06-01

    Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the "ear" domain of the clathrin adaptor AP-1 gamma subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Delta), the major Gga protein, accentuates growth and alpha-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Delta or a deletion of the AP-1 beta subunit gene (apl2Delta) alone are phenotypically normal, but cells carrying both gga2Delta and apl2Delta are defective in growth, alpha-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes. PMID:11408593

  8. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    SciTech Connect

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-07-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  9. Ovarian steroid regulation of serotonin reuptake transporter (SERT) binding, distribution, and function in female macaques.

    PubMed

    Lu, N Z; Eshleman, A J; Janowsky, A; Bethea, C L

    2003-03-01

    The serotonin reuptake transporter (SERT) plays an important role in serotonin neurotransmission and in several psychopathological disorders such as depression and anxiety disorders. In this study, we investigated whether the ovarian steroids, estrogen (E) and progesterone (P) regulate SERT binding, intracellular distribution, and function using [(3)H]citalopram ligand binding with quantitative autoradiography, immunofluorescence histochemistry with confocal microscopy and [(3)H]serotonin uptake, respectively. Ovariectomized macaques received either placebo, E alone, P alone or E plus P for 28 days. In the raphe, E, P, and E+P treatments did not change SERT binding density. In several hypothalamic nuclei, [(3)H]citalopram binding was increased by E, P, and E+P. Immunofluorescent SERT in serotonin soma was intracellular and similar among treatments. In the hypothalamus, immunofluorescent SERT was located along the serotonergic axons and there was a significant proliferation of immunofluorescent fibers in hormone-treated animals. In addition, E and E+P treatment increased serotonin uptake in the basal ganglia. These findings suggest that ovarian hormones regulate SERT protein expression and distribution, perhaps via extracellular serotonin or mRNA stability, but not solely at the level of gene transcription. Further investigation on the possible action of ovarian steroids on the directionality of SERT transport is indicated. PMID:12660809

  10. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory.

    PubMed

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-01

    We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)]. PMID:26764850

  11. EVALUATION OF DMSO TRANSPORT IN HUMAN ARTICULAR CARTILAGE: VEHICLE SOLUTIONS AND EFFECTS ON CELL FUNCTION.

    PubMed

    Kay, A G; Rooney, P; Kearney, J; Pegg, D E

    2015-01-01

    Osteochondral allografting techniques are limited by the availability of suitable donor tissue; there is an urgent need for effective cryopreservation. A fundamental requirement is the need to establish initial conditions of exposure to cryoprotectant that the chondrocytes will tolerate and that load the tissue with an adequate concentration of cryoprotectant. Three vehicle solutions to transport DMSO into the tissue were studied. Knee joints were obtained from deceased donors with appropriate consent. Whole condyles were treated with 20% w/w DMSO in each of three vehicle solutions and chondrocyte function and tissue CPA content measured. The results showed that exposure to 20% DMSO in each vehicle solution for 2 hours at 0 degrees C was tolerated without loss of GAG synthetic activity. It was observed that penetration of DMSO increased little after 1 hour of CPA exposure at 0 degrees C but the final tissue concentration of CPA was markedly lower than that in the medium. PMID:26510337

  12. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-01

    We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014), 10.1103/PhysRevLett.113.155006;] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001].

  13. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p.

    PubMed Central

    Babst, M; Sato, T K; Banta, L M; Emr, S D

    1997-01-01

    In a late-Golgi compartment of the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y (CPY) are actively sorted away from the secretory pathway and transported to the vacuole via a pre-vacuolar, endosome-like intermediate. The vacuolar protein sorting (vps) mutant vps4 accumulates vacuolar, endocytic and late-Golgi markers in an aberrant multilamellar pre-vacuolar compartment. The VPS4 gene has been cloned and found to encode a 48 kDa protein which belongs to the protein family of AAA-type ATPases. The Vps4 protein was purified and shown to exhibit an N-ethylmaleimide-sensitive ATPase activity. A single amino acid change within the AAA motif of Vps4p yielded a protein that lacked ATPase activity and did not complement the protein sorting or morphological defects of the vps4 delta1 mutant. Indeed, when expressed at normal levels in wild-type cells, the mutant vps4 gene acted as a dominant-negative allele. The phenotypic characterization of a temperature-sensitive vps4 allele showed that the immediate consequence of loss of Vps4p function is a defect in vacuolar protein delivery. In this mutant, precursor CPY was not secreted but instead accumulated in an intracellular compartment, presumably the pre-vacuolar endosome. Electron microscopy revealed that upon temperature shift, exaggerated stacks of curved cisternal membranes (aberrant endosome) also accumulated in the vps4ts mutant. Based on these and other observations, we propose that Vps4p function is required for efficient transport out of the pre-vacuolar endosome. PMID:9155008

  14. Towards a filtered density function approach for reactive transport in groundwater

    NASA Astrophysics Data System (ADS)

    Suciu, N.; Schüler, L.; Attinger, S.; Knabner, P.

    2016-04-01

    Evolution equations for probability density functions (PDFs) and filtered density functions (FDFs) of random species concentrations weighted by conserved scalars are formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. This approach provides consistent numerical PDF/FDF solutions, given by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. The solutions are obtained by a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. The general FDF approach and the GRW numerical solution are illustrated for a reduced complexity problem consisting of the transport of a single scalar in groundwater. Randomness is induced by the stochastic parameterization of the hydraulic conductivity, characterized by short range correlations and small variance. The objective is to infer the statistics of the random concentration sampled at the plume center of mass, integrated over the transverse dimension of a two-dimensional spatial domain. The PDF/FDF problem can therefore be formulated in a two-dimensional domain as well, a spatial dimension and one in the concentration space. The upscaled drift and diffusion coefficients describing the PDF transport in the physical space are estimated on single-trajectories of diffusion in velocity fields with short-range correlations, owing to their self-averaging property. The mixing coefficients describing the PDF transport in concentration spaces are parameterized by the trend and the noise inferred from the statistical analysis of an ensemble of simulated concentration time series, as well as by classical mixing models. A Gaussian spatial filter applied to a Kraichnan velocity field generator is used to construct coarse-grained simulations (CGS) for FDF problems. The purposes of the CGS simulations are

  15. Theoretical investigations into the electronic structures and electron transport properties of fluorine and carbonyl end-functionalized quarterthiophenes.

    PubMed

    Li, Qian; Duan, Yuai; Gao, Hong-Ze; Su, Zhong-Мin; Geng, Yun

    2015-06-01

    In this work, we concentrate on systematic investigation on the fluorination and carbonylation effect on electron transport properties of thiophene-based materials with the aim of seeking and designing electron transport materials. Some relative factors, namely, frontier molecular orbital (FMO), vertical electron affinity (VEA), electron reorganization energy (λele), electron transfer integral (tele), electron drift mobility (μele) and band structures have been calculated and discussed based on density functional theory. The results show that the introduction of fluorine atoms and carbonyl group especially for the latter could effectively increase EA and reduce λele, which is beneficial to the improvement of electron transport performance. Furthermore, these introductions could also affect the tele by changing molecular packing manner and distribution of FMO. Finally, according to our calculation, the 3d system is considered to be a promising electron transport material with small λele, high electron transport ability and good ambient stability. PMID:25909689

  16. Function, expression, and characterization of the serotonin transporter in the native human intestine

    PubMed Central

    Gill, Ravinder K.; Pant, Nitika; Saksena, Seema; Singla, Amika; Nazir, Talat M.; Vohwinkel, Lisa; Turner, Jerrold R.; Goldstein, Jay; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2016-01-01

    The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum ≫ duodenum ≫ jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band (~70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [3H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na+ and Cl−; 2) inhibited (~50%) by the neuronal SERT inhibitor, fluoxetine (10 μM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells. PMID:17991706

  17. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing.

    PubMed

    Satoh, Kanayo; Abe-Dohmae, Sumiko; Yokoyama, Shinji; St George-Hyslop, Peter; Fraser, Paul E

    2015-10-01

    The ATP-binding cassette transporter A7 (ABCA7) has been identified as a susceptibility factor of late onset Alzheimer disease in genome-wide association studies. ABCA7 has been shown to mediate phagocytosis and affect membrane trafficking. The current study examined the impact of ABCA7 loss of function on amyloid precursor protein (APP) processing and generation of amyloid-β (Aβ). Suppression of endogenous ABCA7 in several different cell lines resulted in increased β-secretase cleavage and elevated Aβ. ABCA7 knock-out mice displayed an increased production of endogenous murine amyloid Aβ42 species. Crossing ABCA7-deficient animals to an APP transgenic model resulted in significant increases in the soluble Aβ as compared with mice expressing normal levels of ABCA7. Only modest changes in the amount of insoluble Aβ and amyloid plaque densities were observed once the amyloid pathology was well developed, whereas Aβ deposition was enhanced in younger animals. In vitro studies indicated a more rapid endocytosis of APP in ABCA7 knock-out cells that is mechanistically consistent with the increased Aβ production. These in vitro and in vivo findings indicate a direct role of ABCA7 in amyloid processing that may be associated with its primary biological function to regulate endocytic pathways. Several potential loss-of-function ABCA7 mutations and deletions linked to Alzheimer disease that in some instances have a greater impact than apoE allelic variants have recently been identified. A reduction in ABCA7 expression or loss of function would be predicted to increase amyloid production and that may be a contributing factor in the associated Alzheimer disease susceptibility. PMID:26260791

  18. Reduced Dopamine Transporter Functioning Induces High-Reward Risk-Preference Consistent with Bipolar Disorder

    PubMed Central

    van Enkhuizen, Jordy; Henry, Brook L; Minassian, Arpi; Perry, William; Milienne-Petiot, Morgane; Higa, Kerin K; Geyer, Mark A; Young, Jared W

    2014-01-01

    Individuals with bipolar disorder (BD) exhibit deleterious decision making, negatively impacting their lives. Such aberrant decision making can be quantified using the Iowa Gambling Task (IGT), which requires choosing between advantageous and disadvantageous options based on different reward/punishment schedules. The mechanisms underlying this behavioral deficit are unknown, but may include the reduced dopamine transporter (DAT) functioning reported in BD patients. Using both human and mouse IGTs, we tested whether reduced DAT functioning would recreate patterns of deficient decision making of BD patients. We assessed the IGT performance of 16 BD subjects (7 female) and 17 healthy control (HC) subjects (12 female). We recorded standard IGT performance measures and novel post-reward and post-punishment decision-making strategies. We characterized a novel single-session mouse IGT using C57BL/6J mice (n=44). The BD and HC IGT performances were compared with the effects of chronic (genetic knockdown (KD; n=31) and wild-type (n=28) mice) and acute (C57BL/6J mice (n=89) treated with the DAT inhibitor GBR12909) reductions of DAT functioning in mice performing this novel IGT. BD patients exhibited impaired decision making compared with HC subjects. Both the good-performing DAT KD and GBR12909-treated mice exhibited poor decision making in the mouse IGT. The deficit of each population was driven by high-reward sensitivity. The single-session mouse IGT measures dynamic risk-based decision making similar to humans. Chronic and acute reductions of DAT functioning in mice impaired decision-making consistent with poor IGT performance of BD patients. Hyperdopaminergia caused by reduced DAT may impact poor decision making in BD patients, which should be confirmed in future studies. PMID:25005251

  19. Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans.

    PubMed

    Kitamura, Satoshi; Maeda, Kazuya; Sugiyama, Yuichi

    2008-06-01

    Establishing the methods for the effective screening of compounds with optimal pharmacokinetic properties is of great importance to many scientists working in new drug discovery and development. This review deals with the methods by which in vivo pharmacokinetics in humans can be predicted from in vitro studies and from in vivo animal experiments. Direct extrapolation from animal studies to human pharmacokinetics is generally difficult because of species differences in the function of molecules involved in drug metabolism and transport. To overcome this problem, a "scaling factor," which relates in vivo animal studies with in vitro experiments, is often used for the accurate prediction. Several experimental systems for the functional analyses of membrane transporters have been developed and many reports have revealed that various transporters clearly govern the tissue dispositions of drugs in humans. This review covers the impact of membrane transporters on the pharmacokinetics, control of elimination pathways, and toxicity. Indeed, by utilizing transporter-deficient animals, some studies have clarified the importance of transporters in various types of tissue-specific toxicity. Transporter-mediated drug-drug interactions are one of the most important issues in clinical situation because some reports suggested that severe clinical incidents are caused by the inhibition of transporter-mediated uptake and efflux in clearance organs (liver and kidney) and at several barriers. The review also focuses on the clinical significance of genetic polymorphisms of transporters, as these can influence the plasma and tissue concentrations of some drugs. Finally, integrated information is presented based on multiple in vitro studies, including those on transporters. This should enable the prediction of the outcomes of drug exposure in cells, tissues, and individual organisms. PMID:18536908

  20. Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era.

    PubMed

    Omote, Hiroshi; Miyaji, Takaaki; Hiasa, Miki; Juge, Narinobu; Moriyama, Yoshinori

    2016-01-01

    Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter. PMID:26514205

  1. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing.

    PubMed

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C

    2016-09-15

    P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. PMID:27453435

  2. Amino acid transporter B(0)AT1 (slc6a19) and ancillary protein: impact on function.

    PubMed

    Margheritis, Eleonora; Imperiali, Francesca Guia; Cinquetti, Raffaella; Vollero, Alessandra; Terova, Genciana; Rimoldi, Simona; Girardello, Rossana; Bossi, Elena

    2016-08-01

    Amino acids play an important role in the metabolism of all organisms. Their epithelial re-absorption is due to specific transport proteins, such as B(0)AT1, a Na(+)-coupled neutral amino acid symporter belonging to the solute carrier 6 family. Here, a recently cloned fish orthologue, from the intestine of Salmo salar, was electrophysiologically characterized with the two-electrode voltage clamp technique, in Xenopus laevis oocytes heterologously expressing the transporter. Substrate specificity, apparent affinities and the ionic dependence of the transport mechanism were determined in the presence of specific collectrin. Results demonstrated that like the human, but differently from sea bass (Dicentrarchus labrax) orthologue, salmon B(0)AT1 needs to be associated with partner proteins to be correctly expressed at the oocyte plasma membrane. Cloning of sea bass collectrin and comparison of membrane expression and functionality of the B(0)AT1 orthologue transporters allowed a deeper investigation on the role of their interactions. The parameters acquired by electrophysiological and immunolocalization experiments in the mammalian and fish transporters contributed to highlight the dynamic of relations and impacts on transport function of the ancillary proteins. The comparative characterization of the physiological parameters of amino acid transporters with auxiliary proteins can help the comprehension of the regulatory mechanism of essential nutrient absorption. PMID:27255547

  3. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism

    SciTech Connect

    Trovato, M.; Reggiani, L.

    2011-12-15

    By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ({h_bar}/2{pi}){sup 2}. In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when ({h_bar}/2{pi}){yields}0.

  4. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function

    PubMed Central

    Safaeian, Navid; David, Tim

    2013-01-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging. PMID:23921901

  5. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures

    PubMed Central

    Hildebrand, Michael S.; Phillips, A. Marie; Mullen, Saul A.; Adlard, Paul A.; Hardies, Katia; Damiano, John A.; Wimmer, Verena; Bellows, Susannah T.; McMahon, Jacinta M.; Burgess, Rosemary; Hendrickx, Rik; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Scheffer, Ingrid E.; Petrou, Steven; Berkovic, Samuel F.; Reid, Christopher A.

    2015-01-01

    Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn2+) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn2+ homeostasis contributes to susceptibility is unknown. Synaptic Zn2+ is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn2+ into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn2+ increases the risk of FS and more broadly support the idea that impaired synaptic Zn2+ homeostasis can contribute to neuronal hyperexcitability. PMID:26647834

  6. Transplantation of glial progenitors that overexpress glutamate transporter GLT1 preserves diaphragm function following cervical SCI.

    PubMed

    Li, Ke; Javed, Elham; Hala, Tamara J; Sannie, Daniel; Regan, Kathleen A; Maragakis, Nicholas J; Wright, Megan C; Poulsen, David J; Lepore, Angelo C

    2015-03-01

    Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI. PMID:25492561

  7. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures.

    PubMed

    Hildebrand, Michael S; Phillips, A Marie; Mullen, Saul A; Adlard, Paul A; Hardies, Katia; Damiano, John A; Wimmer, Verena; Bellows, Susannah T; McMahon, Jacinta M; Burgess, Rosemary; Hendrickx, Rik; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Scheffer, Ingrid E; Petrou, Steven; Berkovic, Samuel F; Reid, Christopher A

    2015-01-01

    Febrile seizures (FS) are the most common seizure syndrome and are potentially a prelude to more severe epilepsy. Although zinc (Zn(2+)) metabolism has previously been implicated in FS, whether or not variation in proteins essential for Zn(2+) homeostasis contributes to susceptibility is unknown. Synaptic Zn(2+) is co-released with glutamate and modulates neuronal excitability. SLC30A3 encodes the zinc transporter 3 (ZNT3), which is primarily responsible for moving Zn(2+) into synaptic vesicles. Here we sequenced SLC30A3 and discovered a rare variant (c.892C > T; p.R298C) enriched in FS populations but absent in population-matched controls. Functional analysis revealed a significant loss-of-function of the mutated protein resulting from a trafficking deficit. Furthermore, mice null for ZnT3 were more sensitive than wild-type to hyperthermia-induced seizures that model FS. Together our data suggest that reduced synaptic Zn(2+) increases the risk of FS and more broadly support the idea that impaired synaptic Zn(2+) homeostasis can contribute to neuronal hyperexcitability. PMID:26647834

  8. Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor.

    PubMed

    Rodriguez-Contreras, Dayana; Aslan, Hamide; Feng, Xiuhong; Tran, Khoa; Yates, Phillip A; Kamhawi, Shaden; Landfear, Scott M

    2015-01-01

    In Leishmania mexicana parasites, a unique glucose transporter, LmxGT1, is selectively targeted to the flagellar membrane, suggesting a possible sensory role that is often associated with ciliary membrane proteins. Expression of LmxGT1 is down-regulated ∼20-fold by increasing cell density but is up-regulated ∼50-fold by depleting glucose from the medium, and the permease is strongly down-regulated when flagellated insect-stage promastigotes invade mammalian macrophages and transform into intracellular amastigotes. Regulation of LmxGT1 expression by glucose and during the lifecycle operates at the level of protein stability. Significantly, a ∆lmxgt1 null mutant, grown in abundant glucose, undergoes catastrophic loss of viability when parasites deplete glucose from the medium, a property not exhibited by wild-type or add-back lines. These results suggest that LmxGT1 may function as a glucose sensor that allows parasites to enter the stationary phase when they deplete glucose and that in the absence of this sensor, parasites do not maintain viability when they run out of glucose. However, alternate roles for LmxGT1 in monitoring glucose availability are considered. The absence of known sensory receptors with defined ligands and biologic functions in Leishmania and related kinetoplastid parasites underscores the potential significance of these observations. PMID:25300620

  9. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52.

    PubMed

    Yonezawa, Atsushi; Inui, Ken-ichi

    2013-01-01

    Riboflavin, a water-soluble vitamin also known as vitamin B2, is essential for normal cellular functions. Riboflavin transporters play important roles in its homeostasis. Recently, three novel riboflavin transporters were identified, and designated as RFT1, RFT2 and RFT3. Because the RFTs did not show similarity to other SLC transporters, and RFT1 and RFT3 are similar in sequence and function, they were assigned into a new SLC family, SLC52. Subsequently, RFT1/GPR172B, RFT3/GPR172A and RFT2/C20orf54 were renamed as RFVT1/SLC52A1, RFVT2/SLC52A2 and RFVT3/SLC52A3, respectively. In this review, we summarize recent findings on the cloning, nomenclature, functional characterization and genetic diseases of RFVT1/SLC52A1, RFVT2/SLC52A2 and RFVT3/SLC52A3. PMID:23506902

  10. Mitochondria-rich cells in amphibian skin epithelium: Relationship of immuno- and peanut lectin labeling pattern and transport functions.

    PubMed

    Katz, Uri; Gabbay, Shosh

    2010-07-01

    Mitochondria-rich cells are an integral component of the epidermis of amphibian skin and play a functional role. Whereas the principal cell compartment of the epithelium is specialized almost exclusively for active uptake of sodium, the mitochondria-rich cells perform other diverse ion-transport functions, including transport of Cl(-), H(+), HCO(3)(-) and organic molecules. These transporting functions differ in different species. Antibodies, such as those directed against band 3, H(+)-ATPase, and also peanut lectin (PNA), bind specifically to the mitochondria-rich cells, but do so differently in various species. Examination of these immunolocalizations and lectin labeling in the skin of over 10 amphibian species, including both Anurans and Urodeles, illustrate species-specific differences. The binding pattern and the transport capabilities of the skin in the various species do not show a universal correlation, they appear to be species specific and do not permit construction of a general scheme common to all the species studied. The mitochondria-rich cells of heterocellular epithelia and their roles in ion transport remain a subject that requires further studies to elucidate their particular functions within the framework of the whole epithelium. PMID:19324399

  11. Comparison of the function of the serotonin transporter in the vasculature of male and female rats.

    PubMed

    Linder, Aurea Elizabeth; Davis, Robert Patrick; Burnett, Robert; Watts, Stephanie W

    2011-05-01

    1. The serotonin transporter (SERT) handles serotonin (5-hydroxytryptamine (5-HT)) and is blocked by the antidepressant SERT inhibitors fluoxetine and fluvoxamine. Although the importance of SERT in the central nervous system is clear, SERT also functions in the peripheral vasculature. In the present study, we tested the hypothesis that the vasculature from female rats has increased SERT function compared with male rats because females are more responsive to SERT inhibitors. 2. In addition to in vitro experiments, in vivo experiments were used to evaluate how male and female rats handle chronically elevated levels of 5-HT. Wild-type (WT) and SERT-knockout (SERT-KO) rats were infused with 5-HT (25 μg/kg per min) for 7 days by minipump. 3. Using HPLC analysis, we demonstrated that blood vessels (aorta, carotid artery, jugular vein and vena cava) from naïve, non-infused female rats took up 5-HT acutely in vitro in a SERT-dependent manner. In in vitro experiments, SERT affected the contractility of aortas from female rats, as evidenced by an eightfold increase in potency of 5-HT in fluvoxamine (1 μmol/L)-incubated WT aortas compared with control. Fluvoxamine did not alter 5-HT-induced contraction in aortas from SERT-KO female rats. 4. Infusion of 5-HT resulted in an increase in tissue 5-HT that was reduced to a larger extent in blood vessels from female than male SERT-KO rats. Aortic contractions to 5-HT were abolished in aortas from male and female 5-HT-infused SERT-KO rats compared with WT rats. 5. Collectively, these data suggest that SERT function, when challenged with 5-HT, is modestly more important in the vasculature of the female compared with male rat. PMID:21371073

  12. Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles

    PubMed Central

    2016-01-01

    Recent work has shown that the choice of the type and concentration of detergent used for the solubilization of membrane proteins can strongly influence the results of functional experiments. In particular, the amino acid transporter LeuT can bind two substrate molecules in low concentrations of n-dodecyl β-d-maltopyranoside (DDM), whereas high concentrations reduce the molar binding stoichiometry to 1:1. Subsequent molecular dynamics (MD) simulations of LeuT in DDM proteomicelles revealed that DDM can penetrate to the extracellular vestibule and make stable contacts in the functionally important secondary substrate binding site (S2), suggesting a potential competitive mechanism for the reduction in binding stoichiometry. Because annular lipids can be retained during solubilization, we performed MD simulations of LeuT proteomicelles at various stages of the solubilization process. We find that at low DDM concentrations, lipids are retained around the protein and penetration of detergent into the S2 site does not occur, whereas at high concentrations, lipids are displaced and the probability of DDM binding in the S2 site is increased. This behavior is dependent on the type of detergent, however, as we find in the simulations that the detergent lauryl maltose-neopentyl glycol, which is approximately twice the size of DDM and structurally more closely resembles lipids, does not penetrate the protein even at very high concentrations. We present functional studies that confirm the computational findings, emphasizing the need for careful consideration of experimental conditions, and for cautious interpretation of data in gathering mechanistic information about membrane proteins. PMID:26811944

  13. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence.

    PubMed

    Mittra, Bidyottam; Laranjeira-Silva, Maria Fernanda; Perrone Bezerra de Menezes, Juliana; Jensen, Jennifer; Michailowsky, Vladimir; Andrews, Norma W

    2016-01-01

    Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. PMID:26741360

  14. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence

    PubMed Central

    Mittra, Bidyottam; Laranjeira-Silva, Maria Fernanda; Perrone Bezerra de Menezes, Juliana; Jensen, Jennifer; Michailowsky, Vladimir; Andrews, Norma W.

    2016-01-01

    Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. PMID:26741360

  15. Functional and genetic diversity in the concentrative nucleoside transporter, CNT1, in human populations.

    PubMed

    Gray, Jennifer H; Mangravite, Lara M; Owen, Ryan P; Urban, Thomas J; Chan, Wendy; Carlson, Elaine J; Huang, Conrad C; Kawamoto, Michiko; Johns, Susan J; Stryke, Douglas; Ferrin, Thomas E; Giacomini, Kathleen M

    2004-03-01

    The concentrative nucleoside transporter, CNT1 (SLC28A1), mediates the cellular uptake of naturally occurring pyrimidine nucleosides and many structurally diverse anticancer and antiviral nucleoside analogs. As a first step toward understanding whether genetic variation in CNT1 contributes to variation in the uptake and disposition of clinically used nucleoside analogs, we determined the haplotype structure and functionally analyzed all coding region variants of CNT1 identified in ethnically diverse populations (100 African Americans, 100 European Americans, 30 Asians, 10 Mexican Americans, and 7 Pacific Islanders) (Leabman et al., 2003). A total of 58 coding region haplotypes were identified using PHASE analysis, 44 of which contained at least one amino acid variant. More than half of the coding region haplotypes were population-specific. Using site-directed mutagenesis, 15 protein-altering CNT1 variants, including one amino acid insertion and one base pair (bp) deletion, were constructed and expressed in Xenopus laevis oocytes. All variant transporters took up [3H]thymidine with the exception of CNT1-Ser546Pro, a rare variant, and CNT1-1153del, a single bp deletion found at a frequency of 3% in the African American population. The bp deletion results in a frame-shift followed by a stop-codon. The anticancer nucleoside analog gemcitabine had a reduced affinity for CNT1-Val189Ile (a common CNT1 variant found at a frequency of 26%) compared with reference CNT1 (IC50=13.8 +/- 0.60 microM for CNT1-reference and 23.3 +/- 1.5 microM for CNT1-Val189Ile, p<0.05). These data suggest that common genetic variants of CNT1 may contribute to variation in systemic and intracellular levels of anti-cancer nucleoside analogs. PMID:14978229

  16. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    SciTech Connect

    Carneiro, Ana; Airey, David; Thompson, Brent; Zhu, C; Rinchik, Eugene M; Lu, Lu; Chesler, Elissa J; Erikson, Keith; Blakely, Randy

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  17. Functional Characterization of Corynebacterium alkanolyticum β-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum

    PubMed Central

    Watanabe, Akira; Hiraga, Kazumi; Suda, Masako; Yukawa, Hideaki

    2015-01-01

    The Corynebacterium alkanolyticum xylEFGD gene cluster comprises the xylD gene that encodes an intracellular β-xylosidase next to the xylEFG operon encoding a substrate-binding protein and two membrane permease proteins of a xyloside ABC transporter. Cloning of the cluster revealed a recombinant β-xylosidase of moderately high activity (turnover for p-nitrophenyl-β-d-xylopyranoside of 111 ± 4 s−1), weak α-l-arabinofuranosidase activity (turnover for p-nitrophenyl-α-l-arabinofuranoside of 5 ± 1 s−1), and high tolerance to product inhibition (Ki for xylose of 67.6 ± 2.6 mM). Heterologous expression of the entire cluster under the control of the strong constitutive tac promoter in the Corynebacterium glutamicum xylose-fermenting strain X1 enabled the resultant strain X1EFGD to rapidly utilize not only xylooligosaccharides but also arabino-xylooligosaccharides. The ability to utilize arabino-xylooligosaccharides depended on cgR_2369, a gene encoding a multitask ATP-binding protein. Heterologous expression of the contiguous xylD gene in strain X1 led to strain X1D with 10-fold greater β-xylosidase activity than strain X1EFGD, albeit with a total loss of arabino-xylooligosaccharide utilization ability and only half the ability to utilize xylooligosaccharides. The findings suggest some inherent ability of C. glutamicum to take up xylooligosaccharides, an ability that is enhanced by in the presence of a functional xylEFG-encoded xyloside ABC transporter. The finding that xylEFG imparts nonnative ability to take up arabino-xylooligosaccharides should be useful in constructing industrial strains with efficient fermentation of arabinoxylan, a major component of lignocellulosic biomass hydrolysates. PMID:25862223

  18. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism

    PubMed Central

    Craft, Julie M.; Harris, J. Aaron; Hyman, Sebastian; Kner, Peter

    2015-01-01

    The assembly of the axoneme, the structural scaffold of cilia and flagella, requires translocation of a vast quantity of tubulin into the growing cilium, but the mechanisms that regulate the targeting, quantity, and timing of tubulin transport are largely unknown. In Chlamydomonas, GFP-tagged α-tubulin enters cilia as an intraflagellar transport (IFT) cargo and by diffusion. IFT-based transport of GFP-tubulin is elevated in growing cilia and IFT trains carry more tubulin. Cells possessing both nongrowing and growing cilia selectively target GFP-tubulin into the latter. The preferential delivery of tubulin boosts the concentration of soluble tubulin in the matrix of growing versus steady-state cilia. Cilia length mutants show abnormal kinetics of tubulin transport. We propose that cells regulate the extent of occupancy of IFT trains by tubulin cargoes. During ciliary growth, IFT concentrates soluble tubulin in cilia and thereby promotes elongation of the axonemal microtubules. PMID:25583998

  19. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state

    PubMed Central

    Elbaz, Yael; Steiner-Mordoch, Sonia; Danieli, Tsafi; Schuldiner, Shimon

    2004-01-01

    EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Δμ̃H+-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the size of the functional oligomer has not been established unequivocally. Coexpression of two plasmids in the cell-free system allowed demonstration of functional complementation and pull-down experiments confirmed that the basic functional unit is the dimer. An additional interaction between dimers has been detected by using crosslinking between unique Cys residues. This finding implies the existence of a dimer of dimers. PMID:14755055

  20. FUNCTIONAL CHARACTERIZATION AND EXPRESSION ANALYSIS OF THE ZIP1 METAL TRANSPORTER IN MEDICAGO TRUNCATULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family of transporters in plants that has sequence similarity to the ZRT and IRT transporters in Saccharomyces cerevisiae is referred to as the ZIP gene family. These genes encode for proteins that have been shown to transport divalent cations such as zinc, iron and manganese. The ZIP1 gene in M...

  1. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  2. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals.

    PubMed

    Jerber, Julie; Baas, Dominique; Soulavie, Fabien; Chhin, Brigitte; Cortier, Elisabeth; Vesque, Christine; Thomas, Joëlle; Durand, Bénédicte

    2014-02-01

    Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates. PMID:24067530

  3. Involvement of the Carboxyl-Terminal Region of the Yeast Peroxisomal Half ABC Transporter Pxa2p in Its Interaction with Pxa1p and in Transporter Function

    PubMed Central

    Chuang, Cheng-Yi; Chen, Ling-Yun; Fu, Ru-Huei; Chen, Shih-Ming; Ho, Ming-Hua; Huang, Jie-Mau; Hsu, Chia-Chi; Wang, Chien-Cheng; Chen, Meng-Shian; Tsai, Rong-Tzong

    2014-01-01

    Background The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter). This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p. Methods/Principal Findings Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT) of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2) of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP) in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function. Conclusions/Significance The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies, helping to establish

  4. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters

    PubMed Central

    King Jordan, I.; Kota, Karthik C.; Cui, Guiying; Thompson, Christopher H.; McCarty, Nael A.

    2008-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, an ancient family of proteins found in all phyla. In nearly all cases, ABC proteins are transporters that couple the hydrolysis of ATP to the transmembrane movement of substrate via an alternating access mechanism. In contrast, CFTR is best known for its activity as an ATP-dependent chloride channel. We asked why CFTR, which shares the domain architecture of ABC proteins that function as transporters, exhibits functional divergence. We compared CFTR protein sequences to those of other ABC transporters, which identified the ABCC4 proteins as the closest mammalian paralogs, and used statistical analysis of the CFTR-ABCC4 multiple sequence alignment to identify the specific domains and residues most likely to be involved in the evolutionary transition from transporter to channel activity. Among the residues identified as being involved in CFTR functional divergence, by virtue of being both CFTR-specific and conserved among all CFTR orthologs, was R352 in the sixth transmembrane helix (TM6). Patch-clamp experiments show that R352 interacts with D993 in TM9 to stabilize the open-channel state; D993 is absolutely conserved between CFTRs and ABCC4s. These data suggest that CFTR channel activity evolved, at least in part, by converting the conformational changes associated with binding and hydrolysis of ATP, as are found in true ABC Transporters, into an open permeation pathway by means of intraprotein interactions that stabilize the open state. This analysis sets the stage for understanding the evolutionary and functional relationships that make CFTR a unique ABC transporter protein. PMID:19020075

  5. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.

    PubMed

    Jordan, I King; Kota, Karthik C; Cui, Guiying; Thompson, Christopher H; McCarty, Nael A

    2008-12-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, an ancient family of proteins found in all phyla. In nearly all cases, ABC proteins are transporters that couple the hydrolysis of ATP to the transmembrane movement of substrate via an alternating access mechanism. In contrast, CFTR is best known for its activity as an ATP-dependent chloride channel. We asked why CFTR, which shares the domain architecture of ABC proteins that function as transporters, exhibits functional divergence. We compared CFTR protein sequences to those of other ABC transporters, which identified the ABCC4 proteins as the closest mammalian paralogs, and used statistical analysis of the CFTR-ABCC4 multiple sequence alignment to identify the specific domains and residues most likely to be involved in the evolutionary transition from transporter to channel activity. Among the residues identified as being involved in CFTR functional divergence, by virtue of being both CFTR-specific and conserved among all CFTR orthologs, was R352 in the sixth transmembrane helix (TM6). Patch-clamp experiments show that R352 interacts with D993 in TM9 to stabilize the open-channel state; D993 is absolutely conserved between CFTRs and ABCC4s. These data suggest that CFTR channel activity evolved, at least in part, by converting the conformational changes associated with binding and hydrolysis of ATP, as are found in true ABC Transporters, into an open permeation pathway by means of intraprotein interactions that stabilize the open state. This analysis sets the stage for understanding the evolutionary and functional relationships that make CFTR a unique ABC transporter protein. PMID:19020075

  6. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-07-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  7. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-02-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisation usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  8. Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus.

    PubMed

    Loh, Eva; Peter, Frank; Subramaniam, V Nathan; Hong, Wanjin

    2005-03-15

    The TRAPP complex identified in yeast regulates vesicular transport in the early secretory pathway. Although some components of the TRAPP complex are structurally conserved in mammalian cells, the function of the mammalian components has not been examined. We describe our biochemical and functional analysis of mammalian Bet3, the most conserved component of the TRAPP complex. Bet3 mRNA is ubiquitously expressed in all tissues. Antibodies raised against recombinant Bet3 specifically recognize a protein of 22 kDa. In contrast to yeast Bet3p, the majority of Bet3 is present in the cytosol. To investigate the possible involvement of Bet3 in transport events in mammalian cells, we utilized a semi-intact cell system that reconstitutes the transport of the envelope glycoprotein of vesicular stomatitis virus (VSV-G) from the ER to the Golgi apparatus. In this system, antibodies against Bet3 inhibit transport in a dose-dependent manner, and cytosol that is immunodepleted of Bet3 is also defective in this transport. This defect can be rescued by supplementing the Bet3-depleted cytosol with recombinant GST-Bet3. We also show that Bet3 acts after COPII but before Rab1, alpha-SNAP and the EGTA-sensitive stage during ER-Golgi transport. Gel filtration analysis demonstrates that Bet3 exists in two distinct pools in the cytosol, the high-molecular-weight pool may represent the TRAPP complex, whereas the other probably represents the monomeric Bet3. PMID:15728249

  9. Structural and functional studies on the sodium- and chloride-coupled. gamma. -aminobutyric acid transporter: Deglycosylation and limited proteolysis

    SciTech Connect

    Kanner, B.I.; Keynan, S.; Radian, R. )

    1989-05-02

    The sodium- and chloride-coupled {gamma}-aminobutyric transporter, an 80-kDa glycoprotein, has been subjected to deglycosylation and limited proteolysis. The treatment of the 80-kDa band with endoglycosidase F results in its disappearance and reveals the presence of a polypeptide with an apparent molecular mass of about 60 kDa, which is devoid of {sup 125}I-labeled wheat germ agglutinin binding activity but is nevertheless recognized by the antibodies against the 80-kDa band. Upon limited proteolysis with papain or Pronase, the 80-kDa band was degraded to one with an apparent molecular mass of about 60 kDa. This polypeptide still contains the {sup 125}I-labeled wheat germ agglutinin binding activity but is not recognized by the antibody. The effect of proteolysis on function is examined. The transporter was purified by use of all steps except that for the lectin chromatography. After papain treatment and lectin chromatography, {gamma}-aminobutyric transport activity was eluted with N-acetylglucosamine. The characteristics of transport were the same as those of the pure transporter, but the preparation contained instead of the 80-kDa polypeptide two fragments of about 66 and 60 kDa. The ability of the anti-80-kDa antibody to recognize these fragments was relatively low. The observations indicate that the transporter contains exposed domains which are not important for function.

  10. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  11. Functional properties of the uptake of amines in immortalised peptidergic neurones (transport-P).

    PubMed Central

    Al-Damluji, S.; Kopin, I. J.

    1996-01-01

    prazosin uptake in GnRH cells. Thus, the uptake of prazosin does not derive its energy from the sodium pump. 7. Prazosin uptake was inhibited by the V-ATPase inhibitor bafilomycin A1, the H+/Na+ ionophore, monensin and the organic base, chloroquine, indicating that uptake derives its energy from a proton pump. In contrast to other proton-dependent amine transporters, the uptake of prazosin was unaffected by reserpine. 8. Increasing extracellular pH did not increase the uptake of prazosin into GnRH cells, indicating that it is unlikely to be due to non-specific diffusion and concentration of a lysosomotropic drug into intracellular acidic particles. 9. The uptake of prazosin was unaffected by steroid hormones. 10. In COS-7 cells transfected with alpha 1-adrenoceptor cDNA, [3H]-prazosin was displaced by unlabelled prazosin without causing an increase in binding of the radioligand. This indicated that the increase in accumulation of the radioligand is unlikely to be due simply to some function of alpha 1-adrenoceptors. 11. Thus, peptidergic neurones possess an uptake process with properties that are distinguishable from known amine transporters. PMID:8825351

  12. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice.

    PubMed

    Deshmukh, Rupesh K; Vivancos, Julien; Guérin, Valérie; Sonah, Humira; Labbé, Caroline; Belzile, François; Bélanger, Richard R

    2013-11-01

    Silicon (Si) confers several benefits to many plant species when absorbed as silicic acid through nodulin 26-like intrinsic proteins (NIPs). The NIPs belong to major intrinsic protein (MIP) family, members of which form channels with high selectivity to control transport of water and different solutes. Here, comparative genomic analysis of the MIPs was performed to investigate the presence of Si transporter MIPs in soybean. Thorough analysis of phylogeny, gene organization, transcriptome profiling and protein modeling was performed to characterize MIPs in rice, Arabidopsis and soybean. Based on several attributes, two putative Si transporter genes, GmNIP2-1 and GmNIP2-2, were identified, characterized and cloned from soybean. Expression of both genes was detected in shoot and root tissues, and decreased as Si increased. The protein encoded by GmNIP2-2 showed functionality for Si transport when expressed in Xenopus oocytes, thus confirming the genetic capability of soybean to absorb the element. Comparative analysis of MIPs in plants provides opportunities to decipher gene evolution, functionality and selectivity of nutrient uptake mechanisms. Exploitation of this strategy has helped to uncover unique features of MIPs in soybean. The identification and functional characterization of Si transporters can be exploited to optimize the benefits that plants can derive from Si absorption. PMID:23771580

  13. HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance

    PubMed Central

    Vivithanaporn, Pornpun; Asahchop, Eugene L.; Acharjee, Shaona; Baker, Glen B.; Power, Christopher

    2016-01-01

    Objective: The neurotoxic actions of the HIV protease inhibitors, amprenavir (APV) and lopinavir (LPV) were investigated. Design: With combination antiretroviral therapy (cART), HIV-infected persons exhibit neurocognitive impairments, raising the possibility that cART might exert adverse central nervous system (CNS) effects. We examined the effects of LPV and APV using in-vitro and in-vivo assays of CNS function. Methods: Gene expression, cell viability and amino-acid levels were measured in human astrocytes, following exposure to APV or LPV. Neurobehavioral performance, amino-acid levels and neuropathology were examined in HIV-1 Vpr transgenic mice after treatment with APV or LPV. Results: Excitatory amino-acid transporter-2 (EAAT2) expression was reduced in astrocytes treated with LPV or APV, especially LPV (P < 0.05), which was accompanied by reduced intracellular l-glutamate levels in LPV-treated cells (P < 0.05). Treatment of astrocytes with APV or LPV reduced the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 (P < 0.05) although cell survival was unaffected. Exposure of LPV to astrocytes augmented glutamate-evoked transient rises in [Cai] (P < 0.05). Vpr mice treated with LPV showed lower concentrations of l-glutamate, l-aspartate and l-serine in cortex compared with vehicle-treated mice (P < 0.05). Total errors in T-maze assessment were increased in LPV and APV-treated animals (P < 0.05). EAAT2 expression was reduced in the brains of protease inhibitor-treated animals, which was associated with gliosis (P < 0.05). Conclusion: These results indicated that contemporary protease inhibitors disrupt astrocyte functions at therapeutic concentrations with enhanced sensitivity to glutamate, which can lead to neurobehavioral impairments. ART neurotoxicity should be considered in future therapeutic regimens for HIV/AIDS. PMID:26558720

  14. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters

    PubMed Central

    Ye, Ran; Quinlan, Meagan A.; Iwamoto, Hideki; Wu, Hsiao-Huei; Green, Noah H.; Jetter, Christopher S.; McMahon, Douglas G.; Veestra-VanderWeele, Jeremy; Levitt, Pat; Blakely, Randy D.

    2016-01-01

    The neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] modulates many key brain functions including those subserving sensation, emotion, reward, and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2), a post-synaptic partner for presynaptic neurexins, and a protein well-known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins [e.g., α-neurexin (NRXN), gephyrin]. Midbrain SERT/NLGN2 interactions were found to be Ca2+-independent, supporting cis vs. trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2 complexes. PMID

  15. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters.

    PubMed

    Ye, Ran; Quinlan, Meagan A; Iwamoto, Hideki; Wu, Hsiao-Huei; Green, Noah H; Jetter, Christopher S; McMahon, Douglas G; Veestra-VanderWeele, Jeremy; Levitt, Pat; Blakely, Randy D

    2015-01-01

    The neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] modulates many key brain functions including those subserving sensation, emotion, reward, and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2), a post-synaptic partner for presynaptic neurexins, and a protein well-known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins [e.g., α-neurexin (NRXN), gephyrin]. Midbrain SERT/NLGN2 interactions were found to be Ca(2+)-independent, supporting cis vs. trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2 complexes

  16. Membrane topology and functional importance of the periplasmic region of ABC transporter LolCDE.

    PubMed

    Yasuda, Masaki; Iguchi-Yokoyama, Asako; Matsuyama, Shin-ichi; Tokuda, Hajime; Narita, Shin-ichiro

    2009-10-01

    The LolCDE complex is an ATP-binding cassette transporter that mediates the release of newly synthesized lipoproteins from the cytoplasmic membrane of gram-negative bacteria, which results in the initiation of outer-membrane sorting of lipoproteins through the Lol pathway. LolCDE is composed of one copy each of membrane subunits LolC and LolE, and two copies of nucleotide-binding subunit LolD. In this study, we examined the membrane topology of LolC and LolE by PhoA fusion analysis. Both LolC and LolE were found to have four transmembrane segments with a large periplasmic loop exposed to the periplasm. Despite similarities in sequence and topology, the accessibility of a sulfhydryl reagent to Cys introduced into the periplasmic loop suggested that the structure of the periplasmic region differs between LolC and LolE. Inhibition of the release of lipoproteins by the sulfhydryl reagent supported a previous proposal that LolC and LolE have distinct functions. PMID:19809197

  17. Effects of cation and anion solvation on ion transport in functionalized perfluoropolyethers electrolytes

    NASA Astrophysics Data System (ADS)

    Timachova, Ksenia; Chintapalli, Mahati; Olsen, Kevin; Desimone, Joseph; Balsara, Nitash

    Advances in polymer electrolytes for use in lithium batteries have been limited by the incorporation of selective lithium binding groups that provide necessary solvation for the lithium but ultimately restrict the mobility of the lithium ions relative to anions. Perfluoropolyether electrolytes (PFPE) are a new class of nonflammable liquid polymer electrolytes that have been functionalized with solvating groups for both lithium ions and fluorinated anions. PFPEs with different endgroups mixed with LiN(SO2CF3)2 salt have shown substantial differences in conductivity and allows us to investigate the effects of varying solvating environments on ion transport. To study the independent motion of cations and anions in these systems, the individual diffusion coefficients of the Li + and (SO2CF3)2 - ions were measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Comparing conductivity calculated using these diffusion coefficients with electrochemical measurements yields an estimation for the number of charge carrier in the system. The amount of salt dissociation, not the mobility of the salt, is the primary driver of differences in electrochemical conductivities between PFPEs with different solvating groups.

  18. Open Quantum Transport and Non-Hermitian Real-Time Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin; Zhao, Yanxiang; Chen, Hanning

    Sub-nanometer electronic devices are notoriously difficult to simulate, with the most widely adopted transport schemes predicting currents that diverge from experiment by several orders of magnitude. This deviation arises from numerous factors, including the inability of these methods to accommodate dynamic processes such as charge reorganization. A promising alternative entails the direct propagation of an electronic structure calculation, as exemplified by real-time time-dependent density functional theory (RT-TDDFT). Unfortunately this framework is inherently that of a closed system, and modifications must be made to handle incoming and outgoing particle fluxes. To this end, we establish a formal correspondence between the quantum master equation for an open, many-particle system and its description in terms of RT-TDDFT and non-Hermitian boundary potentials. By dynamically constraining the particle density within the boundary regions corresponding to the device leads, a simulation may be selectively converged to the non-equilibrium steady state associated with a given electrostatic bias. Our numerical tests demonstrate that this algorithm is both highly stable and readily integrated into existing electronic structure frameworks

  19. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    NASA Technical Reports Server (NTRS)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  20. A quality function deployment method applied to highly reusable space transportation

    SciTech Connect

    Zapata, E.

    1997-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered. {copyright} {ital 1997 American Institute of Physics.}

  1. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function.

    PubMed

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Anderson, George M; Snyder, Isaac; Veenstra-VanderWeele, Jeremy; Blakely, Randy D; Gershon, Michael D

    2016-06-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4-mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  2. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.

    PubMed

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran

    2011-10-01

    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances. PMID:21656516

  3. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  4. Stationary distribution functions for ohmic Tokamak-plasmas in the weak-collisional transport regime by MaxEnt principle

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio; Peeters, Philippe; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György

    2015-01-01

    In previous works, we derived stationary density distribution functions (DDF) where the local equilibrium is determined by imposing the maximum entropy (MaxEnt) principle, under the scale invariance restrictions, and the minimum entropy production theorem. In this paper we demonstrate that it is possible to reobtain these DDF solely from the MaxEnt principle subject to suitable scale invariant restrictions in all the variables. For the sake of concreteness, we analyse the example of ohmic, fully ionized, tokamak-plasmas, in the weak-collisional transport regime. In this case we show that it is possible to reinterpret the stationary distribution function in terms of the Prigogine distribution function where the logarithm of the DDF is directly linked to the entropy production of the plasma. This leads to the suggestive idea that also the stationary neoclassical distribution functions, for magnetically confined plasmas in the collisional transport regimes, may be derived solely by the MaxEnt principle.

  5. The Chick Chorioallantoic Membrane: A Model of Molecular, Structural, and Functional Adaptation to Transepithelial Ion Transport and Barrier Function during Embryonic Development

    PubMed Central

    Gabrielli, Maria Gabriella; Accili, Daniela

    2010-01-01

    The chick chorioallantoic membrane is a very simple extraembryonic membrane which serves multiple functions during embryo development; it is the site of exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and H2O reabsorption from the allantoic fluid. All these functions are accomplished by its epithelia, the chorionic and the allantoic epithelium, by differentiation of a wide range of structural and molecular peculiarities which make them highly specialized, ion transporting epithelia. Studying the different aspects of such a developmental strategy emphasizes the functional potential of the epithelium and offers an excellent model system to gain insights into questions partly still unresolved. PMID:20339524

  6. Aluminum-activated citrate and malate transporters encoded by distinct Al tolerance genes function independently in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) -activated malate and citrate exudation from roots plays an important role in conferring Al tolerance to many plant species. Here, we report on the identification and characterization of AtMATE, the gene encoding an Al-activated root citrate efflux transporter that functions in Arabid...

  7. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    SciTech Connect

    Portsmouth, J.H.

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  8. A Novel Member of the Trehalose Transporter Family Functions as an H+-Dependent Trehalose Transporter in the Reabsorption of Trehalose in Malpighian Tubules

    PubMed Central

    Kikuta, Shingo; Hagiwara-Komoda, Yuka; Noda, Hiroaki; Kikawada, Takahiro

    2012-01-01

    In insects, Malpighian tubules are functionally analogous to mammalian kidneys in that they not only are essential to excrete waste molecules into the lumen but also are responsible for the reabsorption of indispensable molecules, such as sugars, from the lumen to the principal cells. Among sugars, the disaccharide trehalose is highly important to insects because it is the main hemolymph sugar to serve as a source of energy and carbon. The trehalose transporter TRET1 participates in the transfer of newly synthesized trehalose from the fat body across the cellular membrane into the hemolymph. Although transport proteins must play a pivotal role in the reabsorption of trehalose in Malpighian tubules, the molecular context underlying this process remains obscure. Previously, we identified a Tret1 homolog (Nlst8) that is expressed principally in the Malpighian tubules of the brown planthopper (BPH). Here, we used the Xenopus oocyte expression system to show that NlST8 exerts trehalose transport activity that is elevated under low pH conditions. These functional assays indicate that Nlst8 encodes a proton-dependent trehalose transporter (H-TRET1). To examine the involvement of Nlst8 in trehalose reabsorption, we analyzed the sugar composition of honeydew by using BPH with RNAi gene silencing. Trehalose was detected in the honeydew as waste excreted from Nlst8-dsRNA-injected BPH under hyperglycemic conditions. However, trehalose was not expelled from GFP-dsRNA-injected BPH even under hyperglycemic conditions. We conclude that NlST8 could participate in trehalose reabsorption driven by a H+ gradient from the lumen to the principal cells of the Malpighian tubules. PMID:22934042

  9. The roles of evolutionarily conserved functional modules in cilia-related trafficking

    PubMed Central

    Sung, Ching-Hwa; Leroux, Michel R.

    2014-01-01

    Cilia are present across most eukaryotic phyla and have diverse sensory and motility roles in animal physiology, cell signalling and development. Their biogenesis and maintenance depend on vesicular and intraciliary (intraflagellar) trafficking pathways that share conserved structural and functional modules. The functional units of the interconnected pathways, which include proteins involved in membrane coating as well as small GTPases and their accessory factors, were first experimentally associated with canonical vesicular trafficking. These components are, however, ancient, having been co-opted by the ancestral eukaryote to establish the ciliary organelle, and their study can inform us about ciliary biology in higher organisms. PMID:24296415

  10. Heterologous production and functional and thermodynamic characterization of cation diffusion facilitator (CDF) transporters of mesophilic and hyperthermophilic origin.

    PubMed

    Goswami, Devrishi; Kaur, Jagdeep; Surade, Sachin; Grell, Ernst; Michel, Hartmut

    2012-07-01

    The members of the cation diffusion facilitator (CDF) family transport heavy metal ions and play an important function in zinc ion homeostasis of the cell. A recent structure of an Escherichia coli CDF transporter protein YiiP has revealed its dimeric nature and autoregulatory zinc transport mechanism. Here, we report the cloning and heterologous production of four different CDF transporters, two each from the pathogenic mesophilic bacterium Salmonella typhimurium and from the hyperthermophilic bacterium Aquifex aeolicus, in E. coli host cells. STM0758 of S. typhimurium was able to restore resistance to zinc ions when tested by complementation assays in the zinc-sensitive GG48 strain. Furthermore, copurification of bicistronically produced STM0758 and cross-linking experiments with the purified protein have revealed its possible oligomeric nature. The interaction between heavy metal ions and Aq_2073 of A. aeolicus was investigated by titration calorimetry. The entropy-driven, high-affinity binding of two Cd2+ and two Zn2+ per protein monomer with Kd values of around 100 nm and 1 μm, respectively, was observed. In addition, at least one more Zn2+ can be bound per monomer with low affinity. This low-affinity site is likely to possess a functional role contributing to Zn2+ transport across membranes. PMID:22944666

  11. Functional and transcript analysis of a novel metal transporter gene EpNramp from a dark septate endophyte (Exophiala pisciphila).

    PubMed

    Wei, Yun-Fang; Li, Tao; Li, Ling-Fei; Wang, Jun-Ling; Cao, Guan-Hua; Zhao, Zhi-Wei

    2016-02-01

    Various metal transporters mediate sub-cellular sequestration of diverse metal ions, contribute to cellular metal tolerance, and control metal partitioning, particularly under conditions of high rates of metal influx into organisms. In the current study, a ubiquitous and evolutionary conserved metal transporter gene, homology to natural resistance associated macrophage protein (Nramp), was cloned from a metal-tolerant isolate of dark septate endophyte (DSE, Exophiala pisciphila), and its functional and transcript characterization were analyzed. The full-length Nramp gene from E. pisciphila (named EpNramp) was 1716 bp and expected to encode a polypeptide of 571 amino acid residues. EpNramp fused to green fluorescent protein suggested that EpNramp was a plasma membrane metal transporter, which was consistent with the results of bioinformatics analysis with 11 transmembrane domains. Yeast functional complementation revealed that EpNramp could complement the growth defect of Fe-uptake yeast mutant (fet3fet4 double mutant) by mediating the transport of Fe(2+). Expression of EpNramp increased Cd(2+) sensitivity and Cd(2+) accumulation in yeast. In addition, qPCR data revealed that E. pisciphila significantly down-regulated EpNramp expression with elevated Cd(2+) exposure. Altogether, EpNramp is a bivalent cation transporter localized in cell membrane, which is necessary for efficient translocation of both Fe and Cd, and its activities partly attributed to the tolerance of DSE to toxic and excessive Cd(2+) supplements. PMID:26595509

  12. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    PubMed Central

    Campbell, Susan L.; Hablitz, John J.; Olsen, Michelle L.

    2014-01-01

    Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN) 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21–28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in the FCD model

  13. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans.

    PubMed

    Satoh, H; Susaki, M; Shukunami, C; Iyama, K; Negoro, T; Hiraki, Y

    1998-05-15

    Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene constitute a family of recessively inherited osteochondrodysplasias including achondrogenesis type 1B, atelosteogenesis type II, and diastrophic dysplasia. However, the functional properties of the gene product have yet to be elucidated. We cloned rat DTDST cDNA from rat UMR-106 osteoblastic cells. Northern blot analysis suggested that cartilage and intestine were the major expression sites for DTDST mRNA. Analysis of the genomic sequence revealed that the rat DTDST gene was composed of at least five exons. Two distinct transcripts were expressed in chondrocytes due to alternative utilization of the third exon, corresponding to an internal portion of the 5'-untranslated region of the cDNA. Injection of rat and human DTDST cRNA into Xenopus laevis oocytes induced Na+-independent sulfate transport. Transport activity of the expressed DTDST was markedly inhibited by extracellular chloride and bicarbonate. In contrast, canalicular Na+-independent sulfate transporter Sat-1 required the presence of extracellular chloride in the cRNA-injected oocytes. The activity profile of sulfate transport in growth plate chondrocytes was studied in the extracellular presence of various anions and found substantially identical to DTDST expressed in oocytes. Thus, sulfate transport of chondrocytes is dominantly dependent on the DTDST system. Finally, we demonstrate that undersulfation of proteoglycans by the chlorate treatment of chondrocytes significantly impaired growth response of the cells to fibroblast growth factor, suggesting a role for DTDST in endochondral bone formation. PMID:9575183

  14. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals

    PubMed Central

    Furukawa, Junji; Inoue, Katsuhisa; Maeda, Junya; Yasujima, Tomoya; Ohta, Kinya; Kanai, Yoshikatsu; Takada, Tappei; Matsuo, Hirotaka; Yuasa, Hiroaki

    2015-01-01

    The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na+ and H+, but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes. PMID:26455426

  15. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals.

    PubMed

    Furukawa, Junji; Inoue, Katsuhisa; Maeda, Junya; Yasujima, Tomoya; Ohta, Kinya; Kanai, Yoshikatsu; Takada, Tappei; Matsuo, Hirotaka; Yuasa, Hiroaki

    2015-01-01

    The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na(+) and H(+), but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes. PMID:26455426

  16. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus

    PubMed Central

    Medrano, M C; Gerrikagoitia, I; Martínez-Millán, L; Mendiguren, A; Pineda, J

    2013-01-01

    Background and Purpose Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. Experimental Approach We measured the effect of different EAAT subtype inhibitors/enhancers on glutamate- and KCl-induced activation of LC neurons in rat slices. EAAT2–3 expression in the LC was also characterized by immunohistochemistry. Key Results The EAAT2–5 inhibitor DL-threo-β-benzyloxaspartic acid (100 μM), but not the EAAT2, 4, 5 inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (100 μM) or the EAAT2 inhibitor dihydrokainic acid (DHK; 100 μM), enhanced the glutamate- and KCl-induced activation of the firing rate of LC neurons. These effects were blocked by ionotropic, but not metabotrobic, glutamate receptor antagonists. DHK (100 μM) was the only EAAT inhibitor that increased the spontaneous firing rate of LC cells, an effect that was due to inhibition of EAAT2 and subsequent AMPA receptor activation. Chronic treatment with ceftriaxone (200 mg·kg−1 i.p., once daily, 7 days), an EAAT2 expression enhancer, increased the actions of glutamate and DHK, suggesting a functional impact of EAAT2 up-regulation on the glutamatergic system. Immuhistochemical data revealed the presence of EAAT2 and EAAT3 surrounding noradrenergic neurons and EAAT2 on glial cells in the LC. Conclusions and Implications These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus. PMID:23638698

  17. Can Serotonin Transporter Genotype Predict Serotonergic Function, Chronicity, and Severity of Drinking?

    PubMed Central

    Johnson, Bankole A.; Javors, Martin A.; Roache, John D.; Seneviratne, Chamindi; Bergeson, Susan E.; Ait-Daoud, Nassima; Dawes, Michael A.; Ma, Jennie Z.

    2008-01-01

    Serotonin transporter (5-HTT) activity is greater in carriers of the long (L) vs. short (S) alleles of the 5-HTT-linked polymorphic region (5′-HTTLPR) among healthy control subjects but not alcohol-dependent adults. In 198 alcoholics, we determined the relationship between current or lifetime drinking and platelet 5-HTT function and density among allelic variants of the 5′-HTTLPR. SS subjects were younger than L-carriers (LL and LS) (p < 0.0085) and had fewer years of lifetime drinking. For L-carriers, the mean of Bmax for paroxetine binding, but not Vmax for serotonin (5-HT) uptake, was lower than that for SS subjects (p < 0.05). More L-carriers than their SS counterparts had Vmax for 5-HT uptake below 200 nmol/107 platelets-min (p < 0.05) and Bmax for paroxetine binding below 600 nmol/mg protein (p < 0.06). Current drinking (drinks per day during the past 14 days) correlated positively with Km and Vmax of platelet 5-HT uptake (p < 0.05) and negatively with Bmax, but not Kd, of paroxetine binding (p < 0.05) for L-carriers alone. Years of lifetime drinking correlated negatively with Km and Vmax of platelet 5-HT uptake (p < 0.05) and Bmax, but not Kd, of paroxetine binding (p < 0.05) for L-carriers alone. Among L-carriers alone, there were higher levels of platelet 5-HT uptake and lower levels of platelet paroxetine binding with increased drinking, and more lifetime drinking was associated with modestly lower levels of 5-HT uptake and paroxetine binding. Thus, 5-HTT expression varies with current and lifetime drinking in L-carriers alone. PMID:17950969

  18. Indirect estimation of the Convective Lognormal Transfer function model parameters for describing solute transport in unsaturated and undisturbed soil

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad Hossein; Vanclooster, Marnik

    2012-05-01

    Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μt, increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ2t first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μt estimated from the conceptual model performed much better as compared to predictions with μt and σ2t estimated from calibration of solute transport at shallow soil depths. The use of μt estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales.

  19. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  20. Fast axonal transport of kinesin in the rat visual system: functionality of kinesin heavy chain isoforms.

    PubMed Central

    Elluru, R G; Bloom, G S; Brady, S T

    1995-01-01

    The mechanochemical ATPase kinesin is thought to move membrane-bounded organelles along microtubules in fast axonal transport. However, fast transport includes several classes of organelles moving at rates that differ by an order of magnitude. Further, the fact that cytoplasmic forms of kinesin exist suggests that kinesins might move cytoplasmic structures such as the cytoskeleton. To define cellular roles for kinesin, the axonal transport of kinesin was characterized. Retinal proteins were pulse-labeled, and movement of radiolabeled kinesin through optic nerve and tract into the terminals was monitored by immunoprecipitation. Heavy and light chains of kinesin appeared in nerve and tract at times consistent with fast transport. Little or no kinesin moved with slow axonal transport indicating that effectively all axonal kinesin is associated with membranous organelles. Both kinesin heavy chain molecular weight variants of 130,000 and 124,000 M(r) (KHC-A and KHC-B) moved in fast anterograde transport, but KHC-A moved at 5-6 times the rate of KHC-B. KHC-A cotransported with the synaptic vesicle marker synaptophysin, while a portion of KHC-B cotransported with the mitochondrial marker hexokinase. These results suggest that KHC-A is enriched on small tubulovesicular structures like synaptic vesicles and that at least one form of KHC-B is predominantly on mitochondria. Biochemical specialization may target kinesins to appropriate organelles and facilitate differential regulation of transport. Images PMID:7538359

  1. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals

    PubMed Central

    Yamamoto, Syunsuke; Inoue, Katsuhisa; Murata, Tomoaki; Kamigaso, Syunsuke; Yasujima, Tomoya; Maeda, Jun-ya; Yoshida, Yukihiro; Ohta, Kin-ya; Yuasa, Hiroaki

    2010-01-01

    Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 μm. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use. PMID:20042597

  2. Combinatorial theory of the semiclassical evaluation of transport moments II: Algorithmic approach for moment generating functions

    SciTech Connect

    Berkolaiko, G.; Kuipers, J.

    2013-12-15

    Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.

  3. The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane

    PubMed Central

    Guo, Deng-Fu; Cui, Huxing; Zhang, Qihong; Morgan, Donald A.; Thedens, Daniel R.; Nishimura, Darryl; Grobe, Justin L.; Sheffield, Val C.; Rahmouni, Kamal

    2016-01-01

    Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity. PMID:26926121

  4. The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane.

    PubMed

    Guo, Deng-Fu; Cui, Huxing; Zhang, Qihong; Morgan, Donald A; Thedens, Daniel R; Nishimura, Darryl; Grobe, Justin L; Sheffield, Val C; Rahmouni, Kamal

    2016-02-01

    Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity. PMID:26926121

  5. Sucrase-isomaltase deficiency in humans. Different mutations disrupt intracellular transport, processing, and function of an intestinal brush border enzyme.

    PubMed Central

    Naim, H Y; Roth, J; Sterchi, E E; Lentze, M; Milla, P; Schmitz, J; Hauri, H P

    1988-01-01

    Eight cases of congenital sucrase-isomaltase deficiency were studied at the subcellular and protein level with monoclonal antibodies against sucrase-isomaltase. At least three phenotypes were revealed: one in which sucrase-isomaltase protein accumulated intracellularly probably in the endoplasmic reticulum, as a membrane-associated high-mannose precursor, one in which the intracellular transport of the enzyme was apparently blocked in the Golgi apparatus, and one in which catalytically altered enzyme was transported to the cell surface. All patients expressed electrophoretically normal or near normal high-mannose sucrase-isomaltase. The results suggest that different, probably small, mutations in the sucrase-isomaltase gene lead to the synthesis of transport-incompetent or functionally altered enzyme which results in congenital sucrose intolerance. Images PMID:3403721

  6. A three dimensional Green's function solution technique for the transport of heavy ions in laboratory and space

    NASA Astrophysics Data System (ADS)

    Gerstner, Candice Rockell

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to ionizing radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. The shielding and exposure of space travelers is controlled by the transport properties of the radiation through the spacecraft, its onboard systems and the bodies of the individuals themselves. Meeting the challenge of future space programs will therefore require accurate and efficient methods for performing radiation transport calculations to analyze and predict shielding requirements. One such method, which is developed in this dissertation, is based on a three dimensional Green's function solution technique for the transport of heavy ions in both laboratory and space.

  7. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    PubMed

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. PMID

  8. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes.

    PubMed

    Keller, J N; Mark, R J; Bruce, A J; Blanc, E; Rothstein, J D; Uchida, K; Waeg, G; Mattson, M P

    1997-10-01

    Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke, and Alzheimer's, Parkinson's and Huntington's diseases. Although cell culture data indicate that oxidative insults can impair key membrane regulatory systems including ion-motive ATPases and amino acid transport systems, the effects of oxidative stress on synapses, and the mechanisms that mediate such effects, are largely unknown. This study provides evidence that 4-hydroxynonenal, an aldehydic product of lipid peroxidation, mediates oxidation-induced impairment of glutamate transport and mitochondrial function in synapses. Exposure of rat cortical synaptosomes to 4-hydroxynonenal resulted in concentration- and time-dependent decreases in [3H]glutamate uptake, and mitochondrial function [assessed with the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)]. Other related aldehydes including malondialdehyde and hexanal had little or no effect on glutamate uptake or mitochondrial function. Exposure of synaptosomes to insults known to induce lipid peroxidation (FeSO4 and amyloid beta-peptide) also impaired glutamate uptake and mitochondrial function. The antioxidants propyl gallate and glutathione prevented impairment of glutamate uptake and MTT reduction induced by FeSO4 and amyloid beta-peptide, but not that induced by 4-hydroxynonenal. Western blot analyses using an antibody to 4-hydroxynonenal-conjugated proteins showed that 4-hydroxynonenal bound to multiple cell proteins including GLT-1, a glial glutamate transporter present at high levels in synaptosomes. 4-Hydroxynonenal itself induced lipid peroxidation suggesting that, in addition to binding directly to membrane regulatory proteins, 4

  9. Getting the tail to wag the dog: Incorporating groundwater transport into catchment solute transport models using rank StorAge Selection (rSAS) functions

    NASA Astrophysics Data System (ADS)

    Harman, C. J.

    2015-12-01

    Surface water hydrologic models are increasingly used to analyze the transport of solutes through the landscape, such as nitrate. However, many of these models cannot adequately capture the effect of groundwater flow paths, which can have long travel times and accumulate legacy contaminants, releasing them to streams over decades. If these long lag times are not accounted for, the short-term efficacy of management activities to reduce nitrogen loads may be overestimated. Models that adopt a simple 'well-mixed' assumption, leading to an exponential transit time distribution at steady state, cannot adequately capture the broadly skewed nature of groundwater transit times in typical watersheds. Here I will demonstrate how StorAge Selection functions can be used to capture the long lag times of groundwater in a typical subwatershed-based hydrologic model framework typical of models like SWAT, HSPF, HBV, PRMS and others. These functions can be selected and calibrated to reproduce historical data where available, but can also be fitted to the results of a steady-state groundwater transport model like MODFLOW/MODPATH, allowing those results to directly inform the parameterization of an unsteady surface water model. The long tails of the transit time distribution predicted by the groundwater model can then be completely captured by the surface water model. Examples of this application in the Chesapeake Bay watersheds and elsewhere will be given.

  10. Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia

    PubMed Central

    2013-01-01

    Background Comparative analysis of tissue-specific transcriptomes is a powerful technique to uncover tissue functions. Our FlyAtlas.org provides authoritative gene expression levels for multiple tissues of Drosophila melanogaster (1). Although the main use of such resources is single gene lookup, there is the potential for powerful meta-analysis to address questions that could not easily be framed otherwise. Here, we illustrate the power of data-mining of FlyAtlas data by comparing epithelial transcriptomes to identify a core set of highly-expressed genes, across the four major epithelial tissues (salivary glands, Malpighian tubules, midgut and hindgut) of both adults and larvae. Method Parallel hypothesis-led and hypothesis-free approaches were adopted to identify core genes that underpin insect epithelial function. In the former, gene lists were created from transport processes identified in the literature, and their expression profiles mapped from the flyatlas.org online dataset. In the latter, gene enrichment lists were prepared for each epithelium, and genes (both transport related and unrelated) consistently enriched in transporting epithelia identified. Results A key set of transport genes, comprising V-ATPases, cation exchangers, aquaporins, potassium and chloride channels, and carbonic anhydrase, was found to be highly enriched across the epithelial tissues, compared with the whole fly. Additionally, a further set of genes that had not been predicted to have epithelial roles, were co-expressed with the core transporters, extending our view of what makes a transporting epithelium work. Further insights were obtained by studying the genes uniquely overexpressed in each epithelium; for example, the salivary gland expresses lipases, the midgut organic solute transporters, the tubules specialize for purine metabolism and the hindgut overexpresses still unknown genes. Conclusion Taken together, these data provide a unique insight into epithelial function in this

  11. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter.

    PubMed

    Bagchi, Rammyani; Salehin, Mohammad; Adeyemo, O Sarah; Salazar, Carolina; Shulaev, Vladimir; Sherrier, D Janine; Dickstein, Rebecca

    2012-10-01

    The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function. PMID:22858636

  12. Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups.

    PubMed

    Yu, Jing; Liu, Su; Wu, Bing; Shen, Zhuoyan; Cherr, Gary N; Zhang, Xu-Xiang; Li, Mei

    2016-04-01

    Experimental studies indicate that multiwalled carbon nanotubes (MWCNTs) have the potential to induce cytotoxicity. However, the reports are often inconsistent and even contradictory. Additionally, adverse effects of MWCNTs at low concentration are not well understood. In this study, we systemically compared adverse effects of six MWCNTs including pristine MWCNTs, hydroxyl-MWCNTs and carboxyl-MWCNTs of two different lengths (0.5-2 μm and 10-30 μm) on human hepatoma cell line HepG2. Results showed that MWCNTs induced cytotoxicity by increasing reactive oxygen species (ROS) generation and damaging cell function. Pristine short MWCNTs induced higher cytotoxicity than pristine long MWCNTs. Functionalization increased cytotoxicity of long MWCNTs, but reduced cytotoxicity of short MWCNTs. Further, our results indicated that the six MWCNTs, at nontoxic concentration, might not be environmentally safe as they inhibited ABC transporters' efflux capabilities. This inhibition was observed even at very low concentrations, which were 40-1000 times lower than their effective concentrations on cytotoxicity. The inhibition of ABC transporters significantly increased cytotoxicity of arsenic, a known substrate of ABC transporters, indicating a chemosensitizing effect of MWCNTs. Plasma membrane damage was likely the mechanism by which the six MWCNTs inhibited ABC transporter activity. This study provides insight into risk assessments of low levels of MWCNTs in the environment. PMID:26943274

  13. ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs.

    PubMed

    Jansen, Robert S; Mahakena, Sunny; de Haas, Marcel; Borst, Piet; van de Wetering, Koen

    2015-12-18

    The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show that Abcc5(-/-) mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5(-/-) brain. The metabolites that accumulated in Abcc5(-/-) tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5(-/-) brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs. PMID:26515061

  14. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution.

    PubMed Central

    Agrimi, G; Di Noia, M A; Marobbio, C M T; Fiermonte, G; Lasorsa, F M; Palmieri, F

    2004-01-01

    The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene. PMID:14674884

  15. Functional Properties of the Arabidopsis Peptide Transporters AtPTR1 and AtPTR5*

    PubMed Central

    Hammes, Ulrich Z.; Meier, Stefan; Dietrich, Daniela; Ward, John M.; Rentsch, Doris

    2010-01-01

    The Arabidopsis di- and tripeptide transporters AtPTR1 and AtPTR5 were expressed in Xenopus laevis oocytes, and their selectivity and kinetic properties were determined by voltage clamping and by radioactive uptake. Dipeptide transport by AtPTR1 and AtPTR5 was found to be electrogenic and dependent on protons but not sodium. In the absence of dipeptides, both transporters showed proton-dependent leak currents that were inhibited by Phe-Ala (AtPTR5) and Phe-Ala, Trp-Ala, and Phe-Phe (AtPTR1). Phe-Ala was shown to reduce leak currents by binding to the substrate-binding site with a high apparent affinity. Inhibition of leak currents was only observed when the aromatic amino acids were present at the N-terminal position. AtPTR1 and AtPTR5 transport activity was voltage-dependent, and currents increased supralinearly with more negative membrane potentials and did not saturate. The voltage dependence of the apparent affinities differed between Ala-Ala, Ala-Lys, and Ala-Asp and was not conserved between the two transporters. The apparent affinity of AtPTR1 for these dipeptides was pH-dependent and decreased with decreasing proton concentration. In contrast to most proton-coupled transporters characterized so far, −Imax increased at high pH, indicating that regulation of the transporter by pH overrides the importance of protons as co-substrate. PMID:20937801

  16. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new

  17. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances

    PubMed Central

    Liu, Li; Liu, Xiao-Dong

    2014-01-01

    Diabetes is a systematic metabolic disease, which often develops a number of well-recognized vascular complications including brain complications which may partly result from the dysfunction of blood-brain barrier (BBB). BBB is generally considered as a mechanism for protecting the brain from unwanted actions resulting from substances in the blood and maintaining brain homeostasis via monitoring the entry or efflux of compounds. ATP-binding cassette (ABC) family of transporters including P-glycoprotein (P-GP) and breast cancer-related protein (BCRP), widely expressed in the luminal membrane of the microvessel endothelium and in the apical membrane of the choroids plexus epithelium, play important roles in the function of BBB. However, these transporters are easily altered by some diseases. The present article was focused on the alteration in expression and function of both P-GP and BCRP at BBB by diabetes and the clinical significances. PMID:25540622

  18. A small synthetic molecule functions as a chloride-bicarbonate dual-transporter and induces chloride secretion in cells.

    PubMed

    Liu, Peng-Yun; Li, Shing-To; Shen, Fang-Fang; Ko, Wing-Hung; Yao, Xiao-Qiang; Yang, Dan

    2016-05-31

    A C2 symmetric small molecule composed of l-phenylalanine and isophthalamide was found to function as a Cl(-)/HCO3(-) dual transporter and self-assemble into chloride channels. In Ussing-chamber based short-circuit current measurements, this molecule elicited chloride-dependent short-circuit current (Isc) increase in both Calu-3 cell and CFBE41o-cell (with F508del mutant CFTR) monolayers. PMID:27188496

  19. Localization and Function of a 5-HT Transporter in Crypt Epithelia of the Gastrointestinal Tract

    PubMed Central

    Wade, P. R.; Chen, J.; Jaffe, B.; Kassem, I. S.; Blakely, R. D.; Gershon, M. D.

    2012-01-01

    The peristaltic reflex can be evoked in the absence of input from the CNS because the responsible neural pathways are intrinsic to the intestine. Mucosal enterochromaffin cells have been postulated to be pressure transducers, which activate the intrinsic sensory neurons that initiate the reflex by secreting 5-HT. All of the criteria necessary to establish 5-HT as this transmitter have been fulfilled previously, except that no mucosal mechanism for 5-HT inactivation was known. In the current investigation, desensitization of 5-HT receptors was demonstrated to inhibit the peristaltic reflex in the guinea pig large intestine in vitro. At low concentration (1.0 nM), the 5-HT uptake inhibitor fluoxetine potentiated the reflex, but higher concentrations blocked it, suggesting that the peristaltic reflex depends on the 5-HT transporter-mediated inactivation of 5-HT. Specific (Na+-dependent, fluoxetine-sensitive) uptake of 3H- 5-HT by intestinal crypt epithelial cells was found by radioautography. mRNA encoding the neuronal 5-HT transporter was demonstrated in the intestinal mucosa by Northern analysis and located in crypt epithelial cells as well as in myenteric neurons by in situ hybridization. cDNA encoding the 5-HT transporter was cloned from the mucosa and completely sequenced. 5-HT transporter immunoreactivity was detected in crypt epithelial cells and enteric neurons. Mucosal epithelial cells thus express a plasmalemmal 5-HT transporter identical to that of serotonergic neurons. This molecule seems to play a critical role in the peristaltic reflex. PMID:8601815

  20. Nicotine increases dopamine transporter function in rat striatum through a trafficking-independent mechanism

    PubMed Central

    Middleton, Lisa S.; Apparsundaram, Subbu; King-Pospisil, Kelley A.; Dwoskin, Linda P.

    2007-01-01

    In previous in vivo voltammetry studies, acute nicotine administration increased striatal dopamine clearance. The current study aimed to determine whether nicotine also increases [3H]dopamine uptake across the time course of the previous voltammetry studies and whether dopamine transporter trafficking to the cell surface mediates the nicotine-induced augmentation of dopamine clearance in striatum. Rats were administered nicotine (0.32 mg/kg, s.c.); striatal synaptosomes were obtained 5, 10, 40 or 60 min later. Nicotine increased (25%) the Vmax of [3H]dopamine uptake at 10 and 40 min. To determine whether the increase in Vmax was due to an increase in dopamine transporter density, [3H]GBR 12935 (1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride) binding was performed using rat striatal membranes; no differences were found between nicotine and saline control groups at 5, 10 or 40 min post-injection, indicating that nicotine did not increase striatal dopamine transporter density; however, [3H]GBR 12935 binding assays determine both cell surface and intracellular dopamine transporter. Changes in cellular dopamine transporter localization in striatum were determined using biotinylation and subfractionation approaches; no differences between nicotine and saline control groups were observed at 10 and 40 min post-injection. These results suggest that the nicotine-induced increase in dopamine uptake and clearance in striatum may occur via a trafficking-independent mechanism. PMID:17141211

  1. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).

    PubMed

    Bai, Yonghong; Li, Min; Hwang, Tzyh-Chang

    2011-11-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, but little is known about how this ion channel that harbors an uninterrupted ion permeation pathway evolves from a transporter that works by alternately exposing its substrate conduit to the two sides of the membrane. Here, we assessed reactivity of intracellularly applied thiol-specific probes with cysteine residues substituted into the 12th transmembrane segment (TM12) of CFTR. Our experimental data showing high reaction rates of substituted cysteines toward the probes, strong blocker protection of cysteines against reaction, and reaction-induced alterations in channel conductance support the idea that TM12 of CFTR contributes to the lining of the ion permeation pathway. Together with previous work, these findings raise the possibility that pore-lining elements of CFTR involve structural components resembling those that form the substrate translocation pathway of ABC transporters. In addition, comparison of reaction rates in the open and closed states of the CFTR channel leads us to propose that upon channel opening, the wide cytoplasmic vestibule tightens and the pore-lining TM12 rotates along its helical axis. This simple model for gating conformational changes in the inner pore domain of CFTR argues that the gating transition of CFTR and the transport cycle of ABC proteins share analogous conformational changes. Collectively, our data corroborate the popular hypothesis that degradation of the cytoplasmic-side gate turned an ABC transporter into the CFTR channel. PMID:22042986

  2. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7)

    PubMed Central

    Bai, Yonghong

    2011-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, but little is known about how this ion channel that harbors an uninterrupted ion permeation pathway evolves from a transporter that works by alternately exposing its substrate conduit to the two sides of the membrane. Here, we assessed reactivity of intracellularly applied thiol-specific probes with cysteine residues substituted into the 12th transmembrane segment (TM12) of CFTR. Our experimental data showing high reaction rates of substituted cysteines toward the probes, strong blocker protection of cysteines against reaction, and reaction-induced alterations in channel conductance support the idea that TM12 of CFTR contributes to the lining of the ion permeation pathway. Together with previous work, these findings raise the possibility that pore-lining elements of CFTR involve structural components resembling those that form the substrate translocation pathway of ABC transporters. In addition, comparison of reaction rates in the open and closed states of the CFTR channel leads us to propose that upon channel opening, the wide cytoplasmic vestibule tightens and the pore-lining TM12 rotates along its helical axis. This simple model for gating conformational changes in the inner pore domain of CFTR argues that the gating transition of CFTR and the transport cycle of ABC proteins share analogous conformational changes. Collectively, our data corroborate the popular hypothesis that degradation of the cytoplasmic-side gate turned an ABC transporter into the CFTR channel. PMID:22042986

  3. Intestinal peptidases form functional complexes with the neutral amino acid transporter B0AT1

    PubMed Central

    Fairweather, Stephen J.; Bröer, Angelika; O'Mara, Megan L.; Bröer, Stefan

    2012-01-01

    The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B0AT1 [broad neutral (0) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B0AT1 and B0AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B0AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B0AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (Vmax). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B0AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B0AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney. PMID:22677001

  4. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus

    PubMed Central

    2012-01-01

    Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics. PMID:22906146

  5. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation.

    PubMed

    Lee, Sooyeon; Hennigar, Stephen R; Alam, Samina; Nishida, Keigo; Kelleher, Shannon L

    2015-05-22

    The zinc transporter ZnT2 (SLC30A2) imports zinc into vesicles in secreting mammary epithelial cells (MECs) and is critical for zinc efflux into milk during lactation. Recent studies show that ZnT2 also imports zinc into mitochondria and is expressed in the non-lactating mammary gland and non-secreting MECs, highlighting the importance of ZnT2 in general mammary gland biology. In this study we used nulliparous and lactating ZnT2-null mice and characterized the consequences on mammary gland development, function during lactation, and milk composition. We found that ZnT2 was primarily expressed in MECs and to a limited extent in macrophages in the nulliparous mammary gland and loss of ZnT2 impaired mammary expansion during development. Secondly, we found that lactating ZnT2-null mice had substantial defects in mammary gland architecture and MEC function during secretion, including fewer, condensed and disorganized alveoli, impaired Stat5 activation, and unpolarized MECs. Loss of ZnT2 led to reduced milk volume and milk containing less protein, fat, and lactose compared with wild-type littermates, implicating ZnT2 in the regulation of mammary differentiation and optimal milk production during lactation. Together, these results demonstrate that ZnT2-mediated zinc transport is critical for mammary gland function, suggesting that defects in ZnT2 not only reduce milk zinc concentration but may compromise breast health and increase the risk for lactation insufficiency in lactating women. PMID:25851903

  6. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment.

    PubMed

    Schwartz, John S; Simon, Andrew; Klimetz, Lauren

    2011-08-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the USA. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally variable sediment transport rates with specific losses of ecological functions as loads increase. In order to accomplish this linkage assessment, a functional traits-based approach was used to correlate site occurrences of 17 fish species traits in three main groups (preferred rearing habitat, trophic feeding guild, and spawning behavior) with suspended sediment transport metrics. The sediment transport metrics included concentrations, durations, and dosages for a range of exceedance frequencies; and mean annual suspended sediment yields (SSY). In addition, this study in the Northwestern Great Plains Ecoregion examined trait relationships with three environmental gradients: channel stability, drainage area, and elevation. Potential stressor responses due to elevated suspended sediment concentration (SSC) levels were correlated with occurrences of five traits: preferred pool habitat; feeding generalists, omnivores, piscivores, and nest-building spawners; and development of ecologically based TMDL targets were demonstrated for specific SSC exceedance frequencies. In addition, reduced site occurrences for preferred pool habitat and nest-building spawners traits were associated with unstable channels and higher SSY. At an ecoregion scale, a functional traits assessment approach provided a means to quantify relations between biological impairment and episodically elevated levels of suspended sediment, supporting efforts to develop ecologically based sediment TMDLs. PMID:20981569

  7. Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport

    PubMed Central

    Chowdary, Praveen D.; Che, Daphne L.; Kaplan, Luke; Chen, Ou; Pu, Kanyi; Bawendi, Moungi; Cui, Bianxiao

    2015-01-01

    Dynein-dependent transport of organelles from the axon terminals to the cell bodies is essential to the survival and function of neurons. However, quantitative knowledge of dyneins on axonal organelles and their collective function during this long-distance transport is lacking because current technologies to do such measurements are not applicable to neurons. Here, we report a new method termed nanoparticle-assisted optical tethering of endosomes (NOTE) that made it possible to study the cooperative mechanics of dyneins on retrograde axonal endosomes in live neurons. In this method, the opposing force from an elastic tether causes the endosomes to gradually stall under load and detach with a recoil velocity proportional to the dynein forces. These recoil velocities reveal that the axonal endosomes, despite their small size, can recruit up to 7 dyneins that function as independent mechanical units stochastically sharing load, which is vital for robust retrograde axonal transport. This study shows that NOTE, which relies on controlled generation of reactive oxygen species, is a viable method to manipulate small cellular cargos that are beyond the reach of current technology. PMID:26656461

  8. Functional characterization of common protein variants in the efflux transporter ABCC11 and identification of T546M as functionally damaging variant.

    PubMed

    Arlanov, R; Lang, T; Jedlitschky, G; Schaeffeler, E; Ishikawa, T; Schwab, M; Nies, A T

    2016-04-01

    Multidrug resistance protein 8 (ABCC11) is an efflux transporter for anionic lipophilic compounds, conferring resistance to antiviral and anticancer agents like 5-fluorouracil (5-FU). ABCC11 missense variants may contribute to variability in drug response but functional consequences, except for the 'earwax variant' c.538G>A, are unknown. Using the 'Screen and Insert' technology, we generated human embryonic kidney 293 cells stably expressing ABCC11 missense variants frequently occurring in different ethnic populations: c.57G>A, c.538G>A, c.950C>A, c.1637C>T, c.1942G>A, c.4032A>G. A series of in silico prediction analyses and in vitro plasma membrane vesicle uptake, immunoblotting and immunolocalization experiments were undertaken to investigate functional consequences. We identified c.1637C>T (T546M), previously associated with 5-FU-related toxicity, as a novel functionally damaging ABCC11 variant exhibiting markedly reduced transport function of 5-FdUMP, the active cytotoxic metabolite of 5-FU. Detailed analysis of 14 subpopulations revealed highest allele frequencies of c.1637C>T in Europeans and Americans (up to 11%) compared with Africans and Asians (up to 3%). PMID:25896536

  9. Identification and Functional Analysis of an Ammonium Transporter in Streptococcus mutans

    PubMed Central

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation. PMID:25229891

  10. Interacting fermions in one-dimensional disordered lattices: Exploring localization and transport properties with lattice density-functional theories

    NASA Astrophysics Data System (ADS)

    Vettchinkina, V.; Kartsev, A.; Karlsson, D.; Verdozzi, C.

    2013-03-01

    We investigate the static and dynamical behavior of one-dimensional interacting fermions in disordered Hubbard chains contacted to semi-infinite leads. The chains are described via the repulsive Anderson-Hubbard Hamiltonian, using static and time-dependent lattice density-functional theory. The dynamical behavior of our quantum transport system is studied using an integration scheme available in the literature, which we modify via the recursive Lanczos method to increase its efficiency. To quantify the degree of localization due to disorder and interactions, we adapt the definition of the inverse participation ratio to obtain an indicator which is suitable for quantum transport geometries and can be obtained within density-functional theory. Lattice density-functional theories are reviewed and, for contacted chains, we analyze the merits and limits of the coherent-potential approximation in describing the spectral properties, with interactions included via lattice density-functional theory. Our approach appears to be able to capture complex features due to the competition between disorder and interactions. Specifically, we find a dynamical enhancement of delocalization in the presence of a finite bias and an increase of the steady-state current induced by interparticle interactions. This behavior is corroborated by results for the time-dependent densities and for the inverse participation ratio. Using short isolated chains with interaction and disorder, a brief comparative analysis between time-dependent density-functional theory and exact results is then given, followed by general concluding remarks.

  11. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport

    SciTech Connect

    Ness, H.; Dash, L. K.

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  12. Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter.

    PubMed Central

    Davies, A; Ciardelli, T L; Lienhard, G E; Boyle, J M; Whetton, A D; Baldwin, S A

    1990-01-01

    Antibodies were raised against synthetic peptides corresponding to most of the regions of the human erythrocyte glucose transporter predicted to be extramembranous in the model of Mueckler, Caruso, Baldwin, Panico, Blench, Morris, Lienhard, Allard & Lodish [(1985) Science 229, 941-945]. Most of the antibodies (17 out of a total of 19) recognized the intact denatured protein on Western blots. However, only seven of the antibodies recognized the native membrane-bound protein, even after its deglycosylation. These antibodies, against peptides encompassing residues 217-272 and 450-492 in the hydrophilic central and C-terminal regions of the transporter, bound to the cytoplasmic surface of the erythrocyte membrane. This finding is in agreement with the prediction of the model that these regions of the sequence are cytoplasmic. Antibodies against peptides from the central cytoplasmic loop of the transporter were found to inhibit the binding of cytochalasin B to the membrane-bound protein, whereas antibodies against the C-terminal region had no effect. The anti-peptide antibodies were then used to map the sequence locations of fragments of the transporter arising from tryptic digestion of the membrane-bound protein. This in turn enabled the epitopes for a number of anti-transporter monoclonal antibodies to be located within either the central cytoplasmic loop or the C-terminal region of the protein. Of those monoclonal antibodies which inhibited cytochalasin B binding to the protein, all but one were found to have epitopes within the central region of the sequence. In conjunction with the results of the anti-peptide antibody studies, these findings indicate the importance of this part of the protein for transporter function. Images Fig. 7. PMID:1691633

  13. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain.

    PubMed

    Inoue, Katsuhisa; Zhuang, Lina; Maddox, Dennis M; Smith, Sylvia B; Ganapathy, Vadivel

    2002-10-18

    Citrate plays a pivotal role not only in the generation of metabolic energy but also in the synthesis of fatty acids, isoprenoids, and cholesterol in mammalian cells. Plasma levels of citrate are the highest ( approximately 135 microm) among the intermediates of the tricarboxylic acid cycle. Here we report on the cloning and functional characterization of a plasma membrane transporter (NaCT for Na+ -coupled citrate transporter) from rat brain that mediates uphill cellular uptake of citrate coupled to an electrochemical Na+ gradient. NaCT consists of 572 amino acids and exhibits structural similarity to the members of the Na+-dicarboxylate cotransporter/Na+ -sulfate cotransporter (NaDC/NaSi) gene family including the recently identified Drosophila Indy. In rat, the expression of NaCT is restricted to liver, testis, and brain. When expressed heterologously in mammalian cells, rat NaCT mediates the transport of citrate with high affinity (Michaelis-Menten constant, approximately 20 microm) and with a Na+:citrate stoichiometry of 4:1. The transporter does interact with other dicarboxylates and tricarboxylates but with considerably lower affinity. In mouse brain, the expression of NaCT mRNA is evident in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. NaCT represents the first transporter to be identified in mammalian cells that shows preference for citrate over dicarboxylates. This transporter is likely to play an important role in the cellular utilization of citrate in blood for the synthesis of fatty acids and cholesterol (liver) and for the generation of energy (liver and brain). NaCT thus constitutes a potential therapeutic target for the control of body weight, cholesterol levels, and energy homeostasis. PMID:12177002

  14. Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function.

    PubMed

    Najmi, Mitra; Zhao, Rongbao; Fiser, Andras; Goldman, I David

    2016-07-01

    The proton-coupled folate transporter (PCFT) mediates folate absorption across the brush-border membrane of the proximal small intestine and is required for folate transport across the choroid plexus into the cerebrospinal fluid. In this study, the functional role and accessibility of the seven PCFT Trp residues were assessed by the substituted-cysteine accessibility method. Six Trp residues at a lipid-aqueous interface tolerated Cys substitution in terms of protein stability and function. W85C, W202C, and W213C were accessible to N-biotinyl aminoethylmethanethiosulfonate; W48C and W299C were accessible only after treatment with dithiotreitol (DTT), consistent with modification of these residues by an endogenous thiol-reacting molecule and their extracellular location. Neither W107C nor W333C was accessible (even after DTT) consistent with their cytoplasmic orientation. Biotinylation was blocked by pemetrexed only for the W48C (after DTT), W85C, W202C residues. Function was impaired only for the W299C PCFT mutant located in the 4th external loop between the 7th and 8th transmembrane helices. Despite its aqueous location, function could only be fully preserved with Phe and, to a lesser extent, Ala substitutions. There was a 6.5-fold decrease in the pemetrexed influx Vmax and a 3.5- and 6-fold decrease in the influx Kt and Ki, respectively, for the W299S PCFT. The data indicate that the hydrophobicity of the W299 residue is important for function suggesting that during the transport cycle this residue interacts with the lipid membrane thereby impacting on the oscillation of the carrier and, indirectly, on the folate binding pocket. PMID:27251438

  15. Structure and Function of the Reduced Folate Carrier: A Paradigm of A Major Facilitator Superfamily Mammalian Nutrient Transporter

    PubMed Central

    Matherly, Larry H.; Hou, Zhanjun

    2013-01-01

    Folates are essential for life and folate deficiency contributes to a host of health problems including cardiovascular disease, fetal abnormalities, neurologic disorders, and cancer. Antifolates, represented by methotrexate, continue to occupy a unique niche among the modern day pharmacopoeia for cancer along with other pathologic conditions. This review focuses on the biology of the membrane transport system termed the “reduced folate carrier” or RFC with a particular emphasis on RFC structure and function. The ubiquitously expressed RFC is the major transporter for folates in mammalian cells and tissues. Loss of RFC expression or function portends potentially profound physiologic or developmental consequences. For chemotherapeutic antifolates used for cancer, loss of RFC expression or synthesis of mutant RFC protein with impaired function results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and low levels of substrate for polyglutamate synthesis. The functional properties for RFC were first documented nearly 40 years ago in murine leukemia cells. Since 1994, when RFC was first cloned, tremendous advances in the molecular biology of RFC and biochemical approaches for studying the structure of polytopic membrane proteins have led to an increasingly detailed picture of the molecular structure of the carrier, including its membrane topology, its N-glycosylation, identification of functionally and structurally important domains and amino acids, and helix packing associations. Although no crystal structure for RFC is yet available, biochemical and molecular studies, combined with homology modeling, based on homologous bacterial Major Facilitator Superfamily transporters such as LacY, now permit the development of experimentally testable hypotheses designed to establish RFC structure and mechanism. PMID:18804694

  16. Clinical Efficacy of Fluvoxamine and