Note: This page contains sample records for the topic functional modules revealed from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Genome evolution reveals biochemical networks and functional modules.  

PubMed

The analysis of completely sequenced genomes uncovers an astonishing variability between species in terms of gene content and order. During genome history, the genes are frequently rear-ranged, duplicated, lost, or transferred horizontally between genomes. These events appear to be stochastic, yet they are under selective constraints resulting from the functional interactions between genes. These genomic constraints form the basis for a variety of techniques that employ systematic genome comparisons to predict functional associations among genes. The most powerful techniques to date are based on conserved gene neighborhood, gene fusion events, and common phylogenetic distributions of gene families. Here we show that these techniques, if integrated quantitatively and applied to a sufficiently large number of genomes, have reached a resolution which allows the characterization of function at a higher level than that of the individual gene: global modularity becomes detectable in a functional protein network. In Escherichia coli, the predicted modules can be bench-marked by comparison to known metabolic pathways. We found as many as 74% of the known metabolic enzymes clustering together in modules, with an average pathway specificity of at least 84%. The modules extend beyond metabolism, and have led to hundreds of reliable functional predictions both at the protein and pathway level. The results indicate that modularity in protein networks is intrinsically encoded in present-day genomes. PMID:14673105

von Mering, Christian; Zdobnov, Evgeny M; Tsoka, Sophia; Ciccarelli, Francesca D; Pereira-Leal, Jose B; Ouzounis, Christos A; Bork, Peer

2003-12-23

2

Remote Synchronization Reveals Network Symmetries and Functional Modules  

NASA Astrophysics Data System (ADS)

We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.

Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito

2013-04-01

3

Task-related concurrent but opposite modulations of overlapping functional networks as revealed by spatial ICA.  

PubMed

Animal studies indicate that different functional networks (FNs), each with a unique timecourse, may overlap at common brain regions. For understanding how different FNs overlap in the human brain and how the timecourses of overlapping FNs are modulated by cognitive tasks, we applied spatial independent component analysis (sICA) to functional magnetic resonance imaging (fMRI) data. These data were acquired from healthy participants while they performed a visual task with parametric loads of attention and working memory. sICA identified a total of 14 FNs, and they showed different extents of overlap at a majority of brain regions exhibiting any functional activity. More FNs overlapped at the higher-order association cortex including the anterior and posterior cingulate, precuneus, insula, and lateral and medial frontoparietal cortices (FPCs) than at the primary sensorimotor cortex. Furthermore, overlapping FNs exhibited concurrent but different task-related modulations of timecourses. FNs showing task-related up- vs. down-modulation of timecourses overlapped at both the lateral and medial FPCs and subcortical structures including the thalamus, striatum, and midbrain ventral tegmental area (VTA). Such task-related, concurrent, but opposite changes in timecourses in the same brain regions may not be detected by current analyses based on General-Linear-Model (GLM). The present findings indicate that multiple cognitive processes may associate with common brain regions and exhibit simultaneous but different modulations in timecourses during cognitive tasks. PMID:23611864

Xu, Jiansong; Zhang, Sheng; Calhoun, Vince D; Monterosso, John; Li, Chiang-Shan R; Worhunsky, Patrick D; Stevens, Michael; Pearlson, Godfrey D; Potenza, Marc N

2013-10-01

4

Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers  

Microsoft Academic Search

We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive

Andrew T. Kwon; Alice Yi Chou; David J. Arenillas; Wyeth W. Wasserman

2011-01-01

5

Zinc Modulation of Water Permeability Reveals that Aquaporin 0 Functions as a Cooperative Tetramer  

PubMed Central

We previously showed that the water permeability of AQP0, the water channel of the lens, increases with acid pH and that His40 is required (Németh-Cahalan, K.L., and J.E. Hall. 2000. J. Biol. Chem. 275:6777–6782; Németh-Cahalan, K.L., K. Kalman, and J.E. Hall. 2004. J. Gen. Physiol. 123:573–580). We have now investigated the effect of zinc (and other transition metals) on the water permeability of AQP0 expressed in Xenopus oocytes and determined the amino acid residues that facilitate zinc modulation. Zinc (1 mM) increased AQP0 water permeability by a factor of two and prevented any additional increase induced by acid pH. Zinc had no effect on water permeability of AQP1, AQP4 or MIPfun (AQP0 from killifish), or on mutants of AQP1 and MIPfun with added external histidines. Nickel, but not copper, had the same effect on AQP0 water permeability as zinc. A fit of the concentration dependence of the zinc effect to the Hill equation gives a coefficient greater than three, suggesting that binding of more than one zinc ion is necessary to enhance water permeability. His40 and His122 are necessary for zinc modulation of AQP0 water permeability, implying structural constraints for zinc binding and functional modulation. The change in water permeability was highly sensitive to a coinjected zinc-insensitive mutant and a single insensitive monomer completely abolished zinc modulation. Our results suggest a model in which positive cooperativity among subunits of the AQP0 tetramer is required for zinc modulation, implying that the tetramer is the functional unit. The results also offer the possibility of a pharmacological approach to manipulate the water permeability and transparency of the lens.

Nemeth-Cahalan, Karin L.; Kalman, Katalin; Froger, Alexandrine; Hall, James E.

2007-01-01

6

Selective Actions of Novel Allosteric Modulators Reveal Functional Heteromers of Metabotropic Glutamate Receptors in the CNS  

PubMed Central

Metabotropic glutamate (mGlu) receptors play important roles in regulating CNS function and are known to function as obligatory dimers. Although recent studies have suggested heterodimeric assembly of mGlu receptors in vitro, the demonstration that distinct mGlu receptor proteins can form heterodimers or hetero-complexes with other mGlu subunits in native tissues, such as neurons, has not been shown. Using biochemical and pharmacological approaches, we demonstrate here that mGlu2 and mGlu4 form a hetero-complex in native rat and mouse tissues which exhibits a distinct pharmacological profile. These data greatly extend our current understanding of mGlu receptor interaction and function and provide compelling evidence that mGlu receptors can function as heteromers in intact brain circuits.

Yin, Shen; Noetzel, Meredith J.; Johnson, Kari A.; Zamorano, Rocio; Jalan-Sakrikar, Nidhi; Gregory, Karen J.; Conn, P. Jeffrey

2014-01-01

7

Structure-based rebuilding of coevolutionary information reveals functional modules in rhodopsin structure.  

PubMed

Correlated mutation analysis (CMA) has been used to investigate protein functional sites. However, CMA has suffered from low signal-to-noise ratio caused by meaningless phylogenetic signals or structural constraints. We present a new method, Structure-based Correlated Mutation Analysis (SCMA), which encodes coevolution scores into a protein structure network. A path-based network model is adapted to describe information transfer between residues, and the statistical significance is estimated by network shuffling. This model intrinsically assumes that residues in physical contact have a more reliable coevolution score than distant residues, and that coevolution in distant residues likely arises from a series of contacting and coevolving residues. In addition, coevolutionary coupling is statistically controlled to remove the structural effects. When applied to the rhodopsin structure, the SCMA method identified a much higher percentage of functional residues than the typical coevolution score (61% vs. 22%). In addition, statistically significant residues are used to construct the coevolved residue-residue subnetwork. The network has one highly connected node (retinal bound Lys296), indicating that Lys296 can induce and regulate most other coevolved residues in a variety of locations. The coevolved network consists of a few modular clusters which have distinct functional roles. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22684088

Park, Keunwan; Kim, Dongsup

2012-12-01

8

Computational Discovery of Transcriptional Regulatory Modules in Fungal Ribosome Biogenesis Genes Reveals Novel Sequence and Function Patterns  

PubMed Central

Genes involved in ribosome biogenesis and assembly (RBA) are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules), we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.

Martyanov, Viktor; Gross, Robert H.

2013-01-01

9

Hypoxia Modulates A431 Cellular Pathways Association to Tumor Radioresistance and Enhanced Migration Revealed by Comprehensive Proteomic and Functional Studies*  

PubMed Central

Tumor hypoxia induces cancer cell angiogenesis, invasiveness, treatment resistance, and contributes to poor clinical outcome. However, the molecular mechanism by which tumor hypoxia exerts a coordinated effect on different molecular pathways to enhance tumor growth and survival and lead to poor clinical outcome is not fully understood. In this study, we attempt to elucidate the global protein expression and functional changes in A431 epithelial carcinoma cells induced by hypoxia and reoxygenation using iTRAQ quantitative proteomics and biochemical functional assays. Quantitative proteomics results showed that 4316 proteins were quantified with FDR<1%, in which over 1200 proteins were modulated >1.2 fold, and DNA repair, glycolysis, integrin, glycoprotein turnover, and STAT1 pathways were perturbed by hypoxia and reoxygenation-induced oxidative stress. For the first time, hypoxia was shown to up-regulate the nonhomologous end-joining pathway, which plays a central role in DNA repair of irradiated cells, thereby potentially contributing to the radioresistance of hypoxic A431 cells. The up-regulation of Ku70/Ku80 dimer, a key molecular complex in the nonhomologous end-joining pathway, was confirmed by Western blot and liquid chromatography/tandem mass spectrometry-MRM methods. Functional studies confirmed that up-regulation of glycolysis, integrin, glycoprotein synthesis, and down-regulation of STAT1 pathways during hypoxia enhanced metastastic activity of A431 cells. Migration of A431 cells was dramatically repressed by glycolysis inhibitor (2-Deoxy-d-glucose), glycoprotein synthesis inhibitor (1-Deoxynojirimycin Hydrochloride), and STAT1? overexpression that enhanced the integrin-mediated cell adhesion. These results revealed that hypoxia induced several biological processes involved in tumor migration and radioresistance and provided potential new targets for tumor therapy.

Ren, Yan; Hao, Piliang; Dutta, Bamaprasad; Cheow, Esther Sok Hwee; Sim, Kae Hwan; Gan, Chee Sian; Lim, Sai Kiang; Sze, Siu Kwan

2013-01-01

10

Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.  

PubMed

The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies. PMID:23344900

Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

2013-03-01

11

Identification of Unstable Network Modules Reveals Disease Modules Associated with the Progression of Alzheimer's Disease  

PubMed Central

Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid ? and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus (HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system.

Kikuchi, Masataka; Ogishima, Soichi; Miyamoto, Tadashi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi

2013-01-01

12

Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces.  

PubMed

The modification of root traits in relation to nitrate uptake represents a source for improvement of nitrogen uptake efficiency. Because ethylene signalling modulates growth of exploratory and root hair systems more rapidly (minutes to hours) than nitrate signalling (days to weeks), a pharmacological approach was used to decipher the relationships between root elongation and N uptake. Rape seedlings were grown on agar plates supplied with 1mM K(15)NO3 and treated with different concentrations of either the ethylene precursor, ACC (0.1, 1, and 10 ?M) or an inhibitor of ethylene biosynthesis, AIB (0.5 and 1 ?M). The results showed that rapid modulation of root elongation (up to 8-fold) is more dependent on the ethylene than the nitrate signal. Indeed, ACC treatment induced a partial compensatory increase in (15)N uptake associated with overexpression of the BnNRT2.1 and BnNRT1.1 genes. Likewise, daily root elongation between treatments was not associated with daily nitrate uptake but was correlated with N status. This suggested that a part of the daily root response was modulated by cross talks between ethylene signalling and N and C metabolisms. This was confirmed by the reduction in C allocation to the roots induced by ACC treatment and the correlations of changes in the root length and shoot surface area with the aspartate content. The observed effects of ethylene signalling in the root elongation and NRT gene expression are discussed in the context of the putative role of NRT2.1 and NRT1.1 transporters as nitrate sensors. PMID:23811694

Lemaire, Lucile; Deleu, Carole; Le Deunff, Erwan

2013-07-01

13

Functional modules of the brain.  

PubMed

Building on the view of massive modularity, a number of generalized assumptions lead to an entirely new concept of functional brain modules. In contrast to the nerve centers usually considered to be active in the brain, these modules, called symbions, are non-localized, non-hierarchical, and based on subcellular molecular mechanisms rather than on neurons. They act according to local rules that may be fundamentally nonlinear, potentially leading to strong interdependencies between parallel inputs, and they interact by information, not by force. The existence of inner states, feedback loops, internal models, and information encoding provide the basis for a higher complexity than is usually assumed in neuroscience. A map of the symbion world, showing functional rather than physical localization, can be used to illustrate symbion interaction patterns. Perceptual constancy, sensory illusions, visual cognition, and eye-hand coordination are used as examples of what can be explained by using the new theory. PMID:12051988

Philipson, Lars

2002-03-01

14

Time-resolved metabolomics reveals metabolic modulation in rice foliage  

PubMed Central

Background To elucidate the interaction of dynamics among modules that constitute biological systems, comprehensive datasets obtained from "omics" technologies have been used. In recent plant metabolomics approaches, the reconstruction of metabolic correlation networks has been attempted using statistical techniques. However, the results were unsatisfactory and effective data-mining techniques that apply appropriate comprehensive datasets are needed. Results Using capillary electrophoresis mass spectrometry (CE-MS) and capillary electrophoresis diode-array detection (CE-DAD), we analyzed the dynamic changes in the level of 56 basic metabolites in plant foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr period. Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map (SOM) allowed classification of the biochemical pathways activated by the light and dark cycle. The carbon and nitrogen (C/N) metabolism in both periods was also visualized as a phenotypic linkage map that connects network modules on the basis of traditional metabolic pathways rather than pairwise correlations among metabolites. The regulatory networks of C/N assimilation/dissimilation at each time point were consistent with previous works on plant metabolism. In response to environmental stress, glutathione and spermidine fluctuated synchronously with their regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic networks. Conclusion Our results showed that our SOM analysis with appropriate metabolic time-courses effectively revealed the synchronous dynamics among metabolic modules and elucidated the underlying biochemical functions. The application of discrimination of unidentified metabolites and the identification of bottleneck enzymatic steps even to non-targeted comprehensive analysis promise to facilitate an understanding of large-scale interactions among components in biological systems.

Sato, Shigeru; Arita, Masanori; Soga, Tomoyoshi; Nishioka, Takaaki; Tomita, Masaru

2008-01-01

15

Renal gene expression profiling using kinin B1 and B2 receptor knockout mice reveals comparable modulation of functionally related genes.  

PubMed

The kinin B2 receptor, which is constitutively expressed in a large number of tissues, mediates most of the known effects of bradykinin (BK). Normally undetectable in healthy tissues, the B1 receptor is strongly over-expressed under pathological conditions. BK is an important mediator in renal homeostasis and is mainly known for its natriuretic and vasodilatory effects. Recent data evidenced a role for BK in many other biological processes, such as apoptosis, development, extracellular matrix regulation and angiogenesis. In a first step to better understand how BK and its receptors could be involved in such a large variety of biological effects, we used microarray analysis to identify, under physiological conditions, the global renal gene expression profile in mice lacking either the kinin B1 or B2 receptor. Microarray experiments were performed using Agilent Mouse Oligonucleotide Microarrays (21,000 genes/microarray). Interestingly, there was a considerable number of mostly downregulated genes in both BK null mouse models compared with wild-type mice. Furthermore, a number of genes that are known to be implicated in renal physiology and/or pathology were differentially expressed in the BK null mice, which is indicative of the important role of both BK receptors in renal function. PMID:16497160

Bachvarov, Dimcho; Bachvarova, Magdalena; Koumangaye, Rainelli; Klein, Julie; Pesquero, João Bosco; Neau, Eric; Bader, Michael; Schanstra, Joost P; Bascands, Jean Loup

2006-01-01

16

Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis  

PubMed Central

One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others.

Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

2013-01-01

17

Polyamines: Mysterious Modulators of Cellular Functions  

Microsoft Academic Search

In recent years the functions of polyamines (putrescine, spermidine, and spermine) have been studied at the molecular level. Polyamines can modulate the functions of RNA, DNA, nucleotide triphosphates, proteins, and other acidic substances. A major part of the cellular functions of polyamines can be explained through a structural change of RNA which occurs at physiological concentrations of Mg2+ and K+

Kazuei Igarashi; Keiko Kashiwagi

2000-01-01

18

Functional impact bias reveals cancer drivers  

PubMed Central

Identifying cancer driver genes and pathways among all somatic mutations detected in a cohort of tumors is a key challenge in cancer genomics. Traditionally, this is done by prioritizing genes according to the recurrence of alterations that they bear. However, this approach has some known limitations, such as the difficulty to correctly estimate the background mutation rate, and the fact that it cannot identify lowly recurrently mutated driver genes. Here we present a novel approach, Oncodrive-fm, to detect candidate cancer drivers which does not rely on recurrence. First, we hypothesized that any bias toward the accumulation of variants with high functional impact observed in a gene or group of genes may be an indication of positive selection and can thus be used to detect candidate driver genes or gene modules. Next, we developed a method to measure this bias (FM bias) and applied it to three datasets of tumor somatic variants. As a proof of concept of our hypothesis we show that most of the highly recurrent and well-known cancer genes exhibit a clear FM bias. Moreover, this novel approach avoids some known limitations of recurrence-based approaches, and can successfully identify lowly recurrent candidate cancer drivers.

Gonzalez-Perez, Abel; Lopez-Bigas, Nuria

2012-01-01

19

Carrier Modulation Via Waveform Probability Density Function  

NASA Technical Reports Server (NTRS)

Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

Williams, Glenn L.

2006-01-01

20

Carrier Modulation Via Waveform Probability Density Function  

NASA Technical Reports Server (NTRS)

Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

Williams, Glenn L.

2004-01-01

21

An NPARC Turbulence Module with Wall Functions  

NASA Technical Reports Server (NTRS)

The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.

Zhu, J.; Shih, T.-H.

1997-01-01

22

The modulation function and realizing method of holographic functional screen.  

PubMed

The modulation function of holographic functional screen (HFS) in the real-time, large-size full-color (RLF), three-dimensional (3D) display system is derived from angular spectrum analysis. The directional laser speckle (DLS) method to realize the HFS is proposed. A HFS by the DLS method was fabricated and used in the experiment. Experimental results show that the HFS is valid in the RLF 3D display, and that the derived modulation function is valuable for the design of the HFS. The research results are important to realize the RLF 3D display system which will find many applications such as holographic video. PMID:21197055

Yu, Chongxiu; Yuan, Jinhui; Fan, Frank C; Jiang, C C; Choi, Sam; Sang, Xinzhu; Lin, Chang; Xu, Daxiong

2010-12-20

23

The Revealed Objective Functions of Nonprofit Firms  

Microsoft Academic Search

Although assertions have often been made about the objectives underlying the behavior of nonprofit firms, there has been no empirical confirmation of these assertions. This article proposes a way to infer a nonprofit organization's objective function by estimating the marginal donative product of its fundraising. Panel data estimates derived by using Hildreth and Houck's (1968) random coefficients model, suggest that

Richard Steinberg

1986-01-01

24

Multifunctional ferromagnetic disks for modulating cell function  

PubMed Central

In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging.

Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

2013-01-01

25

On Functional Module Detection in Metabolic Networks  

PubMed Central

Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models.

Koch, Ina; Ackermann, Jorg

2013-01-01

26

EFFERENT MODULATION OF HAIR CELL FUNCTION  

PubMed Central

Purpose of review This review covers papers published between 2010 and early 2011 that presented new findings on inner ear-efferents and their ability to modulate hair cell function. Recent findings Studies published within the review period have increased our understanding of efferent mechanisms on hair cells in the cochlear and vestibular sensory epithelium and provide insights on efferent contributions to the plasticity of bilateral auditory processing. The central nervous system controls the sensitivity of hair cells to physiological stimuli by regulating the gain of hair cell electromechanical amplification and modulating the efficiency of hair cell-8th nerve transmission. A notable advance in the past year has been animal and human studies that have examined the contribution of the olivocochlear efferents to sound localization particularly in a noisy environment. Summary Acoustic activation of olivocochlear fibers provides a clinical test for the integrity of the peripheral auditory system and has provided new understanding about the function and limitations of the cochlear amplifier. While similar tests may be possible in the efferent vestibular system they have not yet been developed. The structural and functional similarities of the sensory epithelia in the inner ear offer hope that testing procedures may be developed that will allow reliable testing of the vestibular hair cell function.

RABBITT, RICHARD D.; BROWNELL, WILLIAM E.

2012-01-01

27

KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels.  

PubMed

The five KCNE genes encode a family of type I transmembrane peptides that assemble with KCNQ1 and other voltage-gated K(+) channels, resulting in potassium conducting complexes with varied channel-gating properties. It has been recently proposed that a triplet of amino acids within the transmembrane domain of KCNE1 and KCNE3 confers modulation specificity to the peptide, since swapping of these three residues essentially converts the recipient KCNE into the donor (Melman, Y.F., A. Domenech, S. de la Luna, and T.V. McDonald. 2001. J. Biol. Chem. 276:6439-6444). However, these results are in stark contrast with earlier KCNE1 deletion studies, which demonstrated that a COOH-terminal region, highly conserved between KCNE1 and KCNE3, was responsible for KCNE1 modulation of KCNQ1 (Tapper, A.R., and A.L. George. 2000 J. Gen. Physiol. 116:379-389.). To ascertain whether KCNE3 peptides behave similarly to KCNE1, we examined a panel of NH(2)- and COOH-terminal KCNE3 truncation mutants to directly determine the regions required for assembly with and modulation of KCNQ1 channels. Truncations lacking the majority of their NH(2) terminus, COOH terminus, or mutants harboring both truncations gave rise to KCNQ1 channel complexes with basal activation, a hallmark of KCNE3 modulation. These results demonstrate that the KCNE3 transmembrane domain is sufficient for assembly with and modulation of KCNQ1 channels and suggests a bipartite model for KCNQ1 modulation by KCNE1 and KCNE3 subunits. In this model, the KCNE3 transmembrane domain is active in modulation and overrides the COOH terminus' contribution, whereas the KCNE1 transmembrane domain is passive and reveals COOH-terminal modulation of KCNQ1 channels. We furthermore test the validity of this model by using the active KCNE3 transmembrane domain to functionally rescue a nonconducting, yet assembly and trafficking competent, long QT mutation located in the conserved COOH-terminal region of KCNE1. PMID:15572349

Gage, Steven D; Kobertz, William R

2004-12-01

28

Modulation Based on Probability Density Functions  

NASA Technical Reports Server (NTRS)

A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

Williams, Glenn L.

2009-01-01

29

Electrical neuroimaging reveals early generator modulation to emotional words  

Microsoft Academic Search

Functional electrical neuroimaging investigated incidental emotional word processing. Previous research suggests that the brain may differentially respond to the emotional content of linguistic stimuli pre-lexically (i.e., before distinguishing that these stimuli are words). We investigated the spatiotemporal brain mechanisms of this apparent paradox and in particular whether the initial differentiation of emotional stimuli is marked by different brain generator configurations

Stephanie Ortigue; Christoph M. Michel; Micah M. Murray; Christine Mohr; Serge Carbonnel; Theodor Landis

2004-01-01

30

Protein complexes and functional modules in molecular networks.  

PubMed

Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks. PMID:14517352

Spirin, Victor; Mirny, Leonid A

2003-10-14

31

Radar Ambiguity Function for Random Intrapulse-Modulated Radar Signals.  

National Technical Information Service (NTIS)

The radar ambiguity function for random intrapulse-modulated signals with constant frequency and amplitude for each sub-pulse was considered. The amplitude and frequency of each sub-pulse were random variables. The amplitude modulation (AM) and frequency ...

H. N. Hebert

1974-01-01

32

Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*  

PubMed Central

Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions.

Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

2013-01-01

33

Viruses as Modulators of Mitochondrial Functions  

PubMed Central

Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.

Anand, Sanjeev K.; Tikoo, Suresh K.

2013-01-01

34

Novel Family of Carbohydrate-Binding Modules Revealed by the Genome Sequence of Spirochaeta thermophila DSM 6192 ? †  

PubMed Central

Spirochaeta thermophila is a thermophilic, free-living, and cellulolytic anaerobe. The genome sequence data for this organism have revealed a high density of genes encoding enzymes from more than 30 glycoside hydrolase (GH) families and a noncellulosomal enzyme system for (hemi)cellulose degradation. Functional screening of a fosmid library whose inserts were mapped on the S. thermophila genome sequence allowed the functional annotation of numerous GH open reading frames (ORFs). Seven different GH ORFs from the S. thermophila DSM 6192 genome, all putative ?-glycanase ORFs according to sequence similarity analysis, contained a highly conserved novel GH-associated module of unknown function at their C terminus. Four of these GH enzymes were experimentally verified as xylanase, ?-glucanase, ?-glucanase/carboxymethylcellulase (CMCase), and CMCase. Binding experiments performed with the recombinantly expressed and purified GH-associated module showed that it represents a new carbohydrate-binding module (CBM) that binds to microcrystalline cellulose and is highly specific for this substrate. In the course of this work, the new CBM type was only detected in Spirochaeta, but recently we found sequences with detectable similarity to the module in the draft genomes of Cytophaga fermentans and Mahella australiensis, both of which are phylogenetically very distant from S. thermophila and noncellulolytic, yet inhabit similar environments. This suggests a possibly broad distribution of the module in nature.

Angelov, Angel; Loderer, Christoph; Pompei, Susanne; Liebl, Wolfgang

2011-01-01

35

Functional Association of Catalytic and Ancillary Modules Dictates Enzymatic Activity in Glycoside Hydrolase Family 43 ?-Xylosidase*  

PubMed Central

?-Xylosidases are hemicellulases that hydrolyze short xylo-oligosaccharides into xylose units, thus complementing endoxylanase degradation of the hemicellulose component of lignocellulosic substrates. Here, we describe the cloning, characterization, and kinetic analysis of a glycoside hydrolase family 43 ?-xylosidase (Xyl43A) from the aerobic cellulolytic bacterium, Thermobifida fusca. Temperature and pH optima of 55–60 °C and 5.5–6, respectively, were determined. The apparent Km value was 0.55 mm, using p-nitrophenyl xylopyranoside as substrate, and the catalytic constant (kcat) was 6.72 s?1. T. fusca Xyl43A contains a catalytic module at the N terminus and an ancillary module (termed herein as Module-A) of undefined function at the C terminus. We expressed the two recombinant modules independently in Escherichia coli and examined their remaining catalytic activity and binding properties. The separation of the two Xyl43A modules caused the complete loss of enzymatic activity, whereas potent binding to xylan was fully maintained in the catalytic module and partially in the ancillary Module-A. Nondenaturing gel electrophoresis revealed a specific noncovalent coupling of the two modules, thereby restoring enzymatic activity to 66.7% (relative to the wild-type enzyme). Module-A contributes a phenylalanine residue that functions as an essential part of the active site, and the two juxtaposed modules function as a single functional entity.

Morais, Sarah; Salama-Alber, Orly; Barak, Yoav; Hadar, Yitzhak; Wilson, David B.; Lamed, Raphael; Shoham, Yuval; Bayer, Edward A.

2012-01-01

36

Modulation of Pgp function by boswellic acids.  

PubMed

Boswellic acids, the main active ingredients of Boswellia serrata, are gaining more and more importance in the treatment of peritumoural oedema and chronic inflammatory diseases. They may be even considered as alternative drugs to corticosteroids in reducing cerebral peritumoural oedema. An important focus for drugs acting in the central nervous system is achieving a high extent of brain penetration. Today there is increasing evidence for the importance of transporters, especially P-glycoprotein (Pgp), for drug disposition and resulting clinical response. Pharmacokinetic studies revealed that the concentrations of the potent keto derivatives, the 11-keto-beta-boswellic acid (KBA) and the acetyl-11-keto-beta-boswellic acid (AKBA), in proportion to boswellic acids lacking a keto group, like the beta-boswellic acid, are much lower in plasma than in the orally administered extract. Moreover the brain/plasma ratio for KBA and AKBA determined in preliminary experiments on rats was only about 0.51 and 0.81, respectively, in spite of their lipophilicity. Until now little is known about the cerebral pharmacokinetics of boswellic acids and how it may be influenced. Since many drugs are known to interact with Pgp at the level of the intestine and the blood-brain barrier the modulatory potencies of the Boswellia serrata extract of H15(R) and the major boswellic acids on the transport activity of Pgp have been determined in two in vitro assays. A human lymphocytic leukaemia cell line (VLB cells) expressing Pgp was chosen as model for human Pgp, and porcine brain capillary endothelial cells (PBCEC cells) were taken as model for the blood-brain barrier using calcein acetoxymethyl ester (calcein-AM) as Pgp substrate. It was found that the Boswellia extract, as well as the keto-boswellic acids inhibit the transport activity of Pgp in the micromolecular range in both cell types. No modulation was observed using those boswellic acids which have no keto group in their structure. The inhibition of Pgp at the blood-brain barrier by Boswellia extract is probably not relevant for the brain availability of other Pgp substrates, because of the low plasma levels determined for KBA and AKBA. However the presented data could not exclude the possibility of drug interactions caused by modulation of Pgp by extracts of Boswellia serrata on the gastrointestinal level. PMID:16773534

Weber, Claudia-Carolin; Reising, Karen; Müller, Walter E; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

2006-05-01

37

Pharmacological modulation of chemokine receptor function.  

PubMed

G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered. PMID:21699506

Scholten, D J; Canals, M; Maussang, D; Roumen, L; Smit, M J; Wijtmans, M; de Graaf, C; Vischer, H F; Leurs, R

2012-03-01

38

The Modulation Transfer Function for Speech Intelligibility  

Microsoft Academic Search

We systematically determined which spectrotemporal modulations in speech are necessary for comprehension by human listeners. Speech comprehension has been shown to be robust to spectral and temporal degradations, but the specific relevance of particular degradations is arguable due to the complexity of the joint spectral and temporal information in the speech signal. We applied a novel modulation filtering technique to

Taffeta M. Elliott; Frédéric E. Theunissen

2009-01-01

39

Modulation-transfer-function analysis for sampled image systems  

NASA Technical Reports Server (NTRS)

Sampling generally causes the response of a digital imaging system to be locally shift-variant and not directly amenable to Modulation Transfer Function (MTF) analysis. However, this paper demonstrates that a meaningful system response can be calculated by averaging over an ensemble of point-source system inputs to yield an MTF which accounts for the combined effects of image formation, sampling, and image reconstruction. As an illustration, the MTF of the Landsat MSS system is analyzed to reveal an average effective instantaneous field of view which is significantly larger than the commonly accepted value, particularly in the along-track direction where undersampling contributes markedly to an MTF reduction and resultant increase in image blur.

Park, S. K.; Kaczynski, M.-A.; Schowengerdt, R.

1984-01-01

40

Nanoscale periodic modulations on sodium chloride surface revealed by tuning fork atomic force microscopy  

NASA Astrophysics Data System (ADS)

The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along <110> crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300?°C) however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction.

Clark, Kendal W.; Qin, Shengyong; Zhang, X.-G.; Li, An-Ping

2012-05-01

41

Intracerebral ? modulations reveal interaction between emotional processing and action outcome evaluation in the human orbitofrontal cortex.  

PubMed

The orbitofrontal cortex (OFC) plays a key role not only in processing emotions but also in monitoring performance outcome. Although the neuroanatomical substrates underlying each of the two processes have been extensively investigated, they have predominantly been probed separately and therefore a precise knowledge of the functional overlap within the multiple OFC sub-portions involved is still lacking. Here, we explore the neural dynamics mediating performance monitoring and emotional processing using direct intracranial EEG (iEEG) recordings from multiple OFC sites of an epileptic patient. Neural activity was recorded during two experiments. The first task required processing of emotional faces and the second investigated action outcome evaluation based on a visual feedback on the subject's performance. Task-related neural dynamics were assessed using modulations of high frequency responses in the gamma-band (50-150Hz). Our results reveal that processing negative facial emotions as well as receiving negative feedback both elicited gamma-band responses in the lateral OFC. By contrast, the mid-OFC was selectively activated for positive feedback. Furthermore, we also found significant gamma-band deactivation in the gyrus rectus during processing of negative feedback. Our findings provide novel evidence for an intricate valence-selective interaction between the networks mediating emotion processing and performance monitoring in human OFC and support the hypothesis of a tight relationship between gamma-band activity and behavior. PMID:20933545

Jung, Julien; Bayle, Dimitri; Jerbi, Karim; Vidal, Juan R; Hénaff, Marie-Anne; Ossandon, Tomas; Bertrand, Olivier; Mauguière, François; Lachaux, Jean-Philippe

2011-01-01

42

Revealing functionally coherent subsets using a spectral clustering and an information integration approach  

PubMed Central

Background Contemporary high-throughput analyses often produce lengthy lists of genes or proteins. It is desirable to divide the genes into functionally coherent subsets for further investigation, by integrating heterogeneous information regarding the genes. Here we report a principled approach for managing and integrating multiple data sources within the framework of graph-spectrum analysis in order to identify coherent gene subsets. Results We investigated several approaches to integrate information derived from different sources that reflect distinct aspects of gene functional relationships including: functional annotations of genes in the form of the Gene Ontology, co-mentioning of genes in the literature, and shared transcription factor binding sites among genes. Given a list of genes, we construct a graph containing the genes in each information space; then the graphs were kernel transformed so they could be integrated; finally functionally coherent subsets were identified using a spectral clustering algorithm. In a series of simulation experiments, known functionally coherent gene sets were mixed and recovered using our approach. Conclusions The results indicate that spectral clustering approaches are capable of recovering coherent gene modules even under noisy conditions, and that information integration serves to further enhance this capability. When applied to a real-world data set, our methods revealed biologically sensible modules, and highlighted the importance of information integration. The implementation of the statistical model is provided under the GNU general public license, as an installable Python module, at: http://code.google.com/p/spectralmix.

2012-01-01

43

Searching for functional gene modules with interaction component models  

PubMed Central

Background Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and gene expression measurements, and in particular capability of modeling overlapping clusters. It would make sense to assume that proteins may play different roles in different functional modules, and the roles are evidenced in their interactions. Results We formulate a generative probabilistic model for protein-protein interaction links and introduce two ways for including gene expression data into the model. The model finds interaction components, which can be interpreted as overlapping clusters or functional modules. We demonstrate the performance on two data sets of yeast Saccharomyces cerevisiae. Our methods outperform a representative set of earlier models in the task of finding biologically relevant modules having enriched functional classes. Conclusions Combining protein interaction and gene expression data with a probabilistic generative model improves discovery of modules compared to approaches based on either data source alone. With a fairly simple model we can find biologically relevant modules better than with alternative methods, and in addition the modules may be inherently overlapping in the sense that different interactions may belong to different modules.

2010-01-01

44

Cross-Functional Globalization Modules: A Learning Experience  

ERIC Educational Resources Information Center

The purpose of this study is to present cross-functional international teaching modules. The modules presented in this paper are intended to assist higher education institutions in initiating and implementing the first level of internationalization of the business school curriculum. Although the focus is on achieving a level of global awareness,…

Cort, Kathryn T.; Das, Jayoti; Synn, Wonhi J.

2004-01-01

45

Towards revealing the functions of all genes in plants.  

PubMed

The great recent progress made in identifying the molecular parts lists of organisms revealed the paucity of our understanding of what most of the parts do. In this review, we introduce computational and statistical approaches and omics data used for inferring gene function in plants, with an emphasis on network-based inference. We also discuss caveats associated with network-based function predictions such as performance assessment, annotation propagation, the guilt-by-association concept, and the meaning of hubs. Finally, we note the current limitations and possible future directions such as the need for gold standard data from several species, unified access to data and tools, quantitative comparison of data and tool quality, and high-throughput experimental validation platforms for systematic gene function elucidation in plants. PMID:24231067

Rhee, Seung Yon; Mutwil, Marek

2014-04-01

46

Structure of a Virulence Regulatory Factor CvfB Reveals a Novel Winged-helix RNA Binding Module  

PubMed Central

SUMMARY CvfB is a conserved regulatory protein important for the virulence of Staphylococcus aureus. We show here that CvfB binds RNA. The crystal structure of the CvfB ortholog from Streptococcus pneumoniae at 1.4 Å resolution reveals a unique RNA binding protein that is formed from a concatenation of well-known structural modules that bind nucleic acids: three consecutive S1 RNA-binding domains and a winged-helix (WH) domain. The third S1 and the WH domains are required for cooperative RNA binding and form a continuous surface that likely contributes to the RNA interaction. The WH domain is critical to CvfB function and contains a unique structural motif. Thus CvfB represents a novel assembly of modules for binding RNA.

Matsumoto, Yasuhiko; Xu, Qingping; Miyazaki, Shinya; Kaito, Chikara; Farr, Carol L.; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Sekimizu, Kazuhisa; Wilson, Ian A.

2010-01-01

47

New positron emission tomography tracer [11C]carvedilol reveals P-glycoprotein modulation kinetics  

PubMed Central

Imaging of P-glycoprotein (P-gp) function in the blood–brain barrier (BBB) may support development of strategies, which will improve drug delivery to the brain. [11C]verapamil has been developed as a positron emission tomography (PET) tracer, to image P-gp function in vivo. Ideally, for the purpose of brain imaging, tracers should have a log?P between 0.9 and 2.5. The ?-receptor antagonist carvedilol is a P-gp substrate with a log?P=2.0, and can be labeled with [11C]. The aim of this study was to determine whether the P-gp substrate [11C]carvedilol can be used as a PET tracer for visualisation and quantification of the P-gp function in the BBB. Cellular [11C]carvedilol accumulation in GLC4, GLC4/P-gp, and GLC4/Adr cells increased three-fold in the GLC4/P-gp cells after pretreatment with cyclosporin A (CsA) whereas no effect of MK571 could be determined in the GLC4/Adr cells. Ex vivo [11C]carvedilol biodistribution studies showed that [11C]carvedilol uptake in the brain was increased by CsA. [11C]carvedilol uptake in other organs was not affected by CsA. Autoradiography studies of rat brains showed that [11C]carvedilol was homogeneously distributed over the brain and that pretreatment with CsA increased [11C]carvedilol uptake. In vivo PET experiments were performed with and without P-gp modulation by CsA. P-gp mediated transport was quantified by Logan analysis of the PET data, calculating the distribution volume (DV) of [11C]carvedilol in the brain. Logan analysis resulted in excellent fits, revealing that [11C]carvedilol is not trapped in the brain. Brain DV of [11C]carvedilol showed a dose-dependent increase of maximal three-fold after CsA pretreatment. Above 15?mg?kg?1, no change in DV was found. Compared to [11C]verapamil less CsA was needed to reach maximal DV, suggesting that [11C]carvedilol kinetics is a more sensitive tool to in vivo measure P-gp function.

Bart, Joost; Dijkers, Eli C F; Wegman, Theodora D; de Vries, Elisabeth G E; van der Graaf, Winette T A; Groen, Harry J M; Vaalburg, Willem; Willemsen, Antoon T M; Hendrikse, N Harry

2005-01-01

48

Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.  

PubMed

Cellular processes are typically carried out by protein complexes and functional modules. Identifying them plays an important role for our attempt to reveal principles of cellular organizations and functions. In this article, we review computational algorithms for identifying protein complexes and/or functional modules from protein-protein interaction (PPI) networks. We first describe issues and pitfalls when interpreting PPI networks. Then based on types of data used and main ideas involved, we briefly describe protein complex and/or functional module identification algorithms in four categories: (i) those based on topological structures of unweighted PPI networks; (ii) those based on characters of weighted PPI networks; (iii) those based on multiple data integrations; and (iv) those based on dynamic PPI networks. The PPI networks are modelled increasingly precise when integrating more types of data, and the study of protein complexes would benefit by shifting from static to dynamic PPI networks. PMID:23780996

Chen, Bolin; Fan, Weiwei; Liu, Juan; Wu, Fang-Xiang

2014-03-01

49

Modulators of the glucocorticoid receptor also regulate mineralocorticoid receptor function  

SciTech Connect

Modulators are proposed to be novel ether aminophosphoglycerides that stabilize unoccupied and occupied glucocorticoid receptor steroid binding and inhibit glucocorticoid receptor complex activation. Two isoforms, modulator 1 and modulator 2, have been purified from rat liver cytosol. Since the mineralocorticoid receptor is relatively resistant to activation, modulator's effect on rat distal colon mineralocorticoid receptor is relatively resistant to activation, modulator's effect on rat distal colon mineralocorticoid receptor function was examined. Double-reciprocal analysis showed linear kinetics, and mixing modulator isoforms together had additive effects on unoccupied and occupied receptor steroid binding stabilization and activation inhibition. Colon cytosol contained a low molecular weight, heat-stable factor(s) which inhibited receptor activation and stabilized occupied receptor steroid binding. Molybdate completely stabilized unoccupied mineralocorticoid receptor steroid binding and inhibited activation with half-maximal effects at 3-4 mM but only stabilized occupied receptor binding by {approximately}40%. These data indicate that (1) apparent physiologic concentrations of modulator stabilize mineralocorticoid receptor steroid binding and inhibit receptor activation, (2) an aldosterone-responsive tissue contains a modulator-like activity, and (3) molybdate mimics the effects of modulator.

Schulman, G. (Temple Univ., Philadelphia, PA (United States)); Bodine, P.V.; Litwack, G. (Fels Inst. for Cancer Research and Molecular Biology, Philadelphia, PA (United States))

1992-02-18

50

Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data  

PubMed Central

Background Identification of protein complexes and functional modules from protein-protein interaction (PPI) networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology). The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and algorithms can distinguish between protein complexes and functional modules. Our findings suggest that functional modules are closely related to protein complexes and a functional module may consist of one or multiple protein complexes. The program is available at http://netlab.csu.edu.cn/bioinfomatics/limin/DFM-CIN/index.html.

2012-01-01

51

Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo  

PubMed Central

Background ?-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABAA) and metabotropic (GABAB) receptors. GABAB receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABAB receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABAB receptors is unclear. Results In order to elucidate the functional relevance of GABAB receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABAB(1) subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABAB(1)-/- mice). Lack of the GABAB(1) subunit precludes the assembly of functional GABAB receptor. We analyzed SNS-GABAB(1)-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABAB(1)-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1)-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABAB(1) expression in nociceptors. Conclusion This study addressed contribution of GABAB receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABAB agonist was significantly changed upon a specific deletion of GABAB receptors from peripheral nociceptive neurons in vivo. This lets us conclude that GABAB receptors in the peripheral nervous system play a less important role than those in the central nervous system in the regulation of pain.

2009-01-01

52

Modulation of the intrinsic helix propensity of an intrinsically disordered protein reveals long-range helix-helix interactions.  

PubMed

Intrinsically disordered proteins (IDPs) are widespread and important in biology but defy the classical protein structure-function paradigm by being functional in the absence of a stable, folded conformation. Here we investigate the coupling between transient secondary and tertiary structure in the protein activator for thyroid hormone and retinoid receptors (ACTR) by rationally modulating the helical propensity of a partially formed ?-helix via mutations. Eight mutations predicted to affect the population of a transient helix were produced and investigated by NMR spectroscopy. Chemical shift changes distant to the mutation site are observed in regions containing other transient helices indicating that distant helices are stabilized through long-range hydrophobic helix-helix interactions and demonstrating the coupling of transient secondary and tertiary structure. The long-range structure of ACTR is also probed using paramagnetic relaxation enhancements (PRE) and residual dipolar couplings, which reveal an additional long-range contact between the N- and C-terminal segments. Compared to residual dipolar couplings and PRE, modulation of the helical propensity by mutagenesis thus reveals a different set of long-range interactions that may be obscured by stronger interactions that dominate other NMR measurements. This approach thus offers a complementary and generally applicable strategy for probing long-range structure in disordered proteins. PMID:23758617

Iešmantavi?ius, Vytautas; Jensen, Malene Ringkjøbing; Ozenne, Valéry; Blackledge, Martin; Poulsen, Flemming M; Kjaergaard, Magnus

2013-07-10

53

Module and solar cell values as a function of efficiency  

Microsoft Academic Search

The determination of solar cell value as a function of efficiency provides a valuable tool for the selection of modules for a given system or for the assessment of the cost effectiveness of solar cell and module fabrication processes. This value-efficiency relationship is dominated by the area-related balance-of-system costs (ARBOS). Their future magnitude, however, is rather uncertain. An assumption of

M. Wolf

1981-01-01

54

Detection of functional modules from protein interaction networks.  

PubMed

Complex cellular processes are modular and are accomplished by the concerted action of functional modules (Ravasz et al., Science 2002;297:1551-1555; Hartwell et al., Nature 1999;402:C47-52). These modules encompass groups of genes or proteins involved in common elementary biological functions. One important and largely unsolved goal of functional genomics is the identification of functional modules from genomewide information, such as transcription profiles or protein interactions. To cope with the ever-increasing volume and complexity of protein interaction data (Bader et al., Nucleic Acids Res 2001;29:242-245; Xenarios et al., Nucleic Acids Res 2002;30:303-305), new automated approaches for pattern discovery in these densely connected interaction networks are required (Ravasz et al., Science 2002;297:1551-1555; Bader and Hogue, Nat Biotechnol 2002;20:991-997; Snel et al., Proc Natl Acad Sci USA 2002;99:5890-5895). In this study, we successfully isolate 1046 functional modules from the known protein interaction network of Saccharomyces cerevisiae involving 8046 individual pair-wise interactions by using an entirely automated and unsupervised graph clustering algorithm. This systems biology approach is able to detect many well-known protein complexes or biological processes, without reference to any additional information. We use an extensive statistical validation procedure to establish the biological significance of the detected modules and explore this complex, hierarchical network of modular interactions from which pathways can be inferred. PMID:14705023

Pereira-Leal, Jose B; Enright, Anton J; Ouzounis, Christos A

2004-01-01

55

Resting-State Brain Organization Revealed by Functional Covariance Networks  

PubMed Central

Background Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN) and structural covariance network (SCN) have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. Methodology and Principal Findings We proposed a functional covariance network (FCN) method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF) in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. Conclusion The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.

Wang, Zhengge; Yuan, Cuiping; Jiao, Qing; Chen, Huafu; Biswal, Bharat B.; Lu, Guangming; Liu, Yijun

2011-01-01

56

Glycosylation modulates arenavirus glycoprotein expression and function  

PubMed Central

The glycoprotein of lymphocytic choriomeningitis virus (LCMV) contains nine potential N-linked glycosylation sites. We investigated the function of these N-glycosylations by using alanine-scanning mutagenesis. All the available sites were occupied on GP1 and two of three on GP2. N-linked glycan mutations at positions 87 and 97 on GP1 resulted in reduction of expression and absence of cleavage and were necessary for downstream functions, as confirmed by the loss of GP-mediated fusion activity with T87A, S97A mutants. In contrast, T234A and E379N/A381T mutants impaired GP-mediated cell fusion without altered expression or processing. Infectivity via virus-like particles required glycans and a cleaved glycoprotein. Glycosylation at the first site within GP2, not normally utilized by LCMV, exhibited increased VLP-infectivity. We also confirmed the role of the N-linked glycan at position 173 in the masking of the neutralizing epitope GP-1D. Taken together, our results indicated a strong relationship between fusion and infectivity.

Bonhomme, Cyrille J.; Capul, Althea A.; Lauron, Elvin J.; Bederka, Lydia H.; Knopp, Kristeene A.; Buchmeier, Michael J.

2010-01-01

57

Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns  

PubMed Central

Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET) method to genotype four functional SNPs including -986?G?>?A (#rs3124952), -602?G?>?A (#rs3124953), -4A?>?G (#rs17514136) and +6424?G?>?T (#rs7851696) in the ficolin-2 (FCN2) gene. We characterized the FCN2 variants in individuals representing Brazilian (n?=?176), Nigerian (n?=?180), Vietnamese (n?=?172) and European Caucasian ethnicity (n?=?165). Results We observed that the genotype distribution of three functional SNP variants (?986?G?>?A, -602?G?>?A and -4A?>?G) differ significantly between the populations investigated (p?revealed significant population patterns. Also the distribution of haplotypes revealed distinct geographical patterns (p?functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

2012-01-01

58

Gamma-Tocotrienol Modulated Gene Expression in Senescent Human Diploid Fibroblasts as Revealed by Microarray Analysis  

PubMed Central

The effect of ?-tocotrienol, a vitamin E isomer, in modulating gene expression in cellular aging of human diploid fibroblasts was studied. Senescent cells at passage 30 were incubated with 70??M of ?-tocotrienol for 24?h. Gene expression patterns were evaluated using Sentrix HumanRef-8 Expression BeadChip from Illumina, analysed using GeneSpring GX10 software, and validated using quantitative RT-PCR. A total of 100 genes were differentially expressed (P < 0.001) by at least 1.5 fold in response to ?-tocotrienol treatment. Amongst the genes were IRAK3, SelS, HSPA5, HERPUD1, DNAJB9, SEPR1, C18orf55, ARF4, RINT1, NXT1, CADPS2, COG6, and GLRX5. Significant gene list was further analysed by Gene Set Enrichment Analysis (GSEA), and the Normalized Enrichment Score (NES) showed that biological processes such as inflammation, protein transport, apoptosis, and cell redox homeostasis were modulated in senescent fibroblasts treated with ?-tocotrienol. These findings revealed that ?-tocotrienol may prevent cellular aging of human diploid fibroblasts by modulating gene expression.

Zainuddin, Azalina; Chua, Kien Hui; Ngah, Wan Zurinah Wan

2013-01-01

59

KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue  

PubMed Central

KCNQ1 channels are voltage-gated potassium channels that are widely expressed in various non-neuronal tissues, such as the heart, pancreas, and intestine. KCNE proteins are known as the auxiliary subunits for KCNQ1 channels. The effects and functions of the different KCNE proteins on KCNQ1 modulation are various; the KCNQ1–KCNE1 ion channel complex produces a slowly activating potassium channel that is crucial for heartbeat regulation, while the KCNE3 protein makes KCNQ1 channels constitutively active, which is important for K+ and Cl? transport in the intestine. The mechanisms by which KCNE proteins modulate KCNQ1 channels have long been studied and discussed; however, it is not well understood how different KCNE proteins exert considerably different effects on KCNQ1 channels. Here, we approached this point by taking advantage of the recently isolated Ci-KCNQ1, a KCNQ1 homologue from marine invertebrate Ciona intestinalis. We found that Ci-KCNQ1 alone could be expressed in Xenopus laevis oocytes and produced a voltage-dependent potassium current, but that Ci-KCNQ1 was not properly modulated by KCNE1 and totally unaffected by coexpression of KCNE3. By making chimeras of Ci-KCNQ1 and human KCNQ1, we determined several amino acid residues located in the pore region of human KCNQ1 involved in KCNE1 modulation. Interestingly, though, these amino acid residues of the pore region are not important for KCNE3 modulation, and we subsequently found that the S1 segment plays an important role in making KCNQ1 channels constitutively active by KCNE3. Our findings indicate that different KCNE proteins use different domains of KCNQ1 channels, and that may explain why different KCNE proteins give quite different outcomes by forming a complex with KCNQ1 channels.

Nishino, Atsuo; Okamura, Yasushi; Kubo, Yoshihiro

2011-01-01

60

Aerodynamic parameter estimation via Fourier modulating function techniques  

NASA Technical Reports Server (NTRS)

Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

Pearson, A. E.

1995-01-01

61

DNA-Scaffolded Multivalent Ligands to Modulate Cell Function.  

PubMed

We report a simple, versatile, multivalent ligand system that is capable of specifically and efficiently modulating cell-surface receptor clustering and function. The multivalent ligand is made of a polymeric DNA scaffold decorated with biorecognition ligands (i.e., antibodies) to interrogate and modulate cell receptor signaling and function. Using CD20 clustering-mediated apoptosis in B-cell cancer cells as a model system, we demonstrated that our multivalent ligand is significantly more effective at inducing apoptosis of target cancer cells than its monovalent counterpart. This multivalent DNA material approach represents a new chemical biology tool to interrogate cell receptor signaling and functions and to potentially manipulate such functions for the development of therapeutics. PMID:24803415

Zhang, Zhiqing; Eckert, Mark A; Ali, M Monsur; Liu, Linan; Kang, Dong-Ku; Chang, Elizabeth; Pone, Egest J; Sender, Leonard S; Fruman, David A; Zhao, Weian

2014-06-16

62

Modulation transfer function technique for real time radioscopic system characterization  

Microsoft Academic Search

At the University of Virginia neutron radiography facility, a modulation transfer function technique has been developed that can easily predict and compare the resolving characteristics of the real time system and the individual system components. We desired a simple method by which new system components could be analyzed to determine their image transfer characteristics and to estimate how they would

Kenneth W. Tobin; Jack S. Brenizer; Joseph N. Mait

1989-01-01

63

Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis  

PubMed Central

Background Combining multiple evidence-types from different information sources has the potential to reveal new relationships in biological systems. The integrated information can be represented as a relationship network, and clustering the network can suggest possible functional modules. The value of such modules for gaining insight into the underlying biological processes depends on their functional coherence. The challenges that we wish to address are to define and quantify the functional coherence of modules in relationship networks, so that they can be used to infer function of as yet unannotated proteins, to discover previously unknown roles of proteins in diseases as well as for better understanding of the regulation and interrelationship between different elements of complex biological systems. Results We have defined the functional coherence of modules with respect to the Gene Ontology (GO) by considering two complementary aspects: (i) the fragmentation of the GO functional categories into the different modules and (ii) the most representative functions of the modules. We have proposed a set of metrics to evaluate these two aspects and demonstrated their utility in Arabidopsis thaliana. We selected 2355 proteins for which experimentally established protein-protein interaction (PPI) data were available. From these we have constructed five relationship networks, four based on single types of data: PPI, co-expression, co-occurrence of protein names in scientific literature abstracts and sequence similarity and a fifth one combining these four evidence types. The ability of these networks to suggest biologically meaningful grouping of proteins was explored by applying Markov clustering and then by measuring the functional coherence of the clusters. Conclusions Relationship networks integrating multiple evidence-types are biologically informative and allow more proteins to be assigned to a putative functional module. Using additional evidence types concentrates the functional annotations in a smaller number of modules without unduly compromising their consistency. These results indicate that integration of more data sources improves the ability to uncover functional association between proteins, both by allowing more proteins to be linked and producing a network where modular structure more closely reflects the hierarchy in the gene ontology.

2011-01-01

64

Functional optical coherence tomography to reveal functional architecture of cat visual cortex in vivo  

NASA Astrophysics Data System (ADS)

Optical intrinsic signal imaging (OISI) provides the surface activation map of brain and has provided many insights. In this study, we show that the optical coherence tomography (OCT) can indeed provide depth resolved functional map of cat visual cortex. Activation profile obtained by integrating OCT signal across depth correlates well with that determined by the OISI. Functional OCT (fOCT) promises to be a valid technique for revealing unexplored organization inside the brain at a micro system level.

Homma, Ryota; Kadono, Hirofumi; Tanifuji, Manabu; Uma Maheswari, Rajagopalan

2003-10-01

65

Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila  

PubMed Central

Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.

Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

2013-01-01

66

Sodium tungstate modulates ATM function upon DNA damage.  

PubMed

Both radiotherapy and most effective chemotherapeutic agents induce different types of DNA damage. Here we show that tungstate modulates cell response to DNA damaging agents. Cells treated with tungstate were more sensitive to etoposide, phleomycin and ionizing radiation (IR), all of which induce DNA double-strand breaks (DSBs). Tungstate also modulated the activation of the central DSB signalling kinase, ATM, in response to these agents. These effects required the functionality of the Mre11-Nbs1-Rad50 (MRN) complex and were mimicked by the inhibition of PP2A phosphatase. Therefore, tungstate may have adjuvant activity when combined with DNA-damaging agents in the treatment of several malignancies. PMID:23587483

Rodriguez-Hernandez, C J; Llorens-Agost, M; Calbó, J; Murguia, J R; Guinovart, J J

2013-05-21

67

T-cadherin modulates hepatocyte functions in vitro  

PubMed Central

Primary hepatocytes from several different species rapidly lose viability and phenotypic functions on isolation from their native microenvironment of the liver. Stromal cells derived from both within and outside the liver can induce phenotypic functions in primary hepatocytes in vitro; however, the molecular mediators underlying this “coculture effect” have not been fully elucidated. We have previously developed a functional genomic screen utilizing cocultures of hepatocytes and 3T3 fibroblasts to identify such candidate hepatocyte-function-inducing molecules. In particular, truncated-cadherin (T-cadherin) was identified as a potential molecule of interest in induction of hepatic functions. Here we demonstrate that liver-specific functions of primary rat hepatocytes are induced on cocultivation with Chinese hamster ovary cells engineered to express T-cadherin on their surface as compared with wild-type controls. Additionally, culture of cells on substrata presenting recombinant T-cadherin protein (acellular presentation) enhanced hepatic functions in both pure hepatocyte cultures and in hepatocyte-stromal cocultures lacking endogenous T-cadherin expression. Collectively, these data indicate that both cellular and acellular presentation of T-cadherin can be used to modulate the hepatocyte phenotype in vitro for tissue engineering applications. Our work suggests potential avenues for investigating the role of T-cadherin on hepatocellular function in vivo in settings such as embryogenesis and liver pathology.—Khetani, S. R., Chen, A. A., Ranscht, B., Bhatia, S. N. T-cadherin modulates hepatocyte functions in vitro.

Khetani, Salman R.; Chen, Alice A.; Ranscht, Barbara; Bhatia, Sangeeta N.

2008-01-01

68

Systematic Identification of Functional Plant Modules through the Integration of Complementary Data Sources1[W][OA  

PubMed Central

A major challenge is to unravel how genes interact and are regulated to exert specific biological functions. The integration of genome-wide functional genomics data, followed by the construction of gene networks, provides a powerful approach to identify functional gene modules. Large-scale expression data, functional gene annotations, experimental protein-protein interactions, and transcription factor-target interactions were integrated to delineate modules in Arabidopsis (Arabidopsis thaliana). The different experimental input data sets showed little overlap, demonstrating the advantage of combining multiple data types to study gene function and regulation. In the set of 1,563 modules covering 13,142 genes, most modules displayed strong coexpression, but functional and cis-regulatory coherence was less prevalent. Highly connected hub genes showed a significant enrichment toward embryo lethality and evidence for cross talk between different biological processes. Comparative analysis revealed that 58% of the modules showed conserved coexpression across multiple plants. Using module-based functional predictions, 5,562 genes were annotated, and an evaluation experiment disclosed that, based on 197 recently experimentally characterized genes, 38.1% of these functions could be inferred through the module context. Examples of confirmed genes of unknown function related to cell wall biogenesis, xylem and phloem pattern formation, cell cycle, hormone stimulus, and circadian rhythm highlight the potential to identify new gene functions. The module-based predictions offer new biological hypotheses for functionally unknown genes in Arabidopsis (1,701 genes) and six other plant species (43,621 genes). Furthermore, the inferred modules provide new insights into the conservation of coexpression and coregulation as well as a starting point for comparative functional annotation.

Heyndrickx, Ken S.; Vandepoele, Klaas

2012-01-01

69

Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path  

PubMed Central

Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal.

Ni, Jianguang; Jiang, Huihui; Jin, Yixiang; Chen, Nanhui; Wang, Jianhong; Wang, Zhengbo; Luo, Yuejia; Ma, Yuanye; Hu, Xintian

2011-01-01

70

Protein complexes and functional modules in molecular networks  

Microsoft Academic Search

Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein.

Victor Spirin; Leonid A. Mirny

2003-01-01

71

eg-level splitting in a layered perovskite manganite as revealed by charge modulation spectroscopy  

NASA Astrophysics Data System (ADS)

An orbital degree of freedom in Mott insulators gives strong impact on their phase transitions induced by the band-filling control or carrier doping. We have investigated the effect of electrostatic carrier doping on the electronic spectra for a layered Mott insulator Sr2MnO4 to reveal orbital-specific optical transitions. Sr2MnO4 is an n-type Mott insulator and its conduction band is composed of nearly degenerated eg orbitals dx2-y2 and d3z2-r2. The charge modulation spectra for a rectifying Sr2MnO4/Nb-doped SrTiO3 junction clearly revealed an optical transition at 1.7 eV, while a linear absorption spectrum is dominated by a transition at 2.0 eV. These are assigned to the transitions from O 2p to Mn d3z2-r2 and to dx2-y2, respectively. The accumulated charges with a density as high as 8×1013 cm-2 selectively occupy the nearly localized d3z2-r2 orbitals that hardly contribute to charge transport.

Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori

2012-09-01

72

Modulation transfer function of hexagonal staring focal plane arrays  

NASA Astrophysics Data System (ADS)

The modulation transfer functions (MTFs) of hexagonally sampled arrays with both rectangular and hexagonal pixel shapes are derived from spatial averaging considerations. In one direction, the hexagonal pixel shape is shown to provide a 13.6 percent improvement in MTF at the Nyquist bandlimit over an equivalent rectangular shape. For the orthogonal direction, the hexagonal shape has a slightly worse MTF, which is 4.8 percent less than the MTF of the rectangular shape at the Nyquist bandlimit.

Barnard, Kenneth J.; Boreman, Glenn D.

1991-12-01

73

Modulation of human cardiac function through 4 ?-adrenoceptor populations  

Microsoft Academic Search

In human heart there is now evidence for the involvement of four ?-adrenoceptor populations, three identical to the recombinant\\u000a ?1-, b2- and ?3-adrenoceptors, and a fourth as yet uncloned putative ?-adrenoceptor population, which we designate provisionally as the cardiac\\u000a putative ?4-adrenoceptor. This review described novel features of ?-adrenoceptors as modulators of cardiac systolic and diastolic function.\\u000a We also discuss evidence

Alberto J. Kaumann; Peter Molenaar

1997-01-01

74

Modulation-transfer-function-based optical sensitivity and tolerancing programs.  

PubMed

Two new computer programs are described. The first, ZEST, predicts the sensitivity of lens performance to perturbations of the constructional parameters of the lens. The second, ZEALOT, predicts the statistical distribution of the performance expected from a sample of actual manufactured lenses. Both programs are based on the wave front and the modulation transfer function and permit a more general approach to lens specification, tolerancing, and testing. PMID:20221122

Starke, J P; Wise, C M

1980-06-01

75

Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment  

PubMed Central

Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix–turn–helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.

Francis, Sandrea M.; Gas, Maria-Eugenia; Daugeron, Marie-Claire; Bravo, Jeronimo; Seraphin, Bertrand

2012-01-01

76

Human Skin Hypoxia Modulates Cerebrovascular and Autonomic Functions  

PubMed Central

Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS) function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the experiment such as to induce skin hypoxia (with pure nitrogen) or skin normoxia (with air). The subjects performed a test of hypoxic ventilatory drive during each condition of the experiment. We found no differences in the hypoxic ventilatory drive tests. However, ANS function and cerebral blood flow velocities were modulated by skin hypoxia and the effect was significantly greater on the left than right middle cerebral arteries. We conclude that skin hypoxia modulates ANS function and cerebral blood flow velocities and this might impact life styles and tolerance to ambient hypoxia at altitude. Thus the skin in normal humans, in addition to its numerous other functions, is also an oxygen sensor.

Pucci, Olivia; Qualls, Clifford; Battisti-Charbonney, Anne; Balaban, Dahlia Y.; Fisher, Joe A.; Duffin, Jim; Appenzeller, Otto

2012-01-01

77

Parametric dependence of ocean wave-radar modulation transfer functions  

NASA Technical Reports Server (NTRS)

Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.

Plant, W. J.; Keller, W. C.; Cross, A.

1983-01-01

78

Identifying functional modules in interaction networks through overlapping Markov clustering  

PubMed Central

Motivation: In recent years, Markov clustering (MCL) has emerged as an effective algorithm for clustering biological networks—for instance clustering protein–protein interaction (PPI) networks to identify functional modules. However, a limitation of MCL and its variants (e.g. regularized MCL) is that it only supports hard clustering often leading to an impedance mismatch given that there is often a significant overlap of proteins across functional modules. Results: In this article, we seek to redress this limitation. We propose a soft variation of Regularized MCL (R-MCL) based on the idea of iteratively (re-)executing R-MCL while ensuring that multiple executions do not always converge to the same clustering result thus allowing for highly overlapped clusters. The resulting algorithm, denoted soft regularized Markov clustering, is shown to outperform a range of extant state-of-the-art approaches in terms of accuracy of identifying functional modules on three real PPI networks. Availability: All data and codes are freely available upon request. Contact: srini@cse.ohio-state.edu Supplementary Information: Supplementary data are available at Bioinformatics online.

Shih, Yu-Keng; Parthasarathy, Srinivasan

2012-01-01

79

Modulation transfer function measurement technique for small-pixel detectors  

NASA Technical Reports Server (NTRS)

A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.

Marchywka, Mike; Socker, Dennis G.

1992-01-01

80

Equalisation for continuous phase modulation using basis functions  

NASA Astrophysics Data System (ADS)

This paper presents novel receiver processing for wideband continuous phase modulation (CPM). It is shown that a relatively simple basis function expansion can be used to reduce the receiver complexity for channel estimation and equalisation of CPM signals. Simulation results show that, in general, only two orthogonal basis functions are required in the receiver irrespective of the parameters for the transmitted CPM waveform. In addition, error rate performance curves demonstrate a robust frequency domain equaliser for multipath channels when compared to more traditional time domain techniques.

Brown, C.; Vigneron, P. J.

2011-05-01

81

Functional Relations of Cerebellar Modules of the Cat  

PubMed Central

The cerebellum consists of parasagittal zones that define fundamental modules of neural processing. Each zone receives input from a distinct subdivision of the inferior olive (IO)—activity in one olivary subdivision will affect activity in one cerebellar module. To define functions of the cerebellar modules, we inactivated specific olivary subdivisions in six male cats with a glutamate receptor blocker. Olivary inactivation eliminates Purkinje cell complex spikes, which results in a high rate of Purkinje cell simple spike discharge. The increased simple spike discharge inhibits output from connected regions of the cerebellar nuclei. After inactivation, behavior was evaluated during a reach-to-grasp task and during locomotion. Inactivation of each subdivision produced unique behavioral deficits. Performance of the reach-to-grasp task was affected by inactivation of the rostral dorsal accessory olive (rDAO) and the rostral medial accessory olive (rMAO) and, possibly, the principal olive. rDAO inactivation produced paw drag during locomotion and a deficit in grasping the handle during the reach-to-grasp task. rMAO inactivation caused the cats to reach under the handle and produced severe limb drag during locomotion. Inactivation of the dorsal medial cell column, cell group ?, or caudal medial accessory olive produced little deficit in the reach-to-grasp task, but each produced a different deficit during locomotion. In all cases, the cats appeared to have intact sensation, good spatial awareness, and no change of affect. Normal cerebellar function requires low rates of IO discharge, and each cerebellar module has a specific and unique function in sensory–motor integration.

Pong, Milton; Gibson, Alan R.

2010-01-01

82

Tbata modulates thymic stromal cell proliferation and thymus function  

PubMed Central

Niche availability provided by stromal cells is critical to thymus function. Thymi with diminished function contain fewer stromal cells, whereas thymi with robust function contain proliferating stromal cell populations. Here, we show that the thymus, brain, and testes–associated gene (Tbata; also known as SPATIAL) regulates thymic epithelial cell (TEC) proliferation and thymus size. Tbata is expressed in thymic stromal cells and interacts with the enzyme Uba3, thereby inhibiting the Nedd8 pathway and cell proliferation. Thymi from aged Tbata-deficient mice are larger and contain more dividing TECs than wild-type littermate controls. In addition, thymic reconstitution after bone marrow transplantation occurred more rapidly in Rag2?/?Tbata?/? mice than in Rag2?/?Tbata+/+ littermate controls. These findings suggest that Tbata modulates thymus function by regulating stromal cell proliferation via the Nedd8 pathway.

El Kassar, Nahed; Gurunathan, Chandra; Chua, Kevin S.; League, Stacy C.; Schmitz, Sabrina; Gershon, Timothy R.; Kapoor, Veena; Yan, Xiao-Yi; Schwartz, Ronald H.; Gress, Ronald E.

2010-01-01

83

The response function of modulated grid Faraday cup plasma instruments  

NASA Technical Reports Server (NTRS)

Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

Barnett, A.; Olbert, S.

1986-01-01

84

Dietary modulation of immune function by beta-glucans.  

PubMed

The immune response can be modulated by nutrients like beta-glucans, which are glucose polymers that are major structural components of the cell wall of yeast, fungi, and bacteria, but also of cereals like oat and barley. There is a lot of structural variation in the beta-glucans from these different sources, which may influence their physiological functions. In this review the current status concerning possibilities to modulate immune function by beta-glucans is discussed. In vitro as well as in vivo studies in animals and humans show that especially beta-glucans derived from fungi and yeast have immune modulating properties. Most frequently evaluated are effects on leukocyte activity, which has been suggested to contribute to the increased resistance against infections observed after beta-glucan interventions. Although most studies supply the beta-glucans parenteral (e.g. intravenous or subcutaneous), also enteral administrated (dietary) beta-glucan influence the immune response. Although more human studies are needed, it is tempting to suggest that dietary beta-glucans may be a useful tool to prime the host immune system and increase resistance against invading pathogens. PMID:18222501

Volman, Julia J; Ramakers, Julian D; Plat, Jogchum

2008-05-23

85

Fourth moments reveal the negativity of the Wigner function  

SciTech Connect

The presence of unique quantum correlations is the core of quantum-information processing and general quantum theory. We address the fundamental question of how quantum correlations of a generic quantum system can be probed using correlation functions defined for quasiprobability distributions. In particular, we discuss the possibility of probing the negativity of a quasiprobability by comparing moments of the Wigner function. We show that one must take at least the fourth moments to find the negativity in general and the eighth moments for states with a rotationally invariant Wigner function.

Bednorz, Adam [Faculty of Physics, University of Warsaw, Hoza 69, PL-00681 Warsaw (Poland); Belzig, Wolfgang [Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz (Germany)

2011-05-15

86

Revealing the hidden functional diversity of an enzyme family.  

PubMed

Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as ?-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape. PMID:24240508

Bastard, Karine; Smith, Adam Alexander Thil; Vergne-Vaxelaire, Carine; Perret, Alain; Zaparucha, Anne; De Melo-Minardi, Raquel; Mariage, Aline; Boutard, Magali; Debard, Adrien; Lechaplais, Christophe; Pelle, Christine; Pellouin, Virginie; Perchat, Nadia; Petit, Jean-Louis; Kreimeyer, Annett; Medigue, Claudine; Weissenbach, Jean; Artiguenave, François; De Berardinis, Véronique; Vallenet, David; Salanoubat, Marcel

2014-01-01

87

Modulation of Vascular Cell Function by Bim Expression  

PubMed Central

Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM) protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim?/?) mice. Bim?/? endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim?/? endothelial cells with Bim?/? pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.

Morrison, Margaret E.; Palenski, Tammy L.; Jamali, Nasim; Sheibani, Nader; Sorenson, Christine M.

2013-01-01

88

Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex  

PubMed Central

Anatomical studies propose that the primate auditory cortex contains more fields than have actually been functionally confirmed or described. Spatially resolved functional magnetic resonance imaging (fMRI) with carefully designed acoustical stimulation could be ideally suited to extend our understanding of the processing within these fields. However, after numerous experiments in humans, many auditory fields remain poorly characterized. Imaging the macaque monkey is of particular interest as these species have a richer set of anatomical and neurophysiological data to clarify the source of the imaged activity. We functionally mapped the auditory cortex of behaving and of anesthetized macaque monkeys with high resolution fMRI. By optimizing our imaging and stimulation procedures, we obtained robust activity throughout auditory cortex using tonal and band-passed noise sounds. Then, by varying the frequency content of the sounds, spatially specific activity patterns were observed over this region. As a result, the activity patterns could be assigned to many auditory cortical fields, including those whose functional properties were previously undescribed. The results provide an extensive functional tessellation of the macaque auditory cortex and suggest that 11 fields contain neurons tuned for the frequency of sounds. This study provides functional support for a model where three fields in primary auditory cortex are surrounded by eight neighboring “belt” fields in non-primary auditory cortex. The findings can now guide neurophysiological recordings in the monkey to expand our understanding of the processing within these fields. Additionally, this work will improve fMRI investigations of the human auditory cortex.

Kayser, Christoph; Augath, Mark; Logothetis, Nikos K

2006-01-01

89

Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State  

PubMed Central

Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

2014-01-01

90

What Does the Medical Record Reveal about Functional Status?  

PubMed Central

OBJECTIVE Functional status measures are potent independent predictors of hospital outcomes and mortality. The study objective was to compare medical record with interview data for functional status. SUBJECTS AND METHODS Subjects were 525 medical patients, aged 70 years or older, hospitalized at an academic medical center. Patient interviews determined status for 7 basic activities of daily living (BADLs) and 7 instrumental activities of daily living (IADLs). Medical records were reviewed to assess documentation of BADLs and IADLs. RESULTS Most medical records contained no documentation of individual BADLs and IADLs (61% to 98% of records lacking documentation), with the exception of walking (24% of medical records lacking documentation). Impairment prevalence was lower in medical records than at interview for all BADLs and IADLs, and agreement between interview and medical record was poor (? < 0.40 for individual BADLs and IADLs). Sensitivity of the medical record for BADL and IADL impairment was poor (range 95% to 44%), using the interview as a reference standard. Sensitivity and specificity of the medical record for detection of BADL and IADL impairment changed substantially when records with nondocumentation of functional status were excluded or were assumed to be equivalent to independence. CONCLUSIONS The results suggest that the medical record is a poor source of data on many functional status measures, and that assuming that nondocumentation of functional status is equivalent to independence may be unwarranted. Given the prognostic importance of functional status measures, the results highlight the importance of developing reliable and efficient means of obtaining functional status information on hospitalized older patients.

Bogardus, Sidney T; Towle, Virginia; Williams, Christianna S; Desai, Mayur M; Inouye, Sharon K

2001-01-01

91

Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca2+-binding module  

PubMed Central

Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-?-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca2+ binding domain. The structure of the Big domain is different from those of the well known Ca2+ binding domains, therefore revealing a novel Ca2+-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca2+. We are the first to report the interactions between the Big domain and Ca2+ in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis.

Wang, Tao; Zhang, Jiahai; Zhang, Xuecheng; Xu, Chao; Tu, Xiaoming

2013-01-01

92

A Rule-based Detection of Functional Modules in Protein-Protein Interaction Networks  

Microsoft Academic Search

In the protein-protein interaction (PPI) network there are many functional modules, each involving several protein interactions to perform discrete functions. Pathways and protein complexes are the examples of the functional modules. In this paper, we propose a rule-based method for detecting the modules. The rule is expressed in terms of triples and operators between the triples. The former represents conceptual

Jongmin Park; Jaehun Choi; Jaedong Yang; Soo-Jun Park

2006-01-01

93

Revealing Topological Organization of Human Brain Functional Networks with Resting-State Functional near Infrared Spectroscopy  

PubMed Central

Background The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. Results We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Conclusions Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

Zhao, Tengda; Shu, Ni; He, Yong

2012-01-01

94

Phase noise reveals early category-specific modulation of the event-related potentials  

PubMed Central

Previous studies have found that the amplitude of the early event-related potential (ERP) components evoked by faces, such as N170 and P2, changes systematically as a function of noise added to the stimuli. This change has been linked to an increased perceptual processing demand and to enhanced difficulty in perceptual decision making about faces. However, to date it has not yet been tested whether noise manipulation affects the neural correlates of decisions about face and non-face stimuli similarly. To this end, we measured the ERPs for faces and cars at three different phase noise levels. Subjects performed the same two-alternative age-discrimination task on stimuli chosen from young–old morphing continua that were created from faces as well as cars and were calibrated to lead to similar performances at each noise-level. Adding phase noise to the stimuli reduced performance and enhanced response latency for the two categories to the same extent. Parallel to that, phase noise reduced the amplitude and prolonged the latency of the face-specific N170 component. The amplitude of the P1 showed category-specific noise dependence: it was enhanced over the right hemisphere for cars and over the left hemisphere for faces as a result of adding phase noise to the stimuli, but remained stable across noise levels for cars over the left and for faces over the right hemisphere. Moreover, noise modulation altered the category-selectivity of the N170, while the P2 ERP component, typically associated with task decision difficulty, was larger for the more noisy stimuli regardless of stimulus category. Our results suggest that the category-specificity of noise-induced modulations of ERP responses starts at around 100 ms post-stimulus.

Nemeth, Kornel; Kovacs, Petra; Vakli, Pal; Kovacs, Gyula; Zimmer, Marta

2014-01-01

95

Phase noise reveals early category-specific modulation of the event-related potentials.  

PubMed

Previous studies have found that the amplitude of the early event-related potential (ERP) components evoked by faces, such as N170 and P2, changes systematically as a function of noise added to the stimuli. This change has been linked to an increased perceptual processing demand and to enhanced difficulty in perceptual decision making about faces. However, to date it has not yet been tested whether noise manipulation affects the neural correlates of decisions about face and non-face stimuli similarly. To this end, we measured the ERPs for faces and cars at three different phase noise levels. Subjects performed the same two-alternative age-discrimination task on stimuli chosen from young-old morphing continua that were created from faces as well as cars and were calibrated to lead to similar performances at each noise-level. Adding phase noise to the stimuli reduced performance and enhanced response latency for the two categories to the same extent. Parallel to that, phase noise reduced the amplitude and prolonged the latency of the face-specific N170 component. The amplitude of the P1 showed category-specific noise dependence: it was enhanced over the right hemisphere for cars and over the left hemisphere for faces as a result of adding phase noise to the stimuli, but remained stable across noise levels for cars over the left and for faces over the right hemisphere. Moreover, noise modulation altered the category-selectivity of the N170, while the P2 ERP component, typically associated with task decision difficulty, was larger for the more noisy stimuli regardless of stimulus category. Our results suggest that the category-specificity of noise-induced modulations of ERP responses starts at around 100 ms post-stimulus. PMID:24795689

Németh, Kornél; Kovács, Petra; Vakli, Pál; Kovács, Gyula; Zimmer, Márta

2014-01-01

96

Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum  

PubMed Central

Background Malaria causes over one million deaths annually, posing an enormous health and economic burden in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has been significantly hampered by our limited knowledge of the cellular networks associated with parasite development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI subnetworks across species to identify network components in the malaria parasite P. falciparum. Results Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species, P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein processing, and metabolism. Conclusions In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about cellular networks.

2012-01-01

97

Evolutionary rate covariation reveals shared functionality and coexpression of genes  

PubMed Central

Evolutionary rate covariation (ERC) is a phylogenetic signature that reflects the covariation of a pair of proteins over evolutionary time. ERC is typically elevated between interacting proteins and so is a promising signature to characterize molecular and functional interactions across the genome. ERC is often assumed to result from compensatory changes at interaction interfaces (i.e., intermolecular coevolution); however, its origin is still unclear and is likely to be complex. Here, we determine the biological factors responsible for ERC in a proteome-wide data set of 4459 proteins in 18 budding yeast species. We show that direct physical interaction is not required to produce ERC, because we observe strong correlations between noninteracting but cofunctional enzymes. We also demonstrate that ERC is uniformly distributed along the protein primary sequence, suggesting that intermolecular coevolution is not generally responsible for ERC between physically interacting proteins. Using multivariate analysis, we show that a pair of proteins is likely to exhibit ERC if they share a biological function or if their expression levels coevolve between species. Thus, ERC indicates shared function and coexpression of protein pairs and not necessarily coevolution between sites, as has been assumed in previous studies. This full interpretation of ERC now provides us with a powerful tool to assign uncharacterized proteins to functional groups and to determine the interconnectedness between entire genetic pathways.

Clark, Nathan L.; Alani, Eric; Aquadro, Charles F.

2012-01-01

98

Systematic analysis of experimental phenotype data reveals gene functions.  

PubMed

High-throughput phenotyping projects in model organisms have the potential to improve our understanding of gene functions and their role in living organisms. We have developed a computational, knowledge-based approach to automatically infer gene functions from phenotypic manifestations and applied this approach to yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), zebrafish (Danio rerio), fruitfly (Drosophila melanogaster) and mouse (Mus musculus) phenotypes. Our approach is based on the assumption that, if a mutation in a gene [Formula: see text] leads to a phenotypic abnormality in a process [Formula: see text], then [Formula: see text] must have been involved in [Formula: see text], either directly or indirectly. We systematically analyze recorded phenotypes in animal models using the formal definitions created for phenotype ontologies. We evaluate the validity of the inferred functions manually and by demonstrating a significant improvement in predicting genetic interactions and protein-protein interactions based on functional similarity. Our knowledge-based approach is generally applicable to phenotypes recorded in model organism databases, including phenotypes from large-scale, high throughput community projects whose primary mode of dissemination is direct publication on-line rather than in the literature. PMID:23626672

Hoehndorf, Robert; Hardy, Nigel W; Osumi-Sutherland, David; Tweedie, Susan; Schofield, Paul N; Gkoutos, Georgios V

2013-01-01

99

Functional specification of the Performance Measurement (PM) module  

NASA Technical Reports Server (NTRS)

The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months.

Berliner, J. E.

1980-01-01

100

Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins  

PubMed Central

Background Protein-protein interactions play a key role in biological processes of proteins within a cell. Recent high-throughput techniques have generated protein-protein interaction data in a genome-scale. A wide range of computational approaches have been applied to interactome network analysis for uncovering functional organizations and pathways. However, they have been challenged because ofcomplex connectivity. It has been investigated that protein interaction networks are typically characterized by intrinsic topological features: high modularity and hub-oriented structure. Elucidating the structural roles of modules and hubs is a critical step in complex interactome network analysis. Results We propose a novel approach to convert the complex structure of an interactome network into hierarchical ordering of proteins. This algorithm measures functional similarity between proteins based on the path strength model, and reveals a hub-oriented tree structure hidden in the complex network. We score hub confidence and identify functional modules in the tree structure of proteins, retrieved by our algorithm. Our experimental results in the yeast protein interactome network demonstrate that the selected hubs are essential proteins for performing functions. In network topology, they have a role in bridging different functional modules. Furthermore, our approach has high accuracy in identifying functional modules hierarchically distributed. Conclusions Decomposing, converting, and synthesizing complex interaction networks are fundamental tasks for modeling their structural behaviors. In this study, we systematically analyzed complex interactome network structures for retrievingfunctional information. Unlike previous hierarchical clustering methods, this approach dynamically explores the hierarchical structure of proteins in a global view. It is well-applicable to the interactome networks in high-level organisms because of its efficiency and scalability.

2010-01-01

101

The modulation of WTI transcription function by cofactors.  

PubMed

Wilms' tumour is a paediatric malignancy of the kidneys that affects one in every 10,000 live births, making it the most common solid tumour in the young. This cancer arises due to a failure of the metanephric mesenchyme to differentiate and form the kidney filtration units and tubules, which instead undergo uncontrolled proliferation. WT1 (Wilms' tumour 1) was identified as a factor that is frequently mutated in Wilms' tumours. WT1 plays a central role in the development of the genito-urinary organs and also other regions of the embryo. A major function of WT1 is to act as a regulator of transcription, controlling the expression of genes that are involved in proliferation and differentiation. WT1 can either activate or repress transcription of its target genes. Thus the transcription function of WT1 is highly context-specific, and can be modulated by a number of cofactors. Here, the known interaction partners of WT1 and the mechanisms by which they modulate WT1 transcription function will be discussed. PMID:16626299

Roberts, Stefan G E

2006-01-01

102

Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies  

PubMed Central

Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5?-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

Bhasin, Shalender; Jasuja, Ravi

2010-01-01

103

Nonoisotopic Assay for the Presynaptic Choline Transporter Reveals Capacity for Allosteric Modulation of Choline Uptake  

PubMed Central

Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na+-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline KM with no change in Vmax. As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling.

2012-01-01

104

Genome-wide association and functional follow-up reveals new loci for kidney function.  

PubMed

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S

2012-01-01

105

Modulation of ionotropic glutamate receptor function by vertebrate galectins.  

PubMed

AMPA and kainate receptors are glutamate-gated ion channels whose function is known to be altered by a variety of plant oligosaccharide-binding proteins, or lectins, but the physiological relevance of this activity has been uncertain because no lectins with analogous allosteric modulatory effects have been identified in animals. We report here that members of the prototype galectin family, which are ?-galactoside-binding lectins, exhibit subunit-specific allosteric modulation of desensitization of recombinant homomeric and heteromeric AMPA and kainate receptors. Galectin modulation of GluK2 kainate receptors was dependent upon complex oligosaccharide processing of N-glycosylation sites in the amino-terminal domain and downstream linker region. The sensitivity of GluA4 AMPA receptors to human galectin-1 could be enhanced by supplementation of culture media with uridine and N-acetylglucosamine (GlcNAc), precursors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides. Neuronal kainate receptors in dorsal root ganglia were sensitive to galectin modulation, whereas AMPA receptors in cultured hippocampal neurons were insensitive, which could be a reflection of differential N-glycan processing or receptor subunit selectivity. Because glycan content of integral proteins can be modified dynamically, we postulate that physiological or pathological conditions in the CNS could arise in which galectins alter excitatory neurotransmission or neuronal excitability through their actions on AMPA or kainate receptors. PMID:24614744

Copits, Bryan A; Vernon, Claire G; Sakai, Ryuichi; Swanson, Geoffrey T

2014-05-15

106

Microscale laser surgery reveals adaptive function of male intromittent genitalia  

PubMed Central

The leading hypothesis for the evolution of male genital complexity proposes that genital traits evolve in response to post-insemination sexual selection; that is, via cryptic female choice or sperm competition. Here, we describe a laser ablation technique for high-precision manipulation of microscale body parts of insects, and employ it to discern the adaptive function of a rapidly evolving and taxonomically important genital trait: the intromittent claw-like genital spines of male Drosophila bipectinata Duda. We demonstrate experimentally and unambiguously that the genital spines of this species function to mechanically couple the genitalia together. The excision of the spines by laser ablation sharply reduced the ability of males both to copulate and to compete against rival males for mates. When spineless males did succeed to copulate, their insemination success and fertilization rate were not statistically different from controls, at odds with the post-insemination sexual selection hypothesis of genital function and evolution. The results provide direct experimental support for the hypothesis that genital traits evolve in response to sexual selection occurring prior to insemination.

Polak, Michal; Rashed, Arash

2010-01-01

107

Functional Imaging Reveals Movement Preparatory Activity in the Vegetative State  

PubMed Central

The vegetative state (VS) is characterized by the absence of awareness of self or the environment and preserved autonomic functions. The diagnosis relies critically on the lack of consistent signs of purposeful behavior in response to external stimulation. Yet, given that patients with disorders of consciousness often exhibit fragmented movement patterns, voluntary actions may go unnoticed. Here we designed a simple motor paradigm that could potentially detect signs of purposeful behavior in VS patients with mild to severe brain damage by examining the neural correlates of motor preparation in response to verbal commands. Twenty-four patients who met the diagnostic criteria for VS were recruited for this study. Eleven of these patients showing preserved auditory evoked potentials underwent functional magnetic resonance imaging (fMRI) to test for basic speech processing. Five of these patients, who showed word related activity, were included in a second fMRI study aimed at detecting functional changes in premotor cortex elicited by specific verbal instructions to move either their left or their right hand. Despite the lack of overt muscle activity, two patients out of five activated the dorsal premotor cortex contralateral to the instructed hand, consistent with movement preparation. Our results may reflect residual voluntary processing in these two patients. We believe that the identification of positive results with fMRI using this simple task, may complement the clinical assessment by helping attain a more precise diagnosis in patients with disorders of consciousness.

Bekinschtein, Tristan Andres; Manes, Facundo Francisco; Villarreal, Mirta; Owen, Adrian Mark; Della-Maggiore, Valeria

2011-01-01

108

A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle  

PubMed Central

Background Identifying key components in biological processes and their associations is critical for deciphering cellular functions. Recently, numerous gene expression and molecular interaction experiments have been reported in Saccharomyces cerevisiae, and these have enabled systematic studies. Although a number of approaches have been used to predict gene functions and interactions, tools that analyze the essential coordination of functional components in cellular processes still need to be developed. Results In this work, we present a new approach to study the cooperation of functional modules (sets of functionally related genes) in a specific cellular process. A cooperative module pair is defined as two modules that significantly cooperate with certain functional genes in a cellular process. This method identifies cooperative module pairs that significantly influence a cellular process and the correlated genes and interactions that are essential to that process. Using the yeast cell cycle as an example, we identified 101 cooperative module associations among 82 modules, and importantly, we established a cell cycle-specific cooperative module network. Most of the identified module pairs cover cooperative pathways and components essential to the cell cycle. We found that 14, 36, 18, 15, and 20 cooperative module pairs significantly cooperate with genes regulated in early G1, late G1, S, G2, and M phase, respectively. Fifty-nine module pairs that correlate with Cdc28 and other essential regulators were also identified. These results are consistent with previous studies and demonstrate that our methodology is effective for studying cooperative mechanisms in the cell cycle. Conclusions In this work, we propose a new approach to identifying condition-related cooperative interactions, and importantly, we establish a cell cycle-specific cooperation module network. These results provide a global view of the cell cycle and the method can be used to discover the dynamic coordination properties of functional components in other cellular processes.

2011-01-01

109

Modulation of Different Human Immunodeficiency Virus Type 1 Nef Functions during Progression to AIDS  

PubMed Central

The human immunodeficiency virus type 1 (HIV-1) Nef protein has several independent functions that might contribute to efficient viral replication in vivo. Since HIV-1 adapts rapidly to its host environment, we investigated if different Nef properties are associated with disease progression. Functional analysis revealed that nef alleles obtained during late stages of infection did not efficiently downmodulate class I major histocompatibility complex but were highly active in the stimulation of viral replication. In comparison, functional activity in downregulation of CD4 and enhancement of HIV-1 infectivity were maintained or enhanced after AIDS progression. Our results demonstrate that various Nef activities are modulated during the course of HIV-1 infection to maintain high viral loads at different stages of disease progression. These findings suggest that all in vitro Nef functions investigated contribute to AIDS pathogenesis and indicate that nef variants with increased pathogenicity emerge in a significant number of HIV-1-infected individuals.

Carl, Silke; Greenough, Thomas C.; Krumbiegel, Mandy; Greenberg, Michael; Skowronski, Jacek; Sullivan, John L.; Kirchhoff, Frank

2001-01-01

110

PDCA expression by B lymphocytes reveals important functional attributes.  

PubMed

We have demonstrated in this study the existence of a PDCA-expressing functional B cell population (PDCA+ B lymphocytes), which differentiates from activated conventional B (PDCA-IgM+) lymphocytes. Stimulation with anti-micro, LPS, CpG oligodeoxynucleotide, HSV-1, or CTLA-4 Ig activates the PDCA+ B lymphocytes, leading to cell division and induction of type I IFNs and IDO. Notably, the PDCA+ B lymphocytes are capable of Ag-specific Ab production and Ig class switching, which is corroborated by transfer experiments in B- and PDCA+ B lymphocyte-deficient microMT mice. Importantly, in lupus-prone MRL-Fas(lpr) mice, PDCA+ B lymphocytes remain the principal source of autoantibodies. The PDCA+ B lymphocytes have phenotypes with plasmacytoid dendritic cells, but are a distinct cell population in that they develop from C-kit+B220+ pro-B precursors. Thus, our data suggest that not all PDCA+ cells are dendritic cell-derived plasmacytoid dendritic cells and that a significant majority is the PDCA+ B lymphocyte population having distinct phenotype and function. PMID:20018628

Vinay, Dass S; Kim, Chang H; Chang, Kyung H; Kwon, Byoung S

2010-01-15

111

Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease  

PubMed Central

Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid ? peptide, the main pathogenic mediator of Alzheimer's disease (AD). However, lysosomal blockage also caused by A? is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death.

Lipinski, Marta M.; Zheng, Bin; Lu, Tao; Yan, Zhenyu; Py, Benedicte F.; Ng, Aylwin; Xavier, Ramnik J.; Li, Cheng; Yankner, Bruce A.; Scherzer, Clemens R.; Yuan, Junying

2010-01-01

112

Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape  

PubMed Central

Despite a long-standing interest in the genetic basis of morphological diversity, the molecular mechanisms that give rise to developmental variation are incompletely understood. Here, we use comparative transcriptomics coupled with the construction of gene coexpression networks to predict a gene regulatory network (GRN) for leaf development in tomato and two related wild species with strikingly different leaf morphologies. The core network in the leaf developmental GRN contains regulators of leaf morphology that function in global cell proliferation with peripheral gene network modules (GNMs). The BLADE-ON-PETIOLE (BOP) transcription factor in one GNM controls the core network by altering effective concentration of the KNOTTED-like HOMEOBOX gene product. Comparative network analysis and experimental perturbations of BOP levels suggest that variation in BOP expression could explain the diversity in leaf complexity among these species through dynamic rewiring of interactions in the GRN. The peripheral location of the BOP-containing GNM in the leaf developmental GRN and the phenotypic mimics of evolutionary diversity caused by alteration in BOP levels identify a key role for this GNM in canalizing the leaf morphospace by modifying the maturation schedule of leaves to create morphological diversity.

Ichihashi, Yasunori; Aguilar-Martinez, Jose Antonio; Farhi, Moran; Chitwood, Daniel H.; Kumar, Ravi; Millon, Lee V.; Peng, Jie; Maloof, Julin N.; Sinha, Neelima R.

2014-01-01

113

Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape.  

PubMed

Despite a long-standing interest in the genetic basis of morphological diversity, the molecular mechanisms that give rise to developmental variation are incompletely understood. Here, we use comparative transcriptomics coupled with the construction of gene coexpression networks to predict a gene regulatory network (GRN) for leaf development in tomato and two related wild species with strikingly different leaf morphologies. The core network in the leaf developmental GRN contains regulators of leaf morphology that function in global cell proliferation with peripheral gene network modules (GNMs). The BLADE-ON-PETIOLE (BOP) transcription factor in one GNM controls the core network by altering effective concentration of the KNOTTED-like HOMEOBOX gene product. Comparative network analysis and experimental perturbations of BOP levels suggest that variation in BOP expression could explain the diversity in leaf complexity among these species through dynamic rewiring of interactions in the GRN. The peripheral location of the BOP-containing GNM in the leaf developmental GRN and the phenotypic mimics of evolutionary diversity caused by alteration in BOP levels identify a key role for this GNM in canalizing the leaf morphospace by modifying the maturation schedule of leaves to create morphological diversity. PMID:24927584

Ichihashi, Yasunori; Aguilar-Martínez, José Antonio; Farhi, Moran; Chitwood, Daniel H; Kumar, Ravi; Millon, Lee V; Peng, Jie; Maloof, Julin N; Sinha, Neelima R

2014-06-24

114

LANDSAT-4 thematic mapper Modulation Transfer Function (MTF) evaluation  

NASA Technical Reports Server (NTRS)

A power spectrum (PS) analysis technique was used to compare thematic mapper (TM) A and P-tape data for a Washington, DC scene in two orthogonal directions, along scan and along track. The resulting effective modulation transfer functions (MTF) between the A and P data are repeatable from area to area and consistent with theoretical expectations. The average x-direction (along scan) MTF calculated with the PS technique is compared to the MTF of the cubic convolution resampling function used to create P data from A data. The two curves are nearly identical, indicating that the major factor affecting the image quality of P data relative to A data is the cubic convolution resampling.

Schowengerdt, R. (principal investigator)

1983-01-01

115

Global Analysis of ATM Polymorphism Reveals Significant Functional Constraint  

PubMed Central

ATM, the gene that is mutated in ataxia-telangiectasia, is associated with cerebellar degeneration, abnormal proliferation of small blood vessels, and cancer. These clinically important manifestations have stimulated interest in defining the sequence variation in the ATM gene. Therefore, we undertook a comprehensive survey of sequence variation in ATM in diverse human populations. The protein-encoding exons of the gene (9,168 bp) and the adjacent intron and untranslated sequences (14,661 bp) were analyzed in 93 individuals from seven major human populations. In addition, the coding sequence was analyzed in one chimpanzee, one gorilla, one orangutan, and one Old World monkey. In human ATM, 88 variant sites were discovered by denaturing high-performance liquid chromatography, which is 96%–100% sensitive for detection of DNA sequence variation. ATM was compared to 14 other autosomal genes for nucleotide diversity. The noncoding regions of ATM had diversity values comparable to other genes, but the coding regions had very low diversity, especially in the last 29% of the protein sequence. A test of the neutral evolution hypothesis, through use of the Hudson/Kreitman/Aguadé statistic, revealed that this region of the human ATM gene was significantly constrained relative to that of the orangutan, the Old World monkey, and the mouse, but not relative to that of the chimpanzee or the gorilla. ATM displayed extensive linkage disequilibrium, consistent with suppression of meiotic recombination at this locus. Seven haplotypes were defined. Two haplotypes accounted for 82% of all chromosomes analyzed in all major populations; two others carrying the same D126E missense polymorphism accounted for 33% of chromosomes in Africa but were never observed outside of Africa. The high frequency of this polymorphism may be due either to a population expansion within Africa or to selective pressure.

Thorstenson, Yvonne R.; Shen, Peidong; Tusher, Virginia G.; Wayne, Tierney L.; Davis, Ronald W.; Chu, Gilbert; Oefner, Peter J.

2001-01-01

116

The modification of the modulation transfer function by sea slicks measured by L-band radar  

NASA Technical Reports Server (NTRS)

Tower-based L-band radar measurements performed on the North Sea covered with an experimental monomolecular oleyl alcohol sea slick revealed that the peak frequency of L-band radar cross section spectra from a "clean" sea area (f subclean = 0.16 Hz; water wave length L = 61 m) is shifted to higher frequencies in the presence of the slick (f subslick = 0.22 Hz; L = 32 m). This effect is explained by a modification of the modulation transfer function by the monomolecular surface film. Independent wind-wave tunnel experiments performed with a wave follower mounted surface potential ionization probe support this interpretation.

Huehnerfuss, H.; Lange, P.; Schlude, F.; Garrett, W. D.

1984-01-01

117

Cancer module genes ranking using kernelized score functions  

PubMed Central

Background Co-expression based Cancer Modules (CMs) are sets of genes that act in concert to carry out specific functions in different cancer types, and are constructed by exploiting gene expression profiles related to specific clinical conditions or expression signatures associated to specific processes altered in cancer. Unfortunately, genes involved in cancer are not always detectable using only expression signatures or co-expressed sets of genes, and in principle other types of functional interactions should be exploited to obtain a comprehensive picture of the molecular mechanisms underlying the onset and progression of cancer. Results We propose a novel semi-supervised method to rank genes with respect to CMs using networks constructed from different sources of functional information, not limited to gene expression data. It exploits on the one hand local learning strategies through score functions that extend the guilt-by-association approach, and on the other hand global learning strategies through graph kernels embedded in the score functions, able to take into account the overall topology of the network. The proposed kernelized score functions compare favorably with other state-of-the-art semi-supervised machine learning methods for gene ranking in biological networks and scales well with the number of genes, thus allowing fast processing of very large gene networks. Conclusions The modular nature of kernelized score functions provides an algorithmic scheme from which different gene ranking algorithms can be derived, and the results show that using integrated functional networks we can successfully predict CMs defined mainly through expression signatures obtained from gene expression data profiling. A preliminary analysis of top ranked "false positive" genes shows that our approach could be in perspective applied to discover novel genes involved in the onset and progression of tumors related to specific CMs.

2012-01-01

118

Synthetic actin-binding domains reveal compositional constraints for function.  

PubMed

The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position. PMID:18296101

Lorenzi, Maria; Gimona, Mario

2008-01-01

119

Effects of the modulation of microbiota on the gastrointestinal immune system and bowel function.  

PubMed

The gastrointestinal tract harbors a tremendous number and variety of commensal microbiota. The intestinal mucosa simultaneously absorbs essential nutrients and protects against detrimental antigens or pathogenic microbiota as the first line of defense. Beneficial interactions between the host and microbiota are key requirements for host health. Although the gut microbiota has been previously studied in the context of inflammatory diseases, it has recently become clear that this microbial environment has a beneficial role during normal homeostasis, by modulating the immune system or bowel motor function. Recent studies revealed that microbiota, including their metabolites, modulate key signaling pathways involved in the inflammation of the mucosa or the neurotransmitter system in the gut-brain axis. The underlying molecular mechanisms of host-microbiota interactions are still unclear; however, manipulation of microbiota by probiotics or prebiotics is becoming increasingly recognized as an important therapeutic option, especially for the treatment of the dysfunction or inflammation of the intestinal tract. PMID:24070265

Kanauchi, Osamu; Andoh, Akira; Mitsuyama, Keiichi

2013-10-23

120

Modulation of glyceraldehyde-3-phosphate dehydrogenase activity by surface functionalized quantum dots.  

PubMed

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications. PMID:24496476

Ghosh, Srabanti; Ray, Manju; Das, Mahua Rani; Chakrabarti, Adrita; Khan, Ali Hossain; Sarma, D D; Acharya, Somobrata

2014-03-21

121

AKIP1 Expression Modulates Mitochondrial Function in Rat Neonatal Cardiomyocytes  

PubMed Central

A kinase interacting protein 1 (AKIP1) is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE)-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR) in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.

Koonen, Debby P. Y.; Patel, Hemal H.; de Boer, Rudolf A.; van Gilst, Wiek H.; Westenbrink, B. Daan; Sillje, Herman H. W.

2013-01-01

122

System identification and model reduction using modulating function techniques  

NASA Technical Reports Server (NTRS)

Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

Shen, Yan

1993-01-01

123

Modulation transfer function of screen-film systems  

SciTech Connect

The purpose of this report is to review and describe various concepts often used in the analysis of the physical aspects of radiographic image quality, particularly the modulation transfer function (MTF) of screen-film systems as well as methods for its measurement. Basic concepts of transfer function analysis were developed in electronics and communication theory, and similar concepts were later applied to the determination of the optical performance of imaging systems in optics and photography. The optical transfer function (OTF) of an optical system and related concepts were defined by the American National Standard Institute. Although the ANSI standards were primarily intended for lenses or analogous devices that form aerial optical images, the general principles of the relationship among OTF, MTF, and spread functions and their measurement are applicable to many imaging systems, including radiographic systems. However, since there are differences in the processes, components, and physical parameters that affect the optical performance of various imaging systems, it is necessary to develop and to define specific methods and procedures of measurement for particular cases. This report is primarily intended to be used for the screen-film system, which is the most frequently used imaging component in diagnostic radiology at present.

Not Available

1986-08-15

124

Response functions for sine- and square-wave modulations of disparity.  

NASA Technical Reports Server (NTRS)

Depth sensations cannot be elicited by modulations of disparity that are more rapid than about 6 Hz, regardless of the modulation amplitude. Vergence tracking also fails at similar modulation rates, suggesting that this portion of the oculomotor system is limited by the behavior of disparity detectors. For sinusoidal modulations of disparity between 1/2 to 2 deg of disparity, most depth-response functions exhibit a low-frequency decrease that is not observed with square-wave modulations of disparity.

Richards, W.

1972-01-01

125

Involvement of oxidative and nitrosative stress in modulation of gene expression and functional responses by IFNgamma.  

PubMed

IFNgamma is a potent immunomodulator which plays important roles in host defense. IFNgamma modulates transcription of growth-related genes [N-myc downstream regulator 1, growth arrest and DNA damage inducible gamma and inhibitor of DNA binding 2 (Id2)], which is followed by increased growth suppression in the mouse hepatoma cell line, H6. Further studies revealed modulation of genes involved in oxidative and nitrosative stress (iNos, gp91phox and Catalase) and increased generation of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNIs) upon IFNgamma treatment. High amounts of ROS and RNI are responsible for IFNgamma-mediated reduction in cell growth as this process is blocked, using either diphenylene iodonium (DPI), an inhibitor of flavin-containing NADPH oxidases, or N-methyl L-arginine (LNMA), an inhibitor of nitric oxide synthase. Based on studies with LNMA and DPI, IFNgamma-modulated genes can be categorized into two distinct sets: oxidative and nitrosative stress independent (transporter associated with antigen processing 2, Cd80, Lmp10 and Icosl) and oxidative and nitrosative stress dependent (iNos, gp91phox, Catalase and Id2). In addition, DPI or LNMA blocked IFNgamma-induced activation of Ras, demonstrating the involvement of oxidative and nitrosative stress. Manumycin A, a farnesyl transferase inhibitor, blocked Ras activation and reduced NADPH oxidase activity and ROS amounts leading to increased cell growth in the presence of IFNgamma. Notably, the IFNgamma-induced MHC class I levels are not modulated in cells treated with DPI, LNMA or manumycin A. Together, these results delineate the role of high amounts of ROS, RNI and Ras activation in modulating expression of some genes and, thereby, function by IFNgamma. The implications of these results during modulation of immune responses by IFNgamma are discussed. PMID:17606979

Prasanna, S Jyothi; Saha, Banishree; Nandi, Dipankar

2007-07-01

126

Identifying disease feature genes based on cellular localized gene functional modules and regulation networks  

Microsoft Academic Search

Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge,\\u000a is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological\\u000a process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially\\u000a expressed genes, and identifying the feature functional modules of high

Min Zhang; Jing Zhu; Zheng Guo; Xia Li; Da Yang; Lei Wang; Shaoqi Rao

2006-01-01

127

The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*  

PubMed Central

Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status.

Soldi, Monica; Bonaldi, Tiziana

2013-01-01

128

Inclusion of filter modulation in synthetic-discriminant-function construction  

NASA Technical Reports Server (NTRS)

A technique in which the filter modulation is included in the synthesis of a synthetic-discriminant-function (SDF) matched spatial filter is presented. In the filter synthesis, a system of simultaneous nonlinear equations is solved with an iteration procedure. A computer simulation of the new method using thresholded images of the Space Shuttle over a range of aspect angles was performed for phase-only filters (POFs) and binary-phase-only filters (BPOFs). The filters constructed are capable of obtaining the specified peak-correlation response to within 1 percent with a high signal-to-clutter-ratio for the one-class problem, the two-class problem, and the multilevel problem. In contrast, conventional projection SDF POFs and BPOFs are unable to produce the desired peak-correlation response.

Jared, David A.; Ennis, David J.

1989-01-01

129

Inclusion of filter modulation in synthetic-discriminant-function construction.  

PubMed

A technique in which the filter modulation is included in the synthesis of a synthetic-discriminant-function matched spatial filter (SDF MSF) is presented. In the filter synthesis, a system of simultaneous nonlinear equations is solved with an iteration procedure. A computer simulation of the new method using thresholded images of the Space Shuttle over a range of aspect angles was performed for phase-only filters (POFs) and binary-phase-only filters (BPOFs). The filters constructed are capable of obtaining the specified peak-correlation response to within 1% with a high signal-to-clutter-ratio for the one-class problem, the two-class problem, and the multilevel problem. In contrast, conventional projection SDF POFs and BPOFs are unable to produce the desired peak-correlation response. PMID:20548463

Jared, D A; Ennis, D J

1989-01-15

130

LANDSAT-4 Thematic Mapper Modulation Transfer Function (MTF) evaluation  

NASA Technical Reports Server (NTRS)

The Modulation Transfer Function (MTF) for thematic mapping (TM) bands 3, 4, 5 and 7 is reliably estimated with the San Mateo Bridge target in the 12/31/82 scene. These results are to be compared with those from the 8/12/83 scene. Bands 1, 2 and 6 are to be analyzed with a different target possessing greater contrast. This may be possible with the underflight data comparison currently underway. The registration of this data to the TM image of 8/12/83 for a region arround the Stockton sewage pond east of San Francisco has begun. This particular approach has the advantage that the full two-dimensional MFT will be measured instead of the MFT in only one azimuth as reported.

Schowengerdt, R. (principal investigator)

1985-01-01

131

Role of sex hormones in the modulation of cholangiocyte function  

PubMed Central

Over the last years, cholangiocytes, the cells that line the biliary tree, have been considered an important object of study for their biological properties which involves bile formation, proliferation, injury repair, fibrosis and angiogenesis. Cholangiocyte proliferation occurs in all pathologic conditions of liver injury where it is associated with inflammation and regeneration. During these processes, biliary cells start to secrete different cytokines, growth factors, neuropeptides and hormones which represent potential mechanisms for cross talk with other liver cells. Several studies suggest that hormones, and in particular, sex hormones, play a fundamental role in the modulation of the growth of this compartment in the injured liver which functionally conditions the progression of liver disease. Understanding the mechanisms of action and the intracellular pathways of these compounds on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the role of sex hormones in cholangiocyte proliferation and biology.

Mancinelli, Romina; Onori, Paolo; DeMorrow, Sharon; Francis, Heather; Glaser, Shannon; Franchitto, Antonio; Carpino, Guido; Alpini, Gianfranco; Gaudio, Eugenio

2010-01-01

132

Synucleins Antagonize Endoplasmic Reticulum Function to Modulate Dopamine Transporter Trafficking  

PubMed Central

Synaptic re-uptake of dopamine is dependent on the dopamine transporter (DAT), which is regulated by its distribution to the cell surface. DAT trafficking is modulated by the Parkinson's disease-linked protein alpha-synuclein, but the contribution of synuclein family members beta-synuclein and gamma-synuclein to DAT trafficking is not known. Here we use SH-SY5Y cells as a model of DAT trafficking to demonstrate that all three synucleins negatively regulate cell surface distribution of DAT. Under these conditions the synucleins limit export of DAT from the endoplasmic reticulum (ER) by impairment of the ER-Golgi transition, leading to accumulation of DAT in this compartment. This mechanism for regulating DAT export indirectly through effects on ER and Golgi function represents a previously unappreciated role for the extended synuclein family that is likely applicable to trafficking of the many proteins that rely on the secretory pathway.

Oaks, Adam W.; Marsh-Armstrong, Nicholas; Jones, Jessica M.; Credle, Joel J.; Sidhu, Anita

2013-01-01

133

Numerical calculation of image motion and vibration modulation transfer function  

NASA Astrophysics Data System (ADS)

In many high-resolution photographic and photoelectronic imaging systems, resolution is limited by image motion and vibration and, as a result, the high-resolution capability of the sensor may be wasted. In normal reconnaissance and robotics the sensor moves during the exposure. Some of the resulting image motion can be removed by mechanical compensation, but not all of it. The residual motion blurs the image, and usually this blur becomes the limiting factor for many high-quality imaging systems. The ever-increasing altitudes and coverage requirements of modern imaging have put a premium on high resolution. An application of this paper is the recovery of the original image by inverse filtering that depends on the modulation transfer function (MTF) of the real-time relative motion between the object and the imaging system. An original method developed here for numerically calculating MTF for any type of image motion is the basis of the paper.

Hadar, Ofer; Fisher, Moshe; Kopeika, Norman S.

1991-08-01

134

[Dopaminergic modulation of cerebral activity and cognitive functions].  

PubMed

Alterations in dopaminergic system are known to lie in the basis of such diseases as Parkinson's disease, Huntington's disease, Attention Deficit/Hyperactivity Disorder, Tourette syndrome, schizophrenia and drug abuse. This induced broad investigations of dopaminergic system in nearly all the areas of neuroscience. New insights into the pathogenesis of neuropsychiatric diseases have emerged. Research in the field of dopaminergic neurotransmission and memory was awarded Nobel prize in the year 2000. New avenues for the development of more selective drugs have been opened. In their daily practice clinicians are often prescribing medications acting on presynaptic or postsynaptic sites of dopaminergic units. Thus the aim of this review was to renew some knowledge on the architecture of dopaminergic system and also to glance through some of the studies implying its modulating effect on cognitive functions. PMID:12474782

Jucaite, Aurelija

2002-01-01

135

CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes.  

PubMed

We characterized the role of adenosine receptor (AR) subtypes in the modulation of glutamatergic neurotransmission by the chemokine fractalkine (CX3CL1) in mouse hippocampal CA1 neurons. CX(3)CL1 causes a reversible depression of excitatory postsynaptic current (EPSC), which is abolished by the A(3)R antagonist MRS1523, but not by A(1)R (DPCPX) or A(2A)R (SCH58261) antagonists. Consistently, CX3CL1-induced EPSC depression is absent in slices from A(3)R(-/-) but not A(1)R(-/-) or A(2A)R(-/-) mice. Further, A(3)R stimulation causes similar EPSC depression. In cultured neurons, CX3CL1-induced depression of AMPA current shows A(1)R-A(3)R pharmacology. We conclude that glutamatergic depression induced by released adenosine requires the stimulation of different ARs. PMID:20570369

Piccinin, S; Di Angelantonio, S; Piccioni, A; Volpini, R; Cristalli, G; Fredholm, B B; Limatola, C; Eusebi, F; Ragozzino, D

2010-07-27

136

Short peptide modules for enhancing intestinal barrier function.  

PubMed

The intestinal epithelial barrier is indispensable to our immune system. Defects in this barrier function have been observed in intestinal disorders such as inflammatory bowel diseases, food allergies, and celiac diseases. Therefore, the modulation of the barrier function is currently viewed as a potentially positive pharmacological outcome. This review describes a unique peptide, Asn-Pro-Trp- Asp-Gln (NPWDQ), which can finely adjust the intestinal barrier. It is obtained by the hydrolysis of casein, a major milk protein, and considerably inhibits the permeation of ovalbumin, one of the food allergens, in Caco-2, a human intestinal cell line. Using DNA microarray, we observed that NPWDQ only up-regulated expression of the occludin gene, whereas the levels of other genes, such as those of the claudin and zonula occludens families, remained unchanged. Increased protein expression of occludin was also observed. The fact that milk-derived peptide(s) can enhance intestinal barrier function gives a new significance to lactation because it plays an important role in promoting the maturation of the intestinal barrier. In this context, it is highly probable and worthy of considerable attention that various bioactive peptides with this type of activity are yet to be observed in the bovine and/or human casein sequence. Moreover, milkderived peptides could be considered as potential candidates for the prevention of certain intestinal disorders. PMID:22236123

Tanabe, Soichi

2012-01-01

137

Modulation of Immune Cell Function by ?1-Adrenergic Receptor Activation  

PubMed Central

The sympathetic nervous system regulates human immune system functions through epinephrine (Epi) and norepinephrine (NE) activation of adrenergic receptors (AR) expressed on immunocompetent cell populations. The anti-inflammatory effects that are most often attributed to increased sympathetic activity have been shown to occur through ?2- and ?2-AR stimulation. However, dichotomous AR effects on immune system function are becoming increasingly apparent. Reports of ?1-AR expression on immune cell populations have been conflicting due to a lack of specific antibodies or subtype-selective receptor ligands. This has made ?1-AR identification difficult and further characterization of ?1-AR subtype expression limited. Nevertheless, there is some evidence suggesting an induction of ?1-AR expression on immunocompetent cells under certain physiological conditions and disease states. Also, the function of ?1-AR activation to modulate immune responses is just beginning to emerge in the literature. Changes in the secretion of inflammatory mediators as well as increased cell migration and differentiation have been described following ?1-AR stimulation on immunocompetent cells. These observations demonstrate the significance of ?1-AR activity in immune cell biology and emphasize the importance for understanding ?1-AR effects on the immune system.

Grisanti, Laurel A.; Perez, Dianne M.; Porter, James E.

2013-01-01

138

Posterior Association Networks and Functional Modules Inferred from Rich Phenotypes of Gene Perturbations  

PubMed Central

Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the ‘search space’ for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs) to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package implementing PAN is freely available online at http://bioconductor.org/packages/release/bioc/html/PANR.html.

Wang, Xin; Castro, Mauro A.

2012-01-01

139

Modeling Single-Trial ERP Reveals Modulation of Bottom-Up Face Visual Processing by Top-Down Task Constraints (in Some Subjects)  

PubMed Central

We studied how task constraints modulate the relationship between single-trial event-related potentials (ERPs) and image noise. Thirteen subjects performed two interleaved tasks: on different blocks, they saw the same stimuli, but they discriminated either between two faces or between two colors. Stimuli were two pictures of red or green faces that contained from 10 to 80% of phase noise, with 10% increments. Behavioral accuracy followed a noise dependent sigmoid in the identity task but was high and independent of noise level in the color task. EEG data recorded concurrently were analyzed using a single-trial ANCOVA: we assessed how changes in task constraints modulated ERP noise sensitivity while regressing out the main ERP differences due to identity, color, and task. Single-trial ERP sensitivity to image phase noise started at about 95–110?ms post-stimulus onset. Group analyses showed a significant reduction in noise sensitivity in the color task compared to the identity task from about 140?ms to 300?ms post-stimulus onset. However, statistical analyses in every subject revealed different results: significant task modulation occurred in 8/13 subjects, one showing an increase and seven showing a decrease in noise sensitivity in the color task. Onsets and durations of effects also differed between group and single-trial analyses: at any time point only a maximum of four subjects (31%) showed results consistent with group analyses. We provide detailed results for all 13 subjects, including a shift function analysis that revealed asymmetric task modulations of single-trial ERP distributions. We conclude that, during face processing, bottom-up sensitivity to phase noise can be modulated by top-down task constraints, in a broad window around the P2, at least in some subjects.

Rousselet, Guillaume A.; Gaspar, Carl M.; Wieczorek, Kacper P.; Pernet, Cyril R.

2011-01-01

140

Motif module map reveals enforcement of aging by continual NF-?B activity  

PubMed Central

Aging is characterized by specific alterations in gene expression, but their underlying mechanisms and functional consequences are not well understood. Here we develop a systematic approach to identify combinatorial cis-regulatory motifs that drive age-dependent gene expression across different tissues and organisms. Integrated analysis of 365 microarrays spanning nine tissue types predicted fourteen motifs as major regulators of age-dependent gene expression in human and mouse. The motif most strongly associated with aging was that of the transcription factor NF-?B. Inducible genetic blockade of NF-?B for 2 wk in the epidermis of chronologically aged mice reverted the tissue characteristics and global gene expression programs to those of young mice. Age-specific NF-?B blockade and orthogonal cell cycle interventions revealed that NF-?B controls cell cycle exit and gene expression signature of aging in parallel but not sequential pathways. These results identify a conserved network of regulatory pathways underlying mammalian aging and show that NF-?B is continually required to enforce many features of aging in a tissue-specific manner.

Adler, Adam S.; Sinha, Saurabh; Kawahara, Tiara L.A.; Zhang, Jennifer Y.; Segal, Eran; Chang, Howard Y.

2007-01-01

141

Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships  

PubMed Central

Background The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a broad range of physiological roles. Conclusion The M13 family of peptidases have diversified extensively in all species examined, indicating wide ranging roles in numerous physiological processes. It is predicted that differences in the S2' subsite are fundamental to determining the substrate specificities that facilitate this functional diversity.

2008-01-01

142

Normalization on Temporal Modulation Transfer Function for Robust Speech Recognition  

Microsoft Academic Search

In this paper, we proposed a robust speech feature extraction algorithm for automatic speech recognition which reduced the noise effect in the temporal modulation domain. The proposed algorithm has two steps to deal with the time series of cepstral coefficients. The first step adopted a modulation contrast normalization to normalize the temporal modulation contrast of both clean and noisy speech

Xugang Lu; Shigeki Matsuda; Tohru Shimizu; Satoshi Nakamura

2008-01-01

143

Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes.  

PubMed

Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification. PMID:23671425

Bulankova, Petra; Akimcheva, Svetlana; Fellner, Nicole; Riha, Karel

2013-05-01

144

Probiotic modulation of dendritic cell function is influenced by ageing  

PubMed Central

Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-?, TNF-?) by old DCs only. LcS induced IL-12 and IFN? production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.

You, Jialu; Dong, Honglin; Mann, Elizabeth R.; Knight, Stella C.; Yaqoob, Parveen

2014-01-01

145

PLEKHA7 modulates epithelial tight junction barrier function  

PubMed Central

PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four different constructs of PLEKHA7 was inducibly expressed. All constructs were localized at junctions, but constructs lacking the C-terminal region were also distributed diffusely in the cytoplasm. Inducible expression of PLEKHA7 constructs did not affect the expression and localization of TJ proteins, the steady-state value of transepithelial resistance (TER), the development of TER during the calcium switch, and the flux of large molecules across confluent monolayers. In contrast, expression of three out of four constructs resulted both in enhanced recruitment of E-cadherin and associated proteins at the apical ZA and at lateral puncta adherentia (PA), a decreased TER at 18 h after assembly at normal calcium, and an attenuation in the fall in TER after extracellular calcium removal. This latter effect was inhibited when cells were treated with nocodazole. Immunoprecipitation analysis showed that PLEKHA7 forms a complex with the cytoplasmic TJ proteins ZO-1 and cingulin, and this association does not depend on the integrity of microtubules. These results suggest that PLEKHA7 modulates the dynamics of assembly and disassembly of the TJ barrier, through E-cadherin protein complex- and microtubule-dependent mechanisms.

Paschoud, Serge; Jond, Lionel; Guerrera, Diego; Citi, Sandra

2014-01-01

146

Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.  

PubMed

Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis. PMID:21617116

Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

2011-08-01

147

Rheostats and toggle switches for modulating protein function.  

PubMed

The millions of protein sequences generated by genomics are expected to transform protein engineering and personalized medicine. To achieve these goals, tools for predicting outcomes of amino acid changes must be improved. Currently, advances are hampered by insufficient experimental data about nonconserved amino acid positions. Since the property "nonconserved" is identified using a sequence alignment, we designed experiments to recapitulate that context: Mutagenesis and functional characterization was carried out in 15 LacI/GalR homologs (rows) at 12 nonconserved positions (columns). Multiple substitutions were made at each position, to reveal how various amino acids of a nonconserved column were tolerated in each protein row. Results showed that amino acid preferences of nonconserved positions were highly context-dependent, had few correlations with physico-chemical similarities, and were not predictable from their occurrence in natural LacI/GalR sequences. Further, unlike the "toggle switch" behaviors of conserved positions, substitutions at nonconserved positions could be rank-ordered to show a "rheostatic", progressive effect on function that spanned several orders of magnitude. Comparisons to various sequence analyses suggested that conserved and strongly co-evolving positions act as functional toggles, whereas other important, nonconserved positions serve as rheostats for modifying protein function. Both the presence of rheostat positions and the sequence analysis strategy appear to be generalizable to other protein families and should be considered when engineering protein modifications or predicting the impact of protein polymorphisms. PMID:24386217

Meinhardt, Sarah; Manley, Michael W; Parente, Daniel J; Swint-Kruse, Liskin

2013-01-01

148

Ocean Wave-Radar Modulation Transfer Functions From the West Coast Experiment  

Microsoft Academic Search

Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the

J. W. Wright; W. J. Plant; W. C. Keller; W. L. Jones

1980-01-01

149

Acupuncture Modulates the Functional Connectivity of the Default Mode Network in Stroke Patients  

PubMed Central

Abundant evidence from previous fMRI studies on acupuncture has revealed significant modulatory effects at widespread brain regions. However, few reports on the modulation to the default mode network (DMN) of stroke patients have been investigated in the field of acupuncture. To study the modulatory effects of acupuncture on the DMN of stroke patients, eight right hemispheric infarction and stable ischemic stroke patients and ten healthy subjects were recruited to undergo resting state fMRI scanning before and after acupuncture stimulation. Functional connectivity analysis was applied with the bilateral posterior cingulate cortices chosen as the seed regions. The main finding demonstrated that the interregional interactions between the ACC and PCC especially enhanced after acupuncture at GB34 in stroke patients, compared with healthy controls. The results indicated that the possible mechanisms of the modulatory effects of acupuncture on the DMN of stroke patients could be interpreted in terms of cognitive ability and motor function recovery.

Zhang, Yong; Li, Kuangshi; Ren, Yi; Cui, Fangyuan; Xie, Zijing; Shin, Jae-Young; Tan, Zhongjian; Tang, Lixin; Bai, Lijun; Zou, Yihuai

2014-01-01

150

Quetiapine modulates functional connectivity in brain aggression networks.  

PubMed

Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. PMID:23501053

Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

2013-07-15

151

Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.  

PubMed

There is general consensus in the literature that a distributed network of temporal and frontal brain areas is involved in speech comprehension. However, how active versus passive tasks modulate the activation and the functional connectivity of the critical brain areas is not clearly understood. In this study, we used functional magnetic resonance imaging (fMRI) to identify intelligibility and task-related effects in speech comprehension. Participants performed a semantic judgment task on normal and time-reversed sentences, or passively listened to the sentences without making an overt response. The subtraction analysis demonstrated that passive sentence comprehension mainly engaged brain areas in the left anterior and posterior superior temporal sulcus and middle temporal gyrus (aSTS/MTG and pSTS/MTG), whereas active sentence comprehension recruited bilateral frontal regions in addition to the aSTS/MTG and pSTS/MTG regions. Functional connectivity analysis revealed that during passive sentence comprehension, the left aSTS/MTG was functionally connected with the left Heschl's gyrus (HG) and bilateral superior temporal gyrus (STG) but no area was functionally connected with the left pSTS/MTG; during active sentence comprehension, however, both the left aSTS/MTG and pSTS/MTG were functionally connected with bilateral superior temporal and inferior frontal areas. While these results are consistent with the view that the ventral stream of the temporo-frontal network subserves semantic processing, our findings further indicate that both the activation and the functional connectivity of the temporal and frontal areas are modulated by task demands. PMID:23357111

Yue, Q; Zhang, L; Xu, G; Shu, H; Li, P

2013-05-01

152

Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness  

PubMed Central

Background KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. Methods We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n?=?5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. Results KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Conclusions Our findings indicate that KIAA1199 may play an important role in breast tumor growth and invasiveness, and that it may represent a novel target for biomarker development and a novel therapeutic target for breast cancer.

2014-01-01

153

MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis[W  

PubMed Central

The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.

Dombrecht, Bruno; Xue, Gang Ping; Sprague, Susan J.; Kirkegaard, John A.; Ross, John J.; Reid, James B.; Fitt, Gary P.; Sewelam, Nasser; Schenk, Peer M.; Manners, John M.; Kazan, Kemal

2007-01-01

154

Auditory steady-state responses reveal amplitude modulation gap detection thresholds  

Microsoft Academic Search

Auditory evoked magnetic fields were recorded from the left hemisphere of healthy subjects using a 37-channel magnetometer while stimulating the right ear with 40-Hz amplitude modulated (AM) tone-bursts with 500-Hz carrier frequency in order to study the time-courses of amplitude and phase of auditory steady-state responses (ASSRs). The stimulus duration of 300 ms and the duration of the silent periods

Bernhard Ross; Christo Pantev

2004-01-01

155

Serotonin targets inhibitory synapses to induce modulation of network functions  

PubMed Central

The cellular effects of serotonin (5-HT), a neuromodulator with widespread influences in the central nervous system, have been investigated. Despite detailed knowledge about the molecular biology of cellular signalling, it is not possible to anticipate the responses of neuronal networks to a global action of 5-HT. Heterogeneous expression of various subtypes of serotonin receptors (5-HTR) in a variety of neurons differently equipped with cell-specific transmitter receptors and ion channel assemblies can provoke diverse cellular reactions resulting in various forms of network adjustment and, hence, motor behaviour. Using the respiratory network as a model for reciprocal synaptic inhibition, we demonstrate that 5-HT1AR modulation primarily affects inhibition through glycinergic synapses. Potentiation of glycinergic inhibition of both excitatory and inhibitory neurons induces a functional reorganization of the network leading to a characteristic change of motor output. The changes in network operation are robust and help to overcome opiate-induced respiratory depression. Hence, 5-HT1AR activation stabilizes the rhythmicity of breathing during opiate medication of pain.

Manzke, Till; Dutschmann, Mathias; Schlaf, Gerald; Morschel, Michael; Koch, Uwe R.; Ponimaskin, Evgeni; Bidon, Olivier; Lalley, Peter M.; Richter, Diethelm W.

2009-01-01

156

A Product of Heme Catabolism Modulates Bacterial Function and Survival  

PubMed Central

Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI) tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC), a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS) through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome) and Gram-positive bacteria being susceptible to membrane disruption (negative outcome). This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

Nobles, Christopher L.; Green, Sabrina I.; Maresso, Anthony W.

2013-01-01

157

Guanosine negatively modulates the gastric motor function in mouse.  

PubMed

The aim of the present study was to evaluate if guanine-based purines may affect the gastric motor function in mouse. Thus, the influence of guanosine on the gastric emptying rate in vivo was determined and its effects on spontaneous gastric mechanical activity, detected as changes of the intraluminal pressure, were analyzed in vitro before and after different treatments. Gastric gavage of guanosine (1.75-10 mg/kg) delayed the gastric emptying. Guanosine (30 ?M-1 mM) induced a concentration-dependent relaxation of isolated stomach, which was not affected by the inhibition of the purine nucleoside phosphorylase enzyme by 4'-deaza-1'-aza-2'-deoxy-1'-(9-methylene)-immucillin-H. The inhibitory response was antagonized by S-(4-nitrobenzyl)-6-thioinosine, a membrane nucleoside transporter inhibitor, but not affected by 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine, a nonselective adenosine receptor antagonist, or by tetrodotoxin, a blocker of neuronal voltage-dependent Na(+) channels. Moreover, guanosine-induced effects persisted in the presence of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase or tetraethylammonium, a nonselective potassium channel blocker, but they were progressively reduced by increasing concentrations of 2'5'dideoxyadenosine, an adenylyl cyclase inhibitor. Lastly, the levels of cyclic adenosine monophosphate (cAMP), measured by ELISA, in gastric full thickness preparations were increased by guanosine. In conclusion, our data indicate that, in mouse, guanosine is able to modulate negatively the gastric motor function, reducing gastric emptying and inducing muscular relaxation. The latter is dependent by its cellular uptake and involves adenylyl cyclase activation and increase in cAMP intracellular levels, while it is independent on neural action potentials, adenosine receptors, and K(+) channel activation. PMID:23839776

Zizzo, Maria Grazia; Mulè, Flavia; Amato, Antonella; Maiorana, Francesca; Mudò, Giuseppa; Belluardo, Natale; Serio, Rosa

2013-12-01

158

Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation.  

PubMed

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that utilizes magnetic fluxes to alter cortical activity. Continuous theta-burst repetitive TMS (cTBS) results in long-lasting decreases in indices of cortical excitability, and alterations in performance of behavioral tasks. We investigated the effects of cTBS on cortical function via functional connectivity and graph theoretical analysis of EEG data. Thirty-one channel resting-state EEG recordings were obtained before and after 40 s of cTBS stimulation to the left primary motor cortex. Functional connectivity between nodes was assessed in multiple frequency bands using lagged max-covariance, and subsequently thresholded to construct undirected graphs. After cTBS, we find widespread decreases in functional connectivity in the alpha band. There are also simultaneous increases in functional connectivity in the high-beta bands, especially amongst anterior and interhemispheric connections. The analysis of the undirected graphs reveals that interhemispheric and interregional connections are more likely to be modulated after cTBS than local connections. There is also a shift in the topology of network connectivity, with an increase in the clustering coefficient after cTBS in the beta bands, and a decrease in clustering and increase in path length in the alpha band, with the alpha-band connectivity primarily decreased near the site of stimulation. cTBS produces widespread alterations in cortical functional connectivity, with resulting shifts in cortical network topology. PMID:23471637

Shafi, Mouhsin M; Brandon Westover, M; Oberman, Lindsay; Cash, Sydney S; Pascual-Leone, Alvaro

2014-01-01

159

Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes  

PubMed Central

Biomedical applications of carbon nanotubes (CNTs) often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs) via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol) linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS) involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47phox and p67phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-?B. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity.

Jiang, Yuanqin; Zhang, Honggang; Wang, Yange; Chen, Min; Ye, Shefang; Hou, Zhenqing; Ren, Lei

2013-01-01

160

Modulation of EEG Functional Connectivity Networks in Subjects Undergoing Repetitive Transcranial Magnetic Stimulation  

PubMed Central

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that utilizes magnetic fluxes to alter cortical activity. Continuous theta-burst repetitive TMS (cTBS) results in long-lasting decreases in indices of cortical excitability, and alterations in performance of behavioral tasks. We investigated the effects of cTBS on cortical function via functional connectivity and graph theoretical analysis of EEG data. Thirty-one channel resting-state EEG recordings were obtained before and after 40 s of cTBS stimulation to the left primary motor cortex. Functional connectivity between nodes was assessed in multiple frequency bands using lagged max-covariance, and subsequently thresholded to construct undirected graphs. After cTBS, we find widespread decreases in functional connectivity in the alpha band. There are also simultaneous increases in functional connectivity in the high-beta bands, especially amongst anterior and interhemispheric connections. The analysis of the undirected graphs reveals that interhemispheric and interregional connections are more likely to be modulated after cTBS than local connections. There is also a shift in the topology of network connectivity, with an increase in the clustering coefficient after cTBS in the beta bands, and a decrease in clustering and increase in path length in the alpha band, with the alpha-band connectivity primarily decreased near the site of stimulation. cTBS produces widespread alterations in cortical functional connectivity, with resulting shifts in cortical network topology.

Shafi, Mouhsin M.; Westover, M. Brandon; Oberman, Lindsay; Cash, Sydney S.; Pascual-Leone, Alvaro

2014-01-01

161

A Statistical Model of Protein Sequence Similarity and Function Similarity Reveals Overly-Specific Function Predictions  

PubMed Central

Background Predicting protein function from primary sequence is an important open problem in modern biology. Not only are there many thousands of proteins of unknown function, current approaches for predicting function must be improved upon. One problem in particular is overly-specific function predictions which we address here with a new statistical model of the relationship between protein sequence similarity and protein function similarity. Methodology Our statistical model is based on sets of proteins with experimentally validated functions and numeric measures of function specificity and function similarity derived from the Gene Ontology. The model predicts the similarity of function between two proteins given their amino acid sequence similarity measured by statistics from the BLAST sequence alignment algorithm. A novel aspect of our model is that it predicts the degree of function similarity shared between two proteins over a continuous range of sequence similarity, facilitating prediction of function with an appropriate level of specificity. Significance Our model shows nearly exact function similarity for proteins with high sequence similarity (bit score >244.7, e-value >1e?62, non-redundant NCBI protein database (NRDB)) and only small likelihood of specific function match for proteins with low sequence similarity (bit score <54.6, e-value <1e?05, NRDB). For sequence similarity ranges in between our annotation model shows an increasing relationship between function similarity and sequence similarity, but with considerable variability. We applied the model to a large set of proteins of unknown function, and predicted functions for thousands of these proteins ranging from general to very specific. We also applied the model to a data set of proteins with previously assigned, specific functions that were electronically based. We show that, on average, these prior function predictions are more specific (quite possibly overly-specific) compared to predictions from our model that is based on proteins with experimentally determined function.

Kolker, Eugene

2009-01-01

162

Form and Function: An Organic Chemistry Module. Teacher's Guide.  

ERIC Educational Resources Information Center

This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

163

Exploring Tomato Gene Functions Based on Coexpression Modules Using Graph Clustering and Differential Coexpression Approaches1[C][W][OA  

PubMed Central

Gene-to-gene coexpression analysis provides fundamental information and is a promising approach for predicting unknown gene functions in plants. We investigated various associations in the gene expression of tomato (Solanum lycopersicum) to predict unknown gene functions in an unbiased manner. We obtained more than 300 microarrays from publicly available databases and our own hybridizations, and here, we present tomato coexpression networks and coexpression modules. The topological characteristics of the networks were highly heterogenous. We extracted 465 total coexpression modules from the data set by graph clustering, which allows users to divide a graph effectively into a set of clusters. Of these, 88% were assigned systematically by Gene Ontology terms. Our approaches revealed functional modules in the tomato transcriptome data; the predominant functions of coexpression modules were biologically relevant. We also investigated differential coexpression among data sets consisting of leaf, fruit, and root samples to gain further insights into the tomato transcriptome. We now demonstrate that (1) duplicated genes, as well as metabolic genes, exhibit a small but significant number of differential coexpressions, and (2) a reversal of gene coexpression occurred in two metabolic pathways involved in lycopene and flavonoid biosynthesis. Independent experimental verification of the findings for six selected genes was done using quantitative real-time polymerase chain reaction. Our findings suggest that differential coexpression may assist in the investigation of key regulatory steps in metabolic pathways. The approaches and results reported here will be useful to prioritize candidate genes for further functional genomics studies of tomato metabolism.

Fukushima, Atsushi; Nishizawa, Tomoko; Hayakumo, Mariko; Hikosaka, Shoko; Saito, Kazuki; Goto, Eiji; Kusano, Miyako

2012-01-01

164

Allosteric modulation and functional selectivity of G protein-coupled receptors  

PubMed Central

Agonists of a single G protein-coupled receptor (GPCR) may activate distinct signaling pathways. Functional selectivity, an emerging concept with therapeutic relevance for GPCRs, may be due to conformational selection or stabilization with respect to particular agonists, receptor dimerization, variable expression levels of GPCRs and downstream signaling molecules, and allosteric modulation. Allosteric modulators may have potential advantages over orthosteric ligands, including greater selectivity and safety. This review focuses on functional selectivity resulting from allosteric modulation.

Gao, Zhan-Guo; Jacobson, Kenneth A.

2012-01-01

165

Detecting functional modules in the yeast protein-protein interaction network  

Microsoft Academic Search

Motivation: Identification of functional modules in protein interaction networksis a first step in understanding the organization anddynamics of cell functions. To ensure that the identified modules are biologically meaningful, network-partitioning algorithms should take into account notonlytopologicalfeaturesbutalsofunctionalrelationships,andiden- tified modules should be rigorously validated. Results: In this study we first integrate proteomics and microarray datasets and represent the yeast protein-protein interaction network

Jingchun Chen; Bo Yuan

2006-01-01

166

Relative sideband amplitudes versus modulation index for common functions using frequency and phase modulation. [for design and testing of communication system  

NASA Technical Reports Server (NTRS)

The equations defining the amplitude of sidebands resulting from either frequency modulation or phase modulation by either square wave, sine wave, sawtooth or triangular modulating functions are presented. Spectral photographs and computer generated tables of modulation index vs. relative sideband amplitudes are also included.

Stocklin, F.

1973-01-01

167

Study of critical modulation transfer function by UV-vis spectroscopy  

Microsoft Academic Search

Modulation Transfer Function (MTF) for the aerial image formation and Critical Modulation Transfer Function (CMTF) from the image formation system are two most important parameters for the photolithography processes. In this paper, we studied CMTF, or to be precise, we studied the contrast gamma of the photoresist. gamma is essential to the photolithography processes. New method to measure contrast gamma

Ping Linda Zhang; Song Hu; Lu Chuan Zhang; Zhong Yuan Jin; Hai Liang Yu; Le Wang; Yong Yang

2007-01-01

168

A novel functional module detection algorithm for protein-protein interaction networks  

Microsoft Academic Search

BACKGROUND: The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM. RESULTS: STM selects representative proteins for each cluster and iteratively refines clusters based on a combination of the signal transduced

Woochang Hwang; Young-rae Cho; Aidong Zhang; Murali Ramanathan

2006-01-01

169

Functional Connectivity MR Imaging Reveals Cortical Functional Connectivity in the Developing Brain  

Microsoft Academic Search

BACKGROUND AND PURPOSE: Unlike conventional functional MR imaging where external sensory\\/ cognitive paradigms are needed to specifically activate different regions of the brain, resting functional connectivity MR imaging acquires images in the absence of cognitive demands (a resting condition) and detects brain regions, which are highly temporally correlated. Therefore, resting functional MR imaging is highly suited for the study of

W. Lin; Q. Zhu; W. Gao; Y. Chen; C.-H. Toh; M. Styner; G. Gerig; J. K. Smith; B. Biswal; J. H. Gilmore

2008-01-01

170

Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping  

PubMed Central

Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between ?0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI–DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes.

Normanno, Davide; Vanzi, Francesco; Pavone, Francesco Saverio

2008-01-01

171

Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription.  

PubMed Central

The Tat protein is a transcriptional activator which is required for efficient human immunodeficiency virus 1 (HIV-1) gene expression Tat stimulates HIV-1 transcriptional elongation by increasing the processivity of RNA polymerase II. To address whether Tat-mediated effects on HIV-1 gene expression are due to modulation in the phosphorylation of the RNA polymerase II C-terminal domain (CTD), we developed a purification protocol to identify cellular kinases that are capable of binding to Tat and hyperphosphorylating the RNA polymerase II CTD. A 600 kDa protein complex with these properties was isolated, and specific components were identified using peptide microsequence analysis. This analysis indicated that proteins comprising the multi-subunit TFIIH complex, in addition to several novel factors, were associated with Tat using both in vitro and in vivo analysis. The Tat-associated kinase bound to the activation domain of Tat, and its ability to hyperphosphorylate RNA polymerase II was markedly stimulated by Tat. Furthermore, the addition of the Tat-associated kinase to in vitro transcription assays stimulated the ability of Tat to activate HIV-1 transcription. These results define a cellular kinase complex whose activity is modulated by Tat to result in activation of HIV-1 trancription.

Garcia-Martinez, L F; Mavankal, G; Neveu, J M; Lane, W S; Ivanov, D; Gaynor, R B

1997-01-01

172

Regulation of bone mass and osteoclast function depend on the F-actin modulator SWAP-70.  

PubMed

Bone remodeling involves tightly regulated bone-resorbing osteoclasts and bone-forming osteoblasts. Determining osteoclast function is central to understanding bone diseases such as osteoporosis and osteopetrosis. Here, we report a novel function of the F-actin binding and regulatory protein SWAP-70 in osteoclast biology. F-actin ring formation, cell morphology, and bone resorption are impaired in Swap-70(-/-) osteoclasts, whereas the expression of osteoclast differentiation markers induced in vitro by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-?B ligand (RANKL) remains unaffected. Swap-70(-/-) mice develop osteopetrosis with increased bone mass, abnormally dense bone, and impaired osteoclast function. Ectopic expression of SWAP-70 in Swap-70(-/-) osteoclasts in vitro rescues their deficiencies in bone resorption and F-actin ring formation. Rescue requires a functional pleckstrin homology (PH) domain, known to support membrane localization of SWAP-70, and the F-actin binding domain. Transplantation of SWAP-70-proficient bone marrow into Swap-70(-/-) mice restores osteoclast resorption capacity in vivo. The identification of the role of SWAP-70 in promoting osteoclast function through modulating membrane-proximal F-actin rearrangements reveals a new pathway to control osteoclasts and bone homeostasis. PMID:22648978

Garbe, Annette I; Roscher, Anne; Schüler, Christiane; Lutter, Anne-Helen; Glösmann, Martin; Bernhardt, Ricardo; Chopin, Michael; Hempel, Ute; Hofbauer, Lorenz C; Rammelt, Stefan; Egerbacher, Monika; Erben, Reinhold G; Jessberger, Rolf

2012-10-01

173

Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function  

PubMed Central

Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia.

Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

2003-01-01

174

Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation.  

PubMed

Biological systems may perform reproducibly to generate invariant outcomes, despite external or internal noise. One example is the C. elegans vulva, in which the final cell fate pattern is remarkably robust. Although this system has been extensively studied and the molecular network underlying cell fate specification is well understood, very little is known in quantitative terms. Here, through pathway dosage modulation and single molecule fluorescence in situ hybridization, we show that the system can tolerate a 4-fold variation in genetic dose of the upstream signaling molecule LIN-3/epidermal growth factor (EGF) without phenotypic change in cell fate pattern. Furthermore, through tissue-specific dosage perturbations of the EGF and Notch pathways, we determine the first-appearing patterning errors. Finally, by combining different doses of both pathways, we explore how quantitative pathway interactions influence system behavior. Our results highlight the feasibility and significance of launching experimental studies of robustness and quantitative network analysis in genetically tractable, multicellular eukaryotes. PMID:23328399

Barkoulas, Michalis; van Zon, Jeroen S; Milloz, Josselin; van Oudenaarden, Alexander; Félix, Marie-Anne

2013-01-14

175

The structure of a Streptomyces avermitilis ?-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement.  

PubMed

?-L-rhamnosidases hydrolyze ?-linked L-rhamnosides from oligosaccharides or polysaccharides. We determined the crystal structure of the glycoside hydrolase family 78 Streptomyces avermitilis ?-L-rhamnosidase (SaRha78A) in its free and L-rhamnose complexed forms, which revealed the presence of six domains N, D, E, F, A, and C. In the ligand complex, L-rhamnose was bound in the proposed active site of the catalytic module, revealing the likely catalytic mechanism of SaRha78A. Glu(636) is predicted to donate protons to the glycosidic oxygen, and Glu(895) is the likely catalytic general base, activating the nucleophilic water, indicating that the enzyme operates through an inverting mechanism. Replacement of Glu(636) and Glu(895) resulted in significant loss of ?-rhamnosidase activity. Domain D also bound L-rhamnose in a calcium-dependent manner, with a KD of 135 ?m. Domain D is thus a non-catalytic carbohydrate binding module (designated SaCBM67). Mutagenesis and structural data identified the amino acids in SaCBM67 that target the features of L-rhamnose that distinguishes it from the other major sugars present in plant cell walls. Inactivation of SaCBM67 caused a substantial reduction in the activity of SaRha78A against the polysaccharide composite gum arabic, but not against aryl rhamnosides, indicating that SaCBM67 contributes to enzyme function against insoluble substrates. PMID:23486481

Fujimoto, Zui; Jackson, Adam; Michikawa, Mari; Maehara, Tomoko; Momma, Mitsuru; Henrissat, Bernard; Gilbert, Harry J; Kaneko, Satoshi

2013-04-26

176

Membrane proteins bind lipids selectively to modulate their structure and function.  

PubMed

Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3?Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding. PMID:24899312

Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

2014-06-01

177

Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits  

Microsoft Academic Search

Synaptic circuits bind together functional modules of the neocortex. We aim to clarify in a rodent model how intra- and transcolumnar\\u000a microcircuits in the barrel cortex are laid out to segregate and also integrate sensory information. The primary somatosensory\\u000a (barrel) cortex of rodents is the ideal model system to study these issues because there, the tactile information derived\\u000a from the

Dirk Schubert; Rolf Kötter; Jochen F. Staiger

2007-01-01

178

Nitric oxide as an endogenous peripheral modulator of visceral sensory neuronal function.  

PubMed

Nitric oxide (NO) plays important roles in CNS and smooth muscle function. Here we reveal an additional function in peripheral sensory transmission. We hypothesized that endogenous NO modulates the function of gastrointestinal vagal afferent endings. The nonselective NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester hydrochloride increased responses to tactile mechanical stimuli of mucosal afferent endings in two species, in some cases severalfold. This was mimicked by a neuronal NOS inhibitor but not an endothelial NOS inhibitor. NOS inhibitors did not affect the responsiveness of smooth muscle afferent endings, suggesting that the endogenous source of NO is exclusively accessible to mucosal receptors. The role of the NO-soluble guanylyl cyclase (sGC)-cGMP pathway was confirmed using the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one and the cGMP phosphodiesterase 5' inhibitor sildenafil. The first enhanced and the second inhibited mechanosensory function. Exogenous NO, from the donor S-nitroso-N-acetylpenicillamine, significantly reduced mechanosensitivity of both types of ending. Up to one-third of stomach-projecting afferent neurons in the nodose ganglia expressed neuronal NOS (nNOS). However, anterograde-traced vagal endings were nNOS negative, indicating NOS is not transported peripherally and there are alternative sources of NO for afferent modulation. A subpopulation of enteroendocrine cells in the gut mucosa were nNOS positive, which were found anatomically in close apposition with mucosal vagal afferent endings. These results indicate an inhibitory neuromodulatory role of epithelial NO, which targets a select population of vagal afferents. This interaction is likely to play a role in generation of symptoms and behaviors from the upper gastrointestinal system. PMID:19494147

Page, Amanda J; O'Donnell, Tracey A; Cooper, Nicole J; Young, Richard L; Blackshaw, L Ashley

2009-06-01

179

Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module.  

PubMed

Bacterial persistence is characterized by the ability of a subpopulation within bacterial cultures to survive exposure to antibiotics and other lethal treatments. The surviving persisters are not the result of genetic changes but represent epigenetic variants that are in a physiological state where growth is inhibited. Since characterization of persisters has been performed mainly in Escherichia coli K-12, we sought to identify mechanisms of persistence in the pathogen Salmonella enterica serovar Typhimurium. Isolation of new highly persistent mutants revealed that the shpAB locus (Salmonella high persistence) imparted a 3- to 4-order-of-magnitude increase in survival after ampicillin exposure throughout its growth phase and protected the population against exposure to multiple antibiotics. Genetic characterization revealed that shpAB is a newly discovered toxin-antitoxin (TA) module. The high-persistence phenotype was attributed to a nonsense mutation in the 3' end of the shpB gene encoding an antitoxin protein. Characteristic of other TA modules, shpAB is autoregulated, and high persistence depends on the Lon protease. PMID:23204462

Slattery, Andrew; Victorsen, Alec H; Brown, April; Hillman, Kai; Phillips, Gregory J

2013-02-01

180

Echinacea purpurea extracts modulate murine dendritic cell fate and function.  

PubMed

Echinacea is a top-selling herbal remedy that purportedly acts as an immunostimulant. However, the specific immunomodulatory effects of Echinacea remain to be elucidated. We focused on defining the effects of Echinacea purpurea extracts in dendritic cells (DCs), which generate innate and adaptive immune responses. We hypothesized that E. purpurea extracts would enhance murine bone marrow-derived DC (BMDC) activation leading to increased immune responses. The fate and function of DCs from C57Bl/6 mice was evaluated following 48h exposure to E. purpurea root and leaf extracts. Flow cytometry revealed that the polysaccharide-rich root extract increased the expression of MHC class II, CD86, and CD54 surface biomarkers whereas the alkylamide-rich leaf extract inhibited expression of these molecules. Production of IL-6 and TNF-alpha increased in a concentration-dependent manner with exposure to the root, but not leaf, extract. In contrast, the leaf but not root extract inhibited the enzymatic activity of cyclooxygenase-2. While both extracts decreased the uptake of ovalbumin by BMDCs, the leaf but not root extract inhibited the antigen-specific activation of naïve CD4(+) T cells from OT II/Thy1.1 mice. Collectively, these results suggest that E. purpurea can be immunostimulatory, immunosuppressive, and/or anti-inflammatory depending on the portion of the plant and extraction method. PMID:20149833

Benson, Jenna M; Pokorny, Amanda J; Rhule, Ava; Wenner, Cynthia A; Kandhi, Vamsikrishna; Cech, Nadja B; Shepherd, David M

2010-05-01

181

Echinacea pupurea extracts modulate murine dendritic cell fate and function  

PubMed Central

Echinacea is a top-selling herbal remedy that purportedly acts as an immunostimulant. However, the specific immunomodulatory effects of Echinacea remain to be elucidated. We focused on defining the effects of Echinacea purpurea extracts in dendritic cells (DCs), which generate innate and adaptive immune responses. We hypothesized that E. purpurea extracts would enhance murine bone marrow-derived DC (BMDC) activation leading to increased immune responses. The fate and function of DCs from C57Bl/6 mice was evaluated following 48 h exposure to E. purpurea root and leaf extracts. Flow cytometry revealed that the polysaccharide-rich root extract increased the expression of MHC class II, CD86, and CD54 surface biomarkers whereas the alkylamide-rich leaf extract inhibited expression of these molecules. Production of IL-6 and TNF-? increased in a concentration-dependent manner with exposure to the root, but not leaf, extract. In contrast, the leaf but not root extract inhibited the enzymatic activity of cyclooxygenase-2. While both extracts decreased the uptake of ovalbumin by BMDCs, the leaf but not root extract inhibited the antigen-specific activation of naïve CD4+ T cells from OT II/Thy1.1 mice. Collectively, these results suggest that E. purpurea can be immunostimulatory, immunosuppressive, and/or anti-inflammatory depending on the portion of the plant and extraction method.

Benson, Jenna M.; Pokorny, Amanda J.; Rhule, Ava; Wenner, Cynthia A.; Kandhi, Vamsikrishna; Cech, Nadja B.; Shepherd, David M.

2010-01-01

182

Genotypes and Pathogenicity of Cellulitis Isolates Reveal Traits That Modulate APEC Virulence  

PubMed Central

We characterized 144 Escherichia coli isolates from severe cellulitis lesions in broiler chickens from South Brazil. Analysis of susceptibility to 15 antimicrobials revealed frequencies of resistance of less than 30% for most antimicrobials except tetracycline (70%) and sulphonamides (60%). The genotyping of 34 virulence-associated genes revealed that all the isolates harbored virulence factors related to adhesion, iron acquisition and serum resistance, which are characteristic of the avian pathogenic E. coli (APEC) pathotype. ColV plasmid-associated genes (cvi/cva, iroN, iss, iucD, sitD, traT, tsh) were especially frequent among the isolates (from 66.6% to 89.6%). According to the Clermont method of ECOR phylogenetic typing, isolates belonged to group D (47.2%), to group A (27.8%), to group B2 (17.4%) and to group B1 (7.6%); the group B2 isolates contained the highest number of virulence-associated genes. Clonal relationship analysis using the ARDRA method revealed a similarity level of 57% or higher among isolates, but no endemic clone. The virulence of the isolates was confirmed in vivo in one-day-old chicks. Most isolates (72.9%) killed all infected chicks within 7 days, and 65 isolates (38.1%) killed most of them within 24 hours. In order to analyze differences in virulence among the APEC isolates, we created a pathogenicity score by combining the times of death with the clinical symptoms noted. By looking for significant associations between the presence of virulence-associated genes and the pathogenicity score, we found that the presence of genes for invasins ibeA and gimB and for group II capsule KpsMTII increased virulence, while the presence of pic decreased virulence. The fact that ibeA, gimB and KpsMTII are characteristic of neonatal meningitis E. coli (NMEC) suggests that genes of NMEC in APEC increase virulence of strains.

Barbieri, Nicolle Lima; de Oliveira, Aline Luisa; Tejkowski, Thiago Moreira; Pavanelo, Daniel Brisotto; Rocha, Debora Assumpcao; Matter, Leticia Beatriz; Callegari-Jacques, Sidia Maria; de Brito, Benito Guimaraes; Horn, Fabiana

2013-01-01

183

Imaging performance of annular apertures. III - Apodization and modulation transfer functions  

NASA Technical Reports Server (NTRS)

Apodization functions with decreasing transmission and their opposite, functions with increasing transmission, are investigated for various central obstruction ratios. The resultant modulation transfer functions are presented for various transmission functions and central obstruction ratios. Conclusions applicable to the improvement of imaging performance are discussed.

Tschunko, H. F. A.

1979-01-01

184

Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions.  

PubMed

We show that the nature of the scaling behavior can be revealed by studying the conditional structure functions evaluated at given values of the locally averaged thermal dissipation rate. These conditional structure functions have power-law dependence on the value of the locally averaged thermal dissipation rate, and such dependence for the Bolgiano-Obukhov scaling is different from the other scaling behaviors. Our analysis of experimental measurements verifies the power-law dependence and reveals the Bolgiano-Obukhov scaling behavior at the center of the bottom plate of the convection cell. PMID:23410424

Ching, Emily S C; Tsang, Yue-Kin; Fok, T N; He, Xiaozhou; Tong, Penger

2013-01-01

185

Comparative Systems Biology Reveals Allelic Variation Modulating Tocochromanol Profiles in Barley (Hordeum vulgare L.)  

PubMed Central

Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles.

Oliver, Rebekah E.; Islamovic, Emir; Obert, Donald E.; Wise, Mitchell L.; Herrin, Lauri L.; Hang, An; Harrison, Stephen A.; Ibrahim, Amir; Marshall, Juliet M.; Miclaus, Kelci J.; Lazo, Gerard R.; Hu, Gongshe; Jackson, Eric W.

2014-01-01

186

Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways  

PubMed Central

Simulations can provide tremendous insight into atomistic details of biological mechanisms, but micro- to milliseconds timescales are historically only accessible on dedicated supercomputers. We demonstrate that cloud computing is a viable alternative, bringing long-timescale processes within reach of a broader community. We used Google's Exacycle cloud computing platform to simulate 2 milliseconds of dynamics of the ?2 adrenergic receptor — a major drug target G protein-coupled receptor (GPCR). Markov state models aggregate independent simulations into a single statistical model that is validated by previous computational and experimental results. Moreover, our models provide an atomistic description of the activation of a GPCR, revealing multiple activation pathways. Agonists and inverse agonists interact differentially with these pathways, with profound implications for drug design

Bowman, Gregory R.; Konerding, David E.; Belov, Dan; Altman, Russ B.; Pande, Vijay S.

2014-01-01

187

Temporal Modulation Transfer Functions Measured From Auditory-Nerve Responses Following Sensorineural Hearing Loss  

PubMed Central

The ability of auditory-nerve (AN) fibers to encode modulation frequencies, as characterized by temporal modulation transfer functions (TMTFs), generally shows a low-pass shape with a cut-off frequency that increases with fiber characteristic frequency (CF). Because AN-fiber bandwidth increases with CF, this result has been interpreted to suggest that peripheral filtering has a significant effect on limiting the encoding of higher modulation frequencies. Sensorineural hearing loss (SNHL), which is typically associated with broadened tuning, is thus predicted to increase the range of modulation frequencies encoded; however, perceptual studies have generally not supported this prediction. The present study sought to determine whether the range of modulation frequencies encoded by AN fibers is affected by SNHL, and whether the effects of SNHL on envelope coding are similar at all modulation frequencies within the TMTF passband. Modulation response gain for sinusoidally amplitude modulated (SAM) tones was measured as a function of modulation frequency, with the carrier frequency placed at fiber CF. TMTFs were compared between normal-hearing chinchillas and chinchillas with a noise-induced hearing loss for which AN fibers had significantly broadened tuning. Synchrony and phase responses for individual SAM-tone components were quantified to explore a variety of factors that can influence modulation coding. Modulation gain was found to be higher than normal in noise-exposed fibers across the entire range of modulation frequencies encoded by AN fibers. The range of modulation frequencies encoded by noise-exposed AN fibers was not affected by SNHL, as quantified by TMTF 3- and 10-dB cut-off frequencies. These results suggest that physiological factors other than peripheral filtering may have a significant role in determining the range of modulation frequencies encoded in AN fibers. Furthermore, these neural data may help to explain the lack of a consistent association between perceptual measures of temporal resolution and degraded frequency selectivity.

Kale, Sushrut; Heinz, Michael G.

2012-01-01

188

A Common Evolutionary Origin for Tailed-Bacteriophage Functional Modules and Bacterial Machineries  

PubMed Central

Summary: Bacteriophages belonging to the order Caudovirales possess a tail acting as a molecular nanomachine used during infection to recognize the host cell wall, attach to it, pierce it, and ensure the high-efficiency delivery of the genomic DNA to the host cytoplasm. In this review, we provide a comprehensive analysis of the various proteins constituting tailed bacteriophages from a structural viewpoint. To this end, we had in mind to pinpoint the resemblances within and between functional modules such as capsid/tail connectors, the tails themselves, or the tail distal host recognition devices, termed baseplates. This comparison has been extended to bacterial machineries embedded in the cell wall, for which shared molecular homology with phages has been recently revealed. This is the case for the type VI secretion system (T6SS), an inverted phage tail at the bacterial surface, or bacteriocins. Gathering all these data, we propose that a unique ancestral protein fold may have given rise to a large number of bacteriophage modules as well as to some related bacterial machinery components.

Veesler, David; Cambillau, Christian

2011-01-01

189

Modulation of growth factor receptor function by isoform heterodimerization.  

PubMed Central

Activation of prolactin (PRL)-dependent signaling occurs as the result of ligand-induced dimerization of receptor (PRLr). Although three PRLr isoforms (short, intermediate, and long) have been characterized and are variably coexpressed in PRL-responsive tissues, the functional effects of ligand-induced PRLr isoform heterodimerization have not been examined. To determine whether heterodimeric PRLr complexes were capable of ligand-induced signaling and cellular proliferation, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor receptor (GM-CSFr) and the intracellular domain of the rat intermediate or short PRLr isoforms (PRLr-I or PRLr-S) were synthesized. Because high affinity binding of GM-CSF is mediated by the extracellular domain of one alpha and beta GM-CSFr pair, use of GM-CSFr/PRLr chimera specifically directed the dimerization of the PRLr intracellular domains within ligand-receptor complexes. Stable transfection of these constructs into the Ba/F3 line was demonstrated by Northern blot and immunoprecipitation analyses. Flow cytometry revealed specific binding of a phycoerythrin-conjugated human GM-CSF to the transfectants, confirming cell surface expression of the chimeric receptors. When tested for their ability to proliferate in response to GM-CSF, only chimeric transfectants expressing GM-CSFr/PRLr-I homodimers demonstrated significant [3H]thymidine incorporation. GM-CSF stimulation of transfectants expressing either GM-CSFr/PRLr-S homodimers or GM-CSFr/PRLr-S+1 heterodimers failed to induce proliferation. Consistent with these data, the GM-CSF-induced activation of two phosphotyrosine kinases, Jak2 and Fyn, was observed only in homodimeric GM-CSFr/PRLr-I transfectants. These results show that the PRLr-S functions as a dominant negative isoform, down-regulating both signaling and proliferation mediated by the receptor complex. Thus, structural motifs necessary for Jak2 and Fyn activation within the carboxy terminus of the PRLr-I, absent in the PRLr-S, are required in each member of the dimeric PRLr complex. Images Fig. 2 Fig. 5

Chang, W P; Clevenger, C V

1996-01-01

190

Mechanical regulation of cell function with geometrically modulated elastomeric substrates  

PubMed Central

We report the establishment of a library of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrate that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility, and stem cell differentiation. Furthermore, early changes in cytoskeletal contractility predicted later stem cell fate decisions at the single cell level.

Fu, Jianping; Wang, Yang-Kao; Yang, Michael T.; Desai, Ravi A.; Yu, Xiang; Liu, Zhijun; Chen, Christopher S.

2011-01-01

191

A comparison of the functional modules identified from time course and static PPI network data  

PubMed Central

Background Cellular systems are highly dynamic and responsive to cues from the environment. Cellular function and response patterns to external stimuli are regulated by biological networks. A protein-protein interaction (PPI) network with static connectivity is dynamic in the sense that the nodes implement so-called functional activities that evolve in time. The shift from static to dynamic network analysis is essential for further understanding of molecular systems. Results In this paper, Time Course Protein Interaction Networks (TC-PINs) are reconstructed by incorporating time series gene expression into PPI networks. Then, a clustering algorithm is used to create functional modules from three kinds of networks: the TC-PINs, a static PPI network and a pseudorandom network. For the functional modules from the TC-PINs, repetitive modules and modules contained within bigger modules are removed. Finally, matching and GO enrichment analyses are performed to compare the functional modules detected from those networks. Conclusions The comparative analyses show that the functional modules from the TC-PINs have much more significant biological meaning than those from static PPI networks. Moreover, it implies that many studies on static PPI networks can be done on the TC-PINs and accordingly, the experimental results are much more satisfactory. The 36 PPI networks corresponding to 36 time points, identified as part of this study, and other materials are available at http://bioinfo.csu.edu.cn/txw/TC-PINs.

2011-01-01

192

STED Nanoscopy Reveals Molecular Details of Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living Cells  

PubMed Central

Details about molecular membrane dynamics in living cells, such as lipid-protein interactions, are often hidden from the observer because of the limited spatial resolution of conventional far-field optical microscopy. The superior spatial resolution of stimulated emission depletion (STED) nanoscopy can provide new insights into this process. The application of fluorescence correlation spectroscopy (FCS) in focal spots continuously tuned down to 30 nm in diameter distinguishes between free and anomalous molecular diffusion due to, for example, transient binding of lipids to other membrane constituents, such as lipids and proteins. We compared STED-FCS data recorded on various fluorescent lipid analogs in the plasma membrane of living mammalian cells. Our results demonstrate details about the observed transient formation of molecular complexes. The diffusion characteristics of phosphoglycerolipids without hydroxyl-containing headgroups revealed weak interactions. The strongest interactions were observed with sphingolipid analogs, which showed cholesterol-assisted and cytoskeleton-dependent binding. The hydroxyl-containing headgroup of gangliosides, galactosylceramide, and phosphoinositol assisted binding, but in a much less cholesterol- and cytoskeleton-dependent manner. The observed anomalous diffusion indicates lipid-specific transient hydrogen bonding to other membrane molecules, such as proteins, and points to a distinct connectivity of the various lipids to other membrane constituents. This strong interaction is different from that responsible for forming cholesterol-dependent, liquid-ordered domains in model membranes.

Mueller, V.; Ringemann, C.; Honigmann, A.; Schwarzmann, G.; Medda, R.; Leutenegger, M.; Polyakova, S.; Belov, V.N.; Hell, S.W.; Eggeling, C.

2011-01-01

193

Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior.  

PubMed

Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding. PMID:23466532

Baldo, Brian A; Pratt, Wayne E; Will, Matthew J; Hanlon, Erin C; Bakshi, Vaishali P; Cador, Martine

2013-11-01

194

Fat Modulates the Relationship between Sarcopenia and Physical Function in Nonobese Older Adults  

PubMed Central

It is intuitive to think that sarcopenia should be associated with declines in physical function though recent evidence questions this assertion. This study investigated the relationship between absolute and relative sarcopenia, with physical performance in 202 nonobese (mean BMI = 26.6?kg/ht2) community-dwelling older (mean age = 73.8 ± 5.9 years) adults. While absolute sarcopenia (appendicular skeletal mass (ASM)/ht2) was either not associated, or weakly associated with physical performance, relative sarcopenia (ASM/kg) demonstrated moderate (r = 0.31 to r = 0.51, P < 0.01) relationships with performance outcomes in both males and females. Knee extension strength (r = 0.27) and leg extension power (r = 0.41) were both related to absolute sarcopenia (P < 0.001) in females and not in males. Strength and power were associated with relative sarcopenia in both sexes (from r = 0.47 to r = 0.67,?P < 0.001). The ratio of lean mass to total body mass, that is, relative sarcopenia, is an important consideration relative to physical function in older adults even in the absence of obesity. Stratifying these individuals into equal tertiles of total body fat revealed a trend of diminished regression coefficients across each incrementally higher fat grouping for performance measures, providing further evidence that total body fat modulates the relationship between sarcopenia and physical function.

Marcus, Robin L.; Brixner, Diana I.; Ghate, Sameer; LaStayo, Paul

2012-01-01

195

Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment  

PubMed Central

Summary Mechanisms through which long intergenic noncoding RNAs (ncRNAs) exert regulatory effects on eukaryotic biological processes remain largely elusive. Most studies of these phenomena rely on methods that measure average behaviors in cell populations, lacking resolution to observe the effects of ncRNA transcription on gene expression in a single cell. Here, we combine quantitative single-molecule RNA FISH experiments with yeast genetics and computational modeling to gain mechanistic insights into the regulation of the Saccharomyces cerevisiae protein-coding gene FLO11 by two intergenic ncRNAs, ICR1 and PWR1. Direct detection of FLO11 mRNA and these ncRNAs in thousands of individual cells revealed alternative expression states and provides evidence that ICR1 and PWR1 contribute to FLO11’s variegated transcription, resulting in Flo11-dependent phenotypic heterogeneity in clonal cell populations by modulating recruitment of key transcription factors to the FLO11 promoter.

Bumgarner, Stacie L.; Neuert, Gregor; Voight, Benjamin F.; Symbor-Nagrabska, Anna; Grisafi, Paula; van Oudenaarden, Alexander; Fink, Gerald R.

2012-01-01

196

HLA incompatible combined liver-kidney transplantation: dynamics of antibody modulation revealed by a novel approach to HLA antibody characterisation.  

PubMed

This case report confirms the utility of simultaneous liver transplantation in allowing successful kidney transplantation in the face of preformed, high levels of DSA, which would under normal circumstances be associated with hyperacute rejection and kidney graft failure. Antibody characterisation in terms of epitope specificity is more accurate and informative than antibodies described as "antigen-specific" and we suggest a method for identifying and tracking these antibodies; i.e. follow the epitope reaction not the antigen reactions. We consider that this will give a better insight into the behaviour and pathogenicity of HLA-specific sera. In the case presented here this approach has revealed some novel features of the post transplant antibody response in a sensitised recipient. These illustrate three phenomena which challenge current dogmas; an early resynthesis of DSA does not necessarily cause AMR, high levels of DSA can spontaneously modulate, and measurement of antibodies in terms of antigen specificity can give misleading results. PMID:24239533

Lowe, David; Shabir, Shazia; Buckels, John; Muiesan, Paolo; Hayden, Geoffrey; Holt, Andrew; Hamsho, Ahmed; Skordilis, Kassi; Lipkin, Graham; Borrows, Richard; Briggs, David

2014-01-01

197

A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network  

Microsoft Academic Search

BACKGROUND: Studying the evolution of the function of duplicated genes usually implies an estimation of the extent of functional conservation\\/divergence between duplicates from comparison of actual sequences. This only reveals the possible molecular function of genes without taking into account their cellular function(s). We took into consideration this latter dimension of gene function to approach the functional evolution of duplicated

Anaïs Baudot; Bernard Jacq; Christine Brun

2004-01-01

198

Tethering toxins and peptide ligands for modulation of neuronal function  

PubMed Central

Tethering genetically encoded peptide toxins or ligands close to their point of activity at the cell plasma membrane provides a new approach to the study of cell networks and neuronal circuits, as it allows selective targeting of specific cell populations, enhances the working concentration of the ligand or blocker peptide, and permits the engineering of a large variety of t-peptides (e.g., including use of fluorescent markers, viral vectors and point mutation variants). This review describes the development of tethered toxins and peptides derived from the identification of the cell surface nAChR modulator lynx1, the existence of related endogenous cell surface modulators of nAChR and AMPA receptors, and the application of the t-toxin and t-neuropeptide technology to the dissection of neuronal circuits in metazoans.

Ibanez-Tallon, Ines; Nitabach, Michael N.

2011-01-01

199

Splicing Modulation as a Modifier of the CFTR Function  

Microsoft Academic Search

A significant fraction of CF-causing mutations affects pre-mRNA splicing. These mutations can generate both aberrant and correct transcripts, the level of which varies among different patients. An inverse correlation was found between this level and disease severity, suggesting a role for splicing regulation as a genetic modifier. Subsequent studies showed that overexpression of splicing factors modulated the level of correctly

Malka Nissim-Rafinia; Batsheva Kerem

200

Helical Repeat Structure of Apoptosis Inhibitor 5 Reveals Protein-Protein Interaction Modules*  

PubMed Central

Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all ?-helical structure. The N-terminal half of API5 is similar to the HEAT repeat and the C-terminal half is similar to the ARM (Armadillo-like) repeat. HEAT and ARM repeats have been implicated in protein-protein interactions, suggesting that the cellular roles of API5 may be to mediate protein-protein interactions. Various components of multiprotein complexes have been identified as API5-interacting protein partners, suggesting that API5 may act as a scaffold for multiprotein complexes. API5 exists as a monomer, and the functionally important heptad leucine repeat does not exhibit the predicted a dimeric leucine zipper. Additionally, Lys-251, which can be acetylated in cells, plays important roles in the inhibition of apoptosis under serum deprivation conditions. The acetylation of this lysine also affects the stability of API5 in cells.

Han, Byeong-Gu; Kim, Kyoung Hoon; Lee, Sang Jae; Jeong, Kyung-Chae; Cho, Jea-Won; Noh, Kyung Hee; Kim, Tae Woo; Kim, Soon-Jong; Yoon, Hye-Jin; Suh, Se Won; Lee, Sangho; Lee, Byung Il

2012-01-01

201

Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules.  

PubMed

Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all ?-helical structure. The N-terminal half of API5 is similar to the HEAT repeat and the C-terminal half is similar to the ARM (Armadillo-like) repeat. HEAT and ARM repeats have been implicated in protein-protein interactions, suggesting that the cellular roles of API5 may be to mediate protein-protein interactions. Various components of multiprotein complexes have been identified as API5-interacting protein partners, suggesting that API5 may act as a scaffold for multiprotein complexes. API5 exists as a monomer, and the functionally important heptad leucine repeat does not exhibit the predicted a dimeric leucine zipper. Additionally, Lys-251, which can be acetylated in cells, plays important roles in the inhibition of apoptosis under serum deprivation conditions. The acetylation of this lysine also affects the stability of API5 in cells. PMID:22334682

Han, Byeong-Gu; Kim, Kyoung Hoon; Lee, Sang Jae; Jeong, Kyung-Chae; Cho, Jea-Won; Noh, Kyung Hee; Kim, Tae Woo; Kim, Soon-Jong; Yoon, Hye-Jin; Suh, Se Won; Lee, Sangho; Lee, Byung Il

2012-03-30

202

Intermolecular disulfide bond to modulate protein function as a redox-sensing switch  

Microsoft Academic Search

Recently, redox-regulated biological reactions have been elucidated. In the regulation of these reactions, redox-sensing molecular\\u000a switches function as unique biological machineries that modulate the functional proteins present in enzymes, transcriptional\\u000a factors, sensor proteins, and transcriptional factor modulators. The redox-sensing cysteine residues and the disulfide bond\\u000a formed between these cysteine residues serve as redox-sensing molecular switches; these switches sense cellular oxidizing

N. Nagahara

2011-01-01

203

Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1.  

PubMed

When the presynaptic membrane protein syntaxin is coexpressed in Xenopus oocytes with N- or P/Q-type Ca(2+) channels, it promotes their inactivation (Bezprozvanny et al., 1995; Wiser et al., 1996, 1999; Degtiar et al., 2000) (I. B. Bezprozvanny, P. Zhong, R. H. Scheller, and R. W. Tsien, unpublished observations). These findings led to the hypothesis that syntaxin influences Ca(2+) channel function in presynaptic endings, in a reversal of the conventional flow of information from Ca(2+) channels to the release machinery. We examined this effect in isolated mammalian nerve terminals (synaptosomes). Botulinum neurotoxin type C1 (BoNtC1), which cleaves syntaxin, was applied to rat neocortical synaptosomes at concentrations that completely blocked neurotransmitter release. This treatment altered the pattern of Ca(2+) entry monitored with fura-2. Whereas the initial Ca(2+) rise induced by depolarization with K(+)-rich solution was unchanged, late Ca(2+) entry was strongly augmented by syntaxin cleavage. Similar results were obtained when Ca(2+) influx arose from repetitive firing induced by the K(+)-channel blocker 4-aminopyridine. Cleavage of vesicle-associated membrane protein with BoNtD or SNAP-25 with BoNtE failed to produce a significant change in Ca(2+) entry. The BoNtC1-induced alteration in Ca(2+) signaling was specific to voltage-gated Ca(2+) channels, not Ca(2+) extrusion or buffering, and it involved N-, P/Q- and R-type channels, the high voltage-activated channels most intimately associated with presynaptic release machinery. The modulatory effect of syntaxin was not immediately manifest when synaptosomes had been K(+)-predepolarized in the absence of external Ca(2+), but developed with a delay after admission of Ca(2+), suggesting that vesicular turnover may be necessary to make syntaxin available for its stabilizing effect on Ca(2+) channel inactivation. PMID:10844005

Bergsman, J B; Tsien, R W

2000-06-15

204

Ability of the Hershberger assay protocol to detect thyroid function modulators.  

PubMed

In vivo screening methods for detection of thyroid function modulators are now under development in many research laboratories. We assessed the applicability of the Hershberger assay protocol to screen for thyroid function modulators. In experiment 1, castrated male BrlHan WIST@Jcl (GALAS) rats were administered a potent thyroid peroxidase inhibitor, 3-amino-1,2,4-triazole (AT), in doses of 0, 40, 200, and 1,000 mg/kg/day with gravimetric endpoint, and in experiment 2, castrated and intact male rats were administered in doses of 0, 40, and 200 mg/kg/day, with quantification of the extent of hypertrophy of the thyroid epithelium, to assess the effects of castration, by gavage to 8-week-old for 10 consecutive days. At necropsy of both experiments, the thyroid glands and hypophysis were collected and fixed with 10% neutral-buffered formalin. To avoid crushing during weighing because of their fragility, the thyroid glands and hypophysis were weighed approximately 24 h after fixation with 10% neutral-buffered formalin. All animals were sacrificed approximately 24 h after the final dose. In experiment 2, the thyroid glands of all animals were stained with hematoxylin and eosin for histological examination and morphometry of follicular epithelial height. In experiment 1, absolute and relative thyroid weights in all of the AT groups were statistically increased in a dose-dependent manner, regardless of the testosterone propionate (TP)-injection. In experiment 2, the results showed a significant increase in thyroid weight in the 200 mg/kg groups of both castrated and intact rats. Hypophyseal weight was unaltered by AT, but comparison of vehicle-treated groups showed that the hypophyseal weight of the castrated rats was greater than that of the intact rats. Enlarged thyroid glands were observed in the AT-treated rats at necropsy. Histological examination of the thyroid glands of all the AT-treated animals showed hypertrophy and hyperplasia of the follicular epithelial cells, and the height of follicular epithelium of the thyroid glands increased in a dose-dependent manner in both the castrated and intact rats. In experiment 1, assessment of the (anti-) androgenic action of AT in seminal vesicle weight revealed a significant increase in the 200 and 1,000 mg/kg + TP groups in a dose-dependent manner. These results suggest that the effect of AT can be detected by the Hershberger assay 10-day administration protocol and may be useful for screening for thyroid function modulators regardless of whether the animals have been castrated. PMID:15947960

Noda, Shuji; Muroi, Takako; Takakura, Saori; Sakamoto, Satoko; Takatsuki, Mineo; Yamasaki, Kanji; Tateyama, Susumu; Yamaguchi, Ryoji

2005-11-01

205

A Functional Screen Reveals an Extensive Layer of Transcriptional and Splicing Control Underlying RAS/MAPK Signaling in Drosophila  

PubMed Central

The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing.

Ashton-Beaucage, Dariel; Udell, Christian M.; Gendron, Patrick; Sahmi, Malha; Lefrancois, Martin; Baril, Caroline; Guenier, Anne-Sophie; Duchaine, Jean; Lamarre, Daniel; Lemieux, Sebastien; Therrien, Marc

2014-01-01

206

A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila.  

PubMed

The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway--including a new protein complex modulating RAF activation--we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing. PMID:24643257

Ashton-Beaucage, Dariel; Udell, Christian M; Gendron, Patrick; Sahmi, Malha; Lefrançois, Martin; Baril, Caroline; Guenier, Anne-Sophie; Duchaine, Jean; Lamarre, Daniel; Lemieux, Sébastien; Therrien, Marc

2014-03-01

207

Graph Partitioning Method for Functional Module Detections of Protein Interaction Network  

Microsoft Academic Search

Study on topology structure of protein interaction network has been suggested as a potential effort to discover biological functions and cellular mechanisms at systems level. In this work, we introduced a graph partitioning method to partition protein interaction network into several clusters of interacting proteins that share similar functions called functional modules. Our proposed method encompasses three major steps which

Afnizanfaizal Abdullah; Safaai Deris; Siti Zaiton Mohd Hashim; Hamimah Mohd Jamil

2009-01-01

208

Androgens Modulate Structure and Function of the Suprachiasmatic Nucleus Brain Clock  

PubMed Central

Gonadal hormones can modulate circadian rhythms in rodents and humans, and androgen receptors are highly localized within the core region of the mouse suprachiasmatic nucleus (SCN) brain clock. Although androgens are known to modulate neural plasticity in other CNS compartments, the role of androgens and their receptors on plasticity in the SCN is unexplored. In the present study, we ask whether androgens influence the structure and function of the mouse SCN by examining the effects of gonadectomy (GDX) on the structure of the SCN circuit and its responses to light, including induction of clock genes and behavioral phase shifting. We found that after GDX, glial fibrillary acidic protein increased with concomitant decreases in the expression of the synaptic proteins synaptophysin and postsynaptic density 95. We also found that GDX exerts effects on the molecular and behavioral responses to light that are phase dependent. In late night [circadian time (CT)21], GDX increased light-induced mPer1 but not mPer2 expression compared with intact (INT) controls. In contrast, in early night (CT13.5), GDX decreased light induced mPer2 but had no effect on mPer1. At CT13.5, GDX animals also showed larger phase delays than did INT. Treatment of GDX animals with the nonaromatizable androgen dihydrotestosterone restored glial fibrillary acidic protein, postsynaptic density 95, and synaptophysin in the SCN and reinstated the INT pattern of molecular and behavioral responses to light. Together, the results reveal a role for androgens in regulating circuitry in the mouse SCN, with functional consequences for clock gene expression and behavioral responses to photic phase resetting stimuli.

Karatsoreos, Ilia N.; Butler, Matthew P.; LeSauter, Joseph

2011-01-01

209

Association between Periodontal Disease and Inflammatory Arthritis Reveals Modulatory Functions by Melanocortin Receptor Type 3.  

PubMed

Because there is clinical evidence for an association between periodontal disease and rheumatoid arthritis, it is important to develop suitable experimental models to explore pathogenic mechanisms and therapeutic opportunities. The K/BxN serum model of inflammatory arthritis was applied using distinct protocols, and modulation of joint disruption afforded by dexamethasone and calcitonin was established in comparison to the melanocortin (MC) receptor agonist DTrp(8)-?-melanocyte stimulating hormone (MSH; DTrp). Wild-type and MC receptor type 3 (MC3)-null mice of different ages were also used. There was significant association between severity of joint disease, induced with distinct protocols and volumes of the arthritogenic K/BxN serum, and periodontal bone damage. Therapeutic treatment with 10 ?g dexamethasone, 30 ng elcatonin, and 20 ?g DTrp per mouse revealed unique and distinctive pharmacological properties, with only DTrp protecting both joint and periodontal tissue. Further analyses in nonarthritic animals revealed higher susceptibility to periodontal bone loss in Mc3r(-/-) compared with wild-type mice, with significant exacerbation at 14 weeks of age. These data reveal novel protective properties of endogenous MC3 on periodontal status in health and disease and indicate that MC3 activation could lead to the development of a new genus of anti-arthritic bone-sparing therapeutics. PMID:24979595

Montero-Melendez, Trinidad; Madeira, Mila F M; Norling, Lucy V; Alsam, Asil; Curtis, Michael A; da Silva, Tarcília A; Perretti, Mauro

2014-08-01

210

Perk Gene Dosage Regulates Glucose Homeostasis by Modulating Pancreatic ?-Cell Functions  

PubMed Central

Background Insulin synthesis and cell proliferation are under tight regulation in pancreatic ?-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3) loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient ?-cell mass and reduced proinsulin trafficking and insulin secretion. Unexpectedly, we found that Perk heterozygous mice displayed lower blood glucose levels. Methodology Longitudinal studies were conducted to assess serum glucose and insulin, intracellular insulin synthesis and storage, insulin secretion, and ?-cell proliferation in Perk heterozygous mice. In addition, modulation of Perk dosage specifically in ?-cells showed that the glucose homeostasis phenotype of Perk heterozygous mice is determined by reduced expression of PERK in the ?-cells. Principal Findings We found that Perk heterozygous mice first exhibited enhanced insulin synthesis and secretion during neonatal and juvenile development followed by enhanced ?-cell proliferation and a substantial increase in ?-cell mass at the adult stage. These differences are not likely to entail the well-known function of PERK to regulate the ER stress response in cultured cells as several markers for ER stress were not differentially expressed in Perk heterozygous mice. Conclusions In addition to the essential functions of PERK in ?-cells as revealed by severely diabetic phenotype in humans and mice completely deficient for PERK, reducing Perk gene expression by half showed that intermediate levels of PERK have a profound impact on ?-cell functions and glucose homeostasis. These results suggest that an optimal level of PERK expression is necessary to balance several parameters of ?-cell function and growth in order to achieve normoglycemia.

Wang, Rong; Munoz, Elyse E.; Zhu, Siying; McGrath, Barbara C.; Cavener, Douglas R.

2014-01-01

211

Identifying similar functional modules by a new hybrid spectral clustering method.  

PubMed

Recently, a large number of researches have focused on finding cellular modules within protein-protein interaction networks. Until now, most of the works have concentrated on finding small modules and protein complexes. The authors have extended the concept of functional module and have identified larger functional modules which are the most similar to the entire network. To this end, a new hybrid spectral-based method is proposed here. First, the original graph is transformed into a line graph. Next, the nodes of the new graph are represented in the Euclidean space by using spectral methods and finally, a self-organising map is applied to the points in the new feature space. The experimental results show that similar modules, obtained from the proposed method, have own local hubs and lots of significant functional subunits concerning each other. These modules not only detect general biological processes that each protein is involved in, but also due to great similarities to the original network, it can be used as significant subnetworks for predicting protein function as detailed as possible. Some interesting properties of these modules are also investigated in this research. PMID:23101872

Madani, S; Faez, K; Aminghafari, M

2012-10-01

212

Modulating the function of human serine racemase and human serine dehydratase by protein engineering.  

PubMed

D-Serine is a co-agonist of N-methyl D-aspartate, a glutamate receptor, which is a major excitatory neurotransmitter receptor in the brain. Human serine racemase (hSR) and serine dehydratase (hSDH) are two important pyridoxal-5'-phosphate-dependent enzymes that synthesize and degrade D-serine, respectively. hSR and hSDH have significant sequence homology (28% identity) and are similar in their structural folds (root-mean-square deviation, 1.12 Å). Sequence alignment and structural comparison between hSR and hSDH reveal that S84 in hSR and A65 in hSDH play important roles in their respective enzyme activities. We surmise that exchange of these two amino acids by introducing S84A hSR and A65S hSDH mutants may result in switching their protein functions. To understand the modulating mechanism of the key residues, mutants S84A in hSR and A65S in hSDH were constructed to monitor the change of activities. The structure of A65S hSDH mutant was determined at 1.3 Å resolution (PDB 4H27), elucidating the role of this critical amino acid. Our study demonstrated S84A hSR mutant behaved like hSDH, whereas A65S hSDH mutant acquired an additional function of using D-serine as a substrate. PMID:23112234

Wang, Cyong-Yi; Ku, Shan Chi; Lee, Cheng-Chung; Wang, Andrew H-J

2012-11-01

213

Semantic integration to identify overlapping functional modules in protein interaction networks  

PubMed Central

Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

2007-01-01

214

?FosB differentially modulates nucleus accumbens direct and indirect pathway function.  

PubMed

Synaptic modifications in nucleus accumbens (NAc) medium spiny neurons (MSNs) play a key role in adaptive and pathological reward-dependent learning, including maladaptive responses involved in drug addiction. NAc MSNs participate in two parallel circuits, direct and indirect pathways that subserve distinct behavioral functions. Modification of NAc MSN synapses may occur in part via changes in the transcriptional potential of certain genes in a cell type–specific manner. The transcription factor ?FosB is one of the key proteins implicated in the gene expression changes in NAc caused by drugs of abuse, yet its effects on synaptic function in NAc MSNs are unknown. Here, we demonstrate that overexpression of ?FosB decreased excitatory synaptic strength and likely increased silent synapses onto D1 dopamine receptor–expressing direct pathway MSNs in both the NAc shell and core. In contrast, ?FosB likely decreased silent synapses onto NAc shell, but not core, D2 dopamine receptor–expressing indirect pathway MSNs. Analysis of NAc MSN dendritic spine morphology revealed that ?FosB increased the density of immature spines in D1 direct but not D2 indirect pathway MSNs. To determine the behavioral consequences of cell type-specific actions of ?FosB, we selectively overexpressed ?FosB in D1 direct or D2 indirect MSNs in NAc in vivo and found that direct (but not indirect) pathway MSN expression enhances behavioral responses to cocaine. These results reveal that ?FosB in NAc differentially modulates synaptic properties and reward-related behaviors in a cell type- and subregion-specific fashion. PMID:23319622

Grueter, Brad A; Robison, Alfred J; Neve, Rachael L; Nestler, Eric J; Malenka, Robert C

2013-01-29

215

Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways  

PubMed Central

As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.

Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

2011-01-01

216

The Chlamydomonas genome reveals the evolution of key animal and plant functions.  

PubMed

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella. PMID:17932292

Merchant, Sabeeha S; Prochnik, Simon E; Vallon, Olivier; Harris, Elizabeth H; Karpowicz, Steven J; Witman, George B; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K; Maréchal-Drouard, Laurence; Marshall, Wallace F; Qu, Liang-Hu; Nelson, David R; Sanderfoot, Anton A; Spalding, Martin H; Kapitonov, Vladimir V; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valérie; Croft, Martin T; Dent, Rachel; Dutcher, Susan; Fernández, Emilio; Fukuzawa, Hideya; González-Ballester, David; González-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A; Lemaire, Stéphane D; Lobanov, Alexey V; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M; Niyogi, Krishna; Novoselov, Sergey V; Paulsen, Ian T; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riaño-Pachón, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C; Minagawa, Jun; Page, M Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L; Gladyshev, Vadim N; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y Wayne; Jhaveri, Jinal; Luo, Yigong; Martínez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V; Rokhsar, Daniel S; Grossman, Arthur R

2007-10-12

217

Global protein profiling reveals anti-EGFR monoclonal antibody 806-modulated proteins in A431 tumor xenografts.  

PubMed

An important mediator of tumorigenesis, the epidermal growth factor receptor (EGFR) is expressed in almost all non-transformed cell types, associated with tumor progression, angiogenesis and metastasis. The significance of the EGFR as a cancer therapeutic target is underscored by the clinical development of several different classes of EGFR antagonists, including monoclonal antibodies (mAb) and tyrosine kinase inhibitors. Extensive preclinical studies have demonstrated the anti-tumor effects of mAb806 against tumor xenografts overexpressing EGFR. EGF stimulation of A431 cells induces rapid tyrosine phosphorylation of intracellular signalling proteins which regulate cell proliferation and apoptosis. Detailed understanding of the intracellular signalling pathways and components modulated by mAbs (such as mAb806) to EGFR, and other growth factor receptors, remain limited. The use of fluorescence 2D difference gel electrophoresis (2D DIGE), coupled with sensitive MS-based protein profiling in A431 tumor (epidermoid carcinoma) xenografts, in combination with mAb806, revealed proteins modulating endocytosis, cell architecture, apoptosis, cell signalling pathways and cell cycle regulation, including Dynamin-1-like protein, cofilin-1 protein, and 14-3-3 protein zeta/delta. Further, we report various proteins, including Interferon-induced protein 53 (IFI53), and Oncogene EMS1 (EMS1) which have roles in the tumor microenvironment, regulating cancer cell invasiveness, angiogenesis and formation of metastases. These findings contribute to understanding the underlying biological processes associated with mAb806 therapy of EGFR-positive tumors, and identifying further potential protein markers that may contribute in assessment of the treatment response. PMID:23957735

Lee, Sze Ting; Ji, Hong; Greening, David W; Speirs, Robert W H; Rigopoulos, Angela; Pillay, Vinochani; Murone, Carmel; Vitali, Angela; Stühler, Kai; Johns, Terrance G; Corner, Georgia A; Mariadason, John M; Simpson, Richard J; Scott, Andrew M

2013-10-01

218

Identification of a new neuropeptide precursor reveals a novel source of extrinsic modulation in the feeding system of Aplysia.  

PubMed

The Aplysia feeding system is advantageous for investigating the role of neuropeptides in behavioral plasticity. One family of Aplysia neuropeptides is the myomodulins (MMs), originally purified from one of the feeding muscles, the accessory radula closer (ARC). However, two MMs, MMc and MMe, are not encoded on the only known MM gene. Here, we identify MM gene 2 (MMG2), which encodes MMc and MMe and four new neuropeptides. We use matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to verify that these novel MMG2-derived peptides (MMG2-DPs), as well as MMc and MMe, are synthesized from the precursor. Using antibodies against the MMG2-DPs, we demonstrate that neuronal processes that stain for MMG2-DPs are found in the buccal ganglion, which contains the feeding network, and in the buccal musculature including the ARC muscle. Surprisingly, however, no immunostaining is observed in buccal neurons including the ARC motoneurons. In situ hybridization reveals only few MMG2-expressing neurons that are mostly located in the pedal ganglion. Using immunohistochemical and electrophysiological techniques, we demonstrate that some of these pedal neurons project to the buccal ganglion and are the likely source of the MMG2-DP innervation of the feeding network and musculature. We show that the MMG2-DPs are bioactive both centrally and peripherally: they bias egestive feeding programs toward ingestive ones, and they modulate ARC muscle contractions. The multiple actions of the MMG2-DPs suggest that these peptides play a broad role in behavioral plasticity and that the pedal-buccal projection neurons that express them are a novel source of extrinsic modulation of the feeding system of Aplysia. PMID:16237168

Proekt, Alex; Vilim, Ferdinand S; Alexeeva, Vera; Brezina, Vladimir; Friedman, Allyson; Jing, Jian; Li, Lingjun; Zhurov, Yuriy; Sweedler, Jonathan V; Weiss, Klaudiusz R

2005-10-19

219

Modulation of Potassium Channel Function by Methionine Oxidation and Reduction  

NASA Astrophysics Data System (ADS)

Oxidation of amino acid residues in proteins can be caused by a variety of oxidizing agents normally produced by cells. The oxidation of methionine in proteins to methionine sulfoxide is implicated in aging as well as in pathological conditions, and it is a reversible reaction mediated by a ubiquitous enzyme, peptide methionine sulfoxide reductase. The reversibility of methionine oxidation suggests that it could act as a cellular regulatory mechanism although no such in vivo activity has been demonstrated. We show here that oxidation of a methionine residue in a voltage-dependent potassium channel modulates its inactivation. When this methionine residue is oxidized to methionine sulfoxide, the inactivation is disrupted, and it is reversed by coexpression with peptide methionine sulfoxide reductase. The results suggest that oxidation and reduction of methionine could play a dynamic role in the cellular signal transduction process in a variety of systems.

Ciorba, Matthew A.; Heinemann, Stefan H.; Weissbach, Herbert; Brot, Nathan; Hoshi, Toshinori

1997-09-01

220

Modulation of nuclear receptor function by cellular redox poise.  

PubMed

Nuclear receptors (NRs) are ligand-responsive transcription factors involved in diverse cellular processes ranging from metabolism to circadian rhythms. This review focuses on NRs that contain redox-active thiol groups, a common feature within the superfamily. We will begin by describing NRs, how they regulate various cellular processes and how binding ligands, corepressors and/or coactivators modulate their activity. We will then describe the general area of redox regulation, especially as it pertains to thiol-disulfide interconversion and the cellular systems that respond to and govern this redox equilibrium. Lastly, we will discuss specific examples of NRs whose activities are regulated by redox-active thiols. Glucocorticoid, estrogen, and the heme-responsive receptor, Rev-erb, will be described in the most detail as they exhibit archetypal redox regulatory mechanisms. PMID:24495544

Carter, Eric L; Ragsdale, Stephen W

2014-04-01

221

Modulation of bladder myofibroblast activity: implications for bladder function  

PubMed Central

Bladder suburothelial myofibroblasts may modulate both sensory responses from the bladder wall and spontaneous activity. This study aimed to characterize further these cells in their response to exogenous agents implicated in mediating the above activity. Detrusor strips, with or without mucosa, and isolated suburothelial myofibroblasts were prepared from guinea pig bladders. Isometric tension, intracellular Ca2+, and membrane current were recorded. Cell pairs were formed by pushing two cells together. Tension, intracellular Ca2+, and membrane potential were also recorded from bladder sheets using normal or spinal cord-transected (SCT) rats. Spontaneous contractions were greater in detrusor strips with an intact mucosa and were augmented by 10 ?M UTP. ATP, UTP, or reduced extracellular pH elicited Ca2+ transients and inward currents (Erev ?30 mV) in isolated cells. Capsaicin (5–30 ?M) reduced membrane current (37 ± 12% of control) with minor effects on Ca2+ transients: sodium nitroprusside reduced membrane currents (40 ± 21% of control). Cell pair formation, without an increase in cell capacitance, augmented ATP and pH responses (180 ± 58% of control) and reduced the threshold to ATP and acidosis. Glivec (20–50 ?M) reversibly blocked the augmentation and also reduced spontaneous activity in bladder sheets from SCT, but not normal, rats. Glivec also disrupted the spread of Ca2+ waves in SCT sheets, generating patterns similar to normal bladders. Suburothelial myofibroblasts respond to exogenous agents implicated in modulating bladder sensory responses; responses augmented by physical intercellular contact. The action of glivec and its selective suppression of spontaneous activity in SCT rats identifies a possible pathway to attenuate bladder overactivity.

Sui, Gui-Ping; Wu, Changhao; Roosen, Alexander; Ikeda, Youko; Kanai, Anthony J.; Fry, Christopher H.

2008-01-01

222

Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data  

PubMed Central

Background Due to the low statistical power of individual markers from a genome-wide association study (GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP combinations are suggested to compensate for the low statistical power of individual markers, but SNP combinations from GWAS generate high computational complexity. Methods We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance the statistical power of SNP combinations by comparing the error rates of SNP combinations from various Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset. T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology, and protein complex functional modules. The prediction error rates are measured for SNP sets from functional module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded GSEA. Results A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium (WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101 SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from optimal filtration. Conclusions We propose a detection method for complex disease causal SNP combinations from an optimal SNP dataset by using random forests with variable selection. Mapping the biological meanings of detected SNP combinations can help uncover complex disease mechanisms.

2013-01-01

223

Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator  

NASA Astrophysics Data System (ADS)

We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

2014-02-01

224

Constraints-Based Specification and Synthesis of Functional Analog Modules.  

National Technical Information Service (NTIS)

This paper describes a new methodology for synthesizing analog circuits based on declarative behavioral specifications. Behavioral specifications are translated into a convex energy function. Analog circuitry is used for the realtime search for a solution...

J. Maitan

1989-01-01

225

Modulation of Globular Protein Functionality by Weakly Interacting Cosolvents  

Microsoft Academic Search

Referee: Professor Tyre C. Lanier, Food Science Department, North Carolina State University, Raleigh, NC 27695-7624 Globular proteins are utilized in food, pharmaceutical, and health-care products because of their unique functional attributes, for example, enzyme catalysis, ligand binding and transport, surface activity and self-association. The expression of these functional attributes in a particular product depends on the molecular structure, chemical environment

David Julian McClements

2002-01-01

226

Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch.  

PubMed

Riboswitches are a class of structural RNAs that regulate transcription and translation through specific recognition of small molecules. Riboswitches are attractive not only as drug targets for novel antibiotics but also as modular tools for controlling gene expression. Sequence comparison of a class of riboswitches that sense cyclic di-GMP (type-I c-di-GMP riboswitches) revealed that this type of riboswitch frequently shows a GAAA loop/receptor interaction between P1 and P3 elements. In the crystal structures of a type-I c-di-GMP riboswitch from Vibrio cholerae (the Vc2 riboswitch), the GNRA loop/receptor interaction assembled P2 and P3 stems to organize a ligand-binding pocket. In this study, the functional importance of the GAAA loop-receptor interaction in the Vc2 riboswitch was examined. A series of variant Vc2 riboswitches with mutations in the GAAA loop/receptor interaction were assayed for their switching abilities. In mutants with mutations in the P2 GAAA loop, expression of the reporter gene was reduced to approximately 40%?-?60% of that in the wild-type. However, mutants in which the P3 receptor motif was substituted with base pairs were as active as the wild-type. These results suggested that the GAAA loop/receptor interaction does not simply establish the RNA 3D structure but docking of P2 GAAA loop reduces the flexibility of the GAAA receptor motif in the P3 element. This mechanism was supported by a variant riboswitch bearing a theophylline aptamer module in P3 the structural rigidity of which could be modulated by the small molecule theophylline. PMID:22074990

Fujita, Yuki; Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

2012-02-01

227

Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks? †  

PubMed Central

Steroids are known to induce pleiotropic drug resistance states in hemiascomycetes, with tremendous potential consequences for human fungal infections. Our analysis of gene expression in Saccharomyces cerevisiae and Candida albicans cells subjected to three different concentrations of progesterone revealed that their pleiotropic drug resistance (PDR) networks were strikingly sensitive to steroids. In S. cerevisiae, 20 of the Pdr1p/Pdr3p target genes, including PDR3 itself, were rapidly induced by progesterone, which mimics the effects of PDR1 gain-of-function alleles. This unique property allowed us to decipher the respective roles of Pdr1p and Pdr3p in PDR induction and to define functional modules among their target genes. Although the expression profiles of the major PDR transporters encoding genes ScPDR5 and CaCDR1 were similar, the S. cerevisiae global PDR response to progesterone was only partly conserved in C. albicans. In particular, the role of Tac1p, the main C. albicans PDR regulator, in the progesterone response was apparently restricted to five genes. These results suggest that the C. albicans and S. cerevisiae PDR networks, although sharing a conserved core regarding the regulation of membrane properties, have different structures and properties. Additionally, our data indicate that other as yet undiscovered regulators may second Tac1p in the C. albicans drug response.

Banerjee, Dibyendu; Lelandais, Gaelle; Shukla, Sudhanshu; Mukhopadhyay, Gauranga; Jacq, Claude; Devaux, Frederic; Prasad, Rajendra

2008-01-01

228

Determination of Modulation Transfer Functions from the 'Noordwijk' Radar Measurements in 1978 and 1979.  

National Technical Information Service (NTIS)

Times series of 20 min and longer, simultaneously recorded from a wave gage and an X-band FM-CW radar are analyzed. Modulation Transfer Functions (MTF) are determined as a function of polarization and incidence angle. The coherence between the wave gage s...

P. Hoogeboom

1985-01-01

229

Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.  

PubMed

Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

2014-01-01

230

Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses  

PubMed Central

Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

Ferreira, Ari J. S.; Siam, Rania; Setubal, Joao C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, Andre; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

2014-01-01

231

The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway.  

PubMed

As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant-specific defense responses. The loss-of-function mutant hpl3-1 produced disease-resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3-1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)-3-hexen-1-ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stål)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3-1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild-type, most likely as a result of increased release of BPH-induced volatiles. Interestingly, hpl3-1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice-specific defense responses against different invaders. PMID:22519706

Tong, Xiaohong; Qi, Jinfeng; Zhu, Xudong; Mao, Bizeng; Zeng, Longjun; Wang, Baohui; Li, Qun; Zhou, Guoxin; Xu, Xiaojing; Lou, Yonggen; He, Zuhua

2012-09-01

232

Functional modules, mutational load and human genetic disease  

PubMed Central

The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals.

Zaghloul, Norann A.; Katsanis, Nicholas

2013-01-01

233

Physical Motif Clustering within Intrinsically Disordered Nucleoporin Sequences Reveals Universal Functional Features  

PubMed Central

Bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of Nuclear Pore Complex (NPC) FG motif containing proteins (FG nups). The biophysical mechanism by which FG nups regulate nucleocytoplasmic transport has remained elusive. Our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These functionally conserved features provide insight into the particular biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC, strongly constraining current models. Additionally this method allows us to identify potentially functionally analogous disordered proteins across distantly related species.

Ando, David; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

2013-01-01

234

C-element: A New Clustering Algorithm to Find High Quality Functional Modules in PPI Networks  

PubMed Central

Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used.

Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

2013-01-01

235

C-element: a new clustering algorithm to find high quality functional modules in PPI networks.  

PubMed

Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used. PMID:24039752

Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

2013-01-01

236

Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections.  

PubMed

The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection. PMID:24757665

Wang, Yu-Chao; Tsai, I-Chun; Lin, Che; Hsieh, Wen-Ping; Lan, Chung-Yu; Chuang, Yung-Jen; Chen, Bor-Sen

2014-01-01

237

Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections  

PubMed Central

The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.

Tsai, I-Chun; Lin, Che; Chuang, Yung-Jen

2014-01-01

238

Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels  

PubMed Central

Transient receptor potential (TRP) channels found in animals, protists, and fungi are primary chemo-, thermo-, or mechanosensors. Current research emphasizes the characteristics of individual channels in each animal TRP subfamily but not the mechanisms common across subfamilies. A forward genetic screen of the TrpY1, the yeast TRP channel, recovered gain-of-function (GOF) mutations with phenotype in vivo and in vitro. Single-channel patch-clamp analyses of these GOF-mutant channels show prominent aberrations in open probability and channel kinetics. These mutations revealed functionally important aromatic amino acid residues in four locations: at the intracellular end of the fifth transmembrane helix (TM5), at both ends of TM6, and at the immediate extension of TM6. These aromatics have counterparts in most TRP subfamilies. The one in TM5 (F380L) aligns precisely with an exceptional Drosophila mutant allele (F550I) that causes constitutive activity in the canonical TRP channel, resulting in rapid and severe retinal degeneration beyond mere loss of phototaxis. Thus, this phenylalanine maintains the balance of various functional states (conformations) of a channel for insect phototransduction as well as one for fungal mechanotransduction. This residue is among a small cluster of phenylalanines found in all known subfamilies of TRP channels. This unique case illustrates that GOF mutations can reveal structure–function principles that can be generalized across different TRP subfamilies. It appears that the conserved aromatics in the four locations have conserved functions in most TRP channels. The possible mechanistic roles of these aromatics and the further use of yeast genetics to dissect TRP channels are discussed.

Su, Zhenwei; Zhou, Xinliang; Haynes, W. John; Loukin, Stephen H.; Anishkin, Andriy; Saimi, Yoshiro; Kung, Ching

2007-01-01

239

Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function  

PubMed Central

The formation of G protein-coupled receptor (GPCR) heteromers elicits signaling diversification and holds great promise for improved drug selectivity. Most studies have been conducted in heterologous expression systems; however, in vivo validation is missing from most cases thus questioning the physiological significance of GPCR heteromerization. Melatonin MT1 and MT2 receptors have been shown to exist as homo- and heteromers in vitro. We show here that the effect of melatonin on rod photoreceptor light sensitivity is mediated by melatonin MT1/MT2 receptor heteromers. This effect involves activation of the heteromer-specific PLC/PKC pathway and is abolished in MT1?/? and MT2?/? mice as well as in mice overexpressing a non-functional MT2 receptor mutant that competes with the formation of functional MT1/MT2 heteromers in photoreceptor cells. This study establishes the essential role of melatonin receptor heteromers in retinal function and supports the physiological importance of GPCR heteromerization. Finally, our work may have important therapeutic implications, as the heteromer complex may provide a unique pharmacological target to improve photoreceptor functioning and to extend the viability of photoreceptors during aging.

Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journe, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sebastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca

2013-01-01

240

Salmonella Effectors: Important players modulating host cell function during infection  

PubMed Central

Summary Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative foodborne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type three secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signaling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of “terminal reassortment”. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context infection.

Agbor, Terence A.; McCormick, Beth A.

2012-01-01

241

Mesocortical dopamine modulation of executive functions: beyond working memory  

Microsoft Academic Search

Rationale  Dopamine (DA) neurotransmission in the prefrontal cortex (PFC) is known to play an essential role in mediating executive functions such as the working memory. DA exerts these effects by acting on D1 receptors because blockade or stimulation of these receptors in the PFC can impair performance on delayed response tasks. However, comparatively less is known about dopaminergic mechanisms that mediate

Stan B. Floresco; Orsolya Magyar

2006-01-01

242

Modulation of rhodopsin function by properties of the membrane bilayer  

Microsoft Academic Search

A prevalent model for the function of rhodopsin centers on the metarhodopsin I (MI) to metarhodopsin II (MII) cortformational transition as the triggering event for the visual process. Flash photolysis t~chniques enable one to determine the (MII)\\/(MI) ratio for rhodopsin in various recombinant membranes, and thus investigate the roles of the pbospholipid head groups and the lipid aeyl chains systematically.

Michael F. Brown

1994-01-01

243

Functional genomic screen for modulators of ciliogenesis and cilium length  

Microsoft Academic Search

Primary cilia are evolutionarily conserved cellular organelles that organize diverse signalling pathways. Defects in the formation or function of primary cilia are associated with a spectrum of human diseases and developmental abnormalities. Genetic screens in model organisms have discovered core machineries of cilium assembly and maintenance. However, regulatory molecules that coordinate the biogenesis of primary cilia with other cellular processes,

Joon Kim; Ji Eun Lee; Susanne Heynen-Genel; Eigo Suyama; Keiichiro Ono; Kiyoung Lee; Trey Ideker; Pedro Aza-Blanc; Joseph G. Gleeson

2010-01-01

244

“Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”  

SciTech Connect

Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a novel neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4855 proteins were mapped revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple GEFs and GAPs to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process including those that control Rac and Cdc42 signaling.

Pertz, Olivier C.; Wang, Yingchun; Yang, Feng; Wang, Wei; gay, laurie J.; Gritsenko, Marina A.; Clauss, Therese RW; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

2008-02-12

245

A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function  

PubMed Central

The ability of a protein to carry out a given function results from fundamental physicochemical properties that include the protein’s structure, mechanism of action, and thermodynamic stability. Traditional approaches to study these properties have typically required the direct measurement of the property of interest, oftentimes a laborious undertaking. Although protein properties can be probed by mutagenesis, this approach has been limited by its low throughput. Recent technological developments have enabled the rapid quantification of a protein’s function, such as binding to a ligand, for numerous variants of that protein. Here, we measure the ability of 47,000 variants of a WW domain to bind to a peptide ligand and use these functional measurements to identify stabilizing mutations without directly assaying stability. Our approach is rooted in the well-established concept that protein function is closely related to stability. Protein function is generally reduced by destabilizing mutations, but this decrease can be rescued by stabilizing mutations. Based on this observation, we introduce partner potentiation, a metric that uses this rescue ability to identify stabilizing mutations, and identify 15 candidate stabilizing mutations in the WW domain. We tested six candidates by thermal denaturation and found two highly stabilizing mutations, one more stabilizing than any previously known mutation. Thus, physicochemical properties such as stability are latent within these large-scale protein functional data and can be revealed by systematic analysis. This approach should allow other protein properties to be discovered.

Araya, Carlos L.; Fowler, Douglas M.; Chen, Wentao; Muniez, Ike; Kelly, Jeffery W.; Fields, Stanley

2012-01-01

246

A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression  

PubMed Central

Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs), will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents). With the extension of this analysis to an Array-CGH dataset (glioblastomas) from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

2011-01-01

247

The plasminogen activator system modulates sympathetic nerve function  

PubMed Central

Sympathetic neurons synthesize and release tissue plasminogen activator (t-PA). We investigated whether t-PA modulates sympathetic activity. t-PA inhibition markedly reduced contraction of the guinea pig vas deferens to electrical field stimulation (EFS) and norepinephrine (NE) exocytosis from cardiac synaptosomes. Recombinant t-PA (rt-PA) induced exocytotic and carrier-mediated NE release from cardiac synaptosomes and cultured neuroblastoma cells; this was a plasmin-independent effect but was potentiated by a fibrinogen cleavage product. Notably, hearts from t-PA–null mice released much less NE upon EFS than their wild-type (WT) controls (i.e., a 76.5% decrease; P < 0.01), whereas hearts from plasminogen activator inhibitor-1 (PAI-1)–null mice released much more NE (i.e., a 275% increase; P < 0.05). Furthermore, vasa deferentia from t-PA–null mice were hyporesponsive to EFS (P < 0.0001) but were normalized by the addition of rt-PA. In contrast, vasa from PAI-1–null mice were much more responsive (P < 0.05). Coronary NE overflow from hearts subjected to ischemia/reperfusion was much smaller in t-PA–null than in WT control mice (P < 0.01). Furthermore, reperfusion arrhythmias were significantly reduced (P < 0.05) in t-PA–null hearts. Thus, t-PA enhances NE release from sympathetic nerves and contributes to cardiac arrhythmias in ischemia/reperfusion. Because the risk of arrhythmias and sudden cardiac death is increased in hyperadrenergic conditions, targeting the NE-releasing effect of t-PA may have valuable therapeutic potential.

Schaefer, Ulrich; Machida, Takuji; Vorlova, Sandra; Strickland, Sidney; Levi, Roberto

2006-01-01

248

Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.  

PubMed

3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function. PMID:17284482

Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

2007-05-01

249

The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti  

PubMed Central

Background Rhizobium-Legume symbiosis is an attractive biological process that has been studied for decades because of its importance in agriculture. However, this system has undergone extensive study and although many of the major factors underpinning the process have been discovered using traditional methods, much remains to be discovered. Results Here we present an analysis of the 'Symbiosis Interactome' using novel computational methods in order to address the complex dynamic interactions between proteins involved in the symbiosis of the model bacteria Sinorhizobium meliloti with its plant hosts. Our study constitutes the first large-scale analysis attempting to reconstruct this complex biological process, and to identify novel proteins involved in establishing symbiosis. We identified 263 novel proteins potentially associated with the Symbiosis Interactome. The topology of the Symbiosis Interactome was used to guide experimental techniques attempting to validate novel proteins involved in different stages of symbiosis. The contribution of a set of novel proteins was tested analyzing the symbiotic properties of several S. meliloti mutants. We found mutants with altered symbiotic phenotypes suggesting novel proteins that provide key complementary roles for symbiosis. Conclusion Our 'systems-based model' represents a novel framework for studying host-microbe interactions, provides a theoretical basis for further experimental validations, and can also be applied to the study of other complex processes such as diseases.

Rodriguez-Llorente, Ignacio; Caviedes, Miguel A; Dary, Mohammed; Palomares, Antonio J; Canovas, Francisco M; Peregrin-Alvarez, Jose M

2009-01-01

250

Modeling the allosteric modulation of CCR5 function by Maraviroc.  

PubMed

Maraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand that has recently been marketed for the treatment of HIV infected individuals. This review discusses recent molecular modeling studies of CCR5 by homology to CXC chemokine receptor 4, their contribution to the understanding of the allosteric mode of action of the inhibitor and their potential for the development of future drugs with improved efficiency and preservation of CCR5 biological functions. PMID:24050281

Lagane, Bernard; Garcia-Perez, Javier; Kellenberger, Esther

2013-01-01

251

Identifying responsive functional modules from protein-protein interaction network  

Microsoft Academic Search

Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical\\u000a behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific\\u000a cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount\\u000a of protein interaction data have

Zikai Wu; Xingming Zhao; Luonan Chen

2009-01-01

252

Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle.  

PubMed

The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR. PMID:15602008

Laporte, Régent; Hui, Adrian; Laher, Ismail

2004-12-01

253

Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function.  

PubMed

The formation of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) heteromers enables signaling diversification and holds great promise for improved drug selectivity. Most studies of these oligomerization events have been conducted in heterologous expression systems, and in vivo validation is lacking in most cases, thus questioning the physiological significance of GPCR heteromerization. The melatonin receptors MT1 and MT2 exist as homomers and heteromers when expressed in cultured cells. We showed that melatonin MT1/MT2 heteromers mediated the effect of melatonin on the light sensitivity of rod photoreceptors in mice. This effect of melatonin involved activation of the heteromer-specific phospholipase C and protein kinase C (PLC/PKC) pathway and was abolished in MT1(-/-) or MT2(-/-) mice, as well as in mice overexpressing a nonfunctional MT2 mutant that interfered with the formation of functional MT1/MT2 heteromers in photoreceptor cells. Not only does this study establish an essential role of melatonin receptor heteromers in retinal function, it also provides in vivo support for the physiological importance of GPCR heteromerization. Thus, the MT1/MT2 heteromer complex may provide a specific pharmacological target to improve photoreceptor function. PMID:24106342

Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journé, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sébastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca

2013-10-01

254

Modulation of synaptic function through the ?-neurexin-specific ligand neurexophilin-1.  

PubMed

Neurotransmission at different synapses is highly variable, and cell-adhesion molecules like ?-neurexins (?-Nrxn) and their extracellular binding partners determine synapse function. Although ?-Nrxn affect transmission at excitatory and inhibitory synapses, the contribution of neurexophilin-1 (Nxph1), an ?-Nrxn ligand with restricted expression in subpopulations of inhibitory neurons, is unclear. To reveal its role, we investigated mice that either lack or overexpress Nxph1. We found that genetic deletion of Nxph1 impaired GABAB receptor (GABA(B)R)-dependent short-term depression of inhibitory synapses in the nucleus reticularis thalami, a region where Nxph1 is normally expressed at high levels. To test the conclusion that Nxph1 supports presynaptic GABA(B)R, we expressed Nxph1 ectopically at excitatory terminals in the neocortex, which normally do not contain this molecule but can be modulated by GABA(B)R. We generated Nxph1-GFP transgenic mice under control of the Thy1.2 promoter and observed a reduced short-term facilitation at these excitatory synapses, representing an inverse phenotype to the knockout. Consistently, the diminished facilitation could be reversed by pharmacologically blocking GABA(B)R with CGP-55845. Moreover, a complete rescue was achieved by additional blocking of postsynaptic GABA(A)R with intracellular picrotoxin or gabazine, suggesting that Nxph1 is able to recruit or stabilize both presynaptic GABA(B)R and postsynaptic GABA(A)R. In support, immunoelectron microscopy validated the localization of ectopic Nxph1 at the synaptic cleft of excitatory synapses in transgenic mice and revealed an enrichment of GABA(A)R and GABA(B)R subunits compared with wild-type animals. Thus, our data propose that Nxph1 plays an instructive role in synaptic short-term plasticity and the configuration with GABA receptors. PMID:24639499

Born, Gesche; Breuer, Dorothee; Wang, Shaopeng; Rohlmann, Astrid; Coulon, Philippe; Vakili, Puja; Reissner, Carsten; Kiefer, Friedemann; Heine, Martin; Pape, Hans-Christian; Missler, Markus

2014-04-01

255

Modulation of synaptic function through the ?-neurexin-specific ligand neurexophilin-1  

PubMed Central

Neurotransmission at different synapses is highly variable, and cell-adhesion molecules like ?-neurexins (?-Nrxn) and their extracellular binding partners determine synapse function. Although ?-Nrxn affect transmission at excitatory and inhibitory synapses, the contribution of neurexophilin-1 (Nxph1), an ?-Nrxn ligand with restricted expression in subpopulations of inhibitory neurons, is unclear. To reveal its role, we investigated mice that either lack or overexpress Nxph1. We found that genetic deletion of Nxph1 impaired GABAB receptor (GABABR)-dependent short-term depression of inhibitory synapses in the nucleus reticularis thalami, a region where Nxph1 is normally expressed at high levels. To test the conclusion that Nxph1 supports presynaptic GABABR, we expressed Nxph1 ectopically at excitatory terminals in the neocortex, which normally do not contain this molecule but can be modulated by GABABR. We generated Nxph1-GFP transgenic mice under control of the Thy1.2 promoter and observed a reduced short-term facilitation at these excitatory synapses, representing an inverse phenotype to the knockout. Consistently, the diminished facilitation could be reversed by pharmacologically blocking GABABR with CGP-55845. Moreover, a complete rescue was achieved by additional blocking of postsynaptic GABAAR with intracellular picrotoxin or gabazine, suggesting that Nxph1 is able to recruit or stabilize both presynaptic GABABR and postsynaptic GABAAR. In support, immunoelectron microscopy validated the localization of ectopic Nxph1 at the synaptic cleft of excitatory synapses in transgenic mice and revealed an enrichment of GABAAR and GABABR subunits compared with wild-type animals. Thus, our data propose that Nxph1 plays an instructive role in synaptic short-term plasticity and the configuration with GABA receptors.

Born, Gesche; Breuer, Dorothee; Wang, Shaopeng; Rohlmann, Astrid; Coulon, Philippe; Vakili, Puja; Reissner, Carsten; Kiefer, Friedemann; Heine, Martin; Pape, Hans-Christian; Missler, Markus

2014-01-01

256

Functional Influence-Based Approach to Identify Overlapping Modules in Biological Networks  

Microsoft Academic Search

\\u000a The inherent, dynamic, and structural behaviors of complex biological networks in a topological perspective have been widely\\u000a studied recently. These studies have attempted to discover hidden functional knowledge on a system level since biological\\u000a networks provide insights into the underlying mechanisms of biological processes and molecular functions within a cell. Functional\\u000a modules can be identified from biological networks as a

Young-Rae Cho; Aidong Zhang

257

Structural and functional analysis of amphioxus HIF? reveals ancient features of the HIF? family.  

PubMed

Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to hypoxia. To gain insight into the structural and functional evolution of the HIF family, we characterized the HIF? gene from amphioxus, an invertebrate chordate, and identified several alternatively spliced HIF? isoforms. Whereas HIF? Ia, the full-length isoform, contained a complete oxygen-dependent degradation (ODD) domain, the isoforms Ib, Ic, and Id had 1 or 2 deletions in the ODD domain. When tagged with GFP and tested in mammalian cells, the amphioxus HIF? Ia protein level increased in response to hypoxia or CoCl2 treatment, whereas HIF? Ib, Ic, and Id showed reduced or no hypoxia regulation. Deletion of the ODD sequence in HIF? Ia up-regulated the HIF? Ia levels under normoxia. Gene expression analysis revealed HIF? Ic to be the predominant isoform in embryos and larvae, whereas isoform Ia was the most abundant form in the adult stage. The expression levels of Ib and Id were very low. Hypoxia treatment of adults had no effect on the mRNA levels of these HIF? isoforms. Functional analyses in mammalian cells showed all 4 HIF? isoforms capable of entering the nucleus and activating hypoxia response element-dependent reporter gene expression. The functional nuclear location signal (NLS) mapped to 3 clusters of basic residues. (775)KKARL functioned as the primary NLS, but (737)KRK and (754)KK also contributed to the nuclear localization. All amphioxus HIF? isoforms had 2 functional transactivation domains (TADs). Its C-terminal transactivation (C-TAD) shared high sequence identity with the human HIF-1? and HIF-2? C-TAD. This domain contained a conserved asparagine, and its mutation resulted in an increase in transcriptional activity. These findings reveal many ancient features of the HIF? family and provide novel insights into the evolution of the HIF? family.-Gao, S., Lu, L., Bai, Y., Zhang, P., Song, W., Duan, C. Structural and functional analysis of amphioxus HIF? reveals ancient features of the HIF? family. PMID:24174425

Gao, Shan; Lu, Ling; Bai, Yan; Zhang, Peng; Song, Weibo; Duan, Cunming

2014-04-01

258

Spatio-Temporal Correlation Tensors Reveal Functional Structure in Human Brain  

PubMed Central

Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.

Ding, Zhaohua; Newton, Allen T.; Xu, Ran; Anderson, Adam W.; Morgan, Victoria L.; Gore, John C.

2013-01-01

259

IL-28A (IFN-?2) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease  

PubMed Central

IL-28 (IFN-?) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-?. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28R??/? mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c+ dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-??/? mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c+ cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c+ DC function in experimental allergic asthma.

Koltsida, Ourania; Hausding, Michael; Stavropoulos, Athanasios; Koch, Sonja; Tzelepis, George; Ubel, Caroline; Kotenko, Sergei V; Sideras, Paschalis; Lehr, Hans A; Tepe, Marcus; Klucher, Kevin M; Doyle, Sean E; Neurath, Markus F; Finotto, Susetta; Andreakos, Evangelos

2011-01-01

260

Complex Interplay between the P-Glycoprotein Multidrug Efflux Pump and the Membrane: Its Role in Modulating Protein Function.  

PubMed

Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1), which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter's transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behavior of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding, and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug-binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains, which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however, it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp's catalytic cycle may lead to new strategies to combat clinical drug resistance. PMID:24624364

Sharom, Frances Jane

2014-01-01

261

A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI.  

PubMed

Many cognitive and clinical neuroscience research studies seek to determine how contextual factors modulate cognitive processes. In fMRI, hypotheses about how context modulates distributed patterns of information processing are often tested by comparing functional connectivity between neural regions A and B as a function of task conditions X and Y, which is termed context-modulated functional connectivity (FC). There exist two exploratory statistical approaches to testing context-modulated FC: the beta-series method and psychophysiological interaction (PPI) analysis methods. While these approaches are commonly used, their relative power for detecting context-modulated FC is unknown, especially with respect to real-world experimental parameters (e.g., number of stimulus repetitions, inter-trial-interval, stimulus duration). Here, we use simulations to compare power for detecting context-modulated FC between the standard PPI formulation (sPPI), generalized PPI formulation (gPPI), and beta series methods. Simulation results demonstrate that gPPI and beta series methods are generally more powerful than sPPI. Whether gPPI or beta series methods performed more powerfully depended on experiment parameters: block designs favor the gPPI, whereas the beta series method was more powerful for designs with more trial repetitions and it also retained more power under conditions of hemodynamic response function variability. On a real dataset of adolescent girls, the PPI methods appeared to have greater sensitivity in detecting task-modulated FC when using a block design and the beta series method appeared to have greater sensitivity when using an event-related design with many trial repetitions. Implications of these performance results are discussed. PMID:24055504

Cisler, Josh M; Bush, Keith; Steele, J Scott

2014-01-01

262

Modulating endothelial barrier function by targeting vimentin phosphorylation.  

PubMed

Vimentin is a major intermediate filament protein in vascular endothelial cells which might be involved in their function as a barrier tissue. It is proposed to dynamically maintain integrity of the endothelium as a tightly regulated permeability barrier that is subjected to a variety of shear and contractile forces. The results described in this report demonstrate that vimentin plays that role through mechanisms that are dependent on its phosphorylation state. Withaferin A (WFA), a vimentin targeting drug is shown to disrupt endothelial barrier function through its effects on vimentin filament distribution and physical properties. These effects are related to WFA's ability to increase vimentin phosphorylation. Through overexpressing a non-phosphorylatable vimentin mutant we can block the effects of WFA on vimentin distribution and barrier permeability. The barrier augmentation effect appears to extend to endothelial cells that do not express detectable mutant vimentin which might suggest transmissible effects across cells. Blocking vimentin phosphorylation also protects the endothelial barrier against LPS endotoxin, implicating it as a target for drug development against pulmonary edema and acute respiratory distress syndrome (ARDS). J. Cell. Physiol. 229: 1484-1493, 2014. © 2014 Wiley Periodicals, Inc. PMID:24648251

Liu, Tiegang; Ghamloush, Maher M; Aldawood, Ali; Warburton, Rod; Toksoz, Deniz; Hill, Nicholas S; Tang, Dale D; Kayyali, Usamah S

2014-10-01

263

Global Gene Expression Profiling of Proliferative Phase Endometrium Reveals Distinct Functional Subdivisions  

PubMed Central

The human endometrium follows a predictable pattern of development during the proliferative phase. Endometrial thickness increases after day 3 and then plateaus at days 9 to 10 of the menstrual cycle despite continued high serum levels of estrogen. We hypothesized that proliferative phase endometrium undergoes more than simple estrogen responsive growth, rather it is characterized by complex time-dependent functional activities reflected in differential gene expression. Nine endometrial RNA samples from healthy participants were subjected to microarray analysis and 15 samples were used for quantitative real-time polymerase chain reaction. The samples were divided into early, mid, or late proliferative phase. The early proliferative phase showed higher expression of genes including transforming growth factor ?2, chemokine (C-C motif) ligand 18 (CCL18), and metallothionein 2A. The mid-proliferative phase was characterized by higher expression of heat shock proteins and implantation-associated genes including Indian hedgehog, secreted frizzled protein 4, and progesterone receptor. In the late proliferative phase, we identified increased angiotensin II receptor, type 2 and large decrease in expression of genes related to natural killer (NK) cell function. We demonstrate a unique gene expression signature at distinct time points within the proliferative phase. The early proliferative phase is characterized by tissue remodeling, angiogenesis, and modulation of inflammation; the mid-proliferative phase is characterized not only by proliferation in response to estrogens but also marks the onset of expression of genes required for endometrial receptivity and a dampening of estrogen responsiveness. In the late proliferative phase, changes in immune function and NK cells predominate. The proliferative phase is not simply a uniform period of estrogen responsive endometrial growth that can be considered as a single experimental time point when evaluating endometrial development; rather the proliferative phase is complex with differing functions and patterns of gene expression.

Petracco, Rafaella G.; Kong, Alice; Grechukhina, Olga; Krikun, Graciela

2012-01-01

264

Construction of multi-functional open modulized Matlab simulation toolbox for imaging ladar system  

NASA Astrophysics Data System (ADS)

Ladar system simulation is to simulate the ladar models using computer simulation technology in order to predict the performance of the ladar system. This paper presents the developments of laser imaging radar simulation for domestic and overseas studies and the studies of computer simulation on ladar system with different application requests. The LadarSim and FOI-LadarSIM simulation facilities of Utah State University and Swedish Defence Research Agency are introduced in details. This paper presents the low level of simulation scale, un-unified design and applications of domestic researches in imaging ladar system simulation, which are mostly to achieve simple function simulation based on ranging equations for ladar systems. Design of laser imaging radar simulation with open and modularized structure is proposed to design unified modules for ladar system, laser emitter, atmosphere models, target models, signal receiver, parameters setting and system controller. Unified Matlab toolbox and standard control modules have been built with regulated input and output of the functions, and the communication protocols between hardware modules. A simulation based on ICCD gain-modulated imaging ladar system for a space shuttle is made based on the toolbox. The simulation result shows that the models and parameter settings of the Matlab toolbox are able to simulate the actual detection process precisely. The unified control module and pre-defined parameter settings simplify the simulation of imaging ladar detection. Its open structures enable the toolbox to be modified for specialized requests. The modulization gives simulations flexibility.

Wu, Long; Zhao, Yuan; Tang, Meng; He, Jiang; Zhang, Yong

2011-06-01

265

Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: A feasibility study  

PubMed Central

Background We developed an electroencephalogram-based brain computer interface system to modulate functional electrical stimulation (FES) to the affected tibialis anterior muscle in a stroke patient. The intensity of FES current increased in a stepwise manner when the event-related desynchronization (ERD) reflecting motor intent was continuously detected from the primary cortical motor area. Methods We tested the feasibility of the ERD-modulated FES system in comparison with FES without ERD modulation. The stroke patient who presented with severe hemiparesis attempted to perform dorsiflexion of the paralyzed ankle during which FES was applied either with or without ERD modulation. Results After 20?minutes of training, the range of movement at the ankle joint and the electromyography amplitude of the affected tibialis anterior muscle were significantly increased following the ERD-modulated FES compared with the FES alone. Conclusions The proposed rehabilitation technique using ERD-modulated FES for stroke patients was feasible. The system holds potentials to improve the limb function and to benefit stroke patients.

2012-01-01

266

Modulating protein activity and cellular function by methionine residue oxidation.  

PubMed

The sulfur-containing amino acid residue methionine (Met) in a peptide/protein is readily oxidized to methionine sulfoxide [Met(O)] by reactive oxygen species both in vitro and in vivo. Methionine residue oxidation by oxidants is found in an accumulating number of important proteins. Met sulfoxidation activates calcium/calmodulin-dependent protein kinase II and the large conductance calcium-activated potassium channels, delays inactivation of the Shaker potassium channel ShC/B and L-type voltage-dependent calcium channels. Sulfoxidation at critical Met residues inhibits fibrillation of atherosclerosis-related apolipoproteins and multiple neurodegenerative disease-related proteins, such as amyloid beta, ?-synuclein, prion, and others. Methionine residue oxidation is also correlated with marked changes in cellular activities. Controlled key methionine residue oxidation may be used as an oxi-genetics tool to dissect specific protein function in situ. PMID:22146868

Cui, Zong Jie; Han, Zong Qiang; Li, Zhi Ying

2012-08-01

267

Fc glycan-modulated immunoglobulin g effector functions.  

PubMed

Immunoglobulin G (IgG) molecules are glycoproteins and residues in the sugar moiety attached to the IgG constant fragment (Fc) are essential for IgG functionality such as binding to cellular Fc receptors and complement activation. The core of this sugar moiety consists of a bi-antennary heptameric structure of mannose and N-acetylglucosamine (GlcNAc), further decorated with terminal and branching residues including galactose, sialic acid, fucose, and GlcNAc. Presence or absence of distinct residues such as fucose and sialic acid can dramatically alter pro- and anti-inflammatory IgG activities which could be harnessed for immunotherapeutic purposes. Here we review recent advances in understanding the role of the IgG-Fc glycan during immune responses and for immunotherapy with a focus on sialic acid and intravenous immunoglobulin (IVIG) treatment. PMID:24760108

Quast, Isaak; Lünemann, Jan D

2014-07-01

268

Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen  

PubMed Central

The synaptotagmins (syts) are a family of molecules that regulate membrane fusion. There are 17 mammalian syt isoforms, most of which are expressed in the brain. However, little is known regarding the subcellular location and function of the majority of these syts in neurons, largely due to a lack of isoform-specific antibodies. Here we generated pHluorin-syt constructs harboring a luminal domain pH sensor, which reports localization, pH of organelles to which syts are targeted, and the kinetics and sites of exocytosis and endocytosis. Of interest, only syt-1 and 2 are targeted to synaptic vesicles, whereas other isoforms selectively recycle in dendrites (syt-3 and 11), axons (syt-5, 7, 10, and 17), or both axons and dendrites (syt-4, 6, 9, and 12), where they undergo exocytosis and endocytosis with distinctive kinetics. Hence most syt isoforms localize to distinct secretory organelles in both axons and dendrites and may regulate neuropeptide/neurotrophin release to modulate neuronal function.

Dean, Camin; Dunning, F. Mark; Liu, Huisheng; Bomba-Warczak, Ewa; Martens, Henrik; Bharat, Vinita; Ahmed, Saheeb; Chapman, Edwin R.

2012-01-01

269

Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens.  

PubMed

While Pavlovian and operant conditioning influence drug-seeking behavior, the role of rapid dopamine signaling in modulating these processes is unknown. During self-administration of cocaine, two dopaminergic signals, measured with 100 ms resolution, occurred immediately before and after the lever press (termed pre- and post-response dopamine transients). Extinction of self-administration revealed that these two signals were functionally distinct. Pre-response transients, which could reflect the motivation to obtain the drug, did not decline during extinction. Remarkably, post-response dopamine transients attenuated as extinction progressed, suggesting that they encode the learned association between environmental cues and cocaine. A third type of dopamine transient, not time locked to overt stimuli, decreased in frequency during extinction and correlated with calculated cocaine concentrations. These results show that dopamine release transients involved in different aspects of cocaine self-administration are highly plastic--differentially governed by motivation, learned associations linked with environmental stimuli, and the pharmacological actions of cocaine. PMID:15944133

Stuber, Garret D; Wightman, R Mark; Carelli, Regina M

2005-05-19

270

Modulation of the Akt Pathway Reveals a Novel Link with PERK/eIF2?, which Is Relevant during Hypoxia  

PubMed Central

The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6. The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present evidence that activation of PERK/eIF2? requires Akt and that PERK is a direct Akt target. Chemical activation of this novel Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we show that hypoxia-induced activation of eIF2? requires Akt, providing a physiologically relevant condition for the interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one another as a means of controlling cell fate.

Sanchez, Manuel Alejandro; Urrutia, Carolina; Grande, Alicia; Risso, Guillermo; Srebrow, Anabella; Alfaro, Jennifer; Colman-Lerner, Alejandro

2013-01-01

271

MODULATION OF CHONDROCYTE BEHAVIOR THROUGH TAILORING FUNCTIONAL SYNTHETIC SACCHARIDE-PEPTIDE HYDROGELS  

PubMed Central

Tailoring three-dimensional (3D) biomaterial environments to provide specific cues in order to modulate function of encapsulated cells could potentially eliminate the need for addition of exogenous cues in cartilage tissue engineering. We recently developed saccharide-peptide copolymer hydrogels for cell culture and tissue engineering applications. In this study, we aim to tailor our saccharide-peptide hydrogel for encapsulating and culturing chondrocytes in 3D and examine the effects of changing single amino acid moieties differing in hydrophobicity/hydrophilicity (valine (V), cysteine (C), tyrosine (Y)) on modulation of chondrocyte function. Encapsulated chondrocytes remained viable over 21 days in vitro. Glycosaminoglycan and collagen content was significantly higher in Y-functionalized hydrogels compared to V-functionalized hydrogels. Extensive matrix accumulation and concomitant increase in mechanical properties was evident over time, particularly with the presence of Y amino acid. After 21 days in vitro, Y-functionalized hydrogels attained a modulus of 193±46 kPa, compared to 44±21 kPa for V-functionalized hydrogels. Remarkably, mechanical and biochemical properties of chondrocyte-laden hydrogels were modulated by change in a single amino acid moiety. This unique property, combined with the versatility and biocompatibility, makes our saccharide-peptide hydrogels promising candidates for further investigation of combinatorial effects of multiple functional groups on controlling chondrocyte and other cellular function and behavior.

Chawla, Kanika; Yu, Ting-bin; Stutts, Lisa; Yen, Max; Guan, Zhibin

2012-01-01

272

Conserved functions for Mos in eumetazoan oocyte maturation revealed by studies in a cnidarian.  

PubMed

The kinase Mos, which activates intracellularly the MAP kinase pathway, is a key regulator of animal oocyte meiotic maturation. In vertebrate and echinoderm models, Mos RNA translation upon oocyte hormonal stimulation mediates "cytostatic" arrest of the egg after meiosis, as well as diverse earlier events [1-5]. Our phylogenetic survey has revealed that MOS genes are conserved in cnidarians and ctenophores, but not found outside the metazoa or in sponges. We demonstrated MAP kinase-mediated cytostatic activity for Mos orthologs from Pleurobrachia (ctenophore) and Clytia (cnidarian) by RNA injection into Xenopus blastomeres. Analyses of endogenous Mos in Clytia with morpholino antisense oligonucleotides and pharmacological inhibition demonstrated that Mos/MAP kinase function in postmeiotic arrest is conserved. They also revealed additional roles in spindle formation and positioning, strongly reminiscent of observations in starfish, mouse, and Xenopus. Unusually, cnidarians were found to possess multiple Mos paralogs. In Clytia, one of two maternally expressed paralogs accounted for the majority MAP kinase activation during maturation, whereas the other may be subject to differential translational regulation and have additional roles. Our findings indicate that Mos appeared early during animal evolution as an oocyte-expressed kinase and functioned ancestrally in regulating core specializations of female meiosis. PMID:19230670

Amiel, Aldine; Leclère, Lucas; Robert, Lucie; Chevalier, Sandra; Houliston, Evelyn

2009-02-24

273

Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs  

PubMed Central

A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks.

Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balazs; Boone, Charles; Andrews, Brenda J.

2012-01-01

274

Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins  

PubMed Central

A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two-hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two-hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome-wide scale.

Fromont-Racine, Micheline; Mayes, Andrew E.; Brunet-Simon, Adeline; Rain, Jean-Christophe; Colley, Alan; Dix, Ian; Decourty, Laurence; Joly, Nicolas; Ricard, Florence; Beggs, Jean D.

2000-01-01

275

Separable roles of UFO during floral development revealed by conditional restoration of gene function.  

PubMed

The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system. The previously known functions of UFO could be separated and related to its expression at specific stages of development. We show that a 24- to 48-hour period of UFO expression from floral stage 2, before any floral organs are visible, is sufficient to restore normal petal and stamen development. The earliest requirement for UFO is during stage 2, when the endogenous UFO gene is transiently expressed in the centre of the wild-type flower and is required to specify the initiation patterns of petal, stamen and carpel primordia. Petal and stamen identity is determined during stages 2 or 3, when UFO is normally expressed in the presumptive second and third whorl. Although endogenous UFO expression is absent from the stamen whorl from stage 4 onwards, stamen identity can be restored by UFO activation up to stage 6. We also observed floral phenotypes not observed in loss-of-function or constitutive gain-of-function backgrounds, revealing additional roles of UFO in outgrowth of petal primordia. PMID:12506008

Laufs, Patrick; Coen, Enrico; Kronenberger, Jocelyne; Traas, Jan; Doonan, John

2003-02-01

276

Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA  

PubMed Central

We developed wavelet-based functional ANOVA (wfANOVA) as a novel approach for comparing neurophysiological signals that are functions of time. Temporal resolution is often sacrificed by analyzing such data in large time bins, increasing statistical power by reducing the number of comparisons. We performed ANOVA in the wavelet domain because differences between curves tend to be represented by a few temporally localized wavelets, which we transformed back to the time domain for visualization. We compared wfANOVA and ANOVA performed in the time domain (tANOVA) on both experimental electromyographic (EMG) signals from responses to perturbation during standing balance across changes in peak perturbation acceleration (3 levels) and velocity (4 levels) and on simulated data with known contrasts. In experimental EMG data, wfANOVA revealed the continuous shape and magnitude of significant differences over time without a priori selection of time bins. However, tANOVA revealed only the largest differences at discontinuous time points, resulting in features with later onsets and shorter durations than those identified using wfANOVA (P < 0.02). Furthermore, wfANOVA required significantly fewer (?¼×; P < 0.015) significant F tests than tANOVA, resulting in post hoc tests with increased power. In simulated EMG data, wfANOVA identified known contrast curves with a high level of precision (r2 = 0.94 ± 0.08) and performed better than tANOVA across noise levels (P < <0.01). Therefore, wfANOVA may be useful for revealing differences in the shape and magnitude of neurophysiological signals (e.g., EMG, firing rates) across multiple conditions with both high temporal resolution and high statistical power.

McKay, J. Lucas; Welch, Torrence D. J.; Vidakovic, Brani

2013-01-01

277

Intracellular signalling involved in modulating human endothelial barrier function*  

PubMed Central

The endothelium dynamically regulates the extravasation of hormones, macromolecules and other solutes. In pathological conditions, endothelial hyperpermeability can be induced by vasoactive agents, which induce tiny leakage sites between the cells, and by cytokines, in particular vascular endothelial growth factor, which increase the exchange of plasma proteins by vesicles and intracellular pores. It is generally believed that the interaction of actin and non-muscle myosin in the periphery of the endothelial cell, and the destabilization of endothelial junctions, are required for endothelial hyperpermeability induced by vasoactive agents. Transient short-term hyperpermeability induced by histamine involves Ca2+/calmodulin-dependent activation of the myosin light chain (MLC) kinase. Prolonged elevated permeability induced by thrombin in addition involves activation of the small GTPase RhoA and Rho kinase, which inhibits dephosphorylation of MLC. It also involves the action of other protein kinases. Several mechanisms can increase endothelial barrier function, depending on the tissue affected and the cause of hyperpermeability. They include blockage of specific receptors, and elevation of cyclic AMP by agents such as ?2-adrenergic agents. Depending on the vascular bed, nitric oxide and cyclic GMP can counteract or aggravate endothelial hyperpermeability. Finally, inhibitors of RhoA activation and Rho kinase represent a potentially valuable group of agents with endothelial hyperpermeability-reducing properties.

van Hinsbergh, Victor WM; van Nieuw Amerongen, Geerten P

2002-01-01

278

MR and GR functional SNPs may modulate tobacco smoking susceptibility.  

PubMed

A number of studies have demonstrated that stress is involved in all aspects of smoking behavior, including initiation, maintenance and relapse. The mineralocorticoid (MR) and glucocorticoid (GR) receptors are expressed in several brain areas and play a key role in negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis. As nicotine increases the activation of the HPA axis, we wondered if functional SNPs (single nucleotide polymorphisms) in MR and GR coding genes (NR3C2 rs5522 and NR3C1 rs6198, respectively) may be involved in smoking susceptibility. The sample included 627 volunteers, of which 514 were never-smokers and 113 lifetime smokers. We report an interaction effect between rs5522 and rs6198 SNPs. The odds ratio (OR) for the presence of the NR3C2 rs5522 Val allele in NR3C1 rs6198 G carriers was 0.18 (P = 0.007), while in rs6198 G noncarriers the OR was 1.83 (P = 0.027). We also found main effects of the NR3C1 rs6198 G allele on number of cigarettes smoked per day (P = 0.027) and in total score of the Fagerström Test for Nicotine Dependence (P = 0.007). These findings are consistent with a possible link between NR3C2 and NR3C1 polymorphisms and smoking behavior and provide a first partial replication for a nominally significant GWAS finding between NR3C2 and tobacco smoking. PMID:23543128

Rovaris, Diego L; Mota, Nina R; de Azeredo, Lucas A; Cupertino, Renata B; Bertuzzi, Guilherme P; Polina, Evelise R; Contini, Verônica; Kortmann, Gustavo L; Vitola, Eduardo S; Grevet, Eugenio H; Grassi-Oliveira, Rodrigo; Callegari-Jacques, Sidia M; Bau, Claiton H D

2013-10-01

279

CRISPR-Cas Functional Module Exchange in Escherichia coli  

PubMed Central

ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes constitute the CRISPR-Cas systems found in the Bacteria and Archaea domains. At least in some strains they provide an efficient barrier against transmissible genetic elements such as plasmids and viruses. Two CRISPR-Cas systems have been identified in Escherichia coli, pertaining to subtypes I-E (cas-E genes) and I-F (cas-F genes), respectively. In order to unveil the evolutionary dynamics of such systems, we analyzed the sequence variations in the CRISPR-Cas loci of a collection of 131 E. coli strains. Our results show that the strain grouping inferred from these CRISPR data slightly differs from the phylogeny of the species, suggesting the occurrence of recombinational events between CRISPR arrays. Moreover, we determined that the primary cas-E genes of E. coli were altogether replaced with a substantially different variant in a minor group of strains that include K-12. Insertion elements play an important role in this variability. This result underlines the interchange capacity of CRISPR-Cas constituents and hints that at least some functional aspects documented for the K-12 system may not apply to the vast majority of E. coli strains.

Almendros, Cristobal; Mojica, Francisco J. M.; Diez-Villasenor, Cesar; Guzman, Noemi M.; Garcia-Martinez, Jesus

2014-01-01

280

Intracellular signalling involved in modulating human endothelial barrier function.  

PubMed

The endothelium dynamically regulates the extravasation of hormones, macromolecules and other solutes. In pathological conditions, endothelial hyperpermeability can be induced by vasoactive agents, which induce tiny leakage sites between the cells, and by cytokines, in particular vascular endothelial growth factor, which increase the exchange of plasma proteins by vesicles and intracellular pores. It is generally believed that the interaction of actin and non-muscle myosin in the periphery of the endothelial cell, and the destabilization of endothelial junctions, are required for endothelial hyperpermeability induced by vasoactive agents. Transient short-term hyperpermeability induced by histamine involves Ca2+/calmodulin-dependent activation of the myosin light chain (MLC) kinase. Prolonged elevated permeability induced by thrombin in addition involves activation of the small GTPase RhoA and Rho kinase, which inhibits dephosphorylation of MLC. It also involves the action of other protein kinases. Several mechanisms can increase endothelial barrier function, depending on the tissue affected and the cause of hyperpermeability. They include blockage of specific receptors, and elevation of cyclic AMP by agents such as beta2-adrenergic agents. Depending on the vascular bed, nitric oxide and cyclic GMP can counteract or aggravate endothelial hyperpermeability. Finally, inhibitors of RhoA activation and Rho kinase represent a potentially valuable group of agents with endothelial hyperpermeability-reducing properties. PMID:12162723

van Hinsbergh, Victor W M; van Nieuw Amerongen, Geerten P

2002-06-01

281

Antihelminthic niclosamide modulates dendritic cells activation and function.  

PubMed

Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-? production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-?B may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases. PMID:24561310

Wu, Chieh-Shan; Li, Yi-Rong; Chen, Jeremy J W; Chen, Ying-Che; Chu, Chiang-Liang; Pan, I-Hong; Wu, Yu-Shan; Lin, Chi-Chen

2014-01-01

282

Lasting Modulation Effects of rTMS on Neural Activity and Connectivity as Revealed by Resting-State EEG.  

PubMed

The long-lasting neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) are of great interest for therapeutic applications in various neurological and psychiatric disorders, due to which functional connectivity among brain regions is profoundly disturbed. Classic TMS studies selectively alter neural activity in specific brain regions and observe neural activity changes on nonperturbed areas to infer underlying connectivity and its changes. Less has been indicated in direct measures of functional connectivity and/or neural network and on how connectivity/network alterations occur. Here, we developed a novel analysis framework to directly investigate both neural activity and connectivity changes induced by rTMS from resting-state EEG (rsEEG) acquired in a group of subjects with a chronic disorder of imbalance, known as the mal de debarquement syndrome (MdDS). Resting-state activity in multiple functional brain areas was identified through a data-driven blind source separation analysis on rsEEG data, and the connectivity among them was characterized using a phase synchronization measure. Our study revealed that there were significant long-lasting changes in resting-state neural activity, in theta, low alpha, and high alpha bands and neural networks in theta, low alpha, high alpha and beta bands, over broad cortical areas 4 to 5 h after the last application of rTMS in a consecutive five-day protocol. Our results of rsEEG connectivity further indicated that the changes, mainly in the alpha band, over the parietal and occipital cortices from pre- to post-TMS sessions were significantly correlated, in both magnitude and direction, to symptom changes in this group of subjects with MdDS. This connectivity measure not only suggested that rTMS can generate positive treatment effects in MdDS patients, but also revealed new potential targets for future therapeutic trials to improve treatment effects. It is promising that the new connectivity measure from rsEEG can be used to understand the variability in treatment response to rTMS in brain disorders with impaired functional connectivity and, eventually, to determine individually tailored stimulation parameters and treatment procedures in rTMS. PMID:24686227

Ding, Lei; Shou, Guofa; Yuan, Han; Urbano, Diamond; Cha, Yoon-Hee

2014-07-01

283

Sodium channel activity modulates multiple functions in microglia.  

PubMed

Microglia provide surveillance in the central nervous system and become activated following tissue insult. Detailed mechanisms by which microglia detect and respond to their environment are not fully understood, but it is known that microglia express a number of surface receptors and ion channels, including voltage-gated sodium channels, that participate in transduction of external stimuli to intra-cellular responses. To determine whether activated microglia are affected by the activity of sodium channels, we examined the expression of sodium channel isoforms in cultured microglia and the action of sodium channel blockade on multiple functions of activated microglia. Rat microglia in vitro express tetrodotoxin (TTX)-sensitive sodium channels Nav1.1 and Nav1.6 and the TTX-resistant channel Nav1.5, but not detectable levels of Nav1.2, Nav1.3, Nav1.7, Nav1.8, and Nav1.9. Sodium channel blockade with phenytoin (40 microM) and TTX (0.3 microM) significantly reduced by 50-60% the phagocytic activity of microglia activated with lipopolysaccharide (LPS); blockade with 10 microM TTX did not further reduce phagocytic activity. Phenytoin attenuated by approximately 50% the release of IL-1 alpha, IL-1 beta, and TNF-alpha from LPS-stimulated microglia, but had minimal effects on the release of IL-2, IL-4, IL-6, IL-10, MCP-1, and TGF-alpha. TTX (0.3 microM) reduced, but to a smaller extent, the release of IL-1 alpha, IL-1 beta, and TNF-alpha from activated microglia. Phenytoin and TTX also significantly decreased by approximately 50% adenosine triphosphate-induced migration by microglia; studies with microglia cultured from med mice (which lack Nav1.6) indicate that Nav1.6 plays a role in microglial migration. The results demonstrate that the activity of sodium channels contributes to effector roles of activated microglia. PMID:19115387

Black, Joel A; Liu, Shujun; Waxman, Stephen G

2009-08-01

284

Impact of shear rate modulation on vascular function in humans  

PubMed Central

Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow mediated dilation (FMD), a largely nitric oxide mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling and bilateral handgrip exercise. During each intervention, a cuff inflated to 60mmHg was placed on one arm to unilaterally manipulate the shear rate stimulus. In the non-cuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline FMD (4.6, 6.9 and 6.7%) increased similarly in response to heating, handgrip and cycling (8.1, 10.4 and 8.9%, ANOVA; P<0.001, no interaction; 0.89). In contrast, cuffed arm antegrade shear rate was lower than in the non-cuffed arm for all conditions (P<0.05) and the increase in FMD was abolished in this arm (4.7, 6.7 and 6.1%) (2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding which may have relevance for the impact of different exercise interventions on vascular adaptation in humans.

Tinken, Toni M.; Thijssen, Dick H.J.; Hopkins, Nicola; Black, Mark A.; Dawson, Ellen A.; Minson, Christopher T.; Newcomer, Sean C.; Laughlin, M. Harold; Cable, N. Timothy; Green, Daniel J.

2010-01-01

285

Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory  

PubMed Central

Background Functional magnetic resonance imaging (fMRI) studies indicate that the brain organizes its activity into multiple functional networks (FNs) during either resting condition or task-performance. However, the functions of these FNs are not fully understood yet. Methodology/Principal Findings To investigate the operation of these FNs, spatial independent component analysis (sICA) was used to extract FNs from fMRI data acquired from healthy participants performing a visual task with two levels of attention and working memory load. The task-related modulations of extracted FNs were assessed. A group of FNs showed increased activity at low-load conditions and reduced activity at high-load conditions. These FNs together involve the left lateral frontoparietal cortex, insula, and ventromedial prefrontal cortex. A second group of FNs showed increased activity at high-load conditions and reduced activity at low-load conditions. These FNs together involve the intraparietal sulcus, frontal eye field, lateral frontoparietal cortex, insula, and dorsal anterior cingulate, bilaterally. Though the two groups of FNs showed opposite task-related modulations, they overlapped extensively at both the lateral and medial frontoparietal cortex and insula. Such an overlap of FNs would not likely be revealed using standard general-linear-model-based analyses. Conclusions By assessing task-related modulations, this study differentiated the functional roles of overlapping FNs. Several FNs including the left frontoparietal network are implicated in task conditions of low attentional load, while another set of FNs including the dorsal attentional network is implicated in task conditions involving high attentional demands.

Xu, Jiansong; Calhoun, Vince D.; Pearlson, Godfrey D.; Potenza, Marc N.

2014-01-01

286

Molecular mechanisms of COMPLEXIN fusion clamp function in synaptic exocytosis revealed in a new Drosophila mutant.  

PubMed

The COMPLEXIN (CPX) proteins play a critical role in synaptic vesicle fusion and neurotransmitter release. Previous studies demonstrated that CPX functions in both activation of evoked neurotransmitter release and inhibition/clamping of spontaneous synaptic vesicle fusion. Here we report a new cpx mutant in Drosophila melanogaster, cpx(1257), revealing spatially defined and separable pools of CPX which make distinct contributions to the activation and clamping functions. In cpx(1257), lack of only the last C-terminal amino acid of CPX is predicted to disrupt prenylation and membrane targeting of CPX. Immunocytochemical analysis established localization of wild-type CPX to active zone (AZ) regions containing neurotransmitter release sites as well as broader presynaptic membrane compartments including synaptic vesicles. Parallel biochemical studies confirmed CPX membrane association and demonstrated robust binding interactions of CPX with all three SNAREs. This is in contrast to the cpx(1257) mutant, in which AZ localization of CPX persists but general membrane localization and, surprisingly, the bulk of CPX-SNARE protein interactions are abolished. Furthermore, electrophysiological analysis of neuromuscular synapses revealed interesting differences between cpx(1257) and a cpx null mutant. The cpx null exhibited a marked decrease in the EPSC amplitude, slowed EPSC rise and decay times and an increased mEPSC frequency with respect to wild-type. In contrast, cpx(1257) exhibited a wild-type EPSC with an increased mEPSC frequency and thus a selective failure to clamp spontaneous release. These results indicate that spatially distinct and separable interactions of CPX with presynaptic membranes and SNARE proteins mediate separable activation and clamping functions of CPX in neurotransmitter release. PMID:23769723

Iyer, Janani; Wahlmark, Christopher J; Kuser-Ahnert, Giselle A; Kawasaki, Fumiko

2013-09-01

287

LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function.  

PubMed

Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

Rothballer, Andrea; Schwartz, Thomas U; Kutay, Ulrike

2013-01-01

288

Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression  

PubMed Central

Background Gene expression signatures are typically identified by correlating gene expression patterns to a disease phenotype of interest. However, individual gene-based signatures usually suffer from low reproducibility and interpretability. Results We have developed a novel algorithm Iterative Clique Enumeration (ICE) for identifying relatively independent maximal cliques as co-expression modules and a module-based approach to the analysis of gene expression data. Applying this approach on a public breast cancer dataset identified 19 modules whose expression levels were significantly correlated with tumor grade. The correlations were reproducible for 17 modules in an independent breast cancer dataset, and the reproducibility was considerably higher than that based on individual genes or modules identified by other algorithms. Sixteen out of the 17 modules showed significant enrichment in certain Gene Ontology (GO) categories. Specifically, modules related to cell proliferation and immune response were up-regulated in high-grade tumors while those related to cell adhesion was down-regulated. Further analyses showed that transcription factors NYFB, E2F1/E2F3, NRF1, and ELK1 were responsible for the up-regulation of the cell proliferation modules. IRF family and ETS family proteins were responsible for the up-regulation of the immune response modules. Moreover, inhibition of the PPARA signaling pathway may also play an important role in tumor progression. The module without GO enrichment was found to be associated with a potential genomic gain in 8q21-23 in high-grade tumors. The 17-module signature of breast tumor progression clustered patients into subgroups with significantly different relapse-free survival times. Namely, patients with lower cell proliferation and higher cell adhesion levels had significantly lower risk of recurrence, both for all patients (p = 0.004) and for those with grade 2 tumors (p = 0.017). Conclusions The ICE algorithm is effective in identifying relatively independent co-expression modules from gene co-expression networks and the module-based approach illustrated in this study provides a robust, interpretable, and mechanistic characterization of transcriptional changes.

2010-01-01

289

Temporal modulation transfer functions for listeners with real and simulated hearing loss  

PubMed Central

A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment.

Desloge, Joseph G.; Reed, Charlotte M.; Braida, Louis D.; Perez, Zachary D.; Delhorne, Lorraine A.

2011-01-01

290

Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays  

NASA Technical Reports Server (NTRS)

Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.

Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.

1984-01-01

291

Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity  

Microsoft Academic Search

Measuring the modulation transfer function (MTF) of digital imagers focused at or near infinity in laboratory or field settings presents difficulties because the optical path is longer than a typical laboratory. Also, digital imagers can be hindered by low-resolution detectors, resulting in the resolution of the optics surpassing that of the detector. We measure the MTF for a short-wave infrared

Paul W. Nugent; Joseph A. Shaw

2010-01-01

292

An Image Sensor with the Function for Detecting a Modulated Light Signal Improvement of Image Characteristics captured by a Modulated Light  

Microsoft Academic Search

We describe improvement of output characteristics of an image sensor with the function for detecting a modulated light signal. By examining the output characteristics in detail, two effects which degrades the characteristics are identified; \\

Koji YAMAMOTO; Yu OYA; Keiichiro KAGAWA; Jun OHTA; Masahiro NUNOSHITA; Kunihiro WATANABE

293

Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging  

PubMed Central

Background Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance.

Huang, Bo-Tsang; Chang, Pu-Yuan; Su, Ching-Hua; Chao, Chuck C.-K.; Lin-Chao, Sue

2012-01-01

294

Prokaryotic Caspase Homologs: Phylogenetic Patterns and Functional Characteristics Reveal Considerable Diversity  

PubMed Central

Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18%) were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota). Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

Asplund-Samuelsson, Johannes; Bergman, Birgitta; Larsson, John

2012-01-01

295

Hearing without listening: functional connectivity reveals the engagement of multiple nonauditory networks during basic sound processing.  

PubMed

The present functional magnetic resonance imaging (fMRI) study presents data challenging the traditional view that sound is processed almost exclusively in the classical auditory pathway unless imbued with behavioral significance. In a first experiment, subjects were presented with broadband noise in on/off fashion as they performed an unrelated visual task. A conventional analysis assuming predictable sound-evoked responses demonstrated a typical activation pattern that was confined to classical auditory centers. In contrast, spatial independent component analysis (sICA) disclosed multiple networks of acoustically responsive brain centers. One network comprised classical auditory centers, but four others included nominally "nonauditory" areas: cingulo-insular cortex, mediotemporal limbic lobe, basal ganglia, and posterior orbitofrontal cortex, respectively. Functional connectivity analyses confirmed the sICA results by demonstrating coordinated activity between the involved brain structures. In a second experiment, fMRI data obtained from unstimulated (i.e., resting) subjects revealed largely similar networks. Together, these two experiments suggest the existence of a coordinated system of multiple acoustically responsive intrinsic brain networks, comprising classical auditory centers but also other brain areas. Our results suggest that nonauditory centers play a role in sound processing at a very basic level, even when the sound is not intertwined with behaviors requiring the well-known functionality of these regions. PMID:22433051

Langers, Dave R M; Melcher, Jennifer R

2011-01-01

296

Ocean wave-radar modulation transfer functions from the West Coast experiment  

NASA Technical Reports Server (NTRS)

Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

1980-01-01

297

P2 receptor modulation and cytotoxic function in cultured CNS neurons  

Microsoft Academic Search

In this study we investigate the presence, modulation and biological function of P2 receptors and extracellular ATP in cultured cerebellar granule neurons. As we demonstrate by RT-PCR and western blotting, both P2X and P2Y receptor subtypes are expressed and furthermore regulated as a function of neuronal maturation. In early primary cultures, mRNA for most of the P2 receptor subtypes, except

S. Amadio; N. D’Ambrosi; F. Cavaliere; B. Murra; G. Sancesario; G. Bernardi; G. Burnstock; C. Volonté

2002-01-01

298

Intermediate closed state for glycine receptor function revealed by cysteine cross-linking.  

PubMed

Pentameric ligand-gated ion channels (pLGICs) mediate signal transmission by coupling the binding of extracellular ligands to the opening of their ion channel. Agonist binding elicits activation and desensitization of pLGICs, through several conformational states, that are, thus far, incompletely characterized at the structural level. We previously reported for GLIC, a prokaryotic pLGIC, that cross-linking of a pair of cysteines at both sides of the extracellular and transmembrane domain interface stabilizes a locally closed (LC) X-ray structure. Here, we introduced the homologous pair of cysteines on the human ?1 glycine receptor. We show by electrophysiology that cysteine cross-linking produces a gain-of-function phenotype characterized by concomitant constitutive openings, increased agonist potency, and equalization of efficacies of full and partial agonists. However, it also produces a reduction of maximal currents at saturating agonist concentrations without change of the unitary channel conductance, an effect reversed by the positive allosteric modulator propofol. The cross-linking thus favors a unique closed state distinct from the resting and longest-lived desensitized states. Fitting the data according to a three-state allosteric model suggests that it could correspond to a LC conformation. Its plausible assignment to a gating intermediate or a fast-desensitized state is discussed. Overall, our data show that relative movement of two loops at the extracellular-transmembrane interface accompanies orthosteric agonist-mediated gating. PMID:24085847

Prevost, Marie S; Moraga-Cid, Gustavo; Van Renterghem, Catherine; Edelstein, Stuart J; Changeux, Jean-Pierre; Corringer, Pierre-Jean

2013-10-15

299

Dual-functionalized PAMAM dendrimers with improved P-glycoprotein inhibition and tight junction modulating effect.  

PubMed

This study aims to surface modify poly(amido amine) or PAMAM dendrimers by sequentially grafting poly(ethylene glycol) or PEG and 4-thiobutylamidine (TBA) so as to reduce PAMAM cytotoxicity while improving the ability of PAMAM to modulate P-glycoprotein (P-gp) efflux and tight junction integrity. Conjugation of functional groups was determined by NMR spectroscopy, FT-IR, thiol group quantification and molecular weight estimation. The yield of the dual-functionalized dendrimers was >80%. The dual-functionalized dendrimer could significantly reduce PAMAM cytotoxicity to <15% as reflected by LDH release in Caco-2 and MDCK/MDR1 cells after 72 h of exposure. Thiolated dendrimers could increase cellular accumulation and permeation of the P-gp substrate R-123, and such effect could be affected by the extent of PEGylation of the dendrimer. Surface-modified PAMAM dendrimers, either by single or dual functionalization, could better modulate tight junction integrity in comparison with unmodified PAMAM, as demonstrated through immunostaining of the tight junction marker ZO-1, permeation of the model compound Lucifer Yellow (LY) and transepithelial electrical resistance (TEER). Of importance, reversible tight junction modulating effect was only observed in the dual-functionalized dendrimers. Collectively, dual functionalization with PEG and TBA represented a promising approach in altering PAMAM dendrimer surface for potential application in oral drug delivery. PMID:24219381

Liu, Yuanjie; Chiu, Gigi N C

2013-12-01

300

Inferring modules of functionally interacting proteins using the Bond Energy Algorithm  

PubMed Central

Background Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required. In this paper, we used the Bond Energy Algorithm (BEA) to predict functionally related groups of proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set. Results Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (COG) database, we conducted a series of clustering experiments using BEA to predict (upper level) relationships between profiles. We evaluated our results by comparing with COG's functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally used clustering methods, such as k-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy. Conclusion This study shows that the linked relationships of phylogenetic profiles obtained by BEA is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. BEA is capable of detecting relationship among phylogenetic patterns by linking them through a common element shared in a group. Additionally, we discuss how the proposed method may become more powerful if other criteria to classify different levels of protein functional interactions, as gene neighborhood or protein fusion information, is provided.

Watanabe, Ryosuke LA; Morett, Enrique; Vallejo, Edgar E

2008-01-01

301

Revealing the Functions of the Transketolase Enzyme Isoforms in Rhodopseudomonas palustris Using a Systems Biology Approach  

PubMed Central

Background Rhodopseudomonas palustris (R. palustris) is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin–Benson–Bassham (CBB) cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. Methodology/Principal Findings By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM) but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC) strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. Conclusions/Significance Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth through both common and divergent metabolic mechanisms.

Hu, Chia-Wei; Chang, Ya-Ling; Chen, Shiang Jiuun; Kuo-Huang, Ling-Long; Liao, James C.; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

2011-01-01

302

Insight into Helicase Mechanism and Function Revealed through Single-Molecule Approaches  

PubMed Central

Helicases are a class of nucleic acid motors that catalyze NTP-dependent unwinding of nucleic acid duplexes into single-strands, a reaction essential to all areas of nucleic acid metabolism. In the last decade, single-molecule technology has proven to be highly useful in revealing mechanistic insight into helicase activity that is not always detectable via ensemble assays. A combination of methods based on fluorescence, optical and magnetic tweezers, and flow-induced DNA stretching have enabled the study of helicase conformational dynamics, force-generation, step-size, pausing, reversal, and repetitive behaviors during translocation and unwinding by helicases working alone and as part of multi-protein complexes. The contributions of these single-molecule investigations to our understanding of helicase mechanism and function will be discussed.

Yodh, Jaya G.; Schlierf, Michael; Ha, Taekjip

2013-01-01

303

Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases  

SciTech Connect

Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18 {angstrom} long 'L'-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes.

P Lombardi; H Angell; D Whittington; E Flynn; K Rajashankar; D Christianson

2011-12-31

304

Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases  

PubMed Central

Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor, and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18-Å long “L”-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes.

Lombardi, Patrick M.; Angell, Heather D.; Whittington, Douglas A.; Flynn, Erin F.; Rajashankar, Kanagalaghatta R.; Christianson, David W.

2011-01-01

305

Heme Oxygenase-1 Regulates Dendritic Cell Function through Modulation of p38 MAPK-CREB/ATF1 Signaling*  

PubMed Central

Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis.

Al-Huseini, Laith M. A.; Aw Yeang, Han Xian; Hamdam, Junnat M.; Sethu, Swaminathan; Alhumeed, Naif; Wong, Wai; Sathish, Jean G.

2014-01-01

306

Heme Oxygenase-1 Regulates Dendritic Cell Function through Modulation of p38 MAPK-CREB/ATF1 Signaling.  

PubMed

Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis. PMID:24719331

Al-Huseini, Laith M A; Aw Yeang, Han Xian; Hamdam, Junnat M; Sethu, Swaminathan; Alhumeed, Naif; Wong, Wai; Sathish, Jean G

2014-06-01

307

Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen  

PubMed Central

Background Type 2 diabetes develops due to a combination of insulin resistance and ?-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention. Methodology An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action. Conclusion/Significance Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome.

Pitman, Jeffrey L.; Orth, Anthony P.; Gekakis, Nicholas

2009-01-01

308

Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function.  

PubMed

Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis. PMID:24782510

Liu, Yang; Kretz, Colin A; Maeder, Morgan L; Richter, Catherine E; Tsao, Philip; Vo, Andy H; Huarng, Michael C; Rode, Thomas; Hu, Zhilian; Mehra, Rohit; Olson, Steven T; Joung, J Keith; Shavit, Jordan A

2014-07-01

309

Mixin Modules  

Microsoft Academic Search

Mixin modules are proposed as a new construct for module languages, allowing recursive definitions to span module boundaries. Mixin modules are proposed specifically for the Standard ML language. Several applications are described, including the resolution of cycles in module import dependency graphs, as well as functionality related to Haskell type classes and CLOS generic functions, though without any complications to

Dominic Duggan; Constantinos Sourelis

1996-01-01

310

Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function  

PubMed Central

The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.

Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary; Geesey, Gill; Frazier, Marvin

2010-01-01

311

Functional Modulation of Vascular Adhesion Protein-1 by a Novel Splice Variant  

PubMed Central

Vascular Adhesion Protein-1 (VAP-1) is an endothelial adhesion molecule belonging to the primary amine oxidases. Upon inflammation it takes part in the leukocyte extravasation cascade facilitating transmigration of leukocytes into the inflamed tissue. Screening of a human lung cDNA library revealed the presence of an alternatively spliced shorter transcript of VAP-1, VAP-1?3. Here, we have studied the functional and structural characteristics of VAP-1?3, and show that the mRNA for this splice variant is expressed in most human tissues studied. In comparison to the parent molecule this carboxy-terminally truncated isoform lacks several of the amino acids important in the formation of the enzymatic groove of VAP-1. In addition, the conserved His684, which takes part in coordinating the active site copper, is missing from VAP-1?3. Assays using the prototypic amine substrates methylamine and benzylamine demonstrated that VAP-1?3 is indeed devoid of the semicarbazide-sensitive amine oxidase (SSAO) activity characteristic to VAP-1. When VAP-1?3-cDNA is transfected into cells stably expressing VAP-1, the surface expression of the full-length molecule is reduced. Furthermore, the SSAO activity of the co-transfectants is diminished in comparison to transfectants expressing only VAP-1. The observed down-regulation of both the expression and enzymatic activity of VAP-1 may result from a dominant-negative effect caused by heterodimerization between VAP-1 and VAP-1?3, which was detected in co-immunoprecipitation studies. This alternatively spliced transcript adds thus to the repertoire of potential regulatory mechanisms through which the cell-surface expression and enzymatic activity of VAP-1 can be modulated.

Kaitaniemi, Sam; Gron, Kirsi; Elovaara, Heli; Salmi, Marko; Jalkanen, Sirpa; Elima, Kati

2013-01-01

312

Impaired modulation of the otolithic function in acute unilateral cerebellar infarction.  

PubMed

To define the cerebellar contribution in modulating the otolithic signals, we investigated the otolithic function in 27 patients with acute unilateral cerebellar infarctions in the territory of the posterior inferior cerebellar artery (PICA, n?=?17, 63 %), combined PICA and superior cerebellar artery (SCA) (n?=?7, 30 %), SCA (n?=?2, 7 %), and anterior inferior cerebellar artery (n?=?1, 4 %) from 2010 to 2012. The patients had evaluation of the ocular tilt reaction [head tilt, ocular torsion (OT), and skew deviation], tilt of the subjective visual vertical (SVV), cervical vestibular evoked myogenic potentials (VEMPs) in response to air conducted tone bursts, and ocular VEMPs induced by tapping the head at AFz. The evaluation was completed within 2 weeks after symptom onset. Patients often showed OT or SVV tilt (15/27, 55.6 %) that was either ipsi- (n?=?6) or contraversive (n?=?9). Overall, there were no differences in the amplitudes and latencies of cervical and ocular VEMPs between the ipsi- and contralesional sides. However, individual analyses revealed frequent abnormalities of cervical (11/27, 41 %) and/or ocular (9/27, 33 %) VEMPs. While 11 (73 %) of the 15 patients with the OTR/SVV tilt showed abnormalities of cervical (n?=?9) and/or ocular (n?=?7) VEMP responses, only three (25 %) of the 12 patients without the OTR/SVV tilt had abnormal cervical (n?=?2) and/or ocular (n?=?2) VEMPs (73 % vs. 25 %, Fisher's exact test, p?=?0.021). The concordance rate in the results of cervical and ocular VEMPs was marginally significant (19/27, 70 %, p?=?0.052, binominal). Unilateral cerebellar lesions may generate otolithic imbalances, as evidenced by the OTR/SVV tilt and asymmetric ocular or cervical VEMP responses, but without directionality according to the lesion side. Patients with the OTR/SVV tilt had abnormal VEMPs more often than those without. PMID:24390864

Choi, Seo Young; Lee, Seung-Han; Kim, Hyo Jung; Kim, Ji-Soo

2014-06-01

313

Modulation of Mitochondrial Proteome and Improved Mitochondrial Function by Biventricular Pacing of Dyssynchronous Failing Hearts  

PubMed Central

Background Cardiac resynchronization therapy (CRT) improves chamber mechanoenergetics and morbidity and mortality of patients manifesting heart failure with ventricular dyssynchrony; however, little is known about the molecular changes underlying CRT benefits. We hypothesized that mitochondria may play an important role because of their involvement in energy production. Methods and Results Mitochondria isolated from the left ventricle in a canine model of dyssynchronous or resynchronized (CRT) heart failure were analyzed by a classical, gel-based, proteomic approach. Two-dimensional gel electrophoresis revealed that 31 mitochondrial proteins where changed when controlling the false discovery rate at 30%. Key enzymes in anaplerotic pathways, such as pyruvate carboxylation and branched-chain amino acid oxidation, were increased. These concerted changes, along with others, suggested that CRT may increase the pool of Krebs cycle intermediates and fuel oxidative phosphorylation. Nearly 50% of observed changes pertained to subunits of the respiratory chain. ATP synthase-? subunit of complex V was less degraded, and its phosphorylation modulated by CRT was associated with increased formation (2-fold, P=0.004) and specific activity (+20%, P=0.05) of the mature complex. The importance of these modifications was supported by coordinated changes in mitochondrial chaperones and proteases. CRT increased the mitochondrial respiratory control index with tightened coupling when isolated mitochondria were reexposed to substrates for both complex I (glutamate and malate) and complex II (succinate), an effect likely related to ATP synthase subunit modifications and complex quantity and activity. Conclusions CRT potently affects both the mitochondrial proteome and the performance associated with improved cardiac function.

Agnetti, Giulio; Kaludercic, Nina; Kane, Lesley A.; Elliott, Steven T.; Guo, Yurong; Chakir, Khalid; Samantapudi, Daya; Paolocci, Nazareno; Tomaselli, Gordon F.; Kass, David A.; Van Eyk, Jennifer E.

2010-01-01

314

Long Range Communication between Exosites 1 and 2 Modulates Thrombin Function*  

PubMed Central

Although exosites 1 and 2 regulate thrombin activity by binding substrates and cofactors and by allosterically modulating the active site, it is unclear whether there is direct allosteric linkage between the two exosites. To begin to address this, we first titrated a thrombin variant fluorescently labeled at exosite 1 with exosite 2 ligands, HD22 (a DNA aptamer), ??-peptide (an analog of the COOH terminus of the ??-chain of fibrinogen) or heparin. Concentration-dependent and saturable changes in fluorescence were elicited, supporting inter-exosite linkage. To explore the functional consequences of this phenomenon, we evaluated the capacity of exosite 2 ligands to inhibit thrombin binding to ?A/?A-fibrin, an interaction mediated solely by exosite 1. When ?A/?A-fibrinogen was clotted with thrombin in the presence of HD22, ??-peptide, or prothrombin fragment 2 there was a dose-dependent and saturable decrease in thrombin binding to the resultant fibrin clots. Furthermore, HD22 reduced the affinity of thrombin for ?A/?A-fibrin 6-fold and accelerated the dissociation of thrombin from preformed ?A/?A-fibrin clots. Similar responses were obtained when surface plasmon resonance was used to monitor the interaction of thrombin with ?A/?A-fibrinogen or fibrin. There is bidirectional communication between the exosites, because exosite 1 ligands, HD1 (a DNA aptamer) or hirudin-(54–65) (an analog of the COOH terminus of hirudin), inhibited the exosite 2-mediated interaction of thrombin with immobilized ??-peptide. These findings provide evidence for long range allosteric linkage between exosites 1 and 2 on thrombin, revealing further complexity to the mechanisms of thrombin regulation.

Petrera, Nicolas S.; Stafford, Alan R.; Leslie, Beverly A.; Kretz, Colin A.; Fredenburgh, James C.; Weitz, Jeffrey I.

2009-01-01

315

A multi-functional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity  

PubMed Central

Converting the immunosuppressive tumor environment into one that is favorable to induction of antitumor immunity is indispensable for effective cancer immunotherapy. Here we strategically incorporate a pathogen (i.e., Flagellin)-derived, NF-?B-stimulating `danger' signal into the large stress protein or chaperone Grp170 (HYOU1/ORP150) that was previously shown to facilitate antigen cross-presentation. This engineered chimeric molecule (i.e., Flagrp170) is capable of transporting tumor antigens and concurrently inducing functional activation of dendritic cells. Intratumoral administration of adenoviruses expressing Flagrp170 induces a superior antitumor response against B16 melanoma and its distant lung metastasis compared to unmodified Grp170 and Flagellin. The enhanced tumor destruction is accompanied with significantly increased tumor infiltration by CD8+ cells as well as elevation of IFN-? and IL-12 levels in the tumor sites. In situ Ad.Flagrp170 therapy provokes systemic activation of CTLs that recognize several antigens naturally expressing in melanoma (e.g., gp100/PMEL and TRP2/DCT). The mechanistic studies using CD11c-DTR transgenic mice and Batf3-deficient mice reveal that CD8?+ DCs are required for the improved T cell cross-priming. Antibody neutralization assays show that IL-12 and IFN-? are essential for the Flagrp170-elicited antitumor response, which also involves CD8+ T cells and NK cells. The therapeutic efficacy of Flagrp170 and its immune stimulating activity are also confirmed in mouse prostate cancer and colon carcinoma. Together, targeting the tumor microenvironment with this chimeric chaperone is highly effective in mobilizing or restoring antitumor immunity, supporting the potential therapeutic use of this novel immune modulator in the treatment of metastatic diseases.

Yu, Xiaofei; Guo, Chunqing; Yi, Huanfa; Qian, Jie; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang

2013-01-01

316

Identification of functional modules in a PPI network by bounded diameter clustering.  

PubMed

Dense subgraphs of Protein-Protein Interaction (PPI) graphs are assumed to be potential functional modules and play an important role in inferring the functional behavior of proteins. Increasing amount of available PPI data implies a fast, accurate approach of biological complex identification. Therefore, there are different models and algorithms in identifying functional modules. This paper describes a new graph theoretic clustering algorithm that detects densely connected regions in a large PPI graph. The method is based on finding bounded diameter subgraphs around a seed node. The algorithm has the advantage of being very simple and efficient when compared with other graph clustering methods. This algorithm is tested on the yeast PPI graph and the results are compared with MCL, Core-Attachment, and MCODE algorithms. PMID:21121019

Sohaee, Nassim; Forst, Christian V

2010-12-01

317

Analysis of protein-protein interaction network and functional modules on primary osteoporosis  

PubMed Central

Background Primary osteoporosis is an age-related disease, and the main cause of this disease is the failure of bone homeostasis. Previous studies have shown that primary osteoporosis is associated with gene mutations. To explore the functional modules of the PPI (protein-protein interaction) network of differentially expressed genes (DEGs), and the related pathways participating in primary osteoporosis. Methods The gene expression profile of primary osteoporosis GSE35956 was downloaded from the GEO (Gene Expression Omnibus) database and included five MSC (mesenchymal stem cell) specimens of normal osseous tissue and five MSC specimens of osteoporosis. The DEGs between the two types of MSC specimens were identified by the samr package in R language. In addition, the functions and pathways of DEGs were enriched. Then the DEGs were mapped to String to acquire PPI pairs and the PPI network was constructed with by these PPI pairs. Topological properties of the network were calculated by Network Analyzer, and modules in the network were screened by Cluster ONE software. Subsequently, the fronting five modules whose P-value was less than 1.0e-05 were identified and function analysis was conducted. Results A total of 797 genes were filtered as DEGs from these ten specimens of GSE35956 with 660 up-regulated genes and 137 down-regulated genes. Meanwhile, up-regulated DEGs were mainly enriched in functions and pathways related to cell cycle and DNA replication. Furthermore, there were 4,135 PPI pairs and 377 nodes in the PPI network. Four modules were enriched in different pathways, including cell cycle and DNA replication pathway in module 2. Conclusions In this paper, we explored the genes and pathways involved in primary osteoporosis based on gene expression profiles, and the present findings have the potential to be used clinically for the future treatment of primary osteoporosis.

2014-01-01

318

Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast  

PubMed Central

A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examined the “histone redundancy hypothesis” by characterizing double deletion of all pairwise combinations of amino-terminal tails (N-tails) from the four core histones encoded in budding yeast. First, we found that multiple lysine residues on the N-tails of both H2A and H4 are redundantly involved in cell viability. Second, simultaneous deletion of N-tails from H2A and H3 leads to a severe growth defect, which is correlated with perturbed gross chromatin structure in the mutant cells. Finally, by combining point mutations on H3 with deletion of the H2A N-tail, we revealed a redundant role for lysine 4 on H3 and the H2A N-tail in hydroxyurea-mediated response. Altogether, these data suggest that the N-tails of core histones share previously unrecognized, potentially redundant functions that, in some cases are different from those of the widely accepted H2A/H2B and H3/H4 dimer pairs.

Kim, Jung-Ae; Hsu, Jer-Yuan; Smith, M. Mitchell; Allis, C. David

2012-01-01

319

Comparative Analysis and Functional Mapping of SACS Mutations Reveal Novel Insights into Sacsin Repeated Architecture  

PubMed Central

Autosomal recessive spastic ataxia of Charlevoix–Saguenay (ARSACS) is a neurological disease with mutations in SACS, encoding sacsin, a multidomain protein of 4,579 amino acids. The large size of SACS and its translated protein has hindered biochemical analysis of ARSACS, and how mutant sacsins lead to disease remains largely unknown. Three repeated sequences, called sacsin repeating region (SRR) supradomains, have been recognized, which contribute to sacsin chaperone-like activity. We found that the three SRRs are much larger (?1,100 residues) than previously described, and organized in discrete subrepeats. We named the large repeated regions Sacsin Internal RePeaTs (SIRPT1, SIRPT2, and SIRPT3) and the subrepeats sr1, sr2, sr3, and srX. Comparative analysis of vertebrate sacsins in combination with fine positional mapping of a set of human mutations revealed that sr1, sr2, sr3, and srX are functional. Notably, the position of the pathogenic mutations in sr1, sr2, sr3, and srX appeared to be related to the severity of the clinical phenotype, as assessed by defining a severity scoring system. Our results suggest that the relative position of mutations in subrepeats will variably influence sacsin dysfunction. The characterization of the specific role of each repeated region will help in developing a comprehensive and integrated pathophysiological model of function for sacsin.

Romano, Alessandro; Tessa, Alessandra; Barca, Amilcare; Fattori, Fabiana; Fulvia de Leva, Maria; Terracciano, Alessandra; Storelli, Carlo; Santorelli, Filippo Maria; Verri, Tiziano

2013-01-01

320

Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule.  

PubMed

Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general. PMID:23549062

Jakob, Clarissa G; Edalji, Rohinton; Judge, Russell A; Digiammarino, Enrico; Li, Yingchun; Gu, Jijie; Ghayur, Tariq

2013-05-01

321

Comparison of REST Cistromes across Human Cell Types Reveals Common and Context-Specific Functions.  

PubMed

Recent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types. We found that REST cistromes were distinct among cell types, with REST binding to several tumor suppressors specifically in cancer cells, whereas 7% of the REST peaks in non-neuronal cells were ubiquitously called and <25% were identified for ?5 cell types. Nevertheless, using a quantitative metric directly comparing raw ChIP-seq signals, we found the majority (?80%) was shared by ?2 cell types. Integration with RNA-seq data showed that REST binding was generally correlated with low gene expression. Close examination revealed that multiple contexts were correlated with reduced expression of REST targets, e.g., the presence of a cognate RE1 motif and cellular specificity of REST binding. These contexts were shown to play a role in differential corepressor recruitment. Furthermore, transcriptional outcome was highly influenced by REST cofactors, e.g., SIN3 and EZH2 co-occupancy marked higher and lower expression of REST targets, respectively. Unexpectedly, the REST cistrome in differentiated neurons exhibited unique features not observed in non-neuronal cells, e.g., the lack of RE1 motifs and an association with active gene expression. Finally, our analysis demonstrated how REST could differentially regulate a transcription network constituted of miRNAs, REST complex and neuronal factors. Overall, our findings of contexts playing critical roles in REST occupancy and regulatory outcome provide insights into the molecular interactions underlying REST's diverse functions, and point to novel roles of REST in differentiated neurons. PMID:24922058

Rockowitz, Shira; Lien, Wen-Hui; Pedrosa, Erika; Wei, Gang; Lin, Mingyan; Zhao, Keji; Lachman, Herbert M; Fuchs, Elaine; Zheng, Deyou

2014-06-01

322

Transcription profiling reveals stage- and function-dependent expression patterns in the filarial nematode Brugia malayi  

PubMed Central

Background Brugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease. Although a first draft genome sequence was released in 2007, very little is understood about transcription programs that govern developmental changes required for the parasite’s development and survival in its mammalian and insect hosts. Results We used a microarray with probes that represent some 85% of predicted genes to generate gene expression profiles for seven parasite life cycle stages/sexes. Approximately 41% of transcripts with detectable expression signals were differentially expressed across lifecycle stages. Twenty-six percent of transcripts were exclusively expressed in a single parasite stage, and 27% were expressed in all stages studied. K-means clustering of differentially expressed transcripts revealed five major transcription patterns that were associated with parasite lifecycle stages or gender. Examination of known stage-associated transcripts validated these data sets and suggested that newly identified stage or gender-associated transcripts may exercise biological functions in development and reproduction. The results also indicate that genes with similar transcription patterns were often involved in similar functions or cellular processes. For example, nuclear receptor family gene transcripts were upregulated in gene expression pattern four (female-enriched) while protein kinase gene family transcripts were upregulated in expression pattern five (male-enriched). We also used pair-wise comparisons to identify transcriptional changes between life cycle stages and sexes. Conclusions Analysis of gene expression patterns of lifecycle in B. malayi has provided novel insights into the biology of filarial parasites. Proteins encoded by stage-associated and/or stage-specific transcripts are likely to be critically important for key parasite functions such as establishment and maintenance of infection, development, reproduction, and survival in the host. Some of these may be useful targets for vaccines or new drug treatments for filariasis.

2012-01-01

323

Comparison of REST Cistromes across Human Cell Types Reveals Common and Context-Specific Functions  

PubMed Central

Recent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types. We found that REST cistromes were distinct among cell types, with REST binding to several tumor suppressors specifically in cancer cells, whereas 7% of the REST peaks in non-neuronal cells were ubiquitously called and <25% were identified for ?5 cell types. Nevertheless, using a quantitative metric directly comparing raw ChIP-seq signals, we found the majority (?80%) was shared by ?2 cell types. Integration with RNA-seq data showed that REST binding was generally correlated with low gene expression. Close examination revealed that multiple contexts were correlated with reduced expression of REST targets, e.g., the presence of a cognate RE1 motif and cellular specificity of REST binding. These contexts were shown to play a role in differential corepressor recruitment. Furthermore, transcriptional outcome was highly influenced by REST cofactors, e.g., SIN3 and EZH2 co-occupancy marked higher and lower expression of REST targets, respectively. Unexpectedly, the REST cistrome in differentiated neurons exhibited unique features not observed in non-neuronal cells, e.g., the lack of RE1 motifs and an association with active gene expression. Finally, our analysis demonstrated how REST could differentially regulate a transcription network constituted of miRNAs, REST complex and neuronal factors. Overall, our findings of contexts playing critical roles in REST occupancy and regulatory outcome provide insights into the molecular interactions underlying REST's diverse functions, and point to novel roles of REST in differentiated neurons.

Rockowitz, Shira; Lien, Wen-Hui; Pedrosa, Erika; Wei, Gang; Lin, Mingyan; Zhao, Keji; Lachman, Herbert M.; Fuchs, Elaine; Zheng, Deyou

2014-01-01

324

Efficient and accurate greedy search methods for mining functional modules in protein interaction networks  

PubMed Central

Background Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. Methods In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. Results The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Conclusions Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.

2012-01-01

325

Small Molecule Modulation of Nuclear Receptor Conformational Dynamics: Implications for Function and Drug Discovery  

PubMed Central

Nuclear receptors are targets for a wide range of ligands, both natural and synthetic, that regulate their activity and provide a means to pharmacologically modulate the receptor. Recent emphasis in the nuclear receptor field has focused on selective nuclear receptor modulators, which can display graded transcriptional responses and tissue selective pharmacological responses that deviate from the prototypical agonist or antagonist. Understanding the molecular mechanism of action of these selective modulators will provide significant insight toward the development of the next generation of modulators. Although most nuclear receptor structural studies have primarily focused on obtaining ligand-receptor cocrystal structures, recent studies implicate an important role for protein dynamics in the mechanism of action of nuclear receptor ligands. Here we review nuclear receptor studies reporting how ligands modulate the conformational dynamics of the nuclear receptor ligand-binding domain (LBD). A particular emphasis is placed on protein NMR and hydrogen/deuterium exchange (HDX) techniques and how they provide complementary information that, when combined with crystallography, provide detailed insight into the function of nuclear receptors.

Burris, Thomas P.

2013-01-01

326

Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation  

PubMed Central

The cilium serves as a cellular antenna by coordinating upstream environmental cues with numerous downstream signaling processes that are indispensable for the function of the cell. This role is supported by the revelation that defects of the cilium underlie an emerging class of human disorders, termed “ciliopathies.” Although mounting interest in the cilium has demonstrated the essential role that the organelle plays in vertebrate development, homeostasis, and disease pathogenesis, the mechanisms regulating cilia morphology and function remain unclear. Here, we show that the target-of-rapamycin (TOR) growth pathway modulates cilia size and function during zebrafish development. Knockdown of tuberous sclerosis complex 1a (tsc1a), which encodes an upstream inhibitor of TOR complex 1 (Torc1), increases cilia length. In contrast, treatment of embryos with rapamycin, an inhibitor of Torc1, shortens cilia length. Overexpression of ribosomal protein S6 kinase 1 (S6k1), which encodes a downstream substrate of Torc1, lengthens cilia. Furthermore, we provide evidence that TOR-mediated cilia assembly is evolutionarily conserved and that protein synthesis is essential for this regulation. Finally, we demonstrate that TOR signaling and cilia length are pivotal for a variety of downstream ciliary functions, such as cilia motility, fluid flow generation, and the establishment of left-right body asymmetry. Our findings reveal a unique role for the TOR pathway in regulating cilia size through protein synthesis and suggest that appropriate and defined lengths are necessary for proper function of the cilium.

Yuan, Shiaulou; Li, Jade; Diener, Dennis R.; Choma, Michael A.; Rosenbaum, Joel L.; Sun, Zhaoxia

2012-01-01

327

BOLD coherence reveals segregated functional neural interactions when adapting to distinct torque perturbations.  

PubMed

In the natural world, we experience and adapt to multiple extrinsic perturbations. This poses a challenge to neural circuits in discriminating between different context-appropriate responses. Using event-related fMRI, we characterized the neural dynamics involved in this process by randomly delivering a position- or velocity-dependent torque perturbation to subjects' arms during a target-capture task. Each perturbation was color-cued during movement preparation to provide contextual information. Although trajectories differed between perturbations, subjects significantly reduced error under both conditions. This was paralleled by reduced BOLD signal in the right dentate nucleus, the left sensorimotor cortex, and the left intraparietal sulcus. Trials included "NoGo" conditions to dissociate activity related to preparation from execution and adaptation. Subsequent analysis identified perturbation-specific neural processes underlying preparation ("NoGo") and adaptation ("Go") early and late into learning. Between-perturbation comparisons of BOLD magnitude revealed negligible differences for both preparation and adaptation trials. However, a network-level analysis of BOLD coherence revealed that by late learning, response preparation ("NoGo") was attributed to a relative focusing of coherence within cortical and basal ganglia networks in both perturbation conditions, demonstrating a common network interaction for establishing arbitrary visuomotor associations. Conversely, late-learning adaptation ("Go") was attributed to a focusing of BOLD coherence between a cortical-basal ganglia network in the viscous condition and between a cortical-cerebellar network in the positional condition. Our findings demonstrate that trial-to-trial acquisition of two distinct adaptive responses is attributed not to anatomically segregated regions, but to differential functional interactions within common sensorimotor circuits. PMID:17202232

Tunik, Eugene; Schmitt, Paul J; Grafton, Scott T

2007-03-01

328

Emotional regulatory function of receptor interacting protein 140 revealed in the ventromedial hypothalamus.  

PubMed

Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A transgenic mouse line with macrophage-specific knockdown of RIP140 was generated (M?RIPKD mice) and brain-region specific RIP140 knockdown efficiency evaluated. Mice were subjected to a battery of tests, designed to evaluate multiple behavioral domains at naïve or following site-specific RIP140 re-expression. Gene expression analysis assessed TNF-?, IL-1?, TGF-1?, IL1-RA and neuropeptide Y (NPY) expression, and in vitro studies examined the effects of macrophage's RIP140 on astrocytes' NPY production. We found that RIP140 expression was dramatically reduced in macrophages within the ventromedial hypothalamus (VMH) and the cingulate cortex of M?RIPKD mice. These animals exhibited increased anxiety- and depressive-like behaviors. VMH-targeted RIP140 re-expression in M?RIPKD mice reversed its depressive- but not its anxiety-like phenotype. Analysis of specific neurochemical changes revealed reduced astrocytic-NPY expression within the hypothalamus of M?RIPKD mice, and in vitro analysis confirmed that conditioned medium of RIP140-silnenced macrophage culture could no longer stimulate NPY production from astrocytes. The current study revealed an emotional regulatory function of macrophage-derived RIP140 in the VMH, and secondary dysregulation of NPY within hypothalamic astrocyte population, which might be associated with the observed behavioral phenotype of M?RIPKD mice. This study highlights RIP140 as a novel target for the development of potential therapeutic and intervention strategies for emotional regulation disorders. PMID:24726835

Flaisher-Grinberg, S; Tsai, H C; Feng, X; Wei, L N

2014-08-01

329

Reconstruction of an Integrated Genome-Scale Co-Expression Network Reveals Key Modules Involved in Lung Adenocarcinoma  

PubMed Central

Our goal of this study was to reconstruct a “genome-scale co-expression network” and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named “genome-scale co-expression network”. As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules.

Hosseini Ashtiani, Saman; Moeini, Ali; Nowzari-Dalini, Abbas; Masoudi-Nejad, Ali

2013-01-01

330

In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome.  

PubMed

Molecular communication between cancer cells and its stromal microenvironment is a key factor for cancer progression. Alongside classic secretory pathways, it has recently been proposed that small membranous vesicles are alternative mediators of intercellular communication. Exosomes carry an effector-rich proteome with the ability to modulate various functional properties of the recipient cell. In this study, exosomes isolated from four epithelial ovarian cancer cell lines (OVCAR3, OVCAR433, OVCAR5 and SKOV3) were characterized using mass spectrometry-based proteomics. Using an optimized workflow consisting of efficient exosome solubilization and the latest generation of proteomic instrumentation, we demonstrate improved detection depth. Systematic comparison of our cancer cell line exosome proteome against public data (Exocarta) and the recently published NCI 60 proteome revealed enrichment of functional categories related to signaling biology and biomarker discovery. PMID:24434149

Sinha, Ankit; Ignatchenko, Vladimir; Ignatchenko, Alex; Mejia-Guerrero, Salvador; Kislinger, Thomas

2014-03-21

331

Microwave influence on the isolated heart function. 1: Effect of modulation  

SciTech Connect

Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10{sup {minus}6}--10{sup {minus}2} s; duty ratio, 7:100000, and peak specific absorption rate, 100--3,000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unless the average microwave power was high enough to induce preparation heating (0.1--0.4 C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. the data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.

Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.; Pronkevich, A.N. [Russian Academy of Medical Sciences, Obninsk (Russian Federation). Medical Radiology Research Center

1995-09-01

332

Seed selection strategy in global network alignment without destroying the entire structures of functional modules  

PubMed Central

Background Network alignment is one of the most common biological network comparison methods. Aligning protein-protein interaction (PPI) networks of different species is of great important to detect evolutionary conserved pathways or protein complexes across species through the identification of conserved interactions, and to improve our insight into biological systems. Global network alignment (GNA) problem is NP-complete, for which only heuristic methods have been proposed so far. Generally, the current GNA methods fall into global heuristic seed-and-extend approaches. These methods can not get the best overall consistent alignment between networks for the opinionated local seed. Furthermore These methods are lost in maximizing the number of aligned edges between two networks without considering the original structures of functional modules. Methods We present a novel seed selection strategy for global network alignment by constructing the pairs of hub nodes of networks to be aligned into multiple seeds. Beginning from every hub seed and using the membership similarity of nodes to quantify to what extent the nodes can participate in functional modules associated with current seed topologically we align the networks by modules. By this way we can maintain the functional modules are not damaged during the heuristic alignment process. And our method is efficient in resolving the fatal problem of most conventional algorithms that the initialization selected seeds have a direct influence on the alignment result. The similarity measures between network nodes (e.g., proteins) include sequence similarity, centrality similarity, and dynamic membership similarity and our algorithm can be called Multiple Hubs-based Alignment (MHA). Results When applying our seed selection strategy to several pairs of real PPI networks, it is observed that our method is working to strike a balance, extending the conserved interactions while maintaining the functional modules unchanged. In the case study, we assess the effectiveness of MHA on the alignment of the yeast and fly PPI networks. Our method outperforms state-of-the-art algorithms at detecting conserved functional modules and retrieves in particular 86% more conserved interactions than IsoRank. Conclusions We believe that our seed selection strategy will lead us to obtain more topologically and biologically similar alignment result. And it can be used as the reference and complement of other heuristic methods to seek more meaningful alignment results.

2012-01-01

333

Transcriptome Analysis of Tomato Flower Pedicel Tissues Reveals Abscission Zone-Specific Modulation of Key Meristem Activity Genes  

PubMed Central

Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS), KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1), and BELL-like homeodomain protein 1 (BLH1), as well as tomato axillary meristem genes BLIND (Bl) and LATERAL SUPPRESSOR (Ls). More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP) were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission.

Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

2013-01-01

334

Molecular processes during fat cell development revealed by gene expression profiling and functional annotation  

PubMed Central

Background Large-scale transcription profiling of cell models and model organisms can identify novel molecular components involved in fat cell development. Detailed characterization of the sequences of identified gene products has not been done and global mechanisms have not been investigated. We evaluated the extent to which molecular processes can be revealed by expression profiling and functional annotation of genes that are differentially expressed during fat cell development. Results Mouse microarrays with more than 27,000 elements were developed, and transcriptional profiles of 3T3-L1 cells (pre-adipocyte cells) were monitored during differentiation. In total, 780 differentially expressed expressed sequence tags (ESTs) were subjected to in-depth bioinformatics analyses. The analysis of 3'-untranslated region sequences from 395 ESTs showed that 71% of the differentially expressed genes could be regulated by microRNAs. A molecular atlas of fat cell development was then constructed by de novo functional annotation on a sequence segment/domain-wise basis of 659 protein sequences, and subsequent mapping onto known pathways, possible cellular roles, and subcellular localizations. Key enzymes in 27 out of 36 investigated metabolic pathways were regulated at the transcriptional level, typically at the rate-limiting steps in these pathways. Also, coexpressed genes rarely shared consensus transcription-factor binding sites, and were typically not clustered in adjacent chromosomal regions, but were instead widely dispersed throughout the genome. Conclusions Large-scale transcription profiling in conjunction with sophisticated bioinformatics analyses can provide not only a list of novel players in a particular setting but also a global view on biological processes and molecular networks.

Hackl, Hubert; Burkard, Thomas Rainer; Sturn, Alexander; Rubio, Renee; Schleiffer, Alexander; Tian, Sun; Quackenbush, John; Eisenhaber, Frank; Trajanoski, Zlatko

2005-01-01

335

Resting State fMRI Reveals Diminished Functional Connectivity in a Mouse Model of Amyloidosis  

PubMed Central

Introduction Functional connectivity (FC) studies have gained immense popularity in the evaluation of several neurological disorders, such as Alzheimer’s disease (AD). AD is a complex disorder, characterised by several pathological features. The problem with FC studies in patients is that it is not straightforward to focus on a specific aspect of pathology. In the current study, resting state functional magnetic resonance imaging (rsfMRI) is applied in a mouse model of amyloidosis to assess the effects of amyloid pathology on FC in the mouse brain. Methods Nine APP/PS1 transgenic and nine wild-type mice (average age 18.9 months) were imaged on a 7T MRI system. The mice were anesthetized with medetomidine and rsfMRI data were acquired using a gradient echo EPI sequence. The data were analysed using a whole brain seed correlation analysis and interhemispheric FC was evaluated using a pairwise seed analysis. Qualitative histological analyses were performed to assess amyloid pathology, inflammation and synaptic deficits. Results The whole brain seed analysis revealed an overall decrease in FC in the brains of transgenic mice compared to wild-type mice. The results showed that interhemispheric FC was relatively preserved in the motor cortex of the transgenic mice, but decreased in the somatosensory cortex and the hippocampus when compared to the wild-type mice. The pairwise seed analysis confirmed these results. Histological analyses confirmed the presence of amyloid pathology, inflammation and synaptic deficits in the transgenic mice. Conclusions In the current study, rsfMRI demonstrated decreased FC in APP/PS1 transgenic mice compared to wild-type mice in several brain regions. The APP/PS1 transgenic mice had advanced amyloid pathology across the brain, as well as inflammation and synaptic deficits surrounding the amyloid plaques. Future studies should longitudinally evaluate APP/PS1 transgenic mice and correlate the rsfMRI findings to specific stages of amyloid pathology.

Praet, Jelle; Vanhoutte, Greetje; Delgado y Palacios, Rafael; Bigot, Christian; D'Souza, Dany V.; Verhoye, Marleen; Van der Linden, Annemie

2013-01-01

336

Evolution of TNF-induced apoptosis reveals 550 My of functional conservation  

PubMed Central

The Precambrian explosion led to the rapid appearance of most major animal phyla alive today. It has been argued that the complexity of life has steadily increased since that event. Here we challenge this hypothesis through the characterization of apoptosis in reef-building corals, representatives of some of the earliest animals. Bioinformatic analysis reveals that all of the major components of the death receptor pathway are present in coral with high-predicted structural conservation with Homo sapiens. The TNF receptor-ligand superfamilies (TNFRSF/TNFSF) are central mediators of the death receptor pathway, and the predicted proteome of Acropora digitifera contains more putative coral TNFRSF members than any organism described thus far, including humans. This high abundance of TNFRSF members, as well as the predicted structural conservation of other death receptor signaling proteins, led us to wonder what would happen if corals were exposed to a member of the human TNFSF (HuTNF?). HuTNF? was found to bind directly to coral cells, increase caspase activity, cause apoptotic blebbing and cell death, and finally induce coral bleaching. Next, immortalized human T cells (Jurkats) expressing a functional death receptor pathway (WT) and a corresponding Fas-associated death domain protein (FADD) KO cell line were exposed to a coral TNFSF member (AdTNF1) identified and purified here. AdTNF1 treatment resulted in significantly higher cell death (P < 0.0001) in WT Jurkats compared with the corresponding FADD KO, demonstrating that coral AdTNF1 activates the H. sapiens death receptor pathway. Taken together, these data show remarkable conservation of the TNF-induced apoptotic response representing 550 My of functional conservation.

Quistad, Steven D.; Stotland, Aleksandr; Barott, Katie L.; Smurthwaite, Cameron A.; Hilton, Brett Jameson; Grasis, Juris A.; Wolkowicz, Roland; Rohwer, Forest L.

2014-01-01

337

Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.  

PubMed

Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ?-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants. PMID:23314817

Wang, Yong-Qiang; Yang, Yong; Fei, Zhangjun; Yuan, Hui; Fish, Tara; Thannhauser, Theodore W; Mazourek, Michael; Kochian, Leon V; Wang, Xiaowu; Li, Li

2013-02-01

338

Evolution of TNF-induced apoptosis reveals 550 My of functional conservation.  

PubMed

The Precambrian explosion led to the rapid appearance of most major animal phyla alive today. It has been argued that the complexity of life has steadily increased since that event. Here we challenge this hypothesis through the characterization of apoptosis in reef-building corals, representatives of some of the earliest animals. Bioinformatic analysis reveals that all of the major components of the death receptor pathway are present in coral with high-predicted structural conservation with Homo sapiens. The TNF receptor-ligand superfamilies (TNFRSF/TNFSF) are central mediators of the death receptor pathway, and the predicted proteome of Acropora digitifera contains more putative coral TNFRSF members than any organism described thus far, including humans. This high abundance of TNFRSF members, as well as the predicted structural conservation of other death receptor signaling proteins, led us to wonder what would happen if corals were exposed to a member of the human TNFSF (HuTNF?). HuTNF? was found to bind directly to coral cells, increase caspase activity, cause apoptotic blebbing and cell death, and finally induce coral bleaching. Next, immortalized human T cells (Jurkats) expressing a functional death receptor pathway (WT) and a corresponding Fas-associated death domain protein (FADD) KO cell line were exposed to a coral TNFSF member (AdTNF1) identified and purified here. AdTNF1 treatment resulted in significantly higher cell death (P < 0.0001) in WT Jurkats compared with the corresponding FADD KO, demonstrating that coral AdTNF1 activates the H. sapiens death receptor pathway. Taken together, these data show remarkable conservation of the TNF-induced apoptotic response representing 550 My of functional conservation. PMID:24927546

Quistad, Steven D; Stotland, Aleksandr; Barott, Katie L; Smurthwaite, Cameron A; Hilton, Brett Jameson; Grasis, Juris A; Wolkowicz, Roland; Rohwer, Forest L

2014-07-01

339

Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development  

PubMed Central

Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953–2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ?-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.

Wang, Yong-Qiang; Yang, Yong; Li, Li

2013-01-01

340

Integration of genomic and functional approaches reveals enhancers at LMX1A and LMX1B.  

PubMed

LMX1A and LMX1B encode two closely related members of the LIM homeobox family of transcription factors. These genes play significant, and frequently overlapping, roles in the development of many structures in the nervous system, including the cerebellum, hindbrain, spinal cord roof plate, sensory systems and dopaminergic midbrain neurons. Little is known about the cis-acting regulatory elements (REs) that dictate their temporal and spatial expression or about the regulatory landscape surrounding them. The availability of comparative sequence data and the advent of genomic technologies such as ChIP-seq have revolutionized our capacity to identify regulatory sequences like enhancers. Despite this wealth of data, the vast majority of loci lack any significant in vivo functional exploration of their non-coding regions. We have completed a significant functional screen of conserved non-coding sequences (putative REs) scattered across these critical human loci, assaying the temporal and spatial control using zebrafish transgenesis. We first identify and describe the LMX1A paralogs lmx1a and lmx1a-like, comparing their expression during embryogenesis with that in mammals, along with lmx1ba and lmx1bb genes. Consistent with their prominent neuronal expression, 47/71 sequences selected within and flanking LMX1A and LMX1B exert spatial control of reporter expression in the central nervous system (CNS) of mosaic zebrafish embryos. Upon germline transmission, we identify CNS reporter expression in multiple independent founders for 22 constructs (LMX1A, n = 17; LMX1B, n = 5). The identified enhancers display significant overlap in their spatial control and represent only a fraction of the conserved non-coding sequences at these critical genes. Our data reveal the abundance of regulatory instruction located near these developmentally important genes. PMID:23942840

Burzynski, Grzegorz M; Reed, Xylena; Maragh, Samantha; Matsui, Takeshi; McCallion, Andrew S

2013-11-01

341

Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.  

PubMed

A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts. PMID:21768346

Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

2011-08-01

342

Surface charge compensation and ferroelectric domain structure of triglycine sulfate revealed by voltage-modulated scanning force microscopy  

Microsoft Academic Search

The interplay between surface morphology and ferroelectric domain structure on triglycine sulfate (TGS) (010) cleavage faces is investigated by voltage-modulated scanning force microscopy in the dynamic contact mode. A resonance enhancement method is exploited to increase imaging contrast and sensitivity to slight variations of surface polarity. Evidence of electric contrast of the structural nuclei forming due to surface reconstruction of

V. Likodimos; M Labardi; M Allegrini; N Garcia; V. V Osipov

2001-01-01

343

Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer  

NASA Technical Reports Server (NTRS)

The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

Weissman, D. E.; Johnson, J. W.

1986-01-01

344

Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer  

NASA Technical Reports Server (NTRS)

The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

Weissman, D. E.; Johnson, J. W.

1984-01-01

345

Sensor modulation transfer function measurement using band-limited laser speckle.  

PubMed

A new methodology for image sensor modulation transfer function measurement using band-limited laser speckle is presented. We use a circular opal milk glass diffuser illuminated by a 5 mW He-Ne laser and a linear polarizer to generate band-limited speckle on the sensor. The power spectral density cut-off frequency of the speckle is chosen to be twice that of the sensor Nyquist frequency by placing the sensor at the specific Z location along the optical axis. For the speckle input, we calculate the power spectral density at the sensor using the Rayleigh-Sommerfeld integral and then measure the output power spectral density for the speckle pattern captured by the sensor. With these data, the two-dimensional image sensor modulation transfer function (MTF) is calculated. PMID:19030090

Chen, Xi; George, Nicholas; Agranov, Gennadiy; Liu, Changmeng; Gravelle, Bob

2008-11-24

346

Proteomics profiling reveals novel proteins and functions of the plant stigma exudate.  

PubMed

Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma. PMID:24151302

Rejón, Juan David; Delalande, François; Schaeffer-Reiss, Christine; Carapito, Christine; Zienkiewicz, Krzysztof; de Dios Alché, Juan; Rodríguez-García, María Isabel; Van Dorsselaer, Alain; Castro, Antonio Jesús

2013-12-01

347

The position and topography of the human colour centre as revealed by functional magnetic resonance imaging.  

PubMed

We used a colour Mondrian--an abstract scene with no recognizable objects--and its achromatic version to image the change in blood oxygenation in the brains of 12 human subjects, with the aim of learning more about the position and variability of the colour centre in the human brain. The results showed a consistent association of colour stimulation with activation of an area that is distinct from the primary visual areas, and lies in the ventral occipitotemporal cortex; we refer to it as human V4. The position of human V4, as defined on functional grounds, varies between individuals in absolute terms but is invariably found on the lateral aspect of the collateral sulcus on the fusiform gyrus. There was no indication of lingual gyral activation. In further studies designed to reveal the topographic map within V4, we stimulated the superior and inferior visual fields separately, using the same stimuli. We found that human V4 contains a representation of both the superior and inferior visual fields. In addition, there appears to be retinotopic organization of V4 with the superior visual field being represented more medially on the fusiform gyrus and the inferior field more laterally, the two areas abutting on one another. We find no evidence that suggests the existence of a separate representation of the inferior hemifield for colour in more dorsolateral regions of the occipital lobe. PMID:9448578

McKeefry, D J; Zeki, S

1997-12-01

348

Function of otolith organ in goldfish revealed from analysis of eye movement induced by acceleration.  

PubMed

An otolith organ on ground behave as a detector of both gravity and linear acceleration, and play an important role in controlling posture and eye movement for tilt of the head or translational motion. On the other hand, a gravitational acceleration ingredient to an otolith organ disappears in microgravity environment. However, linear acceleration can be received by otolith organ and produce a sensation that is different from that on Earth. It is suggested that in microgravity signal from the otolith organ may cause abnormality of posture control and eye movement. Therefore, the central nervous system may re-interprets all output from the otolith organ to indicate linear motion. A study of eye movement has been done a lot as one of a reflection related to an otolith organ system. In this study, we examined function of otolith organ in goldfish revealed from analysis of eye movement induced by linear acceleration or the tilt of body. We analyzed both torsional and vertical eye movements from video images frame by frame. For tilting stimulation, torsional eye movements induced by head down was larger than that induced by head up for larger tilt angle than 30 degrees. In the case of linear acceleration below 0.4 G, however, no clear differences were observed in both torsional and vertical eye movement. These results suggest that body tilt and linear acceleration may not be with equivalent stimulation to cause eye movement on the ground. PMID:14676357

Iwata, Kaori; Takabayashi, Akira; Mori, Shigeo

2003-10-01

349

Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles  

PubMed Central

Eukaryotic cells express several classes of small RNAs that regulate gene expression and ensure genome maintenance. Endogenous siRNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) mainly control gene and transposon expression in the germline, while microRNAs (miRNAs) generally function in post-transcriptional gene silencing in both somatic and germline cells. To provide an evolutionary and developmental perspective on small RNA pathways in nematodes, we identified and characterized known and novel small RNA classes through gametogenesis and embryo development in the parasitic nematode Ascaris suum and compared them with known small RNAs of Caenorhabditis elegans. piRNAs, Piwi-clade Argonautes, and other proteins associated with the piRNA pathway have been lost in Ascaris. miRNAs are synthesized immediately after fertilization in utero, before pronuclear fusion, and before the first cleavage of the zygote. This is the earliest expression of small RNAs ever described at a developmental stage long thought to be transcriptionally quiescent. A comparison of the two classes of Ascaris endo-siRNAs, 22G-RNAs and 26G-RNAs, to those in C. elegans, suggests great diversification and plasticity in the use of small RNA pathways during spermatogenesis in different nematodes. Our data reveal conserved characteristics of nematode small RNAs as well as features unique to Ascaris that illustrate significant flexibility in the use of small RNAs pathways, some of which are likely an adaptation to Ascaris' life cycle and parasitism.

Wang, Jianbin; Czech, Benjamin; Crunk, Amanda; Wallace, Adam; Mitreva, Makedonka; Hannon, Gregory J.; Davis, Richard E.

2011-01-01

350

Structure and Function of a Mitochondrial Late Embryogenesis Abundant Protein Are Revealed by Desiccation[W  

PubMed Central

Few organisms are able to withstand desiccation stress; however, desiccation tolerance is widespread among plant seeds. Survival without water relies on an array of mechanisms, including the accumulation of stress proteins such as the late embryogenesis abundant (LEA) proteins. These hydrophilic proteins are prominent in plant seeds but also found in desiccation-tolerant organisms. In spite of many theories and observations, LEA protein function remains unclear. Here, we show that LEAM, a mitochondrial LEA protein expressed in seeds, is a natively unfolded protein, which reversibly folds into ?-helices upon desiccation. Structural modeling revealed an analogy with class A amphipathic helices of apolipoproteins that coat low-density lipoprotein particles in mammals. LEAM appears spontaneously modified by deamidation and oxidation of several residues that contribute to its structural features. LEAM interacts with membranes in the dry state and protects liposomes subjected to drying. The overall results provide strong evidence that LEAM protects the inner mitochondrial membrane during desiccation. According to sequence analyses of several homologous proteins from various desiccation-tolerant organisms, a similar protection mechanism likely acts with other types of cellular membranes.

Tolleter, Dimitri; Jaquinod, Michel; Mangavel, Cecile; Passirani, Catherine; Saulnier, Patrick; Manon, Stephen; Teyssier, Emeline; Payet, Nicole; Avelange-Macherel, Marie-Helene; Macherel, David

2007-01-01

351

Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation.  

PubMed

Few organisms are able to withstand desiccation stress; however, desiccation tolerance is widespread among plant seeds. Survival without water relies on an array of mechanisms, including the accumulation of stress proteins such as the late embryogenesis abundant (LEA) proteins. These hydrophilic proteins are prominent in plant seeds but also found in desiccation-tolerant organisms. In spite of many theories and observations, LEA protein function remains unclear. Here, we show that LEAM, a mitochondrial LEA protein expressed in seeds, is a natively unfolded protein, which reversibly folds into alpha-helices upon desiccation. Structural modeling revealed an analogy with class A amphipathic helices of apolipoproteins that coat low-density lipoprotein particles in mammals. LEAM appears spontaneously modified by deamidation and oxidation of several residues that contribute to its structural features. LEAM interacts with membranes in the dry state and protects liposomes subjected to drying. The overall results provide strong evidence that LEAM protects the inner mitochondrial membrane during desiccation. According to sequence analyses of several homologous proteins from various desiccation-tolerant organisms, a similar protection mechanism likely acts with other types of cellular membranes. PMID:17526751

Tolleter, Dimitri; Jaquinod, Michel; Mangavel, Cécile; Passirani, Catherine; Saulnier, Patrick; Manon, Stephen; Teyssier, Emeline; Payet, Nicole; Avelange-Macherel, Marie-Hélène; Macherel, David

2007-05-01

352

Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening.  

PubMed

Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits. PMID:24510723

Nguyen, Cuong V; Vrebalov, Julia T; Gapper, Nigel E; Zheng, Yi; Zhong, Silin; Fei, Zhangjun; Giovannoni, James J

2014-02-01

353

The hypoxia inducible factor HIF-1 functions as both a positive and negative modulator of aging  

PubMed Central

In the past year and a half, five studies have independently established a direct connection between the hypoxic response transcription factor, HIF-1, and aging in Caenorhabditis elegans. These studies demonstrated that HIF-1 can both promote and limit longevity via pathways that are mechanistically distinct. Here we review the current state of knowledge regarding modulation of aging by HIF-1 and speculate on potential aspects of HIF-1 function that may be relevant for mammalian longevity and healthspan.

Leiser, Scott F.; Kaeberlein, Matt

2014-01-01

354

Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms  

Microsoft Academic Search

These studies describe the effects of nanosecond (10–300 ns) pulsed electric fields (nsPEF) on mammalian cell structure and function. As the pulse durations decrease, effects on the plasma membrane (PM) decrease and effects on intracellular signal transduction mechanisms increase. When nsPEF-induced PM electroporation effects occur, they are distinct from classical PM electroporation effects, suggesting unique, nsPEF-induced PM modulations. In HL-60

Stephen J Beebe; Peter F Blackmore; Jody White; Ravindra P Joshi; Karl H Schoenbach

2004-01-01

355

H 2 O 2 -mediated modulation of cytosolic signaling and organelle function in rat hippocampus  

Microsoft Academic Search

Reactive oxygen species (ROS) released from (dys-)functioning mitochondria contribute to normal and pathophysiological cellular\\u000a signaling by modulating cytosolic redox state and redox-sensitive proteins. To identify putative redox targets involved in\\u000a such signaling, we exposed hippocampal neurons to hydrogen peroxide (H2O2). Redox-sensitive dyes indicated that externally applied H2O2 may oxidize intracellular targets in cell cultures and acute tissue slices. In cultured

Florian J. Gerich; Frank Funke; Belinda Hildebrandt; Martin Faßhauer; Michael Müller

2009-01-01

356

Modulation of hypothalamic-pituitary-interrenal axis function by social status in rainbow trout.  

PubMed

Juvenile rainbow trout (Oncorhynchus mykiss) form stable dominance hierarchies when confined in pairs. These hierarchies are driven by aggressive competition over limited resources and result in one fish becoming dominant over the other. An important indicator of low social status is sustained elevation of circulating cortisol levels as a result of chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis. In the present study it was hypothesized that social status modulates the expression of key proteins involved in the functioning of the HPI axis. Cortisol treatment and fasting were used to assess whether these characteristics seen in subordinate fish also affected HPI axis function. Social status modulated plasma adrenocorticotropic hormone (ACTH) levels, cortisol synthesis, and liver glucocorticoid receptor (GR) expression. Plasma ACTH levels were lower by approximately 2-fold in subordinate and cortisol-treated fish, consistent with a negative feedback role for cortisol in modulating HPI axis function. Although cortisol-treated fish exhibited differences in corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP) mRNA relative abundances in the preoptic area and telencephalon, respectively, no effect of social status on CRF or CRF-BP was detected. Head kidney melanocortin 2 receptor (MC2R) mRNA relative levels were unaffected by social status, while mRNA relative abundances of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage (P450scc) enzyme were elevated in dominant fish. Liver GR2 mRNA and total GR protein levels in subordinate fish were lower than control values by approximately 2-fold. In conclusion, social status modulated the functioning of the HPI axis in rainbow trout. Our results suggest altered cortisol dynamics and reduced target tissue response to this steroid in subordinate fish, while the higher transcript levels for steroid biosynthesis in dominant fish leads us to propose an adaptive role for responding to subsequent stressors. PMID:22326353

Jeffrey, Jennifer D; Esbaugh, Andrew J; Vijayan, Mathilakath M; Gilmour, Kathleen M

2012-04-01

357

Serotonin transporter genotype modulates cognitive reappraisal of negative emotions: a functional magnetic resonance imaging study  

PubMed Central

A functional polymorphism within the serotonin transporter gene (5-HTTLPR) has been reported to modulate emotionality and risk for affective disorders. The short (S) allele has less functional efficacy than the long (L) allele and has been associated with enhanced emotional reactivity. One possible contributing factor to the high emotionality in S carriers may be inefficient use of cognitive strategies such as reappraisal to regulate emotional responses. The aim of the present study was to test whether the 5-HTTLPR genotype modulates the neural correlates of emotion regulation. To determine neural differences between S and L allele carriers during reappraisal of negative emotions, 15 homozygous S (S?/S?) and 15 homozygous L (L?/L?) carriers underwent functional magnetic resonance imaging (fMRI), while performing an instructed emotion regulation task including downregulation, upregulation and passive viewing of negative emotional pictures. Compared to L?/L? allele carriers, subjects who carry the S?/S? allele responded with lower posterior insula and prefrontal brain activation during passive perception of negative emotional information but showed greater prefrontal activation and anterior insula activation during down- and upregulation of negative emotional responses. The current results support and extend previous findings of enhanced emotionality in S carriers by providing additional evidence of 5-HTTLPR modulation of volitional emotion regulation.

Siep, Nicolette; Markus, C. Rob

2013-01-01

358

NCS-1 associates with adenosine A2A receptors and modulates receptor function  

PubMed Central

Modulation of G protein-coupled receptor (GPCR) signaling by local changes in intracellular calcium concentration is an established function of Calmodulin (CaM) which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with CaM targets with different functional outcome. In the present study we aimed to investigate if a target of CaM—the A2A adenosine receptor is able to associate with two other neuronal calcium binding proteins (nCaBPs), namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments we show the existence of A2A—NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signaling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signaling.

Navarro, Gemma; Hradsky, Johannes; Lluis, Carmen; Casado, Vicent; McCormick, Peter J.; Kreutz, Michael R.; Mikhaylova, Marina

2012-01-01

359

Coexpression-Based Clustering of Arabidopsis Root Genes Predicts Functional Modules in Early Phosphate Deficiency Signaling1[C][W  

PubMed Central

Phosphate (Pi) deficiency triggers the differential expression of a large set of genes, which communally adapt the plant to low Pi bioavailability. To infer functional modules in early transcriptional responses to Pi deficiency, we conducted time-course microarray experiments and subsequent coexpression-based clustering of Pi-responsive genes by pairwise comparison of genes against a customized database. Three major clusters, enriched in genes putatively functioning in transcriptional regulation, root hair formation, and developmental adaptations, were predicted from this analysis. Validation of gene expression by quantitative reverse transcription-PCR revealed that transcripts from randomly selected genes were robustly induced within the first hour after transfer to Pi-deplete medium. Pectin-related processes were among the earliest and most robust responses to Pi deficiency, indicating that cell wall alterations are critical in the early transcriptional response to Pi deficiency. Phenotypical analysis of homozygous mutants defective in the expression of genes from the root hair cluster revealed eight novel genes involved in Pi deficiency-induced root hair elongation. The plants responded rapidly to Pi deficiency by the induction of a subset of transcription factors, followed by a repression of genes involved in cell wall alterations. The combined results provide a novel, integrated view at a systems level of the root responses that acclimate Arabidopsis (Arabidopsis thaliana) to suboptimal Pi levels.

Lin, Wen-Dar; Liao, Ya-Yun; Yang, Thomas J.W.; Pan, Chao-Yu; Buckhout, Thomas J.; Schmidt, Wolfgang

2011-01-01

360

Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma.  

PubMed

Our goal of this study was to reconstruct a "genome-scale co-expression network" and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named "genome-scale co-expression network". As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules. PMID:23874428

Bidkhori, Gholamreza; Narimani, Zahra; Hosseini Ashtiani, Saman; Moeini, Ali; Nowzari-Dalini, Abbas; Masoudi-Nejad, Ali

2013-01-01