Science.gov

Sample records for fundamental binding forces

  1. Correlation between fundamental binding forces and clinical prognosis of Staphylococcus aureus infections of medical implants

    SciTech Connect

    Yongsunthon, Ruchirej; Fowler, Vance; Lower, Brian H.; Vellano, Francis P.; Alexander, Emily; Reller, L. Barth; Corey, G. Ralph; Lower, Steven

    2007-03-01

    Atomic force microscopy was used to “fish” for binding reactions between a fibronectin-coated probe (i.e., substrate simulating an implant device) and each of 15 different strains of S. aureus isolated from either patients with infected cardiac prosthesis (invasive group) or healthy human subjects (control group). There is a strong distinction (p=0.01) in the binding force-signature observed for the invasive vs. control populations. This observation suggests that a microorganism’s “force taxonomy” may provide a fundamental and practical indicator of the risk that bacterial infections pose to patients with implanted medical devices.

  2. Correlation between fundamental binding forces and clinical prognosis of Staphylococcus aureus infections of medical implants

    SciTech Connect

    Yongsunthon, Ruchirej; Fowler, Vance; Lower, Brian H.; Vellano, Francis P.; Alexander, Emily; Reller, L. Barth; Corey, G. Ralph; Lower, Steven

    2007-02-01

    Implanted medical devices (e.g., prosthetic heart valves, permanent pacemakers) significantly improve the quality of life for many humans. However, a common clinical observation is that such devices become colonized with potentially life-threatening Staphylococcus aureus biofilms, which are difficult to combat with host defenses or antibiotics. This study attempts to draw a correlation between the clinical outcome of patients with implanted cardiac devices and the fundamental binding forces ultimately responsible for the initiation of an S. aureus biofilm in-situ. Atomic force microscopy was used to measure forces between a fibronectin-coated probe (simulating a prosthetic implant) and 15 different strains of S. aureus isolated from either patients with infected cardiac devices (invasive population) or healthy human subjects (control population). The fibronectin-coated probe was repeatedly brought into and out of contact with a bacterium’s surface, “fishing” for a reaction with the cell’s fibronectin-binding proteins. More than 40,000 force profiles were measured on 5-10 different cells for each of the 15 clinical strains. A unique force-signature was observed for a binding event between the fibronectin-coated probe and the bacteria. When grouped by the frequency of this force-signature, there was a strong distinction (p=0.01) between the invasive and control populations of S. aureus. This discovery suggests that biofilm forming bacteria may be classified according to their “force taxonomy”, which could have a positive effect on health care as it bridges the long-standing disconnect between macroscopic, clinical investigations and nanometer-scale forces ultimately responsible for a bond between S. aureus and the surface of a prosthetic device.

  3. Unification of Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Taylor, Foreword by John C.

    2005-10-01

    Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.

  4. Unification of Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    1990-05-01

    This is an expanded version of the third Dirac Memorial Lecture, given in 1988 by the Nobel Laureate Abdus Salam. Salam's lecture presents an overview of the developments in modern particle physics from its inception at the turn of the century to the present theories seeking to unify all the fundamental forces. In addition, two previously unpublished lectures by Paul Dirac, and Werner Heisenberg are included. These lectures provide a fascinating insight into their approach to research and the developments in particle physics at that time. Nonspecialists, undergraduates and researchers will find this a fascinating book. It contains a clear introduction to the major themes of particle physics and cosmology by one of the most distinguished contemporary physicists.

  5. An Accurate Quartic Force Field, Fundamental Frequencies, and Binding Energy for the High Energy Density Material T(d)N4

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The CCSD(T) method has been used to compute a highly accurate quartic force field and fundamental frequencies for all N-14 and N-15 isotopomers of the high energy density material T(sub d)N(sub 4). The computed fundamental frequencies show beyond doubt that the bands observed in a matrix isolation experiment by Radziszewski and coworkers are not due to different isotopomers of T(sub d)N(sub 4). The most sophisticated thermochemical calculations to date yield a N(sub 4) -> 2N(sub 2) heat of reaction of 182.22 +/- 0.5 kcal/mol at 0 K (180.64 +/- 0.5 at 298 K). It is hoped that the data reported herein will aid in the ultimate detection of T(sub d)N(sub 4).

  6. Fundamental considerations in ski binding analysis.

    PubMed

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier

  7. Hebrew as a Binding Force.

    ERIC Educational Resources Information Center

    Fischler, Ben-Zion

    1990-01-01

    The role of the Hebrew language as a cohesive force and the history of modern Hebrew instruction are chronicled. It is proposed that despite the scattering of its speakers and periods of use only as a literary or business language, Hebrew has been a binding force for the Jewish people. It was with considerable struggle that Hebrew gained…

  8. Quarkonium binding and entropic force

    NASA Astrophysics Data System (ADS)

    Satz, Helmut

    2015-05-01

    A bound state represents a balance between repulsive kinetic and attractive potential energy. In a hot quark-gluon plasma, the interaction potential experiences medium effects. Color screening modifies the attractive binding force between the quarks, while the increase of entropy with separation gives rise to a growing repulsion. We study the role of these phenomena for in-medium binding and dissociation. It is found that the relevant potential for binding is the free energy ; with increasing separation, further binding through the internal energy is compensated by repulsive entropic effects.

  9. Simplified fundamental force and mass measurements

    NASA Astrophysics Data System (ADS)

    Robinson, I. A.

    2016-08-01

    The watt balance relates force or mass to the Planck constant h, the metre and the second. It enables the forthcoming redefinition of the unit of mass within the SI by measuring the Planck constant in terms of mass, length and time with an uncertainty of better than 2 parts in 108. To achieve this, existing watt balances require complex and time-consuming alignment adjustments limiting their use to a few national metrology laboratories. This paper describes a simplified construction and operating principle for a watt balance which eliminates the need for the majority of these adjustments and is readily scalable using either electromagnetic or electrostatic actuators. It is hoped that this will encourage the more widespread use of the technique for a wide range of measurements of force or mass. For example: thrust measurements for space applications which would require only measurements of electrical quantities and velocity/displacement.

  10. Quarks and a Unified Theory of Nature Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2015-03-01

    Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.

  11. Quarks and a unified theory of Nature fundamental forces

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2015-01-01

    Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.

  12. Deformable mirrors: design fundamentals for force actuation of continuous facesheets

    NASA Astrophysics Data System (ADS)

    Ravensbergen, S. K.; Hamelinck, R. F. H. M.; Rosielle, P. C. J. N.; Steinbuch, M.

    2009-08-01

    Adaptive Optics is established as essential technology in current and future ground based (extremely) large telescopes to compensate for atmospheric turbulence. Deformable mirrors for astronomic purposes have a high number of actuators (> 10k), a relatively large stroke (> 10μm) on a small spacing (< 10mm) and a high control bandwidth (> 100Hz). The availability of piezoelectric ceramics as an actuator principle has driven the development of many adaptive deformable mirrors towards inappropriately stiff displacement actuation. This, while the use of force actuation supersedes piezos in performance and longevity while being less costly per channel by a factor of 10-20. This paper presents a model which is independent of the actuator type used for actuation of continuous facesheet deformable mirrors, to study the design parameters such as: actuator spacing & coupling, influence function, peak-valley stroke, dynamical behavior: global & local, etc. The model is validated using finite element simulations and its parameters are used to derive design fundamentals for optimization.

  13. Fundamental study of phosphor separation by controlling magnetic force

    NASA Astrophysics Data System (ADS)

    Wada, Kohei; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  14. Molecular forces for the binding and condensation of DNA molecules.

    PubMed Central

    Cai, Xian-E; Yang, Jie

    2002-01-01

    Atomic force microscopy has been used to investigate the binding between a double-stranded DNA and bilayers of cationic lipids and zwitterionic lipids in low ionic-strength solutions. The binding of a DNA molecule to freshly cleaved mica surface in solution has also been measured. The binding of DNA molecules to cationic lipid bilayers has a minimal strength of approximately 45 pN. On zwitterionic lipid bilayers and mica surface, the minimal binding strength is approximately twice that value. The binding also has a dynamic nature, with only a certain percentage of recorded force curves containing the binding characteristics. Divalent Mg(2+) ions enhance the binding by increasing that percentage without any effect on the binding strength. We have also observed a long-range attraction between DNA molecules and cationic lipid bilayers with a strength much larger than the minimum force and a range well over 50 nm, possibly related to the driving force responsible for the two-dimensional condensation of DNA. PMID:11751322

  15. The Sequential Evolution of Universes Based on Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Derow, Catherine Kari

    2015-08-01

    Universes may arise as nature abhors a void. Upon ending of a universe, a new universe forms to fill a new void, forming after perhaps a period of nothingness.The nature of a new universe and the nature of formation, may be related to the nature of the previous universe and the nature of its ending, respectively, e.g., if the end of a universe was prolonged, this might be followed by a short period of nothingness and then an explosive creation of a new universe. Long approach to nothingness and a brief period of nothingness may mean a universe arises quickly and energetically in response to this long latent period of expectancy of void-filling. In terms of order in a universe, order may engender new more ordered universes, until need for chaos means a more chaotic universe arises. Ordered universes may cause new even more ordered universes to atise. The order principle dictates the type of matter organization that arises in universes in series. An ordered universe may have a latent energy of order which leads to a smaller more ordered universe. This minimizes the expectancy of a void, as a smaller more regularly filled void will then ensue in the new universe, until the energy held in by this order is released in the formation of a large much less ordered and slower forming and expanding universe, with more regions of near void. Nature may strive for a build up of intensity of focused order filling an ever- smaller void, averting the void, until the principle of chaos predominates and the energy that this requirement builds causes explosive formation of a large and disordered universe. The need to fill any void that arises and a force that favors a small void arising as void is abhorred and this void being regularly and densely filled competes with the force that favors matter tending towards chaos. These principles governs universes arising in series, until a period of nothingness can prevail until the need to create a void predominates. Nothingness is able to

  16. Binding Forces of Streptococcus mutans P1 Adhesin

    PubMed Central

    Sullan, Ruby May A.; Li, James K.; Crowley, Paula J.; Brady, L. Jeannine; Dufrêne, Yves F.

    2015-01-01

    Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (~50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (~500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans–SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy. PMID:25671413

  17. Binding dynamics and energetic insight into the molecular forces driving nucleotide binding by guanylate kinase.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2011-01-01

    Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions. PMID:21360614

  18. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    SciTech Connect

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  19. The Binding Forces That Hold School Organizations Together.

    ERIC Educational Resources Information Center

    Pang, Nicholas Sun-Keung

    1998-01-01

    Examines Hong Kong secondary schools' organizational values, using the School Values Inventory. Uses LISREL modeling techniques with a sample of 554 teachers to develop a four-factor model of organizational values. Binding forces such as bureaucratic and cultural linkages and tight and loose couplings provide insights for understanding school…

  20. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.

    PubMed

    Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E

    2015-12-22

    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing. PMID:26575598

  1. The Fundamental Role of Flexibility on the Strength of Molecular Binding

    PubMed Central

    Douglas, Jack F.; Gilson, Michael K.

    2012-01-01

    Non-covalent molecular association underlies a diverse set of biologically and technologically relevant phenomena, including the action of drugs on their biomolecular targets and self- and supra-molecular assembly processes. Computer models employed to model binding frequently use interaction potentials with atomistic detail while neglecting the thermal molecular motions of the binding species. However, errors introduced by this simplification and, more broadly, the thermodynamic consequences of molecular flexibility on binding, are little understood. Here, we isolate the fundamental relationship of molecular flexibility to binding thermodynamics via simulations of simplified molecules with a wide range of flexibilities but the same interaction potential. Disregarding molecular motion is found to generate large errors in binding entropy, enthalpy and free energy, even for molecules that are nearly rigid. Indeed, small decreases in rigidity markedly reduce affinity for highly rigid molecules. Remarkably, precisely the opposite occurs for more flexible molecules, for which increasing flexibility leads to stronger binding affinity. We also find that differences in flexibility suffice to generate binding specificity: for example, a planar surface selectively binds rigid over flexible molecules. Intriguingly, varying molecular flexibility while keeping interaction potentials constant leads to near-linear enthalpy-entropy compensation over a wide range of flexibilities, with the unexpected twist that increasing flexibility produces opposite changes in entropy and enthalpy for molecules in the flexible versus the rigid regime. Molecular flexibility is thus a crucial determinant of binding affinity and specificity and variations in flexibility can lead to strong yet non-intuitive consequences. PMID:22707976

  2. Ultra-fast force-clamp laser trapping of single molecular motors and DNA binding proteins

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Monico, Carina; Vanzi, Francesco; Pavone, Francesco S.

    2013-09-01

    Forces play a fundamental role in a wide array of biological processes, regulating enzymatic activity, kinetics of molecular bonds, and molecular motors mechanics. Single molecule force spectroscopy techniques have enabled the investigation of such processes, but they are inadequate to probe short-lived (millisecond and sub-millisecond) molecular complexes. We developed an ultrafast force-clamp spectroscopy technique that uses a dual trap configuration to apply constant loads to a single intermittently interacting biological polymer and a binding protein. Our system displays a delay of only ˜10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. The force-clamp configuration in which our assay operates allows direct measurements of load-dependence of lifetimes of single molecular bonds. Moreover, conformational changes of single proteins and molecular motors can be recorded with sub-nanometer accuracy and few tens of microseconds of temporal resolution. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  3. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-01

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  4. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins

    PubMed Central

    Atherton, Joseph; Farabella, Irene; Yu, I-Mei; Rosenfeld, Steven S; Houdusse, Anne; Topf, Maya; Moores, Carolyn A

    2014-01-01

    Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles—including their nucleotide-free states—at ∼7 Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin–microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface. DOI: http://dx.doi.org/10.7554/eLife.03680.001 PMID:25209998

  5. Unphosphorylated calponin enhances the binding force of unphosphorylated myosin to actin

    PubMed Central

    Roman, Horia Nicolae; Zitouni, Nedjma B.; Kachmar, Linda; Ijpma, Gijs; Hilbert, Lennart; Matusovskiy, Oleg; Benedetti, Andrea; Sobieszek, Apolinary; Lauzon, Anne-Marie

    2013-01-01

    Background Smooth muscle has the distinctive ability to maintain force for long periods of time and at low energy costs. While it is generally agreed that this property, called the latch-state, is due to the dephosphorylation of myosin while attached to actin, dephosphorylated-detached myosin can also attach to actin and may contribute to force maintenance. Thus, we investigated the role of calponin in regulating and enhancing the binding force of unphosphorylated tonic muscle myosin to actin. Methods To measure the effect of calponin on the binding of unphosphorylated myosin to actin, we used the laser trap assay to quantify the average force of unbinding (Funb) in the absence and presence of calponin or phosphorylated calponin. Results Funb from F-actin alone (0.12±0.01pN; mean±SE) was significantly increased in the presence of calponin (0.20±0.02pN). This enhancement was lost when calponin was phosphorylated (0.12±0.01pN). To further verify that this enhancement of Funb was due to cross-linking of actin to myosin by calponin, we repeated the measurements at high ionic strength. Indeed, the Funb obtained at a [KCl] of 25mM (0.21±0.02pN; mean±SE) was significantly decreased at a [KCl] of 150mM, (0.13±0.01pN). Conclusions This study provides direct molecular level-evidence that calponin enhances the binding force of unphosphorylated myosin to actin by cross-linking them and that this is reversed upon calponin phosphorylation. Thus, calponin might play an important role in the latch-state. General Significance This study suggests a new mechanism that likely contributes to the latch-state, a fundamental and important property of smooth muscle that remains unresolved. PMID:23747303

  6. Interactive Multimedia Software on Fundamental Particles and Forces. Final Technical Report

    SciTech Connect

    Jack Sculley

    1999-04-27

    Research in the SBIR Phase 2 grant number 95 ER 81944 centered on creating interactive multimedia software for teaching basic concepts in particle physics on fundamental particles and forces. The work was undertaken from February 1997 through July 1998. Overall the project has produced some very encouraging results in terms of product development, interest from the general public and interest from potential Phase 3 funders. Although the original Phase 3 publisher, McGraw Hill Home Interactive, was dissolved by its parent company, and other changes in the CD-ROM industry forced them to change their focus from CD-ROM to the Internet, there has been substantial interest from software publishers and online content providers in the content developed in the course of the Phase 2 research. Results are summarized.

  7. Improvements in fundamental performance of liquid-environment atomic force microscopy with true atomic resolution

    NASA Astrophysics Data System (ADS)

    Miyata, Kazuki; Miyazawa, Keisuke; Akrami, Seyed Mohammad Reza; Fukuma, Takeshi

    2015-08-01

    Recently, there have been significant advancements in liquid-environment atomic force microscopy (AFM) with true atomic resolution. The technical advancements are followed by a rapid expansion of its application area. Examples include subnanometer-scale imaging of biological systems and three-dimensional measurements of water distributions (i.e., hydration structures) and fluctuating surface structures. However, to continue this progress, we should improve the fundamental performance of liquid-environment dynamic-mode AFM. The present AFM technique does not allow real-time imaging of atomic-scale dynamic phenomena at a solid-liquid interface. This has hindered atomic-level understanding of crystal growth and dissolution, catalytic reactions and metal corrosion processes. Improvement in force sensitivity is required not only for such a high-speed imaging but also for various surface property measurements using a high-resolution AFM technique. In this review, we summarize recent works on the improvements in the force sensitivity and operation speed of atomic-resolution dynamic-mode AFM for liquid-environment applications.

  8. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.

    PubMed

    Raman, E Prabhu; MacKerell, Alexander D

    2015-02-25

    The thermodynamic driving forces behind small molecule-protein binding are still not well-understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provide an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both nonpolar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the "hydrophobic effect". Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. It is notable to have the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  9. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  10. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  11. A fundamental model of mistuning for system identification and forced response prediction

    NASA Astrophysics Data System (ADS)

    Feiner, Drew M.

    The vibratory response of a turbine blade is very sensitive to small changes in the blade properties. Therefore, the variations that come from the manufacturing process and wear can significantly increase a blade's vibratory stress at resonance. This phenomenon, referred to as mistuning, can cause blades in a gas turbine engine to fail from high cycle fatigue. A new reduced order model of mistuned bladed disk vibration is presented. This new approach is shown to accurately represent the response of real turbine geometries when only a single family of modes is excited. Yet its mathematical form is even simpler than that of a mass-spring model. Because it requires only minimal input data, this model is much easier to use than previous reduced order methods. Furthermore, its simplicity allows the fundamental parameters that control mistuning to be readily identified. This model is then used to develop a set of analysis tools to assess the mistuning in an engine component and predict its vibratory response under rotating conditions. These tools include a completely experimental method of system identification which uses vibratory response measurements of the bladed disk system as a whole to infer its mistuning. As a system-based method, this approach is particularly well suited to integrally bladed rotors, whose blades cannot be removed for individual testing. Next, an analytical method is developed to adjust mistuning for the effects of centrifugal stiffening. The approach allows mistuning measured from a stationary rotor to be used to predict the part's forced response under rotating conditions. Finally, the system identification method is extended to allow forced response measurements from a rotating test to be used as input. The mistuning measured through this approach will reflect all effects present during the operating conditions. One particular advantage of this method is that it can capture the effect of centrifugal loading on the mistuning of conventionally

  12. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    PubMed

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  13. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  14. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies.

    PubMed

    Amo, Carlos A; Garcia, Ricardo

    2016-07-26

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force-distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50-500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations. PMID:27359243

  15. Force spectroscopy of biomolecular folding and binding: theory meets experiment

    NASA Astrophysics Data System (ADS)

    Dudko, Olga

    2015-03-01

    Conformational transitions in biological macromolecules usually serve as the mechanism that brings biomolecules into their working shape and enables their biological function. Single-molecule force spectroscopy probes conformational transitions by applying force to individual macromolecules and recording their response, or ``mechanical fingerprints,'' in the form of force-extension curves. However, how can we decode these fingerprints so that they reveal the kinetic barriers and the associated timescales of a biological process? I will present an analytical theory of the mechanical fingerprints of macromolecules. The theory is suitable for decoding such fingerprints to extract the barriers and timescales. The application of the theory will be illustrated through recent studies on protein-DNA interactions and the receptor-ligand complexes involved in blood clot formation.

  16. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  17. Force-dependent conformational switch of α-catenin controls vinculin binding.

    PubMed

    Yao, Mingxi; Qiu, Wu; Liu, Ruchuan; Efremov, Artem K; Cong, Peiwen; Seddiki, Rima; Payre, Manon; Lim, Chwee Teck; Ladoux, Benoit; Mège, René-Marc; Yan, Jie

    2014-01-01

    Force sensing at cadherin-mediated adhesions is critical for their proper function. α-Catenin, which links cadherins to actomyosin, has a crucial role in this mechanosensing process. It has been hypothesized that force promotes vinculin binding, although this has never been demonstrated. X-ray structure further suggests that α-catenin adopts a stable auto-inhibitory conformation that makes the vinculin-binding site inaccessible. Here, by stretching single α-catenin molecules using magnetic tweezers, we show that the subdomains MI vinculin-binding domain (VBD) to MIII unfold in three characteristic steps: a reversible step at ~5 pN and two non-equilibrium steps at 10-15 pN. 5 pN unfolding forces trigger vinculin binding to the MI domain in a 1:1 ratio with nanomolar affinity, preventing MI domain refolding after force is released. Our findings demonstrate that physiologically relevant forces reversibly unfurl α-catenin, activating vinculin binding, which then stabilizes α-catenin in its open conformation, transforming force into a sustainable biochemical signal. PMID:25077739

  18. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    PubMed

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  19. Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans.

    PubMed

    Hwang, G; Marsh, G; Gao, L; Waugh, R; Koo, H

    2015-09-01

    Candida albicans cells are often detected with Streptococcus mutans in plaque biofilms from children affected with early childhood caries. The coadhesion between these 2 organisms appears to be largely mediated by the S. mutans-derived exoenzyme glucosyltransferase B (GtfB); GtfB readily binds to C. albicans cells in an active form, producing glucans locally that provide enhanced binding sites for S. mutans. However, knowledge is limited about the mechanisms by which the bacterial exoenzyme binds to and functions on the fungal surface to promote this unique cross-kingdom interaction. In this study, we use atomic force microscopy to understand the strength and binding dynamics modulating GtfB-C. albicans adhesive interactions in situ. Single-molecule force spectroscopy with GtfB-functionalized atomic force microscopy tips demonstrated that the enzyme binds with remarkable strength to the C. albicans cell surface (~2 nN) and showed a low dissociation rate, suggesting a highly stable bond. Strikingly, the binding strength of GtfB to the C. albicans surface was ~2.5-fold higher and the binding stability, ~20 times higher, as compared with the enzyme adhesion to S. mutans. Furthermore, adhesion force maps showed an intriguing pattern of GtfB binding. GtfB adhered heterogeneously on the surface of C. albicans, showing a higher frequency of adhesion failure but large sections of remarkably strong binding forces, suggesting the presence of GtfB binding domains unevenly distributed on the fungal surface. In contrast, GtfB bound uniformly across the S. mutans cell surface with less adhesion failure and a narrower range of binding forces (vs. the C. albicans surface). The data provide the first insights into the mechanisms underlying the adhesive and mechanical properties governing GtfB interactions with C. albicans. The strong and highly stable GtfB binding to C. albicans could explain, at least in part, why this bacterially derived exoenzyme effectively modulates this

  20. Protonated nitrous oxide, NNOH+: fundamental vibrational frequencies and spectroscopic constants from quartic force fields.

    PubMed

    Huang, Xinchuan; Fortenberry, Ryan C; Lee, Timothy J

    2013-08-28

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(J) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(-1), and the vibrational configuration interaction computed result is 3330.9 cm(-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the interstellar medium and the laboratory. PMID:24007003

  1. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  2. Going Lean: Impending Money Woes Force Tough Choices, Forecast Fundamental Shift in Community College Funding

    ERIC Educational Resources Information Center

    Joch, Alan

    2011-01-01

    The numbers were already bad, and they keep getting worse, for the Dallas County Community College District (DCCCD). Given the weak economy, administrators planned for a 5 percent reduction in state funding in the 2010-11 academic year. The actual reduction ballooned to more than 7.5 percent, an additional $13 million that DCCCD would be forced to…

  3. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy

    PubMed Central

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-01-01

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicteddual binding modes across multiple bacterial species, our approach opens up newpossibilities for understanding assembly and catalytic properties of a broadrange of multi-enzyme complexes. DOI: http://dx.doi.org/10.7554/eLife.10319.001 PMID:26519733

  4. Dynamic force spectroscopy of the Helicobacter pylori BabA-Lewis b binding.

    PubMed

    Björnham, Oscar; Bugaytsova, Jeanna; Borén, Thomas; Schedin, Staffan

    2009-07-01

    The binding strength of the Helicobacter pylori adhesin-receptor complex BabA-ABO/Lewis b has been analyzed by means of dynamic force spectroscopy. High-resolution measurements of rupture forces were performed in situ on single bacterial cells, expressing the high-affinity binding BabA adhesin, by the use of force measuring optical tweezers. The resulting force spectra revealed the mechanical properties of a single BabA-Leb bond. It was found that the bond is dominated by one single energy barrier and that it is a slip-bond. The bond length and thermal off-rate were assessed to be 0.86+/-0.07 nm and 0.015+/-0.006 s(-1), respectively. PMID:19344994

  5. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces

    PubMed Central

    Young, Kaylie L.; Jones, Matthew R.; Zhang, Jian; Macfarlane, Robert J.; Esquivel-Sirvent, Raul; Nap, Rikkert J.; Wu, Jinsong; Schatz, George C.; Lee, Byeongdu; Mirkin, Chad A.

    2012-01-01

    We report that triangular gold nanoprisms in the presence of attractive depletion forces and repulsive electrostatic forces assemble into equilibrium one-dimensional lamellar crystals in solution with interparticle spacings greater than four times the thickness of the nanoprisms. Experimental and theoretical studies reveal that the anomalously large d spacings of the lamellar superlattices are due to a balance between depletion and electrostatic interactions, both of which arise from the surfactant cetyltrimethylammonium bromide. The effects of surfactant concentration, temperature, ionic strength of the solution, and prism edge length on the lattice parameters have been investigated and provide a variety of tools for in situ modulation of these colloidal superstructures. Additionally, we demonstrate a purification procedure based on our observations that can be used to efficiently separate triangular nanoprisms from spherical nanoparticles formed concomitantly during their synthesis. PMID:22308436

  6. A novel assay for drug-DNA binding mode, affinity, and exclusion number: scanning force microscopy.

    PubMed Central

    Coury, J E; McFail-Isom, L; Williams, L D; Bottomley, L A

    1996-01-01

    Determining the mode-of-binding of a DNA ligand is not always straightforward. Here, we establish a scanning force microscopic assay for mode-of-binding that is (i) direct: lengths of individual DNA-ligand complexes are directly measured; (ii) rapid: there are no requirements for staining or elaborate sample preparation; and (iii) unambiguous: an observed increase in DNA length upon addition of a ligand is definitive evidence for an intercalative mode-of-binding. Mode-of-binding, binding affinity, and site-exclusion number are readily determined from scanning force microscopy measurements of the changes in length of individual drug-DNA complexes as a function of drug concentration. With this assay, we resolve the ambiguity surrounding the mode of binding of 2,5-bis(4-amidinophenyl) furan (APF) to DNA and show that it binds to DNA by nonintercalative modes. APF is a member of an important class of aromatic dicationic drugs that show significant activity in the treatment of Pneumocystis carinii pneumonia, an opportunistic infection that is the leading cause of death in AIDS patients. Images Fig. 1 PMID:8901572

  7. The Tie That Binds:. A Fundamental Unit of `Change' in Space and Time

    NASA Astrophysics Data System (ADS)

    Beichler, James E.

    2013-09-01

    Why, despite all efforts to the contrary, have attempts at unification based on the supposedly more fundamental quantum theory failed miserably? The truth is that the essential idea or concept of the quantum itself has never been fully understood. What is the quantum, or rather, what is its ultimate nature? Science may be able to work adequately with the quantum; in a sense science is quite articulate in the language of the quantum, i.e., its mathematical interpretation of the quantum mechanics, but science has no idea of the true physical nature of the quantum. Scientists and philosophers have wasted energy and efforts on irrelevant issues such as the debate over determinism and indeterminism instead of carefully analyzing the physical source of the quantum. Only with a true understanding of the physical nature of the quantum will the unification of the quantum and relativity ever become a reality.

  8. An ab initio study of the harmonic and anharmonic force field and fundamental vibrational frequencies of performic acid

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1980-11-01

    The harmonic and anharmonic force fields and fundamental vibrational frequencies of cis-cis and cis-trans performic acid are studied ab initio in the 4-31G basis set using geometries fully optimized at this level. The frequencies predicted for the cis-cis conformer are compared with those derived from spectroscopic observations on the most stable form. An extensive comparison is made between the changes in diagonal and off-diagonal quadratic and cubic force constants, and diagonal stretching quartic constants, in going from the chain to the ring structure in performic and formic acid, and features which these changes have in common are seen to support the view that there is a hydrogen bonding type of interaction in trans-formic acid despite its unfavorable geometry.

  9. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.

    PubMed

    Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D

    2015-09-15

    Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual

  10. Revised periodic boundary conditions: Fundamentals, electrostatics, and the tight-binding approximation

    NASA Astrophysics Data System (ADS)

    Kit, Oleg O.; Pastewka, Lars; Koskinen, Pekka

    2011-10-01

    Many nanostructures today are low-dimensional and flimsy, and therefore get easily distorted. Distortion-induced symmetry breaking makes conventional, translation-periodic simulations invalid, which has triggered developments for new methods. Revised periodic boundary conditions (RPBC) is a simple method that enables simulations of complex material distortions, either classically or quantum mechanically. The mathematical details of this easy-to-implement approach, however, have not been discussed before. Therefore, in this paper, we summarize the underlying theory, present the practical details of RPBC, especially related to a nonorthogonal tight-binding formulation, discuss selected features, electrostatics in particular, and suggest some examples of usage. We hope this article can give more insight into RPBC, and it will help and inspire new software implementations capable of exploring the physics and chemistry of distorted nanomaterials.

  11. Proton-coupled electron transfers: pH-dependent driving forces? Fundamentals and artifacts.

    PubMed

    Bonin, Julien; Costentin, Cyrille; Robert, Marc; Routier, Mathilde; Savéant, Jean-Michel

    2013-09-25

    Besides its own interest, tryptophan oxidation by photogenerated Ru complexes is one of the several examples where concerted proton-electron transfer (CPET) to water as proton acceptor endowed with a pH-dependent driving force has been invoked to explain the data. Since this notion is contrary to the very basic principles of chemical physics, it was interesting to attempt uncovering the source of this contradiction with an easily accessible substrate. Careful examination of the oxidation of the tryptophan (ethyl ester derivative) bearing a NH3(+)/NH2 group showed that there is no trace of such an unconventional H2O-CPET with a pH-dependent driving force. The reaction mechanism simply consists, with both the NH3(+) acid and NH2 basic forms of the tryptophan derivative, in a rate-determining electron-transfer step followed by deprotonation steps. The same is true with the ethyl ester-methyl amide derivative of tryptophan, whose behavior is even simpler since the molecule does not bear an acid-base group. No such unconventional H2O-CPET was found with phenol, another easily accessible substrate. It may thus be inferred that the same applies to less easily available systems in which electron transfer occurs intramolecularly. These observations help to rid the road of such artificial obstacles and improve present models of H2O-CPET reactions, a landmark towards the understanding of the role of water chains in natural systems. PMID:23972082

  12. Dynamics of Protein Folding and Cofactor Binding Monitored by Single-Molecule Force Spectroscopy

    PubMed Central

    Cao, Yi; Li, Hongbin

    2011-01-01

    Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function. PMID:22004755

  13. Nanopharmacological Force Sensing to Reveal Allosteric Coupling in Transporter Binding Sites.

    PubMed

    Zhu, Rong; Sinwel, Doris; Hasenhuetl, Peter S; Saha, Kusumika; Kumar, Vivek; Zhang, Peng; Rankl, Christian; Holy, Marion; Sucic, Sonja; Kudlacek, Oliver; Karner, Andreas; Sandtner, Walter; Stockner, Thomas; Gruber, Hermann J; Freissmuth, Michael; Hauck Newman, Amy; Sitte, Harald H; Hinterdorfer, Peter

    2016-01-26

    Controversy regarding the number and function of ligand binding sites in neurotransmitter/sodium symporters arose from conflicting data in crystal structures and molecular pharmacology. Here, we have designed novel tools for atomic force microscopy that directly measure the interaction forces between the serotonin transporter (SERT) and the S- and R-enantiomers of citalopram on the single molecule level. This approach is based on force spectroscopy, which allows for the extraction of dynamic information under physiological conditions thus inaccessible via X-ray crystallography. Two distinct populations of characteristic binding strengths of citalopram to SERT were revealed in Na(+)-containing buffer. In contrast, in Li(+) -containing buffer, SERT showed only low force interactions. Conversely, the vestibular mutant SERT-G402H merely displayed the high force population. These observations provide physical evidence for the existence of two binding sites in SERT when accessed in a physiological context. Competition experiments revealed that these two sites are allosterically coupled and exert reciprocal modulation. PMID:26695726

  14. Peeling single-stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy.

    PubMed

    Manohar, Suresh; Mantz, Amber R; Bancroft, Kevin E; Hui, Chung-Yuen; Jagota, Anand; Vezenov, Dmitri V

    2008-12-01

    We measured the force required to peel single-stranded DNA molecules from single-crystal graphite using chemical force microscopy. Force traces during retraction of a tip chemically modified with oligonucleotides displayed characteristic plateaus with abrupt force jumps, which we interpreted as a steady state peeling process punctuated by complete detachment of one or more molecules. We were able to differentiate between bases in pyrimidine homopolymers; peeling forces were 85.3 - 4.7 pN for polythymine and 60.8 +/- 5.5 pN for polycytosine, substantially independent of salt concentration and the rate of detachment. We developed a model for peeling a freely jointed chain from the graphite surface and estimated the average binding energy per monomer to be 11.5 +/- 0.6 k(B)T and 8.3 +/- 0.7 k(B)T in the cases of thymine and cytosine nucleotides, respectively. The equilibrium free-energy profile simulated using molecular dynamics had a potential well of 18.9 k(B)T for thymidine, showing that nonelectrostatic interactions dominate the binding. The discrepancy between the experiment and theory indicates that not all bases are adsorbed on the surface or that there is a population of conformations in which they adsorb. Force spectroscopy using oligonucleotides covalently linked to AFM tips provides a flexible and unambiguous means to quantify the strength of interactions between DNA and a number of substrates, potentially including nanomaterials such as carbon nanotubes. PMID:19368004

  15. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy.

    PubMed

    Camunas-Soler, Joan; Frutos, Silvia; Bizarro, Cristiano V; de Lorenzo, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramón; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2013-06-25

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant. PMID:23706043

  16. Alpha-actinin binding kinetics modulate cellular dynamics and force generation

    PubMed Central

    Ehrlicher, Allen J.; Krishnan, Ramaswamy; Guo, Ming; Bidan, Cécile M.; Weitz, David A.; Pollak, Martin R.

    2015-01-01

    The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease. PMID:25918384

  17. Splitting of e 2g ground state fundamentals in D 2h deuterium benzenes. Tests of benzene force fields

    NASA Astrophysics Data System (ADS)

    Goodman, Lionel; Nibu, Yoshinori

    1988-02-01

    We report supersonic jet multiphoton ionization (resonant to the 1B 2u state) measurements of the ground state fundamental frequencies for e 2g vibrations 6 and 8 in 13C 6H 6, and in para-C 6H 4D 2, and para-C 6H 2D 4 where 6a and 6b, and 8a and 8b are not degenerate. The splittings for para-C 6H 4D 2 are |ω 6a-ω 6b| = 6.6±0.3, and |ω 8a-ω 8b| = 2.9±0.3 cm -; for para-C 6H 2D 4, |ω 6a-ω 6b| = 3.9±0.3, and |ω 8a-ω 8b| = 8.1 ± 0.5 cm -1. Comparison of the measured and predicted vibrational energy separations for various force fields shows that only complete force fields (no interactive force constants neglected) can even qualitatively reproduce these splittings. Accurate reproduction of 6a-6b energy splittings by the recent Ozkabak-Goodman complete harmonic force field suggests a mechanism for Rosman and Rice's recent observations that in the 1B 2u excited state the higher lying component of the split 6a,b vibrational level has the longer lifetime and that the lifetime difference is correlated with the splitting energy. The lifetime difference is mainly due to kinematic effects arising from harmonic features in the 1B 2u potential surface.

  18. Binding activity of patterned concanavalin A studied by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lebed, Kateryna; Pyka-Fosciak, Grazyna; Raczkowska, Joanna; Lekka, Malgorzata; Styczen, Jan

    2005-05-01

    The mode of protein immobilization plays a crucial role in the preparation of protein microarrays used for a wide spectrum of applications in analytical biochemistry. The microcontact printing technique was used to form a protein pattern using concanavalin A (Con A) since Con A belongs to a group of proteins widely used in analytical assays due to their selectivity as regards different kinds of carbohydrates. Atomic force microscopy was used to image surface topography, delivering information about the quality of the protein pattern. The force spectroscopy mode was used to verify the functional activity of deposited proteins via determination of the forces of interaction between Con A and carboxypeptidase Y bearing carbohydrate structure recognized by Con A. The calculated binding force between Con A and CaY was 105 ± 2 pN and it was compared with that measured for Con A deposited directly from the protein solution. The similarity of the value obtained for the interaction force was independent of the mode of protein deposition, thereby verifying that the microcontact printing technique did not influence the carbohydrate binding activity of Con A. The correlation between the surface topography of patterned samples and adhesion maps obtained showed the possible use of AFM for studying the chemical properties of different regions of the micropatterns produced.

  19. Plasmon-mediated binding forces on gold or silver homodimer and heterodimer

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Kuo, Ting-Yu; Kuo, Mao-Kuen

    2016-02-01

    This study theoretically investigates plasmon-mediated optical binding forces, which are exerted on metal homo or heterodimers, induced by the normal illumination of a linearly polarized plane wave or Gaussian beam. Using the multiple multipole method, we analyzed the optical force in terms of Maxwell's stress tensor for various interparticle distance at some specific wavelengths. Numerical results show that for a given wavelength there are several stable equilibrium distances between two nanoparticles (NPs) of a homodimer, which are slightly shorter than some integer multiples of the wavelength in medium, such that metal dimer acts as bonded together. At these specific interparticle distances, the optical force between dimer is null and serves a restoring force, which is repulsive and attractive, respectively, as the two NPs are moving closer to and away from each other. The spring constant of the restoring force at the first stable equilibrium is always the largest, indicating that the first stable equilibrium distance is the most stable one. Moreover, the central line (orientation) of a dimer tends to be perpendicular to the polarization of light. For the cases of heterodimers, the phenomenon of stable equilibrium interparticle distance still exists, except there is an extra net photophoretic force drifting the heterodimer as one. Moreover, gradient force provided by a Gaussian beam may reduce the stability of these equilibriums, so larger NPs are preferred to stabilize a dimer under illumination of Gaussian beam. The finding may pave the way for using optical manipulation on the gold or silver colloidal self-assembly.

  20. Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope

    PubMed Central

    Zhang, Tian-biao; Zhang, Chang-lin; Dong, Zai-li; Guan, Yi-fu

    2015-01-01

    As one of the most crucial properties of DNA, the structural stability and the mechanical strength are attracting a great attention. Here, we take advantage of high force resolution and high special resolution of Atom Force Microscope and investigate the mechanical force of DNA duplexes. To evaluate the base pair hydrogen bond strength and base stacking force in DNA strands, we designed two modes (unzipping and stretching) for the measurement rupture forces. Employing k-means clustering algorithm, the ruptured force are clustered and the mean values are estimated. We assessed the influence of experimental parameters and performed the force evaluation for DNA duplexes of pure dG/dC and dA/dT base pairs. The base binding strength of single dG/dC and single dA/dT were estimated to be 20.0 ± 0.2 pN and 14.0 ± 0.3 pN, respectively, and the base stacking interaction was estimated to be 2.0 ± 0.1 pN. Our results provide valuable information about the quantitative evaluation of the mechanical properties of the DNA duplexes. PMID:25772017

  1. Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces.

    PubMed

    Lapoux, V; Somà, V; Barbieri, C; Hergert, H; Holt, J D; Stroberg, S R

    2016-07-29

    We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain. PMID:27517768

  2. Driving force of binding of amyloid {beta}-protein to lipid bilayers

    SciTech Connect

    Ikeda, Keisuke; Matsuzaki, Katsumi

    2008-06-06

    Amyloid {beta}-protein (A{beta}) has been reported to interact with a variety of lipid species, although the thermodynamic driving force remains unclear. We investigated the binding of A{beta}s labeled with the dye diethylaminocoumarin (DAC-A{beta}s) to lipid bilayers under various conditions. DAC-A{beta}-(1-40) electrostatically bound to anionic and cationic lipids at acidic and alkaline interfacial pH, respectively. However, at neutral pH, electroneutral A{beta} did not bind to these lipids, indicating little hydrophobic interaction between A{beta}-(1-40) and the acyl chains of lipids. In contrast, DAC-A{beta} associated with glycolipids even under electroneutral conditions. These results suggested that hydrogen-bonding as well as hydrophobic interactions with sugar groups of glycolipids drive the membrane binding of A{beta}-(1-40)

  3. Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Lapoux, V.; Somà, V.; Barbieri, C.; Hergert, H.; Holt, J. D.; Stroberg, S. R.

    2016-07-01

    We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

  4. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation.

    PubMed Central

    Piper, J W; Swerlick, R A; Zhu, C

    1998-01-01

    Analyses of receptor-ligand interactions are important to the understanding of cellular adhesion. Traditional methods of measuring the three-dimensional (3D) dissociation constant (Kd) require at least one of the molecular species in solution and hence cannot be directly applied to the case of cell adhesion. We describe a novel method of measuring 2D binding characteristics of receptors and ligands that are attached to surfaces and whose bonds are subjected to forces. The method utilizes a common centrifugation assay to quantify adhesion. A model for the experiment has been formulated, solved exactly, and tested carefully. The model is stochastically based and couples the bond force to the binding affinity. The method was applied to examine tumor cell adherence to recombinant E-selectin. Satisfactory agreement was found between predictions and data. The estimated zero-force 2D Kd for E-selectin/carbohydrate ligand binding was approximately 5 x 10(3) microm(-2), and the bond interaction range was subangstrom. Our results also suggest that the number of bonds mediating adhesion was small (<5). PMID:9449350

  5. Structural insights into how the MIDAS ion stabilizes integrin binding to an RGD peptide under force.

    PubMed

    Craig, David; Gao, Mu; Schulten, Klaus; Vogel, Viola

    2004-11-01

    Integrin alpha(V)beta(3) binds to extracellular matrix proteins through the tripeptide Arg-Gly-Asp (RGD), forming a shallow crevice rather than a deep binding pocket. A dynamic picture of how the RGD-alpha(V)beta(3) complex resists dissociation by mechanical force is derived here from steered molecular dynamic (SMD) simulations in which the major force peak correlates with the breaking of the contact between Asp(RGD) and the MIDAS ion. SMD predicts that the RGD-alpha(V)beta(3) complex is stabilized from dissociation by a single water molecule tightly coordinated to the divalent MIDAS ion, thereby blocking access of free water molecules to the most critical force-bearing interaction. The MIDAS motif is common to many other proteins that contain the phylogenetically ancient von Willebrand A (vWA) domain. The functional role of single water molecules tightly coordinated to the MIDAS ion might reflect a general strategy for the stabilization of protein-protein adhesion against cell-derived forces through divalent cations. PMID:15530369

  6. Dominant Driving Forces in Human Telomere Quadruplex Binding-Induced Structural Alterations.

    PubMed

    Bončina, Matjaž; Hamon, Florian; Islam, Barira; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Haider, Shozeb; Lah, Jurij

    2015-06-16

    Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K(+), Na(+)) and specific bisquinolinium ligands, were monitored by calorimetric and spectroscopic methods and by gel electrophoresis. Using the global model analysis of a wide variety of experimental data, we were able to characterize the thermodynamic forces that govern the formation of stable Tel22 G-quadruplexes, folding intermediates, and ligand-quadruplex complexes, and then predict Tel22 behavior in aqueous solutions as a function of temperature, salt concentration, and ligand concentration. On the basis of the above, we believe that our work sets the framework for better understanding the heterogeneity of ht-DNA folding and binding pathways, and its structural polymorphism. PMID:26083930

  7. Dominant Driving Forces in Human Telomere Quadruplex Binding-Induced Structural Alterations

    PubMed Central

    Bončina, Matjaž; Hamon, Florian; Islam, Barira; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Haider, Shozeb; Lah, Jurij

    2015-01-01

    Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K+, Na+) and specific bisquinolinium ligands, were monitored by calorimetric and spectroscopic methods and by gel electrophoresis. Using the global model analysis of a wide variety of experimental data, we were able to characterize the thermodynamic forces that govern the formation of stable Tel22 G-quadruplexes, folding intermediates, and ligand-quadruplex complexes, and then predict Tel22 behavior in aqueous solutions as a function of temperature, salt concentration, and ligand concentration. On the basis of the above, we believe that our work sets the framework for better understanding the heterogeneity of ht-DNA folding and binding pathways, and its structural polymorphism. PMID:26083930

  8. Improving fundamental abilities of atomic force microscopy for investigating quantitative nanoscale physical properties of complex biological systems

    NASA Astrophysics Data System (ADS)

    Cartagena-Rivera, Alexander X.

    Measurements of local material properties of complex biological systems (e.g. live cells and viruses) in their respective physiological conditions are extremely important in the fields of biophysics, nanotechnology, material science, and nanomedicine. Yet, little is known about the structure-function-property relationship of live cells and viruses. In the case of live cells, the measurements of progressive variations in viscoelastic properties in vitro can provide insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, and many more fundamental cellular processes. In the case of living viruses, the relationship between capsid structural framework and the role of the DNA molecule interaction within viruses influencing their stiffness, damping and electrostatic properties can shed light in virological processes like protein subunits assembly/dissassembly, maturation, and infection. The study of mechanics of live cells and viruses has been limited in part due to the lack of technology capable of acquiring high-resolution (nanoscale, subcellular) images of its heterogeneous material properties which vary widely depending on origin and physical interaction. The capabilities of the atomic force microscope (AFM) for measuring forces and topography with sub-nm precision have greatly contributed to research related to biophysics and biomechanics during the past two decades. AFM based biomechanical studies have the unique advantage of resolving/mapping spatially the local material properties over living cells and viruses. However, conventional AFM techniques such as force-volume and quasi-static force-distance curves are too low resolution and low speed to resolve interesting biophysical processes such as cytoskeletal dynamics for cells or assembly/dissasembly of viruses. To overcome this bottleneck, a novel atomic force microscopy mode is developed, that leads to sub-10-nm resolution and sub-15-minutes mapping of local

  9. An ab initio study of the in-plane harmonic force fields and fundamental vibration frequencies of cis- and trans-1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1980-11-01

    The structure, in-plane force field, and fundamental vibration frequencies of trans- and cis-1,3-butadiene are calculated ab initio using the 4-31G basis set. Using a scaling procedure based on computational results from smaller molecules, the vibration frequencies for the trans-conformer calculated from the ab initio force constant matrix are found on average to be within 2.2% of the experimental values "harmonized" according to Dennison's rule. The values predicted for the cis-conformer, for which experimental spectroscopic data are only now becoming available, should facilitate the complete in-plane assignment of fundamentals in the near future.

  10. An ab initio study of the geometries, anharmonic force fields and fundamental vibration frequencies of cis- and trans-formic acid

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1980-03-01

    The geometry, harmonic and anharmonic force fields, and fundamental vibration frequencies of cis- and trans-formic acid are studied ab initio in the 4-31G and (9,5) basis sets. For the more stable trans-conformer (i.e., trans with respect to CH and OH) comparisons are made between the predicted and observed anharmonic frequencies, and between the calculated harmonic force constants and those Redington derived from an analysis of experimental data. In the case of the less stable cis-conformer, for which there is as yet little experimental data, the calculations serve to predict values for the fundamental vibrational frequencies.

  11. Mechanical Unfolding of Cardiac Myosin Binding Protein-C by Atomic Force Microscopy

    PubMed Central

    Karsai, Árpád; Kellermayer, Miklós S.Z.; Harris, Samantha P.

    2011-01-01

    Cardiac myosin-binding protein-C (cMyBP-C) is a thick-filament-associated protein that performs regulatory and structural roles within cardiac sarcomeres. It is a member of the immunoglobulin (Ig) superfamily of proteins consisting of eight Ig- and three fibronectin (FNIII)-like domains, along with a unique regulatory sequence referred to as the M-domain, whose structure is unknown. Domains near the C-terminus of cMyBP-C bind tightly to myosin and mediate the association of cMyBP-C with thick (myosin-containing) filaments, whereas N-terminal domains, including the regulatory M-domain, bind reversibly to myosin S2 and/or actin. The ability of MyBP-C to bind to both myosin and actin raises the possibility that cMyBP-C cross-links myosin molecules within the thick filament and/or cross-links myosin and thin (actin-containing) filaments together. In either scenario, cMyBP-C could be under mechanical strain. However, the physical properties of cMyBP-C and its behavior under load are completely unknown. Here, we investigated the mechanical properties of recombinant baculovirus-expressed cMyBP-C using atomic force microscopy to assess the stability of individual cMyBP-C molecules in response to stretch. Force-extension curves showed the presence of long extensible segment(s) that became stretched before the unfolding of individual Ig and FNIII domains, which were evident as sawtooth peaks in force spectra. The forces required to unfold the Ig/FNIII domains at a stretch rate of 500 nm/s increased monotonically from ∼30 to ∼150 pN, suggesting a mechanical hierarchy among the different Ig/FNIII domains. Additional experiments using smaller recombinant proteins showed that the regulatory M-domain lacks significant secondary or tertiary structure and is likely an intrinsically disordered region of cMyBP-C. Together, these data indicate that cMyBP-C exhibits complex mechanical behavior under load and contains multiple domains with distinct mechanical properties. PMID

  12. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy.

    PubMed

    Tang, Jilin; Ebner, Andreas; Kraxberger, Bernhard; Leitner, Michael; Hykollari, Alba; Kepplinger, Christian; Grunwald, Christian; Gruber, Hermann J; Tampé, Robert; Sleytr, Uwe B; Ilk, Nicola; Hinterdorfer, Peter

    2009-10-01

    Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His(6)-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His(6)-tags. The accessibility of the His(6)-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His(6)-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris-NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His(6)-tags in the presence of nickel ions. Thus the His(6)-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris-NTA derivatives. PMID:19232541

  13. Elementary Particles and Forces.

    ERIC Educational Resources Information Center

    Quigg, Chris

    1985-01-01

    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  14. Forces and Dynamics of Glucose and Inhibitor Binding to Sodium Glucose Co-transporter SGLT1 Studied by Single Molecule Force Spectroscopy*

    PubMed Central

    Neundlinger, Isabel; Puntheeranurak, Theeraporn; Wildling, Linda; Rankl, Christian; Wang, Lai-Xi; Gruber, Hermann J.; Kinne, Rolf K. H.; Hinterdorfer, Peter

    2014-01-01

    Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2′-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations. PMID:24962566

  15. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand

    PubMed Central

    Parreira, P.; Shi, Q.; Magalhaes, A.; Reis, C. A.; Bugaytsova, J.; Borén, T.; Leckband, D.; Martins, M. C. L.

    2014-01-01

    The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Leb), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor–ligand pairs were performed between the purified BabA and immobilized Leb structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion. PMID:25320070

  16. Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Barausse, Enrico; Buonanno, Alessandra

    2012-03-01

    Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular momentum J of two nonspinning compact objects moving on circular orbits with frequency Ω, at leading order beyond the test-particle approximation. By minimizing E(Ω) we recover the exact frequency shift of the Schwarzschild innermost stable circular orbit induced by the conservative piece of the gravitational self-force. Comparing our results for the coordinate-invariant relation E(J) to those recently obtained from numerical simulations of comparable-mass nonspinning black-hole binaries, we find a remarkably good agreement, even in the strong-field regime. Our findings confirm that the domain of validity of perturbative calculations may extend well beyond the extreme mass-ratio limit.

  17. Biaxial Dielectrophoresis Force Spectroscopy: A Stoichiometric Approach for Examining Intermolecular Weak Binding Interactions.

    PubMed

    Park, In Soo; Kwak, Tae Joon; Lee, Gyudo; Son, Myeonggu; Choi, Jeong Woo; Choi, Seungyeop; Nam, Kihwan; Lee, Sei-Young; Chang, Woo-Jin; Eom, Kilho; Yoon, Dae Sung; Lee, Sangyoup; Bashir, Rashid; Lee, Sang Woo

    2016-04-26

    The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.e., transverse and/or vertical axes) as well as the loading rate. With the BDFS system, we can quantitatively analyze binding interactions related to hydrogen bonding or ionic attractions between functionalized microbeads and a surface within a microfluidic device. Our BDFS system allowed for the characterization of the number of bonds involved in an interaction, bond affinity, kinetic rates, and energy barrier heights and widths from different regimes of the energy landscape. PMID:27007455

  18. Directed Binding of Gliding Bacterium, Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime

    PubMed Central

    Tanaka, Akihiro; Nakane, Daisuke; Mizutani, Masaki; Nishizaka, Takayuki

    2016-01-01

    ABSTRACT Mycoplasma mobile, a fish-pathogenic bacterium, features a protrusion that enables it to glide smoothly on solid surfaces at a velocity of up to 4.5 µm s−1 in the direction of the protrusion. M. mobile glides by a repeated catch-pull-release of sialylated oligosaccharides fixed on a solid surface by hundreds of 50-nm flexible “legs” sticking out from the protrusion. This gliding mechanism may be explained by a possible directed binding of each leg with sialylated oligosaccharides, by which the leg can be detached more easily forward than backward. In the present study, we used a polystyrene bead held by optical tweezers to detach a starved cell at rest from a glass surface coated with sialylated oligosaccharides and concluded that the detachment force forward is 1.6- to 1.8-fold less than that backward, which may be linked to a catch bond-like behavior of the cell. These results suggest that this directed binding has a critical role in the gliding mechanism. PMID:27353751

  19. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods.

    PubMed

    Bizarro, C V; Alemany, A; Ritort, F

    2012-08-01

    RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710

  20. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites

    PubMed Central

    Klotzsch, Enrico; Smith, Michael L.; Kubow, Kristopher E.; Muntwyler, Simon; Little, William C.; Beyeler, Felix; Gourdon, Delphine; Nelson, Bradley J.; Vogel, Viola

    2009-01-01

    Rather than maximizing toughness, as needed for silk and muscle titin fibers to withstand external impact, the much softer extracellular matrix fibers made from fibronectin (Fn) can be stretched by cell generated forces and display extraordinary extensibility. We show that Fn fibers can be extended more than 8-fold (>700% strain) before 50% of the fibers break. The Young's modulus of single fibers, given by the highly nonlinear slope of the stress-strain curve, changes orders of magnitude, up to MPa. Although many other materials plastically deform before they rupture, evidence is provided that the reversible breakage of force-bearing backbone hydrogen bonds enables the large strain. When tension is released, the nano-sized Fn domains first contract in the crowded environment of fibers within seconds into random coil conformations (molten globule states), before the force-bearing hydrogen bond networks that stabilize the domain's secondary structures are reestablished within minutes (double exponential). The exposure of cryptic binding sites on Fn type III modules increases steeply upon stretching. Thus fiber extension steadily up-regulates fiber rigidity and cryptic epitope exposure, both of which are known to differentially alter cell behavior. Finally, since stress-strain relationships cannot directly be measured in native extracellular matrix (ECM), the stress-strain curves were correlated with stretch-induced alterations of intramolecular fluorescence resonance energy transfer (FRET) obtained from trace amounts of Fn probes (mechanical strain sensors) that can be incorporated into native ECM. Physiological implications of the extraordinary extensibility of Fn fibers and contraction kinetics are discussed. PMID:19826086

  1. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites.

    PubMed

    Klotzsch, Enrico; Smith, Michael L; Kubow, Kristopher E; Muntwyler, Simon; Little, William C; Beyeler, Felix; Gourdon, Delphine; Nelson, Bradley J; Vogel, Viola

    2009-10-27

    Rather than maximizing toughness, as needed for silk and muscle titin fibers to withstand external impact, the much softer extracellular matrix fibers made from fibronectin (Fn) can be stretched by cell generated forces and display extraordinary extensibility. We show that Fn fibers can be extended more than 8-fold (>700% strain) before 50% of the fibers break. The Young's modulus of single fibers, given by the highly nonlinear slope of the stress-strain curve, changes orders of magnitude, up to MPa. Although many other materials plastically deform before they rupture, evidence is provided that the reversible breakage of force-bearing backbone hydrogen bonds enables the large strain. When tension is released, the nano-sized Fn domains first contract in the crowded environment of fibers within seconds into random coil conformations (molten globule states), before the force-bearing hydrogen bond networks that stabilize the domain's secondary structures are reestablished within minutes (double exponential). The exposure of cryptic binding sites on Fn type III modules increases steeply upon stretching. Thus fiber extension steadily up-regulates fiber rigidity and cryptic epitope exposure, both of which are known to differentially alter cell behavior. Finally, since stress-strain relationships cannot directly be measured in native extracellular matrix (ECM), the stress-strain curves were correlated with stretch-induced alterations of intramolecular fluorescence resonance energy transfer (FRET) obtained from trace amounts of Fn probes (mechanical strain sensors) that can be incorporated into native ECM. Physiological implications of the extraordinary extensibility of Fn fibers and contraction kinetics are discussed. PMID:19826086

  2. Multi-Step Fibrinogen Binding to the Integrin αIIbβ3 Detected Using Force Spectroscopy

    PubMed Central

    Litvinov, Rustem I.; Bennett, Joel S.; Weisel, John W.; Shuman, Henry

    2005-01-01

    The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific αIIbβ3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified αIIbβ3 and fibrinogen, covalently attached to underlying surfaces, ranged from ∼20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20–60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80–90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to αIIbβ3 antagonists or Mn2+, an αIIbβ3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of αIIbβ3-fibrinogen interactions was independent of the loading rate (160–16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of αIIbβ3 and fibrinogen revealed at the single-molecule level. PMID:16040750

  3. The Role of Caldesmon and its Phosphorylation by ERK on the Binding Force of Unphosphorylated Myosin to Actin

    PubMed Central

    Roman, Horia Nicolae; Zitouni, Nedjma B.; Kachmar, Linda; Benedetti, Andrea; Sobieszek, Apolinary; Lauzon, Anne-Marie

    2014-01-01

    Background Studies conducted at the whole muscle level have shown that smooth muscle can maintain tension with low ATP consumption. Whereas it is generally accepted that this property (latch-state) is a consequence of the dephosphorylation of myosin during its attachment to actin, free dephosphorylated myosin can also bind to actin and contribute to force maintenance. We investigated the role of caldesmon (CaD) in regulating the binding force of unphosphorylated tonic smooth muscle myosin to actin. Methods To measure the effect of CaD on the binding of unphosphorylated myosin to actin (in the presence of ATP), we used a single beam laser trap assay to quantify the average unbinding force (Funb) in the absence or presence of caldesmon, ERK-phosphorylated CaD, or CaD plus tropomyosin. Results Funb from unregulated actin (0.10 ± 0.01 pN) was significantly increased in the presence of CaD (0.17 ± 0.02 pN), tropomyosin (0.17 ± 0.02 pN) or both regulatory proteins (0.18 ± 0.02 pN). ERK phosphorylation of CaD significantly reduced the Funb (0.06 ± 0.01 pN). Inspection of the traces of the Funb as a function of time suggests that ERK phosphorylation of CaD decreases the binding force of myosin to actin or accelerates its detachment. Conclusions CaD enhances the binding force of unphosphorylated myosin to actin potentially contributing to the latch-state. ERK phosphorylation of CaD decreases this binding force to very low levels. General Significance This study suggests a mechanism that likely contributes to the latch-state and that explains the muscle relaxation from the latch-state. PMID:25108062

  4. Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF.

    PubMed

    Herman-Bausier, Philippe; Dufrêne, Yves F

    2016-02-01

    Staphylococcus epidermidis causes nosocomial infections by colonizing and forming biofilms on indwelling medical devices. This process involves specific interactions between cell wall-anchored (CWA) proteins and host proteins adsorbed onto the biomaterial. Here, we have explored the molecular forces by which the S. epidermidis CWA protein serine-aspartate repeat protein F (SdrF) binds to type I collagen, by means of advanced atomic force microscopy (AFM) techniques. Using single-cell force spectroscopy, we found that SdrF mediates bacterial adhesion to collagen-coated substrates through both weak and strong bonds. Single-molecule force spectroscopy demonstrated that these bonds involve the A and B regions of SdrF, thus revealing that the protein is capable of dual ligand-binding activity. Both weak and strong bonds showed high dissociation rates, indicating they are much less stable than those formed by the well-characterized 'dock, lock and latch' mechanism. Collectively, our results show that CWA proteins can bind to ligands by novel mechanisms. We anticipate that AFM will greatly contribute to the identification of novel binding partners and binding mechanisms in staphylococcal CWA proteins. PMID:26481199

  5. Carboxymethyl cellulose binding to mineral substrates: characterization by atomic force microscopy-based force spectroscopy and quartz-crystal microbalance with dissipation monitoring.

    PubMed

    Pensini, Erica; Yip, Christopher M; O'Carroll, Denis; Sleep, Brent E

    2013-07-15

    The attachment of the sodium salt of carboxymethyl cellulose (CMC) onto iron oxide and various silicate substrates in aqueous solution as a function of salt concentration and pH was studied by atomic force microscopy-based force spectroscopy (AFM) and quartz-crystal microbalance with dissipation monitoring (QCM-D). Both ionic strength and cation valency were found to influence substrate binding. Notably, QCM-D experiments strongly suggested that the solubility of CMC is directly impacted by the presence of CaCl2. Such data are critical for the design of new molecules for stabilizing mineral floc dispersions and for assessing the mobility of CMC-coated particles in the subsurface. Modeling of AFM data with an extended Ohshima theory showed that van der Waals and steric forces played a major role in the interactions between CMC and mineral substrates, and that hydration forces were also important. PMID:23643251

  6. Fundamental study on transient bubble (slug) behavior by characterizing transient forces of solid particles in fluidized beds

    SciTech Connect

    Kono, H.O.

    1991-01-01

    The objective of this work is to recognize and interpret the signals of transient motion of bubbles (slugs) in fluidized beds by measuring and utilizing the signals of transient motion of solid particles. The two signals were measured simultaneously and also synchronized by using the TTL signal technique in the same fluidized beds. Also, a simultaneous study of video bubble image, transient force and pressure signals was initiated in a two dimensional fluidized bed. we successfully synchronized three signals so that the relationship of bubble behavior and force pressure signals can be identified and characterized. It has been found that bubble image can well be correlated to the transient force signal of solid particles under certain conditions in three dimensional fluidized beds. Accordingly, it seems that the transient force signals can significantly help understanding the transient motion of bubbles (slugs), which is important to design the fluidized beds.

  7. Fundamental study on transient bubble (slug) behavior by characterizing transient forces of solid particles in fluidized beds. 1990 Annual report

    SciTech Connect

    Kono, H.O.

    1991-01-01

    The objective of this work is to recognize and interpret the signals of transient motion of bubbles (slugs) in fluidized beds by measuring and utilizing the signals of transient motion of solid particles. The two signals were measured simultaneously and also synchronized by using the TTL signal technique in the same fluidized beds. Also, a simultaneous study of video bubble image, transient force and pressure signals was initiated in a two dimensional fluidized bed. we successfully synchronized three signals so that the relationship of bubble behavior and force pressure signals can be identified and characterized. It has been found that bubble image can well be correlated to the transient force signal of solid particles under certain conditions in three dimensional fluidized beds. Accordingly, it seems that the transient force signals can significantly help understanding the transient motion of bubbles (slugs), which is important to design the fluidized beds.

  8. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  9. Water-mediated forces between the nucleotide binding domains generate the power stroke in an ABC transporter

    NASA Astrophysics Data System (ADS)

    Furukawa-Hagiya, Tomoka; Yoshida, Norio; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sohma, Yoshiro; Sakurai, Minoru

    2014-11-01

    ATP binding cassette proteins shuttle a variety of molecules across cell membranes. The substrate transportation process is initiated by the ATP-driven dimerization of nucleotide binding domains (NBDs). Here, the integral-equation theory of liquids was applied to simulated NBD structures to analyze their dimerization process from the viewpoint of thermodynamics and the water-mediated interaction between the NBDs. It was found that a long-range hydration force of enthalpic origin drives the two NBDs to approach from a large separation. In the subsequent step, the water-mediated attraction of entropic origin brings about a structural adjustment between the two NBDs and their tighter contact.

  10. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  11. Evaluation of adhesion force and binding affinity of phytohemagglutinin erythroagglutinating to EGF receptor on human lung cancer cells.

    PubMed

    Kuo, W-T; Dong, G-C; Yao, C-H; Huang, J-Y; Lin, F-H

    2013-01-01

    PHA-E is a natural product extracted from red kidney beans, and it has been reported to induce cell apoptosis by blocking EGFR in lung cancer cells. Because EGF is the major in vivo competitor to PHA-E in clinical application, PHA-E must be proved that has better affinity to EGFR than EGF. This study would focus on how PHA-E tightly bind to EGFR and the results would compare with EGF. The adhesion force, measured by AFM, between EGFR and PHA-E was 207.14±74.42 pN that was higher than EGF (183.65±86.93 pN). The equilibrium dissociation constant of PHA-E and EGF to EGFR was 2.4 10(-9)±1.4 10(-9) and 7.3 10(-8)±2.7 10(-8), respectively, that could evaluate binding affinity. The result showed that binding affinity of PHA-E to EGFR was one order higher than EGF to EGFR. In the results of flow cytometer and confocal microscope, we found binding efficiency of EGF to EGFR was decrease as the concentration of PHA-E increased. In the analysis of Western blot, treatment of A-549 cells with PHA-E resulted in a dose-dependent decrease in EGFR phosphorylation. In conclusion, we found that PHA-E had better adhesion force and binding affinity to EGFR than that of the EGF. The interaction between PHA-E and EGFR could block EGF binding and then inhibit EGFR phosphorylation. PHA-E could be developed into a new target molecule for lung cancer treatment that could be immobilized on the drug carrier to guide therapeutic particles to the tumor site. PMID:23394551

  12. Evaluation of interaction between histidine binding Cu2+ ion and histidine by atomic force microscopy.

    PubMed

    Kim, Jong Min; Lee, Haeng-Ja; Kim, Woo-Sik; Sano, Masato; Muramatsu, Hiroshi; Chang, Sang-Mok

    2012-07-01

    This paper presents a direct interaction force measurement between histidine molecules using AFM force-distance curve measurement. AFM force-distance curves between the histidine-modified cantilever and substrate in the different conditions with or without intercalating Cu2+ ion were measured and interpreted via Gaussian curve fitting analyses. The adhesion force between histidine molecules was shown to be 110 pN under the presence of Cu2+. The result was compareable to the measured adhesion force about 0 pN, which was measured by the removal of Cu2+ ion with the addition of EDTA. The result indicated the direct histidine-histidie interaction was difficult without the role of the bridigible ionic component. From the results, the possibility of direct measurement on chemical affinities between biomolecules was suggested by using AFM force-distance curve analyses. Especially, the current approach showed the possible affinity measurement techniques that elucidate the role of bridge ions. PMID:22966539

  13. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

    PubMed Central

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935

  14. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

    NASA Astrophysics Data System (ADS)

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-07-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface.

  15. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes.

    PubMed

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935

  16. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  17. Evaluation of Selected Classical Force Fields for Alchemical Binding Free Energy Calculations of Protein-Carbohydrate Complexes.

    PubMed

    Mishra, Sushil K; Calabró, Gaetano; Loeffler, Hannes H; Michel, Julien; Koča, Jaroslav

    2015-07-14

    Protein-carbohydrate recognition is crucial in many vital biological processes including host-pathogen recognition, cell-signaling, and catalysis. Accordingly, computational prediction of protein-carbohydrate binding free energies is of enormous interest for drug design. However, the accuracy of current force fields (FFs) for predicting binding free energies of protein-carbohydrate complexes is not well understood owing to technical challenges such as the highly polar nature of the complexes, anomerization, and conformational flexibility of carbohydrates. The present study evaluated the performance of alchemical predictions of binding free energies with the GAFF1.7/AM1-BCC and GLYCAM06j force fields for modeling protein-carbohydrate complexes. Mean unsigned errors of 1.1 ± 0.06 (GLYCAM06j) and 2.6 ± 0.08 (GAFF1.7/AM1-BCC) kcal·mol(-1) are achieved for a large data set of monosaccharide ligands for Ralstonia solanacearum lectin (RSL). The level of accuracy provided by GLYCAM06j is sufficient to discriminate potent, moderate, and weak binders, a goal that has been difficult to achieve through other scoring approaches. Accordingly, the protocols presented here could find useful applications in carbohydrate-based drug and vaccine developments. PMID:26575767

  18. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Willem; Lipfert, Jan; Demeulemeester, Jonas; Debyser, Zeger; de Feyter, Steven

    2014-04-01

    LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease. Electronic supplementary information (ESI) available: SFM topographs of phage lambda DNA in situ, in the absence and presence of LEDGF/p75; model-independent tests for DNA chain equilibration in 2D; SFM topographs of

  19. Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies

    SciTech Connect

    Tschopp, Mark A.; Horstemeyer, Mark; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2011-05-02

    Molecular dynamics simulations of 50 Fe grain boundaries were used to understand their interaction with vacancies and self-interstitial atoms at all atomic positions within 20 °A of the boundary, which is important for designing radiation-resistant polycrystalline materials. Site-to-site variation within the boundary of both vacancy and self-interstitial formation energies is substantial, with the majority of sites having lower formation energies than in the bulk. Comparing the vacancy and self-interstitial atom binding energies for each site shows that there is an energetic driving force for interstitials to preferentially bind to grain boundary sites over vacancies. Furthermore, these results provide a valuable dataset for quantifying uncertainty bounds for various grain boundary types at the nanoscale, which can be propagated to higher scale simulations of microstructure evolution.

  20. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    SciTech Connect

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L.

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  1. Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ma, Ke; Hu, Ting; Jiang, Bo; Xu, Bin; Tian, Wenjing; Sun, Jing Zhi; Zhang, Wenke

    2015-05-01

    AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The experimental data indicate that DSAI can strongly intercalate into DNA base pairs, while DSABr-C6 is unable to intercalate into DNA due to the steric hindrance of the alkyl side chains. Cis-TPEDPy and trans-TPEDPy can also intercalate into DNA base pairs, but the binding shows strong ionic strength dependence. Multiple binding modes of TPEDPy with dsDNA have been discussed. In addition, the electrostatic interaction enhanced intercalation of cis-TPEDPy with dsDNA has also been revealed.AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The

  2. Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78 in Lipid Bilayers

    PubMed Central

    Mecke, Almut; Lee, Dong-Kuk; Ramamoorthy, Ayyalusamy; Orr, Bradford G.; Banaszak Holl, Mark M.

    2005-01-01

    The interaction of an antimicrobial peptide, MSI-78, with phospholipid bilayers has been investigated using atomic force microscopy, circular dichroism, and nuclear magnetic resonance (NMR). Binding of amphipathic peptide helices with their helical axis parallel to the membrane surface leads to membrane thinning. Atomic force microscopy of supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers in the presence of MSI-78 provides images of the membrane thinning process at a high spatial resolution. This data reveals that the membrane thickness is not reduced uniformly over the entire bilayer area. Instead, peptide binding leads to the formation of distinct domains where the bilayer thickness is reduced by 1.1 ± 0.2 nm. The data is interpreted using a previously published geometric model for the structure of the peptide-lipid domains. In this model, the peptides reside at the hydrophilic-hydrophobic boundary in the lipid headgroup region, which leads to an increased distance between lipid headgroups. This picture is consistent with concentration-dependent 31P and 2H NMR spectra of MSI-78 in mechanically aligned DMPC bilayers. Furthermore, 2H NMR experiments on DMPC-d54 multilamellar vesicles indicate that the acyl chains of DMPC are highly disordered in the presence of the peptide as is to be expected for the proposed structure of the peptide-lipid assembly. PMID:16183881

  3. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.

    PubMed

    Chang, Le; Ishikawa, Takeshi; Kuwata, Kazuo; Takada, Shoji

    2013-05-30

    Accurate computational estimate of the protein-ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein-ligand simulations, we use a protein-specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO-RESP method to two proteins, dodecin, and lysozyme, we found that protein-specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO-RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. PMID:23420697

  4. Force transduction and lipid binding in MscL: A continuum-molecular approach

    SciTech Connect

    Vanegas, Juan M.; Arroyo, Marino; Fotiadis, Dimitrios

    2014-12-01

    The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, and identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10–13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin.

  5. Force transduction and lipid binding in MscL: A continuum-molecular approach

    DOE PAGESBeta

    Vanegas, Juan M.; Arroyo, Marino; Fotiadis, Dimitrios

    2014-12-01

    The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, andmore » identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10–13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin.« less

  6. Force transduction and lipid binding in MscL: a continuum-molecular approach.

    PubMed

    Vanegas, Juan M; Arroyo, Marino

    2014-01-01

    The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, and identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10-13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin. PMID:25437007

  7. Force Transduction and Lipid Binding in MscL: A Continuum-Molecular Approach

    PubMed Central

    Vanegas, Juan M.; Arroyo, Marino

    2014-01-01

    The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, and identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10–13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin. PMID:25437007

  8. Insulin binding and glucose uptake of adipocytes in rats adapted to hypergravitational force

    NASA Technical Reports Server (NTRS)

    Kobayashi, M.; Mondon, C. E.; Oyama, J.

    1980-01-01

    Rats were exposed to 4.15 g for 1 yr and weight and age matched, and lean noncentrifuged rats were used as control groups. Rats exposed to chronic hypergravity (hypergravic rats) were found to show lower ambient insulin levels, greater food intake with smaller body weight gain, and decreased size of isolated adipocytes. The ability of adipocytes from the hypergravic rats to bind insulin was increased. With Scatchard analysis, both number and affinity of receptors were increased. In contrast to the increased binding, glucose transport was found to be decreased in adipocytes from these animals. However, when the data were expressed as a percentage of maximal effect, the half maximal insulin effect for both the hypergravic and lean control groups was produced at an insulin concentration of 0.23 + or - 0.02 ng/ml, which was lower than the insulin concentration of 0.31 + or - 0.02 ng/ml for the weight-matched control group (P less than 0.05). This increased insulin sensitivity in the hypergravic group was accounted for by an increased number of receptors.

  9. Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell.

    PubMed

    Chen, Yunfeng; Liu, Baoyu; Ju, Lining; Hong, Jinsung; Ji, Qinghua; Chen, Wei; Zhu, Cheng

    2015-01-01

    Membrane receptor-ligand interactions mediate many cellular functions. Binding kinetics and downstream signaling triggered by these molecular interactions are likely affected by the mechanical environment in which binding and signaling take place. A recent study demonstrated that mechanical force can regulate antigen recognition by and triggering of the T-cell receptor (TCR). This was made possible by a new technology we developed and termed fluorescence biomembrane force probe (fBFP), which combines single-molecule force spectroscopy with fluorescence microscopy. Using an ultra-soft human red blood cell as the sensitive force sensor, a high-speed camera and real-time imaging tracking techniques, the fBFP is of ~1 pN (10(-12) N), ~3 nm and ~0.5 msec in force, spatial and temporal resolution. With the fBFP, one can precisely measure single receptor-ligand binding kinetics under force regulation and simultaneously image binding-triggered intracellular calcium signaling on a single live cell. This new technology can be used to study other membrane receptor-ligand interaction and signaling in other cells under mechanical regulation. PMID:26274371

  10. Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules

    PubMed Central

    Moriarty, Tara J.; Shi, Meiqing; Lin, Yi-Pin; Ebady, Rhodaba; Zhou, Hong; Odisho, Tanya; Hardy, Pierre-Olivier; Salman-Dilgimen, Aydan; Wu, Jing; Weening, Eric H.; Skare, Jon T.; Kubes, Paul; Leong, John; Chaconas, George

    2012-01-01

    SUMMARY Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real-time microscopic imaging of the Lyme spirochete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32-dependent vascular adhesion in vivo. We determined that BBK32-Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32-GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32-like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens. PMID:23095033

  11. Using Force-Matched Potentials To Improve the Accuracy of Density Functional Tight Binding for Reactive Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir

    In this work, we show that force matching can be used to determine accurate density functional tight binding (DFTB) models for reactive materials under extreme conditions. Determination of chemical reactivity in high-pressure experiments is an unsolved problem that can span timescales orders of magnitude longer that what can be achieved with standard quantum simulation approaches, such as Kohn-Sham Density Functional Theory. DFTB holds promise as a semi-empirical quantum simulation method that yields a high degree of computational efficiency while potentially retaining the accuracy of these higher order methods. Here, we show that force matching can be used to determine accurate repulsive energies for DFTB for chemical reactivity in condensed phases. Our new models yield improved predictions for physical properties of molten liquid carbon, as well as small molecule production in phenolic polymer combustion. Our approach is general and can be implemented as a way to extend quantum simulations to several orders of magnitude longer timescales than previously possible, allowing for direct comparison with experiments.

  12. Force-induced globule-coil transition in laminin binding protein and its role for viral-cell membrane fusion.

    PubMed

    Zaitsev, Boris N; Benedetti, Fabrizio; Mikhaylov, Andrey G; Korneev, Denis V; Sekatskii, Sergey K; Karakouz, Tanya; Belavin, Pavel A; Netesova, Nina A; Protopopova, Elena V; Konovalova, Svetlana N; Dietler, Giovanni; Loktev, Valery B

    2014-12-01

    The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVβ3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process. PMID:25319621

  13. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics

    PubMed Central

    Biebricher, Andreas S.; Heller, Iddo; Roijmans, Roel F. H.; Hoekstra, Tjalle P.; Peterman, Erwin J. G.; Wuite, Gijs J. L.

    2015-01-01

    DNA intercalators are widely used as fluorescent probes to visualize DNA and DNA transactions in vivo and in vitro. It is well known that they perturb DNA structure and stability, which can in turn influence DNA-processing by proteins. Here we elucidate this perturbation by combining single-dye fluorescence microscopy with force spectroscopy and measuring the kinetics of DNA intercalation by the mono- and bis-intercalating cyanine dyes SYTOX Orange, SYTOX Green, SYBR Gold, YO-PRO-1, YOYO-1 and POPO-3. We show that their DNA-binding affinity is mainly governed by a strongly tension-dependent dissociation rate. These rates can be tuned over a range of seven orders of magnitude by changing DNA tension, intercalating species and ionic strength. We show that optimizing these rates minimizes the impact of intercalators on strand separation and enzymatic activity. These new insights provide handles for the improved use of intercalators as DNA probes with minimal perturbation and maximal efficacy. PMID:26084388

  14. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins.

    PubMed

    Wang, Kun; Arntfield, Susan D

    2016-11-15

    Molecular interactions between heterologous classes of flavour compounds with salt-extracted pea protein isolates (PPIs) were determined using various bond disrupting agents followed by GC/MS analysis. Flavour bound by proteins decreased in the order: dibutyl disulfide>octanal>hexyl acetate>2-octanone=benzaldehyde. Benzaldehyde, 2-octanone and hexyl acetate interacted non-covalently with PPIs, whereas octanal bound PPIs via covalent and non-covalent forces. Dibutyl disulfide reacted with PPIs covalently, as its retention was not diminished by urea and guanidine hydrochloride. Using propylene glycol, H-bonding and ionic interactions were implicated for hexyl acetate, benzaldehyde, and 2-octanone. A protein-destabilising salt (Cl3CCOONa) reduced bindings for 2-octanone, hexyl acetate, and benzaldehyde; however, retention for octanal and dibutyl disulfide increased. Conversely, a protein-stabilising salt (Na2SO4) enhanced retention for benzaldehyde, 2-octanone, hexyl acetate and octanal. Formation of a volatile flavour by-product, 1-butanethiol, from dibutyl disulfide when PPIs were treated with dithiothreitol indicated occurrence of sulfhydryl-disulfide interchange reactions. PMID:27283627

  15. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: analysis of serotonin and noradrenaline transporter binding.

    PubMed

    Sugimoto, Yumi; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2008-09-11

    Strain differences in immobility time in the forced swimming test were investigated in five strains of mice, namely, ICR, ddY, C57BL/6, DBA/2 and BALB/c mice. There were significant strain differences. The immobility times of ICR, ddY and C57BL/6 mice were longer than those of DBA/2 and BALB/c mice. Immobility times were not significantly related to locomotor activity in these strains. There were also differences in sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine. In ICR, ddY and C57BL/6 mice, fluvoxamine did not affect immobility time, while it reduced the immobility time of DBA/2 and BALB/c mice dose-dependently. The noradrenaline reuptake inhibitor desipramine decreased immobility time in all strains of mice. Serotonin (5-HT) transporter binding in the brains of all five strains of mice was also investigated. Analysis of 5-HT transporter binding revealed significant strain differences, being lower in DBA/2 and BALB/c mice than in other strains of mice. The amount of 5-HT transporter binding was correlated to baseline immobility time. However, there was no significant relation between noradrenaline transporter binding and immobility time. These results suggest that the duration of baseline immobility depends on the levels of 5-HT transporter binding, leading to apparent strain differences in immobility time in the forced swimming test. Furthermore, differences in 5-HT transporter binding may cause variations in responses to fluvoxamine. PMID:18655786

  16. The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα.

    PubMed

    Ju, Lining; Dong, Jing-fei; Cruz, Miguel A; Zhu, Cheng

    2013-11-01

    Binding of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF) initiates platelet adhesion to disrupted vascular surface under arterial blood flow. Flow exerts forces on the platelet that are transmitted to VWF-GPIbα bonds, which regulate their dissociation. Mutations in VWF and/or GPIbα may alter the mechanical regulation of platelet adhesion to cause hemostatic defects as found in patients with von Willebrand disease (VWD). Using a biomembrane force probe, we observed biphasic force-decelerated (catch) and force-accelerated (slip) dissociation of GPIbα from VWF. The VWF A1 domain that contains the N-terminal flanking sequence Gln(1238)-Glu(1260) (1238-A1) formed triphasic slip-catch-slip bonds with GPIbα. By comparison, using a short form of A1 that deletes this sequence (1261-A1) abolished the catch bond, destabilizing its binding to GPIbα at high forces. Importantly, shear-dependent platelet rolling velocities on these VWF ligands in a flow chamber system mirrored the force-dependent single-bond lifetimes. Adding the Gln(1238)-Glu(1260) peptide, which interacted with GPIbα and 1261-A1 but not 1238-A1, to whole blood decreased platelet attachment under shear stress. Soluble Gln(1238)-Glu(1260) reduced the lifetimes of GPIbα bonds with VWF and 1238-A1 but rescued the catch bond of GPIbα with 1261-A1. A type 2B VWD 1238-A1 mutation eliminated the catch bond by prolonging lifetimes at low forces, a type 2M VWD 1238-A1 mutation shifted the respective slip-catch and catch-slip transition points to higher forces, whereas a platelet type VWD GPIbα mutation enhanced the bond lifetime in the entire force regime. These data reveal the structural determinants of VWF activation by hemodynamic force of the circulation. PMID:24062306

  17. Role of ICAM-1 polymorphisms (G241R, K469E) in mediating its single-molecule binding ability: Atomic force microscopy measurements on living cells

    SciTech Connect

    Bai, Rui; Yi, Shaoqiong; Zhang, Xuejie; Liu, Huiliang; Fang, Xiaohong

    2014-06-13

    Highlights: • We evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations. • AFM was used to measure single-molecule binding ability on living cells. • The SNP of ICAM-1 may induce changes in expressions rather than single-molecule binding ability. - Abstract: Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP induced changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands. In the current study, we evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations – GK (G241/K469), GE (G241/E469), RK (R241/K469) and RE (R241/E469). No difference in adhesion ability was observed via cell adhesion assay or atomic force microscopy (AFM) measurement when comparing the GK, GE, RK, or RE genotypes of ICAM-1 to each other. On the other hand, flow cytometry suggested that there was significantly higher expression of GE genotype of ICAM-1 on transfected CHO cells. Thus, we concluded that genetic susceptibility to diseases related to ICAM-1 polymorphisms, G241R or K469E, might be due to the different expressions of ICAM-1 variants rather than to the single-molecule binding ability of ICAM-1.

  18. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  19. Marketing fundamentals.

    PubMed

    Redmond, W H

    2001-01-01

    This chapter outlines current marketing practice from a managerial perspective. The role of marketing within an organization is discussed in relation to efficiency and adaptation to changing environments. Fundamental terms and concepts are presented in an applied context. The implementation of marketing plans is organized around the four P's of marketing: product (or service), promotion (including advertising), place of delivery, and pricing. These are the tools with which marketers seek to better serve their clients and form the basis for competing with other organizations. Basic concepts of strategic relationship management are outlined. Lastly, alternate viewpoints on the role of advertising in healthcare markets are examined. PMID:11401791

  20. A Fundamental Relationship Between Hydrophobic Properties and Biological Activity for the Duocarmycin Class of DNA Alkylating Antitumor Drugs: Hydrophobic Binding-Driven-Bonding

    PubMed Central

    Wolfe, Amanda L.; Duncan, Katharine K.; Lajiness, James P.; Zhu, Kaicheng; Duerfeldt, Adam S.; Boger, Dale L.

    2013-01-01

    Two systematic series of increasingly hydrophilic derivatives of duocarmycin SA are described that feature the incorporation of ethylene glycol units (n = 1–5) into the methoxy substituents of the trimethoxyindole subunit. These derivatives exhibit progressively increasing water solubility, along with progressive decreases in cell growth inhibitory activity and DNA alkylation efficiency with the incremental ethylene glycol unit incorporations. A linear relationship between cLogP and –logIC50 for cell growth inhibition and –logAE (AE = cell free DNA alkylation efficiency) is observed where cLogP values span the productive range of 2.5–0.49 and –logIC50 values span the range of 11.2–6.4, representing IC50 values covering a 105 range (0.008 to 370 nM). The results quantify a fundamental role the compound hydrophobic character plays in the expression of the biological activity of members in this class, driving the intrinsically reversible DNA alkylation reaction, and define the stunning magnitude of its effect. PMID:23944748

  1. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2010-01-01

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised. PMID:21258549

  2. Changes in thermodynamic stability of von Willebrand factor differentially affect the force-dependent binding to platelet GPIbalpha.

    PubMed

    Auton, Matthew; Sedlák, Erik; Marek, Jozef; Wu, Tao; Zhu, Cheng; Cruz, Miguel A

    2009-07-22

    In circulation, plasma glycoprotein von Willebrand Factor plays an important role in hemostasis and in pathological thrombosis under hydrodynamic forces. Mutations in the A1 domain of von Willebrand factor cause the hereditary types 2B and 2M von Willebrand disease that either enhance (2B) or inhibit (2M) the interaction of von Willebrand factor with the platelet receptor glycoprotein Ibalpha. To understand how type 2B and 2M mutations cause clinically opposite phenotypes, we use a combination of protein unfolding thermodynamics and atomic force microscopy to assess the effects of two type 2B mutations (R1306Q and I1309V) and a type 2M mutation (G1324S) on the conformational stability of the A1 domain and the single bond dissociation kinetics of the A1-GPIbalpha interaction. At physiological temperature, the type 2B mutations destabilize the structure of the A1 domain and shift the A1-GPIbalpha catch to slip bonding to lower forces. Conversely, the type 2M mutation stabilizes the structure of the A1 domain and shifts the A1-GPIbalpha catch to slip bonding to higher forces. As a function of increasing A1 domain stability, the bond lifetime at low force decreases and the critical force required for maximal bond lifetime increases. Our results are able to distinguish the clinical phenotypes of these naturally occurring mutations from a thermodynamic and biophysical perspective that provides a quantitative description of the allosteric coupling of A1 conformational stability with the force dependent catch to slip bonding between A1 and GPIbalpha. PMID:19619477

  3. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium Cardiac Myosin Binding Protein C

    PubMed Central

    Moss, Richard L.; Fitzsimons, Daniel P.; Ralphe, J. Carter

    2014-01-01

    Cardiac myosin binding protein-C (cMyBP-C) is a thick filament-associated protein that appears to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or both. Several studies over the past several years have suggested that the interactions of cMyBP-C with its binding partners vary with its phosphorylation state, binding predominantly to myosin when dephosphorylated and to actin when it is phosphorylated by PKA or other kinases. Here, we summarize evidence suggesting that phosphorylation of cMyBP-C is a key regulator of the kinetics and amplitude of cardiac contraction during β-adrenergic stimulation and increased stimulus frequency. We propose a model for these effects via a phosphorylation-dependent regulation of the kinetics and extent of cooperative recruitment of cross-bridges to the thin filament – phosphorylation of cMyBP-C accelerates cross-bridge binding to actin, thereby accelerating recruitment and increasing the amplitude of the cardiac twitch. In contrast, enhanced lusitropy as a result of phosphorylation appears to be due to a direct effect of phosphorylation to accelerate cross-bridge detachment rate. Depression or elimination of one or both of these processes in a disease such as end-stage heart failure appears to contribute to the systolic and diastolic dysfunction that characterizes the disease. PMID:25552695

  4. Mechanical force effect on the two-state equilibrium of the hyaluronan-binding domain of CD44 in cell rolling.

    PubMed

    Suzuki, Takashi; Suzuki, Miho; Ogino, Shinji; Umemoto, Ryo; Nishida, Noritaka; Shimada, Ichio

    2015-06-01

    CD44 is the receptor for hyaluronan (HA) and mediates cell rolling under fluid shear stress. The HA-binding domain (HABD) of CD44 interconverts between a low-affinity, ordered (O) state and a high-affinity, partially disordered (PD) state, by the conformational change of the C-terminal region, which is connected to the plasma membrane. To examine the role of tensile force on CD44-mediated rolling, we used a cell-free rolling system, in which recombinant HABDs were attached to beads through a C-terminal or N-terminal tag. We found that the rolling behavior was stabilized only at high shear stress, when the HABD was attached through the C-terminal tag. In contrast, no difference was observed for the beads coated with HABD mutants that constitutively adopt either the O state or the PD state. Steered molecular dynamics simulations suggested that the force from the C terminus disrupts the interaction between the C-terminal region and the core of the domain, thus providing structural insights into how the mechanical force triggers the allosteric O-to-PD transition. Based on these results, we propose that the force applied from the C terminus enhances the HABD-HA interactions by inducing the conformational change to the high-affinity PD transition more rapidly, thereby enabling CD44 to mediate lymphocyte trafficking and hematopoietic progenitor cell homing under high-shear conditions. PMID:26038553

  5. How fundamental are fundamental constants?

    NASA Astrophysics Data System (ADS)

    Duff, M. J.

    2015-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, ?. For example, the standard model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers or scales? they use to measure them. Dimensional constants, on the other hand, such as ?, c, G, e and k ?, are merely human constructs whose number and values differ from one choice of units to the next. In this sense, only dimensionless constants are 'fundamental'. Similarly, the possible time variation of dimensionless fundamental 'constants' of nature is operationally well defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as ? or ? on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.

  6. Hospital fundamentals.

    PubMed

    Althausen, Peter L; Hill, Austin D; Mead, Lisa

    2014-07-01

    Under the current system, orthopaedic trauma surgeons must work in some form of hospital setting as our primary service involves treatment of the trauma patient. We must not forget that just as a trauma center cannot exist without our services, we cannot function without their support. As a result, a clear understanding of the balance between physicians and hospitals is paramount. Historical perspective enables physicians and hospital personnel alike to understand the evolution of hospital-physician relationship. This process should be understood upon completion of this chapter. The relationship between physicians and hospitals is becoming increasingly complex and multiple forms of integration exist such as joint ventures, gain sharing, and co-management agreements. For the surgeon to negotiate well, an understanding of hospital governance and the role of the orthopaedic traumatologist is vital to success. An understanding of the value provided by the traumatologist includes all aspects of care including efficiency, availability, cost effectiveness, and research activities. To create effective and sustainable healthcare institutions, physicians and hospitals must be aligned over a sustained period of time. Unfortunately, external forces have eroded the historical basis for the working relationship between physicians and hospitals. Increased competition and reimbursement cuts, coupled with the increasing demands for quality, efficiency, and coordination and the payment changes outlined in healthcare reform, have left many organizations wondering how to best rebuild the relationship. The principal goal for the physician when partnering with a hospital or healthcare entity is to establish a sustainable model of service line management that protects or advances the physician's ability to make impactful improvements in quality of patient care, decreases in healthcare costs, and improvements in process efficiency through evidence-based practices and protocols. PMID

  7. DOE Fundamentals Handbook: Classical Physics

    SciTech Connect

    Not Available

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

  8. The contribution of cardiac myosin binding protein-c Ser282 phosphorylation to the rate of force generation and in vivo cardiac contractility

    PubMed Central

    Gresham, Kenneth S; Mamidi, Ranganath; Stelzer, Julian E

    2014-01-01

    Cardiac myosin binding protein-C phosphorylation plays an important role in modulating cardiac muscle function and accelerating contraction. It has been proposed that Ser282 phosphorylation may serve as a critical molecular switch that regulates the phosphorylation of neighbouring Ser273 and Ser302 residues, and thereby govern myofilament contractile acceleration in response to protein kinase A (PKA). Therefore, to determine the regulatory roles of Ser282 we generated a transgenic (TG) mouse model expressing cardiac myosin binding protein-C with a non-phosphorylatable Ser282 (i.e. serine to alanine substitution, TGS282A). Myofibrils isolated from TGS282A hearts displayed robust PKA-mediated phosphorylation of Ser273 and Ser302, and the increase in phosphorylation was identical to TG wild-type (TGWT) controls. No signs of pathological cardiac hypertrophy were detected in TGS282A hearts by either histological examination of cardiac sections or echocardiography. Baseline fractional shortening, ejection fraction, isovolumic relaxation time, rate of pressure development and rate of relaxation (τ) were unaltered in TGS282A mice. However, the increase in cardiac contractility as well as the acceleration of pressure development observed in response to β-adrenergic stimulation was attenuated in TGS282A mice. In agreement with our in vivo data, in vitro force measurements revealed that PKA-mediated acceleration of cross-bridge kinetics in TGS282A myocardium was significantly attenuated compared to TGWT myocardium. Taken together, our data suggest that while Ser282 phosphorylation does not regulate the phosphorylation of neighbouring Ser residues and basal cardiac function, full acceleration of cross-bridge kinetics and left ventricular pressure development cannot be achieved in its absence. PMID:24951619

  9. Mannose-Binding Lectin Inhibits the Motility of Pathogenic Salmonella by Affecting the Driving Forces of Motility and the Chemotactic Response

    PubMed Central

    Nakamura, Shuichi; Islam, Md. Shafiqul; Guo, Yijie; Ihara, Kohei; Tomioka, Rintaro; Masuda, Mizuki; Yoneyama, Hiroshi; Isogai, Emiko

    2016-01-01

    Mannose-binding lectin (MBL) is a key pattern recognition molecule in the lectin pathway of the complement system, an important component of innate immunity. MBL functions as an opsonin which enhances the sequential immune process such as phagocytosis. We here report an inhibitory effect of MBL on the motility of pathogenic bacteria, which occurs by affecting the energy source required for motility and the signaling pathway of chemotaxis. When Salmonella cells were treated with a physiological concentration of MBL, their motile fraction and free-swimming speed decreased. Rotation assays of a single flagellum showed that the flagellar rotation rate was significantly reduced by the addition of MBL. Measurements of the intracellular pH and membrane potential revealed that MBL affected a driving force for the Salmonella flagellum, the electrochemical potential difference of protons. We also found that MBL treatment increased the reversal frequency of Salmonella flagellar rotation, which interfered with the relative positive chemotaxis toward an attractive substrate. We thus propose that the motility inhibition effect of MBL may be secondarily involved in the attack against pathogens, potentially facilitating the primary role of MBL in the complement system. PMID:27104738

  10. One Force

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    There is only one entity that can extend force and couple through space; and it should be apparent that Electromagnetism is that entity. In the cases of the nuclear strong force and the nuclear weak force, this is the same fundamental Electromagnetism manifesting itself in two different ways in the nucleus. It remains the same basic Electromagnetism. On the other hand, General Relativity fails to produce force at a distance, fails the Cavendish experiment, and does not allow an apple to fall to the ground. The result shows there is only Electromagnetism that functions through physical nature providing gravity, actions in the nucleus, as well as all other physical actions universally, including Gravity and Gravitation. There are many direct proofs of this, the same proofs as in NUCLEAR QUANTUM GRAVITATION. In contrast, General Relativity plainly relies on fallacy abstract and incoherent proofs; proofs which have now been mostly disproved. In the past it was deemed necessary by some to have an "ether" to propagate Electromagnetic waves. The fallacy concept of time space needs "space distortions" in order to cause gravity. However, Electromagnetic gravity does not have this problem. Clearly there is only ONE FORCE that causes Gravity, Electromagnetism, the Nuclear Strong Force, and the Nuclear Weak Force, and that ONE FORCE is Electromagnetism.

  11. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.

    PubMed

    Simon, Aude; Iftner, Christophe; Mascetti, Joëlle; Spiegelman, Fernand

    2015-03-19

    The present theoretical study aims at investigating the effects of an argon matrix on the structures, energetics, dynamics, and infrared (IR) spectra of small water clusters (H2O)n (n = 1-6). The potential energy surface is obtained from a hybrid self-consistent charge density functional-based tight binding/force-field approach (SCC-DFTB/FF) in which the water clusters are treated at the SCC-DFTB level and the matrix is modeled at the FF level by a cluster consisting of ∼340 Ar atoms with a face centered cubic (fcc) structure, namely (H2O)n/Ar. With respect to a pure FF scheme, this allows a quantum description of the molecular system embedded in the matrix, along with all-atom geometry optimization and molecular dynamics (MD) simulations of the (H2O)n/Ar system. Finite-temperature IR spectra are derived from the MD simulations. The SCC-DFTB/FF scheme is first benchmarked on (H2O)Arn clusters against correlated wave function results and DFT calculations performed in the present work, and against FF data available in the literature. Regarding (H2O)n/Ar systems, the geometries of the water clusters are found to adapt to the fcc environment, possibly leading to intermolecular distortion and matrix perturbation. Several energetical quantities are estimated to characterize the water clusters in the matrix. In the particular case of the water hexamer, substitution and insertion energies for the prism, bag, and cage are found to be lower than that for the 6-member ring isomer. Finite-temperature MD simulations show that the water monomer has a quasifree rotation motion at 13 K, in agreement with experimental data. In the case of the water dimer, the only large-amplitude motion is a distortion-rotation intermolecular motion, whereas only vibration motions around the nuclei equilibrium positions are observed for clusters with larger sizes. Regarding the IR spectra, we find that the matrix environment leads to redshifts of the stretching modes and almost no shift of the

  12. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  13. Exchange Rates and Fundamentals.

    ERIC Educational Resources Information Center

    Engel, Charles; West, Kenneth D.

    2005-01-01

    We show analytically that in a rational expectations present-value model, an asset price manifests near-random walk behavior if fundamentals are I (1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs,…

  14. Fundamental Limits to Cellular Sensing

    NASA Astrophysics Data System (ADS)

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew

    2016-03-01

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  15. Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  16. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity.

    PubMed

    Elosegui-Artola, Alberto; Oria, Roger; Chen, Yunfeng; Kosmalska, Anita; Pérez-González, Carlos; Castro, Natalia; Zhu, Cheng; Trepat, Xavier; Roca-Cusachs, Pere

    2016-05-01

    Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response. PMID:27065098

  17. Force-clamp laser trapping of rapidly interacting molecules

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Monico, Carina; Vanzi, Francesco; Pavone, Francesco S.

    2013-06-01

    Forces play a fundamental role in a wide array of biological processes, regulating enzymatic activity, kinetics of molecular bonds, and molecular motors mechanics. Single molecule force spectroscopy techniques have enabled the investigation of such processes, but they are inadequate to probe short-lived (millisecond and sub-millisecond) molecular complexes. We developed an ultrafast force-clamp spectroscopy technique that uses a dual trap configuration to apply constant loads to a single intermittently interacting biological polymer and a binding protein. Our system displays a delay of only ˜10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. The force-clamp configuration in which our assay operates allows direct measurements of load-dependence of lifetimes of single molecular bonds. Moreover, conformational changes of single proteins and molecular motors can be recorded with sub-nanometer accuracy and few tens of microseconds of temporal resolution. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  18. Vibrational Spectra and Force Constants of Symmetric Tops, IL. The ν3Fundamental of Unstable H3SnCI, H3SnBr, and H3SnI Studied by High Resolution FT Spectroscopy of Monoisotopic Species

    NASA Astrophysics Data System (ADS)

    Bürger, Hans; Betzel, Martina

    1985-10-01

    Fourier Transform far infrared spectra of unstable stannyl chloride, bromide and iodide have been measured in the gas phase with a resolution of 0.04 cm-1. At pressures below 10 mbar, their lifetimes at 0 °C in preconditioned cells were found to be 10-30 min. The v3 fundamentals and hot bands of the series (n + 1)v3 - nv3 have been observed. Rotational J structure has been resolved for monoisotopic samples, and band origins v30, anharmonicity constants x33, ɑ3B and DJ0 values have been determined from the rovibrational analyses. The following v30 values were obtained: H3116Sn35Cl 375.470 (5), H3116Sn37Cl 367.689 (6), H3116Sn79Br 263.566 (5) and H3116SnI 209.759 (6) cm-1.

  19. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials.

    PubMed Central

    Hurley, J. K.; Hazzard, J. T.; Martínez-Júlvez, M.; Medina, M.; Gómez-Moreno, C.; Tollin, G.

    1999-01-01

    Transient absorbance measurements following laser flash photolysis have been used to measure the rate constants for electron transfer (et) from reduced Anabaena ferredoxin (Fd) to wild-type and seven site-specific charge-reversal mutants of Anabaena ferredoxin:NADP+ reductase (FNR). These mutations have been designed to probe the importance of specific positively charged amino acid residues on the surface of the FNR molecule near the exposed edge of the FAD cofactor in the protein-protein interaction during et with Fd. The mutant proteins fall into two groups: overall, the K75E, R16E, and K72E mutants are most severely impaired in et, and the K138E, R264E, K290E, and K294E mutants are impaired to a lesser extent, although the degree of impairment varies with ionic strength. Binding constants for complex formation between the oxidized proteins and for the transient et complexes show that the severity of the alterations in et kinetics for the mutants correlate with decreased stabilities of the protein-protein complexes. Those mutated residues, which show the largest effects, are located in a region of the protein in which positive charge predominates, and charge reversals have large effects on the calculated local surface electrostatic potential. In contrast, K138, R264, K290, and K294 are located within or close to regions of intense negative potential, and therefore the introduction of additional negative charges have considerably smaller effects on the calculated surface potential. We attribute the relative changes in et kinetics and complex binding constants for these mutants to these characteristics of the surface charge distribution in FNR and conclude that the positively charged region of the FNR surface located in the vicinity of K75, R16, and K72 is especially important in the binding and orientation of Fd during electron transfer. PMID:10452605

  20. Monte Carlo fundamentals

    SciTech Connect

    Brown, F.B.; Sutton, T.M.

    1996-02-01

    This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.

  1. Fundamentals of fluid lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  2. Fundamentals of fluid sealing

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.

  3. No fifth force?

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Hopes that geophysicists might be able to document a fifth force of nature have diminished, as new measurements and analyses of earlier geodetic experiments have yielded no solid evidence of a non-Newtonian component of gravity.Modern physics recognizes four fundamental forces with distinct spheres of influence: The strong and weak nuclear forces operate over the range of one atom, while gravity and electromagnetism have an infinite range. Gravity measurements over a few centimeters in laboratories and over millions of kilometers in space continue to buttress Issac Newton's conclusion that the gravitational force between two objects decreases as the square of the distance between them.

  4. Food Service Fundamentals.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on food service fundamentals is designed to provide a general background in the basic aspects of the food service program in the Marine Corps; it is adaptable for nonmilitary instruction. Introductory materials include specific information for MCI…

  5. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  6. Reading Is Fundamental, 1977.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. National Reading is Fun-damental Program.

    Reading Is Fundamental (RIF) is a national, nonprofit organization designed to motivate children to read by making a wide variety of inexpensive books available to them and allowing the children to choose and keep books that interest them. This annual report for 1977 contains the following information on the RIF project: an account of the…

  7. Fundamentals of soil science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  8. Homeschooling and Religious Fundamentalism

    ERIC Educational Resources Information Center

    Kunzman, Robert

    2010-01-01

    This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to…

  9. Fundamentals of tribology

    SciTech Connect

    Suh, N.P.; Saka, N.

    1980-01-01

    This book presents the proceedings of the June 1978 International Conference on the Fundamentals of Tribology. The papers discuss the effects of surface topography and of the properties of materials on wear; friction, wear, and thermomechanical effects; wear mechanisms in metal processing; polymer wear; wear monitoring and prevention; and lubrication. (LCL)

  10. Fundamental research data base

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A fundamental research data base containing ground truth, image, and Badhwar profile feature data for 17 North Dakota, South Dakota, and Minnesota agricultural sites is described. Image data was provided for a minimum of four acquisition dates for each site and all four images were registered to one another.

  11. Laser Fundamentals and Experiments.

    ERIC Educational Resources Information Center

    Van Pelt, W. F.; And Others

    As a result of work performed at the Southwestern Radiological Health Laboratory with respect to lasers, this manual was prepared in response to the increasing use of lasers in high schools and colleges. It is directed primarily toward the high school instructor who may use the text for a short course in laser fundamentals. The definition of the…

  12. The Fundamental Property Relation.

    ERIC Educational Resources Information Center

    Martin, Joseph J.

    1983-01-01

    Discusses a basic equation in thermodynamics (the fundamental property relation), focusing on a logical approach to the development of the relation where effects other than thermal, compression, and exchange of matter with the surroundings are considered. Also demonstrates erroneous treatments of the relation in three well-known textbooks. (JN)

  13. Fundamentals of Library Instruction

    ERIC Educational Resources Information Center

    McAdoo, Monty L.

    2012-01-01

    Being a great teacher is part and parcel of being a great librarian. In this book, veteran instruction services librarian McAdoo lays out the fundamentals of the discipline in easily accessible language. Succinctly covering the topic from top to bottom, he: (1) Offers an overview of the historical context of library instruction, drawing on recent…

  14. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  15. Basic Publication Fundamentals.

    ERIC Educational Resources Information Center

    Savedge, Charles E., Ed.

    Designed for students who produce newspapers and newsmagazines in junior high, middle, and elementary schools, this booklet is both a scorebook and a fundamentals text. The scorebook provides realistic criteria for judging publication excellence at these educational levels. All the basics for good publications are included in the text of the…

  16. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. IV. Performance of many-body force fields and tight-binding schemes for the fluid phases of silicon.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2016-03-28

    We extend Expanded Wang-Landau (EWL) simulations beyond classical systems and develop the EWL method for systems modeled with a tight-binding Hamiltonian. We then apply the method to determine the partition function and thus all thermodynamic properties, including the Gibbs free energy and entropy, of the fluid phases of Si. We compare the results from quantum many-body (QMB) tight binding models, which explicitly calculate the overlap between the atomic orbitals of neighboring atoms, to those obtained with classical many-body (CMB) force fields, which allow to recover the tetrahedral organization in condensed phases of Si through, e.g., a repulsive 3-body term that favors the ideal tetrahedral angle. Along the vapor-liquid coexistence, between 3000 K and 6000 K, the densities for the two coexisting phases are found to vary significantly (by 5 orders of magnitude for the vapor and by up to 25% for the liquid) and to provide a stringent test of the models. Transitions from vapor to liquid are predicted to occur for chemical potentials that are 10%-15% higher for CMB models than for QMB models, and a ranking of the force fields is provided by comparing the predictions for the vapor pressure to the experimental data. QMB models also reveal the formation of a gap in the electronic density of states of the coexisting liquid at high temperatures. Subjecting Si to a nanoscopic confinement has a dramatic effect on the phase diagram with, e.g. at 6000 K, a decrease in liquid densities by about 50% for both CMB and QMB models and an increase in vapor densities between 90% (CMB) and 170% (QMB). The results presented here provide a full picture of the impact of the strategy (CMB or QMB) chosen to model many-body effects on the thermodynamic properties of the fluid phases of Si. PMID:27036464

  17. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. IV. Performance of many-body force fields and tight-binding schemes for the fluid phases of silicon

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2016-03-01

    We extend Expanded Wang-Landau (EWL) simulations beyond classical systems and develop the EWL method for systems modeled with a tight-binding Hamiltonian. We then apply the method to determine the partition function and thus all thermodynamic properties, including the Gibbs free energy and entropy, of the fluid phases of Si. We compare the results from quantum many-body (QMB) tight binding models, which explicitly calculate the overlap between the atomic orbitals of neighboring atoms, to those obtained with classical many-body (CMB) force fields, which allow to recover the tetrahedral organization in condensed phases of Si through, e.g., a repulsive 3-body term that favors the ideal tetrahedral angle. Along the vapor-liquid coexistence, between 3000 K and 6000 K, the densities for the two coexisting phases are found to vary significantly (by 5 orders of magnitude for the vapor and by up to 25% for the liquid) and to provide a stringent test of the models. Transitions from vapor to liquid are predicted to occur for chemical potentials that are 10%-15% higher for CMB models than for QMB models, and a ranking of the force fields is provided by comparing the predictions for the vapor pressure to the experimental data. QMB models also reveal the formation of a gap in the electronic density of states of the coexisting liquid at high temperatures. Subjecting Si to a nanoscopic confinement has a dramatic effect on the phase diagram with, e.g. at 6000 K, a decrease in liquid densities by about 50% for both CMB and QMB models and an increase in vapor densities between 90% (CMB) and 170% (QMB). The results presented here provide a full picture of the impact of the strategy (CMB or QMB) chosen to model many-body effects on the thermodynamic properties of the fluid phases of Si.

  18. A Framework for Fundamental Change in the Community College.

    ERIC Educational Resources Information Center

    Lorenzo, Albert L.; LeCroy, Nancy Armes

    1994-01-01

    Examines the underlying forces prompting fundamental change in community colleges to meet the requirements of the Information Age. Recommends that community colleges direct institutional energy toward thinking holistically, streamlining governance, redefining faculty roles, diversifying funding, increasing student options, assuring educational…

  19. Fundamentals of Polarized Light

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael

    2003-01-01

    The analytical and numerical basis for describing scattering properties of media composed of small discrete particles is formed by the classical electromagnetic theory. Although there are several excellent textbooks outlining the fundamentals of this theory, it is convenient for our purposes to begin with a summary of those concepts and equations that are central to the subject of this book and will be used extensively in the following chapters. We start by formulating Maxwell's equations and constitutive relations for time- harmonic macroscopic electromagnetic fields and derive the simplest plane-wave solution that underlies the basic optical idea of a monochromatic parallel beam of light. This solution naturally leads to the introduction of such fundamental quantities as the refractive index and the Stokes parameters. Finally, we define the concept of a quasi-monochromatic beam of light and discuss its implications.

  20. Fundamentals of Geophysics

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  1. Fundamental limits on EMC

    NASA Astrophysics Data System (ADS)

    Showers, R. M.; Lin, S.-Y.; Schulz, R. B.

    1981-02-01

    Both fundamental and state-of-the-art limits are treated with emphasis on the former. Fundamental limits result from both natural and man-made electromagnetic noise which then affect two basic ratios, signal-to-noise (S/N) and extraneous-input-to-noise (I/N). Tolerable S/N values are discussed for both digital and analog communications systems. These lead to tolerable signal-to-extraneous-input (S/I) ratios, again for digital and analog communications systems, as well as radar and sonar. State-of-the-art limits for transmitters include RF noise emission, spurious emissions, and intermodulation. Receiver limits include adjacent-channel interactions, image, IF, and other spurious responses, including cross modulation, intermodulation, and desensitization. Unintentional emitters and receivers are also discussed. Coupling limitations between undesired sources and receptors are considered from mechanisms including radiation, induction, and conduction.

  2. Fundamental studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Hager, B. H.; Kanamori, H.

    1981-01-01

    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix.

  3. Fundamentals of Structural Geology

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  4. Value of Fundamental Science

    NASA Astrophysics Data System (ADS)

    Burov, Alexey

    Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?

  5. Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: effects of ADP and BRC4-28 peptide inhibitor.

    PubMed

    Esnault, Charles; Renodon-Cornière, Axelle; Takahashi, Masayuki; Casse, Nathalie; Delorme, Nicolas; Louarn, Guy; Fleury, Fabrice; Pilard, Jean-François; Chénais, Benoît

    2014-12-01

    The interaction of human Rad51 protein (HsRad51) with single-stranded deoxyribonucleic acid (ssDNA) was investigated by using quartz crystal microbalance (QCM) monitoring and atomic force microscopy (AFM) visualization. Gold surfaces for QCM and AFM were modified by electrografting of the in situ generated aryldiazonium salt from the sulfanilic acid to obtain the organic layer Au-ArSO3 H. The Au-ArSO3 H layer was activated by using a solution of PCl5 in CH2 Cl2 to give a Au-ArSO2 Cl layer. The modified surface was then used to immobilize long ssDNA molecules. The results obtained showed that the presence of adenosine diphosphate promotes the protein autoassociation rather than nucleation around DNA. In addition, when the BRC4-28 peptide inhibitor was used, both QCM and AFM confirmed the inhibitory effect of BRC4-28 toward HsRad51 autoassociation. Altogether these results show the suitability of this modified surface to investigate the kinetics and structure of DNA-protein interactions and for the screening of inhibitors. PMID:25208912

  6. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  7. On Correlation Effect of the Van-der-Waals and Intramolecular Forces for the Nucleotide Chain - Metallic Nanoparticles - Carbon Nanotube Binding

    PubMed Central

    Khusenov, M.A.; Dushanov, E.B.; Kholmurodov, Kh.T; Zaki, M.M.; Sweilam, N.H.

    2016-01-01

    Background: The tertiary system of nucleotide chain (NC) - gold nanoparticles (NPs) - carbon nanotube (CNT) represents a great interest in the modern research and application of the bio-nano-technologies. The application aspects include, for example, the development of electronic mobile diagnostic facilities, nanorobotic design for a drug delivery inside living cell, and so on. The small NC chain represents an important stage in the understanding of the interaction mechanism of a full DNA or RNA molecule with NP and CNT. In this regard, one has to mention the development of the DNA-CNT devices for the purposes of diagnostic applications in the chemical or drug delivery. Methods: For the NC-NP-CNT system, we have built up a series of the molecular dynamics (MD) models with different NC-NP configurations and performed their MD analysis. The entire system (the NC chain, gold NPs and CNT) was allowed to interact with each other by the only VdW forces. The Lennard-Jones short-ranged interaction was assumed between the NC, NP and CNT. For the CNT a many body Tersoff potential having a quantum-chemistry nature was used. So far, the so-called hybrid MD approach was realized, where the quantum-chemistry potential in combination with a classical trajectory calculation applied . Results: The peculiarities of the NC-NP interaction and bond formation inside of a CNT matrix were investigated along with the structural and dynamical behavior. The correlation effects between the weak Van der Waals (VdW) forces and intramolecular vibrations were enlighten for the molecular system consisting of a small nucleotide chain (NC), gold nanoparticles (NPs) and carbon nanotube (CNT) using molecular dynamics (MD) simulation method. Conclusion: The NC intermolecular motions were estimated from MD data thereby building the distance distributions, the angular and dihedral (torsional) bond energy graphs versus simulation time at different temperatures from T=100 K up to 300 K. The MD simulation

  8. Fundamental experiments in velocimetry

    SciTech Connect

    Briggs, Matthew Ellsworth; Hull, Larry; Shinas, Michael

    2009-01-01

    One can understand what velocimetry does and does not measure by understanding a few fundamental experiments. Photon Doppler Velocimetry (PDV) is an interferometer that will produce fringe shifts when the length of one of the legs changes, so we might expect the fringes to change whenever the distance from the probe to the target changes. However, by making PDV measurements of tilted moving surfaces, we have shown that fringe shifts from diffuse surfaces are actually measured only from the changes caused by the component of velocity along the beam. This is an important simplification in the interpretation of PDV results, arising because surface roughness randomizes the scattered phases.

  9. Fundamental research data base

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A fundamental research data base was created on a single 9-track 1600 BPI tape containing ground truth, image, and Badhwar profile feature data for 17 North Dakota, South Dakota, and Minnesota agricultural sites. Each site is 5x6 nm in area. Image data has been provided for a minimum of four acquisition dates for each site. All four images have been registered to one another. A list of the order of the files on tape and the dates of acquisition is provided.

  10. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  11. Fundamentals of electrokinetics

    NASA Astrophysics Data System (ADS)

    Kozak, M. W.

    The study of electrokinetics is a very mature field. Experimental studies date from the early 1800s, and acceptable theoretical analyses have existed since the early 1900s. The use of electrokinetics in practical field problems is more recent, but it is still quite mature. Most developments in the fundamental understanding of electrokinetics are in the colloid science literature. A significant and increasing divergence between the theoretical understanding of electrokinetics found in the colloid science literature and the theoretical analyses used in interpreting applied experimental studies in soil science and waste remediation has developed. The soil science literature has to date restricted itself to the use of very early theories, with their associated limitations. The purpose of this contribution is to review fundamental aspects of electrokinetic phenomena from a colloid science viewpoint. It is hoped that a bridge can be built between the two branches of the literature, from which both will benefit. Attention is paid to special topics such as the effects of overlapping double layers, applications in unsaturated soils, the influence of dispersivity, and the differences between electrokinetic theory and conductivity theory.

  12. Testing Our Fundamental Assumptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these

  13. Fundamental Atomtronic Circuit Elements

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey; McIlvain, Brian; Lobb, Christopher; Hill, Wendell T., III

    2012-06-01

    Recent experiments with neutral superfluid gases have shown that it is possible to create atomtronic circuits analogous to existing superconducting circuits. The goals of these experiments are to create complex systems such as Josephson junctions. In addition, there are theoretical models for active atomtronic components analogous to diodes, transistors and oscillators. In order for any of these devices to function, an understanding of the more fundamental atomtronic elements is needed. Here we describe the first experimental realization of these more fundamental elements. We have created an atomtronic capacitor that is discharged through a resistance and inductance. We will discuss a theoretical description of the system that allows us to determine values for the capacitance, resistance and inductance. The resistance is shown to be analogous to the Sharvin resistance, and the inductance analogous to kinetic inductance in electronics. This atomtronic circuit is implemented with a thermal sample of laser cooled rubidium atoms. The atoms are confined using what we call free-space atom chips, a novel optical dipole trap produced using a generalized phase-contrast imaging technique. We will also discuss progress toward implementing this atomtronic system in a degenerate Bose gas.

  14. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  15. Fundamentals in Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Basdevant, Jean-Louis, Rich, James, Spiro, Michael

    This course on nuclear physics leads the reader to the exploration of the field from nuclei to astrophysical issues. Much nuclear phenomenology can be understood from simple arguments such as those based on the Pauli principle and the Coulomb barrier. This book is concerned with extrapolating from such arguments and illustrating nuclear systematics with experimental data. Starting with the basic concepts in nuclear physics, nuclear models, and reactions, the book covers nuclear decays and the fundamental electro-weak interactions, radioactivity, and nuclear energy. After the discussions of fission and fusion leading into nuclear astrophysics, there is a presentation of the latest ideas about cosmology. As a primer this course will lay the foundations for more specialized subjects. This book emerged from a series of topical courses the authors delivered at the Ecole Polytechnique and will be useful for graduate students and for scientists in a variety of fields.

  16. Fundamentals of battery dynamics

    NASA Astrophysics Data System (ADS)

    Jossen, Andreas

    Modern applications, such as wireless communication systems or hybrid electric vehicles operate at high power fluctuations. For some applications, where the power frequencies are high (above some 10 or 100 Hz) it is possible to filter the high frequencies using passive components; yet this results in additional costs. In other applications, where the dynamic time constants are in the range up to some seconds, filtering cannot be done. Batteries are hence operated with the dynamic loads. But what happens under these dynamic operation conditions? This paper describes the fundamentals of the dynamic characteristics of batteries in a frequency range from some MHz down to the mHz range. As the dynamic behaviour depends on the actual state of charge (SOC) and the state of health (SOH), it is possible to gain information on the battery state by analysing the dynamic behaviour. High dynamic loads can influence the battery temperature, the battery performance and the battery lifetime.

  17. Fundamentals of zoological scaling

    NASA Astrophysics Data System (ADS)

    Lin, Herbert

    1982-01-01

    Most introductory physics courses emphasize highly idealized problems with unique well-defined answers. Though many textbooks complement these problems with estimation problems, few books present anything more than an elementary discussion of scaling. This paper presents some fundamentals of scaling in the zoological domain—a domain complex by any standard, but one also well suited to illustrate the power of very simple physical ideas. We consider the following animal characteristics: skeletal weight, speed of running, height and range of jumping, food consumption, heart rate, lifetime, locomotive efficiency, frequency of wing flapping, and maximum sizes of animals that fly and hover. These relationships are compared to zoological data and everyday experience, and match reasonably well.

  18. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  19. Testing Our Fundamental Assumptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these

  20. Fundamentals of the DIGES code

    SciTech Connect

    Simos, N.; Philippacopoulos, A.J.

    1994-08-01

    Recently the authors have completed the development of the DIGES code (Direct GEneration of Spectra) for the US Nuclear Regulatory Commission. This paper presents the fundamental theoretical aspects of the code. The basic modeling involves a representation of typical building-foundation configurations as multi degree-of-freedom dynamic which are subjected to dynamic inputs in the form of applied forces or pressure at the superstructure or in the form of ground motions. Both the deterministic as well as the probabilistic aspects of DIGES are described. Alternate ways of defining the seismic input for the estimation of in-structure spectra and their consequences in terms of realistically appraising the variability of the structural response is discussed in detaiL These include definitions of the seismic input by ground acceleration time histories, ground response spectra, Fourier amplitude spectra or power spectral densities. Conversions of one of these forms to another due to requirements imposed by certain analysis techniques have been shown to lead, in certain cases, in controversial results. Further considerations include the definition of the seismic input as the excitation which is directly applied at the foundation of a structure or as the ground motion of the site of interest at a given point. In the latter case issues related to the transferring of this motion to the foundation through convolution/deconvolution and generally through kinematic interaction approaches are considered.

  1. Cholinergic influences on feature binding.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2007-04-01

    The binding problem refers to the fundamental challenge of the central nervous system to integrate sensory information registered by multiple brain regions to form a unified neural representation of a stimulus. Human behavioral, neuropsychological, and functional neuroimaging evidence suggests a fundamental role for attention in feature binding; however, its neurochemical basis is currently unknown. This study examined whether acetylcholine (ACh), a neuromodulator that has been implicated in attentional processes, plays a critical role in feature binding. Using a within-subjects pharmacological design and the cholinergic muscarinic antagonist scopolamine, the present experiments demonstrate, in a rat model, a critical role for the cortical muscarinic cholinergic system in feature binding. Specifically, ACh and the attentional resources that it supports are essential for the initial feature binding process but are not required to maintain neural representations of bound stimuli. PMID:17469916

  2. A density functional tight binding/force field approach to the interaction of molecules with rare gas clusters: Application to (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters

    SciTech Connect

    Iftner, Christophe; Simon, Aude; Korchagina, Kseniia; Rapacioli, Mathias; Spiegelman, Fernand

    2014-01-21

    We propose in the present paper a SCC-DFTB/FF (Self-Consistent-Charge Density Functional based Tight Binding/Force-Field) scheme adapted to the investigation of molecules trapped in rare gas environments. With respect to usual FF descriptions, the model involves the interaction of quantum electrons in a molecule with rare gas atoms in an anisotropic scheme. It includes polarization and dispersion contributions and can be used for both neutral and charged species. Parameters for this model are determined for hydrocarbon-argon complexes and the model is validated for small hydrocarbons. With the future aim of studying polycyclic aromatic hydrocarbons in Ar matrices, extensive benchmark calculations are performed on (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters against DFT and CCSD(T) calculations for the smaller sizes, and more generally against other experimental and theoretical data. Results on the structures and energetics (isomer ordering and energy separation, cohesion energy per Ar atom) are presented in detail for n = 1–8, 13, 20, 27, and 30, for both neutrals and cations. We confirm that the clustering of Ar atoms leads to a monotonous decrease of the ionization potential of benzene for n ⩽ 20, in line with previous experimental and FF data.

  3. GRBs and Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick; Wang, F. Y.; Wu, X. F.; Wei, J. J.

    2016-02-01

    Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological distances, which are the most luminous explosions in the Universe. The high luminosities of GRBs make them detectable out to the edge of the visible universe. So, they are unique tools to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal evolution of the Universe. First, they can be used to constrain the history of cosmic acceleration and the evolution of dark energy in a redshift range hardly achievable by other cosmological probes. Second, long GRBs are believed to be formed by collapse of massive stars. So they can be used to derive the high-redshift star formation rate, which can not be probed by current observations. Moreover, the use of GRBs as cosmological tools could unveil the reionization history and metal evolution of the Universe, the intergalactic medium (IGM) properties and the nature of first stars in the early universe. But beyond that, the GRB high-energy photons can be applied to constrain Lorentz invariance violation (LIV) and to test Einstein's Equivalence Principle (EEP). In this paper, we review the progress on the GRB cosmology and fundamental physics probed by GRBs.

  4. Fundamentals of Atmospheric Radiation

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.; Clothiaux, Eugene E.

    2006-02-01

    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  5. Fundamentals of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Tang, C. L.

    2005-06-01

    Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors

  6. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  7. Solar astrophysical fundamental parameters

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.

    2014-08-01

    The accurate determination of the solar photospheric radius has been an important problem in astronomy for many centuries. From the measurements made by the PICARD spacecraft during the transit of Venus in 2012, we obtained a solar radius of 696,156±145 kilometres. This value is consistent with recent measurements carried out atmosphere. This observation leads us to propose a change of the canonical value obtained by Arthur Auwers in 1891. An accurate value for total solar irradiance (TSI) is crucial for the Sun-Earth connection, and represents another solar astrophysical fundamental parameter. Based on measurements collected from different space instruments over the past 35 years, the absolute value of the TSI, representative of a quiet Sun, has gradually decreased from 1,371W.m-2 in 1978 to around 1,362W.m-2 in 2013, mainly due to the radiometers calibration differences. Based on the PICARD data and in agreement with Total Irradiance Monitor measurements, we predicted the TSI input at the top of the Earth's atmosphere at a distance of one astronomical unit (149,597,870 kilometres) from the Sun to be 1,362±2.4W.m-2, which may be proposed as a reference value. To conclude, from the measurements made by the PICARD spacecraft, we obtained a solar photospheric equator-to-pole radius difference value of 5.9±0.5 kilometres. This value is consistent with measurements made by different space instruments, and can be given as a reference value.

  8. Connecting Fundamental Constants

    SciTech Connect

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.

  9. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  10. Fundamentals of Space Medicine

    NASA Astrophysics Data System (ADS)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  11. Fundamentals of Space Medicine

    NASA Astrophysics Data System (ADS)

    Clément, G.

    2003-10-01

    As of today, a total of more than 240 human space flights have been completed, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This book presents in a readable text the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardiovascular, bone and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination

  12. Plasma Sail Concept Fundamentals

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Delamere, P.; Kabin, K.; Linde, T. J.

    2004-01-01

    The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Winglee et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50 C80 km/s after an acceleration period of 3 mo. Such velocities will enable travel out of the solar system in period of 7 yr almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Winglee et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably ( 10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

  13. Liposculpture 4. Fundamentals of good liposculpture technique.

    PubMed

    Fischer, G

    1992-03-01

    The fundamentals for good liposculpture are discussed. Horizontal tunneling is to be avoided because the more horizontally the tunnel is angled, the more likely the overlying skin will drape in folds, resulting in poor cosmesis. Superficial tunneling (less than 1 cm) is to be avoided. The author believes that it is important to maintain the adhesive forces and lymphatics of the superficial layer of fat because it leads to more even healing and remodelling postoperatively. Liposuction within 3 cm of the subgluteal fold should be avoided because it can lead to ptosis of the buttocks postoperatively. PMID:1541754

  14. Forces in yeast flocculation

    PubMed Central

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Flos, Marta Abellán; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2014-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (“flocculation”) is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding. PMID:25515338

  15. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  16. Expression of Interferon Consensus Sequence Binding Protein (ICSBP) Is Downregulated in Bcr-Abl-Induced Murine Chronic Myelogenous Leukemia-Like Disease, and Forced Coexpression of ICSBP Inhibits Bcr-Abl-Induced Myeloproliferative Disorder

    PubMed Central

    Hao, Sheryl X.; Ren, Ruibao

    2000-01-01

    Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder resulting from the neoplastic transformation of a hematopoietic stem cell. The majority of cases of CML are associated with the (9;22) chromosome translocation that generates the bcr-abl chimeric gene. Alpha interferon (IFN-α) treatment induces hematological remission and prolongs life in 75% of CML patients in the chronic phase. It has been shown that mice deficient in interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family, manifest a CML-like syndrome. We have shown that expression of Bcr-Abl in bone marrow (BM) cells from 5-fluorouracil (5-FU)-treated mice by retroviral transduction efficiently induces a myeloproliferative disease in mice resembling human CML. To directly test whether icsbp can function as a tumor suppressor gene, we examined the effect of ICSBP on Bcr-Abl-induced CML-like disease using this murine model for CML. We found that expression of the ICSBP protein was significantly decreased in Bcr-Abl-induced CML-like disease. Forced coexpression of ICSBP inhibited the Bcr-Abl-induced colony formation of BM cells from 5-FU-treated mice in vitro and Bcr-Abl-induced CML-like disease in vivo. Interestingly, coexpression of ICSBP and Bcr-Abl induced a transient B-lymphoproliferative disorder in the murine model of Bcr-Abl-induced CML-like disease. Overexpression of ICSBP consistently promotes rather than inhibits Bcr-Abl-induced B lymphoproliferation in a murine model where BM cells from non-5-FU-treated donors were used, indicating that ICSBP has a specific antitumor activity toward myeloid neoplasms. We also found that overexpression of ICSBP negatively regulated normal hematopoiesis. These data provide direct evidence that ICSBP can act as a tumor suppressor that regulates normal and neoplastic proliferation of hematopoietic cells. PMID:10648600

  17. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  18. Fundamental mechanisms of micromachine reliability

    SciTech Connect

    DE BOER,MAARTEN P.; SNIEGOWSKI,JEFFRY J.; KNAPP,JAMES A.; REDMOND,JAMES M.; MICHALSKE,TERRY A.; MAYER,THOMAS K.

    2000-01-01

    Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of

  19. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  20. Microphotonic Forces from Superfluid Flow

    NASA Astrophysics Data System (ADS)

    McAuslan, D. L.; Harris, G. I.; Baker, C.; Sachkou, Y.; He, X.; Sheridan, E.; Bowen, W. P.

    2016-04-01

    In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly 1 order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces we demonstrate here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, while the ability to apply forces remotely, combined with the persistence of flow in superfluids, offers the prospect for new applications.

  1. Force As A Momentum Current

    SciTech Connect

    Munera, Hector A.

    2010-07-28

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  2. Forces Driving Chaperone Action.

    PubMed

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C A

    2016-07-14

    It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  3. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  4. Van der Waals Forces

    NASA Astrophysics Data System (ADS)

    Parsegian, V. Adrian

    2006-03-01

    This should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory. Author is among the most highly respected biophysicists Van der Waals forces are significant for a wide range of questions and problems in the life sciences, chemistry, physics, and engineering, ranging up to the macro level No other book that develops the subject vigorously, and this book also makes the subject intuitively accessible to students who had not previously been mathematically sophisticated enough to calculate them

  5. Fundamental Investigation of Circumferentially Varying Stator Cascades

    NASA Astrophysics Data System (ADS)

    Farnsworth, John A. N.

    2011-12-01

    The fundamentals of circumferentially varying stator cascades and their interactions with a downstream fixed pitch propeller were investigated experimentally utilizing multiple measurement techniques. The flow physics associated with the isolated circumferentially varying, or cyclic, stator cascade was studied in a wind tunnel environment through string tuft flow visualization, 2-D PIV, Stereoscopic PIV, and static surface pressure measurements. The coupled wake physics of the cyclic stator cascade with propeller were then investigated in a water tunnel using Stereo PIV. Finally, the global performance of components and the coupled system were quantified through force and moment measurements on the model in the water tunnel. A cyclic distribution of the stators' deflections resulted in non-axisymmetric distributions of the surface pressure and the flow field downstream of the stator array. In the model near wake the flow field is associated with secondary flow patterns in the form of coherent streamwise vortical structures that can be described by potential flow mechanisms. The collective pitch distribution of the stators produces a flow field that resembles a potential Rankine vortex, whereas the cyclic pitch distribution generates a flow pattern that can be described by a potential vortex pair in a cross flow. The stator distribution alone produces a significant side force that increases linearly with stator pitch amplitude. When a propeller is incorporated downstream from the cyclic cascade the side force from the stator cascade is reduced, but a small vertical force and pitching moment are created. The generation of these secondary forces and moments can be related to the redistribution of the tangential flow from the cyclic cascade into the axial direction by the retreating and advancing blade states of the fixed pitch propeller.

  6. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  7. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  8. Interpreting the widespread nonlinear force spectra of intermolecular bonds

    PubMed Central

    Friddle, Raymond W.; Noy, Aleksandr; De Yoreo, James J.

    2012-01-01

    Single molecule force spectroscopy probes the strength, lifetime, and energetic details of intermolecular interactions in a simple experiment. A growing number of these studies have reported distinctly nonlinear trends in rupture force with loading rate that are typically explained in conventional models by invoking complex escape pathways. Recent analyses suggested that these trends should be expected even for simple barriers based on the basic assumptions of bond rupture dynamics and thus may represent the norm rather than the exception. Here we explore how these nonlinear trends reflect the two fundamental regimes of bond rupture: (i) a near-equilibrium regime, produced either by bond reforming in the case of a single bond or by asynchronized rupture of multiple individual bonds, and (ii) a kinetic regime produced by fast, non-equilibrium bond rupture. We analyze both single- and multi-bonded cases, describe the full evolution of the system as it transitions between near- and far-from-equilibrium loading regimes, and show that both interpretations produce essentially identical force spectra. Data from 10 different molecular systems show that this model provides a comprehensive description of force spectra for a diverse suite of bonds over experimentally relevant loading rates, removes the inconsistencies of previous interpretations of transition state distances, and gives ready access to both kinetic and thermodynamic information about the interaction. These results imply that single-molecule binding free energies for a vast number of bonds have already been measured. PMID:22869712

  9. Graphene oxide: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Perrozzi, F.; Prezioso, S.; Ottaviano, L.

    2015-01-01

    In this review, we discuss the fundamental characterization of graphene oxide (GO) and its future application perspectives. Morphology is discussed through optical microscopy, fluorescence microscopy, scanning electron microscopy, and atomic force microscopy studies. Chemical, structural, and vibrational properties are discussed through x-ray photoemission spectroscopy and Raman spectroscopy studies. Two easy characterization strategies, based on the correlation between x-ray photoemission spectroscopy and contact angle/optical contrast measurements are reported. Sensing and nano-biotechnology applications are discussed with focus on practical gas sensing and optical sensing, on the one hand, and on the toxicity issue of GO, on the other hand. Synthesis and post-synthesis treatments are also discussed, these latter with emphasis on lithography.

  10. Fundamental differences between SPH and grid methods

    NASA Astrophysics Data System (ADS)

    Agertz, Oscar; Moore, Ben; Stadel, Joachim; Potter, Doug; Miniati, Francesco; Read, Justin; Mayer, Lucio; Gawryszczak, Artur; Kravtsov, Andrey; Nordlund, Åke; Pearce, Frazer; Quilis, Vicent; Rudd, Douglas; Springel, Volker; Stone, James; Tasker, Elizabeth; Teyssier, Romain; Wadsley, James; Walder, Rolf

    2007-09-01

    We have carried out a comparison study of hydrodynamical codes by investigating their performance in modelling interacting multiphase fluids. The two commonly used techniques of grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to model processes that are fundamentally important across many areas of astrophysics. Whilst Eulerian grid based methods are able to resolve and treat important dynamical instabilities, such as Kelvin-Helmholtz or Rayleigh-Taylor, these processes are poorly or not at all resolved by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard implementation, introduces spurious pressure forces on particles in regions where there are steep density gradients. This results in a boundary gap of the size of an SPH smoothing kernel radius over which interactions are severely damped.

  11. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  12. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  13. Fundamental Limits to Nonlinear Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2015-12-01

    Linear and nonlinear vibration energy harvesting has been the focus of considerable research in recent years. However, fundamental limits on the harvestable energy of a harvester subjected to an arbitrary excitation force and different constraints is not yet fully understood. Understanding these limits is not only essential for an assessment of the technology potential, but it also provides a broader perspective on the current harvesting mechanisms and guidance in their improvement. Here, we derive the fundamental limits on the output power of an ideal energy harvester for arbitrary excitation waveforms and build on the current analysis framework for the simple computation of this limit for more sophisticated setups. We show that the optimal harvester maximizes the harvested energy through a mechanical analog of a buy-low-sell-high strategy. We also propose a nonresonant passive latch-assisted harvester to realize this strategy for an effective harvesting. It is shown that the proposed harvester harvests energy more effectively than its linear and bistable counterparts over a wider range of excitation frequencies and amplitudes. The buy-low-sell-high strategy also reveals why the conventional bistable harvester works well at low-frequency excitation.

  14. Environmental Law: Fundamentals for Schools.

    ERIC Educational Resources Information Center

    Day, David R.

    This booklet outlines the environmental problems most likely to arise in schools. An overview provides a fundamental analysis of environmental issues rather than comprehensive analysis and advice. The text examines the concerns that surround superfund cleanups, focusing on the legal framework, and furnishes some practical pointers, such as what to…

  15. Fundamental Cycles of Cognitive Growth.

    ERIC Educational Resources Information Center

    Pegg, John

    Over recent years, various theories have arisen to explain and predict cognitive development in mathematics education. We focus on an underlying theme that recurs throughout such theories: a fundamental cycle of growth in the learning of specific concepts, which we frame within broader global theories of individual cognitive growth. Our purpose is…

  16. Fundamentals of the Slide Library.

    ERIC Educational Resources Information Center

    Boerner, Susan Zee

    This paper is an introduction to the fundamentals of the art (including architecture) slide library, with some emphasis on basic procedures of the science slide library. Information in this paper is particularly relevant to the college, university, and museum slide library. Topics addressed include: (1) history of the slide library; (2) duties of…

  17. Fundamentals of Environmental Education. Report.

    ERIC Educational Resources Information Center

    1976

    An outline of fundamental definitions, relationships, and human responsibilities related to environment provides a basis from which a variety of materials, programs, and activities can be developed. The outline can be used in elementary, secondary, higher education, or adult education programs. The framework is based on principles of the science…

  18. Lighting Fundamentals. Monograph Number 13.

    ERIC Educational Resources Information Center

    Locatis, Craig N.; Gerlach, Vernon S.

    Using an accompanying, specified film that consists of 10-second pictures separated by blanks, the learner can, with the 203-step, self-correcting questions and answers provided in this program, come to understand the fundamentals of lighting in photography. The learner should, by the end of the program, be able to describe and identify the…

  19. Fundamentals of Microelectronics Processing (VLSI).

    ERIC Educational Resources Information Center

    Takoudis, Christos G.

    1987-01-01

    Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)

  20. Brake Fundamentals. Automotive Articulation Project.

    ERIC Educational Resources Information Center

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  1. Museum Techniques in Fundamental Education.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    Some museum techniques and methods can be used in fundamental educational programs without elaborate buildings or equipment; exhibitions should be based on valid presumptions and should take into account the "common sense" beliefs of people for whom the exhibit is designed. They can be used profitably in the economic development of local cultural…

  2. Fundamentals of Welding. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  3. Status of Fundamental Physics Program

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.

    2003-01-01

    Update of the Fundamental Physics Program. JEM/EF Slip. 2 years delay. Reduced budget. Community support and advocacy led by Professor Nick Bigelow. Reprogramming led by Fred O Callaghan/JPL team. LTMPF M1 mission (DYNAMX and SUMO). PARCS. Carrier re baselined on JEM/EF.

  4. Light as a Fundamental Particle

    ERIC Educational Resources Information Center

    Weinberg, Steven

    1975-01-01

    Presents two arguments concerning the role of the photon. One states that the photon is just another particle distinguished by a particular value of charge, spin, mass, lifetime, and interaction properties. The second states that the photon plays a fundamental role with a deep relation to ultimate formulas of physics. (GS)

  5. Big Bang nucleosynthesis as a probe of varying fundamental ``constants''

    NASA Astrophysics Data System (ADS)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2007-11-01

    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference, of the nucleon mass and of A = 3,4,7 binding energies. A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.

  6. Primordial nucleosynthesis as a probe of fundamental physics parameters

    NASA Astrophysics Data System (ADS)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2007-09-01

    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the He4 abundance), of the nucleon mass (for deuterium), and of A=3, 4, 7 binding energies (for He3, Li6, and Li7). A second step relates the nuclear parameters to the parameters of the standard model of particle physics. The deuterium, and, above all, Li7 abundances depend strongly on the average light quark mass m^≡(mu+md)/2. We calculate the behavior of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and He4 abundances are only weakly affected.

  7. Fundamental neutron physics at LANSCE

    SciTech Connect

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  8. Force generation by cellular motors.

    PubMed

    Wanka, Friedrich; Van Zoelen, Everardus J J

    2003-01-01

    Cell motility processes in non-muscle cells depend on the activity of motor proteins that bind to either microtubules or actin filaments. From presently available data it must be concluded that the driving force is generated by transient interaction of the respective motors with microtubules or actin filaments which then activates the binding and hydrolysis of ATP. This reaction results in an abrupt discharge of the motor molecule, the direction of which is determined by the spatial orientation of its binding to the helical and polar vehicle. The latter is thereby propelled in its length direction and simultaneously undergoes an axial rotation, while the expelled motor exerts an oppositely directed current in the surrounding fluid, comparable to jet propulsion. Force production, propulsion velocities and energy requirements known from in vitro studies comply with those derived from the theory. The theory opens new ways for the understanding of cellular activities such as particle transport, mitosis and morphodynamics. PMID:14668925

  9. Fundamentals of gas measurement I

    SciTech Connect

    Dodds, D.E.

    1995-12-01

    To truly understand gas measurement, a person must understand gas measurement fundamentals. This includes the units of measurement, the behavior of the gas molecule, the property of gases, the gas laws, and the methods and means of measuring gas. Since the quality of gas is often the responsibility of the gas measurement technician, it is important that he or she have a knowledge of natural gas chemistry.

  10. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  11. Fundamental molecular differences between alcohol dehydrogenase classes.

    PubMed Central

    Danielsson, O; Atrian, S; Luque, T; Hjelmqvist, L; Gonzàlez-Duarte, R; Jörnvall, H

    1994-01-01

    Two types of alcohol dehydrogenase in separate protein families are the "medium-chain" zinc enzymes (including the classical liver and yeast forms) and the "short-chain" enzymes (including the insect form). Although the medium-chain family has been characterized in prokaryotes and many eukaryotes (fungi, plants, cephalopods, and vertebrates), insects have seemed to possess only the short-chain enzyme. We have now also characterized a medium-chain alcohol dehydrogenase in Drosophila. The enzyme is identical to insect octanol dehydrogenase. It is a typical class III alcohol dehydrogenase, similar to the corresponding human form (70% residue identity), with mostly the same residues involved in substrate and coenzyme interactions. Changes that do occur are conservative, but Phe-51 is of functional interest in relation to decreased coenzyme binding and increased overall activity. Extra residues versus the human enzyme near position 250 affect the coenzyme-binding domain. Enzymatic properties are similar--i.e., very low activity toward ethanol (Km beyond measurement) and high selectivity for formaldehyde/glutathione (S-hydroxymethylglutathione; kcat/Km = 160,000 min-1.mM-1). Between the present class III and the ethanol-active class I enzymes, however, patterns of variability differ greatly, highlighting fundamentally separate molecular properties of these two alcohol dehydrogenases, with class III resembling enzymes in general and class I showing high variation. The gene coding for the Drosophila class III enzyme produces an mRNA of about 1.36 kb that is present at all developmental stages of the fly, compatible with the constitutive nature of the vertebrate enzyme. Taken together, the results bridge a previously apparent gap in the distribution of medium-chain alcohol dehydrogenases and establish a strictly conserved class III enzyme, consistent with an important role for this enzyme in cellular metabolism. Images PMID:8197167

  12. An entropic understanding of Coulomb force

    NASA Astrophysics Data System (ADS)

    Cho, Jin-Ho; Kim, Hyosung

    2012-02-01

    Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.

  13. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  14. Solid Lubrication Fundamentals and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Solid Lubrication Fundamentals and Applications description of the adhesion, friction, abrasion, and wear behavior of solid film lubricants and related tribological materials, including diamond and diamond-like solid films. The book details the properties of solid surfaces, clean surfaces, and contaminated surfaces as well as discussing the structures and mechanical properties of natural and synthetic diamonds; chemical-vapor-deposited diamond film; surface design and engineering toward wear-resistant, self-lubricating diamond films and coatings. The author provides selection and design criteria as well as applications for synthetic and natural coatings in the commercial, industrial and aerospace industries..

  15. Reconstruction of fundamental SUSY parameters

    SciTech Connect

    P. M. Zerwas et al.

    2003-09-25

    We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e{sup +}e{sup -} linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.

  16. Involvement of the 5-HT(1A) receptor in the anti-immobility effects of fluvoxamine in the forced swimming test and mouse strain differences in 5-HT(1A) receptor binding.

    PubMed

    Sugimoto, Yumi; Furutani, Sachiko; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2010-03-10

    We previously demonstrated the presence of strain differences in baseline immobility time and sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in five strains of mice (ICR, ddY, C57BL, DBA/2 and BALB/c mice). Furthermore, variations in serotonin (5-HT) transporter binding in the brain were strongly related to strain differences in baseline immobility and sensitivity to fluvoxamine. In the present study, we examined the involvement of the 5-HT(1A) receptor in anti-immobility effects in DBA/2 mice, which show high sensitivity to fluvoxamine. The anti-immobility effects of fluvoxamine in DBA/2 mice were inhibited by the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635). However, the 5-HT(1B) receptor antagonist 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide (GR55562), the 5-HT(2) receptor antagonist 6-methyl-1-(methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY 53857), the 5-HT(3) receptor antagonist ondansetron and the 5-HT(4) receptor antagonist 4-amino-5-chloro-2-methoxy-benzoic acid 2-(diethylamino)ethyl ester (SDZ 205,557) did not influence the anti-immobility effects of fluvoxamine in DBA/2 mice. These results suggest that fluvoxamine-induced antidepressant-like effects in DBA/2 mice are mediated by the 5-HT(1A) receptor. We analyzed 5-HT(1A) receptor binding in the brains of five strains of mice. Strain differences in 5-HT(1A) receptor binding were observed. 5-HT(1A) receptor binding in brain was not correlated with baseline immobility time in the five strains of mice examined. These results suggest that, although the anti-immobility effects of fluvoxamine in DBA/2 mice are mediated by the 5-HT(1A) receptor, strain differences in 5-HT(1A) receptor binding are not related to variation in immobility time and responses to fluvoxamine. PMID:19958758

  17. Fundamental tribological properties of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.

  18. Fundamentals of small animal orthodontics.

    PubMed

    Surgeon, Thoulton W

    2005-07-01

    The basic principles and concepts that govern the discipline of orthodontics are explored. The movement of teeth is mediated primarily through the periodontal ligament. When the periodontal ligament is stretched, bone apposition occurs. Conversely, in areas of compression, bone resorption occurs. The subject tooth moves in the direction of the force. The orthodontist must be cognizant of the prevailing ethical guidelines and the functional needs of the patient. PMID:15979517

  19. From self-assembly fundamental knowledge to nanomedicine developments.

    PubMed

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food

  20. Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation

    NASA Astrophysics Data System (ADS)

    Miyahara, Yoichi; Topple, Jessica; Schumacher, Zeno; Grutter, Peter

    2015-11-01

    We report an experimental technique for Kelvin probe force microscopy using the dissipation signal of frequency-modulation atomic force microscopy for bias-voltage feedback. It features a simple implementation and faster scanning as it requires no low-frequency modulation. The dissipation is caused by the oscillating electrostatic force that is coherent with the tip oscillation, which is induced by a sinusoidally oscillating voltage applied between the tip and sample. We analyze the effect of the phase of the oscillating force on the frequency shift and dissipation and found that the relative phase of 90° that causes only the dissipation is the most appropriate for Kelvin-probe-force-microscopy measurements. The present technique requires a significantly smaller ac-voltage amplitude by virtue of enhanced force detection due to the resonance enhancement and the use of fundamental flexural-mode oscillation for electrostatic force detection. This feature will be of great importance in the electrical characterizations of technically relevant materials whose electrical properties are influenced by the externally applied electric field as is the case in semiconductor electronic devices.

  1. Astronomical reach of fundamental physics.

    PubMed

    Burrows, Adam S; Ostriker, Jeremiah P

    2014-02-18

    Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections between the small and the large in the cosmos we inhabit. We focus on the minimum and maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate realms of the universe and the amazing consequences of the unifying character of physical law. PMID:24477692

  2. Fundamental base closure environmental principles

    SciTech Connect

    Yim, R.A.

    1994-12-31

    Military base closures present a paradox. The rate, scale and timing of military base closures is historically unique. However, each base itself typically does not present unique problems. Thus, the challenge is to design innovative solutions to base redevelopment and remediation issues, while simultaneously adopting common, streamlined or pre-approved strategies to shared problems. The author presents six environmental principles that are fundamental to base closure. They are: remediation not clean up; remediation will impact reuse; reuse will impact remediation; remediation and reuse must be coordinated; environmental contamination must be evaluated as any other initial physical constraint on development, not as an overlay after plans are created; and remediation will impact development, financing and marketability.

  3. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  4. Understand vacuum-system fundamentals

    SciTech Connect

    Martin, G.R. ); Lines, J.R. ); Golden, S.W. )

    1994-10-01

    Crude vacuum unit heavy vacuum gas-oil (HVGO) yield is significantly impacted by ejector-system performance, especially at conditions below 20 mmHg absolute pressure. A deepcut vacuum unit, to reliably meet the yields, calls for proper design of all the major pieces of equipment. Ejector-system performance at deepcut vacuum column pressures may be independently or concurrently affected by: atmospheric column overflash, stripper performance or cutpoint; vacuum column top temperature and heat balance; light vacuum gas-oil (LVGO) pumparound entrainment to the ejector system; cooling-water temperature; motive steam pressure; non-condensible loading, either air leakage or cracked light-end hydrocarbons; condensible hydrocarbons; intercondenser or aftercondenser fouling ejector internal erosion or product build-up; and system vent back pressure. The paper discusses gas-oil yields; ejector-system fundamentals; condensers; vacuum-system troubleshooting; process operations; and a case study of deepcut operations.

  5. Fundamental reaction pathways during coprocessing

    SciTech Connect

    Stock, L.M.; Gatsis, J.G.

    1992-12-01

    The objective of this research was to investigate the fundamental reaction pathways in coal petroleum residuum coprocessing. Once the reaction pathways are defined, further efforts can be directed at improving those aspects of the chemistry of coprocessing that are responsible for the desired results such as high oil yields, low dihydrogen consumption, and mild reaction conditions. We decided to carry out this investigation by looking at four basic aspects of coprocessing: (1) the effect of fossil fuel materials on promoting reactions essential to coprocessing such as hydrogen atom transfer, carbon-carbon bond scission, and hydrodemethylation; (2) the effect of varied mild conditions on the coprocessing reactions; (3) determination of dihydrogen uptake and utilization under severe conditions as a function of the coal or petroleum residuum employed; and (4) the effect of varied dihydrogen pressure, temperature, and residence time on the uptake and utilization of dihydrogen and on the distribution of the coprocessed products. Accomplishments are described.

  6. Astronomical reach of fundamental physics

    PubMed Central

    Burrows, Adam S.; Ostriker, Jeremiah P.

    2014-01-01

    Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections between the small and the large in the cosmos we inhabit. We focus on the minimum and maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate realms of the universe and the amazing consequences of the unifying character of physical law. PMID:24477692

  7. [INFORMATION, A FUNDAMENTAL PATIENT RIGHT?].

    PubMed

    Mémeteau, Gérard

    2015-03-01

    Although expressed before the "Lambert" case, which has led us to think about refusal and assent in the context of internal rights, conventional rights--and in the context of the patient's bed!--these simple remarks present the patient's right to medical information as a so-called fundamental right. But it can only be understood with a view to a treatment or other medical act; otherwise it has no reason to be and is only an academic exercise, however exciting, but not much use by itself. What if we reversed the terms of the problem: the right of the doctor to information? (The beautiful thesis of Ph. Gaston, Paris 8, 2 December 2014). PMID:26606765

  8. Fundamental Travel Demand Model Example

    NASA Technical Reports Server (NTRS)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  9. Holographic viscosity of fundamental matter.

    PubMed

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-03-01

    A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavors Nf or =1/4pi. Given the known results for the entropy density, the contribution of the fundamental matter eta fund is therefore enhanced at strong 't Hooft coupling lambda; for example, eta fund approximately lambda NcNfT3 in four dimensions. Other transport coefficients are analogously enhanced. These results hold with or without a baryon number chemical potential. PMID:17358523

  10. Cognition is … Fundamentally Cultural

    PubMed Central

    Bender, Andrea; Beller, Sieghard

    2013-01-01

    A prevailing concept of cognition in psychology is inspired by the computer metaphor. Its focus on mental states that are generated and altered by information input, processing, storage and transmission invites a disregard for the cultural dimension of cognition, based on three (implicit) assumptions: cognition is internal, processing can be distinguished from content, and processing is independent of cultural background. Arguing against each of these assumptions, we point out how culture may affect cognitive processes in various ways, drawing on instances from numerical cognition, ethnobiological reasoning, and theory of mind. Given the pervasive cultural modulation of cognition—on all of Marr’s levels of description—we conclude that cognition is indeed fundamentally cultural, and that consideration of its cultural dimension is essential for a comprehensive understanding. PMID:25379225

  11. Fundamental enabling issues in nanotechnology :

    SciTech Connect

    Floro, Jerrold Anthony; Foiles, Stephen Martin; Hearne, Sean Joseph; Hoyt, Jeffrey John; Seel, Steven Craig; Webb, Edmund Blackburn,; Morales, Alfredo Martin; Zimmerman, Jonathan A.

    2007-10-01

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in

  12. Rare Isotopes and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex; Engel, Jonathan; Haxton, Wick; Ramsey-Musolf, Michael; Romalis, Michael; Savard, Guy

    2009-01-01

    Experiments searching for new interactions in nuclear beta decay / Klaus P. Jungmann -- The beta-neutrino correlation in sodium-21 and other nuclei / P. A. Vetter ... [et al.] -- Nuclear structure and fundamental symmetries/ B. Alex Brown -- Schiff moments and nuclear structure / J. Engel -- Superallowed nuclear beta decay: recent results and their impact on V[symbol] / J. C. Hardy and I. S. Towner -- New calculation of the isospin-symmetry breaking correlation to superallowed Fermi beta decay / I. S. Towner and J. C. Hardy -- Precise measurement of the [symbol]H to [symbol]He mass difference / D. E. Pinegar ... [et al.] -- Limits on scalar currents from the 0+ to 0+ decay of [symbol]Ar and isospin breaking in [symbol]Cl and [symbol]Cl / A. Garcia -- Nuclear constraints on the weak nucleon-nucleon interaction / W. C. Haxton -- Atomic PNC theory: current status and future prospects / M. S. Safronova -- Parity-violating nucleon-nucleon interactions: what can we learn from nuclear anapole moments? / B. Desplanques -- Proposed experiment for the measurement of the anapole moment in francium / A. Perez Galvan ... [et al.] -- The Radon-EDM experiment / Tim Chupp for the Radon-EDM collaboration -- The lead radius Eexperiment (PREX) and parity violating measurements of neutron densities / C. J. Horowitz -- Nuclear structure aspects of Schiff moment and search for collective enhancements / Naftali Auerbach and Vladimir Zelevinsky -- The interpretation of atomic electric dipole moments: Schiff theorem and its corrections / C. -P. Liu -- T-violation and the search for a permanent electric dipole moment of the mercury atom / M. D. Swallows ... [et al.] -- The new concept for FRIB and its potential for fundamental interactions studies / Guy Savard -- Collinear laser spectroscopy and polarized exotic nuclei at NSCL / K. Minamisono -- Environmental dependence of masses and coupling constants / M. Pospelov.

  13. Was Fundamental Education Another Form Of Colonialism?

    NASA Astrophysics Data System (ADS)

    Watras, Joseph

    2007-01-01

    A description of the work of Pedro Tamesis Orata provides an opportunity to investigate the conflicts that can occur when educators seek to reduce poverty while trying to respect indigenous cultures. A native of the Philippines, Orata completed his doctoral studies at the Ohio State University in 1927. During US President Franklin Roosevelt's New Deal, he accepted the position of school principal for the US Bureau of Indian Affairs. After World War II, he directed the spread of fundamental education through the United Nations Educational, Scientific and Cultural Organization (UNESCO). In his final years, he returned to the Philippines where he began a movement to spread what were called self-help high schools. In these activities, Orata taught people to follow John Dewey's five steps of thinking while working to improve their standards of living. In the 1970s, educators, such as Paulo Freire, complained that problem-solving methods, similar to those Orata favored, reinforced the oppressive aspects of formerly colonial societies. While Freire may have been overly critical, conflicts among cultural orientations appear to be unavoidable. The hope behind this investigation is that the difficulties can be reduced when people understand the different forces that persist.

  14. Bacterial adhesion force quantification by fluidic force microscopy

    NASA Astrophysics Data System (ADS)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  15. Differential force balances during levitation

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  16. Energy profile of nanobody-GFP complex under force

    NASA Astrophysics Data System (ADS)

    Klamecka, Kamila; Severin, Philip M.; Milles, Lukas F.; Gaub, Hermann E.; Leonhardt, Heinrich

    2015-10-01

    Nanobodies (Nbs)—the smallest known fully functional and naturally occuring antigen-binding fragments—have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that—despite identical epitopes—the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  17. Fundamentals and Techniques of Nonimaging

    SciTech Connect

    O'Gallagher, J. J.; Winston, R.

    2003-07-10

    This is the final report describing a long term basic research program in nonimaging optics that has led to major advances in important areas, including solar energy, fiber optics, illumination techniques, light detectors, and a great many other applications. The term ''nonimaging optics'' refers to the optics of extended sources in systems for which image forming is not important, but effective and efficient collection, concentration, transport, and distribution of light energy is. Although some of the most widely known developments of the early concepts have been in the field of solar energy, a broad variety of other uses have emerged. Most important, under the auspices of this program in fundamental research in nonimaging optics established at the University of Chicago with support from the Office of Basic Energy Sciences at the Department of Energy, the field has become very dynamic, with new ideas and concepts continuing to develop, while applications of the early concepts continue to be pursued. While the subject began as part of classical geometrical optics, it has been extended subsequently to the wave optics domain. Particularly relevant to potential new research directions are recent developments in the formalism of statistical and wave optics, which may be important in understanding energy transport on the nanoscale. Nonimaging optics permits the design of optical systems that achieve the maximum possible concentration allowed by physical conservation laws. The earliest designs were constructed by optimizing the collection of the extreme rays from a source to the desired target: the so-called ''edge-ray'' principle. Later, new concentrator types were generated by placing reflectors along the flow lines of the ''vector flux'' emanating from lambertian emitters in various geometries. A few years ago, a new development occurred with the discovery that making the design edge-ray a functional of some other system parameter permits the construction of whole

  18. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  19. Canonical Force Distributions in Pairwise Interatomic Interactions from the Perspective of the Hellmann-Feynman Theorem.

    PubMed

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2016-05-26

    Force-based canonical approaches have recently given a unified but different viewpoint on the nature of bonding in pairwise interatomic interactions. Differing molecular categories (covalent, ionic, van der Waals, hydrogen, and halogen bonding) of representative interatomic interactions with binding energies ranging from 1.01 to 1072.03 kJ/mol have been modeled canonically giving a rigorous semiempirical verification to high accuracy. However, the fundamental physical basis expected to provide the inherent characteristics of these canonical transformations has not yet been elucidated. Subsequently, it was shown through direct numerical differentiation of these potentials that their associated force curves have canonical shapes. However, this approach to analyzing force results in inherent loss of accuracy coming from numerical differentiation of the potentials. We now show that this serious obstruction can be avoided by directly demonstrating the canonical nature of force distributions from the perspective of the Hellmann-Feynman theorem. This requires only differentiation of explicitly known Coulombic potentials, and we discuss how this approach to canonical forces can be used to further explain the nature of chemical bonding in pairwise interatomic interactions. All parameter values used in the canonical transformation are determined through explicit physical based algorithms, and it does not require direct consideration of electron correlation effects. PMID:27143175

  20. Fundamental principles of robot vision

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.

    1993-08-01

    Robot vision is a specialty of intelligent machines which describes the interaction between robotic manipulators and machine vision. Early robot vision systems were built to demonstrate that a robot with vision could adapt to changes in its environment. More recently attention is being directed toward machines with expanded adaptation and learning capabilities. The use of robot vision for automatic inspection and recognition of objects for manipulation by an industrial robot or for guidance of a mobile robot are two primary applications. Adaptation and learning characteristics are often lacking in industrial automation and if they can be added successfully, result in a more robust system. Due to a real time requirement, the robot vision methods that have proven most successful have been ones which could be reduced to a simple, fast computation. The purpose of this paper is to discuss some of the fundamental concepts in sufficient detail to provide a starting point for the interested engineer or scientist. A detailed example of a camera system viewing an object and for a simple, two dimensional robot vision system is presented. Finally, conclusions and recommendations for further study are presented.

  1. Gas cell neutralizers (Fundamental principles)

    SciTech Connect

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''.

  2. Fundamental studies of fusion plasmas

    SciTech Connect

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1992-05-26

    The major portion of this program is devoted to critical ICH phenomena. The topics include edge physics, fast wave propagation, ICH induced high frequency instabilities, and a preliminary antenna design for Ignitor. This research was strongly coordinated with the world's experimental and design teams at JET, Culham, ORNL, and Ignitor. The results have been widely publicized at both general scientific meetings and topical workshops including the speciality workshop on ICRF design and physics sponsored by Lodestar in April 1992. The combination of theory, empirical modeling, and engineering design in this program makes this research particularly important for the design of future devices and for the understanding and performance projections of present tokamak devices. Additionally, the development of a diagnostic of runaway electrons on TEXT has proven particularly useful for the fundamental understanding of energetic electron confinement. This work has led to a better quantitative basis for quasilinear theory and the role of magnetic vs. electrostatic field fluctuations on electron transport. An APS invited talk was given on this subject and collaboration with PPPL personnel was also initiated. Ongoing research on these topics will continue for the remainder fo the contract period and the strong collaborations are expected to continue, enhancing both the relevance of the work and its immediate impact on areas needing critical understanding.

  3. Technological fundamentals of endoscopic haemostasis.

    PubMed

    Reidenbach, H D

    1992-01-01

    In order to perform endoscopic haemostasis there exist several different mechanical, biochemical and thermal methods, which may be applied together with rigid or fully flexible endoscopes in different situations. The technological fundamentals of convective, conductive and radiative heat transfer, the irradiation with coherent electromagnetic waves like microwaves and laser radiation and the resistive heating by RF-current are described. A review of the state of the art of haemostatic coagulation by laser radiation (photocoagulation) and radio-frequency currents (surgical diathermy, high-frequency coagulation) is given. The wavelength-dependent interactions of coherent light waves are compared especially for the three mainly different laser types, i.e., carbon-dioxide-, neodymium-YAG- and argon-ion-laser. The well-known disadvantages of the conventional RF-coagulation are overcome by the so-called electrohydrothermosation (EHT), i.e. the liquid-assisted application of resistive heating of biological tissues to perform haemostasis. Different technological solutions for bipolar RF-coagulation probes including ball-tips and forceps are shown and the first experimental results are discussed in comparison. PMID:1595405

  4. Review of receptor model fundamentals

    NASA Astrophysics Data System (ADS)

    Henry, Ronald C.; Lewis, Charles W.; Hopke, Philip K.; Williamson, Hugh J.

    There are several broad classes of mathematical models used to apportion the aerosol measured at a receptor site to its likely sources. This paper surveys the two types applied in exercises for the Mathematical and Empirical Receptor Models Workshop (Quail Roost II): chemical mass balance models and multivariate models. The fundamental principles of each are reviewed. Also considered are the specific models available within each class. These include: tracer element, linear programming, ordinary linear least-squares, effective variance least-squares and ridge regression (all solutions to the chemical mass balance equation), and factor analysis, target transformation factor analysis, multiple linear regression and extended Q-mode factor analysis (all multivariate models). In practical application of chemical mass balance models, a frequent problem is the presence of two or more emission sources whose signatures are very similar. Several techniques to reduce the effects of such multicollinearity are discussed. The propagation of errors for source contribution estimates, another practical concern, also is given special attention.

  5. Do goldfish miss the fundamental?

    NASA Astrophysics Data System (ADS)

    Fay, Richard R.

    2003-10-01

    The perception of harmonic complexes was studied in goldfish using classical respiratory conditioning and a stimulus generalization paradigm. Groups of animals were initially conditioned to several harmonic complexes with a fundamental frequency (f0) of 100 Hz. ln some cases the f0 component was present, and in other cases, the f0 component was absent. After conditioning, animals were tested for generalization to novel harmonic complexes having different f0's, some with f0 present and some with f0 absent. Generalization gradients always peaked at 100 Hz, indicating that the pitch value of the conditioning complexes was consistent with the f0, whether or not f0 was present in the conditioning or test complexes. Thus, goldfish do not miss the fundmental with respect to a pitch-like perceptual dimension. However, generalization gradients tended to have different skirt slopes for the f0-present and f0-absent conditioning and test stimuli. This suggests that goldfish distinguish between f0 present/absent stimuli, probably on the basis of a timbre-like perceptual dimension. These and other results demonstrate that goldfish respond to complex sounds as if they possessed perceptual dimensions similar to pitch and timbre as defined for human and other vertebrate listeners. [Work supported by NIH/NIDCD.

  6. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    PubMed Central

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Results Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. Conclusions This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding

  7. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    NASA Astrophysics Data System (ADS)

    Whitaker, A.

    2004-02-01

    mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition

  8. Representation of Ion–Protein Interactions Using the Drude Polarizable Force-Field

    PubMed Central

    2016-01-01

    Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophistication can contribute to a deeper understanding of these systems, although computational models must strike a balance between accuracy and efficiency in order to enable long molecular dynamics simulations. In this study, we present a systematic effort to optimize the parameters of a polarizable force field based on classical Drude oscillators to accurately represent the interactions between ions (K+, Na+, Ca2+, and Cl–) and coordinating amino-acid residues for a set of 30 biologically important proteins. By combining ab initio calculations and experimental thermodynamic data, we derive a polarizable force field that is consistent with a wide range of properties, including the geometries and interaction energies of gas-phase ion/protein-like model compound clusters, and the experimental solvation free-energies of the cations in liquids. The resulting models display significant improvements relative to the fixed-atomic-charge additive CHARMM C36 force field, particularly in their ability to reproduce the many-body electrostatic nonadditivity effects estimated from ab initio calculations. The analysis clarifies the fundamental limitations of the pairwise additivity assumption inherent in classical fixed-charge force fields, and shows its dramatic failures in the case of Ca2+ binding sites. These optimized polarizable models, amenable to computationally efficient large-scale MD simulations, set a firm foundation and offer a powerful avenue to study the roles of the ions in soluble and membrane transport proteins. PMID:25578354

  9. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field.

    PubMed

    Li, Hui; Ngo, Van; Da Silva, Mauricio Chagas; Salahub, Dennis R; Callahan, Karen; Roux, Benoît; Noskov, Sergei Yu

    2015-07-23

    Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophistication can contribute to a deeper understanding of these systems, although computational models must strike a balance between accuracy and efficiency in order to enable long molecular dynamics simulations. In this study, we present a systematic effort to optimize the parameters of a polarizable force field based on classical Drude oscillators to accurately represent the interactions between ions (K(+), Na(+), Ca(2+), and Cl(-)) and coordinating amino-acid residues for a set of 30 biologically important proteins. By combining ab initio calculations and experimental thermodynamic data, we derive a polarizable force field that is consistent with a wide range of properties, including the geometries and interaction energies of gas-phase ion/protein-like model compound clusters, and the experimental solvation free-energies of the cations in liquids. The resulting models display significant improvements relative to the fixed-atomic-charge additive CHARMM C36 force field, particularly in their ability to reproduce the many-body electrostatic nonadditivity effects estimated from ab initio calculations. The analysis clarifies the fundamental limitations of the pairwise additivity assumption inherent in classical fixed-charge force fields, and shows its dramatic failures in the case of Ca(2+) binding sites. These optimized polarizable models, amenable to computationally efficient large-scale MD simulations, set a firm foundation and offer a powerful avenue to study the roles of the ions in soluble and membrane transport proteins. PMID:25578354

  10. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training.

    PubMed

    Gibo, Tricia L; Bastian, Amy J; Okamura, Allison M

    2014-03-01

    When grasping and manipulating objects, people are able to efficiently modulate their grip force according to the experienced load force. Effective grip force control involves providing enough grip force to prevent the object from slipping, while avoiding excessive force to avoid damage and fatigue. During indirect object manipulation via teleoperation systems or in virtual environments, users often receive limited somatosensory feedback about objects with which they interact. This study examines the effects of force feedback, accuracy demands, and training on grip force control during object interaction in a virtual environment. The task required subjects to grasp and move a virtual object while tracking a target. When force feedback was not provided, subjects failed to couple grip and load force, a capability fundamental to direct object interaction. Subjects also exerted larger grip force without force feedback and when accuracy demands of the tracking task were high. In addition, the presence or absence of force feedback during training affected subsequent performance, even when the feedback condition was switched. Subjects' grip force control remained reminiscent of their employed grip during the initial training. These results motivate the use of force feedback during telemanipulation and highlight the effect of force feedback during training. PMID:24845744

  11. Fundamental Mechanisms of Interface Roughness

    SciTech Connect

    Randall L. Headrick

    2009-01-06

    Publication quality results were obtained for several experiments and materials systems including: (i) Patterning and smoothening of sapphire surfaces by energetic Ar+ ions. Grazing Incidence Small Angle X-ray Scattering (GISAXS) experiments were performed in the system at the National Synchrotron Light Source (NSLS) X21 beamline. Ar+ ions in the energy range from 300 eV to 1000 eV were used to produce ripples on the surfaces of single-crystal sapphire. It was found that the ripple wavelength varies strongly with the angle of incidence of the ions, which increase significantly as the angle from normal is varied from 55° to 35°. A smooth region was found for ion incidence less than 35° away from normal incidence. In this region a strong smoothening mechanism with strength proportional to the second derivative of the height of the surface was found to be responsible for the effect. The discovery of this phase transition between stable and unstable regimes as the angle of incidence is varied has also stimulated new work by other groups in the field. (ii) Growth of Ge quantum dots on Si(100) and (111). We discovered the formation of quantum wires on 4° misoriented Si(111) using real-time GISAXS during the deposition of Ge. The results represent the first time-resolved GISAXS study of Ge quantum dot formation. (iii) Sputter deposition of amorphous thin films and multilayers composed of WSi2 and Si. Our in-situ GISAXS experiments reveal fundamental roughening and smoothing phenomena on surfaces during film deposition. The main results of this work is that the WSi2 layers actually become smoother during deposition due to the smoothening effect of energetic particles in the sputter deposition process.

  12. Loss of Desmoglein Binding Is Not Sufficient for Keratinocyte Dissociation in Pemphigus.

    PubMed

    Vielmuth, Franziska; Waschke, Jens; Spindler, Volker

    2015-12-01

    Pemphigus vulgaris (PV) is a severe autoimmune disease in which autoantibodies against the desmosomal cell adhesion molecules desmoglein (Dsg) 1 and Dsg3 cause intraepidermal blister formation. Mechanistically, the fundamental question is still unresolved whether loss of cell cohesion is a result of (1) direct inhibition of Dsg interaction by autoantibodies or (2) intracellular signaling events, which are altered in response to antibody binding and finally cause desmosome destabilization. We used atomic force microscopy (AFM) to perform Dsg3 adhesion measurements on living keratinocytes to investigate the contributions of direct inhibition and signaling to loss of cell cohesion after autoantibody treatment. Dsg3 binding was rapidly blocked following antibody exposure under conditions where no depletion of surface Dsg3 was detectable, demonstrating direct inhibition of Dsg3 interaction. Inhibition of p38MAPK, a central signaling molecule in PV pathogenesis, abrogated loss of cell cohesion, but had a minor effect on loss of Dsg3 binding. Similarly, the cholesterol-depleting agent methyl-β-cyclodextrin (β-MCD) fully blocked cell dissociation, but did not restore Dsg3 interactions or prevent the activation of p38MAPK. These results demonstrate that inhibition of Dsg3 binding is not sufficient to cause loss of cell cohesion, but rather alters signaling events which, in lipid raft-dependent manner, induce cell dissociation. PMID:26288352

  13. Synergetic binding and lateral segregation in polymer decorated micelles and nanoparticles

    NASA Astrophysics Data System (ADS)

    Szleifer, Igal; Nap, Rikkert

    2009-03-01

    Nanocarriers show great potential as drug delivery devices or as imaging agents. Experimental relevant examples of nanocarriers involve micelles made of low molecular weight polyethylene glycol and phospholipids. An important feature of these 'nano' micelles is that the polymers are mobile. A fundamental question is how different polymeric coatings result in optimal nanoparticle-surface interactions. We used a molecular theory to investigate the effect of the conformational entropy, specific interactions and lateral mobility on the structure of the polymer coatings and the binding of the nanocarrier to a cell surface. In micelles that contain chains of different molecular weights, the long and short polymer chains segregate upon approaching the surface, as a result of competing entropic forces. Nanocarriers made of mixtures of weak polyelectrolytes with ligands at their free ends and neutral polymers can bind to charged surfaces or through specific ligand-receptor interactions. We show that under appropriate conditions there is a dramatic synergetic effect between electrostatic and ligand-receptor binding. The synergetic effect is due to the optimal compensation between charge regulation, specific binding and counterion release. The potential use of these carriers for cancer drug delivery will be discussed.

  14. Exotic nuclei and nuclear forces

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2013-01-01

    I overview new aspects of the structure of exotic nuclei as compared to stable nuclei, focusing on several characteristic effects of nuclear forces. The shell structure of nuclei has been proposed by Mayer and Jensen, and has been considered to be kept valid basically for all nuclei, with well-known magic numbers, 2, 8, 20, 28, 50, …. Nuclear forces were shown, very recently, to change this paradigm. It will be presented that the evolution of shell structure occurs in various ways as more neutrons and/or protons are added, and I will present basic points of this shell evolution in terms of the monopole interaction of nuclear forces. I will discuss three types of nuclear forces. The first one is the tensor force. The tensor force is one of the most fundamental nuclear forces, but its first-order effect on the shell structure has been clarified only recently in studies on exotic nuclei. The tensor force can change the spin-orbit splitting depending on the occupation of specific orbits. This results in changes of the shell structure in many nuclei, and consequently some of Mayer-Jensen's magic numbers are lost and new ones emerge, in certain nuclei. This mechanism can be understood in an intuitive way, meaning that the effect is general and robust. The second type of nuclear forces is central force. I will show a general but unknown property of the central force in the shell-model Hamiltonian that can describe nuclear properties in a good agreement with experiment. I will then demonstrate how it can be incorporated into a simple model of the central force, and will discuss how this force works in the shell evolution. Actually, by combining this central force with the tensor force, one can understand and foresee how the same proton-neutron interaction drives the shell evolution, for examples such as Sn/Sb isotopes, N = 20 nuclei and Ni/Cu isotopes. The distribution of single-particle strength is discussed also in comparison to (e,e‧p) experiment on 48Ca. The shell

  15. The binding interactions of imidacloprid with earthworm fibrinolytic enzyme

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Chen, Tao

    2014-08-01

    In this paper, several studies were conducted to elucidate the binding mechanism of earthworm fibrinolytic enzyme (EFE) with imidocloprid (IMI) by using theoretical calculation, fluorescence, UV-vis, circular dichroism spectroscopy and an enzymatic inhibition assay. The spectral data showed that the binding interactions existed between IMI and EFE. The binding constants, binding site, thermodynamic parameters and binding forces were analyzed in detail. The results indicate a single class of binding sites for IMI in EFE and that this binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being 2.195 kJ mol-1 and 94.480 J mol-1 K-1, respectively. A single class of binding site existed for IMI in EFE. The tertiary or secondary structure of EFE was partly destroyed by IMI. The visualized binding details were also exhibited by the theoretical calculation and the results indicated that the interaction between IMI and Phe (Tyr, or Trp) or EFE occurred. Combining the experimental data with the theoretical calculation data, we showed that the binding forces between IMI and EFE were mainly hydrophobic force accompanied by hydrogen binding, and π-π stacking. In addition, IMI did not obviously influence the activity of EFE. In a word, the above analysis offered insights into the binding mechanism of IMI with EFE and could provide some important information for the molecular toxicity of IMI for earthworms.

  16. Astronomia Motivadora no Ensino Fundamental

    NASA Astrophysics Data System (ADS)

    Melo, J.; Voelzke, M. R.

    2008-09-01

    O objetivo principal deste trabalho é procurar desenvolver o interesse dos alunos pelas ciências através da Astronomia. Uma pesquisa com perguntas sobre Astronomia foi realizada junto a 161 alunos do Ensino Fundamental, com o intuito de descobrir conhecimentos prévios dos alunos sobre o assunto. Constatou-se, por exemplo, que 29,3% da 6ª série responderam corretamente o que é eclipse, 30,0% da 8ª série acertaram o que a Astronomia estuda, enquanto 42,3% dos alunos da 5ª série souberam definir o Sol. Pretende-se ampliar as turmas participantes e trabalhar, principalmente de forma prática com: dimensões e escalas no Sistema Solar, construção de luneta, questões como dia e noite, estações do ano e eclipses. Busca-se abordar, também, outros conteúdos de Física tais como a óptica na construção da luneta, e a mecânica no trabalho com escalas e medidas, e ao utilizar uma luminária para representar o Sol na questão do eclipse, e de outras disciplinas como a Matemática na transformação de unidades, regras de três; Artes na modelagem ou desenho dos planetas; a própria História com relação à busca pela origem do universo, e a Informática que possibilita a busca mais rápida por informações, além de permitir simulações e visualizações de imagens importantes. Acredita-se que a Astronomia é importante no processo ensino aprendizagem, pois permite a discussão de temas curiosos como, por exemplo, a origem do universo, viagens espaciais a existência ou não de vida em outros planetas, além de temas atuais como as novas tecnologias.

  17. Investigation of fundamental limits to beam brightness available from photoinjectors

    SciTech Connect

    Bazarov, Ivan

    2015-07-09

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces in the immediate vicinity to the cathode via 3D laser pulse shaping.

  18. Molecular Self-Assembly Driven by London Dispersion Forces

    SciTech Connect

    Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung; Du, Shixuan; Gao, Hongjun; Zhang, Zhenyu

    2011-01-01

    The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, can the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.

  19. Force measurement in a nanomachining instrument

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Hocken, Robert J.; Patten, John A.; Lovingood, John

    2000-11-01

    Two miniature, high sensitivity force transducers were employed to measure the thrust force along the in-feed direction and the cutting force along the cross-feed direction in a nanomachining instrument. The instrument was developed for conducting fundamental experiments of nanocutting especially on brittle materials. The force transducers of piezoelectric quartz type can measure machining forces ranging from 0.2 mN to 10 N. The submillinewton resolution makes it possible to measure the machining forces in the cutting experiments with depths of cut as small as the nanometer level. The stiffness and resonant frequency of the force transducers are 400 mN/nm and 300 kHz, respectively, which meet the specification of the instrument. A force transducer assembly is designed to provide a mechanism to adjust the preload on the force transducer and to decouple the measurement of forces. The assembly consists of three dual-axis circular flexures and a subframe. The axial stiffness of the flexures is designed to be greater than 6×107 N/m and the lateral stiffness of the flexures is designed to be 1×106 N/m to provide proper decoupling of forces.

  20. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  1. Forces driving epithelial wound healing

    NASA Astrophysics Data System (ADS)

    Brugués, Agustí; Anon, Ester; Conte, Vito; Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2014-09-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and `purse-string’ contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

  2. Forces driving epithelial wound healing

    PubMed Central

    Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2015-01-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and “purse-string” contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. PMID:27340423

  3. Ratiometric Tension Probes for Mapping Receptor Forces and Clustering at Intermembrane Junctions.

    PubMed

    Ma, Victor Pui-Yan; Liu, Yang; Blanchfield, Lori; Su, Hanquan; Evavold, Brian D; Salaita, Khalid

    2016-07-13

    Short-range communication between cells is required for the survival of multicellular organisms. One mechanism of chemical signaling between adjacent cells employs surface displayed ligands and receptors that only bind when two cells make physical contact. Ligand-receptor complexes that form at the cell-cell junction and physically bridge two cells likely experience mechanical forces. A fundamental challenge in this area pertains to mapping the mechanical forces experienced by ligand-receptor complexes within such a fluid intermembrane junction. Herein, we describe the development of ratiometric tension probes for direct imaging of receptor tension, clustering, and lateral transport within a model cell-cell junction. These probes employ two fluorescent reporters that quantify both the ligand density and the ligand tension and thus generate a tension signal independent of clustering. As a proof-of-concept, we applied the ratiometric tension probes to map the forces experienced by the T-cell receptor (TCR) during activation and showed the first direct evidence that the TCR-ligand complex experiences sustained pN forces within a fluid membrane junction. We envision that the ratiometric tension probes will be broadly useful for investigating mechanotransduction in juxtacrine signaling pathways. PMID:27192323

  4. Fundamentals of wetting and spreading with emphasis on soldering

    SciTech Connect

    Yost, F.G.

    1991-01-01

    Soldering is often referred to as a mature technology whose fundamentals were established long ago. Yet a multitude of soldering problems persist, not the least of which are related to the wetting and spreading of solder. The Buff-Goodrich approach to thermodynamics of capillarity is utilized in a review of basic wetting principles. These thermodynamics allow a very compact formulation of capillary phenomena which is used to calculate various meniscus shapes and wetting forces. These shapes and forces lend themselves to experimental techniques, such as the sessile drop and the Wilhelmy plate, for measuring useful surface and interfacial energies. The familiar equations of Young, Wilhelmy, and Neumann are all derived with this approach. The force-energy duality of surface energy is discussed and the force method is developed and used to derive the Herring relations for anisotropic surfaces. The importance of contact angle hysteresis which results from surface roughness and chemical inhomogeneity is presented and Young's equation is modified to reflect these ever present effects. Finally, an analysis of wetting with simultaneous metallurigical reaction is given and used to discuss solder wetting phenomena. 60 refs., 13 figs.

  5. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  6. Fundamentals of fossil simulator instructor training

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text introduces the beginning instructor to fundamental instructor training principles, and then shows how to apply those principles to fossil simulator training. Topics include the fundamentals of classroom instruction, the learning process, course development, and the specifics of simulator training program development.

  7. Individual differences in fundamental social motives.

    PubMed

    Neel, Rebecca; Kenrick, Douglas T; White, Andrew Edward; Neuberg, Steven L

    2016-06-01

    Motivation has long been recognized as an important component of how people both differ from, and are similar to, each other. The current research applies the biologically grounded fundamental social motives framework, which assumes that human motivational systems are functionally shaped to manage the major costs and benefits of social life, to understand individual differences in social motives. Using the Fundamental Social Motives Inventory, we explore the relations among the different fundamental social motives of Self-Protection, Disease Avoidance, Affiliation, Status, Mate Seeking, Mate Retention, and Kin Care; the relationships of the fundamental social motives to other individual difference and personality measures including the Big Five personality traits; the extent to which fundamental social motives are linked to recent life experiences; and the extent to which life history variables (e.g., age, sex, childhood environment) predict individual differences in the fundamental social motives. Results suggest that the fundamental social motives are a powerful lens through which to examine individual differences: They are grounded in theory, have explanatory value beyond that of the Big Five personality traits, and vary meaningfully with a number of life history variables. A fundamental social motives approach provides a generative framework for considering the meaning and implications of individual differences in social motivation. (PsycINFO Database Record PMID:26371400

  8. Investigating the Fundamental Theorem of Calculus

    ERIC Educational Resources Information Center

    Johnson, Heather L.

    2010-01-01

    The fundamental theorem of calculus, in its simplified complexity, connects differential and integral calculus. The power of the theorem comes not merely from recognizing it as a mathematical fact but from using it as a systematic tool. As a high school calculus teacher, the author developed and taught lessons on this fundamental theorem that were…

  9. Talin mediated force transmission and mechanosensing

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Yao, Mingxi; Goult, Benjamin; Sheetz, Michael

    Cells adhere to extracellular matrix (ECM) through focal adhesion. Talin is a cytoplasmic adapter protein that links the actin cytoskeleton to focal adhesion, playing a central role in regulation of cell spreading and migration. Talin's functions depend on the binding of talin rod domains to a cytoplasmic protein vinculin in a force dependent manner. By stretching full-length talin rod using magnetic tweezers, we have determined the force-dependent unfolding and refolding rates of subdomains in talin rod. Kinetics simulations based on these rates have revealed that talin rod can serve as a force buffer, capable of maintaining tension in talin in a range of 5-10 pN over a wide range of extension change of talin rod from 50 nm to 400 nm. Further, this level of force is found able to expose the cryptic vinculin-binding sites, promoting subsequent binding of the head domain of vinculin with a nano Molar affinity. Such a force-sensitive interaction between talin rod and vinculin is described by a force-dependent dissociation constant derived based on the mechanical stability of the talin rod domains. Together, these results provide important insights into the mechanosensing at focal adhesion that is crucial for cells to sense and respond to their microenvironments. The research is supported by the National Research Foundation of Singapore through Mechanobiology Institute and NRF Investigatorship to YJ.

  10. Fundamental solutions in a half space of two-dimensional hexagonal quasicrystal and their applications

    SciTech Connect

    Wang, T.; Li, X. Y.; Zhang, X.; Müller, R.

    2015-04-21

    Fundamental phonon-phason field in a half-infinite space of two-dimensional hexagonal quasicrystal is derived, on the basis of general solutions in terms of quasi-harmonic functions, by virtue of the trial-and-error technique. Extended Boussinesq and Cerruti problems are studied. Appropriate potential functions are assumed and corresponding fundamental solutions are explicitly derived in terms of elementary functions. The boundary integral equations governing the contact and crack problems are constructed from the present fundament solutions. The obtained analytical solutions can serve as guidelines for future indentation tests via scanning probe microscopy and atomic force microscopy methods.

  11. Lift force of delta wings

    SciTech Connect

    Lee, M.; Ho, Chihming )

    1990-09-01

    On a delta wing, the separation vortices can be stationary due to the balance of the vorticity surface flux and the axial convection along the swept leading edge. These stationary vortices keep the wing from losing lift. A highly swept delta wing reaches the maximum lift at an angle of attack of about 40, which is more than twice as high as that of a two-dimensional airfoil. In this paper, the experimental results of lift forces for delta wings are reviewed from the perspective of fundamental vorticity balance. The effects of different operational and geometrical parameters on the performance of delta wings are surveyed.

  12. Mechanical force characterization in manipulating live cells with optical tweezers.

    PubMed

    Wu, Yanhua; Sun, Dong; Huang, Wenhao

    2011-02-24

    Laser trapping with optical tweezers is a noninvasive manipulation technique and has received increasing attentions in biological applications. Understanding forces exerted on live cells is essential to cell biomechanical characterizations. Traditional numerical or experimental force measurement assumes live cells as ideal objects, ignoring their complicated inner structures and rough membranes. In this paper, we propose a new experimental method to calibrate the trapping and drag forces acted on live cells. Binding a micro polystyrene sphere to a live cell and moving the mixture with optical tweezers, we can obtain the drag force on the cell by subtracting the drag force on the sphere from the total drag force on the mixture, under the condition of extremely low Reynolds number. The trapping force on the cell is then obtained from the drag force when the cell is in force equilibrium state. Experiments on numerous live cells demonstrate the effectiveness of the proposed force calibration approach. PMID:21087769

  13. Fundamental design concepts in multi-lane smart electromechanical actuators

    NASA Astrophysics Data System (ADS)

    Annaz, Fawaz Yahya

    2005-12-01

    The most fundamental concept in designing multi-lane smart electromechanical actuation systems, besides meeting performance requirements, is the realization of high integrity. The essential requirements for realizing high integrity (and in any safety-critical system) are hardware redundancy and intelligent monitoring. To correctly detect, identify, isolate and replace redundant components, an intelligent fault detection and fault isolation scheme is required. The effectiveness of any fault detection and fault isolation system is assessed by examining promptness of detection, sensitivity, missed fault detection, the rate of false alarms, and incorrect fault identification. These terms are very much dependent on the threshold values of the monitoring devices imbedded in the system. The main aim of this paper is to provide fundamental consolidation designs and monitoring schemes in different architectures. It will address single-type and two-type summing architectures and highlight feedback sensor integration and monitoring strategies in the former, and explore the suitability of different threshold setting methodologies such as a simulation-graphical based Monte Carlo method, decision theory and analysis of variance. The paper will also address other fundamentals that are essential at the design stage, such as control surface load estimation, force fight (between mismatch lanes) reduction through lane equalization, and threshold setting concepts (scheduled and unscheduled) in a multi-mode operation system. The analysis is based on a four-lane actuation system capable of driving aerodynamic and inertial loads (with two lanes failed) of an aileron control surface similar to that of the Sea Harrier.

  14. Analysis of affinities between specific biological ligands using atomic force microscopy.

    PubMed

    Hu, Xiao; Dinu, Cerasela Zoica

    2015-12-21

    In the cell, protein-ligand recognition involves association and dissociation processes controlled by the affinity of the two binding partners and chemical harvesting of adenosine triphosphate energy. Fundamental knowledge of selected recognition events is currently translated in a synthetic environment for biosensors, immunoassays and diagnosis applications, or for pharmaceutical development. However, in order to advance such fields, one needs to determine the lifetime and binding efficiency of the two partners, as well as the complex energy landscape parameters. We employed contact mode atomic force microscopy to evaluate the association and dissociation events between streptavidin protein and its anti-streptavidin antibody ligand currently used for nucleotide array, ELISA, and flow cytometry applications, just to name a few. Using biotin as the control, our analysis helped characterize and differentiate multi- or single bonds of different strengths as well as associated energy landscapes to determine the protein-ligand structural arrangement at nanointerfaces and how these depend on the specificity of the ligand-recognition reaction. Our results suggest that understanding the importance of the rupture forces between a protein and its ligand could serve as the first step to protect on-off switches for biomedical research applications where specificity and selectivity are foremost sought. PMID:26525901

  15. Trypsin-Ligand Binding Free Energy Calculation with AMOEBA

    PubMed Central

    Shi, Yue; Jiao, Dian; Schnieders, Michael J.; Ren, Pengyu

    2010-01-01

    The binding free energies of several benzamidine-like inhibitors to trypsin were examined using a polarizable potential. All the computed binding free energies are in good agreement with the experimental data. From free energy decomposition, electrostatic interaction was found to be the driving force for the binding. Structural analysis shows that the ligands form hydrogen bonds with residues and water molecules nearby in a competitive fashion. The dependence of binding free energy on molecular dipole moment and polarizability was also studied. While the binding free energy is independent on the dipole moment, it shows a negative correlation with the polarizability. PMID:19965178

  16. Rotor-Liquid-Fundament System's Oscillation

    NASA Astrophysics Data System (ADS)

    Kydyrbekuly, A.

    The work is devoted to research of oscillation and sustainability of stationary twirl of vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and set on relative frame fundament. The accounting of such factors like oscillation of fundament, liquid oscillation, influence of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, allows to settle an invoice more precisely kinematic and dynamic characteristics of system.

  17. Modeling of fundamental phenomena in welds

    SciTech Connect

    Zacharia, T.; Vitek, J.M.; Goldak, J.A.; DebRoy, T.A.; Rappaz, M.; Bhadeshia, H.K.D.H.

    1993-12-31

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  18. Fundamentals of preparative and nonlinear chromatography

    SciTech Connect

    Guiochon, Georges A; Felinger, Attila; Katti, Anita; Shirazi, Dean G

    2006-02-01

    The second edition of Fundamentals of Preparative and Nonlinear Chromatography is devoted to the fundamentals of a new process of purification or extraction of chemicals or proteins widely used in the pharmaceutical industry and in preparative chromatography. This process permits the preparation of extremely pure compounds satisfying the requests of the US Food and Drug Administration. The book describes the fundamentals of thermodynamics, mass transfer kinetics, and flow through porous media that are relevant to chromatography. It presents the models used in chromatography and their solutions, discusses the applications made, describes the different processes used, their numerous applications, and the methods of optimization of the experimental conditions of this process.

  19. Force transmission in cohesive granular media

    NASA Astrophysics Data System (ADS)

    Radjai, Farhang; Topin, Vincent; Richefeu, Vincent; Voivret, Charles; Delenne, Jean-Yves; Azéma, Emilien; El Youssoufi, Said

    2010-05-01

    We use numerical simulations to investigate force and stress transmission in cohesive granular media covering a wide class of materials encountered in nature and industrial processing. The cohesion results either from capillary bridges between particles or from the presence of a solid binding matrix filling fully or partially the interstitial space. The liquid bonding is treated by implementing a capillary force law within a debonding distance between particles and simulated by the discrete element method. The solid binding matrix is treated by means of the Lattice Element Method (LEM) based on a lattice-type discretization of the particles and matrix. Our data indicate that the exponential fall-off of strong compressive forces is a generic feature of both cohesive and noncohesive granular media both for liquid and solid bonding. The tensile forces exhibit a similar decreasing exponential distribution, suggesting that this form basically reflects granular disorder. This is consistent with the finding that not only the contact forces but also the stress components in the bulk of the particles and matrix, accessible from LEM simulations in the case of solid bonding, show an exponential fall-off. We also find that the distribution of weak compressive forces is sensitive to packing anisotropy, particle shape and particle size distribution. In the case of wet packings, we analyze the self-equilibrated forces induced by liquid bonds and show that the positive and negative particle pressures form a bi-percolating structure.

  20. DNA Origami Seesaws as Comparative Binding Assay.

    PubMed

    Nickels, Philipp C; Høiberg, Hans C; Simmel, Stephanie S; Holzmeister, Phil; Tinnefeld, Philip; Liedl, Tim

    2016-06-16

    The application of commonly used force spectroscopy in biological systems is often limited by the need for an invasive tether connecting the molecules of interest to a bead or cantilever tip. Here we present a DNA origami-based prototype in a comparative binding assay. It has the advantage of in situ readout without any physical connection to the macroscopic world. The seesaw-like structure has a lever that is able to move freely relative to its base. Binding partners on each side force the structure into discrete and distinguishable conformations. Model experiments with competing DNA hybridisation reactions yielded a drastic shift towards the conformation with the stronger binding interaction. With reference DNA duplexes of tuneable length on one side, this device can be used to measure ligand interactions in comparative assays. PMID:27038073

  1. Retooling the American Work Force. Toward a National Training Strategy.

    ERIC Educational Resources Information Center

    Choate, Pat

    Although several fundamental forces are changing the American economy and the American work force, three conditions are pivotal--demographic change, technological change coupled with shifting conditions of competition, and the continuing inadequacies of both public- and private-sector employment and training policies. The employment and training…

  2. Instructor Special Report: RIF (Reading Is FUNdamental)

    ERIC Educational Resources Information Center

    Instructor, 1976

    1976-01-01

    At a time when innovative programs of the sixties are quickly falling out of the picture, Reading Is FUNdamental, after ten years and five million free paperbacks, continues to expand and show results. (Editor)

  3. Bonds that strengthen under force

    NASA Astrophysics Data System (ADS)

    Vogel, Viola

    2006-03-01

    While the adhesive strength of most receptor-ligand interactions is exponentially reduced if strained, some receptor-ligand complexes exist that strengthen under force which is the hallmark of catch bonds. Although the existence of catch bonds was theoretically predicted, the first experimental demonstrations of their existence were given only recently, i.e. for the bacterial adhesin FimH that is located at the tip of type I fimbriae of E. coli and for p-selectin. In a major collaborative effort, we studied the structural origin by which the FimH-mannose bond is switched by force to a high binding state. Mutational studies were thereby combined with steered molecular dynamic simulations to decipher how force might affect protein conformation. Force-activation of FimH leads to a complex `stick-and-roll' bacterial adhesion behavior in which E. coli preferentially rolls over mannosylated surfaces at low shear but increasingly sticks firmly as the shear is increased. Interesting similarities are further seen if comparing the structural mechanisms by which liganded FimH and liganded integrins are switched to a high binding state. This comparison was made possible by docking fibronectin's 10^th type III module (fnIII10) to αVβ3 integrin. αVβ3 can switch from the ``closed'' αVβ3 integrin headpiece to the ``open'' conformation by opening the hinge angle between the βA domain and the hybrid domain of the β-integrin. The ``open'' state has been implicated by many experimental laboratories to correspond to the activated state of integrins. W. E. Thomas, E. Trintchina, M. Forero, V. Vogel, E. Sokurenko, Bacterial adhesion to target cells enhanced by shear-force, Cell, 109 (2002) 913. W. E. Thomas, L. M. Nilsson, M. Forero, E. V. Sokurenko, V. Vogel, Shear-dependent `stick-and-roll' adhesion of type 1 fimbriated Escherichia coli, Molecular Microbiology 53 (2004) 1545. W. Thomas, M. Forero, O. Yakovenko, L. Nilsson, P. Vicini, E. Sokurenko, V. Vogel, Catch Bond Model

  4. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  5. Single-Molecule Studies of Unlabeled Full-Length p53 Protein Binding to DNA.

    PubMed

    Nuttall, Philippa; Lee, Kidan; Ciccarella, Pietro; Carminati, Marco; Ferrari, Giorgio; Kim, Ki-Bum; Albrecht, Tim

    2016-03-10

    p53 is an antitumor protein that plays an important role in apoptosis, preserving genomic stability and preventing angiogenesis, and it has been implicated in a large number of human cancers. For this reason it is an interesting target for both fundamental studies, such as the mechanism of interaction with DNA, and applications in biosensing. Here, we report a comprehensive study of label-free, full length p53 (flp53) and its interaction with engineered double-stranded DNA in vitro, at the single-molecule level, using atomic force microscopy (AFM) imaging and solid-state nanopore sensing. AFM data show that dimeric and tetrameric p53 bind to the DNA in a sequence-specific manner, confirming previously reported relative binding affinities. The statistical significance is tested using both the Grubbs test and stochastic simulations. For the first time, ultralow noise solid-state nanopore sensors are employed for the successful differentiation between bare DNA and p53/DNA complexes. Furthermore, translocation statistics reflect the binding affinities of different DNA sequences, in accordance with AFM data. Our results thus highlight the potential of solid-state nanopore sensors for single-molecule biosensing, especially when labeling is either not possible or at least not a viable option. PMID:26855037

  6. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  7. Coupling Mechanical Forces to Electrical Signaling: Molecular Motors and the Intracellular Transport of Ion Channels

    PubMed Central

    Barry, Joshua; Gu, Chen

    2013-01-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  8. Precision laser spectroscopy in fundamental studies

    NASA Astrophysics Data System (ADS)

    Kolachevsky, N. N.; Khabarova, K. Yu

    2014-12-01

    The role of precision spectroscopic measurements in the development of fundamental theories is discussed, with particular emphasis on the hydrogen atom, the simplest stable atomic system amenable to the accurate calculation of energy levels from quantum electrodynamics. Research areas that greatly benefited from the participation of the Lebedev Physical Institute are reviewed, including the violation of fundamental symmetries, the stability of the fine-structure constant α, and sensitive tests of quantum electrodynamics.

  9. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study.

    PubMed

    Arslan, Baran; Ju, Xiaohui; Zhang, Xiao; Abu-Lail, Nehal I

    2015-09-22

    Lack of fundamental understanding of cellulase interactions with different plant cell wall components during cellulose saccharification hinders progress toward achieving an economic production of biofuels from renewable plant biomass. Here, chemical force microscopy (CFM) was utilized to quantify the interactions between two surfaces that model either hydrophilic or hydrophobic functional groups of cellulases and a set of lignocellulosic substrates prepared through Kraft, sulfite, or organosolv pulping with defined chemical composition. The measured forces were then decoupled into specific and nonspecific components using the Poisson statistical approach. Heterogeneities in the distributions of forces as a function of the pretreatment method were mapped. Our results showed that hydrophobic domains and chemical moieties involved in hydrogen bonding and polar interactions were homogeneously distributed on all substrates but with distribution densities that varied with the type of the pretreatment method used to prepare substrates. In addition, we showed that increasing surface lignin coverage increased the heterogeneity of the substrates. When forces were decoupled, our results indicated that xylan reduced the strength of hydrogen bonding between the hydrophilic model surface and substrates. Permanent dipole-dipole interactions dominated the adhesion of the hydrophilic model surface to lignosulfonates, whereas hydrophobic interactions facilitated the adhesion of the hydrophobic model surface to Kraft lignin. We further showed that the structure of lignin determines the type of forces that dominate lignocellulosic interactions with other surfaces. Our findings suggest that nonproductive binding of cellulases to lignocellulosic biomass can be reduced by altering the hydrophobicity and/or chemical moieties involved in the polar interactions and by utilizing organosolv as a pretreatment method. PMID:26339982

  10. Thermodynamics of peptide binding to the transporter associated with antigen processing (TAP).

    PubMed

    Neumann, Lars; Abele, Rupert; Tampé, Robert

    2002-12-13

    The ATP-binding cassette (ABC) transporter TAP plays an essential role in antigen processing and immune response to infected or malignant cells. TAP translocates proteasomal degradation products from the cytosol into the endoplasmic reticulum, where MHC class I molecules are loaded with these peptides. Kinetically stable peptide-MHC complexes are transported to the cell surface for inspection by cytotoxic T lymphocytes. The transport cycle of TAP is initiated by peptide binding, which is responsible for peptide selection and for stimulation of ATP-hydrolysis and subsequent translocation. Here we have analysed the driving forces for the formation of the peptide-TAP complex by kinetic and thermodynamic methods. First, the apparent peptide association and dissociation rates were determined at various temperatures. Strikingly, very high activation energies for apparent association (E(a)(ass)=106 kJmol(-1)) and dissociation (E(a)(diss)=80 kJmol(-1)) of the peptide-TAP complex were found. Next, the temperature-dependence of the peptide affinity constants was investigated by equilibrium-binding assays. Along with calculations of free enthalpy deltaG, enthalpy deltaH and entropy deltaS, a large positive change in heat capacity was resolved (deltaC degrees =23 kJmol(-1)K(-1)), indicating a fundamental structural reorganization of the TAP complex upon peptide binding. The inspection of the conformational entropy reveals that approximately one-fourth of all TAP residues is rearranged. These thermodynamic studies indicate that at physiological temperature, peptide binding is endothermic and driven by entropy. PMID:12470952

  11. Calcium binding characteristics and structural changes of phosvitin.

    PubMed

    Zhang, Xiaowei; Geng, Fang; Huang, Xi; Ma, Meihu

    2016-06-01

    Phosvitin is a unique highly phosphorylated protein that plays a role in the regulation of calcification. We conducted a comprehensive study of the chemical, thermodynamic and structural aspects of the interaction of phosvitin with calcium ions using a calcium ion selective electrode (ISE), isothermal titration calorimetry (ITC), circular dichroism spectrum (CD) and fluorescence spectroscopy, respectively. The results showed that under neutral and alkaline conditions, distinct high affinity and low affinity binding modes existed in the interaction between phosvitin and calcium. The high affinity association constant was approximately 10(4)mol(-1), while the binding sites contained nearly 30mol of calcium per mole of phosvitin. This reaction was driven by enthalpy. The unordered and β-turn conformations of phosvitin increased, while the β-sheet conformation decreased. The main interaction forces were electrostatic force, hydrogen bonds or van der Waals force. The low affinity association constant and binding sites were not constant, as many calcium ions were sequestered by phosvitin. The binding reaction was driven by entropy, and the β-sheet conformation of phosvitin increased while the unordered conformation decreased. The main interaction force was hydrophobic force. However, under acidic conditions, the interaction between phosvitin and calcium was an entropy-driven endothermic reaction, and the main interaction force was weak hydrophobic force. This calcium-binding characteristic of phosvitin may play a specific role in its biological function. PMID:26953964

  12. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  13. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    PubMed

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-01

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes. PMID:26339862

  14. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    PubMed

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  15. Periodicity in bimodal atomic force microscopy

    SciTech Connect

    Lai, Chia-Yun; Santos, Sergio Chiesa, Matteo; Barcons, Victor

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  16. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  17. Force distributions in granular materials

    NASA Astrophysics Data System (ADS)

    Jaeger, Heinrich M.

    2002-03-01

    A fundamental problem in the study of disordered materials concerns the propagation of forces. Static granular media, such as sand particles inside a rigid container, have emerged as an important model system as they embody the zero temperature limit of disordered materials comprised of hardsphere repulsive particles. In this talk, I will review recent results on the distribution forces along the boundaries of granular material subjected to an applied load. While the spatial distribution of mean forces sensitively reflects the (macroscopic) packing structure of the material, the ensemble-averaged probability distribution of force fluctuations around the mean value, P(f), exhibits universal behavior. The shape of P(f) is found to be independent not only of the macroscopic packing arrangement but also of the inter-particle friction and, over a wide range, of the applied external stress. This shape is characterized by an exponential decay in the probability density for fluctuations above the mean force and only a small reduction, by no more than a factor two, for fluctuations below the mean [1]. Surprisingly, the exponential, non-Gaussian behavior appears to hold up even in the case of highly compressible grains, and it also has been observed in simulations of supercooled liquids [2]. I will discuss the implications of these findings on our current understanding of stress transmission in disordered media in general, and on glassy behavior in particular. [1] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 63, 041304 (2001). [2] S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86, 111 (2001). * Work performed in collaboration with D. L. Blair, J. M. Erikson, A. H. Marshall, N. W. Mueggenburg, and S. R. Nagel.

  18. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    SciTech Connect

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  19. Photoelectron spectroscopy and theoretical studies of anion-π interactions: binding strength and anion specificity.

    PubMed

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-π interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1 : 1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-π binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron

  20. Sensors, Volume 1, Fundamentals and General Aspects

    NASA Astrophysics Data System (ADS)

    Grandke, Thomas; Ko, Wen H.

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.

  1. Fundamental understanding of matter: an engineering viewpoint

    SciTech Connect

    Cullingford, H.S.; Cort, G.E.

    1980-01-01

    Fundamental understanding of matter is a continuous process that should produce physical data for use by engineers and scientists in their work. Lack of fundamental property data in any engineering endeavor cannot be mitigated by theoretical work that is not confirmed by physical experiments. An engineering viewpoint will be presented to justify the need for understanding of matter. Examples will be given in the energy engineering field to outline the importance of further understanding of material and fluid properties and behavior. Cases will be cited to show the effects of various data bases in energy, mass, and momentum transfer. The status of fundamental data sources will be discussed in terms of data centers, new areas of engineering, and the progress in measurement techniques. Conclusions and recommendations will be outlined to improve the current situation faced by engineers in carrying out their work. 4 figures.

  2. The Fundamental Neutron Physics Facilities at NIST

    PubMed Central

    Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110

  3. Physical forces during collective cell migration

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier; Wasserman, Michael R.; Angelini, Thomas E.; Millet, Emil; Weitz, David A.; Butler, James P.; Fredberg, Jeffrey J.

    2009-06-01

    Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions, and to drive these motions cells exert traction forces on their surroundings. Current understanding emphasizes that these traction forces arise mainly in `leader cells' at the front edge of the advancing cell sheet. Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails. Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

  4. Fundamental Vocabulary Selection Based on Word Familiarity

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Kasahara, Kaname; Kanasugi, Tomoko; Amano, Shigeaki

    This paper proposes a new method for selecting fundamental vocabulary. We are presently constructing the Fundamental Vocabulary Knowledge-base of Japanese that contains integrated information on syntax, semantics and pragmatics, for the purposes of advanced natural language processing. This database mainly consists of a lexicon and a treebank: Lexeed (a Japanese Semantic Lexicon) and the Hinoki Treebank. Fundamental vocabulary selection is the first step in the construction of Lexeed. The vocabulary should include sufficient words to describe general concepts for self-expandability, and should not be prohibitively large to construct and maintain. There are two conventional methods for selecting fundamental vocabulary. The first is intuition-based selection by experts. This is the traditional method for making dictionaries. A weak point of this method is that the selection strongly depends on personal intuition. The second is corpus-based selection. This method is superior in objectivity to intuition-based selection, however, it is difficult to compile a sufficiently balanced corpora. We propose a psychologically-motivated selection method that adopts word familiarity as the selection criterion. Word familiarity is a rating that represents the familiarity of a word as a real number ranging from 1 (least familiar) to 7 (most familiar). We determined the word familiarity ratings statistically based on psychological experiments over 32 subjects. We selected about 30,000 words as the fundamental vocabulary, based on a minimum word familiarity threshold of 5. We also evaluated the vocabulary by comparing its word coverage with conventional intuition-based and corpus-based selection over dictionary definition sentences and novels, and demonstrated the superior coverage of our lexicon. Based on this, we conclude that the proposed method is superior to conventional methods for fundamental vocabulary selection.

  5. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus.

    PubMed

    Patek, S N; Caldwell, R L

    2005-10-01

    Mantis shrimp are renowned for their unusual method of breaking shells with brief, powerful strikes of their raptorial appendages. Due to the extreme speeds of these strikes underwater, cavitation occurs between their appendages and hard-shelled prey. Here we examine the magnitude and relative contribution of the impact and cavitation forces generated by the peacock mantis shrimp Odontodactylus scyllarus. We present the surprising finding that each strike generates two brief, high-amplitude force peaks, typically 390-480 micros apart. Based on high-speed imaging, force measurements and acoustic analyses, it is evident that the first force peak is caused by the limb's impact and the second force peak is due to the collapse of cavitation bubbles. Peak limb impact forces range from 400 to 1501 N and peak cavitation forces reach 504 N. Despite their small size, O. scyllarus can generate impact forces thousands of times their body weight. Furthermore, on average, cavitation peak forces are 50% of the limb's impact force, although cavitation forces may exceed the limb impact forces by up to 280%. The rapid succession of high peak forces used by mantis shrimp suggests that mantis shrimp use a potent combination of cavitation forces and extraordinarily high impact forces to fracture shells. The stomatopod's hammer is fundamentally different from typical shell-crushing mechanisms such as fish jaws and lobster claws, and may have played an important and as yet unexamined role in the evolution of shell form. PMID:16169943

  6. Nucleosynthesis and the variation of fundamental couplings

    SciTech Connect

    Mueller, Christian M.; Schaefer, Gregor; Wetterich, Christof

    2004-10-15

    We determine the influence of a variation of the fundamental 'constants' on the predicted helium abundance in Big Bang Nucleosynthesis. The analytic estimate is performed in two parts: the first step determines the dependence of the helium abundance on the nuclear physics parameters, while the second step relates those parameters to the fundamental couplings of particle physics. This procedure can incorporate in a flexible way the time variation of several couplings within a grand unified theory while keeping the nuclear physics computation separate from any GUT model dependence.

  7. DOE Fundamentals Handbook: Electrical Science, Volume 4

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  8. DOE Fundamentals Handbook: Mathematics, Volume 2

    SciTech Connect

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations.

  9. Fundamental monogamy relation between contextuality and nonlocality.

    PubMed

    Kurzyński, Paweł; Cabello, Adán; Kaszlikowski, Dagomir

    2014-03-14

    We show that the no-disturbance principle imposes a tradeoff between locally contextual correlations violating the Klyachko-Can-Biniciogˇlu-Shumovski inequality and spatially separated correlations violating the Clauser-Horne-Shimony-Holt inequality. The violation of one inequality forbids the violation of the other. We also obtain the corresponding monogamy relation imposed by quantum theory for a qutrit-qubit system. Our results show the existence of fundamental monogamy relations between contextuality and nonlocality that suggest that entanglement might be a particular form of a more fundamental resource. PMID:24679270

  10. Fundamental principals of battery design: Porous electrodes

    NASA Astrophysics Data System (ADS)

    Qu, Deyang

    2014-06-01

    The fundamental aspects of a porous electrode from electrochemistry and material chemistry standpoints are discussed in the light of battery engineering designs. For example, the ionic diffusion, the electrode-electrolyte interface, interfacial charge transfer and electrode catalytic processes are discussed. The discussion of such fundamental electrochemical aspects is in conjunction with the design of batteries, e.g. the electrochemical assessable surface area for porous electrode, electrode catalytic reactions. The porous electrodes used as a gas diffusion electrode and the electrode in a supercapacitor are discussed to demonstrate the application of electrochemical principals in battery design.

  11. Dark Energy: A Crisis for Fundamental Physics

    ScienceCinema

    Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA

    2010-09-01

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.

  12. DOE Fundamentals Handbook: Electrical Science, Volume 1

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  13. DOE Fundamentals Handbook: Electrical Science, Volume 3

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  14. Laser Wakefield Acceleration and Fundamental Physics

    SciTech Connect

    Tajima, Toshiki

    2011-06-20

    The laser wakefield acceleration (LWFA) along with the now available laser technology allows us to look at TeV physics both in leptons and hadrons. Near future proof-of-principle experiments for a collider as well as high energy frontier experiments without a collider paradigm are suggested. The intense laser can also contribute to other fundamental physics explorations such as those of dark matter and dark energy candidates. Finally the combination of intense laser and laser-accelerated particles (electrons, hadrons, gammas) provides a further avenue of fundamental research.

  15. Fundamentals of Pharmacogenetics in Personalized, Precision Medicine.

    PubMed

    Valdes, Roland; Yin, DeLu Tyler

    2016-09-01

    This article introduces fundamental principles of pharmacogenetics as applied to personalized and precision medicine. Pharmacogenetics establishes relationships between pharmacology and genetics by connecting phenotypes and genotypes in predicting the response of therapeutics in individual patients. We describe differences between precision and personalized medicine and relate principles of pharmacokinetics and pharmacodynamics to applications in laboratory medicine. We also review basic principles of pharmacogenetics, including its evolution, how it enables the practice of personalized therapeutics, and the role of the clinical laboratory. These fundamentals are a segue for understanding specific clinical applications of pharmacogenetics described in subsequent articles in this issue. PMID:27514461

  16. DOE Fundamentals Handbook: Electrical Science, Volume 2

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  17. Fundamental Monogamy Relation between Contextuality and Nonlocality

    NASA Astrophysics Data System (ADS)

    Kurzyński, Paweł; Cabello, Adán; Kaszlikowski, Dagomir

    2014-03-01

    We show that the no-disturbance principle imposes a tradeoff between locally contextual correlations violating the Klyachko-Can-Binicioǧlu-Shumovski inequality and spatially separated correlations violating the Clauser-Horne-Shimony-Holt inequality. The violation of one inequality forbids the violation of the other. We also obtain the corresponding monogamy relation imposed by quantum theory for a qutrit-qubit system. Our results show the existence of fundamental monogamy relations between contextuality and nonlocality that suggest that entanglement might be a particular form of a more fundamental resource.

  18. Fundamental symmetries and interactions—selected topics

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2015-11-01

    In the field of fundamental interactions and symmetries numerous experiments are underway or planned in order to verify the standard model in particle physics, to search for possible extensions to it or to exploit the standard model for extracting most precise values for fundamental constants. We cover selected recent developments, in particular such which exploit stored and confined particles. Emphasis is on experiments with transformative character, i.e. such which may be able to guide and steer theoretical model building into new but defined directions. Among those are projects with antiprotons, muons and certain selected atoms and atomic nuclei.

  19. Fundamental Symmetries of the Early Universe and the Precision Frontier

    SciTech Connect

    Ramsey-Musolf, Michael

    2011-03-02

    The quest to explain nature's fundamental interactions and how they shaped the evolution of the universe is one of the most compelling in physics. The standard model of particle physics provides a partial explanation, but we know that it must be part of a larger, more complete framework. Experiments hoping to uncover details of the 'new standard model' are being carried out at two frontiers: the high energy frontier and the high precision frontier. In this talk, I discuss the theoretical implications of some of the key up-coming experiments at the precision frontier. I focus in particular on what they may teach us about the origin of matter and the possible existence of new forces that were important at earlier times in the evolution of the cosmos. I will also comment on how they complement experiments at the energy frontier.

  20. Influenza virus binds its host cell using multiple dynamic interactions

    PubMed Central

    Sieben, Christian; Kappel, Christian; Zhu, Rong; Wozniak, Anna; Rankl, Christian; Hinterdorfer, Peter; Grubmüller, Helmut; Herrmann, Andreas

    2012-01-01

    Influenza virus belongs to a wide range of enveloped viruses. The major spike protein hemagglutinin binds sialic acid residues of glycoproteins and glycolipids with dissociation constants in the millimolar range [Sauter NK, et al. (1992) Biochemistry 31:9609–9621], indicating a multivalent binding mode. Here, we characterized the attachment of influenza virus to host cell receptors using three independent approaches. Optical tweezers and atomic force microscopy-based single-molecule force spectroscopy revealed very low interaction forces. Further, the observation of sequential unbinding events strongly suggests a multivalent binding mode between virus and cell membrane. Molecular dynamics simulations reveal a variety of unbinding pathways that indicate a highly dynamic interaction between HA and its receptor, allowing rationalization of influenza virus–cell binding quantitatively at the molecular level. PMID:22869709

  1. Universal spin-momentum locked optical forces

    NASA Astrophysics Data System (ADS)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin

    2016-02-01

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE11 mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  2. Binding energies of hypernuclei and hypernuclear interactions

    SciTech Connect

    Bodmer, A.R. |; Murali, S.; Usmani, Q.N.

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  3. Man's Size in Terms of Fundamental Constants.

    ERIC Educational Resources Information Center

    Press, William H.

    1980-01-01

    Reviews calculations that derive an order of magnitude expression for the size of man in terms of fundamental constants, assuming that man satifies these three properties: he is made of complicated molecules; he requires an atmosphere which is not hydrogen and helium; he is as large as possible. (CS)

  4. [Reading Is Fundamental: Pamphlets and Newsletters].

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC.

    These pamphlets and newsletters are products of the Reading Is Fundamental (RIF) program, which provides free and inexpensive books to children through a variety of community organizations throughout the country. The newsletter appears monthly and contains reports on specific programs, trends in the national program, RIF involvement with other…

  5. A Fundamental Breakdown. Part II: Manipulative Skills

    ERIC Educational Resources Information Center

    Townsend, J. Scott; Mohr, Derek J.

    2005-01-01

    In the May, 2005, issue of "TEPE," the "Research to Practice" section initiated a two-part series focused on assessing fundamental locomotor and manipulative skills. The series was generated in response to research by Pappa, Evanggelinou, & Karabourniotis (2005), recommending that curricular programming in physical education at the elementary…

  6. Fundamental studies on passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1993-06-01

    Using photoelectrochemical impedance and admittance spectroscopies, a fundamental and quantitative understanding of the mechanisms for the growth and breakdown of passive films on metal and alloy surfaces in contact with aqueous environments is being developed. A point defect model has been extended to explain the breakdown of passive films, leading to pitting and crack growth and thus development of damage due to localized corrosion.

  7. Drafting Fundamentals. Drafting Module 1. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. The guide contains a cross-reference table of instructional materials. Ten units cover drafting fundamentals: (1) introduction to drafting; (2) general safety;…

  8. A Fundamental Theorem on Particle Acceleration

    SciTech Connect

    Xie, Ming

    2003-05-01

    A fundamental theorem on particle acceleration is derived from the reciprocity principle of electromagnetism and a rigorous proof of the theorem is presented. The theorem establishes a relation between acceleration and radiation, which is particularly useful for insightful understanding of and practical calculation about the first order acceleration in which energy gain of the accelerated particle is linearly proportional to the accelerating field.

  9. Fundamental Limitations in Advanced LC Schemes

    SciTech Connect

    Mikhailichenko, A. A.

    2010-11-04

    Fundamental limitations in acceleration gradient, emittance, alignment and polarization in acceleration schemes are considered in application for novel schemes of acceleration, including laser-plasma and structure-based schemes. Problems for each method are underlined whenever it is possible. Main attention is paid to the scheme with a tilted laser bunch.

  10. Fundamental issues on electromagnetic fields (EMF).

    PubMed

    Novini, A

    1993-01-01

    This paper will examine the fundamental principals of Electromagnetic Field Radiation. The discussion will include: The basic physical characteristics of magnetic and electric fields, the numerous sources of EMF in our everyday lives, ways to detect and measure EMF accurately, what to look for in EMF instruments, and the issues and misconceptions on shielding and exposure reduction. PMID:8098895

  11. Getting a Better Grasp on Flu Fundamentals

    MedlinePlus

    ... a Better Grasp on Flu Fundamentals Inside Life Science View All Articles | Inside Life Science Home Page Getting a Better Grasp on Flu ... Seasonal Flu Patterns? Forecasting Flu This Inside Life Science article also appears on LiveScience . Learn about related ...

  12. Areas and the Fundamental Theorem of Calculus

    ERIC Educational Resources Information Center

    Vajiac, A.; Vajiac, B.

    2008-01-01

    We present a concise, yet self-contained module for teaching the notion of area and the Fundamental Theorem of Calculus for different groups of students. This module contains two different levels of rigour, depending on the class it used for. It also incorporates a technological component. (Contains 6 figures.)

  13. Measurement and Fundamental Processes in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2015-07-01

    In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus given to measurement in the foundation of the theory. Others, including the early Bohr and Schwinger, have suggested that quantum mechanics naturally incorporates the unavoidable uncontrollable disturbance of physical state that accompanies any local measurement without the need for an exceptional fundamental process or a special measurement theory. Disturbance is unanalyzable for Bohr, but for Schwinger it is due to physical interactions' being borne by fundamental particles having discrete properties and behavior which is beyond physical control. Here, Schwinger's approach is distinguished from more well known treatments of measurement, with the conclusion that, unlike most, it does not suffer under Bell's critique of quantum measurement. Finally, Schwinger's critique of measurement theory is explicated as a call for a deeper investigation of measurement processes that requires the use of a theory of quantum fields.

  14. Fundamental Concepts Bridging Education and the Brain

    ERIC Educational Resources Information Center

    Masson, Steve; Foisy, Lorie-Marlène Brault

    2014-01-01

    Although a number of papers have already discussed the relevance of brain research for education, the fundamental concepts and discoveries connecting education and the brain have not been systematically reviewed yet. In this paper, four of these concepts are presented and evidence concerning each one is reviewed. First, the concept of…

  15. Fundamentals of Library Science. Library Science 424.

    ERIC Educational Resources Information Center

    Foster, Donald L.

    An introductory letter, a list of general instructions on how to proceed with a correspondence course, a syllabus, and an examination request form are presented for a correspondence course in the fundamentals of library science offered by the University of New Mexico's Division of Continuing Education and Community Services. The course is a survey…

  16. Prequantum Classical Statistical Field Theory: Fundamentals

    SciTech Connect

    Khrennikov, Andrei

    2011-03-28

    We present fundamentals of a prequantum model with hidden variables of the classical field type. In some sense this is the comeback of classical wave mechanics. Our approach also can be considered as incorporation of quantum mechanics into classical signal theory. All quantum averages (including correlations of entangled systems) can be represented as classical signal averages and correlations.

  17. Mathematical Literacy--It's Become Fundamental

    ERIC Educational Resources Information Center

    McCrone, Sharon Soucy; Dossey, John A.

    2007-01-01

    The rising tide of numbers and statistics in daily life signals a need for a fundamental broadening of the concept of literacy: mathematical literacy assuming a coequal role in the curriculum alongside language-based literacy. Mathematical literacy is not about studying higher levels of formal mathematics, but about making math relevant and…

  18. Retention of Electronic Fundamentals: Differences Among Topics.

    ERIC Educational Resources Information Center

    Johnson, Kirk A.

    Criterion-referenced tests were used to measure the learning and retention of a sample of material taught by means of programed instruction in the Avionics Fundamentals Course, Class A. It was found that the students knew about 30 percent of the material before reading the programs, that mastery rose to a very high level on the immediate posttest,…

  19. Fundamental Theorems of Algebra for the Perplexes

    ERIC Educational Resources Information Center

    Poodiak, Robert; LeClair, Kevin

    2009-01-01

    The fundamental theorem of algebra for the complex numbers states that a polynomial of degree n has n roots, counting multiplicity. This paper explores the "perplex number system" (also called the "hyperbolic number system" and the "spacetime number system") In this system (which has extra roots of +1 besides the usual [plus or minus]1 of the…

  20. Course Objectives: Electronic Fundamentals, EL16.

    ERIC Educational Resources Information Center

    Wilson, David H.

    The general objective, recommended text, and specific objectives of a course titled "Electronic Fundamentals," as offered at St. Lawrence College of Applied Arts and Technology, are provided. The general objective of the course is "to acquire an understanding of diodes, transistors, and tubes, and so be able to analyze the operation of single…

  1. Uncovering Racial Bias in Nursing Fundamentals Textbooks.

    ERIC Educational Resources Information Center

    Byrne, Michelle M.

    2001-01-01

    The portrayal of African Americans in nursing fundamentals textbooks was analyzed, resulting in 11 themes in the areas of history, culture, and physical assessment. Few African American leaders were included, and racial bias and stereotyping were apparent. Differences were often discussed using Eurocentric norms, and language tended to minimize…

  2. Radio and Television Repairer Fundamentals. Student's Manual.

    ERIC Educational Resources Information Center

    Maul, Chuck

    This self-contained student manual on fundamentals of radio and television repair is designed to help trade and industrial students relate work experience on the job to information studied at school. Designed for individualized instruction under the supervision of a coordinator or instructor, the manual has 9 sections, each containing 2 to 10…

  3. Reversing: A Fundamental Idea in Computer Science

    ERIC Educational Resources Information Center

    Armoni, Michal; Ginat, David

    2008-01-01

    Reversing is the notion of thinking or working in reverse. Computer science textbooks and tutors recognize it primarily in the form of recursion. However, recursion is only one form of reversing. Reversing appears in the computer science curriculum in many other forms, at various intellectual levels, in a variety of fundamental courses. As such,…

  4. RLIN Product Batch: Fundamental Design Concepts.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1984-01-01

    Considers fundamental decisions that shaped the output products of Research Libraries Information Network. Product Batch was designed using single data definition (RMARC) combined with standard PL/I, modular programing techniques, program documentation. Choice of software and programing languages, other design aspects (accountability, count…

  5. Fundamental and Gradient Differences in Language Development

    ERIC Educational Resources Information Center

    Herschensohn, Julia

    2009-01-01

    This article reexamines Bley-Vroman's original (1990) and evolved fundamental difference hypothesis that argues that differences in path and endstate of first language acquisition and adult foreign language learning result from differences in the acquisition procedure (i.e., language faculty and cognitive strategies, respectively). The evolved…

  6. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  7. Applied and fundamental aspects of fusion science

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexander V.

    2016-05-01

    Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.

  8. The Cytoskeleton and Force Response Mechanisms

    NASA Technical Reports Server (NTRS)

    Allen, Philip Goodwin

    2003-01-01

    The long term aim of this project was to define the mechanisms by which cells sense and respond to the physical forces experienced at 1g and missing in microgravity. Identification and characterization of the elements of the cells force response mechanism could provide pathways and molecules to serve as targets for pharmacological intervention to mitigate the pathologic effects of microgravity. Mechanical forces experienced by the organism can be transmitted to cells through molecules that allow cells to bind to the extracellular matrix and through other types of molecules which bind cells to each other. These molecules are coupled in large complexes of proteins to structural elements such as the actin cytoskeleton that give the cell the ability to sense, resist and respond to force. Application of small forces to tissue culture cells causes local elevation of intracellular calcium through stretch activated ion channels, increased tyrosine phosphorylation and a restructuring of the actin cytoskeleton. Using collagen coated iron oxide beads and strong magnets, we can apply different levels of force to cells in culture. We have found that force application causes the cells to polymerize actin at the site of mechanical deformation and unexpectedly, to depolymerize actin across the rest of the cell. Observations of GFP- actin expressing cells demonstrate that actin accumulates at the site of deformation within the first five minutes of force application and is maintained for many tens of minutes after force is removed. Consistent with the reinforcement of the cytoskeletal structures underlying the integrin-bead interaction, force also alters the motion of bound magnetic beads. This effect is seen following the removal of the magnetic field, and is only partially ablated by actin disruption with cytochalsin B. While actin is polymerizing locally at the site of force application, force also stimulates a global reduction in actin filament content within the cells. We have

  9. Theoretical study on the HIV-1 integrase-5CITEP complex based on polarized force fields

    NASA Astrophysics Data System (ADS)

    Wei, Caiyi; Mei, Ye; Zhang, Dawei

    2010-07-01

    Molecular dynamics studies of 5CITEP binding with HIV-1 integrase (IN) are presented using both polarized and nonpolarized force fields. When nonpolarized force field is used, the ligand drifts away from the original binding site. However, this depressing behavior can be curbed by introducing electronic polarization effect into the force field that stabilizes the protein structure and keeps the ligand in the binding pocket. Moreover, simulation under polarized force field gives a binding energy of -4.85 kcal/mol which is in excellent agreement with the experimental Δ G of -4.38 kcal/mol. The results demonstrate the importance of intra-protein electronic polarization in stabilizing the binding complex of IN-5CITEP and accurately predicting the binding energy.

  10. Force propagation and force generation in cells.

    PubMed

    Jonas, Oliver; Duschl, Claus

    2010-09-01

    Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861

  11. The Aerodynamic Forces on Airship Hulls

    NASA Technical Reports Server (NTRS)

    Munk, M. M.

    1979-01-01

    The new method for making computations in connection with the study of rigid airships, which was used in the investigation of Navy's ZR-1 by the special subcommittee of the National Advisory Committee for Aeronautics appointed for this purpose is presented. The general theory of the air forces on airship hulls of the type mentioned is described and an attempt was made to develop the results from the very fundamentals of mechanics.

  12. Foundations of Physical Theory, I: Force and Energy. Physical Processes in Terrestrial and Aquatic Ecosystems, Fundamentals.

    ERIC Educational Resources Information Center

    Pearson, Nolan E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module is one of two units on the foundations of physical theory and the…

  13. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  14. The Study of Biomolecule-Substrate Interactions by Single Molecule Force Spectroscopy and Brownian Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Sara Iliafar

    Hybrids of biomolecules and nanomaterials have been identified as promising candidates in the development of novel therapeutics and electronic devices. Single stranded DNA (ssDNA)-bound Single-walled carbon nanotubes (SWCNTs) are of particular interest as they may be the key to solving the challenges that face the carbon nanotube separation technology and because of their potential application in bio-nanomedicine. The ability of ssDNA to form a stable hybrid with CNTs has been attributed to the structure and amphiphilic nature of this macromolecule, enabling the dispersion, sorting and patterned placement of nanotubes. Considering the significant role of ssDNA-CNTs in future technologies and the potential toxicity of such nanomaterials in biological systems, it is essential to gain a quantitative and fundamental understanding on the interactions that allow, weaken or prevent the formation of these hybrids. In this dissertation, we use both experimental and theoretical methods to systematically investigate the major characteristics of these interactions. The free energy of binding of ssDNA homopolymers to solvated carbon nanotubes is one of the key characteristics that determine the stability of such dispersions. We used single molecule force spectroscopy (SMFS), first on graphite and next on single walled carbon nanotubes, to probe and directly quantify the binding strength of ssDNA homopolymer oligomers to these substrates. The force resisting removal of DNA molecules from these surfaces shows characteristic steady-state force plateaus which were distinguishable for each DNA sequence. The free energy of binding per nucleotide for these oligomers on graphite were ranked as T >= A > G >= C (11.3 +/- 0.8 kT, 9.9 +/- 0.4 kT, 8.3 +/- 0.2 kT, and 7.5 +/- 0.8 kT, respectively). On SWCNTs, these interactions decreased in the following order: A > G > T > C, and their magnitude was much larger than on graphite (38.1 +/- 0.2; 33.9 +/- 0.1; 23.3 +/- 0.1; 17.1 +/- 0.1 k

  15. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  16. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  17. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  18. Translation Against An Applied Force.

    NASA Astrophysics Data System (ADS)

    Skinner, Gary M.; Seol, Yeonee; Visscher, Koen

    2008-02-01

    Ribosome structure and mechanism are largely conserved among all known forms of life. Therefore, the motions associated with translation may be among the most ancient and fundamental in biology. However, the molecular mechanism of translocation, the coordinated movement of tRNAs and associated mRNA on the ribosome, has eluded scientists and remains obscure. Single-molecule experiments using optical tweezers and fluorescence microscope are starting to shed new light on these questions. For example, we have observed that moderate forces reverse direction of motion and ribosomes seem to slip backward into the 5' direction along a poly(U) message. Although the detailed molecular mechanism for ribosome slippage is not fully understood, these observations raise interesting biological questions about e.g. -1 frameshifting. Is the -1 frameshift essential for HIV-1 replication a result of tension in the message? Single-molecule experiments open the way towards quantitative modeling of ribosome motion and related phenomena such as -1 frameshifting.

  19. Torsional sensing of small-molecule binding using magnetic tweezers.

    PubMed

    Lipfert, Jan; Klijnhout, Sven; Dekker, Nynke H

    2010-11-01

    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3±1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment. PMID:20624816

  20. Fundamental deformation processes controlling nanoscale friction and wear

    NASA Astrophysics Data System (ADS)

    Gotsmann, Bernd

    2010-03-01

    Thermally activated processes are often responsible for the kinetics of deformation and can control tribological performance. In this contribution two such processes are discussed in combination with nanoscale tribology experiments using atomic force microscopy (AFM). The first process describes single asperity wear as an atom-by-atom loss process driven by frictional shear stresses an interface. The wear rate is described by a thermally activated bond breaking process in which the energy barrier is reduced by the frictional shear stress. This leads to dramatic deviations from Archard's wear law which is commonly used to described macroscopic wear. Experimental confirmation of an atom-by-atom wear process is given by AFM wear experiments using different material combinations of tips sliding on surfaces [1]. The second process relates fundamental rearranging processes in polymers to friction. As an example, data of sliding friction between a silicon tip and a highly cross-linked polyaryletherketone film using friction force microscopy are presented. Energy dissipation into so-called molecular relaxations (alpha and beta relaxations) is identified as distinctive maxima of the friction force as a function of temperature between 150 and 500 K. A strong shift of such peak temperatures as a function of applied load is observed. Again, a model with an Arrhenius activation modulated by the applied shear stress describes experimental results quantitatively. The effect of the stress-shifted relaxation on friction-versus-load experiments is discussed [2]. Both processes will be discussed in the context of technological applications. [4pt] [1] B. Gotsmann and M. A. Lantz, Phys. Rev. Lett. 101, 125501 (2008) [0pt] [2] L. Jansen et al. Phys. Rev. Lett. 102, 236101 (2009)

  1. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-12-31

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  2. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-01-01

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  3. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  4. Debunking Coriolis Force Myths

    ERIC Educational Resources Information Center

    Shakur, Asif

    2014-01-01

    Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…

  5. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  6. A haptic simulator to increase laparoscopic force application sensitivity.

    PubMed

    Long, Lindsay O; Singapogu, Ravikiran B; Arcese, Giovannina; Smith, Dane E; Burg, Timothy C; Pagano, Christopher C; Burg, Karen J L

    2013-01-01

    Laparoscopic surgery demands perceptual-motor skills that are fundamentally different from open surgery, and laparoscopists must be adept at perceiving tissue interaction at the surgical site and then applying precise amounts of forces through instruments without damaging tissues. A haptic simulator that emulates multiple salient laparoscopic tasks and renders differing degrees of forces was created. Two of the haptic skills tasks were evaluated in two studies to determine their ability to distinguish and then train laparoscopic force application sensitivity. Results suggested that the simulator has the capability of rendering salient force feedback information to which novices become increasingly more perceptually sensitive. PMID:23400169

  7. Stiffened lipid platforms at molecular force foci

    PubMed Central

    Anishkin, Andriy; Kung, Ching

    2013-01-01

    How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers. PMID:23476066

  8. Fundamental Physics for Probing and Imaging

    NASA Astrophysics Data System (ADS)

    Allison, Wade

    2006-12-01

    This book addresses the question 'What is physics for?' Physics has provided many answers for mankind by extending his ability to see. Modern technology has enabled the power of physics to see into objects to be used in archaeology, medicine including therapy, geophysics, forensics and other spheres important to the good of society. The book looks at the fundamental physics of the various methods and how they are used by technology. These methods are magnetic resonance, ionising radiation and sound. By taking a broad view over the whole field it encourages comparisons, but also addresses questions of risk and benefit to society from a fundamental viewpoint. This textbook has developed from a course given to third year students at Oxford and is written so that it can be used coherently as a basis for shortened courses by omitting a number of chapters.

  9. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  10. Three fundamental problems of molecular statistics

    NASA Astrophysics Data System (ADS)

    Bubenchikov, M. A.; Potekaev, A. I.; Bubenchikov, A. M.

    2013-08-01

    Three fundamental problems of molecular statistics can be identified using the shape of a nanoparticle and the curvature of a λ-layer surrounding it, which correspond to the polar, axial, and plane symmetry. Within the framework of a single-velocity approximation, solutions to these problems are constructed and formulas for coefficients of average resistance to motion of variously-shaped particles are found.

  11. DOE fundamentals handbook: Mechanical science. Volume 2

    SciTech Connect

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  12. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

  13. Fundamental plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  14. Fundamental studies of molecular multiphoton ionization

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures.

  15. Fundamental Limits to Extinction by Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Miller, O. D.; Hsu, C. W.; Reid, M. T. H.; Qiu, W.; DeLacy, B. G.; Joannopoulos, J. D.; Soljačić, M.; Johnson, S. G.

    2014-03-01

    We show that there are shape-independent upper bounds to the extinction cross section per unit volume of dilute, randomly arranged nanoparticles, given only material permittivity. Underlying the limits are restrictive sum rules that constrain the distribution of quasistatic eigenvalues. Surprisingly, optimally designed spheroids, with only a single quasistatic degree of freedom, reach the upper bounds for four permittivity values. Away from these permittivities, we demonstrate computationally optimized structures that surpass spheroids and approach the fundamental limits.

  16. Baryogenesis and its implications to fundamental physics

    SciTech Connect

    Yoshimura, M.

    2008-08-08

    In this talk I shall explain some basic concepts of baryogenesis and leptogenesis theory, and a new idea of experimental method of verification of fundamental ingredients of leptogenesis theory; the Majorana nature and the absolute magnitude of neutrino masses. Both of these are important to the quest of physics beyond the standard theory, and have far reaching implications irrespective of any particular medel of leptogenesis. If this new method works ideally, there is even a further possibility of detecting relic neutrinos.

  17. Fundamental Processes in Plasmas. Final report

    SciTech Connect

    O'Neil, Thomas M.; Driscoll, C. Fred

    2009-11-30

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN.

  18. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  19. Efficacy of climate forcings

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G. A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; Bell, N.; Cairns, B.; Canuto, V.; Chandler, M.; Cheng, Y.; Del Genio, A.; Faluvegi, G.; Fleming, E.; Friend, A.; Hall, T.; Jackman, C.; Kelley, M.; Kiang, N.; Koch, D.; Lean, J.; Lerner, J.; Lo, K.; Menon, S.; Miller, R.; Minnis, P.; Novakov, T.; Oinas, V.; Perlwitz, Ja.; Perlwitz, Ju.; Rind, D.; Romanou, A.; Shindell, D.; Stone, P.; Sun, S.; Tausnev, N.; Thresher, D.; Wielicki, B.; Wong, T.; Yao, M.; Zhang, S.

    2005-09-01

    We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the "efficacy" of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO2 forcing. Anthropogenic CH4 has efficacy ˜110%, which increases to ˜145% when its indirect effects on stratospheric H2O and tropospheric O3 are included, yielding an effective climate forcing of ˜0.8 W/m2 for the period 1750-2000 and making CH4 the largest anthropogenic climate forcing other than CO2. Black carbon (BC) aerosols from biomass burning have a calculated efficacy ˜58%, while fossil fuel BC has an efficacy ˜78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880-2000. Responses to localized forcings, such

  20. Fundamental Physics Explored with High Intensity Laser

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Homma, K.

    2012-10-01

    Over the last century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers. First we envision the laser-driven plasma accelerator may be able to extend the reach of the collider. For this approach to bear fruit, we need to develop the technology of high averaged power laser in addition to the high intensity. For this we mention that the latest research effort of ICAN is an encouraging sign. In addition to this, we now introduce the concept of the noncollider paradigm in exploring fundamental physics with high intensity (and large energy) lasers. One of the examples we mention is the laser wakefield acceleration (LWFA) far beyond TeV without large luminosity. If we relax or do not require the large luminosity necessary for colliders, but solely in ultrahigh energy frontier, we are still capable of exploring such a fundamental issue. Given such a high energetic particle source and high-intensity laser fields simultaneously, we expect to be able to access new aspects on the matter and the vacuum structure from fundamental physical point of views. LWFA naturally exploits the nonlinear optical effects in the plasma when it becomes of relativistic intensity. Normally nonlinear optical effects are discussed based upon polarization susceptibility of matter to external fields. We suggest application of this concept even to the vacuum structure as a new kind of order parameter to discuss vacuum-originating phenomena at semimacroscopic scales. This viewpoint unifies the following observables with the unprecedented experimental environment we envision; the dispersion relation of

  1. Forces in molecules.

    PubMed

    Hernández-Trujillo, Jesús; Cortés-Guzmán, Fernando; Fang, De-Chai; Bader, Richard F W

    2007-01-01

    Chemistry is determined by the electrostatic forces acting within a collection of nuclei and electrons. The attraction of the nuclei for the electrons is the only attractive force in a molecule and is the force responsible for the bonding between atoms. This is the attractive force acting on the electrons in the Ehrenfest force and on the nuclei in the Feynman force, one that is countered by the repulsion between the electrons in the former and by the repulsion between the nuclei in the latter. The virial theorem relates these forces to the energy changes resulting from interactions between atoms. All bonding, as signified by the presence of a bond path, has a common origin in terms of the mechanics determined by the Ehrenfest, Feynman and virial theorems. This paper is concerned in particular with the mechanics of interaction encountered in what are classically described as 'nonbonded interactions'--are atoms that 'touch' bonded or repelling one another? PMID:17328425

  2. Binding Site Graphs: A New Graph Theoretical Framework for Prediction of Transcription Factor Binding Sites

    PubMed Central

    Reddy, Timothy E; DeLisi, Charles; Shakhnovich, Boris E

    2007-01-01

    Computational prediction of nucleotide binding specificity for transcription factors remains a fundamental and largely unsolved problem. Determination of binding positions is a prerequisite for research in gene regulation, a major mechanism controlling phenotypic diversity. Furthermore, an accurate determination of binding specificities from high-throughput data sources is necessary to realize the full potential of systems biology. Unfortunately, recently performed independent evaluation showed that more than half the predictions from most widely used algorithms are false. We introduce a graph-theoretical framework to describe local sequence similarity as the pair-wise distances between nucleotides in promoter sequences, and hypothesize that densely connected subgraphs are indicative of transcription factor binding sites. Using a well-established sampling algorithm coupled with simple clustering and scoring schemes, we identify sets of closely related nucleotides and test those for known TF binding activity. Using an independent benchmark, we find our algorithm predicts yeast binding motifs considerably better than currently available techniques and without manual curation. Importantly, we reduce the number of false positive predictions in yeast to less than 30%. We also develop a framework to evaluate the statistical significance of our motif predictions. We show that our approach is robust to the choice of input promoters, and thus can be used in the context of predicting binding positions from noisy experimental data. We apply our method to identify binding sites using data from genome scale ChIP–chip experiments. Results from these experiments are publicly available at http://cagt10.bu.edu/BSG. The graphical framework developed here may be useful when combining predictions from numerous computational and experimental measures. Finally, we discuss how our algorithm can be used to improve the sensitivity of computational predictions of transcription factor

  3. Fundamental Physics Program and the NASA Mission

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2003-01-01

    The accomplishments of Physics, the increasing power of its instruments, and its expanding reach into other sciences have generated an unprecedented set of scientific opportunities. The committee has identified six such Grand Challenges listed below in no particular order: Developing quantum technologies. Creating new materials. Understanding complex systems. Unifying the forces of Nature. Exploring the universe Applying Physics to Biology.

  4. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  5. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  6. Imaging and force probing RNA by atomic force microscopy.

    PubMed

    Schön, Peter

    2016-07-01

    In the past 30years, the atomic force microscope (AFM) has become a true enabling platform in the life sciences opening entire novel avenues for structural and dynamic studies of biological systems. It enables visualization, probing and manipulation across the length scales, from single molecules to living cells in buffer solution under physiological conditions without the need for labeling or staining of the specimen. In particular, for structural studies of nucleic acids and assemblies thereof, the AFM has matured into a routinely used tool providing nanometer spatial resolution. This includes ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. By AFM unique information can be obtained on RNA based assemblies which are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In addition, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review first the basic functioning principles of commonly used AFM modes including AFM based force spectroscopy will be briefly described. Next a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. The main intention of this short review to give the reader a flavor of what AFM contributes to RNA research and engineering. PMID:27222101

  7. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  8. Force Tolerances of Hybrid Biological Nanomachines

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Jiang, Xingqun; Montemagno, Carlo

    2002-03-01

    Recent work has demonstrated the possibility of self-assembling hybrid biological/inorganic molecular nanomachines (Soong et al., Science 290, 1555 (2000)). In the synthesis of these systems, inorganic nanofabricated components are bonded to motor proteins at the molecular level. Stable and strong interfaces between these components are crucial for practical applications of these devices to be realized. Using Dynamic Force Spectroscopy, we have measured the binding strengths of His6 and His_10 to substrates of Nickel, Gold, Glass, and Ni-NTA at a range of loading rates. Through analysis of these measurements, we have obtained the characteristic binding lengths of each of these systems as well as the bond lifetimes as a function of force. As the substrate type was changed, the change in binding energy was calculated and the binding energy between the peptides and each substrate was estimated. We discuss the implications of these measurements on device yield, substrate choice, linking peptide choice, and design of hybrid nanomechanical systems in general.

  9. The Distribution of Active Force Generators Controls Mitotic Spindle Position

    NASA Astrophysics Data System (ADS)

    Grill, Stephan W.; Howard, Jonathon; Schäffer, Erik; Stelzer, Ernst H. K.; Hyman, Anthony A.

    2003-07-01

    During unequal cell divisions a mitotic spindle is eccentrically positioned before cell cleavage. To determine the basis of the net force imbalance that causes spindle displacement in one-cell Caenorhabditis elegans embryos, we fragmented centrosomes with an ultraviolet laser. Analysis of the mean and variance of fragment speeds suggests that the force imbalance is due to a larger number of force generators pulling on astral microtubules of the posterior aster relative to the anterior aster. Moreover, activation of heterotrimeric guanine nucleotide-binding protein (G protein) α subunits is required to generate these astral forces.

  10. Critical Casimir forces for colloidal assembly.

    PubMed

    Nguyen, V D; Dang, M T; Nguyen, T A; Schall, P

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium. PMID:26750980

  11. Casimir force measurements from silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  12. Critical Casimir forces for colloidal assembly

    NASA Astrophysics Data System (ADS)

    Nguyen, V. D.; Dang, M. T.; Nguyen, T. A.; Schall, P.

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  13. Binding of TATA Binding Protein to a Naturally Positioned Nucleosome Is Facilitated by Histone Acetylation

    PubMed Central

    Sewack, Gerald F.; Ellis, Thomas W.; Hansen, Ulla

    2001-01-01

    The TATA sequence of the human, estrogen-responsive pS2 promoter is complexed in vivo with a rotationally and translationally positioned nucleosome (NUC T). Using a chromatin immunoprecipitation assay, we demonstrate that TATA binding protein (TBP) does not detectably interact with this genomic binding site in MCF-7 cells in the absence of transcriptional stimuli. Estrogen stimulation of these cells results in hyperacetylation of both histones H3 and H4 within the pS2 chromatin encompassing NUC T and the TATA sequence. Concurrently, TBP becomes associated with the pS2 promoter region. The relationship between histone hyperacetylation and the binding of TBP was assayed in vitro using an in vivo-assembled nucleosomal array over the pS2 promoter. With chromatin in its basal state, the binding of TBP to the pS2 TATA sequence at the edge of NUC T was severely restricted, consistent with our in vivo data. Acetylation of the core histones facilitated the binding of TBP to this nucleosomal TATA sequence. Therefore, we demonstrate that one specific, functional consequence of induced histone acetylation at a native promoter is the alleviation of nucleosome-mediated repression of the binding of TBP. Our data support a fundamental role for histone acetylation at genomic promoters in transcriptional activation by nuclear receptors and provide a general mechanism for rapid and reversible transcriptional activation from a chromatin template. PMID:11158325

  14. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels.

    PubMed

    Tagliazucchi, Mario; Szleifer, Igal

    2015-10-01

    We present systematic studies for the binding of small model proteins to ligands attached to the inner walls of long nanochannels and short nanopores by polymeric tethers. Binding of proteins to specific ligands inside nanometric channels and pores leads to changes in their ionic conductance, which have been exploited in sensors that quantify the concentration of the proteins in solution. The theoretical predictions presented in this work are aimed to provide a fundamental understanding of protein binding under geometrically confined environments and to guide the design of this kind of nanochannel-based sensors. The theory predicts that the fraction of the channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These results are explained from the incomplete binding of proteins to the ligands due to repulsive protein-protein and protein-ligand steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i) proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used, and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely charged. PMID:26368839

  15. Neutral Sites for Calcium Ion Binding to Elastin and Collagen: A Charge Neutralization Theory for Calcification and Its Relationship to Atherosclerosis

    PubMed Central

    Urry, D. W.

    1971-01-01

    Neutral, uncharged binding sites for calcium ions are proposed for elastin and collagen. The sites utilize, particularly from a conformational viewpoint, the most striking feature of the amino acid composition, that is, the high glycine content. Glycines favor the formation of β-turns and associated conformations that are known, from studies on ion-transporting antibiotics, to interact with cations. By analogy with certain antibiotics, which are uncharged polypeptides and depsipeptides that bind cations by coordination with neutral acyl oxygens, it is proposed that calcium-ion binding also utilizes uncharged coordinating groups, i.e., neutral sites, in the protein matrix. The protein matrix, which becomes positively charged by virtue of the bound calcium ions, attracts neutralizing phosphate and carbonate ions, which then allow further calcium ion binding. The driving force is, therefore, the affinity of calcium ions for the neutral nucleation sites. The charge neutralization theory of calcification suggests a fundamental role of organic anions, for example sulfated mucopolysaccharides, in regulating bone formation and in retardation of atherosclerosis. The proposed mechanism contains elements that tend to unify several theories on the pathogenesis of atherosclerosis. PMID:4251554

  16. Coulomb force as an entropic force

    NASA Astrophysics Data System (ADS)

    Wang, Tower

    2010-05-01

    Motivated by Verlinde’s theory of entropic gravity, we give a tentative explanation to the Coulomb’s law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb’s law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

  17. Coulomb force as an entropic force

    SciTech Connect

    Wang Tower

    2010-05-15

    Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

  18. 146 Kepler-Lamost targets fundamental parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yaqian

    2015-08-01

    Accurate stellar fundamental parameters with high precision are important for distinguishing stellar populationand star study.Turn-off stars are in the relatively vital stellar evolution state. Studying turn-off stars can help us to have a more comprehensive understand of the stellar physics.With the help of observation provided by Lamost project, we obtain atmospheric parameters of 146 turn-off stars from LSP3 pipeline. Combined with stellar pulsation data from Kepler, we can get asteroseismic characteristic of stars,such as Δν and νmax.In this paper,we constructed a grid of evolutionary models, with the mass range from 0.8 to 2.5 M⊙ and metallicities Zini = 0.0085, 0.0105, 0.0130, 0.0165, 0.0200, 0.0250, 0.0300, 0.0400 (i.e.[Fe/H] from -0.3 to 0.4dex).All evolutionary tracks were started in the pre-main sequence birth line and ended at the base of Red Giant Branch.Based on the stellar model grid we constructed,as well as Kepler-Lamost observations, we obtained fundamental parameters of 146 around turn-off stars, and found that 112 targets lied in turn-off state or in the Main Sequence,15 targets are subgiant stars and 7 targets have evolved to the red giants stage.Then we use pulsation code(JIG) of Guenther to extract theorical individual frequencies and calculate theorical Δν.Meanwhile we obtained more precise fundamental parameters of these stars.

  19. Model for a fundamental theory with supersymmetry

    NASA Astrophysics Data System (ADS)

    Yokoo, Seiichiro

    Physics in the year 2006 is tightly constrained by experiment, observation, and mathematical consistency. The Standard Model provides a remarkably precise description of particle physics, and general relativity is quite successful in describing gravitational phenomena. At the same time, it is clear that a more fundamental theory is needed for several distinct reasons. Here we consider a new approach, which begins with the unusually ambitious point of view that a truly fundamental theory should aspire to explaining the origins of Lorentz invariance, gravity, gauge fields and their symmetry, supersymmetry, fermionic fields, bosonic fields, quantum mechanics and spacetime. The present dissertation is organized so that it starts with the most conventional ideas for extending the Standard Model and ends with a microscopic statistical picture, which is actually the logical starting point of the theory, but which is also the most remote excursion from conventional physics. One motivation for the present work is the fact that a Euclidean path integral in quantum physics is equivalent to a partition function in statistical physics. This suggests that the most fundamental description of nature may be statistical. This dissertation may be regarded as an attempt to see how far one can go with this premise in explaining the observed phenomena, starting with the simplest statistical picture imaginable. It may be that nature is richer than the model assumed here, but the present results are quite suggestive, because, with a set of assumptions that are not unreasonable, one recovers the phenomena listed above. At the end, the present theory leads back to conventional physics, except that Lorentz invariance and supersymmetry are violated at extremely high energy. To be more specific, one obtains local Lorentz invariance (at low energy compared to the Planck scale), an SO( N) unified gauge theory (with N = 10 as the simplest possibility), supersymmetry of Standard Model fermions and

  20. Fundamental limits on NOx reduction by plasma

    SciTech Connect

    Penetrante, B. M., LLNL

    1997-04-07

    This paper discusses the gas-phase reaction mechanisms for removal of NO{sub x} in a plasma. The effect of oxygen content on the competition between the reduction and oxidation processes is discussed. The effect of the electron kinetic energy distribution on the radical production and subsequent chemistry is then discussed in order to predict the best performance that can be achieved for NO{sub x} reduction using the plasma alone. The fundamental limit on the minimum electrical energy consumption that will be required to implement NO{sub x} reduction in any type of plasma reactor is established.

  1. Fundamental Structure of Matter and Strong Interaction

    SciTech Connect

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  2. Development of Fundamental Technologies for Micro Bioreactors

    NASA Astrophysics Data System (ADS)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  3. Black hole constraints on varying fundamental constants.

    PubMed

    MacGibbon, Jane H

    2007-08-10

    We apply the generalized second law of thermodynamics and derive upper limits on the variation in the fundamental constants. The maximum variation in the electronic charge permitted for black holes accreting and emitting in the present cosmic microwave background corresponds to a variation in the fine-structure constant of Deltaalpha/alpha approximately 2 x 10(-23) per second. This value matches the variation measured by Webb et al. [Phys. Rev. Lett. 82, 884 (1999); Phys. Rev. Lett. 87, 091301 (2001)] using absorption lines in the spectra of distant quasars and suggests the variation mechanism may be a coupling between the electron and the cosmic photon background. PMID:17930813

  4. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  5. Fundamental bioprocessing research for coal applications

    SciTech Connect

    Kaufman, E.N.

    1996-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by use of milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such.

  6. Model atmospheres and fundamental stellar parameters

    NASA Astrophysics Data System (ADS)

    Plez, B.

    2013-11-01

    I start by illustrating the need for precise and accurate fundamental stellar parameters through there examples: lithium abundances in metal-poor stars, the derivation of stellar ages from isochrones, and the chemical composition of planet-hosting stars. I present widely used methods (infrared flux method, spectroscopy) in the determination of T_{eff}, and log g. I comment upon difficulties encountered with the determination of stellar parameters of red supergiant stars, and I discuss the impact of non-LTE and 3D hydrodynamical effects.

  7. Fundamental studies of passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  8. Fundamental science of nanometer-size clusters

    SciTech Connect

    Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A.; Venturini, E.L.; Williamson, R.L.

    1995-10-01

    This research has produced a variety of monodisperse, nanometer-size clusters (nanoclusters for short), characterized their size and crystal structure and developed a scientific understanding of the size dependence of their physical properties. Of specific interest were the influence of quantum electronic confinement on the optical properties, magnetic properties, and dielectric properties. These properties were chosen both for their potential practical impact on various applications identified in the National Critical Technologies list (e.g., catalysis, information storage, sensors, environmental remediation, ...) as well as for their importance to the fundamental science of clusters. An Executive Summary provides a description of the major highlights.

  9. Effect of compressive force on unbinding specific protein-ligand complexes with force spectroscopy.

    PubMed

    Bowers, Carleen M; Carlson, David A; Rivera, Monica; Clark, Robert L; Toone, Eric J

    2013-05-01

    Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force-distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose-galectin-3, as well as the control pairs lactose-KDPG aldolase, and mannose-galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand-receptor pair lactose-G3. Increased contact force applied to two control systems with no known affinity, mannose-G3 and lactose-KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose-G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand-receptor interactions. PMID:23537272

  10. Fundamental Dynamics of Black Hole Physics

    NASA Astrophysics Data System (ADS)

    Haramein, Nassim

    2002-04-01

    The dynamics of rotating, charged black holes, obeying the Kerr-Newman metric is presented. These dynamical high-density, gravitationally collapsing, black hole systems for stellar, galactic, intergalactic and cosmogenesis appear to obey similar constraints on their mass, apparent density and radius. Under these extreme conditions, the gravitational force becomes "balanced" with the larger coupling constant of the electromagnetic force. Thus, the gravitational attraction forms dynamic pseudo equilibrium with the plasma dynamics surrounding the black holes. Thermodynamic-type processes occupy a role in energy transfer between gravitational attraction and electro-dynamic repulsion. Solving the modified Einstein-Maxwell's equations under high magnetic field conditions, with additional thermodynamic conditions, leads to a good description of the processes occurring externally, near and in the event horizons of the Kerr-Newman geometry and leads to a unification possibility. Reference; N. Haramein, Bull. Amer. Phys. Soc. AB06, 1154(2001)

  11. Investigating the Binding of Peptides to Graphene Surfaces for Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Garley, Amanda; Saikia, Nabanita; Barr, Stephen; Leuty, Gary; Berry, Rajiv; Heinz, Hendrik

    The Air Force Research Lab is focused on developing highly selective and sensitive graphene-based sensors functionalized with peptides for biomolecule detection. To achieve this there is a need to model interfacial binding interactions between the organic and inorganic components to complement ongoing experimental investigations. It is important to characterize the binding behavior of individual amino acids, with the goal of predicting binding of large peptides. Since polarization is important in graphene systems, a new force field which includes polarizability is used. This allows for an in depth exploration of pi-pi interactions, electrostatics and van der Waals forces involved with binding. The binding strength is determined via enthalpy and free energy calculations. Additionally, structural quantities are computed, such as how aromatic rings align with the graphene surface and the arrangement of various residue substituents in relation to the surface and water layers. Computational results are useful in guiding experimental methods focused on rapidly screening optimal peptide sequence for binding.

  12. Debunking Coriolis Force Myths

    NASA Astrophysics Data System (ADS)

    Shakur, Asif

    2014-11-01

    Much has been written and debated about the Coriolis force.1-8 Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without unleashing the usual mathematical apparatus, which we believe is more of a hindrance than a help.

  13. Lathe tool force

    SciTech Connect

    Emery, J.D.

    1993-02-01

    This report describes a computer program that computes the forces exerted on a lathe tool as a part is being machined. The program is based on a mechanistic model which assumes that the normal force on the tool face is proportional to the cross-sectional area of the chip that is being removed from the part. This report gives transcripts of program runs, a comparison with experimentally measured forces, a bibliography, and a listing of the program.

  14. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  15. Positron binding to molecules

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2011-05-01

    While there is theoretical evidence that positrons can bind to atoms, calculations for molecules are much less precise. Unfortunately, there have been no measurements of positron-atom binding, due primarily to the difficulty in forming positron-atom bound states in two-body collisions. In contrast, positrons attach to molecules via Feshbach resonances (VFR) in which a vibrational mode absorbs the excess energy. Using a high-resolution positron beam, this VFR process has been studied to measure binding energies for more than 40 molecules. New measurements will be described in two areas: positron binding to relatively simple molecules, for which theoretical calculations appear to be possible; and positron binding to molecules with large permanent dipole moments, which can be compared to analogous, weakly bound electron-molecule (negative-ion) states. Binding energies range from 75 meV for CS2 (no dipole moment) to 180 meV for acetonitrile (CH3CN). Other species studied include aldehydes and ketones, which have permanent dipole moments in the range 2.5 - 3.0 debye. The measured binding energies are surprisingly large (by a factor of 10 to 100) compared to those for the analogous negative ions, and these differences will be discussed. New theoretical calculations for positron-molecule binding are in progress, and a recent result for acetonitrile will be discussed. This ability to compare theory and experiment represents a significant step in attempts to understand positron binding to matter. In collaboration with A. C. L. Jones, J. J. Gosselin, and C. M. Surko, and supported by NSF grant PHY 07-55809.

  16. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  17. Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

    SciTech Connect

    Savargaonkar, N.

    1996-10-17

    Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.

  18. Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation

    PubMed Central

    Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Because of their large size compared to small molecules, and their multi-functionality, nanoparticles (NPs) hold promise as biomedical imaging, diagnostic, and theragnostic agents. However, the key to their success hinges on a detailed understanding of their behavior after administration into the body. NP biodistribution, target binding, and clearance are a complex function of their physicochemical properties in serum, which include hydrodynamic diameter, solubility, stability, shape and flexibility, surface charge, composition, and formulation. Moreover, many materials used to construct NPs have real or potential toxicity, or may interfere with other medical tests. In this review, we discuss the design considerations that mediate NP behavior in the body and the fundamental principles that govern clinical translation. By analyzing those nanomaterials that have already received regulatory approval, most of which are actually therapeutic agents, we attempt to predict which types of NPs hold potential as diagnostic agents for biomedical imaging. Finally, using quantum dots as an example, we provide a framework for deciding whether an NP-based agent is the best choice for a particular clinical application. PMID:21084027

  19. Opposites attract: a theorem about the Casimir Force.

    PubMed

    Kenneth, Oded; Klich, Israel

    2006-10-20

    We consider the Casimir interaction between (nonmagnetic) dielectric bodies or conductors. Our main result is a proof that the Casimir force between two bodies related by reflection is always attractive, independent of the exact form of the bodies or dielectric properties. Apart from being a fundamental property of fields, the theorem and its corollaries also rule out a class of suggestions to obtain repulsive forces, such as the two hemisphere repulsion suggestion and its relatives. PMID:17155375

  20. Mechanotransduction: use the force(s).

    PubMed

    Paluch, Ewa K; Nelson, Celeste M; Biais, Nicolas; Fabry, Ben; Moeller, Jens; Pruitt, Beth L; Wollnik, Carina; Kudryasheva, Galina; Rehfeldt, Florian; Federle, Walter

    2015-01-01

    Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena. This forum explores the role of mechanotransduction in a variety of cellular activities and highlights intriguing questions that deserve further attention. PMID:26141078

  1. Electrodynamic force law controversy.

    PubMed

    Graneau, P; Graneau, N

    2001-05-01

    Cavalleri et al. [Phys. Rev. E 52, 2505 (1998); Eur. J. Phys. 17, 205 (1996)] have attempted to resolve the electrodynamic force law controversy. This attempt to prove the validity of either the Ampère or Lorentz force law by theory and experiment has revealed only that the two are equivalent when predicting the force on part of a circuit due to the current in the complete circuit. However, in our analysis of internal stresses, only Ampère's force law agrees with experiment. PMID:11415053

  2. The fundamental plane correlations for globular clusters

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.

    1995-01-01

    In the parameter space whose axes include a radius (core, or half-light), a surface brightness (central, or average within the half-light radius), and the central projected velocity dispersion, globular clusters lie on a two-dimensional surface (a plane, if the logarithmic quantities are used). This is analogous to the 'fundamental plane' of elliptical galaxies. The implied bivariate correlations are the best now known for globular clusters. The derived scaling laws for the core properties imply that cluster cores are fully virialized, homologous systems, with a constant (M/L) ratio. The corresponding scaling laws on the half-light scale are differrent, but are nearly identical to those derived from the 'fundamental plane' of ellipticals. This may be due to the range of cluster concentrations, which are correlated with other parameters. A similar explanation for elliptical galaxies may be viable. These correlations provide new empirical constraints for models of globular cluster formation and evolution, and may also be usable as rough distance-indicator relations for globular clusters.

  3. Microbial Cellulose Utilization: Fundamentals and Biotechnology

    PubMed Central

    Lynd, Lee R.; Weimer, Paul J.; van Zyl, Willem H.; Pretorius, Isak S.

    2002-01-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts. PMID:12209002

  4. DNA Binding to the Silica Surface.

    PubMed

    Shi, Bobo; Shin, Yun Kyung; Hassanali, Ali A; Singer, Sherwin J

    2015-08-27

    We investigate the DNA-silica binding mechanism using molecular dynamics simulations. This system is of technological importance, and also of interest to explore how negatively charged DNA can bind to a silica surface, which is also negatively charged at pH values above its isoelectric point near pH 3. We find that the two major binding mechanisms are attractive interactions between DNA phosphate and surface silanol groups and hydrophobic bonding between DNA base and silica hydrophobic region. Umbrella sampling and the weighted histogram analysis method (WHAM) are used to calculate the free energy surface for detachment of DNA from a binding configuration to a location far from the silica surface. Several factors explain why single-stranded DNA (ssDNA) has been observed to be more strongly attracted to silica than double-stranded (dsDNA): (1) ssDNA is more flexible and therefore able to maximize the number of binding interactions. (2) ssDNA has free unpaired bases to form hydrophobic attachment to silica while dsDNA has to break hydrogen bonds with base partners to get free bases. (3) The linear charge density of dsDNA is twice that of ssDNA. We devise a procedure to approximate the atomic forces between biomolecules and amorphous silica to enable large-scale biomolecule-silica simulations as reported here. PMID:25966319

  5. Stretching DNA to quantify nonspecific protein binding

    NASA Astrophysics Data System (ADS)

    Goyal, Sachin; Fountain, Chandler; Dunlap, David; Family, Fereydoon; Finzi, Laura

    2012-07-01

    Nonspecific binding of regulatory proteins to DNA can be an important mechanism for target search and storage. This seems to be the case for the lambda repressor protein (CI), which maintains lysogeny after infection of E. coli. CI binds specifically at two distant regions along the viral genome and induces the formation of a repressive DNA loop. However, single-molecule imaging as well as thermodynamic and kinetic measurements of CI-mediated looping show that CI also binds to DNA nonspecifically and that this mode of binding may play an important role in maintaining lysogeny. This paper presents a robust phenomenological approach using a recently developed method based on the partition function, which allows calculation of the number of proteins bound nonspecific to DNA from measurements of the DNA extension as a function of applied force. This approach was used to analyze several cycles of extension and relaxation of λ DNA performed at several CI concentrations to measure the dissociation constant for nonspecific binding of CI (˜100 nM), and to obtain a measurement of the induced DNA compaction (˜10%) by CI.

  6. Intrinsic adhesion force of lubricants to steel surface.

    PubMed

    Lee, Jonghwi

    2004-09-01

    The intrinsic adhesion forces of lubricants and other pharmaceutical materials to a steel surface were quantitatively compared using Atomic Force Microscopy (AFM). A steel sphere was attached to the tip of an AFM cantilever, and its adhesion forces to the substrate surfaces of magnesium stearate, sodium stearyl fumarate, lactose, 4-acetamidophenol, and naproxen were measured. Surface roughness varied by an order of magnitude among the materials. However, the results clearly showed that the two lubricants had about half the intrinsic adhesion force as lactose, 4-acetamidophenol, and naproxen. Differences in the intrinsic adhesion forces of the two lubricants were insignificant. The lubricant molecules were unable to cover the steel surface during AFM measurements. Intrinsic adhesion force can slightly be modified by surface treatment and compaction, and its tip-to-tip variation was not greater than its difference between lubricants and other pharmaceutical particles. This study provides a quantitative fundamental basis for understanding adhesion related issues. PMID:15295791

  7. Universal aspects of adhesion and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Smith, John R.; Ferrante, John

    1990-01-01

    Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.

  8. PREFACE New developments in nanopore research—from fundamentals to applications New developments in nanopore research—from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Edel, Joshua B.; Winterhalter, Mathias

    2010-11-01

    Biological and solid-state nanopores are an exciting field of research, which has seen a rapid development over the last 10 to 20 years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics to applications in single-molecule biosensing. And while the prospect of DNA sequencing continues to be a major driving force, other applications with potentially similar impact begin to emerge, for example the detection of small molecules, proteins, protein/protein and protein/DNA complexes, and RNA to name just a few. It has also become apparent that both classes of nanopore devices have intrinsic advantages and disadvantages; hybrid structures combining the better of the two worlds would be a logical consequence and are beginning to appear in the literature. Many other highly innovative ideas and concepts continue to emerge and the number of nanopore-related publications has increased drastically over recent years. We found that more than 100 research groups worldwide are active in this area; several commercial settings are in the process of translating fundamental research into real-life applications. We therefore felt that now is the right time to showcase these new developments in a special issue: to inspire researchers active in the field, to liberate inherent synergies, and not least, to demonstrate to the outside world the current state-of-the-art and future opportunities. The title 'New developments in nanopore research—from fundamentals to applications' in some way reflects these ambitions and, even though not everyone invited was able to contribute, we were able to assemble 34 high-quality research papers from all over the world. We would like to acknowledge and thank all the contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the

  9. Fundamental Complex Plasma Research on Ground and under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Fortov, Vladimir; Thoma, Markus; Pustylnik, Mikhail; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Usachev, Alexander; Nosenko, Vladimir; Fink, Martin; Petrov, Oleg; Rubin-Zuzic, Milenko

    2016-07-01

    Complex (dusty) plasma is plasma containing small solid particles in the sub-mm range. Those "dust" particles are highly charged due to the collection of electrons and ions and they interact electrostatically. Depending on the charge, density, and kinetic temperature of the particles, the interaction may be strong leading to collective effects and the emergence of liquid or solid behavior. In that sense complex plasmas are perfect model systems for the investigation of fundamental processes in classical condensed matter physics since their constituent mesoscopic particles are individually observable and can be regarded as classically interacting "proxy atoms". The term "complex plasmas" is widely used in the literature to distinguish dusty plasmas composed of a weakly ionized gas and charged microparticles specially "designed" for investigations in classical condensed matter, from naturally occurring systems. Gravity influences the complex plasma, the microparticles sediment and stable systems can only be achieved through counteracting gravity with other volume forces, e.g. electric or thermophoretic force. This allows producing two-dimensional - monolayer - systems, or three-dimensional systems under stress. Only under weightlessness conditions, large and homogeneous 3D systems can be formed. Although phenomena in classical condensed matter physics are in the forefront of complex plasma research the basic know-how gained from experiments, theory and numerical simulations can be of importance for the understanding of naturally occurring dusty plasmas in space. Thus, in this presentation I will show recent work on complex plasmas from the ground and first results from the PK-4 facility onboard the International Space Station ISS. Acknowledgements: We would like to acknowledge the joint ESA-ROSCOSMOS Experiment «Plasma Kristall-4» onboard the International Space Station ISS. This work is partly supported by DLR grant 50WM1441/ 50WM1442 and by the Russian Science

  10. Discriminatory effects in the optical binding of chiral nanoparticles

    NASA Astrophysics Data System (ADS)

    Forbes, Kayn A.; Bradshaw, David S.; Andrews, David L.

    2015-08-01

    The laser-induced intermolecular force that exists between two or more particles subjected to a moderately intense laser beam is termed `optical binding'. Completely distinct from the single-particle forces that give rise to optical trapping, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In conjunction with optical trapping, the optomechanical forces in optical binding afford means for the manipulation and fabrication of optically bound matter. The Casimir-Polder potential that is intrinsic to all matter can be overridden by the optical binding force in cases where the laser beam is of sufficient intensity. Chiral discrimination can arise when the laser input has a circular polarization, if the particles are themselves chiral. Then, it emerges that the interaction between particles with a particular handedness is responsive to the left- or right-handedness of the light. The present analysis, which expands upon previous studies of chiral discrimination in optical binding, identifies a novel mechanism that others have previously overlooked, signifying that the discriminatory effect is much more prominent than originally thought. The new theory leads to results for freely-tumbling chiral particles subjected to circularly polarized light. Rigorous conditions are established for the energy shifts to be non-zero and display discriminatory effects with respect to the handedness of the incident beam. Detailed calculations indicate that the energy shift is larger than those previously reported by three orders of magnitude.

  11. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  12. Detergent binding as a sensor of hydrophobicity and polar interactions in the binding cavities of proteins.

    PubMed

    Peyre, Véronique; Lair, Virginie; André, Virginie; le Maire, Guerric; Kragh-Hansen, Ulrich; le Maire, Marc; Møller, Jesper V

    2005-09-13

    To evaluate the role of hydrophobic and electrostatic or other polar interactions for protein-ligand binding, we studied the interaction of human serum albumin (HSA) and beta-lactoglobulin with various aliphatic (C10-C14) cationic and zwitterionic detergents. We find that cationic detergents, at levels that do not cause unfolding, interact with a single site on beta-lactoglobulin and with two primary and five to six secondary sites on HSA with an affinity that is approximately the same as that with which zwitterionic (dimethylamineoxide) detergents interact, suggesting the absence of significant electrostatic interactions in the high-affinity binding of these compounds. The binding affinity for all of the groups of compounds was dependent upon hydrocarbon chain length, suggesting the predominant role of hydrophobic forces, supported by polar interactions at the protein surface. A distinct correlation between the binding energy and the propensity for micelle formation within the group of cationic or noncharged (nonionic and zwitterionic) detergents indicated that the critical micellar concentration (CMC) for each of these detergent groups, rather than the absolute length of the hydrocarbon chain, can be used to compare their hydrophobicities during their interaction with protein. Intrinsic fluorescence data suggest that the two primary binding sites on serum albumin for the zwitterionic and cationic compounds are located in the C-terminal part of the albumin molecule, possibly in the Sudlow II binding region. Comparisons with previous binding data on anionic amphiphiles emphasize the important contribution of ion bond formation and other polar interactions in the binding of fatty acids and dodecyl sulfate (SDS) by HSA but not by beta-lactoglobulin. Electrostatic interactions by cationic detergents played a significant role in destabilizing the protein structure at high binding levels, with beta-lactoglobulin being more susceptible to unfolding than HSA. Zwitterionic

  13. Quantifying mechanical force in axonal growth and guidance

    PubMed Central

    Athamneh, Ahmad I. M.; Suter, Daniel M.

    2015-01-01

    Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight: (1) standing questions concerning the role of mechanical force in axonal growth and guidance; and (2) different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks. PMID:26441530

  14. Metallochaperones: bind and deliver

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Metallochaperones deliver metal ions directly to target proteins via specific protein-protein interactions. Recent research has led to a molecular picture of how some metallochaperones bind metal ions, recognize their partner proteins, and accomplish metal ion transfer.

  15. Cation charge dependence of the forces driving DNA assembly.

    PubMed

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge. PMID:20959102

  16. Crude oil prices: Speculation versus fundamentals

    NASA Astrophysics Data System (ADS)

    Kolodziej, Marek Krzysztof

    Beginning in 2004, the price of crude oil fluctuates rapidly over a wide range. Large and rapid price increases have recessionary consequences and dampen long-term infrastructural investment. I investigate whether price changes are driven by market fundamentals or speculation. With regard to market fundamentals, I revisit econometric evidence for the importance of demand shocks, as proxied by dry maritime cargo rates, on oil prices. When I eliminate transportation costs from both sides of the equation, disaggregate OPEC and non-OPEC production, and allow for more than one cointegrating relation, I find that previous specifications are inconsistent with arguments that demand shocks play an important role. Instead, results confirm the importance of OPEC supply shocks. I investigate two channels by which speculation may affect oil prices; the direct effect of trader behavior and changes in oil from a commodity to a financial asset. With regard to trader behavior, I find evidence that trader positions are required to explain the spread between spot and futures prices of crude oil on the New York Mercantile Exchange. The inclusion of trader positions clarifies the process of equilibrium error correction, such that there is bidirectional causality between prices and trader positions. This creates the possibility of speculative bubbles. With regard to oil as a commodity and/or financial asset, I use a Kalman Filter model to estimate the time-varying partial correlation between returns to investments in equity and oil markets. This correlation changes from negative to positive at the onset of the 2008 financial crisis. The low interest rates used to rescue the economy depress convenience yields, which reduces the benefits of holding oil as a commodity. Instead, oil becomes a financial asset (on net) as the oil market changed from contango to backwardation. Contradicting simple political narratives, my research suggests that both market fundamentals and speculation drive

  17. Fundamentals of Physics, Part 1 (Chapters 1-11)

    NASA Astrophysics Data System (ADS)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2003-12-01

    . 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11.Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Appendix A: The International System of Units (SI). Appendix B: Some Fundamental Constants of Physics. Appendix C: Some Astronomical Data. Appendix D: Conversion Factors. Appendix E: Mathematical Formulas. Appendix F: Properties of the Elements. Appendix G: Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.

  18. Unbinding Force Measurement of a Histidine--Nickel Complex. The His-Tag Immobilization Force.

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey G.; Yim, Peter

    1998-03-01

    A sequence of six or more histidines will bind tightly to a nickel complex. The compound typically used to immobilized the nickel is N-(5-amino-1-carboxypentyl)iminodiacetic acid (NTA). Most proteins will not bind to the complex unless there is a sequence of histidines, which is readily added using recombinant DNA techniques. The histidine tag may be removed from the nickel complex with a high concentration of imidazole or by protonating the histidines at a pH below 6. We have studied the the unbinding strength of this interaction with the atomic force microscope (AFM). To perform this measurement, we have functionalized silicon nitride AFM tips with Ni--NTA. A glass slide was coated with recombinant DNAse I with a his-tag on the C-terminus. Unbinding force measurements were made in phosphate buffered saline (PBS) to reduce electrostatic interactions. We find that the unbinding force for the NTA-Ni/His-tag interaction to be ca. 50 pN. Interestingly, 0.5 M imidazole does not remove the interaction, but only changes the distribution of the measured forces. This is a result of the non-equilibrium condition of the tip being forced into the protein coated surface. The interaction is completely removed by lowering the pH to 5.0 where the histidines are protonated and can no longer coordinate with the nickel.

  19. SCM-Forcing Data

    DOE Data Explorer

    Xie, Shaocheng; Tang,Shuaiqi; Zhang,Yunyan; Zhang,Minghua

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  20. Force Concept Inventory.

    ERIC Educational Resources Information Center

    Hestenes, David; And Others

    1992-01-01

    Reports the rationale, design, validation, and uses of the "Force Concept Inventory," an instrument to assess the students' beliefs on force. Includes results and implications of two studies that compared the inventory with the "Mechanics Baseline." Includes a copy of the instrument. (MDH)

  1. Effect of centrifugal force on critical flutter speed on a uniform cantilever beam

    NASA Technical Reports Server (NTRS)

    Mendelson, Alexander

    1948-01-01

    Semirigid flutter theory is used. Calculations are made on airfoils with fundamental bending frequencies up to 2000 radian per second. Centrifugal force can under certain conditions reduce the critical flutter speed.

  2. Fundamental studies on cavitation melt processing

    NASA Astrophysics Data System (ADS)

    Tzanakis, I.; Hodnett, M.; Lebon, G. S. B.; Eskin, D. G.; Pericleous, K.

    2016-05-01

    The application of ultrasound to industrial casting processes has attracted research interest during the last 50 years. However, the transfer and scale-up of this advanced and promising technology to industry has been hindered by difficulties in treating large volumes of liquid metal due to the lack of understanding of certain fundamentals. In the current study experimental results on ultrasonic processing in deionised water and in liquid aluminium (Al) are reported. Cavitation activity was determined in both liquid environments and acoustic pressures were successfully measured using an advanced high-temperature cavitometer sensor. Results showed that highest cavitation intensity in the liquid bulk is achieved at lower amplitudes of the sonotrode tip than the maximum available, suggesting nonlinearity in energy transfer to the liquid, while the location of the sonotrode is seen to substantially affect cavitation activity within the liquid. Estimation of real-time acoustic pressures distributed inside a crucible with liquid Al was performed for the first time.

  3. Fundamentals of natural computing: an overview

    NASA Astrophysics Data System (ADS)

    de Castro, Leandro Nunes

    2007-03-01

    Natural computing is a terminology introduced to encompass three classes of methods: (1) those that take inspiration from nature for the development of novel problem-solving techniques; (2) those that are based on the use of computers to synthesize natural phenomena; and (3) those that employ natural materials (e.g., molecules) to compute. The main fields of research that compose these three branches are the artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial life, DNA computing, and quantum computing, among others. This paper provides an overview of the fundamentals of natural computing, particularly the fields listed above, emphasizing the biological motivation, some design principles, their scope of applications, current research trends and open problems. The presentation is concluded with a discussion about natural computing, and when it should be used.

  4. PREFACE: Fundamental Constants in Physics and Metrology

    NASA Astrophysics Data System (ADS)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  5. Space fundamentals for the war fighter

    NASA Astrophysics Data System (ADS)

    Clapp, William G.

    1994-02-01

    The quickening space technology revolution is as natural as life itself. Technology leads us to believe that anything is possible and that we are all privileged users. An understanding of some of the limitations of our space assets should moderate our expectations. The purpose of this paper is to provide a short and concise overview of the space environment and a fundamental understanding of space assets in order to understand their capabilities. The paper has been limited to the basic concepts of the atmosphere, rocket propulsion, launch vehicles, communications spectrum, and satellite assets. With the demise of the USSR threat, also gone are sufficient budgets that were going to provide the next generation of bigger and better satellites. We must accept the fact that next generation satellite security systems under development are now too expensive to field. Next generation satellite system funding may someday come again when a new threat diminishes our technological advantage.

  6. Sperm preservation: Fundamental cryobiology and practical implications

    SciTech Connect

    Watson, P.F. ); Critser, J.K. ); Mazur, P. )

    1992-01-01

    Human spermatozoa were first frozen successfully almost 40 years ago. While developments in packaging and storing have occurred in the intervening period, there is still little known specifically about how spermatozoa are adversely affected by freezing and thawing. This is largely due to the fact that sufficient cells survive the challenge to give a reasonable expectation of fertilization, but the shift to the exclusive use of cryopreserved semen for donor insemination, occasioned by the awareness of the risks particularly of AIDS transmission, has resulted in a renewed critical interest in the process of cryopreservation. This review will cover the more significant contributions over the past few years, and develop an argument for a sustained fundamental approach to sperm cryobiology.

  7. Sperm preservation: Fundamental cryobiology and practical implications

    SciTech Connect

    Watson, P.F.; Critser, J.K.; Mazur, P.

    1992-07-01

    Human spermatozoa were first frozen successfully almost 40 years ago. While developments in packaging and storing have occurred in the intervening period, there is still little known specifically about how spermatozoa are adversely affected by freezing and thawing. This is largely due to the fact that sufficient cells survive the challenge to give a reasonable expectation of fertilization, but the shift to the exclusive use of cryopreserved semen for donor insemination, occasioned by the awareness of the risks particularly of AIDS transmission, has resulted in a renewed critical interest in the process of cryopreservation. This review will cover the more significant contributions over the past few years, and develop an argument for a sustained fundamental approach to sperm cryobiology.

  8. Fundamental Equation of State for Deuterium

    SciTech Connect

    Richardson, I. A.; Leachman, J. W.; Lemmon, E. W.

    2014-03-15

    World utilization of deuterium is anticipated to increase with the rise of fusion-energy machines such as ITER and NIF. We present a new fundamental equation of state for the thermodynamic properties of fluid deuterium. Differences between thermodynamic properties of orthodeuterium, normal deuterium, and paradeuterium are described. Separate ideal-gas functions were fitted for these separable forms together with a single real-fluid residual function. The equation of state is valid from the melting line to a maximum pressure of 2000 MPa and an upper temperature limit of 600 K, corresponding to available experimental measurements. The uncertainty in predicted density is 0.5% over the valid temperature range and pressures up to 300 MPa. The uncertainties of vapor pressures and saturated liquid densities are 2% and 3%, respectively, while speed-of-sound values are accurate to within 1% in the liquid phase.

  9. Fundamental limitations for quantum and nanoscale thermodynamics.

    PubMed

    Horodecki, Michał; Oppenheim, Jonathan

    2013-01-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. PMID:23800725

  10. Fundamental limitations for quantum and nanoscale thermodynamics

    NASA Astrophysics Data System (ADS)

    Horodecki, Michał; Oppenheim, Jonathan

    2013-06-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit—when the number of particles becomes very large. Here we study thermodynamics in the opposite regime—at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.

  11. Fundamentals of fluorescence and fluorescence microscopy.

    PubMed

    Wolf, David E

    2013-01-01

    This chapter discusses the fundamental physics of fluorescence. The application of fluorescence to microscopy represents an important transition in the development of microscopy, particularly as it applies to biology. It enables quantitating the amounts of specific molecules within a cell, determining whether molecules are complexing on a molecular level, measuring changes in ionic concentrations within cells and organelles, and measuring molecular dynamics. This chapter also discusses the issues important to quantitative measurement of fluorescence and focuses on four of quantitative measurements of fluorescence--boxcar-gated detection, streak cameras, photon correlation, and phase modulation. Although quantitative measurement presents many pitfalls to the beginner, it also presents significant opportunities to one skilled in the art. This chapter also examines how fluorescence is measured in the steady state and time domain and how fluorescence is applied in the modern epifluorescence microscope. PMID:23931503

  12. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties. PMID:22432618

  13. Future fundamental combustion research for aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1985-01-01

    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  14. Fundamental aspects of quantum Brownian motion

    SciTech Connect

    Haenggi, Peter; Ingold, Gert-Ludwig

    2005-06-01

    With this work we elaborate on the physics of quantum noise in thermal equilibrium and in stationary nonequilibrium. Starting out from the celebrated quantum fluctuation-dissipation theorem we discuss some important consequences that must hold for open, dissipative quantum systems in thermal equilibrium. The issue of quantum dissipation is exemplified with the fundamental problem of a damped harmonic quantum oscillator. The role of quantum fluctuations is discussed in the context of both, the nonlinear generalized quantum Langevin equation and the path integral approach. We discuss the consequences of the time-reversal symmetry for an open dissipative quantum dynamics and, furthermore, point to a series of subtleties and possible pitfalls. The path integral methodology is applied to the decay of metastable states assisted by quantum Brownian noise.

  15. Constraining fundamental physics with future CMB experiments

    SciTech Connect

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-15

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  16. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  17. Fundamental Constants and Tests with Simple Atoms

    NASA Astrophysics Data System (ADS)

    Tan, Joseph

    2015-05-01

    Precise measurements with simple atoms provide stringent tests of physical laws, improving the accuracy of fundamental constants--a set of which will be selected to fully define the proposed New International System of Units. This talk focuses on the atomic constants (namely, the Rydberg constant, the fine-structure constant, and the proton charge radius), discussing the impact of the proton radius obtained from the Lamb-shift measurements in muonic hydrogen. Significant discrepancies persist despite years of careful examination: the slightly smaller proton radius obtained from muonic hydrogen requires the Rydberg constant and the fine-structure constant to have values that disagree significantly with the CODATA recommendations. After giving a general overview, I will discuss our effort to produce one-electron ions in Rydberg states, to enable a different test of theory and measurement of the Rydberg constant.

  18. Fundamental study on gas monitoring in celss

    NASA Astrophysics Data System (ADS)

    Nishi, I.; Tateishi, T.; Tomizawa, G.; Nitta, K.; Oguchi, M.

    A mass spectrometer and computer system was developed for conducting a fundamental study on gas monitoring in CELSS. Respiration and metabolism of the hamster and photosynthesis of the Spirulina were measured in a combination system consisting of a hamster chamber and a Spirulina cultivator. They are connected through a membrane gas exchanger. Some technical problems were examined. In the mass spectrometric gas monitoring, a simultaneous multi-sample measurement was developed by employing a rotating exchange valve. Long term precise measurement was obtained by employing an automatic calibration system. The membrane gas sampling probe proved to be useful for long term measurement. The cultivation rate of the Spirulina was effectively changed by controlling CO2 and light supply. The experimental results are helpful for improving the hamster-spirulina system.

  19. Fundamental study on gas monitoring in CELSS

    NASA Technical Reports Server (NTRS)

    Nishi, I.; Tateishi, T.; Tomizawa, G.; Nitta, K.; Oguchi, M.

    1987-01-01

    A mass spectrometer and computer system was developed for conducting a fundamental study on gas monitoring in a Controlled Ecological Life Support System. Respiration and metabolism of the hamster and photosynthesis of the Spirulina were measured in a combination system consisting of a hamster chamber and a Spirulina cultivator. They are connected through a membrane gas exchanger. Some technical problems were examined. In the mass spectrometric gas monitoring, a simultaneous multisample measurement was developed by employing a rotating exchange valve. Long term precise measurement was obtained by employing an automatic calibration system. The membrane gas sampling probe proved to be useful for long term measurement. The cultivation rate of the Spirulina was effectively changed by controlling CO2 and light supply. The experimental results are helpful for improving the hamster-spirulina system.

  20. Two Fundamental Principles of Nature's Interactions

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Wang, Shouhong

    2014-03-01

    In this talk, we present two fundamental principles of nature's interactions, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action functional under energy-momentum conservation constraint. PID offers a completely different and natural way of introducing Higgs fields. PRI requires that physical laws be independent of representations of the gauge groups. These two principles give rise to a unified field model for four interactions, which can be naturally decoupled to study individual interactions. With these two principles, we are able to derive 1) a unified theory for dark matter and dark energy, 2) layered strong and weak interaction potentials, and 3) the energy levels of subatomic particles. Supported in part by NSF, ONR and Chinese NSF.

  1. The Failed Feminist Challenge to `Fundamental Epistemology'

    NASA Astrophysics Data System (ADS)

    Pinnick, Cassandra L.

    Despite volumes written in the name of the new and fundamental feminist project in philosophy of science, and conclusions drawn on the strength of the hypothesis that the feminist project will boost progress toward cognitive aims associated with science and rationality (and, one might add, policy decisions enacted in the name of these aims), the whole rationale for the project remains (after 20 years, plus) wholly unsubstantiated. We must remain agnostic about its evidentiary merits or demerits. This is because we are without evidence to test the hypothesis: certainly, we have no data that would test the strength of the hypothesis as asserting a causal relationship between women and cognitive ends. Thus, any self-respecting epistemologist who places a premium on evidence-driven belief and justification ought not to accept the hypothesis. By extension, there is no reasoned basis to draw any definitive conclusion about the project itself. No matter how self-evidently correct.

  2. [Fundamental ophthalmology: the role of electrophysiological studies].

    PubMed

    Zueva, M V

    2014-01-01

    Studying of functional aspects of eye disease pathogenesis by electrophysiological methods is widely demanded in fundamental ophthalmology. Introduction of modern methods of functional assessment into experimental and clinical projects significantly broadens knowledge of normal and pathological functioning of the visual system and is the basis for further development of new strategies of pathogenetic treatment, diagnostics and expert evaluation. Some problems of ophthalmology, including those that concern age-related macular degeneration, glaucoma, diabetic retinopathy, and other diseases, are considered in the context of how much electrophysiology contributes to their solution. The role of functional examinations of the retina in studying pathophysiology of neurodegenerative brain diseases, such as Alzheimer's and Parkinson's, is also discussed. PMID:25715550

  3. Photoacoustic tomography: fundamentals, advances and prospects

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2011-01-01

    Optical microscopy has been contributing to the development of life science for more than three centuries. However, due to strong optical scattering in tissue, its in vivo imaging ability has been restricted to studies at superficial depths. Advances in photoacoustic tomography (PAT) now allow multiscale imaging at depths from sub-millimeter to several centimeters, with spatial resolutions from sub-micrometer to sub-millimeter. Because of this high scalability and its unique optical absorption contrast, PAT is capable of performing anatomical, functional, molecular and fluid-dynamic imaging at various system levels, and is playing an increasingly important role in fundamental biological research and clinical practice. This Review discusses recent technical progress in PAT and presents corresponding applications. It ends with a discussion of several prospects and their technical challenges. PMID:22025335

  4. Loudness predicts prominence: Fundamental frequency lends little

    NASA Astrophysics Data System (ADS)

    Kochanski, G.; Grabe, E.; Coleman, J.; Rosner, B.

    2005-08-01

    We explored a database covering seven dialects of British and Irish English and three different styles of speech to find acoustic correlates of prominence. We built classifiers, trained the classifiers on human prominence/nonprominence judgments, and then evaluated how well they behaved. The classifiers operate on 452 ms windows centered on syllables, using different acoustic measures. By comparing the performance of classifiers based on different measures, we can learn how prominence is expressed in speech. Contrary to textbooks and common assumption, fundamental frequency (f0) played a minor role in distinguishing prominent syllables from the rest of the utterance. Instead, speakers primarily marked prominence with patterns of loudness and duration. Two other acoustic measures that we examined also played a minor role, comparable to f0. All dialects and speaking styles studied here share a common definition of prominence. The result is robust to differences in labeling practice and the dialect of the labeler.

  5. Fundamental Power Couplers for Superconducting Cavities

    SciTech Connect

    Isidoro E. Campisi

    2001-09-01

    Fundamental power couplers (FPC's) for superconducting cavities must meet very strict requirements to perform at high power levels (hundreds of kilowatts) and in a variety of conditions (CS, pulsed, travelling wave, standing wave) without adversely affecting the performance of the cavities they are powering. Producing good coupler designs and achieving operational performances in accelerator environments are challenging tasks that have traditionally involved large resources from many laboratories. The designs involve state-of-the-art activities in RF, cryogenic and mechanical engineering, materials science, vacuum technology, and electromagnetic field modeling. Handling, assembly and conditioning procedures have been developed to achieve ever-increasing power levels and more reliable operation. In this paper, the technical issues associated with the design, construction, assembly, processing, and operation of FPC's will be reviewed, together with the progress in FPC activities in several laboratories during the past few years.

  6. Fundamental principles and applications of microfluidic systems.

    PubMed

    Ong, Soon-Eng; Zhang, Sam; Du, Hejun; Fu, Yongqing

    2008-01-01

    Microelectromechanical systems (MEMS) technology has provided the platform for the miniaturization of analytical devices for biological applications. Beside the fabrication technology, the study and understanding of flow characteristics of fluid in micrometer or even nanometer scale is vital for the successful implementation of such miniaturized systems. Microfluidics is currently under the spotlight for medical diagnostics and many other bio-analysis as its physical size manifested numerous advantages over lab-based devices. In this review, elementary concepts of fluid and its flow characteristics together with various transport processes and microchannel condition are presented. They are among the fundamental building block for the success in microfluidic systems. Selected application examples include biological cell handling employing different schemes of manipulation and DNA amplification using different microreactor arrangement and fluid flow regime. PMID:17981751

  7. Fundamental Fluidization Research Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-01-01

    Morgantown Energy Technology Center proposes to conduct fundamental research on fluidization technology by designing, constructing, and operating a 2-foot diameter, 50-foot high, pressurized fluidized-bed unit. The anticipated result of the proposed project would be a better, understanding of fluidization phenomena under pressurized and high velocity conditions. This improved understanding would, provide a sound basis for design and scale-up of pressurized circulating fluidized-bed combustion (PCFBC) processes for fossil energy applications. Based on the analysis in the EA, DOE has determined that the proposed action is not a major, Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required and the Department is issuing this FONSI.

  8. k-strings as fundamental strings

    NASA Astrophysics Data System (ADS)

    Giataganas, Dimitrios

    2015-05-01

    It has been noticed that the k-string observables can be expressed in terms of the fundamental string ones. We identify a sufficient condition for a generic gravity dual background which when satisfied the mapping can be done. The condition is naturally related to a preserved quantity under the T-dualities acting on the Dp-brane describing the high representation Wilson loops. We also find the explicit relation between the observables of the heavy k-quark and the single quark states. As an application to our generic study and motivated by the fact that the anisotropic theories satisfy our condition, we compute the width of the k-string in these theories to find that the logarithmic broadening is still present, but the total result is affected by the anisotropy of the space.

  9. Fundamentals of Digital Engineering: Designing for Reliability

    NASA Technical Reports Server (NTRS)

    Katz, R.; Day, John H. (Technical Monitor)

    2001-01-01

    The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples

  10. Lorentz force velocimetry.

    PubMed

    Thess, A; Votyakov, E V; Kolesnikov, Y

    2006-04-28

    We describe a noncontact technique for velocity measurement in electrically conducting fluids. The technique, which we term Lorentz force velocimetry (LFV), is based on exposing the fluid to a magnetic field and measuring the drag force acting upon the magnetic field lines. Two series of measurements are reported, one in which the force is determined through the angular velocity of a rotary magnet system and one in which the force on a fixed magnet system is measured directly. Both experiments confirm that the measured signal is a linear function of the flow velocity. We then derive the scaling law that relates the force on a localized distribution of magnetized material to the velocity of an electrically conducting fluid. This law shows that LFV, if properly designed, has a wide range of potential applications in metallurgy, semiconductor crystal growth, and glass manufacturing. PMID:16712237

  11. Feeble forces and gravity.

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Visser, Matt

    1987-03-01

    We develop a scenario in which feeble intermediate range forces emerge as an effect resulting from the compactification (à la Kaluza-Klein) of multidimensional theories. These feeble forces compete with gravity and in general permit different bodies to fall to earth with different accelerations. We show that these feeble forces are mediated by vectors (V) and/or scalars (S), whose dimensionless coupling constants are typically of order gv ≈ gs ≈ 10-10 Under certain plausible assumptions the ranges of these feeble forces are expected to be of order 1 m to 1 km. It is conjectured that the general strategy will prove applicable to realistic multidimensional theories such as the 10-dimensional superstring theories. We speculate that deviations from the standard gravitational force-similar to the ones reported recently as a “fifth force”-may be interpreted as evidence for higher dimensions.

  12. Conservative entropic forces

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2011-10-01

    Entropic forces have recently attracted considerable attention as ways to reformulate, retrodict, and perhaps even "explain" classical Newtonian gravity from a rather specific thermodynamic perspective. In this article I point out that if one wishes to reformulate classical Newtonian gravity in terms of an entropic force, then the fact that Newtonian gravity is described by a conservative force places significant constraints on the form of the entropy and temperature functions. (These constraints also apply to entropic reinterpretations of electromagnetism, and indeed to any conservative force derivable from a potential.) The constraints I will establish are sufficient to present real and significant problems for any reasonable variant of Verlinde's entropic gravity proposal, though for technical reasons the constraints established herein do not directly impact on either Jacobson'sor Padmanabhan's versions of entropic gravity. In an attempt to resolve these issues, I will extend the usual notion of entropic force to multiple heat baths with multiple "temperatures" and multiple "entropies".

  13. Fundamental Space Biology 2010-2020

    NASA Astrophysics Data System (ADS)

    Tomko, David; Souza, Kenneth; Quincy, Charles; Sun, Sidney

    The goal of NASA's Fundamental Space Biology (FSB) is to strive for U.S. excellence in the whole range of Space Biology -Cell and Molecular, Microbiology, Plant and Animal Biology, Developmental Biology. NASA plans to solicit and conduct research that will contribute to our basic knowledge of the effect of space on living systems. NASA will issue recurring FSB NASA Research Announcements (NRAs) to more fully engage the space biology community. In doing so, FSB research will optimize ISS utilization, develop and demonstrate technology and hard-ware that will enable new science, and contribute to the base of knowledge that will facilitate human countermeasure development. New research capabilities for whole animal and plant bi-ology will be added, and will be optimized by providing state-of-the-art automated technology and analytic techniques wherever possible to maximize scientific return and optimize animal use. Ground-based research to develop and test hypotheses for flight experiments, including hy-pergravity and hypogravity simulations will be an integral FSB activity. Flight experiments will use the most appropriate platform to achieve science results -e.g., ISS, free flyers, sub-orbital flights, and NASA will work with its international partners and other U.S. agencies to achieve these objectives. FSB's highest priority for the near future is the development of mammalian fundamental research capabilities. Another high priority is the development of hardware for studying multiple generations of large plants. Current research in cell and molecular biology will be expanded to include new analytical capabilities. By taking these steps, NASA hopes to energize the Space Biology user community and advance our knowledge of the effect of gravity on living systems.

  14. Fundamental optical processes in armchair carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hároz, Erik H.; Duque, Juan G.; Tu, Xiaomin; Zheng, Ming; Hight Walker, Angela R.; Hauge, Robert H.; Doorn, Stephen K.; Kono, Junichiro

    2013-01-01

    Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been revealed via photoluminescence, Raman scattering, and ultrafast optical spectroscopy of semiconducting carbon nanotubes. On the other hand, dynamical properties of metallic nanotubes have been poorly explored, although they are expected to provide a novel setting for the study of electron-hole pairs in the presence of degenerate 1-D electrons. In particular, (n,n)-chirality, or armchair, metallic nanotubes are truly gapless with massless carriers, ideally suited for dynamical studies of Tomonaga-Luttinger liquids. Unfortunately, progress towards such studies has been slowed by the inherent problem of nanotube synthesis whereby both semiconducting and metallic nanotubes are produced. Here, we use post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich ensemble samples in armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the near-infrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G-) feature is a result of resonance with non-armchair ``metallic'' nanotubes. These findings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes

  15. Force transmission during adhesion-independent migration.

    PubMed

    Bergert, Martin; Erzberger, Anna; Desai, Ravi A; Aspalter, Irene M; Oates, Andrew C; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2015-04-01

    When cells move using integrin-based focal adhesions, they pull in the direction of motion with large, ∼100 Pa, stresses that contract the substrate. Integrin-mediated adhesions, however, are not required for in vivo confined migration. During focal adhesion-free migration, the transmission of propelling forces, and their magnitude and orientation, are not understood. Here, we combine theory and experiments to investigate the forces involved in adhesion-free migration. Using a non-adherent blebbing cell line as a model, we show that actin cortex flows drive cell movement through nonspecific substrate friction. Strikingly, the forces propelling the cell forward are several orders of magnitude lower than during focal-adhesion-based motility. Moreover, the force distribution in adhesion-free migration is inverted: it acts to expand, rather than contract, the substrate in the direction of motion. This fundamentally different mode of force transmission may have implications for cell-cell and cell-substrate interactions during migration in vivo. PMID:25774834

  16. Harmonic Electromagnetic Forces in Induction Motors

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Matsushita, Makoto; Noda, Shinichi

    Recently, there has been increasing demand for quiet motors, and the same trend has been observed in the case of induction motors. In induction motors, electromagnetic noise is sometimes the predominant acoustic noise. In small motors, the major cause of vibration and noise is electromagnetic forces resulting from the combination of harmonic fluxes in the air gap. In this study, the spatial distribution of fundamental and harmonic time electromagnetic forces was studied by using search coils, by performing FEM analysis, and by using conventional equations. In a four-pole 2.2kW motor, harmonic electromagnetic forces were measured using 36 search coils on the inner surface of the stator teeth, and the spatial distribution of electromagnetic forces was obtained at each time harmonic frequency. Spatial distribution was also analyzed by FEM, and the results were analytically validated by using conventional equations. On the basis of these analyses, the spatial distribution of electromagnetic forces for various time harmonics was confirmed. These results can be used in the design and development of quiet motors.

  17. Magnetic vortex filaments, universal scale invariants, and the fundamental constants

    SciTech Connect

    Lerner, E.J.

    1986-12-01

    An explanation for the observed scale invariants in the universe is presented. Force-free magnetic vortex filaments are proposed to play a crucial role in the formation of superclusters, clusters, galaxies, and stars by initiating gravitational compression. The critical velocities involved in vortex formation are shown to explain the observed constant orbital velocities of clusters, galaxies, and stars. A second scale invariant nr = C where n is particle density and r is average distance between objects, is also noted here and explained by the model. The model predicts a maximum size for magnetic vortices, which is comparable to the dimensions of the observable universe and a density for such vortices which is close to that actually observed, eliminating any theoretical need for missing mass. On this basis, they present an alternative cosmology to that of the ''Big Bang,'' one which provides a much better fit to recent observations of large-scale structure and motion. The model suggests scale invariants between microscopic and cosmological scales, leading to the derivation of a simple analytical expression for the fundamental constants G, m/sub rho//m/sub e/, and e/sup 2//hc. We conclude that these expressions indicate the existence of vortex phenomena on the particle level.

  18. Hydrodynamic fundamentals of slippage over a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Schönecker, Clarissa; Schäffel, David; Koynov, Kaloian; Vollmer, Doris; Butt, Hans-Jürgen

    2015-11-01

    Water easily slips over superhydrophobic surfaces, making such surfaces attractive for the development of functional coatings. While the global behavior of flow past superhydrophobic surfaces has been widely investigated, the local physical fundamentals leading to slippage still remain unclear. Using fluorescence correlation spectroscopy, we performed detailed measurements of the local slip length for water in the Cassie state on a structured superhydrophobic surface. In combination with numerical calculations of the flow, we revealed that the local slip length of a superhydrophobic surface is finite, non-constant and anisotropic. Furthermore, it can be strongly influenced by the presence of surface active substances. All these properties can be explained by the local hydrodynamics within the air layer and at the air-water interface, such as the local flow field depending on the surface geometry or Marangoni forces. More general, these findings are also of relevance for the development of theoretical models of slippery surfaces that rely on a fluid being in the Cassie state.

  19. The relative entropy is fundamental to adaptive resolution simulations.

    PubMed

    Kreis, Karsten; Potestio, Raffaello

    2016-07-28

    Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner. PMID:27475345

  20. A Postulation of a Concept in Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2006-10-01

    I am postulating that all fermions have a quantum mouth (Planck size) that radiates a flux density of gravitons as a function of the mass of the particle. Nucleons are not hard balls like light bulbs radiating photons challenging Newtonian concepts of centers and surfaces. The hardball analogy is implicit in coupling constants that compare strong force relative to gravity. The radiating mouth is not localized at the center like a hypothetical point size filament of a light bulb with a hard surface. A point invokes mass of zero volume. It is too precise, inconsistent and illogical. Nothing can be localized with more accuracy that Planck length. Substituting the hard glass bulb surface with flexible plastic surface would clearly make the interacting mouths of particles approach each other as close as possible, but no less than the quantum limit of Planck length. Therefore, surface distance in Newtonian gravity would be a close approximation at particle scale and fits Feynman's road map [1]. My postulation reflected by Fig. 2 of gr-qc/0507130 explains observations of increasing values of coupling constants resulting from decreasing values of Planck length (See physics/0210040 v1). Since Planck length is the fundamental unit of length of nature, its variation can impact our observation of the universe and the evolutionary process.