These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Maniplating the phenolic acid content and digestibility of italian ryegrass ( Lolium multiflorum )b y vacuolar-targeted epession of a fungal ferulic acid esterase  

Microsoft Academic Search

In grass cell walls, ferulic acid esters linked to arabinosyl residues in arabinoxylans play a key role in crosslinking hemicellulose.\\u000a Although such crosslinks have a number of important roles in the cell wall, they also hinder the rate and extent of cell wall\\u000a degradation by ruminant microbes and by fungal glycohydrolyase enzymes. Ferulic acid esterase (FAE) can release both monomeric

Marcia M. de O. Buanafina; Tim Langdon; Barbara Hauck; Sue J D Alton; Phil Morris

2006-01-01

2

Manipulating the Phenolic Acid Content and Digestibility of Italian Ryegrass ( Lolium multiflorum ) by Vacuolar-Targeted Expression of a Fungal Ferulic Acid Esterase  

Microsoft Academic Search

In grass cell walls, ferulic acid esters linked to arabinosyl residues in arabinoxylans play a key role in crosslinking hemicellulose.\\u000a Although such crosslinks have a number of important roles in the cell wall, they also hinder the rate and extent of cell wall\\u000a degradation by ruminant microbes and by fungal glycohydrolyase enzymes. Ferulic acid esterase (FAE) can release both monomeric

Marcia M. de O. Buanafina; Tim Langdon; Barbara Hauck; Sue J. Dalton; Phil Morris

3

Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility  

PubMed Central

Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

2014-01-01

4

Addition of ferulic acid, ethyl ferulate, and feruloylated monoacyl- and diacylglycerols to salad oils and frying oils  

Microsoft Academic Search

To determine antioxidative effects of ferulic acid and esterified ferulic acids, these compounds were added to soybean oils\\u000a (SBO), which were evaluated for oxidative stability and frying stability. Additives included feruloylated MAG and DAG (FMG\\/FDG),\\u000a ferulic acid, ethyl ferulate, and TBHQ. After frying tests with potato chips, oils were analyzed for retention of additives\\u000a and polar compounds. Chips were evaluated

K. Warner; J. A. Laszlo

2005-01-01

5

Metabolism of Ferulic Acid by Paecilomyces variotii and Pestalotia palmarum  

PubMed Central

Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions. Images PMID:16348018

Rahouti, Mohammed; Seigle-Murandi, Francoise; Steiman, Regine; Eriksson, Karl-Erik

1989-01-01

6

Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea).  

PubMed

In the cell walls of grasses, ferulic acid is esterified to arabinoxylans and undergoes oxidative reactions to form ferulates dimers, trimers and oligomers. Feruloylation of arabinoxylan is considered important not only because it leads to cross-linked xylans but also because ferulates may act as a nucleating site for the formation of lignin and hence link arabinoxylans to lignin by forming a lignin-ferulate-arabinoxylan complex. Such cross-linking is among the main factors inhibiting the release of fermentable carbohydrates from grasses either for ruminant nutrition or for biofuel production. We have found that significant reductions in the levels of monomeric and dimeric phenolics can be achieved in the growing cell walls during plant development in leaves of Festuca arundinacea by constitutive intracellular targeted expression of Aspergillus niger ferulic acid esterase (FAEA). We propose that this occurred by directly disrupting ester bonds linking phenolics to cell wall polysaccharides by apoplast targeting or by preventing excessive feruloylation of cell wall carbohydrates prior to their incorporation into the cell wall, by targeting to the Golgi membrane system. Plants with lower cell wall ferulate levels, which showed increased digestibility and increased rates of cellulase-mediated release of fermentable sugars, were identified. Targeting FAE to the Golgi was found to be more effective than targeting to the ER, which supports the current theories of the Golgi as the site of feruloylation of arabinoxylans. It is concluded that targeting FAEA expression to the Golgi or apoplast is likely to be an effective strategy for improving wall digestibility in grass species used for fodder or cellulosic ethanol production. PMID:20102533

Buanafina, Marcia M de O; Langdon, Tim; Hauck, Barbara; Dalton, Sue; Timms-Taravella, Emma; Morris, Phillip

2010-04-01

7

[Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa].  

PubMed

The inhibitory effects and allelopathy mechanism of ferulic acid and coumarin on Microcystis aeruginosa were investigated by measuring the D680 value, the content of chlorophyll-a, the electrical conductivity (EC) and superoxide anion radical O*- value. Ferulic acid and coumarin had allelopathic effects on the growth of M. aeruginosa and promoted the physiological metabolism at low concentrations while inhibited the metabolism at high concentrations. Obvious inhibitory effects were observed when the concentration of ferulic acid or coumarin was over 100 mg x L(-1). The average inhibitory rates reached 80.3% and 58.0% after six days when the concentration of ferulic acid or coumarin was 200 mg x L(-1). The content of chlorophyll-a was decreased while the EC value and O2*- concentration were promoted by higher concentrations of ferulic acid or coumarin, suggesting that the growth of algae was inhibited probably by the damage of cell membrane, increase in the content of O2*- and decrease in the content of chlorophyll-a. In addition, seed germination test elucidated that Ferulic acid was safer than Coumarin. PMID:23798134

Guo, Ya-Li; Fu, Hai-Yan; Huang, Guo-He; Gao, Pan-Feng; Chai, Tian; Yan, Bin; Liao, Huan

2013-04-01

8

TWO BIOACTIVE FERULIC ACID DERIVATIVES FROM EREMOSTACHYS GLABRA  

Microsoft Academic Search

Two ferulic acid derivatives, hexacosyl-(E)-ferulate (1) and leucosceptoside A (2), have been isolated from the rhizomes of Eremostachys glabra. The chemical structures of these compounds have been elucidated by UV, ESIMS, 1H NMR and 13C NMR spectroscopic analyses, and also by comparing experimental data with respective literature data. The free radical scavenging activity and general toxicity of these compounds have

ABBAS DELAZAR; MOHAMMAD SHOEB; YASH KUMARASAMY; MAUREEN BYRES; LUTFUN NAHAR; MASOUD MODARRESI; SATYAJIT D. SARKER

9

Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria  

PubMed Central

Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

Kaur, Baljinder; Kumar, Balvir

2013-01-01

10

Cloning and Characterization of the Ferulic Acid Catabolic Genes of Sphingomonas paucimobilis SYK-6  

Microsoft Academic Search

Sphingomonas paucimobilis SYK-6 degrades ferulic acid to vanillin, and it is further metabolized through the protocatechuate 4,5-cleavage pathway. We obtained a Tn5 mutant of SYK-6, FA2, which was able to grow on vanillic acid but not on ferulic acid. A cosmid which complemented the growth deficiency of FA2 on ferulic acid was isolated. The 5.2-kb BamHI-EcoRI fragment in this cosmid

Eiji Masai; Kyo Harada; Xue Peng; Hirotaka Kitayama; Yoshihiro Katayama; Masao Fukuda

2002-01-01

11

The Release of Ferulic Acid and Feruloylated Oligosaccharides During Wort and Beer Production  

Microsoft Academic Search

J. Inst. Brew. 111(4), 372-379, 2005 Ferulic acid, a very attractive natural antioxidant is present in beer in free form, but the main form is the bound form as feru- loylated oligosaccharides. Previous research showed that feru- loylated oligosaccharides more effectively inhibited lipid and Low Density Lipoprotein oxidation than free ferulic acid. The aim of the present study was to

Dominik Szwajgier; Jacek Pielecki

12

Heterologous Expression of Two Ferulic Acid Esterases from Penicillium Funiculosum  

SciTech Connect

Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

Knoshaug, E. P.; Selig, M. J.; Baker, J. O.; Decker, S. R.; Himmel, M. E.; Adney, W. S.

2008-01-01

13

Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum  

NASA Astrophysics Data System (ADS)

Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

Knoshaug, Eric P.; Selig, Michael J.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.; Adney, William S.

14

Effects of ferulic acid on Glomus fasciculatum and associated effects on phosphorus uptake and growth of asparagus ( Asparagus officinalis L.)  

Microsoft Academic Search

The effect of ferulic acid, an allelochemical produced by asparagus, on hyphal elongation and colonization of asparagus byG. fasciculatum was studied. Spore germination in vitro was not affected, but hyphal elongation decreased significantly with increasing ferulic acid concentration. In the greenhouse, mycorrhizal colonization of roots and growth of mycorrhizal asparagus decreased significantly with increasing ferulic acid concentration, while growth of

Tracy L. Wacker; Gene R. Safir; Christine T. Stephens

1990-01-01

15

Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA  

NASA Astrophysics Data System (ADS)

The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K290K = 7.60 × 104 L mol-1 and K310K = 4.90 × 104 L mol-1. The thermodynamic parameters enthalpy change (?H°), entropy change (?S°) and Gibbs free energy (?G°) were calculated to be -1.69 × 104 J mol-1, 35.36 J K-1 mol-1 and -2.79 × 104 J mol-1 at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA.

Zhang, Shufang; Sun, Xuejun; Qu, Fengli; Kong, Rongmei

2013-08-01

16

Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium(IV) sensitized by rhodamine 6G  

NASA Astrophysics Data System (ADS)

A simple, sensitive and rapid flow-injection chemiluminescence method has been developed for the determination of ferulic acid based on the chemiluminescence reaction of ferulic acid with rhodamine 6G and ceric sulfate in sulphuric acid medium. Strong chemiluminescence signal was observed when ferulic acid was injected into the acidic ceric sulfate solution in a flow-cell. The present method allowed the determination of ferulic acid in the concentration range of 8.0 × 10 -6 to 1.0 × 10 -4 mol l -1 and the detection limit for ferulic acid was 8.7 × 10 -9 mol l -1. The relative standard deviation was 2.4% for 10 replicate analyses of 1.0 × 10 -5 mol l -1 ferulic acid. The proposed method was applied to the determination of ferulic acid in Taita Beauty Essence samples with satisfactory results.

Wang, Ju Peng; Li, Nian Bing; Luo, Hong Qun

2008-11-01

17

Ferulic Acid Enhances Peripheral Nerve Regeneration across Long Gaps  

PubMed Central

This study investigated the effect of ferulic acid (FA) on peripheral nerve injury. In the in vitro test, the effect of FA on viability of Schwann cells was studied. In the in vivo test, right sciatic nerves of the rats were transected, and a 15?mm nerve defect was created. A nerve conduit made of silicone rubber tube filled with FA (5 and 25??g/mL), or saline (control), was implanted into the nerve defect. Results show that the number of proliferating Schwann cells increased significantly in the FA-treated group at 25??g/mL compared to that in the control group. After 8 weeks, the FA-treated group at 25??g/mL had a higher rate of successful regeneration across the wide gap, a significantly calcitonin gene-related peptide (CGRP) staining of the lamina I-II regions in the dorsal horn ipsilateral to the injury, a significantly diminished number of macrophages recruited, and a significantly shortening of the latency and an acceleration of the nerve conductive velocity (NCV) of the evoked muscle action potentials (MAPs) compared with the controls. In summary, the FA may be useful in the development of future strategies for the treatment of peripheral nerve injury. PMID:23690861

Lee, Sheng-Chi; Tsai, Chin-Chuan; Yao, Chun-Hsu; Chen, Yueh-Sheng; Wu, Ming-Chang

2013-01-01

18

Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property  

PubMed Central

There has been considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat human diseases. They are naturally occurring substances found in plants. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants. It exhibits a wide range of therapeutic effects against various diseases like cancer, diabetes, cardiovascular and neurodegenerative. A wide spectrum of beneficial activity for human health has been advocated for this phenolic compound, at least in part, because of its strong antioxidant activity. FA, a phenolic compound is a strong membrane antioxidant and known to positively affect human health. FA is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation. It effectively scavenges superoxide anion radical and inhibits the lipid peroxidation. It possesses antioxidant property by virtue of its phenolic hydroxyl group in its structure. The hydroxy and phenoxy groups of FA donate electrons to quench the free radicals. The phenolic radical in turn forms a quinone methide intermediate, which is excreted via the bile. The past few decades have been devoted to intense research on antioxidant property of FA. So, the present review deals with the mechanism of antioxidant property of FA and its possible role in therapeutic usage against various diseases. PMID:18188410

Srinivasan, Marimuthu; Sudheer, Adluri R.; Menon, Venugopal P.

2007-01-01

19

Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber  

Microsoft Academic Search

An initial survey of the effects of aqueous solutions of ferulic acid and three of its microbial metabolic products at pH 4.5, 6.0, and 7.5 was determined on radicle growth of 11 crop species in Petri dishes. These bioassays indicated that cucumber, ladino clover, lettuce, mung bean, and wheat were inhibited by ferulic, caffeic, protocatechuic, and\\/or vanillic acids and that

Udo Blum; Barry R. Dalton; John O. Rawlings

1984-01-01

20

Extraction of ferulic acid from Angelica sinensis with supercritical CO2.  

PubMed

Extraction of pharmacologically active ingredient of ferulic acid from the root of Angelica sinensis with supercritical CO2 was investigated. The experimental results show that the extract yields were 0.87-4.06% at temperatures from 45 to 65 degrees Celsius and pressures from 30 to 50 MPa, and the maximum content of ferulic aicd in the extracts was about 0.35-0.37%, which is lower than that of 0.61-0.85% by conventional percolation methods. Ethanol was used as co-solvent in different ratios to raw materials in order to increase the content of ferulic acid in the extracts. The experimental results show that both the extract yields and the content of ferulic acid in the extracts increase greatly compared with pure CO2 extraction. When the ratio of ethanol to the raw material was 1.6, the content of ferulic acid in the extracts was 0.91-1.27%, indicating that supercritical fluid extraction (SFE) with CO2 in the presence of suitable co-solvent is superior to percolation in extracting polar ferulic acid from Angelica sinensis. PMID:16753921

Sun, Yongyue; Li, Shufen; Song, Huiting; Tian, Songjiang

2006-07-20

21

Extraction of ferulic acid from Angelica sinensis with supercritical CO2  

Microsoft Academic Search

Extraction of pharmacologically active ingredient of ferulic acid from the root of Angelica sinensis with supercritical CO2 was investigated. The experimental results show that the extract yields were 0.87–4.06% at temperatures from 45 to 65°C and pressures from 30 to 50?MPa, and the maximum content of ferulic aicd in the extracts was about 0.35–0.37%, which is lower than that of

Yongyue Sun; Shufen Li; Huiting Song; Songjiang Tian

2006-01-01

22

Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *  

PubMed Central

The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991

Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

2014-01-01

23

An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii  

PubMed Central

The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation. PMID:22217315

2012-01-01

24

Active food packaging based on molecularly imprinted polymers: study of the release kinetics of ferulic Acid.  

PubMed

A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples. PMID:25369799

Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto

2014-11-19

25

Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid  

PubMed Central

Background Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to ferulic acid, an autotoxin from rice straw. Results Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes). Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIII and receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-finger protein expressed in inflorescence meristem transcription factors. Conclusions The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIII and SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This comprehensive description of gene expression information could greatly facilitate our understanding of the mechanisms of autotoxicity in plants. PMID:23705659

2013-01-01

26

Development and in vitro evaluation of a transdermal hydrogel patch for ferulic acid.  

PubMed

Current work aimed to develop and evaluate a transdermal delivery system of hydrogel patch for ferulic acid to treat skin damage induced by UV radiation. VISCOMATE(TM) NP700, dihydroxy aluminium aminoacetate, glycerine, tartaric acid were used in combination in different ratios to design the hydrogel patch. In vitro release rate was selected as an index to optimize the formulation. The formulated hydrogel patch was evaluated by several parameters like tacking strength, cohesive strength, peeling strength, residuals after peeling and drug content determination. The in vitro penetration was determined by Franz diffusion technology with hairless mouse skin as permeability media. Different kinetics models were employed to simulate the release and penetrate patterns of ferulic acid from patches in order to investigate the drug transport mechanism. The residual drugs in the patch and skin were determined after the penetration experiment. The optimized preparation was dihydroxy aluminium aminoacetate: NP700: glycerine: ferulic acid as a ratio of 0.02:0.4:1.5:1.25:0.25. The cumulative percentage of release was 60.4465±1.7679% for 24h, which results from a combination of diffusion effect and polymer erosion effect. For the barrier of stratum corneum, the cumulative penetrate rate was only 1.3156±0.3588% and the release mechanism turn out to be the effect of erosion of polymer surface. The residual drugs in the patch were 97.5949±1.4932%. The in vitro data revealed that it was easy for ferulic acid to release from the paste while difficult to permeate through the skin barrier, which resulted in most of drugs residued in the paste. Hence, further experiments will be necessary for finding the penetration enhancer in ferulic acid transdermal delivery. PMID:24577928

Bai, Jie; Lu, Yang; Li, Peng-yue; Liu, Cong-min; Wu, Hui-chao; Wen, Ran; Du, Shou-ying

2014-03-01

27

Role of protein and ferulic acid in the emulsification properties of sugar beet pectin.  

PubMed

The ability of sugar beet pectin to stabilize 20% w/w limonene oil-in-water emulsions has been investigated. The size of the oil droplets as determined by laser diffraction measurements decreased from about 15 mum to about 6 mum when the pectin concentration increased from 0.05% to 2% w/w but leveled off thereafter, suggesting complete coverage of the oil droplets by the polymer at this optimum concentration. Isotherms for the adsorption of pectin, protein, and ferulic acid were constructed. The adsorption capacities at the oil-water interface of approximately 1.4 and approximately 0.2 mg/m (2) for protein and ferulic acid, respectively, compared to approximately 9.5 mg/m (2) for pectin revealed that the adsorbed fractions of the pectin sample were rich in protein (14.7%) and ferulic acid (2.1%) given that there were only 2.7% protein and 1.06% ferulic acid present in the whole pectin sample. Direct measurements on the adsorbed fraction recovered from the oil droplets via desorption with SDS confirmed that it contained 11.1% protein and 2.16% ferulic acid. The results suggest that one or both of these two functional groups adsorb onto the surface of the oil droplets and stabilize the emulsions. High molecular mass fractions adsorbed preferentially onto oil droplets during emulsification. As compared to those made with gum arabic, the emulsion samples made with sugar beet pectin samples exhibited similar (or even slightly higher) stability. PMID:18476693

Siew, Chee Kiong; Williams, Peter A

2008-06-11

28

Content of P?coumaric and ferulic acid in forbs with potential grazing utilization  

Microsoft Academic Search

Content of p?coumaric (PCA) and ferulic (FA) acid was determined by the HPLC method in fourteen forbs with a potential utilization as forages (range of nutrient content per kg DM: 100 to 244gCP, 339 to 528 g NDF and 180–369 g ADF. PCA and FA were determined after methanol extraction in four fractions: free phenolic acids extracted into ether, ester?bound

T. Komprda; M. Štohandlová; J. Foltýn; J. Pozdíšek; V. Míka

1999-01-01

29

Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors.  

PubMed

Histone deacetylase inhibitors (HDACIs) offer a promising strategy for cancer therapy. The discovery of potent ferulic acid-based HDACIs with hydroxamic acid or 2-aminobenzamide group as zinc binding group was reported. The halogeno-acetanilide was introduced as novel surface recognition moiety (SRM). The majority of title compounds displayed potent HDAC inhibitory activity. In particular, FA6 and FA16 exhibited significant enzymatic inhibitory activities, with IC50 values of 3.94 and 2.82 ?M, respectively. Furthermore, these compounds showed moderate antiproliferative activity against a panel of human cancer cells. FA17 displayed promising profile as an antitumor candidate. The results indicated that these ferulic acid derivatives could serve as promising lead compounds for further optimization. PMID:24095016

Wang, Fang; Lu, Wen; Zhang, Tao; Dong, Jinyun; Gao, Hongping; Li, Pengfei; Wang, Sicen; Zhang, Jie

2013-11-15

30

Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase  

Microsoft Academic Search

Ferulic acid decarboxylase (FADase) can catalyze the transformation of ferulic acid into 4-vinyl guaiacol via decarboxylation\\u000a in microorganisms. In this study, a gene encoding FADase was first isolated from the bacterium Enterobacter sp. Px6-4 using degenerate primers and a genome walking technique. The putative encoding gene (fad) of FADase consists of 507-bp nucleotides, coding a polypeptide of 168 amino acid

Wen Gu; Xuemei Li; Jingwen Huang; Yanqing Duan; Zhaohui Meng; Ke-Qin Zhang; Jinkui Yang

2011-01-01

31

Molecular genetic analysis of QTLs for ferulic acid content in dried straw of rice (Oryza sativa L.).  

PubMed

Phenolic acids are secondary metabolic organic compounds produced by plants and often are mentioned as allelochemicals. This study was conducted to determine the genetic basis controlling the ferulic acid content of rice straw in a recombinant inbred (RI) population derived from a cross between a japonica variety, Asominori, with a higher content of ferulic acid, and an indica variety, IR24, with a lower content, using 289 RFLP markers. Continuous distributions and transgressive segregations of ferulic acid content were observed in the RI population, which showed that ferulic acid content in rice straw was quantitatively inherited. Single marker analysis and composite interval mapping identified three quantitative trait loci (QTLs) for ferulic acid content with LOD values of 2.03 (chromosome 3), 3.16 (chromosome 6), and 3.06 (chromosome 7); all three had increased additive effects (13.5, 18.3, and 18.1 microg g(-1)) from the Asominori parent and accounted for 5.5, 16.9, and 12.8% of total phenotypic variation, respectively. This is the first report on the identification of QTLs associated with ferulic acid and their chromosomal localization on the molecular map of rice. The tightly linked molecular markers that flank the QTLs might be useful in breeding and selection of varieties with higher phenolic acid content. PMID:15859517

Dong, Yanjun; Tsuzuki, E; Kamiunten, H; Lin, Dongzhi; Terao, H; Matsuo, M; Cheng, Shihua

2005-02-01

32

Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt.  

PubMed

Barley phenolic antioxidants change in response to the kilning regimen used to prepare malt. Green malt was kilned using four different regimens. There were no major differences among the finished malts in parameters routinely used by the malting industry, including, moisture, color, and diastatic activity. Ferulic acid esterase activity and free ferulic acid were higher in malts subjected to the coolest kilning regimen, but malt ethyl acetate extracts (containing ferulic acid) contributed only ?5% of the total malt antioxidant activity. Finished malt from the hottest kilning regimen possessed the highest antioxidant activity, attributed to higher levels of Maillard reaction products. Modifying kilning conditions leads to changes in release of bound ferulic acid and antioxidant activity with potential beneficial effects on flavor stability in malt and beer. PMID:21819143

Inns, Elizabeth L; Buggey, Lesley A; Booer, Christopher; Nursten, Harry E; Ames, Jennifer M

2011-09-14

33

Production and characterization of ferulic acid esterase activity in crude extracts by Streptomyces avermitilis CECT 3339  

Microsoft Academic Search

Streptomyces avermitilis CECT 3339 produces extracellular ferulic acid esterase (FAE) activity during growth on a range of lignocellulose substrates.\\u000a Maximal levels of FAE activity were detected in culture filtrates from S. avermitilis CECT 3339 grown in media containing wheat bran and yeast extract as carbon and nitrogen sources respectively. Biochemical\\u000a characterization of this enzyme activity revealed that it was 100-fold

B. L. García; A. S. Ball; J. Rodríguez; M. I. Pérez-Leblic; M. E. Arias; J. L. Copa-Patiño

1998-01-01

34

Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds.  

PubMed

The enzymatic oxidation of ferulic acid (FA) and ethyl ferulate (EF) with Myceliophthora thermophila laccase, as biocatalyst, was performed in aqueous medium using an eco-friendly procedure to synthesize new active molecules. First, the commercial laccase was ultrafiltrated allowing for the elimination of phenolic contaminants and increasing the specific activity by a factor of 2. Then, kinetic parameters of this laccase were determined for both substrates (FA, EF), indicating a higher substrate affinity for ethyl ferulate. Additionally, enzymatic oxidation led to the synthesis of a FA-major product, exhibiting a molecular mass of 386 g/mol and a EF-major product with a molecular mass of 442 g/mol. Structural analyses by mass spectrometry allowed the identification of dimeric derivatives. The optical properties of the oxidation products showed the increase of red and yellow colours, with FA-products compared to EF-products. Additionally, enzymatic oxidation led to a decrease of antioxidant and cytotoxic activities compared to initial substrates. Consequently, this enzymatic procedure in aqueous medium could provide new compounds presenting optical, antioxidant and cytotoxic interest. PMID:24128582

Aljawish, Abdulhadi; Chevalot, Isabelle; Jasniewski, Jordane; Paris, Cédric; Scher, Joël; Muniglia, Lionel

2014-02-15

35

Kinetics of enzyme inhibition by active molluscicidal agents ferulic acid, umbelliferone, eugenol and limonene in the nervous tissue of snail Lymnaea acuminata.  

PubMed

Ferulic acid, umbelliferone (Ferula asafoetida), eugenol (Syzygium aromaticum) and limonene (Carum carvi) are active molluscicidal components that inhibited the activity of alkaline phosphatase and acetylcholinesterase in in vivo and in vitro exposure of Lymnaea acuminata. It was observed that ferulic acid, umbelliferone and eugenol are competitive and limonene is a competitive-non-competitive inhibitor of alkaline phosphatase. Ferulic acid and umbelliferone are competitive, whereas eugenol and limonene are competitive-non-competitive and uncompetitive inhibitors of acetylcholinesterase, respectively. PMID:18814203

Kumar, Pradeep; Singh, V K; Singh, D K

2009-02-01

36

The Occurrence of p -coumaric Acid and Ferulic Acid in Fossil Plant Materials and their Use as UV-proxy  

Microsoft Academic Search

The applicability of p-coumaric acid and ferulic acid concentrations or ratios in (sub)fossil plant remnant as UV-B proxies relies on various aspects,\\u000a which are discussed in this paper and will be illustrated with some experimental data. A newly developed THM-micropyrolysis–gas\\u000a chromatography–mass spectrometry method was tested on various spores, pollen and other plant remains, which were analysed\\u000a for the presence of

Peter Blokker; Peter Boelen; Rob Broekman; Jelte Rozema

2006-01-01

37

Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.  

PubMed

Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

2014-01-01

38

Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm  

SciTech Connect

Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

2009-12-08

39

Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin  

NASA Astrophysics Data System (ADS)

The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

2010-10-01

40

Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids.  

PubMed

Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid. PMID:18855035

Choo, Wee-Sim; Birch, Edward John

2009-02-01

41

Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ?-hydroxy fatty acids in cutin polyester.  

PubMed

The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ?-hydroxy, and ?,?-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ?-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ?-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm. PMID:22158675

Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E K; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D; Sakuragi, Yumiko; Scheller, Henrik Vibe

2012-02-01

42

Evaluation of wound healing activity of ferulic acid in diabetic rats.  

PubMed

In diabetic patients, there is impairment in angiogenesis, neovascularisation and failure in matrix metalloproteineases (MMPs), keratinocyte and fibroblast functions, which affects wound healing mechanism. Hence, diabetic patients are more prone to infections and ulcers, which finally result in gangrene. Ferulic acid (FA) is a natural antioxidant found in fruits and vegetables, such as tomatoes, rice bran and sweet corn. In this study, wound healing activity of FA was evaluated in streptozotocin-induced diabetic rats using excision wound model. FA-treated wounds were found to epithelise faster as compared with diabetic wound control group. The hydroxyproline and hexosamine content increased significantly when compared with diabetic wound control. FA effectively inhibited the lipid peroxidation and elevated the catalase, superoxide dismutase, glutathione and nitric oxide levels along with the increase in the serum zinc and copper levels probably aiding the wound healing process. Hence, the results indicate that FA significantly promotes wound healing in diabetic rats. PMID:23236955

Ghaisas, Mahesh M; Kshirsagar, Shashank B; Sahane, Rajkumari S

2014-10-01

43

Impact of wheat bran derived arabinoxylanoligosaccharides and associated ferulic Acid on dough and bread properties.  

PubMed

The impact of arabinoxylanoligosaccharides (AXOS) with varying bound or free ferulic acid (FA) content on dough and bread properties was studied in view of their prebiotic and antioxidant properties. AXOS with an FA content of 0.1-1.7% caused an increase in dough firmness with increasing AXOS concentration. AXOS with a high FA content (7.2%), on the contrary, resulted in an increase in dough extensibility and a decrease in resistance to extension, similar to that for free FA, when added in levels up to 2%. Higher levels resulted in unmanageable dough. A limited impact on dough gluten network formation was observed. These results suggest that for highly feruloylated AXOS, the FA-mediated dough softening supersedes the firming effect displayed by the carbohydrate moiety of AXOS. The impact of the different AXOS on bread volume, however, was minimal. Furthermore, AXOS in bread were not engaged in covalent cross-linking and significantly increased its antioxidant capacity. PMID:24993037

Snelders, Jeroen; Dornez, Emmie; Delcour, Jan A; Courtin, Christophe M

2014-07-23

44

UV screening of ferulic acid-zinc basic salt nanohybrid with controlled release rate.  

PubMed

Ferulic acid (FA), an organic UV absorber and free radical scavenger, was intercalated into an inorganic zinc basic salt (ZBS) matrix to prepare a UV screening material. FA molecules were vertically oriented bilayer in the ZBS lattice with an expansion of approximately 22.7 angstroms along the c-axis. The FA-ZBS nanohybrid exhibited a superior UV-A approximately UV-B screening ability and an antioxidant activity that was comparable to that of a pure FA molecule. The in vitro release test showed the biphasic release of the FA molecules from the FA-ZBS nanohybrid that consisted of an initial burst, followed by a slow and sustained release. PMID:21446466

Biswick, Timothy; Park, Dae-Hwan; Shul, Yong-Gun; Hwang, Seong-Ju; Choy, Jin-Ho

2011-01-01

45

Content of p-coumaric and ferulic acid in forbs with potential grazing utilization.  

PubMed

Content of p-coumaric (PCA) and ferulic (FA) acid was determined by the HPLC method in fourteen forbs with a potential utilization as forages (range of nutrient content per kg DM: 100 to 244 g CP, 339 to 528 g NDF and 180-369 g ADF. PCA and FA were determined after methanol extraction in four fractions: free phenolic acids extracted into either, ester-bound phenolic acids after alkaline hydrolysis, glycoside-bound phenolic acids after acid hydrolysis, and cell wall-bound phenolic acids after alkaline hydrolysis of the solid residue after the extraction with methanol. Cell wall-bound phenols were quantitatively the most important fraction (50% of total PCA and 47% of total FA, respectively). The differences among plant species in total PCA plus FA control were significant (F-value 775, P < 0.01). The range of total phenol content was 31.3 to 416.3 mg/100 g DM, the overall mean was 84 mg/100 g DM. Content of phenolic acids was correlated neither with ADF, NDF or ADL content (R2 = 1-3%, P > 0.05) nor with CP degradability (R2 = 3% and R2 = 1% for PCA and FA, respectively, P > 0.05). 95.4% and 30.9% of total PCA, and 98.3% and 72.5% of total FA disappeared in the rumen from the sample of Glechoma hederacea (species with the highest phenol content) and from the sample of Galium aparine (species with low phenol content), respectively, within the four hour incubation interval. It is presumed that in comparison with grasses, PCA and FA concentration in tested forbs represents a much lower risk in potential ruminant nutrition. PMID:10548979

Komprda, T; Stohandlová, M; Foltýn, J; Pozdísek, J; Míka, V

1999-01-01

46

Ferulic Acid content and appearance determine the antioxidant capacity of arabinoxylanoligosaccharides.  

PubMed

To investigate the antioxidant capacity of ferulic acid (FA) in conjunction with prebiotic arabinoxylanoligosaccharides (AXOS), procedures for the production of FA-enriched, -depleted and cross-linked AXOS were developed, and samples were analyzed using the Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. Results showed that not only the level of FA but also the condition under which it appears (free, bound, or dimerized) impacts the antioxidant capacity of FA-containing AXOS samples. Although esterification of FA on AXOS and cross-linking of AXOS through dehydrodiferulic acid formation lowered the antioxidant capacity of FA by 30 and 55%, respectively, as determined with the TEAC test, the antioxidant capacity of these components still remained high compared to Trolox, a water-soluble vitamin E analog. Total antioxidant capacity of the AXOS samples determined by the ORAC assay resulted in less prominent differences between the different forms of FA than those seen with the TEAC test. Feruloylated AXOS can hence function as strong, water-soluble antioxidants. PMID:24070339

Snelders, Jeroen; Dornez, Emmie; Delcour, Jan A; Courtin, Christophe M

2013-10-23

47

Free radical mediated grafting of chitosan with caffeic and ferulic acids: structures and antioxidant activity.  

PubMed

In this study, two water soluble chitosan derivatives were synthesized by grafting caffeic acid (CA) and ferulic acid (FA) onto chitosan via a free radical mediated method. The structural characterization, antioxidant activity in vitro and in vivo of chitosan derivatives were determined. Results showed that the UV-vis absorption peaks of chitosan derivatives shifted toward longer wavelengths. FT-IR spectroscopy exhibited the typical phenolic characteristics within 1450-1600 cm(-1). (1)H NMR spectroscopy showed new peaks of phenyl protons at 6.2-7.6 ppm. (13)C NMR spectroscopy showed additional peaks between 110 and 150 ppm assigned to the C=C of phenolic groups. These results all confirmed the successful grafting of CA and FA onto chitosan backbones. The chitosan derivatives had decreased thermal stability and crystallinity as compared to chitosan. In vitro assays showed that the antioxidant activity decreased in the order of CA-g-chitosan>FA-g-chitosan>chitosan. Moreover, administration of the chitosan derivatives could significantly increase antioxidant enzymes activities and decrease malondialdehyde levels in both serums and livers of d-galactose induced aging mice. Our results indicated the potential of CA-g-chitosan and FA-g-chitosan in the development of novel antioxidant agents. PMID:24444883

Liu, Jun; Wen, Xiao-yuan; Lu, Jian-feng; Kan, Juan; Jin, Chang-hai

2014-04-01

48

A New Pro-Prodrug Aminoacid-Based for Trans-Ferulic Acid and Silybin Intestinal Release  

PubMed Central

The aim of this work was the preparation and characterization of a pro-prodrug able to simultaneously transport silybin, a drug possessing various pharmacological effects, and trans-ferulic acid, a known antioxidant. More specifically, l-phenylalanine-N-(4-hydroxy-3-methoxy-phenyl) prop-2-en-O-(2R,3R)-3,5,7-trihydroxy-2-((2R,3R)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-benzo-(1,4)-dioxin-6-yl)croman-4-one was synthesized by using the aminoacid l-phenylalanine (l-Phe) as carrier. Indeed, l-Phe is characterized by an intrinsic chemical reactivity due to the presence of an amino group, placed on the chiral center, and of a carboxylic group. The synthesis has been characterized first by adding silybin by means of carboxylic group and then, with the aim to confer antioxidant properties to this new carrier, by linking trans-ferulic acid to l-Phe via amino group. The so obtained derivative was then characterized by FT-IR, and 1H-NMR spectroscopies. Furthermore, its ability to inhibit lipid peroxidation induced by tert-butyl hydroperoxide in rat liver microsomes, was evaluated. The 1,1-diphenyl-2-picrylhydrazyl radical-scavenging effect, was also assessed. The release of silybin and trans-ferulic acid was determined in simulated gastric and intestinal fluids over the time. The results showed that the covalent bond between both (i) silybin; or (ii) trans-ferulic acid and the amino acid was degraded by enzymatic reactions. In addition, the pro-prodrug, showed strong antioxidant and scavenger activities. Due to these properties, this new pro-prodrug could be applied for the treatment of intestinal pathologies and it might improve the therapeutic potential of silybin which is strongly limited by its low solubility. PMID:25062426

Trombino, Sonia; Ferrarelli, Teresa; Cassano, Roberta

2014-01-01

49

Fixed-bed purification of ferulic acid from sugar-beet pulp using activated carbon: Optimization studies  

Microsoft Academic Search

Selective binding on a wood-based, chemically-activated carbon was considered following extensive enzymic hydrolysis of a sugar-beet pulp pectic extract. Adsorption and ethanolic elution were investigated, aiming at quantitative extraction and recovery of the released ferulic acid, at minimal cost and according to a given production rate. The effects of key operating parameters on the required amounts of adsorbent and eluent

D. Couteau; P. Mathaly

1998-01-01

50

Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice.  

PubMed

Ferulic acid (FA) is a monophenolic phenylpropanoid occurring in plant products such as rice bran, green tea, and coffee beans. It has been shown to have significant antioxidant effects in many studies. In the present study, we show that intraperitoneal administration of FA at a dose of 50 mg/kg body weight 1 hour prior to or immediately after whole-body ?-irradiation of mice with 4 Gy results in considerable reduction in the micronuclei formation in peripheral blood reticulocytes. Administration of the same amount of FA immediately after 4 Gy ?-irradiation showed significant decrease in the amount of DNA strand breaks in murine peripheral blood leukocytes and bone marrow cells as examined by comet assay. Further, immunostaining of mouse splenic lymphocytes for phspho-?H2AX was carried out, and it was observed that FA inhibits the ?H2AX foci formation. Finally, the survival of mice upon 6, 8, and 10 Gy ?-ray exposure was monitored. FA enhances the survival of mice by a factor of 2.5 at a dose of 6 Gy ?-radiation but not at higher doses. In conclusion, FA has protective potential in both pre- and postirradiation exposure scenarios and enhances the survival of mice possibly by decreasing DNA damage as examined by ?H2AX foci, micronuclei formation, and comet assay. PMID:23009583

Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir

2013-02-01

51

Release of phenolic flavour precursors during wort production: Influence of process parameters and grist composition on ferulic acid release during brewing  

Microsoft Academic Search

In this study, the effects of mashing variables such as mashing-in temperature, time and pH, mash thickness, grist coarseness and composition, and stirring regime on the release of ferulic acid were examined. Ferulic acid is a precursor for the formation of flavour-active volatile phenols and a potent natural antioxidant in beer. Given one barley malt variety, the multitude of choice

Nele Vanbeneden; Tom Van Roey; Filip Willems; Filip Delvaux; Freddy R. Delvaux

2008-01-01

52

Ferulic Acid, an Angelica sinensis-Derived Polyphenol, Slows the Progression of Membranous Nephropathy in a Mouse Model  

PubMed Central

Membranous nephropathy (MN) is a leading cause of adult nephrotic syndrome but lacks adequate treatment. Different extracts of Angelica sinensis (AS) and one of its active compounds, ferulic acid (FA), were used to evaluate the therapeutic effects in a MN mouse model. The MN model was grouped into three subgroups: no treatment (N-T), treatment at induction of MN (Pre-T), and treatment after full-blown MN (Post-T). The results showed that the methanol (ME) layer of AS extract exhibited a therapeutic effect on MN-induced proteinuria. The ME layer-enriched compound, FA, improved the hypoalbuminemia, hyperlipidemia, and proteinuria in both Pre-T and Post-T groups. Ferulic acid also reduced the formation of oxidative protein products and increased the synthesis of antioxidant enzymes in groups Pre-T and Post-T. Regarding angiogenesis factors, the antiangiogenic factors in renal glomeruli were increased in group N-T, but, after FA treatment, only one of the antiangiogenic factors, thrombospondin-1, showed a significant decrease. Furthermore, the expression of Th2 predominant showed significant decrease in both Pre-T and Post-T groups when compared to that of N-T group. In summary, FA retarded the progression of MN, and the mechanisms involved the regulation of oxidative stresses, angiogenic and antiangiogenic factors, and attenuation of Th2 response. PMID:22844329

Cheng, Chao-Wen; Chang, Wen-Liang; Chang, Li-Cheng; Wu, Chia-Chao; Lin, Yuh-Feng; Chen, Jin-Shuen

2012-01-01

53

Efficient production of lignocellulolytic enzymes xylanase, ?-xylosidase, ferulic acid esterase and ?-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1.  

PubMed

The production of xylanase, ?-xylosidase, ferulic acid esterase and ?-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, ?-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest ?-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, ?-xylosidase, ferulic acid esterase and ?-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of ?-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and ?-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture. PMID:24294256

Gottschalk, Leda Maria Fortes; de Sousa Paredes, Raquel; Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant'Ana; da Silva Bon, Elba Pinto

2013-01-01

54

Efficient production of lignocellulolytic enzymes xylanase, ?-xylosidase, ferulic acid esterase and ?-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1  

PubMed Central

The production of xylanase, ?-xylosidase, ferulic acid esterase and ?-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, ?-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest ?-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, ?-xylosidase, ferulic acid esterase and ?-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of ?-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and ?-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture. PMID:24294256

Gottschalk, Leda Maria Fortes; de Sousa Paredes, Raquel; Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant'Ana; da Silva Bon, Elba Pinto

2013-01-01

55

Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata.  

PubMed

Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline?+?ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12?months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid?+?starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. PMID:23170774

Agrahari, P; Singh, D K

2013-11-01

56

Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid.  

PubMed

The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ((13)C, (1)H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done. PMID:24334064

Kalinowska, M; Piekut, J; Bruss, A; Follet, C; Sienkiewicz-Gromiuk, J; ?wis?ocka, R; Rz?czy?ska, Z; Lewandowski, W

2014-03-25

57

Ferulic acid enhances the vasorelaxant effect of epigallocatechin gallate in tumor necrosis factor-alpha-induced inflammatory rat aorta.  

PubMed

Previously, we demonstrated synergistic enhancement of vasorelaxation by combination treatment with Trp-His and epigallocatechin gallate (EGCg) in intact rat aorta. The aim of the present study was to determine whether this vasorelaxant synergy could be recapitulated in tumor necrosis factor-alpha (TNF-?)-induced inflammatory rat aorta, and to determine the extent of its modulation by anti-inflammatory phenolic acids. Synergistic enhancement of vasorelaxation in rat aorta by Trp-His and EGCg was significantly attenuated in the presence of TNF-?, an effect that was reversed by the addition of ferulic acid (FA, 250 ?M). Moreover, FA markedly enhanced EGCg-induced vasorelaxation, but not Trp-His-induced vasorelaxation, in TNF-?-treated aorta. Structure-activity analysis showed that the unsaturated 2-propenoic moiety and the methoxy group of FA were important for the enhancement of vasorelaxation by EGCg. The stimulation of EGCg-induced vasorelaxation by FA was antagonized by the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate, while FA enhanced vasorelaxant properties of the endothelial nitric oxide (NO) synthase activator acetylcholine in TNF-?-treated inflammatory aorta. Moreover, the EGCg-stimulated NO production was also enhanced by FA in TNF-?-treated aorta. These data indicate that stimulation of NO production by FA enhances the vasorelaxant properties of EGCg in TNF-?-induced inflammatory aorta. PMID:24794014

Zhao, Jian; Suyama, Aki; Tanaka, Mitsuru; Matsui, Toshiro

2014-07-01

58

Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.  

PubMed

Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5?, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)). PMID:25077778

Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

2014-10-01

59

Comparison of the protective effects of ferulic acid and its drug-containing plasma on primary cultured neonatal rat cardiomyocytes with hypoxia/reoxygenation injury  

PubMed Central

Backgroud: To simulate the ischemia-reperfusion injury in vivo, hypoxia/reoxygenation injury model was established in vitro and primary cultured neonatal rat cardiomyocytes were underwent hypoxia with hydrosulfite (Na2S2O4) for 1 h followed by 1 h reoxygenation. Materials and Methods: Determination the cell viability by MTT colorimetric assay. We use kit to detect the activity of lactate dehydrogenase (LDH), Na+-K+-ATPase and Ca2+-ATPase. Do research on the effect which ferulic acid and its drug-containing plasma have to self-discipline, conductivity, action potential duration and other electrophysiological phenomena of myocardial cells by direct observation using a microscope and recording method of intracellular action potential. Results: The experimental datum showed that both can reduce the damage hydrosulfite to myocardial cell damage and improve myocardial viability, reduce the amount of LDH leak, increase activity of Na+-K+-ATPase, Ca2+-ATPase, and increase APA (Action potential amplitude), Vmax (Maximum rate of depolarization) and MPD (Maximum potential diastolic). Conclusion: Taken together, therefore, we can get the conclusion that ferulic acid drug-containing plasma has better protective effect injured myocardial cell than ferulic acid. PMID:23930002

Ren, Cong; Bao, Yong-rui; Meng, Xian-sheng; Diao, Yun-peng; Kang, Ting-guo

2013-01-01

60

Ferulic acid increases pain threshold and ameliorates depression-like behaviors in reserpine-treated mice: behavioral and neurobiological analyses.  

PubMed

Depression-pain dyad involves a series of pathological changes including the dysfunction of neuroendocrine and immune networks. Depression and pain influence each other, but the mechanisms are still obscure. The present study aimed to investigate the effect of ferulic acid (FA) on reserpine-induced pain and depression-like behaviors in mice. The results showed that reserpine (1 mg/kg for 3 days, i.p.) led to a significant decrease in nociceptive threshold in thermal hyperalgesia and mechanical allodynia, as well as a significant increase in the immobility time in mouse models of despair test. The neurochemical assays suggested the decreased neurotransmitters (dopamine, norepinephrine and serotonin) along with the increased oxidative stress, inflammatory cytokines, and apoptotic parameters in the frontal cortex and hippocampus of the reserpinised mice. Treatment with FA (40 or 80 mg/kg, p.o.) reversed the behavioral abnormalities and decreased norepinephrine, serotonin and dopamine levels in the hippocampus and frontal cortex induced by reserpine. The higher dose of FA effectively antagonized the oxidative and nitrosative stress and inflammation as evidenced by down-regulated nitrite, LPO, IL-1?, TNF-?, and up-regulated GSH and SOD. Furthermore, FA produced a dose dependent decrease in substance P, NF-?? p65 and caspase-3 levels in the frontal cortex and hippocampus of reserpinised mice. The findings suggest that FA exerts the effects on reserpine-induced pain and depression-like behaviors through regulating monoaminergic system, oxidative/antioxidant defense, inflammatory and apoptotic signaling pathways. Understanding the mechanism by which FA ameliorates depression and pain as a multi-targeted compound could open new avenues for the development of innovative treatments for depression coupled with pain. PMID:23584961

Xu, Ying; Zhang, Lu; Shao, Tuo; Ruan, Lina; Wang, Lin; Sun, Jiao; Li, Jianxin; Zhu, Xinbo; O'Donnell, James M; Pan, Jianchun

2013-12-01

61

Effects of free ferulic acid on productive performance, blood metabolites, and carcass characteristics of feedlot finishing ewe lambs.  

PubMed

The aim of this study was to evaluate effects of free ferulic acid (FA) supplementation on productive performance, some blood metabolite concentrations, and carcass characteristics of ewe lambs finished in a feedlot. Dorper × Pelibuey ewe lambs (n = 20; BW = 28.5 ± 0.5 kg; age = 5 mo) were individually housed in pens and assigned under a randomized complete block design to the following dietary treatments (n = 10): daily feeding without (control) or with 300 mg of FA/animal. The feedlot feeding period lasted 34 d and then all ewe lambs were slaughtered. Free FA did not affect (P ? 0.16) BW gain, ADG, DMI, and G:F during the first 17 d, but BW gain (P = 0.10) and ADG (P = 0.10) tended to decrease for FA from d 17 to 34 and from d 1 to 34 without affecting (P ? 0.16) DMI and G:F in ewe lambs. Serum concentrations of glucose, cholesterol, triglyceride, total protein, and urea were not affected (P > 0.05) by FA at d 1, 17, and 34 of the feeding period. Carcass characteristics were not affected (P > 0.05) by FA. Stomach percentage tended (P = 0.08) to decrease and leg yields increased (P = 0.02) for FA. Other noncarcass components and wholesale cut yields were not affected (P > 0.10) by FA. In conclusion, FA supplementation did not improve productive performance, metabolic status, and carcass characteristics of ewe lambs receiving a feedlot finishing diet. PMID:25403190

Macías-Cruz, U; Perard, S; Vicente, R; Alvarez, F D; Torrentera-Olivera, N G; González-Ríos, H; Soto-Navarro, S A; Rojo, R; Meza-Herrera, C A; Avendaño-Reyes, L

2014-12-01

62

Application of Two Newly Identified and Characterized Feruloyl Esterases from Streptomyces sp. in the Enzymatic Production of Ferulic Acid from Agricultural Biomass  

PubMed Central

Ferulic acid (FA), a component of hemicellulose in plant cell walls, is a phenolic acid with several potential applications based on its antioxidant properties. Recent studies have shown that feruloyl esterase (FAE) is a key bacterial enzyme involved in FA production from agricultural biomass. In this study, we screened a library of 43 esterases from Streptomyces species and identified two enzymes, R18 and R43, that have FAE activity toward ethyl ferulate. In addition, we characterized their enzyme properties in detail. R18 and R43 showed esterase activity toward other hydroxycinnamic acid esters as well, such as methyl p-coumarate, methyl caffeate, and methyl sinapinate. The amino acid sequences of R18 and R43 were neither similar to each other, nor to other FAEs. We found that R18 and R43 individually showed the ability to produce FA from corn bran; however, combination with other Streptomyces enzymes, namely xylanase and ?-l-arabinofuranosidase, increased FA production from biomass such as corn bran, defatted rice bran, and wheat bran. These results suggest that R18 and R43 are effective FAEs for the enzymatic production of FA from biomass. PMID:25093500

Uraji, Misugi; Arima, Jiro; Inoue, Yoshikazu; Harazono, Koichi; Hatanaka, Tadashi

2014-01-01

63

Peroxidase activity against guaiacol, NADH, chlorogenic acid, ferulic acid and coniferyl alcohol in root tips of Lotus japonicus and L. corniculatus grown under low pH and aluminium stress  

Microsoft Academic Search

The purpose of this study was to examine the impact of low pH and Al stress on the apoplastic production of H2O2 and POD activity against guaiacol, ferulic acid, coniferyl alcohol, NADH and chlorogenic acid in the root tip (RT) of two\\u000a cultivars of Lotus corniculatus and the model Lotus japonicus Gifu, with the goal to determine the possible role

Veronika Zelinová; Igor Mistrík; Peter Pa?ove-Balang; Ladislav Tamás

2010-01-01

64

Functional Diversity in Fungal Fatty Acid Synthesis  

PubMed Central

Acetylenic specialized metabolites containing one or more carbon-carbon triple bonds are widespread, being found in fungi, vascular and lower plants, marine sponges and algae, and insects. Plants, moss, and most recently, insects, have been shown to employ an energetically difficult, sequential dehydrogenation mechanism for acetylenic bond formation. Here, we describe the cloning and heterologous expression in yeast of a linoleoyl 12-desaturase (acetylenase) and a bifunctional desaturase with ?12-/?14-regiospecificity from the Pacific golden chanterelle. The acetylenase gene, which is the first identified from a fungus, is phylogenetically distinct from known plant and fungal desaturases. Together, the bifunctional desaturase and the acetylenase provide the enzymatic activities required to drive oleate through linoleate to crepenynate and the conjugated enyne (14Z)-dehydrocrepenynate, the branchpoint precursors to a major class of acetylenic natural products. PMID:20606235

Blacklock, Brenda J.; Scheffler, Brian E.; Shepard, Michael R.; Jayasuriya, Naomi; Minto, Robert E.

2010-01-01

65

Using LC\\/MS\\/MS to determine matrine, oxymatrine, ferulic acid, mangiferin, and glycyrrhizin in the Chinese medicinal preparations Shiau-feng-saan and Dang-guei-nian-tong-tang  

Microsoft Academic Search

We have developed a simple, rapid, selective, and reproducible method for the quality control of traditional Chinese medicinal preparations. In this study, we used LC\\/MS\\/MS to simultaneously identify and quantify five marker compounds – matrine, oxymatrine, ferulic acid, mangiferin, and glycyrrhizin – in preparations of Shiau-feng-saan and Dang-guei-nian-tong-tang. The calibration curves for the five marker compounds were linear over the

Ting-Ting Jong; Maw-Rong Lee; Yi-Cheng Chiang; Shu-Tuan Chiang

2006-01-01

66

Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples.  

PubMed

An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (ks) and electron-transfer coefficient (?) were calculated as 1.12, 1.24s(-1), and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10(-8)mol L(-1) to 3.89 × 10(-5)mol L(-1) with detection limit of 2.06 × 10(-8)mol L(-1). This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%. PMID:25063114

Liu, Linjie; Gou, Yuqiang; Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan; Hu, Fangdi; Li, Yingdong

2014-09-01

67

Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams  

Microsoft Academic Search

This study proposed a novel waste utilization bioprocess for production of lactic acid and fungal biomass from waste streams\\u000a by fungal species of Rhizopus arrhizus 36017 and R. oryzae 2062. The lactic acid and fungal biomass were produced in a single-stage simultaneous saccharification and fermentation process\\u000a using potato, corn, wheat and pineapple waste streams as production media. R. arrhizus 36017

Bo Jin; Pinghe Yin; Yihong Ma; Ling Zhao

2005-01-01

68

Pharmacokinetic Comparison of Ferulic Acid in Normal and Blood Deficiency Rats after Oral Administration of Angelica sinensis, Ligusticum chuanxiong and Their Combination  

PubMed Central

Radix Angelica Sinensis (RAS) and Rhizome Ligusticum (RLC) combination is a popular herb pair commonly used in clinics for treatment of blood deficiency syndrome in China. The aim of this study is to compare the pharmacokinetic properties of ferulic acid (FA), a main bioactive constituent in both RAS and RLC, between normal and blood deficiency syndrome animals, and to investigate the influence of compatibility of RAS and RLC on the pharmacokinetic of FA. The blood deficiency rats were induced by injecting 2% Acetyl phenylhydrazine (APH) on the first day, every other day, to a total of five times, at the dosage of 100, 50, 50, 30, 30 mg/kg body mass, respectively. Quantification of FA in rat plasma was achieved by using a simple and rapid HPLC method. Plasma samples were collected at different time points to construct pharmacokinetic profiles by plotting drug concentration versus time, and estimate pharmacokinetic parameters. Between normal and blood deficiency model groups, both AUC(0–t) and Cmax of FA in blood deficiency rats after RAS-RLC extract administration increased significantly (P < 0.05), while clearance (CL) decreased significantly. Among three blood deficiency model groups, t1/2?, Vd, AUC(0–t) and AUC(0–?) all increased significantly in the RAS-RLC extract group compared with the RAS group. The results indicated that FA was absorbed better and eliminated slower in blood deficiency rats; RLC could significantly prolong the half-life of distribution, increase the volume of distribution and the absorption amount of FA of RAS in blood deficiency rats, which may be due to the synergic action when RAS and RLC were used together to treat blood deficiency syndrome. PMID:22489169

Li, Weixia; Guo, Jianming; Tang, Yuping; Wang, Huan; Huang, Meiyan; Qian, Dawei; Duan, Jin-Ao

2012-01-01

69

Effects of (12)C(6+) ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression.  

PubMed

The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1Gy, 3Gy and 7Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn-sod, Mn-sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better understand the mechanism of carbon ion-induced oxidative stress and FA-induced radioprotective effects. PMID:23535216

Si, Jing; Zhang, Hong; Wang, Zhenhua; Wu, Zhenhua; Lu, Jiang; Di, Cuixia; Zhou, Xin; Wang, Xiaowei

2013-01-01

70

NCX 2057, a novel NO-releasing derivative of ferulic acid, suppresses inflammatory and nociceptive responses in in vitro and in vivo models  

PubMed Central

Background and purpose: We previously reported that NCX 2057, a compound comprising a nitric oxide (NO)-releasing moiety and the natural antioxidant, ferulic acid (FA), inhibits pro-inflammatory mediators through NO-mediated gene regulation. Here, we have assessed the activities of NCX 2057 in models of inflammatory and neuropathic pain, and characterized its effects on cyclooxygenase (COX)-1 and COX-2. Experimental approach: Anti-nociceptive and anti-inflammatory activities of NCX 2057 were measured in vitro and in vivo in models of inflammatory (carrageenan) and neuropathic (chronic constriction injury; CCI) pain. Effects of NCX 2057 were measured on COX-1 and COX-2 activities in RAW 264.7 macrophages. Key results: NCX 2057 dose-dependently inhibited single motor unit responses to noxious mechanical stimulation (ID50= 100 µmol·kg?1) and wind-up responses in rats with paw inflammation induced by carrageenan. Moreover, NCX 2057 inhibited allodynic responses following CCI of the sciatic nerve [ipsilateral Paw Withdrawal Threshold (g): vehicle: 41.4 ± 3.3; NCX 2057: 76.3 ± 4.8 FA: 37.9 ± 15.5 at 175 µmol·kg?1]. NCX 2057 reversed carrageenan-induced hyperalgesic responses in mice and inhibited prostaglandin E2 formation in paw exudates. Finally, NCX 2057 competitively inhibited COX-1 and COX-2 activities in whole RAW macophages (IC50= 14.7 ± 7.4 and 21.6 ± 7.5 µM, respectively). None of these properties were exhibited by equivalent treatments with FA or standard NO donor compounds. Conclusions and implications: These studies indicate that NCX 2057 is effective in chronic inflammatory and neuropathic pain models, probably because of its particular combination of anti-COX, antioxidant and NO-releasing properties. PMID:19594750

Ronchetti, Daniela; Borghi, Valentina; Gaitan, Gema; Herrero, Juan F; Impagnatiello, Francesco

2009-01-01

71

Synthesis of steryl ferulates with various sterol structures and comparison of their antioxidant activity.  

PubMed

Steryl ferulates synthesised from commercial sterols as well as commercial oryzanol were used to better understand how structural features affect antioxidant activity in vitro by the ABTS(+) radical decolorization assay, by oxidative stability index (OSI) of soybean oil, and by analysis of antioxidant activity during frying. Steryl ferulates inhibited the ABTS(+) radical by 6.5-56.6%, depending on their concentration, but were less effective, especially at lower concentrations, than ferulic acid. Ferulic acid and steryl ferulates had either no effect, or lowered the OSI of soybean oil by up to 25%, depending on the concentration. In their evaluation as frying oil antioxidants, steryl ferulates with a saturated sterol group had the best antioxidant activity, followed by sterols with one double bond in the C5 position. The results indicate that a dimethyl group at C4 as well as a C9,C19 cyclopropane group, as found in oryzanol, negatively affects antioxidant activity in frying oils. PMID:25236203

Winkler-Moser, Jill K; Hwang, Hong-Sik; Bakota, Erica L; Palmquist, Debra A

2015-02-15

72

The chondroprotective effects of ferulic acid on hydrogen peroxide-stimulated chondrocytes: inhibition of hydrogen peroxide-induced pro-inflammatory cytokines and metalloproteinase gene expression at the mRNA level  

Microsoft Academic Search

Objective  The objective of the study is to evaluate the effect of ferulic acid (FA), an antioxidant from the Chinese herb Dong-Gui [Chinese\\u000a angelica, Angelica sinensis (Oliv.) Diels], on the regulation of various genes in hydrogen peroxide-stimulated porcine chondrocytes at the mRNA level.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  The effect of FA and the effective concentration of FA on porcine chondrocytes was evaluated by the lactate

M. P. Chen; S. H. Yang; C. H. Chou; K. C. Yang; C. C. Wu; Y. H. Cheng; Feng-Huei Lin

2010-01-01

73

Ferulate inhibits mixed lymphocyte reaction stimulated cell proliferation and inhibits IL2 and IL2 receptor expression  

Microsoft Academic Search

Introduction. We have previously shown that curcumin (di-feruloyl methane) has immunosuppressive properties in addition to its anti-oxidant, anti-inflammation, and anti-mutagenic properties. Ferulic acid is a metabolic product of phenylalanine and tyrosine and also a degradation product of curcumin. In this experiment we investigated whether ferulic acid retained the immunosuppressive properties of curcumin. We used ethyl--ferulic acid (FE, from Sigma) in

C. Chen; T. D. Johnston; H. Jeon; M. Ibranhim; D. Ranjan

2004-01-01

74

An automated dual-gradient liquid chromatography-MS/MS method for the simultaneous determination of ferulic acid, ligustrazine and ligustilide in rat plasma and its application to a pharmacokinetic study.  

PubMed

An automated on-line SPE and innovative fast polarity switch bioanalysis method employing dual-gradient liquid chromatography (DGLC) coupled with mass spectrometry (DGLC-MS/MS) was established and validated for the simultaneous determination of ferulic acid, ligustrazine and ligustilide in rat plasma after administration of Rhizoma Chuanxiong, Angelica sinensis extract or monomer. The proteins in plasma samples were precipitated using acetonitrile: methanol (1:1, v/v). Sulfamethoxazole was used as an internal standard. The DGLC system contains two high-pressure pumps. The first pump was used for on-line solid phase extraction with a Cyclone™ SPE column. Chromatographic separations were performed with the other pump on a Syncronis C18 rapid analytical column. The analytical column was eluted by a gradient program that featured an acetonitrile/methanol/water gradient (flow-rate, 0.4ml/min). DGLC afforded greater convenience for bioanalysis. All analytes were simultaneously monitored in positive- and negative-ion mode by SRM (selective reaction monitoring) using the fast polarity switch speed of TSQ Vantage™. Method validation of the assay was implemented. No significant matrix effect was observed. The LLOQ of all analytes were <1.0ng/ml. The precision, recovery and linearity of the analysis met the pre-established requirements. The method was applied to the pharmacokinetics of ferulic acid, ligustrazine and ligustilide in Rhizoma Chuanxiong or Angelica sinensis extracts or monomers. PMID:24140450

Zeng, Mingfei; Zhang, Jing; Yang, Yifang; Jin, Yan; Xiao, Wei; Wang, Zhenzhong; Ding, Gang; Yan, Renjie

2014-01-01

75

Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus.  

PubMed

In a chemical study of several fungal cultures of Polyporus, a methyl ester of cryptoporic H was isolated from P. ciliatus, together with cryptoporic acid H and 5-hydroxymethylfuran-3-carboxylic acid. Furthermore, two additional compounds, named isocryptoporic acids H and I, were isolated from P. arcularius. These isocryptoporic acids are isomers of the cryptoporic acids with drimenol instead of albicanol as the terpenoid fragment; their structural elucidation was determined by application of spectroscopic methods. PMID:12169314

Cabrera, Gabriela M; Julia Roberti, M; Wright, Jorge E; Seldes, Alicia M

2002-09-01

76

Fungal populations in podzolic soil experimentally acidified to simulate acid rain  

Microsoft Academic Search

The effect of experimental acidification on the soil microfungal community was studied in the humus layer of a coniferous forest in northern Sweden. The study was made 4 years after the last application of sulfuric acid. Fungal species composition was altered by treatments of 100 and 150 kg sulfuric acid ha?1 each year for 6 years, yet no differences were

E. BAgtth; B. Lundgren; B. Soederstroem

1984-01-01

77

Fungal populations in podzolic soil experimentally acidified to simulate acid rain  

SciTech Connect

The effect of experimental acidification on the soil microfungal community was studied in the humus layer of a coniferous forest in northern Sweden. The study was made 4 years after the last application of sulfuric acid. Fungal species composition was altered by treatments of 100 and 150 kg sulfuric acid ha/sup -1/ each year for 6 years, yet no differences were found between the control treatment and an application of 50 kg ha/sup -1/. The abundance of Penicillium spinulosum and Oidiodendron cf. echinulatum II increased with increasing rates of acid application, whereas only small changes were found for other isolated fungal taxa. Soil respiration rate and fluorescein diacetate (FDA)-active fungal biomass were significantly different from the control treatment at all 3 levels of acidification. 15 references, 4 tables.

Baath, E.; Lundgren, B.; Soederstroem, B.

1984-01-01

78

Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids  

Microsoft Academic Search

Mortierella alpina is known as an arachidonic acid (AA) producing oleaginous fungus. Extraction of lipids from wet and dry M. alpina biomass was compared. Lipids yield of extraction from dry cells was higher than that of extraction from wet. Wet extraction mainly extracted lipid bodies and lipids in membranes did not extract effectively. Enrichment of AA from the fungal lipids

M. Zhu; P. P. Zhou; L. J. Yu

2002-01-01

79

Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei  

Microsoft Academic Search

bstract   Suspension cultures of Coleus blumei (Lamiaceae) treated with either an elicitor preparation from the culture medium of the phytopathogenic oomycete Pythium aphanidermatum or with methyl jasmonate enhanced accumulation of rosmarinic acid approximately threefold. The specific activities of phenylalanine\\u000a ammonia lyase and rosmarinic acid synthase were also enhanced after addition of the fungal elicitor. The addition of methyl\\u000a jasmonate transiently

E. Szabo; A. Thelen; M. Petersen

1999-01-01

80

A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.  

PubMed

The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. PMID:24211428

Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

2014-02-01

81

Removal of thorium from simulated acid process streams by fungal biomass.  

PubMed

Biomass from several fungal species removed thorium from solution in 1M HNO(3), pH 0-1. Thorium uptake was saturable with increasing thorium concentration, although the equilibria did not correspond to a simple ad sorption isotherm. Thorium uptake was altered by the biomass concentration, the uptake per unit biomass being reduced at high biomass concentrations. The presence of Al(3+) and Fe(3+) only slightly inhibited uptake of thorium while Ca(2+), Mg(2+), and Na(+) had no effect. Thus fungal biomass appears capable of removing thorium from solution under chemical conditions existing in acid waste liquors. Thorium uptake was increased by pretreatment using detergent and also, in the case of filamentous fungi, varied with the culture conditions, which implies that the thorium uptake characteristics of fungal biomass are able to be manipulated by these or similar means for optimum performance. PMID:18587956

Gadd, G M; White, C

1989-01-25

82

Estimation of Fungal Infection of Peanut Kernels by Determination of Free Glutamic Acid Content  

PubMed Central

Peanut kernels (Tainan 9, a Spanish cultivar) inoculated with Aspergillus parasiticus, A. flavus, A. niger, or A. ochraceus as well as noninoculated kernels were incubated in a humidified environment (relative humidity, 100%) at 25(deg)C for 7 weeks. Internal fungal populations and changes in moisture and sucrose content and free amino acid composition of the kernels were determined periodically. Fungal populations determined by using A. flavus and A. parasiticus agar and rose bengal chlortetracycline agar as enumerating media were closely correlated. Moisture content in the kernels increased from 5.8 to 20.4% (dry basis), and changes in individual free amino acid contents varied, depending upon the incubation time and type of fungus used as an inoculum. In the early infection period (up to 5 weeks), sucrose contents and logarithms of threonine and tyrosine contents increased while logarithms of free glutamic acid content decreased linearly with incubation time. A negative linear relationship was further obtained between logarithms of fungal populations and the logarithm of free glutamic acid content (R(sup2) > 0.80) of the infected peanut kernels. PMID:16535540

Chiou, R. Y.

1997-01-01

83

Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase.  

PubMed Central

Three closely related fungal metabolites, zaragozic acids A, B, and C, that are potent inhibitors of squalene synthase have been isolated and characterized. Zaragozic acids A, B, and C were produced from an unidentified sterile fungal culture, Sporormiella intermedia, and Leptodontium elatius, respectively. The structures of the zaragozic acids and their trimethyl esters were determined by a combination of physical and chemical techniques. The zaragozic acids are characterized by a novel 2,8-dioxobicyclo[3.2.1]octane-4,6,7- trihydroxyl-3,4,5-tricarboxylic acid core and differ from each other in the structures of the 6-acyl and 1-alkyl side chains. They were found to be potent competitive inhibitors of rat liver squalene synthase with apparent Ki values of 78 pM, 29 pM, and 45 pM, respectively. They inhibited cholesterol synthesis in Hep G2 cells, and zaragozic acid A was an inhibitor of acute hepatic cholesterol synthesis in the mouse (50% inhibitory dose of 200 micrograms/kg of body weight). Inhibition of squalene synthase in cells and in vivo was accompanied by an accumulation of label from [3H]mevalonate into farnesyl diphosphate, farnesol, and organic acids. These data indicate that the zaragozic acids are a previously unreported class of therapeutic agents with potential for the treatment of hypercholesterolemia. PMID:8419946

Bergstrom, J D; Kurtz, M M; Rew, D J; Amend, A M; Karkas, J D; Bostedor, R G; Bansal, V S; Dufresne, C; VanMiddlesworth, F L; Hensens, O D

1993-01-01

84

Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom  

PubMed Central

The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

Dodge, Anthony G.; Preiner, Chelsea S.

2013-01-01

85

Orally administered rosmarinic acid is present as the conjugated and\\/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid  

Microsoft Academic Search

Rosmarinic acid (RA) is contained in various Lamiaceae herbs used commonly as culinary herbs. Although RA has various potent physiological actions, little is known on its bioavailability. We therefore investigated the absorption and metabolism of orally administered RA in rats. After being deprived of food for 12 h, RA (50 mg\\/kg body weight) or deionized water was administered orally to

Seigo Baba; Naomi Osakabe; Midori Natsume; Junji Terao

2004-01-01

86

Oxidative coupling of tyrosine and ferulic acid residues: Intra- and extra-protoplasmic occurrence, predominance of trimers and larger products, and possible role in inter-polymeric cross-linking  

Microsoft Academic Search

I discuss the range of oxidative phenolic coupling products formed from the tyrosine residues of cell wall glycoproteins and from the feruloyl residues of wall polysaccharides possibly by the action of peroxidases and\\/or laccases. In the cases of both tyrosine- and ferulate-coupling, the coupling products are not confined to dimers but include trimers and probably higher oligomers, which are sometimes

Stephen C. Fry

2004-01-01

87

Characterization of the Complete Uric Acid Degradation Pathway in the Fungal Pathogen Cryptococcus neoformans  

PubMed Central

Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704

Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.

2013-01-01

88

Distribution and Stable Isotopic Composition of Amino Acids from Fungal Peptaibiotics: Assessing the Potential for Meteoritic Contamination  

NASA Astrophysics Data System (ADS)

The presence of nonprotein ?-dialkyl-amino acids such as ?-aminoisobutyric acid (?-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of ?-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the ?-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four ?-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C4 and C5 amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.

Elsila, Jamie E.; Callahan, Michael P.; Glavin, Daniel P.; Dworkin, Jason P.; Brückner, Hans

2011-03-01

89

Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry  

SciTech Connect

Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

Valentine, Nancy B. (BATTELLE (PACIFIC NW LAB)); Wahl, Jon H. (BATTELLE (PACIFIC NW LAB)); Kingsley, Mark T. (BATTELLE (PACIFIC NW LAB)); Wahl, Karen L. (BATTELLE (PACIFIC NW LAB))

2001-12-01

90

Impact of an acid fungal protease in high gravity fermentation for ethanol production using Indian sorghum as a feedstock.  

PubMed

This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable ?-amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (?), substrate consumption (Q(s)), ultimately ethanol yield based on substrate (Y(p/s)) and ethanol productivity based on fermentation time (Q(p)). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process. PMID:23292745

Gohel, V; Duan, G; Maisuria, V B

2013-01-01

91

Rapid Stimulation of 5-Lipoxygenase Activity in Potato by the Fungal Elicitor Arachidonic Acid 1  

PubMed Central

The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched ?-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response. Images Figure 4 Figure 7 PMID:16653144

Bostock, Richard M.; Yamamoto, Hiroyuki; Choi, Doil; Ricker, Karin E.; Ward, Bernard L.

1992-01-01

92

Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile.  

PubMed

Berkeley Pit Lake is an abandoned open-pit copper mine filled with 30 billion gallons of acidic, metal-contaminated water. This harsh environment is proving to be a source of unusual microorganisms that produce novel bioactive metabolites. Bioassay-guided fractionation using signal transduction enzyme assays led to the isolation of the novel spiroketal, berkelic acid 1, and of the known gamma-pyrone, spiciferone A 4. Berkelic acid has shown selective, nanomolar activity against OVCAR-3, an ovarian cancer cell line in the National Cancer Institute cell line screen. The isolation and characterization of these compounds are reported here. PMID:16808526

Stierle, Andrea A; Stierle, Donald B; Kelly, Kal

2006-07-01

93

Corn and kidney bean root endoplasmic reticulum vesicles reduce a fungal iron chelate, ferrirhodotorulic acid, in vitro  

Microsoft Academic Search

Summary Endoplasmic reticulum vesicles from both corn and kidney bean roots are capable of reducing ferrirhodotorulic acid, a fungal iron chelator, in vitro, using NADH as the reductant. In magnesium containing linear 15–45% sucrose density gradients, the activity was in a wide, high density band. The activity shifted in density to 1.07–1.08 when EDTA was included instead of magnesium. No

Tama C. Fox; R. L. Travis

1991-01-01

94

Asymmetric biomimetic oxidations of phenols: the mechanism of the diastereo- and enantioselective synthesis of dehydrodiconiferyl ferulate (DDF) and dehydrodiconiferyl alcohol (DDA)  

Microsoft Academic Search

Stereoselective bimolecular radical coupling of enantiopure phenylpropenoidic phenols are described, starting from enantiopure amidic derivatives of ferulic acid. The latter were prepared from ferulic acid by reaction with (S)-alanine or Oppolzer camphor sultam. The oxidation step was performed both enzymatically (HRP\\/H2O2) and chemically (Ag2O). The observed enantioselectivity in the oxidation step encompasses the range 65–84% and is consistent with the

Marco Orlandi; Bruno Rindone; Giorgio Molteni; Petteri Rummakko; Gösta Brunow

2001-01-01

95

Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios.  

PubMed

The spiroketal (E)-conophthorin has recently been reported as a semiochemical of the navel orangeworm moth, a major insect pest of California pistachios and almonds. Conophthorin and the isomeric spiroketal chalcogran are most commonly known as semiochemicals of several scolytid beetles. Conophthorin is both an insect- and plant-produced semiochemical widely recognized as a nonhost plant volatile from the bark of several angiosperm species. Chalcogran is the principal aggregation pheromone component of the six-spined spruce bark beetle. Recent research has shown conophthorin is produced by almonds undergoing hull-split, and both spiroketals are produced by mechanically damaged almonds. To better understand the origin of these spiroketals, the volatile emissions of orchard fungal spores on fatty acids common to both pistachios and almonds were evaluated. The volatile emission for the first 13 days of spores placed on a fatty acid was monitored. The spores investigated were Aspergillus flavus (atoxigenic), A. flavus (toxigenic), Aspergillus niger, Aspergillus parasiticus, Penicillium glabrum, and Rhizopus stolonifer. The fatty acids used as growth media were palmitic, oleic, linoleic, and linolenic. Spores on linoleic acid produced both spiroketals, those on linolenic acid produced only chalcogran, and those on palmitic and oleic acid did not produce either spiroketal. This is the first report of the spiroketals conophthorin and chalcogran from a fungal source. PMID:23153034

Beck, John J; Mahoney, Noreen E; Cook, Daniel; Gee, Wai S

2012-12-01

96

Firing range soils yield a diverse array of fungal isolates capable of organic acid production and Pb mineral solubilization.  

PubMed

Anthropogenic sources of lead contamination in soils include mining and smelting activities, effluents and wastes, agricultural pesticides, domestic garbage dumps, and shooting ranges. While Pb is typically considered relatively insoluble in the soil environment, some fungi may potentially contribute to mobilization of heavy metal cations by means of secretion of low-molecular-weight organic acids (LMWOAs). We sought to better understand the potential for metal mobilization within an indigenous fungal community at an abandoned shooting range in Oak Ridge, TN, where soil Pb contamination levels ranged from 24 to >2,700 mg Pb kg dry soil(-1). We utilized culture-based assays to determine organic acid secretion and Pb-carbonate dissolution of a diverse collection of soil fungal isolates derived from the site and verified isolate distribution patterns within the community by 28S rRNA gene analysis of whole soils. The fungal isolates examined included both ascomycetes and basidiomycetes that excreted high levels (up to 27 mM) of a mixture of LMWOAs, including oxalic and citric acids, and several isolates demonstrated a marked ability to dissolve Pb-carbonate at high concentrations up to 10.5 g liter(-1) (18.5 mM) in laboratory assays. Fungi within the indigenous community of these highly Pb-contaminated soils are capable of LMWOA secretion at levels greater than those of well-studied model organisms, such as Aspergillus niger. Additionally, these organisms were found in high relative abundance (>1%) in some of the most heavily contaminated soils. Our data highlight the need to understand more about autochthonous fungal communities at Pb-contaminated sites and how they may impact Pb biogeochemistry, solubility, and bioavailability, thus consequently potentially impacting human and ecosystem health. PMID:22729539

Sullivan, Tarah S; Gottel, Neil R; Basta, Nicholas; Jardine, Philip M; Schadt, Christopher W

2012-09-01

97

Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report  

SciTech Connect

The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, an d analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: (1) to assess the potential terrorist threat to U.S. agricultural crops, (2) to determine whether suitable assays exist to monitor that threat, and (3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

Kingsley, Mark T

2001-03-13

98

Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report  

SciTech Connect

The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

Kingsley, Mark T.

2001-03-13

99

Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls.  

PubMed

A suspension in dichloromethane-water (18:1, v/v) of various fractions containing hydroxycinnamic acid ester-ether bridges between lignin and polysaccharides prepared from cell walls of matured oat (Avena sativa L.) intemodes, and a solution of their acetates in the same solvent, were treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). This reagent selectively cleaves benzyl ether and ester linkages of negatively charged aromatic nuclei. The sample treated with DDQ was directly hydrolysed either under mild (1 M NaOH, overnight at 37 degrees C) or severe (4 M NaOH, for 2 h at 170 degrees C) conditions. The hydroxycinnamic acids released in the hydrolysate were methylated with diazomethane and analysed quantitatively using gas chromatography. Significant portions of ether linkages between hydroxycinnamic acids and lignin were cleaved with DDQ, which suggests that most of the hydroxycinnamic acids were ether-linked at the benzyl position, and not the beta-position, of the lignin side chain as previously claimed. PMID:11423145

Lam, T B; Kadoya, K; Iiyama, K

2001-07-01

100

Fungal degradation of the thermoplastic polymer poly-?-hydroxybutyric acid (PHB) under simulated deep sea pressure  

Microsoft Academic Search

Little is known about marine filamentous fungi and yeasts, almost nothing about their life and metabolism under deep sea conditions. Data on growth and metabolic activity give insight into the role of organisms in the marine habitat. Degradation studies on pollutants, such as polymeric thermoplasts, provide information about the self-cleaning capacity of a habitat. Therefore, recently isolated fungal strains from

K. E. Gonda; D. Jendrossek; H. P. Molitoris

2000-01-01

101

Enhanced transesterification of ethyl ferulate with glycerol for preparing glyceryl diferulate using a lipase in ionic liquids as reaction medium.  

PubMed

Glyceryl diferulate (DFG) is a water-soluble ester of ferulic acid. A novel ionic liquid (IL) system for enzymatic transesterification of ethyl ferulate (EF) with glycerol to produce DFG was developed. Of three ILs with different anions (BF4 (-), PF6 (-) and TF2N(-)) and cations (BDMIM, OMIM, HMIM, BMIM, and EMIM), EMIMTF2N proved the best using a commercial lipase. It had a significant protective effect against thermal inactivation of the enzyme. High EF conversion (~100 %) and DFG yield (45 %) were achieved using 45 mg enzyme/ml; temperature, 70 °C; reaction time, 12 h. PMID:23690034

Sun, Shangde; Qin, Fei; Bi, Yanlan; Chen, Jingnan; Yang, Guolong; Liu, Wei

2013-09-01

102

Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid.  

PubMed

The objective of this experiment, part of a larger study, was to investigate changes in rumen bacterial, archaeal, and fungal diversity in cows fed medium-chain saturated fatty acids. In the main study, 6 lactating dairy cows were dosed intraruminally with 240 g/(cow · d) of stearic (SA, control), lauric (LA), or myristic (MA) acid in a replicated 3 × 3 Latin square design trial. Experimental periods were 28 d, and cows were transfaunated between periods. Lauric acid decreased protozoal counts in the rumen by 96% compared with SA and MA (compared with SA, MA had no effect on ruminal protozoa). Whole ruminal contents samples were collected 2, 4, 6, 8, 10, 14, 18, and 24 h after the morning feeding on d 23 of each experimental period, stored frozen, and later composited by cow and period for microbial profile analyses, which involved tag-encoded flexible (FLX) amplicon pyrosequencing to provide diversity analyses of gastrointestinal bacterial, archaeal, and fungal populations of the cattle. The LA treatment, either directly or through its effect on protozoa, had a profound effect on the microbial ecology of the rumen. Ruminal populations of Prevotella, Bacteroides, and Enterorhabdus were decreased (P = 0.04 to P < 0.001) by more than 2-fold in LA treatments compared with SA, and Clostridium populations were decreased (P = 0.01) in LA- compared with MA-treated cows. The proportion of Ruminococcus was not affected by treatment, although the LA treatment had the least proportion of Ruminococcus. Proportions of Eubacterium, Butyrivibrio, Olsenella, and Lactobacillus genera were increased (P = 0.03 to 0.01) by LA compared with MA or SA. The LA treatment, possibly through its effect on protozoa physically associated with archaea, resulted in an increase (P = 0.01) in the archaeal methanogenic genus Methanosphaera and a decrease (P = 0.01) in Methanobrevibacter. Few changes in fungal populations caused by treatment were detected. Collectively, results indicate that LA, either through antiprotozoal or direct antimicrobial effects, altered bacterial and archaeal populations in the rumen of dairy cows, but effects on fungal populations were not clear. PMID:22952367

Hristov, A N; Callaway, T R; Lee, C; Dowd, S E

2012-12-01

103

Sodium Ferulate Inhibits Neointimal Hyperplasia in Rat Balloon Injury Model  

PubMed Central

Background/Aim Neointimal formation after vessel injury is a complex process involving multiple cellular and molecular processes. Inhibition of intimal hyperplasia plays an important role in preventing proliferative vascular diseases, such as restenosis. In this study, we intended to identify whether sodium ferulate could inhibit neointimal formation and further explore potential mechanisms involved. Methods Cultured vascular smooth muscle cells (VSMCs) isolated from rat thoracic aorta were pre-treated with 200 µmol/L sodium ferulate for 1 hour and then stimulated with 1 µmol/L angiotensin II (Ang II) for 1 hour or 10% serum for 48 hours. Male Sprague-Dawley rats subjected to balloon catheter insertion were administrated with 200 mg/kg sodium ferulate (or saline) for 7 days before sacrificed. Results In presence of sodium ferulate, VSMCs exhibited decreased proliferation and migration, suppressed intracellular reactive oxidative species production and NADPH oxidase activity, increased SOD activation and down-regulated p38 phosphorylation compared to Ang II-stimulated alone. Meanwhile, VSMCs treated with sodium ferulate showed significantly increased protein expression of smooth muscle ?-actin and smooth muscle myosin heavy chain protein. The components of Notch pathway, including nuclear Notch-1 protein, Jagged-1, Hey-1 and Hey-2 mRNA, as well as total ?-catenin protein and Cyclin D1 mRNA of Wnt signaling, were all significantly decreased by sodium ferulate in cells under serum stimulation. The levels of serum 8-iso-PGF2? and arterial collagen formation in vessel wall were decreased, while the expression of contractile markers was increased in sodium ferulate treated rats. A decline of neointimal area, as well as lower ratio of intimal to medial area was observed in sodium ferulate group. Conclusion Sodium ferulate attenuated neointimal hyperplasia through suppressing oxidative stress and phenotypic switching of VSMCs. PMID:24489938

Chen, Jing; Xu, Changwu; Ding, Jiawang; Yang, Jun; Guo, Qing; Hu, Qi; Jiang, Hong

2014-01-01

104

Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface.  

PubMed

Phenoxyacetic acids can be degraded by diverse soil microorganisms. Nevertheless, we miss information about the succession of 4-chloro-2-methylphenoxyacetic acid (MCPA) degraders in micro-environments of soils as well as specific functions of different microbial groups during MCPA degradation. We studied MCPA degradation at the soil-litter interface in a microcosm experiment and followed the succession of different degrader populations by quantifying the abundance of 16S rRNA genes as well as, the fungal ITS fragment and the functional genes tfdA (in total and divided into three classes) and cadA. Adjacent to the litter layer, a dynamic depletion zone of MCPA indicated that the litter effect on MCPA degradation depends on substrate availability and the affected soil volume. The increase of the tfdA class III and cadA genes was linked to MCPA mineralisation. Total abundance of tfdA genes was dominated by class I MCPA degraders and did not reflect MCPA degradation potential of the soil. Litter addition induced the development of pioneer and late-stage fungal communities, which were probably both involved in MCPA degradation. The results underline the importance of the ecological behaviour of different degrader populations for the understanding of herbicide degradation in soils. PMID:23560662

Ditterich, Franziska; Poll, Christian; Pagel, Holger; Babin, Doreen; Smalla, Kornelia; Horn, Marcus A; Streck, Thilo; Kandeler, Ellen

2013-10-01

105

TREATMENT OF WOOD WITH POLYSILICIC ACID DERIVED FROM SODIUM SILICATE FOR FUNGAL DECAY PROTECTION1  

Microsoft Academic Search

The aim of this study was to investigate safer, more inexpensive chemicals derived from sodium silicate that can be used to protect wood against fungal degradation. Desiccant and surfactant properties of sodium silicate-derived products have been used since the early 19th century and may find application for wood decay protection. In our study, wood was impregnated with 19.5% sodium silicate

George C. Chen

106

Synthesis of Isopropyl Ferulate Using Silica-Immobilized Lipase in an Organic Medium  

PubMed Central

Immobilization of lipases has proved to be a useful technique for improving an enzyme's activity in organic solvents. In the present study, the performance of a silica-immobilized lipase was evaluated for the synthesis of isopropyl ferulate in DMSO. The biocatalyst was cross-linked onto the matrix with 1% glutaraldehyde. The effects of various parameters, molar ratio of ferulic acid to isopropyl alcohol (25?mM?:?100?mM), concentration of biocatalyst (2.5–20?mg/mL), molecular sieves (25–250?mg/mL), and various salt ions, were studied consecutively as a function of percent esterification. Immobilized lipase at 25?mg/mL showed maximum esterification (~84%) of ferulic acid and isopropanol at a molar ratio of 25?mM?:?100?mM, respectively, in DMSO at 45°C in 3?h under shaking (150?rpm). To overcome the inhibitory effect of water (a byproduct) if any, in the reaction mixture, molecular sieves (3?Å × 1.5?mm; 100?mg/mL) were added to the reaction mixture to promote the forward reaction. Salt ions like Ca2+, Cd2+, and Fe2+ enhanced the activity of immobilized biocatalyst while a few ions like Co2+, Zn2+, Mg2+, Mn2+, Al3+, and Na+ had mild inhibitory effect. Approximately, one third of total decrease in the esterification efficacy was observed after the 5th repetitive cycle of esterification. PMID:21603272

Kumar, Ashok; Kanwar, Shamsher Singh

2011-01-01

107

Production of Eicosapentaenoic acid from biodiesel derived crude glycerol using fungal culture.  

E-print Network

??Omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA, C20:5, n-3) and docosahexaenoic acid (DHA, C22:6, n-3), have many medically established benefits against cardiovascular diseases, cancers, schizophrenia,… (more)

Athalye, Sneha Kishor

2008-01-01

108

A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4.  

PubMed

A filamentous fungus, Mortierella alpina 1S-4, is capable of producing not only arachidonic acid (AA; 20:4n-6) but also eicosapentaenoic acid (EPA; 20:5n-3) below a cultural temperature of 20 degrees C. Here, we describe the isolation and characterization of a gene (maw3) that encodes a novel omega3-desaturase from M. alpina 1S-4. Based on the conserved sequence information for M. alpina 1S-4 Delta12-desaturase and Saccharomyces kluyveri omega3-desaturase, the omega3-desaturase gene from M. alpina 1S-4 was cloned. Homology analysis of protein databases revealed that the amino acid sequence showed 51% identity, at the highest, with M. alpina 1S-4 Delta12-desaturase, whereas it exhibited 36% identity with Sac. kluyveri omega3-desaturase. The cloned cDNA was confirmed to encode the omega3-desaturase by its expression in the yeast Sac. cerevisiae. Analysis of the fatty acid composition of the yeast transformant demonstrated that 18-carbon and 20-carbon n-3 polyunsaturated fatty acids (PUFAs) were accumulated through conversion of exogenous 18-carbon and 20-carbon n-6 PUFAs. The substrate specificity of the M. alpina 1S-4 omega3-desaturase differs from those of the known fungal omega3-desaturases from Sac. kluyveri and Saprolegnia diclina. Plant, cyanobacterial and Sac. kluyveri omega3-desaturases desaturate 18-carbon n-6 PUFAs, Spr. diclina omega3-desaturase desaturates 20-carbon n-6 PUFAs and Caenorhabditis elegans omega3-desaturase prefers 18-carbon n-6 PUFAs as substrates rather than 20-carbon n-6 PUFAs. The substrate specificity of M. alpina 1S-4 omega3-desaturase is rather similar to that of C. elegans omega3-desaturase, but the M. alpina omega3-desaturase can more effectively convert AA into EPA when expressed in yeast. The M. alpina 1S-4 omega3-desaturase is the first known fungal desaturase that uses both 18-carbon and 20-carbon n-6 PUFAs as substrates. PMID:15538555

Sakuradani, Eiji; Abe, Takahiro; Iguchi, Keita; Shimizu, Sakayu

2005-03-01

109

Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species  

DOEpatents

The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

2002-10-15

110

Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species  

DOEpatents

The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

2003-03-04

111

Fungal Sinusitis  

MedlinePLUS

... large granules that attract the reddish-orange eosin stain) to attack fungi, and the eosinophils irritate the ... chronic indolent and fulminant sinusitis are aggressive surgical removal of the fungal material and intravenous anti-fungal ...

112

Fungal Diseases  

MedlinePLUS

... and what we are doing about fungal diseases… Fungal Resources and Training for Healthcare Professionals Print page Contact Us: Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 ...

113

Simultaneous Down-Regulation of Caffeic/5-Hydroxy Ferulic Acid-O-Methyltransferase I and Cinnamoyl-Coenzyme A Reductase in the Progeny from a Cross between Tobacco Lines Homozygous for Each Transgene. Consequences for Plant Development and Lignin Synthesis1  

PubMed Central

Inhibition of specific lignin biosynthetic steps by antisense strategy has previously been shown to alter lignin content and/or structure. In this work, homozygous tobacco (Nicotiana tabacum) lines transformed with cinnamoyl-coenzyme A reductase (CCR) or caffeic acid/5-hydroxy ferulic acid-O-methyltransferase I (COMT I) antisense sequences have been crossed and enzyme activities, lignin synthesis, and cell wall structure of the progeny have been analyzed. In single transformed parents, CCR inhibition did not affect COMT I expression, whereas marked increases in CCR activity were observed in COMT I antisense plants, suggesting potential cross talk between some genes of the pathway. In the progeny, both CCR and COMT I activities were shown to be markedly decreased due to the simultaneous repression of the two genes. In these double transformants, the lignin profiles were dependent on the relative extent of down-regulation of each individual enzyme. For the siblings issued from a strongly repressed antisense CCR parent, the lignin patterns mimicked the patterns obtained in single transformants with a reduced CCR activity. In contrast, the specific lignin profile of COMT I repression could not be detected in double transformed siblings. By transmission electron microscopy some cell wall loosening was detected in the antisense CCR parent but not in the antisense COMT I parent. In double transformants, immunolabeling of non-condensed guaiacyl-syringyl units was weaker and revealed changes in epitope distribution that specifically affected vessels. Our results more widely highlight the impact of culture conditions on phenotypes and gene expression of transformed plants. PMID:11351078

Pinçon, Gaelle; Chabannes, Matthieu; Lapierre, Catherine; Pollet, Brigitte; Ruel, Katia; Joseleau, Jean-Paul; Boudet, Alain M.; Legrand, Michel

2001-01-01

114

High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis.  

PubMed

Chlorogenic acid (CGA) and its isomer, neochlorogenic acid (NCGA), were found to be the major phenolic compounds in the flesh and peel of three peach cultivars. Their concentrations are especially high in immature fruits (CGA, 151-548 mg/kg; NCGA, 85-380 mg/kg), whose resistance to the brown rot fungus, Monilinia laxa , is very high. The concentrations of these two phenolic compounds decline in maturing fruits (CGA, 77-181 mg/kg; NCGA, 30-82 mg/kg), and this decline is associated with a concomitant increase in susceptibility to brown rot infection. Other phenolic compounds found in the same HPLC chromatograms at 340 nm from each peach extract at varying sampling dates in each of the three peach cultivars were not correlated with the incidence of brown rot and appeared only in some cultivars. The incidence of brown rot for each cultivar at each sampling date was significantly negatively correlated with the NCGA (r > -0.85) and CGA (r > -0.90) contents. At concentrations that are similar to those in peach fruit, CGA does not inhibit spore germination or mycelial growth of M. laxa in culture but markedly inhibits the production of melanin-like pigments in the mycelia of M. laxa in culture (42% melanin reduction). Accordingly, we propose that the high concentrations of CGA and NGA in immature fruits might contribute to their reduced susceptibility or increased resistance to brown rot infection by interfering with fungal melanin production. PMID:21370882

Villarino, Maria; Sandín-España, Pilar; Melgarejo, Paloma; De Cal, Antonieta

2011-04-13

115

Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.  

PubMed

A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety. PMID:19244904

Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

2008-12-01

116

The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil  

Microsoft Academic Search

The cell content of 12 bacterial phospholipid fatty acids (PLFA) was determined in bacteria extracted from soil by homogenization\\/centrifugation. The bacteria were enumerated using acridine orange direct counts. An average of 1.40×10-17 mol bacterial PLFA cell-1 was found in bacteria extracted from 15 soils covering a wide range of pH and organic matter contents. With this factor, the bacterial biomass

A. Frostegård; E. Bååth

1996-01-01

117

Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens.  

PubMed

The sugar alcohol mannitol is an important carbohydrate with well-documented roles in both metabolism and osmoprotection in many plants and fungi. In addition to these traditionally recognized roles, mannitol is reported to be an antioxidant and as such may play a role in host-pathogen interactions. Current research suggests that pathogenic fungi can secrete mannitol into the apoplast to suppress reactive oxygen-mediated host defenses. Immunoelectron microscopy, immunoblot, and biochemical data reported here show that the normally symplastic plant enzyme, mannitol dehydrogenase (MTD), is secreted into the apoplast after treatment with the endogenous inducer of plant defense responses salicylic acid (SA). In contrast, a cytoplasmic marker protein, hexokinase, remained cytoplasmic after SA-treatment. Secreted MTD retained activity after export to the apoplast. Given that MTD converts mannitol to the sugar mannose, MTD secretion may be an important component of plant defense against mannitol-secreting fungal pathogens such as Alternaria. After SA treatment, MTD was not detected in the Golgi apparatus, and its SA-induced secretion was resistant to brefeldin A, an inhibitor of Golgi-mediated protein transport. Together with the absence of a known extracellular targeting sequence on the MTD protein, these data suggest that a plant's response to pathogen challenge may include secretion of selected defensive proteins by as yet uncharacterized, non-Golgi mechanisms. PMID:19727802

Cheng, Fang-yi; Zamski, Eli; Guo, Wei-wen; Pharr, D Mason; Williamson, John D

2009-11-01

118

[Fungal keratitis].  

PubMed

Fungal keratitis (keratomycosis) is a rare but severe cause of infectious keratitis. Its incidence is constant, due to steroids or immunosuppressive treatments and contact lenses. Pathogens often invade corneas with chronic diseases of the ocular surface but fungal keratitis is also observed following injuries with plant foreign objects. The poor prognosis of these infections is related both to fungal virulence, decreased host defense, as well as delays in diagnosis. However, new antimycotic treatments allow better management and prognosis. PMID:21546116

Bourcier, T; Sauer, A; Letscher-Bru, V; Candolfi, E

2011-10-01

119

Formation of ethyl ferulate by rice koji enzyme in sake and mirin mash conditions.  

PubMed

Formation mechanism of ethyl ferulate (EF) in sake and mirin mash conditions was investigated to understand EF level control in the manufacturing process. Rice koji formed EF from ferulic acid (FA) and ethanol and decomposed EF to FA. This did not occur in sake yeast and chemical esterification was rare. Esterification of FA and hydrolysis of EF by rice koji might be due to feruloyl esterase(s). The rice koji enzyme showed normal Michaelis-Menten kinetics for FA in ethyl esterification and for EF in hydrolysis, but not for ethanol in the esterification reaction. Substrate specificity of the rice koji enzyme for hydroxycinnamic acids suggested that the main enzyme involved might be similar to type A feruloyl esterase. We studied the rice koji enzyme properties, short-term digestion of steamed rice grains with exogenous ethanol and small scale mirin making with pH adjustment. Our results suggested differences in the esterification and hydrolysis properties of the enzyme, in particular, different pH dependencies and different behaviors under high ethanol conditions; these factors might cause the differing EF levels in sake and mirin mashes. PMID:23597918

Hashizume, Katsumi; Ito, Toshihiko; Ishizuka, Takahiro; Takeda, Naoki

2013-08-01

120

Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry  

SciTech Connect

A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its ?-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the ?-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

2013-12-04

121

New approach to the fungal decontamination of wheat used for wheat sprouts: effects of aminolevulinic acid.  

PubMed

Nowadays, there is a growing interest in natural, minimally processed, nutritional and healthy foods. Sprouted seeds can be offered as natural nutritive products. Regrettably, existing seed decontamination technologies are limited and have specific disadvantages. 5-aminolevulinic acid (5-ALA) as a novel and effective tool for wheat decontamination from microfungi is proposed in this work. Inhibition of wheat with 5-ALA revealed a drastically suppressed development of microfungi. Studies of wheat germination characteristics showed that 5-ALA stimulates the growth of wheat seedlings and roots without impairing the vigor of germination and the viability of seeds. 5-ALA also induces either marginal or significant activities of antioxidant enzymes which can be associated with enhanced cellular capacity to detoxify reactive oxygen species. The results indicate that 5-ALA application may be an effective, environmentally friendly and inexpensive technology to be used in producing sprouts for human consumption. PMID:17350127

Luksiene, Zivile; Danilcenko, Honorata; Taraseviciene, Zivile; Anusevicius, Zilvinas; Maroziene, Audrone; Nivinskas, Henrikas

2007-05-01

122

Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.  

PubMed

Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

Hoffman, Michele T; Gunatilaka, Malkanthi K; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A Elizabeth

2013-01-01

123

Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte  

PubMed Central

Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

2013-01-01

124

Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots  

PubMed Central

The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response. PMID:24047645

Vahabi, Khabat; Camehl, Iris; Sherameti, Irena; Oelmuller, Ralf

2013-01-01

125

Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato.  

PubMed

The oxidative burst has been suggested to be a primary event responsible for triggering the cascade of defense responses in various plant species against infection with avirulent pathogens or pathogen-derived elicitors. The molecular mechanisms of rapid production of active oxygen species (AOS), however, are not well known. We isolated homologs of gp91 phox, a plasma membrane protein of the neutrophil NADPH oxidase, from a potato cDNA library. Molecular cloning of the cDNA showed that there are two isogenes, designated StrbohA and StrbohB, respectively. The RNA gel blot analyses showed that StrbohA was constitutively expressed at a low level, whereas StrbohB was induced by hyphal wall components (HWC elicitor) from Phytophthora infestans in potato tubers. Treatment of potato tubers with HWC elicitor caused a rapid but weak transient accumulation of H2O2 (phase I), followed by a massive oxidative burst 6 to 9 h after treatment (phase II). Diphenylene iodonium (DPI), an inhibitor of the neutrophil NADPH oxidase, blocked both bursts, whereas pretreatment of the protein synthesis inhibitor cycloheximide with the tuber abolished only the second burst. These results suggest that the expression of StrbohA and StrbohB contributes to phase I and II bursts, respectively. The same is true for arachidonic acid, a lipid component of P. infestans-stimulated biphasic oxidative burst, whereas an endogenous signaling molecule, salicylic acid, only induced a weak phase II burst. Both molecules induced the StrbohB expression, which is in agreement with the second burst. To characterize the signal transduction pathway leading to the oxidative burst, we examined the role of protein phosphorylation in HWC-stimulated StrbohB gene expression. K252a and staurosporine, two protein kinase inhibitors, blocked the transcript accumulation. Two inhibitors of extracellular Ca2+ movement, however, did not abolish the transcript accumulation of StrbohB, suggesting that certain calcium-independent protein kinases are involved in the process of StrbohB gene expression. Additionally, we examined a causal relationship between the oxidative burst and expression of defense genes induced by the HWC elicitor. The transcript accumulation of genes related to sesquiterpenoid phytoalexin synthesis (lubimin and rishitin) and phenylpropanoid pathway was inhibited slightly by the DPI treatment, suggesting that the oxidative burst is not essential to activate these genes. Interestingly, the concomitant presence of DPI with the elicitor resulted in an increase in lubimin accumulation and a decrease in rishitin accumulation. Because it is known that lubimin is metabolized into rishitin via oxylubimin, we propose that AOS mediates the synthesis of rishitin from lubimin. PMID:11386368

Yoshioka, H; Sugie, K; Park, H J; Maeda, H; Tsuda, N; Kawakita, K; Doke, N

2001-06-01

126

Influence of plant secondary metabolites on in vitro oxidation of methyl ferulate with cell wall peroxidases from lupine apoplast.  

PubMed

Ionically bound cell wall peroxidases (POXs) were liberated to intercellular washing fluids (IWFs) and isolated together with other proteins and metabolites present in the apoplast of white lupine (Lupinus albus L. var. Bac) root. After separation of proteins from low molecular weight compounds, activity of peroxidases was monitored in in vitro experiments. Oxidation of methyl ferulate with H2O2 was studied in multi-component mixtures of plant metabolites. Secondary metabolites identified in IWFs or other natural products playing important roles in different physiological processes were applied as modifiers of the dehydrodimerization process during oxidation reactions performed in vitro. These were isoflavones and their conjugates, lupanine representing quinolizidine alkaloids synthesized in lupine, or other natural products such as quercetin, ascorbic, and salicylic acid. The influence of these substances on the oxidation kinetics of methyl ferulate was monitored with liquid chromatography with ultraviolet detection (LC/UV), and identification of compounds was confirmed with the liquid chromatography/mass spectroscopy (LC/MS) system. On the basis of data collected, it was possible to reveal changes in the activities of cell wall POXs. Application of the LC system permitted us to monitor, independently, quantitative changes of two or more reaction products in the mixtures. In multi-component combinations, oxidation yields of methyl ferulate by POXs were modified depending on the actual composition of the reaction mixture. We conclude that various classes of plant secondary metabolites can modify the yield of methyl ferulate oxidation by hydrogen peroxide in the presence of POX, due to interactions with the enzyme's active site (genistein) or radical scavenging properties of metabolites present in the reaction mixture. PMID:17928101

Marczak, ?ukasz; Wojtaszek, Przemys?aw; Stobiecki, Maciej

2008-01-01

127

Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes  

PubMed Central

Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

2012-01-01

128

Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2  

NASA Astrophysics Data System (ADS)

Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using ?13C (‰). Differences between individual ?13CPLFA and ?13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

2011-06-01

129

Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata.  

PubMed

The phenylpropanoid pathway plays important roles in plants following exposure to environmental stresses, such as wounding and pathogen attack, which lead to the production of a variety of compounds, including lignin, flavonoids and phytoalexins. Ferulate 5-hydroxylase (F5H) is a cytochrome P450-dependent monooxygenase that catalyses the hydroxylation of ferulic acid, coniferaldehyde and coniferyl alcohol, leading to sinapic acid and syringyl lignin biosynthesis. We isolated F5H cDNA and genomic DNA from Camptotheca acuminata and investigated the expression pattern of the C. acuminata F5H (CaF5H1) gene in response to wounding. A search against the BLOCKS database of conserved protein motifs indicated that CaF5H1 retains features in common with F5Hs reported from other plants. 5'-flanking region analysis using the PLACE database showed that putative regulatory elements related to various abiotic and biotic stresses, such as drought, wounding, low temperature and pathogens, exist in the 5'-flanking region of CaF5H1. Based upon these analysis results, we investigated the expression pattern of CaF5H1 gene in response to wounding and stress-related molecules. Here, we show that CaF5H1 transcripts accumulated in the leaves in response to mechanical wounding or the application of molecules involved in the stress response, such as ethylene, ABA and hydrogen peroxide (H2O2). The application of salicylic acid and diphenylene iodonium (DPI) inhibited the wound-induced expression of CaF5H1. Taken together, we suggest that wound-induced expression of CaF5H1 may be mediated by MJ and H2O2 and enhanced phenylpropanoid contents via CaF5H1 maybe function in response to various stresses, including wounding, in plants. PMID:16332414

Kim, Young Jin; Kim, Dong Gwan; Lee, Sun Hi; Lee, Incheol

2006-02-01

130

Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates.  

PubMed

Steryl ferulates are a mixture of minor bioactive compounds, possessing well-established health benefits. However, individual steryl ferulate species show structural differences, which seem to substantially influence their health-promoting potential. In this study, we tested Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, as potential tools in the identification of steryl ferulates. On the basis of our spectral data obtained from various individual steryl ferulates and steryl ferulate mixtures extracted from rice (?-oryzanol), corn bran, and wheat bran, we provide comprehensive peak assignment tables for both FTIR and Raman. With the help of FTIR spectroscopy, structural differences between individual steryl ferulates were possible to identify, such as the presence of the cyclopropane ring and additional differences in the side chain of the sterane skeleton. Data obtained with Raman spectroscopy provided us with a control for FTIR peak assignment and also with some additional information on the samples. However, detecting structural differences between steryl ferulates was not possible with this method. We consider that FTIR spectroscopy alone or combined with Raman provides detailed data on the structures of steryl ferulates. Moreover, thorough peak assignment tables presented in this study could prove to be helpful tools when identifying steryl ferulates, especially as a group, in future studies. PMID:23414293

Mandak, Eszter; Zhu, Dan; Godany, Tamas A; Nyström, Laura

2013-03-13

131

Proteolytic activity of lactic acid bacteria strains and fungal biota for potential use as starter cultures in dry-cured ham.  

PubMed

During the processing of dry-cured meat products, sarcoplasmic and myofibrillar proteins undergo proteolysis, which has a marked effect on product flavor. Microbial proteolytic activity is due to the action of mostly lactic acid bacteria (LAB) and to a lesser extent micrococci. The proteolytic capacity of molds in various meat products is of interest to meat processors in the Mediterranean area. Eleven LAB and mold strains from different commercial origins were tested for proteolytic activity against pork myosin, with a view to possible use of these strains as starter cultures for Iberian dry-cured ham. Proteolytic activity was tested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The LAB strains with the highest proteolytic activity were Lactobacillus plantarum (L115), Pediococcus pentosaceus (Saga P TM), and Lactobacillus acidophilus (FARGO 606 TM). The best fungal candidate was Penicillium nalgiovense LEM 50I followed by Penicillium digitatum, Debaryomyces hansenii, and Penicillium chrysogenum. PMID:21549056

Toledano, A; Jordano, R; López, C; Medina, L M

2011-05-01

132

Improving plant digestibility by in-planta expression of fungal enzymes  

Microsoft Academic Search

Cell walls play important roles in the life of plants. Moreover, as a major sink for photosynthates they factor heavily in the nutrition of farm animals and - potentially - in the future replacement of petroleum with a renewable, domestic source of fuel for transportation needs. Ferulic acid (4-hydroxy-3-metoxy-cinnamic acid) is the most abundant hydroxycinnamic acid (HCA) in grass cell

Tim Langdon; Barbara Hauck; Sue Dalton; Phillip Morris

133

Pentadecyl ferulate, a potent antioxidant and antiproliferative agent from the halophyte Salicornia herbacea.  

PubMed

An investigation of the chemical constituents of Salicornia herbacea has led to the isolation of one new natural product, pentadecyl ferulate (6), together with 11 known compounds, including phytol (1), stearolic acid (2), ?-linolenic acid (3), (3Z,6Z,9Z)-tricosa-3,6,9-triene (4), linoleic acid (5), stigmasterol (7), ergosterol (8), dioctyl phthalate (9), dibutyl phthalate (10), vanillic aldehyde (11), and scopoletin (12). The chemical structures of these materials were elucidated mainly by spectroscopic analysis. This work represents the first recorded example of the isolation of compounds 1, 2, 3, 4, 9, 10, and 11 from S. herbacea. The antioxidant experiments revealed that compound 6 possessed strong hydroxy radical and superoxide anion scavenging activities and was the principle antioxidant ingredient in the ethyl acetate extract. The antiproliferative results exhibited that compound 1 selectively inhibited HepG2 cells, whereas compounds 3 and 6 showed potent antiproliferative activities against HepG2 and A549 cells. PMID:23870929

Wang, Xiaomin; Zhang, Min; Zhao, Yuhui; Wang, Hui; Liu, Tianxing; Xin, Zhihong

2013-12-01

134

Molecular Characterization of Ferulate 5-Hydroxylase Gene from Kenaf (Hibiscus cannabinus L.)  

PubMed Central

The purpose of this study is to clone and characterize the expression pattern of a F5H gene encoding ferulate 5-hydroxylase in the phenylpropanoid pathway from kenaf (Hibiscus cannabinus L.). Kenaf is a fast-growing dicotyledonous plant valued for its biomass. F5H, a cytochrome P450-dependent monooxygenase (CYP84), is a key enzyme for syringyl lignin biosynthesis. The full length of the F5H ortholog was cloned and characterized. The full-length F5H ortholog consists of a 1,557-bp open reading frame (ORF) encoding 518 amino acids (GenBank Accession number JX524278). The deduced amino acid sequence showed that kenaf F5H had the highest similarity (78%) with that of Populus trichocarpa. Transcriptional analysis of F5H ortholog was conducted using quantitative real-time PCR during the developmental stages of various tissues and in response to various abiotic stresses. The highest transcript level of the F5H ortholog was observed in immature flower tissues and in early stage (6 week-old) of stem tissues, with a certain level of expression in all tissues tested. The highest transcript level of F5H ortholog was observed at the late time points after treatments with NaCl (48?h), wounding (24?h), cold (24?h), abscisic acid (24?h), and methyl jasmonate (24?h). PMID:24204204

Park, Young-Hwan; Lim, Hyoun-Sub; Natarajan, Savithiry; Park, Sang-Un

2013-01-01

135

Functional diversity in fungal fatty acid synthesis: the first acetylenase from the Pacific golden chanterelle, Cantharellus formosus.  

PubMed

Acetylenic specialized metabolites containing one or more carbon-carbon triple bonds are widespread, being found in fungi, vascular and lower plants, marine sponges and algae, and insects. Plants, moss, and most recently, insects, have been shown to employ an energetically difficult, sequential dehydrogenation mechanism for acetylenic bond formation. Here, we describe the cloning and heterologous expression in yeast of a linoleoyl 12-desaturase (acetylenase) and a bifunctional desaturase with Delta(12)-/Delta(14)-regiospecificity from the Pacific golden chanterelle. The acetylenase gene, which is the first identified from a fungus, is phylogenetically distinct from known plant and fungal desaturases. Together, the bifunctional desaturase and the acetylenase provide the enzymatic activities required to drive oleate through linoleate to crepenynate and the conjugated enyne (14Z)-dehydrocrepenynate, the branchpoint precursors to a major class of acetylenic natural products. PMID:20606235

Blacklock, Brenda J; Scheffler, Brian E; Shepard, Michael R; Jayasuriya, Naomi; Minto, Robert E

2010-09-10

136

Fungal Diseases Outbreaks  

MedlinePLUS

... Sheet [PDF - 2 pages] Fungal meningitis after contaminated steroid injections Multistate outbreak of fungal meningitis and other fungal infections associated with contaminated steroid injections, October 2012 This investigation is ongoing. For ...

137

Fungal lectins: a growing family.  

PubMed

Fungi are members of a large group of eukaryotic organisms that include yeasts and molds, as well as the most familiar member, mushrooms. Fungal lectins with unique specificity and structures have been discovered. In general, fungal lectins are classified into specific families based on their amino acid sequences and three-dimensional structures. In this chapter, we provide an overview of the approximately 80 types of mushroom and fungal lectins that have been isolated and studied to date. In particular, we have focused on ten fungal lectins (Agaricus bisporus, Agrocybe cylindracea, Aleuria aurantia, Aspergillus oryzae, Clitocybe nebularis, Marasmius oreades, Psathyrella velutina, Rhizopus stolonifer, Pholiota squarrosa, Polyporus squamosus), many of which are commercially available and their properties, sugar-binding specificities, structural grouping into families, and applications for biological research being described. The sialic acid-specific lectins (Agrocybe cylindracea and Polyporus squamosus) and fucose-specific lectins (Aleuria aurantia, Aspergillus oryzae, Rhizopus stolonifer, and Pholiota squarrosa) each showed potential for use in identifying sialic acid glycoconjugates and fucose glycoconjugates. Although not much is currently known about fungal lectins compared to animal and plant lectins, the knowledge accumulated thus far shows great promise for several applications in the fields of taxonomy, biomedicine, and molecular and cellular biology. PMID:25117221

Kobayashi, Yuka; Kawagishi, Hirokazu

2014-01-01

138

Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production.  

PubMed

This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M

2012-10-01

139

Structural analysis of fungal cerebrosides.  

PubMed

Of the ceramide monohexosides (CMHs), gluco- and galactosyl-ceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry, electrospray ionization, and energy collision-induced dissociation mass spectrometry. Nuclear magnetic resonance has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as high-performance thin layer chromatography and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, Aspergillus fumigatus, and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH) analysis, we now describe new approaches, combining conventional thin layer chromatography and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by secondary ion mass spectrometry and imaging matrix-assisted laser desorption ionization time-of-flight. PMID:22164155

Barreto-Bergter, Eliana; Sassaki, Guilherme L; de Souza, Lauro M

2011-01-01

140

Structural Analysis of Fungal Cerebrosides  

PubMed Central

Of the ceramide monohexosides (CMHs), gluco- and galactosyl-ceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry, electrospray ionization, and energy collision-induced dissociation mass spectrometry. Nuclear magnetic resonance has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as high-performance thin layer chromatography and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, Aspergillus fumigatus, and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH) analysis, we now describe new approaches, combining conventional thin layer chromatography and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by secondary ion mass spectrometry and imaging matrix-assisted laser desorption ionization time-of-flight. PMID:22164155

Barreto-Bergter, Eliana; Sassaki, Guilherme L.; de Souza, Lauro M.

2011-01-01

141

A novel fungal ?3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4  

Microsoft Academic Search

A filamentous fungus, Mortierella alpina 1S-4, is capable of producing not only arachidonic acid (AA; 20:4 n-6) but also eicosapentaenoic acid (EPA; 20:5 n-3) below a cultural temperature of 20°C. Here, we describe the isolation and characterization of a gene ( maw3) that encodes a novel ?3-desaturase from M. alpina 1S-4. Based on the conserved sequence information for M. alpina

Eiji Sakuradani; Takahiro Abe; Keita Iguchi; Sakayu Shimizu

2005-01-01

142

Fungal infections.  

PubMed

Over the last decade, there have been changes in the epidemiology of fungal infections as well as dramatic improvements in the antifungal armamentarium. Candida species are an increasingly important cause of infection among patients in intensive care units. Mold infections continue to occur predominantly among highly immunosuppressed patients, such as those who have acute leukemia and those undergoing hematopoietic stem cell or solid organ transplantation. Aspergillus species remain the most common molds to cause invasive infection, but other environmental molds, such as Scedosporium, Fusarium, and various zygomycetes, including Rhizopus and Mucor, appear to be increasing in some medical centers. We now have available a new class of antifungal agents, the echinocandins, that act to damage the cell walls of Candida and Aspergillus species. Although limited in spectrum and only available in intravenous formulations, these agents are very safe and extremely well tolerated. Another new agent is the expanded spectrum triazole voriconazole. This agent has a very broad spectrum of activity, is available in both oral and intravenous formulations, and is approved for treatment of aspergillosis, other molds, and candidiasis. The major drawbacks with voriconazole are the number of drug-drug interactions and side effects, including rash, hepatitis, and visual disturbances. Treatment with amphotericin B, long the mainstay of antifungal therapy despite its inherent toxicity, is required much less often since the introduction of these new antifungal agents. PMID:16493149

Kauffman, Carol A

2006-01-01

143

Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning.  

PubMed

Burdock fructooligosaccharide (BFO) is a natural elicitor from Arcitum lappa. The effects of BFO in controlling postharvest disease in grape, apple, banana, kiwi, citrus, strawberry, and pear were investigated. The disease index, decay percentage, and area under the disease progress curve indicated that BFO has general control effects on postharvest disease of fruits. Kyoho grapes were studied to elucidate the mechanism of BFO in boosting the resistance of grapes to Botrytis cinerea infection. BFO treatment induced upregulation of the npr1, pr1, pal, and sts genes, and inhibited the total phenol content decrease, which activated chitinase and ?-1,3-glucanase. These results indicated that the salicylic acid-dependent signalling pathway was induced. The delayed colour change and peroxidase and polyphenoloxidase activity suggested that BFO delayed grape browning. The reduced respiration rate, weight loss, and titratable acidity prolonged the shelf life of postharvest grapes. BFO is a promising elicitor in postharvest disease control. PMID:23265522

Sun, Fei; Zhang, Pengying; Guo, Moran; Yu, Wenqian; Chen, Kaoshan

2013-05-01

144

Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection.  

PubMed

The deposition of the (1,3)-?-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant's innate immunity. Infection of the Fusarium graminearum disruption mutant ?fgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the ?fgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and ?-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with ?fgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the ?fgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and ?-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection. PMID:24686113

Blümke, Antje; Falter, Christian; Herrfurth, Cornelia; Sode, Björn; Bode, Rainer; Schäfer, Wilhelm; Feussner, Ivo; Voigt, Christian A

2014-05-01

145

Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid.  

PubMed

Ashbya gossypii can grow on triacyglycerol as carbon source. A degradation rate of 0.05 g x g-1 mycelial dry mass x h-1 was detected for soybean oil. Although this rate was within the sensitivity range of lipase assays no activity was detectable. On the other hand, extracellular lipase activity could be visualized by clearance halos round the growing mycelium when trioleoylglycerol was emulsified as the sole carbon source in agar plates. Variation of the culture conditions revealed that reduced shaking speed and decreased fat content in the medium led to detectable amounts of lipase in the supernatant of flask cultures. A maximal activity of 800 U x l-1 was obtained after 32 h of cultivation in flasks containing 1% yeast extract and incubated at 60 rpm. Because of its pI of 9.0, the enzyme could be purified in a single step by preparative isoelectric focusing. It appeared as a homogeneous protein in analytical isoelectric focusing and SDS/PAGE (M 35,000). The lipase was inactivated within minutes in stirred gas/water, trioleoylglycerol/water or oleic acid/water mixtures. These effects suggested an interface inactivation. This idea was supported by a stability modulation observed with the surfactant Pluronic F-68. Inactivation by oleic acid led to an aggregation of the lipase shown by gel filtration. Growth experiments performed under lipase-stabilizing conditions revealed a negative influence of glucose, glycerol or oleic acid on detectable lipase activity, probably due to a regulation of lipase formation. Inactivation and regulation thus explained the lack of detectable lipase activity in cultures of A. gossypii growing on triacylglycerol. PMID:9063467

Stahmann, K P; Böddecker, T; Sahm, H

1997-02-15

146

Fungal exudates.  

PubMed

The exudates or liquid droplets on various structures of a number of fungi were examined. The droplets were enveloped in membranous material and were associated with actively growing mycelia, including fruiting structures. Osmium tetroxide vapour-fixed droplets of Claviceps purpurea, Myrothecium roridum, Sclerotinia sclerotiorum, Sclerotium rolfsii, and Thanathephorus cucumeris did not dry to a powder but remained intact as spheres when freeze-dried. Fractured spheres, examined with the scanning electron microscope, showed the presence of a membranous structure similar to that of rapidly frozen colloidal solutions with the ice crystals removed by sublimation. Locules or cavities within the freeze-dried droplets are thought to be due to the entrapment of air when droplets coalesce. Biochemical analyses of the exudates showed that acid phosphatase, beta-glucosidase, acid and alkaline protease. RNase polygalacturonase and cellulase enzymes as well as oxalic acid and ammonia were present. PMID:728849

Colotelo, N

1978-10-01

147

Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2  

Microsoft Academic Search

Elevated CO2 interacts with soil water and microsite to affect soil microbesFungal biomarkers indicate active metabolism of newer C under elevated CO2Soil water availability is key to Mojave Desert soil C and nutrient cycles

V. L. Jin; S. M. Schaeffer; S. E. Ziegler; R. D. Evans

2011-01-01

148

Cancers mimicking fungal infections.  

PubMed

Primary and metastatic malignancies may occasionally mimic or coexist with cutaneous fungal infections. The authors report 3 cases of cancers that were initially presumed to be cutaneous fungal infections. Dermatologists should maintain a low threshold for skin biopsy in patients with persistent or refractory fungal infections. PMID:24932950

Ladizinski, Barry; Alavi, Afsaneh; Jambrosic, Jay; Mistry, Nisha; Sibbald, R Gary

2014-07-01

149

Anti-inflammatory effects of hydroxycinnamic acid derivatives  

SciTech Connect

NF-{kappa}B family of transcription factors are involved in numerous cellular processes, including differentiation, proliferation, and inflammation. It was reported that hydroxycinnamic acid derivatives (HADs) are inhibitors of NF-{kappa}B activation. Rice bran oil contains a lot of phytosteryl ferulates, one of HADs. We have investigated effects of phytosteryl ferulates on NF-{kappa}B activation in macrophage. Cycloartenyl ferulate (CAF), one of phytosteryl ferulates, significantly reduced lipopolysaccharide (LPS)-induced NO production and mRNA expression of inducible NO synthase and cyclooxygenese-2 but upregulated SOD activity. Electrophoresis mobility shift assay revealed that CAF inhibited DNA-binding of NF-{kappa}B. CAF and phytosteryl ferulates probably have potentially anti-inflammatory properties.

Nagasaka, Reiko [Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 5-7 Konan 4, Minato, Tokyo 108-8477 (Japan); Chotimarkorn, Chatchawan [Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 5-7 Konan 4, Minato, Tokyo 108-8477 (Japan); Shafiqul, Islam Md. [Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 (Japan); Hori, Masatoshi [Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 (Japan); Ozaki, Hiroshi [Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 (Japan); Ushio, Hideki [Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 5-7 Konan 4, Minato, Tokyo 108-8477 (Japan)]. E-mail: hushio@kaiyodai.ac.jp

2007-06-29

150

Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline.  

PubMed

The characterisation of the secretome of phytopathogenic fungi may contribute to elucidate the molecular mechanisms of pathogenesis. This is particularly relevant for Diplodia corticola, a fungal plant pathogen belonging to the family Botryosphaeriaceae, whose genome remains unsequenced. This phytopathogenic fungus is recognised as one of the most important pathogens of cork oak, being related to the decline of cork oak forests in the Iberian Peninsula. Unfortunately, secretome analysis of filamentous fungi is limited by the low protein concentration and by the presence of many interfering substances, such as polysaccharides, which affect the separation and analysis by 1D and 2D gel electrophoresis. We compared six protein extraction protocols concerning their suitability for further application with proteomic workflows. The protocols involving protein precipitation were the most efficient, with emphasis on TCA-acetone protocol, allowing us to identify the most abundant proteins on the secretome of this plant pathogen. Approximately 60% of the spots detected were identified, all corresponding to extracellular proteins. Most proteins identified were carbohydrate degrading enzymes and proteases that may be related to D. corticola pathogenicity. Although the secretome was assessed in a noninfection environment, potential virulence factors such as the putative glucan-?-glucosidase, neuraminidase, and the putative ferulic acid esterase were identified. The data obtained forms a useful basis for a deeper understanding of the pathogenicity and infection biology of D. corticola. Moreover, it will contribute to the development of proteomics studies on other members of the Botryosphaeriaceae. PMID:24863480

Fernandes, Isabel; Alves, Artur; Correia, António; Devreese, Bart; Esteves, Ana Cristina

2014-01-01

151

Oxygenation by COX-2 (cyclo-oxygenase-2) of 3-HETE (3-hydroxyeicosatetraenoic acid), a fungal mimetic of arachidonic acid, produces a cascade of novel bioactive 3-hydroxyeicosanoids  

PubMed Central

Cyclo-oxygenases-1/2 (COX-1/2) catalyse the oxygenation of AA (arachidonic acid) and related polyunsaturated fatty acids to endoperoxide precursors of prostanoids. COX-1 is referred to as a constitutive enzyme involved in haemostasis, whereas COX-2 is an inducible enzyme expressed in inflammatory diseases and cancer. The fungus Dipodascopsis uninucleata has been shown by us to convert exogenous AA into 3(R)-HETE [3(R)-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid]. 3R-HETE is stereochemically identical with AA, except that a hydroxy group is attached at its C-3 position. Molecular modelling studies with 3-HETE and COX-1/2 revealed a similar enzyme–substrate structure as reported for AA and COX-1/2. Here, we report that 3-HETE is an appropriate substrate for COX-1 and -2, albeit with a lower activity of oxygenation than AA. Oxygenation of 3-HETE by COX-2 produced a novel cascade of 3-hydroxyeicosanoids, as identified with EI (electron impact)–GC–MS, LC–MS–ES (electrospray) and LC–MS–API (atmospheric pressure ionization) methods. Evidence for in vitro production of 3-hydroxy-PGE2 (3-hydroxy-prostaglandin E2) was obtained upon infection of HeLa cells with Candida albicans at an MOI (multiplicity of infection) of 100. Analogous to interaction of AA and aspirin-treated COX-2, 3-HETE was transformed by acetylated COX-2 to 3,15-di-HETE (3,15-dihydroxy-HETE), whereby C-15 showed the (R)-stereochemistry. 3-Hydroxy-PGs are potent biologically active compounds. Thus 3-hydroxy-PGE2 induced interleukin-6 gene expression via the EP3 receptor (PGE2 receptor 3) in A549 cells, and raised cAMP levels via the EP4 receptor in Jurkat cells. Moreover, 3R,15S-di-HETE triggered the opening of the K+ channel in HTM (human trabecular meshwork) cells, as measured by the patch–clamp technique. Since many fatty acid disorders are associated with an ‘escape’ of 3-hydroxy fatty acids from the ?-oxidation cycle, the production of 3-hydroxyeicosanoids may be critical in modulation of effects of endogenously produced eicosanoids. PMID:15869467

2005-01-01

152

Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice.  

PubMed

Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits. PMID:23691100

Burns, Erin M; Tober, Kathleen L; Riggenbach, Judith A; Kusewitt, Donna F; Young, Gregory S; Oberyszyn, Tatiana M

2013-01-01

153

Differential Effects of Topical Vitamin E and C E Ferulic® Treatments on Ultraviolet Light B-Induced Cutaneous Tumor Development in Skh-1 Mice  

PubMed Central

Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits. PMID:23691100

Burns, Erin M.; Tober, Kathleen L.; Riggenbach, Judith A.; Kusewitt, Donna F.; Young, Gregory S.; Oberyszyn, Tatiana M.

2013-01-01

154

Fungal Skin Infections  

MedlinePLUS

... of Fungal Skin Infections Candidiasis Overview of Dermatophytoses (Ringworm, Tinea) Athlete's Foot Jock Itch Scalp Ringworm Body Ringworm Beard Ringworm Dermatophytid Reaction Tinea Versicolor ...

155

Nail Fungal Infections  

MedlinePLUS

... know where or how you got a fungal nail infection. A warm, wet place is a good place for a fungus to grow. If you often wear heavy work ... in locker rooms, you can pick up a fungus from the warm, wet floors. ... fungal infections in their nails at the same time. This can happen because ...

156

Immunity to fungal infections  

Microsoft Academic Search

Fungal diseases represent an important paradigm in immunology, as they can result from either a lack of recognition by the immune system or overactivation of the inflammatory response. Research in this field is entering an exciting period of transition from studying the molecular and cellular bases of fungal virulence to determining the cellular and molecular mechanisms that maintain immune homeostasis

Luigina Romani

2011-01-01

157

Human Skin Fungal Diversity  

PubMed Central

Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota1. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders2,3,4. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also play major roles in microbial community stability, human health and disease5. Genomic methodologies to identify fungal species and communities have been limited compared with tools available for bacteria6. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes7. Here, we sequenced and analyzed fungal communities of 14 skin sites in 10 healthy adults. Eleven core body and arm sites were dominated by Malassezia fungi, with species-level classifications revealing greater topographical resolution between sites. By contrast, three foot sites, plantar heel, toenail, and toeweb, exhibited tremendous fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that skin physiologic attributes and topography differentially shape these two microbial communities. These results provide a framework for future investigation of interactions between pathogenic and commensal fungal and bacterial communities in maintaining human health and contributing to disease pathogenesis. PMID:23698366

Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A.; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H.; Segre, Julia A.

2013-01-01

158

Fungal Biofilm Resistance  

PubMed Central

Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field. PMID:22518145

Ramage, Gordon; Rajendran, Ranjith; Sherry, Leighann; Williams, Craig

2012-01-01

159

Fungal Nail Infection (Onychomycosis)  

MedlinePLUS

... disorders. In the most common form of fungal nail infections, fungus grows under the growing portion of the nail ... doctor may perform testing, such as scraping a nail to examine for fungi or clipping a nail to look for bacterial ...

160

JGI Fungal Genomics Program  

SciTech Connect

Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

Grigoriev, Igor V.

2011-03-14

161

Who Gets Fungal Infections?  

MedlinePLUS

... infections affect specific groups of people. Who gets fungal infections? People living with ... email updates Contact Us: Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 ...

162

Anti-inflammatory effect and prostate gene expression profiling of steryl ferulate on experimental rats with non-bacterial prostatitis.  

PubMed

Steryl ferulate (SF) is a bioactive mixture extracted from rice bran and shows higher inhibitory activity against inflammation than the corresponding free sterols. In this study, the aim was to investigate the anti-inflammatory effect and prostate gene expression profiling of SF using a Xiaozhiling-induced non-bacterial prostatitis (NBP) rat model. The anti-inflammatory effect was evaluated by prostate weight, prostate index, acid phosphatase, density of lecithin corpuscles (DLC), white blood cell count (WBC), and prostatic histologic section. Prostate gene expression profiling was assessed by a cDNA microarray and validated by quantitative real-time PCR of five selected genes. Pathway analysis and Gene ontology (GO) analysis were applied to determine the roles of these differentially expressed genes involved in these biological pathways or GO terms. SF treatment could significantly inhibit prostate weight, prostate index, total acid phosphatase, prostatic acid phosphatase and WBC, suppress the severity of histological lesion and increase the DLC. Compared with the control group, the SF treatment group contained 238 up-regulated genes and 111 down-regulated genes. GO analysis demonstrated that the most significant expression genes were closely related to the terms of fibrinolysis, inflammatory response, high-density lipoprotein particle, protein-lipid complex, enzyme inhibitor activity, peptidase inhibitor activity and others. Canonical pathway analysis indicated five pathways were significantly regulated, which were associated with inflammation and tumorgenesis. In conclusion, SF may be used as a health supplement to prevent NBP, in that it could inhibit prostate inflammation in NBP patients by affecting the expression of genes in the related GO terms and pathways. PMID:24686498

Hu, Yinzhou; Xiong, Lina; Huang, Weisu; Cai, Huafang; Luo, Yanxi; Zhang, Ying; Lu, Baiyi

2014-06-01

163

Effects of Diterpene Acids on Components of a Conifer Bark Beetle–Fungal Interaction: Tolerance by Ips pini and Sensitivity by Its Associate Ophiostoma ips  

Microsoft Academic Search

Conifer resin and phloem tissue contain several phytochemical groups, composed primarily of monoterpenes, diterpene acids, and stilbene phenolics. The effects of monoterpenes and phenolics on stem-colonizing bark beetles and their associated microorganisms have been studied to some extent, but the roles of diterpene acids are largely unknown. Diterpene acids are known to have substantial feeding deterrent and growth inhibiting effects

Brian J. Kopper; Barbara L. Illman; Philip J. Kersten; Kier D. Klepzig; Kenneth F. Raffa

2005-01-01

164

IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS  

SciTech Connect

DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA formation or genes encoding transcription factors that control feruloylation. So it will require further investigations to confirm if we have a mutation on the ferulloyltransferase gene(s). We have also identified severe phenotypes which showed a significant change in the level of cell wall ferulates and sugars and have not survived. As this genotype did not reach flowering stage there was no seed production and so further analysis could not be done. 3. Candidate Gene Approach: Because of the likely long time expected to generate and identify candidate with mutation(s) on the feruloyltransferase gene, from our screening, we have in addition taken a bioinformatics approach in order to try to identify candidates gene(s) involved in feruloylation. Homologues of the rice feruloyl transferase genes belonging to Pfam PF02458 family were identified in Brachypodium distachyon by blasting EST sequences of putative rice arabinoxylan feruloyl transferase genes against Brachypodium and homologous sequences identified were tested for their expression level in Brachypodium. Sequences of the two Brachypodium genes, which showed highest expression and similarity to rice sequences, were used to design primers for construction of RNAi and over-expression vectors. These were transformed into Brachypodium using Agrobacterium transformation and plants generated have been analyzed for levels of cell wall ferulates and diferulates over generations T0 to T2 or T3. Our data shows a significant reduction if ferulates monomers and dimers from plants generated from RNAi::BdAT2 over 2-3 generations indicating that this gene might be a positive candidate for feruloylation in Brachypodium. However when BdAT2 was up regulated there was not much increase in the level of ferulates as would be expected. This lack of effect on the level of cell wall ferulates could be due to the CaMV::35S promoter used to drive the expression of the putative BdAT2 gene. We have shown previously that Aspergillus FAEA expression in tall fescue under CaMV::35S resulted in 1.9 fold decrease in activity compared to ac

de O Buanafina, Marcia Maria

2013-10-16

165

The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits ?-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses  

PubMed Central

Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g?1) or beech wood (up to 80 mU g?1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg?1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative ?-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., ?-l-rhamnopyranoside and ?-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, Rene; Pecyna, Marek J.; Nousiainen, Paula; Sipila, Jussi; Huong, Le Mai; Hofrichter, Martin

2012-01-01

166

The wood rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits ?-L-rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses.  

PubMed

Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g(-1)) or beech wood (up to 80 mU g(-1)). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg(-1)). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative ?-L-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., ?-L-rhamnopyranoside and ?-L-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin; Liers, Christiane

2012-07-01

167

Fungal endocarditis: current challenges.  

PubMed

Whilst it used to affect mostly intravenous drug users and patients who underwent valvular surgery with suboptimal infection control procedures, fungal endocarditis is now mostly observed in patients with severe immunodeficiency (onco-haematology), in association with chronic central venous access and broad-spectrum antibiotic use. The incidence of fungal endocarditis has probably decreased in most developed countries with access to harm-reduction policies (i.e. needle exchange programmes) and with improved infection control procedures during cardiac surgery. Use of specific blood culture bottles for diagnosis of fungal endocarditis has decreased due to optimisation of media and automated culture systems. Meanwhile, the advent of rapid techniques, including fungal antigen detection (galactomannan, mannan/anti-mannan antibodies and ?-1,3-d-glucans) and PCR (e.g. universal fungal PCR targeting 18S rRNA genes), shall improve sensitivity and reduce diagnostics delays, although limited data are available on their use for the diagnosis of fungal endocarditis. New antifungal agents available since the early 2000s may represent dramatic improvement for fungal endocarditis: (i) a new class, the echinocandins, has the potential to improve the management of Candida endocarditis owing to its fungicidal effect on yeasts as well as tolerability of increased dosages; and (ii) improved survival in patients with invasive aspergillosis with voriconazole compared with amphotericin B, and this may apply to Aspergillus sp. endocarditis as well, although its prognosis remains dismal. These achievements may allow selected patients to be cured with prolonged medical treatment alone when surgery is considered too risky. PMID:25178919

Tattevin, Pierre; Revest, Matthieu; Lefort, Agnès; Michelet, Christian; Lortholary, Olivier

2014-10-01

168

Organic acids as seed germination inhibitors  

Microsoft Academic Search

Phytotoxicity of aromatic and aliphatic acids was tested by a wheat seed bioassay. Wheat seed germination was found to be influenced by the number of hydroxy and methoxy groups, the molecular position of single and double hydroxy groups, the length of the aliphatic chain, as well as by the pKa of the acid solutions. Orto and meta coumaric, ferulic and

A. Saviozzi; R. Riffaldi

1994-01-01

169

Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fouriertransform infrared spectroscopy and partial least squares regression  

Microsoft Academic Search

Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent

Gordon G. Allison; Simon C. Thain; Phillip Morris; Catherine Morris; Sarah Hawkins; Barbara Hauck; Tim Barraclough; Nicola Yates; Ian Shield; Anthony V. Bridgwater; Iain S. Donnison

2009-01-01

170

Pulmonary fungal infections.  

PubMed

This review details some of the advances that have been made in the recent decade in the diagnosis, treatment and epidemiology of pulmonary fungal infections. These advances have occurred because of increasing knowledge regarding the fungal genome, better understanding of the structures of the fungal cell wall and cell membrane and the use of molecular epidemiological techniques. The clinical implications of these advances are more rapid diagnosis and more effective and less toxic antifungal agents. For example, the diagnosis of invasive pulmonary aspergillosis, as well as histoplasmosis and blastomycosis, has improved with the use of easily performed antigen detection systems in serum and bronchoalveolar lavage fluid. Treatment of angioinvasive moulds has improved with the introduction of the new azoles, voriconazole and posaconazole that have broad antifungal activity. Amphotericin B is less frequently used, and when used is often given as lipid formulation to decrease toxicity. The newest agents, the echinocandins, are especially safe as they interfere with the metabolism of the fungal cell wall, a structure not shared with humans cells. Epidemiological advances include the description of the emergence of Cryptococcus gattii in North America and the increase in pulmonary mucormycosis and pneumonia due to Fusarium and Scedosporium species in transplant recipients and patients with haematological malignancies. The emergence of azole resistance among Aspergillus species is especially worrisome and is likely related to increased azole use for treatment of patients, but also to agricultural use of azoles as fungicides in certain countries. PMID:22335254

Smith, Jeannina A; Kauffman, Carol A

2012-08-01

171

Immunity to fungal infections  

Microsoft Academic Search

The topic of immunity to fungal infections is of interest to a wide range of disciplines, from microbiology to immunology. It is of particular interest in terms of therapy of HIV-infected individuals, and patients with cancer or individuals who have received transplants. Understanding the nature and function of the immune response to fungi is an exciting challenge that might set

Luigina Romani

2004-01-01

172

Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage.  

PubMed

The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. PMID:18849463

Coda, Rossana; Rizzello, Carlo G; Nigro, Franco; De Angelis, Maria; Arnault, Philip; Gobbetti, Marco

2008-12-01

173

Fungal Communities Associated with Degradation of Polyester Polyurethane in Soil  

Microsoft Academic Search

Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investi- gated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the

Lee Cosgrove; Paula L. McGeechan; Geoff D. Robson; Pauline S. Handley

2007-01-01

174

Superficial fungal infections.  

PubMed

Tinea capitis, tinea corporis, and pityriasis versicolor are common superficial fungal infections in the pediatric population. • Tinea capitis is the most common dermatophyte infection worldwide. In North America, the cause is almost exclusively T tonsurans. Diagnosis of tinea capitis usually can be made by clinical features alone, especially when occipital or postauricular lymphadenopathy is present. Skin scrapings prepared with potassium hydroxide for microscopic examination, or a cotton swab for fungal culture, usually are diagnostic. • Treatment of tinea capitis requires systemic antifungal therapy. Terbinafine and griseofulvin are both effective against T tonsurans and are FDA-approved for this indication in children. • Adjunctive topical therapy for the patient and household contacts decreases transmission of this infection. • Topical antifungal therapy usually is effective for tinea corporis and pityriasis versicolor. However, recurrences of pityriasis versicolor are common. PMID:22474120

Kelly, Brendan P

2012-04-01

175

Fungal pathogens: an overview.  

PubMed

Of all the classes of infectious agents--bacteria, viruses, parasites, worms and prions--fungi are perhaps the last to come to mind and the least understood by most health care providers. Although they rarely cause fatal disease, fungi can cause significant injury and illness. Fungal infections are both difficult to prevent and difficult to treat. In addition, fungal infections are likely to become more common because of the ongoing human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, the aging population and the growth of treatments that alter patients' immune status. This review introduces fungi, the infections they cause, the risk factors involved, diagnosis and treatment. This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your continuing education preference. For access to other quizzes, go to www.asrt.org/store. PMID:21406709

Faguy, David M

2011-01-01

176

Cytology of Fungal Infection  

NSDL National Science Digital Library

This resource is a laboratory exercise in plant patholgy. Students become familiar with the cytological events involved in the establishment of infection by a fungal pathogen. Upon completion of this laboratory students should understand the effect of various management practices on particular infection events, and the significance of this to disease management.Instructors and students notes are included, as well as data record sheets and discussion questions.

Paul Vincelli. (University of Kentucky;)

2001-06-18

177

Fungal diseases of fish.  

PubMed

Fungal diseases of fish have become increasingly important over the past 20 years. The traditional "fungi" are comprised of members from several different taxonomic kingdoms. Saprolegnia and other typical water molds are the "classic" secondary invaders, infecting more superficial areas of the body and requiring compromise of the exterior of the fish, poor water quality, or general immunosuppression. An increasing number of other environmental fungi are being reported from diseased fish, further testament to the opportunistic nature of many fungi. Common procedures such as air bladder deflation for many marine species collected at depth under nonsterile conditions may result in fungal infections of the swim bladder. Some fungi such as Aphanomyces and Fusarium can cause more invasive or systemic disease, often associated with changes in environmental factors such as temperature and salinity. Other fungi such as I. hoferi can be even more insidious and chronic, mimicking mycobacteriosis to a degree. Fungal diseases, in general, are very difficult to control or treat once they have taken hold. Prevention is, as always, the best medicine. Increased knowledge of basic biology will help guide treatment and control methods. Further research on general predisposing factors, species susceptibilities, immune system effects and other protective mechanisms in fish and more effective chemotherapeutics for external and systemic infections are needed. PMID:12836630

Yanong, Roy P E

2003-05-01

178

Developments in Fungal Taxonomy  

PubMed Central

Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales). PMID:10398676

Guarro, Josep; Gene, Josepa; Stchigel, Alberto M.

1999-01-01

179

Fungal biotransformation of (+/-)-linalool.  

PubMed

The biotransformation of (+/-)-linalool was investigated by screening 19 fungi. Product accumulation was enhanced by substrate feeding and, for the first time, lilac aldehydes and lilac alcohols were identified as fungal biotransformation byproduct using SPME-GC-MS headspace analysis. Aspergillus niger DSM 821, Botrytis cinerea 5901/02, and B. cinerea 02/FBII/2.1 produced different isomers of lilac aldehyde and lilac alcohol from linalool via 8-hydroxylinalool as postulated intermediate. Linalool oxides and 8-hydroxylinalool were the major products of fungal (+/-)-linalool biotransformations. Furanoid trans-(2 R,5 R)- and cis-(2 S,5 R)-linalool oxide as well as pyranoid trans-(2 R,5 S)- and cis-(2 S, 5 S)-linalool oxide were identified as the main stereoisomers with (3 S,6 S)-6,7-epoxylinalool and (3 R,6 S)-6,7-epoxylinalool as postulated key intermediates of fungal (+/-)-linalool oxyfunctionalization, respectively. With a conversion yield close to 100% and a productivity of 120 mg/L.day linalool oxides, Corynespora cassiicola DSM 62485 was identified as a novel highly stereoselective linalool transforming biocatalyst showing the highest productivity reported so far. PMID:18426215

Mirata, Marco-Antonio; Wüst, Matthias; Mosandl, Armin; Schrader, Jens

2008-05-14

180

Current Status of Nonculture Methods for Diagnosis of Invasive Fungal Infections  

PubMed Central

The incidence of invasive fungal infections has increased dramatically in recent decades, especially among immunocompromised patients. However, the diagnosis of these infections in a timely fashion is often very difficult. Conventional microbiologic and histopathologic approaches generally are neither sensitive nor specific, and they often do not detect invasive fungal infection until late in the course of disease. Since early diagnosis may guide appropriate treatment and prevent mortality, there has been considerable interest in developing nonculture approaches to diagnosing fungal infections. These approaches include detection of specific host immune responses to fungal antigens, detection of specific macromolecular antigens using immunologic reagents, amplification and detection of specific fungal nucleic acid sequences, and detection and quantitation of specific fungal metabolite products. This work reviews the current status and recent developments as well as problems in the design of nonculture diagnostic methods for invasive fungal infections. PMID:12097252

Yeo, Siew Fah; Wong, Brian

2002-01-01

181

Secreted Fungal Effector Lipase Releases Free Fatty Acids to Inhibit Innate Immunity-Related Callose Formation during Wheat Head Infection[W][OPEN  

PubMed Central

The deposition of the (1,3)-?-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant’s innate immunity. Infection of the Fusarium graminearum disruption mutant ?fgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the ?fgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and ?-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with ?fgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the ?fgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and ?-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection. PMID:24686113

Blumke, Antje; Falter, Christian; Herrfurth, Cornelia; Sode, Bjorn; Bode, Rainer; Schafer, Wilhelm; Feussner, Ivo; Voigt, Christian A.

2014-01-01

182

Fungal Genome Sequencing and Bioenergy  

SciTech Connect

To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

Schadt, Christopher Warren [ORNL; Baker, Scott [Pacific Northwest National Laboratory (PNNL); Thykaer, Jette [Pacific Northwest National Laboratory (PNNL); Adney, William S [National Renewable Energy Laboratory (NREL); Brettin, Tom [Los Alamos National Laboratory (LANL); Brockman, Fred [Pacific Northwest National Laboratory (PNNL); Dhaeseleer, Patrick [Lawrence Livermore National Laboratory (LLNL); Martinez, A diego [Los Alamos National Laboratory (LANL); Miller, R michael [Argonne National Laboratory (ANL); Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Torok, Tamas [U.S. Department of Energy, Joint Genome Institute; Tuskan, Gerald A [ORNL; Bennett, Joan [Rutgers University; Berka, Randy [Novozymes, Inc; Briggs, Steven [University of California, San Diego; Heitman, Joseph [Duke University; Rizvi, L [Royal Ontario Museum; Taylor, John [University of California, Berkeley; Turgeon, Gillian [Cornell University; Werner-Washburne, Maggie [University of New Mexico, Albuquerque; Himmel, Michael [ORNL

2008-01-01

183

Fungal Genome Sequencing and Bioenergy  

SciTech Connect

To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

Baker, Scott [Pacific Northwest National Laboratory (PNNL); Thykaer, Jette [Pacific Northwest National Laboratory (PNNL); Adney, William S [National Renewable Energy Laboratory (NREL); Brettin, Tom [Los Alamos National Laboratory (LANL); Brockman, Fred [Pacific Northwest National Laboratory (PNNL); Dhaeseleer, Patrick [Lawrence Livermore National Laboratory (LLNL); Martinez, A diego [Los Alamos National Laboratory (LANL); Miller, R michael [Argonne National Laboratory (ANL); Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Schadt, Christopher Warren [ORNL; Torok, Tamas [U.S. Department of Energy, Joint Genome Institute; Tuskan, Gerald A [ORNL; Bennett, Joan [Rutgers University; Berka, Randy [Novozymes, Inc; Briggs, Steven [University of California, San Diego; Heitman, Joseph [Duke University; Taylor, John [University of California, Berkeley; Turgeon, Gillian [Cornell University; Werner-Washburne, Maggie [University of New Mexico, Albuquerque; Himmel, Michael E [National Renewable Energy Laboratory (NREL)

2008-01-01

184

Fungal Genome Sequencing and Bioenergy  

SciTech Connect

To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

2008-09-30

185

Fungal Community Ecology: A Hybrid Beast with a Molecular Master  

NSDL National Science Digital Library

Fungi play a major role in the function and dynamics of terrestrial ecosystems, directly influencing the structure of plant, animal, and bacterial communities through interactions that span the mutualism-parasitism continuum. Only with the advent of deoxyribonucleic acid (DNA)-based molecular techniques, however, have researchers been able to look closely at the ecological forces that structure fungal communities. The recent explosion of molecular studies has greatly advanced our understanding of fungal diversity, niche partitioning, competition, spatial variability, and functional traits. Because of fungi's unique biology, fungal ecology is a hybrid beast that straddles the macroscopic and microscopic worlds. While the dual nature of this field presents many challenges, it also makes fungi excellent organisms for testing extant ecological theories, and it provides opportunities for new and unanticipated research. Many questions remain unanswered, but continuing advances in molecular techniques and field and lab experimentation indicate that fungal ecology has a bright future.

Kabir G. Peay (University of California at Berkeley;); Peter G. Kennedy (Lewis and Clark College;); Thomas D. Bruns (University of California at Berkeley;)

2008-10-01

186

Effect of acidic electrolyzed water on the viability of bacterial and fungal plant pathogens and on bacterial spot disease of tomato.  

PubMed

Acidic electrolyzed water (AEW), known to have germicidal activity, was obtained after electrolysis of 0.045% aqueous solution of sodium chloride. Freshly prepared AEW (pH 2.3-2.6, oxidation-reduction potential 1007-1025 mV, and free active chlorine concentration 27-35 ppm) was tested in vitro and (or) on tomato foliage and seed surfaces for its effects on the viability of plant pathogen propagules that could be potential seed contaminants. Foliar sprays of AEW were tested against bacterial spot disease of tomato under greenhouse and field conditions. The viability of propagules of Xanthomonas campestris pv. vesicatoria (bacterial spot pathogen), Streptomyces scabies (potato scab pathogen), and Fusarium oxysporum f.sp. lycopersici (root rot pathogen) was significantly reduced 4-8 log units within 2 min of exposure to AEW. Immersion of tomato seed from infected fruit in AEW for 1 and 3 min significantly reduced the populations of X. campestris pv. vesicatoria from the surface of the seed without affecting seed germination. Foliar sprays of AEW reduced X. campestris pv. vesicatoria populations and leaf spot severity on tomato foliage in the greenhouse. In the field, multiple sprays of AEW consistently reduced bacterial spot severity on tomato foliage. Disease incidence and severity was also reduced on fruit, but only in 2003. Fruit yield was either enhanced or not affected by the AEW sprays. These results indicate a potential use of AEW as a seed surface disinfectant or contact bactericide. PMID:17110959

Abbasi, P A; Lazarovits, G

2006-10-01

187

Stem Cell Transplant Patients and Fungal Infections  

MedlinePLUS

... About CDC.gov . Fungal Diseases Share Compartir Stem Cell Transplant Patients and Fungal Infections As a stem ... Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

188

Fungal rhinosinusitis and imaging modalities  

PubMed Central

This report provides an overview of fungal rhinosinusitis with a particular focus on acute fulminant invasive fungal sinusitis (AFIFS). Imaging modalities and findings that aid in diagnosis and surgical planning are reviewed with a pathophysiologic focus. In addition, the differential diagnosis based on imaging suggestive of AFIFS is considered. PMID:23961027

Gorovoy, Ian R.; Kazanjian, Mia; Kersten, Robert C.; Kim, H. Jane; Vagefi, M. Reza

2012-01-01

189

Nigrumin-5-p-coumarate and nigrumin-5-ferulate, two unusual nitrile-containing metabolites from black currant (Ribes nigrum) seed.  

PubMed

Two novel nitrile-containing compounds, nigrumin-5-p-coumarate and nigrumin-5-ferulate, together with six known flavonoids, were isolated from the seed of black currant (Ribes nigrum). The chemical structures of nigrumin-5-p-coumarate and 5-ferulate were elucidated using NMR spectroscopy as 2-trans-p-coumaroyloxymethyl-4-beta-D-glucopyranosyloxy-2(E)-butenenitrile and 2-trans-feruloyloxymethyl-4-beta-D-glucopyranosyloxy-2(E)-butenenitrile, respectively. PMID:11830168

Lu, Yinrong; Foo, L Yeap; Wong, Herbert

2002-02-01

190

Biosorption of radionuclides by fungal biomass.  

PubMed

Four kinds of bioreactor were evaluated for thorium removal by fungal biomass. Static-bed or stirred-bed bioreactors did not give satisfactory thorium removal probably because of poor mixing. An air-lift bioreactor removed approximately 90-95% of the thorium supplied over extended time periods and exhibited a well-defined breakthrough point after biosorbent saturation. The air-lift bioreactor promoted efficient circulation and effective contact between the thorium solution and the mycelial pellets. Of several fungal species tested, Rhizopus arrhizus and Aspergillus niger were the most effective biosorbents with loading capacities of 0.5 and 0.6 mmol g-1 respectively (116 and 138 mg g-1) at an inflow thorium concentration of 3 mmol dm-3. The efficiency of thorium biosorption by A. niger was markedly reduced in the presence of other inorganic solutes while thorium biosorption by R. arrhizus was relatively unaffected. Air-lift bioreactors containing R. arrhizus biomass could effectively remove thorium from acidic solution (1 mol dm-3 HNO3) over a wide range of initial thorium concentrations (0.1-3 mmol dm-3). The biotechnological application and significance of these results are discussed in the wider context of fungal biosorption of radionuclides. PMID:1366965

White, C; Gadd, G M

1990-01-01

191

Fungal biodegradation of pomegranate ellagitannins.  

PubMed

Ellagitannins (ETs) are phytochemicals derived from secondary metabolism associated to defense system, with complex chemical structures, which have high participation during all stages of protection against microbial infection. In this study, we report the fungal biodegradation of a bioactive ET, named punicaline which was recovered and purified from pomegranate peels and used as carbon source in solid-state culture (SSC) using polyurethane as solid support. SSC was kinetically monitored during 36?h of incubation time. ETs and glycosides consumption were spectrophotometrically determined. Ellagic acid (EA) accumulation was analyzed by HPLC. Several enzymatic activities were assayed (cellulase, xylanase, ?-glucosydase, polyphenoloxidase, tannase, and ET hydrolyzing activities). The consumption levels of ETs and glycosides were 66 and 40%, while EA accumulation reached 42.02?mg?g(-1). A differential pattern of enzymatic activities was found; evidence from our studies suggests that the ET hydrolyzing activity is directly associated to EA accumulation, and production of this enzyme may represent the most critical step to successfully develop a bioprocess for production of an important bioactive compound, the EA. PMID:23564673

Ascacio-Valdés, Juan A; Buenrostro, José J; De la Cruz, Reynaldo; Sepúlveda, Leonardo; Aguilera, Antonio F; Prado, Arely; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

2014-01-01

192

Effect of sodium ferulate on delayed rectifier K+ currents in PC12 cells  

PubMed Central

In order to investigate the effect of sodium ferulate (SF) on voltage-activated K+ channels, the delayed rectifier K+ current (Ik) in PC12 rat pheochromocytoma cells was recorded using the automated patch-clamp method. The results indicated that following the application of SF, the Ik in PC12 cells was significantly decreased in a concentration-dependent manner. The analysis of activation kinetic curves and inactivation kinetic curves of Ik showed that SF had an effect on the activation and inactivation kinetics. Following the application of 15.3 ?M SF, the activation curve of the Ik of PC12 cells was shifted to positive potentials and the inactivation curve of the Ik of PC12 cells was shifted to negative potentials. This study revealed that the delayed rectifier K+ currents of PC12 cells were inhibited following SF treatment in a concentration-dependent manner. The mechanism may be associated with the delayed activation and enhanced inactivation of Ik-associated channels. PMID:25120634

WANG, WEI; WANG, YUYUN; ZHANG, CHUNLEI; SUN, MENGMENG; ZHU, XIAOYIN

2014-01-01

193

Superficial fungal infections.  

PubMed

Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma. PMID:15451228

Schwartz, Robert A

194

Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork  

Microsoft Academic Search

Crude polyphenol extracts (15 or 100mg gallic acid equivalents (GAE)\\/kg meat) from canola meal reduced the formation of 2-thiobarbituric acid-reactive substances (TBARS) in pre-cooked beef (66–92%), pork (43–75%) and chicken (36–70%). The canola extract contained sinapic (99.7%), ferulic (0.28%) and p-hydroxybenzoic acids (0.07%).The relationship between polyphenol composition and the antioxidant activity of a blend containing of caffeic, cinnamic, p-coumaric, ferulic,

Amandine Brettonnet; Amitha Hewavitarana; Sharon DeJong; Maria Cecilia Lanari

2010-01-01

195

Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf.  

PubMed

The effects ofp-coumaric, ferulic, chlorogenic, and vanillic acids on photosynthesis and protein synthesis by isolated leaf cells of velvetleaf (Abutilon theophrasti Medik) were investigated. Photosynthesis and protein synthesis were measured in cell suspensions by the incorporation of(14)CO2 and [(14)C]leucine, respectively. None of the tested phenolic acids except vanillic reduced photosynthesis by more than 50% at the highest concentration and 30 min of incubation. At 100?M concentrations and 60-min incubation periods,p-coumaric, ferulic, chlorogenic, and vanillic acids inhibited photosynthesis by 33, 37, 57, and 65%, respectively. Ferulic acid was the most inhibitory to protein synthesis and reduced the incorporation of [(14)C]leucine by 50% at about 1.0?M after 60 min of incubation. At the highest concentrations tested in this study, vanillic and ferulic acids were inhibitory to photosynthesis and protein synthesis, respectively, whereas chlorogenic andp-coumaric acids did not inhibit either physiological process. The maximum inhibition of protein synthesis by chlorogenic acid was 19% and by vanillic acid was 28% at 100?M concentrations. Chlorogenic, vanillic, andp-cou-maric acids at 0.1?M caused increased protein synthesis over the untreated control. Overall, photosynthesis was more sensitive than protein synthesis to the four phenolic acids tested. PMID:24249162

Mersie, W; Singh, M

1993-07-01

196

Cytokine Treatment of Fungal Infections  

Microsoft Academic Search

Resolution of invasive fungal infections is often dependent on recovery from an immunocompromised state, indicating that host\\u000a defense mechanisms are extremely important in the clearance of fungal pathogens. Immunotherapy aimed at enhancing host defense\\u000a mechanisms may improve clinical outcome of invasive mycoses. Recombinant cytokines and growth factors have been applied in\\u000a vitro and in animal models to augment host defense

Bart Jan M. D. Kullberg

197

Traversing the fungal terpenome.  

PubMed

Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids. PMID:25171145

Quin, Maureen B; Flynn, Christopher M; Schmidt-Dannert, Claudia

2014-10-01

198

Phenolic acids of borage ( Borago officinalis L.) and evening primrose ( Oenothera biennis L.)  

Microsoft Academic Search

The composition of phenolic acids, both free and liberated from esters and glycosides, was determined in evening primrose\\u000a and borage seeds by GC and MS. The free phenolic acid fraction was predominant in these seeds. Protocatechuic acid was the\\u000a principal phenolic acid of the free and esterified phenolic acids in evening primrose seeds. Ferulic acid represented a high\\u000a proportion of

R. Zadernowski; M. Naczk; H. Nowak-Polakowska

2002-01-01

199

Fungal pathogens of Proteaceae.  

PubMed

Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and LSU genes. In some cases additional genes such as TEF 1-? and CHS were also sequenced. Based on the results of this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D. dematoidea as previously reported. Fusicladium proteae is described on Protea sp. (South Africa), Pestalotiopsis protearum on Leucospermum cuneiforme (Zimbabwe), Ramularia vizellae and R. stellenboschensis on Protea spp. (South Africa), and Teratosphaeria capensis on Protea spp. (Portugal, South Africa). Aureobasidium leaf spot is shown to be caused by two species, namely A. proteae comb. nov. on Protea spp. (South Africa), and A. leucospermi sp. nov. on Leucospermum spp. (Indonesia, Portugal, South Africa). Novel genera and species elucidated in this study include Gordonomyces mucovaginatus and Pseudopassalora gouriqua (hyphomycetes), and Xenoconiothyrium catenata (coelomycete), all on Protea spp. (South Africa). PMID:22403475

Crous, P W; Summerell, B A; Swart, L; Denman, S; Taylor, J E; Bezuidenhout, C M; Palm, M E; Marincowitz, S; Groenewald, J Z

2011-12-01

200

Synthesis and HIV1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis  

Microsoft Academic Search

The synthesis of two caffeoyl-coumarin conjugates, derived from sagecoumarin, has been accomplished, starting from ferulic acid, isoferulic acid and sesamol. Both compounds exhibited potent inhibitory activities at micromolar concentrations against HIV-1 integrase in 3?-end processing reaction but were less effective against HIV-1 replication in a single-round infection assay of HeLa-?-gal-CD4+ cells.

Fabrice Bailly; Clémence Queffelec; Gladys Mbemba; Jean-François Mouscadet; Philippe Cotelle

2005-01-01

201

Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth  

PubMed Central

Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth. PMID:24312480

Lima, Rogerio Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogerio; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

2013-01-01

202

Rational reprogramming of fungal polyketide first-ring cyclization  

PubMed Central

Resorcylic acid lactones and dihydroxyphenylacetic acid lactones represent important pharmacophores with heat shock response and immune system modulatory activities. The biosynthesis of these fungal polyketides involves a pair of collaborating iterative polyketide synthases (iPKSs): a highly reducing iPKS with product that is further elaborated by a nonreducing iPKS (nrPKS) to yield a 1,3-benzenediol moiety bridged by a macrolactone. Biosynthesis of unreduced polyketides requires the sequestration and programmed cyclization of highly reactive poly-?-ketoacyl intermediates to channel these uncommitted, pluripotent substrates to defined subsets of the polyketide structural space. Catalyzed by product template (PT) domains of the fungal nrPKSs and discrete aromatase/cyclase enzymes in bacteria, regiospecific first-ring aldol cyclizations result in characteristically different polyketide folding modes. However, a few fungal polyketides, including the dihydroxyphenylacetic acid lactone dehydrocurvularin, derive from a folding event that is analogous to the bacterial folding mode. The structural basis of such a drastic difference in the way a PT domain acts has not been investigated until now. We report here that the fungal vs. bacterial folding mode difference is portable on creating hybrid enzymes, and we structurally characterize the resulting unnatural products. Using structure-guided active site engineering, we unravel structural contributions to regiospecific aldol condensations and show that reshaping the cyclization chamber of a PT domain by only three selected point mutations is sufficient to reprogram the dehydrocurvularin nrPKS to produce polyketides with a fungal fold. Such rational control of first-ring cyclizations will facilitate efforts to the engineered biosynthesis of novel chemical diversity from natural unreduced polyketides. PMID:23509261

Xu, Yuquan; Zhou, Tong; Zhou, Zhengfu; Su, Shiyou; Roberts, Sue A.; Montfort, William R.; Zeng, Jia; Chen, Ming; Zhang, Wei; Lin, Min; Zhan, Jixun; Molnar, Istvan

2013-01-01

203

The Spectrum of Fungal Allergy  

Microsoft Academic Search

Fungi can be found throughout the world. They may live as saprophytes, parasites or symbionts of animals and plants in indoor as well as outdoor environment. For decades, fungi belonging to the ascomycota as well as to the basidiomycota have been known to cause a broad panel of human disorders. In contrast to pollen, fungal spores and\\/or mycelial cells may

Birgit Simon-Nobbe; Ursula Denk; Verena Pöll; Raphaela Rid; Michael Breitenbach

2008-01-01

204

Fungal farming in a snail  

PubMed Central

Mutualisms between fungi and fungus-growing animals are model systems for studying coevolution and complex interactions between species. Fungal growing behavior has enabled cultivating animals to rise to major ecological importance, but evolution of farming symbioses is thought to be restricted to three terrestrial insect lineages. Surveys along 2,000 km of North America's Atlantic coast documented that the marine snail Littoraria irrorata grazes fungus-infected wounds on live marsh grass throughout its range. Field experiments demonstrate a facultative, farming mutualism between Littoraria and intertidal fungi. Snails graze live grass primarily not to feed but to prepare substrate for fungal growth and consume invasive fungi. Fungal removal experiments show that snails and fungi act synergistically to suppress marsh grass production. These results provide a case of fungus farming in the marine environment and outside the class Insecta and reveal a previously undemonstrated ecological mechanism (i.e., facilitation of fungal invasion) by which grazers can exert top-down control of marine plant production. PMID:14657360

Silliman, Brian R.; Newell, Steven Y.

2003-01-01

205

Can fungal biopesticides control malaria?  

Microsoft Academic Search

Recent research has raised the prospect of using insect fungal pathogens for the control of vector-borne diseases such as malaria. In the past, microbial control of insect pests in both medical and agricultural sectors has generally had limited success. We propose that it might now be possible to produce a cheap, safe and green tool for the control of malaria,

Andrew F. Read; Matthew B. Thomas

2007-01-01

206

Cancer Patients and Fungal Infections  

MedlinePLUS

... Get email updates Contact Us: Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 Contact CDC–INFO Fungal Diseases Types of Diseases Aspergillosis Definition Symptoms People ...

207

DEMONSTRATION BULLETIN: FUNGAL TREATMENT BULLETIN  

EPA Science Inventory

Fungal treatment technology uses white rot fungi (lignin degrading fungi) to treat organic contaminated soils in situ. Organic materials inoculated with the fungi are mechanically mixed into the contaminated soil. Using enzymes normally produced for wood degradation as well as ot...

208

Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique  

Microsoft Academic Search

The amounts of flavonols (quercetin, myricetin and kaempferol) and phenolic acids (ellagic, p-coumaric, caffeic and ferulic acids) were analysed in six strawberry cultivars and in the berries of genus Vaccinium (four blueberry cultivars, wild bilberry, wild bog whortleberry). Differences between strawberries from organic vs. conventional cultivation were investigated and the influence of geographical origin on phenolic compounds of strawberries and

Sari H Häkkinen; A. Riitta Törrönen

2000-01-01

209

Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings  

Microsoft Academic Search

The changes in the activity of peroxidase (POD) extracted from the cell wall and the level of H2O2 of rice seedling roots treated with abscisic acid (ABA) and their correlation with root growth were investigated. Increasing concentrations of ABA from 3 to 18 ?M progressively reduce root growth and increase POD activities (using guaiacol or ferulic acid as a substrate)

Chuan Chi Lin; Ching Huei Kao

2001-01-01

210

Synthesis of the fungal natural product (?)-xylariamide A  

Microsoft Academic Search

The first synthesis of the fungal natural product (?)-xylariamide A 1 is reported. N,O-Bis(trimethylsilyl)acetamide induced coupling of d-tyrosine with (E)-but-2-enedioic acid 2,5-dioxo-pyrrolidin-1-yl ester methyl ester 5 produced the dechloro natural product 6, which was subsequently monochlorinated using oxone and KCl to yield synthetic 1. (?)-Xylariamide A 1, (+)-xylariamide A 2 and (?)-dechloroxylariamide A 6 displayed no cytotoxic or antimicrobial activity.

Rohan A. Davis; Michael Kotiw

2005-01-01

211

PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.  

PubMed

The volatile phenols, to which Saccharomyces cerevisiae converts from phenylacrylic acids including ferulic acid, p-coumaric acid, and cinnamic acid, generate off-flavors in alcoholic beverages such as beer and wine. Using gene disruptants, transformants and cell-free extracts of these strains, we have verified that the adjacent PAD1 (phenylacrylic acid decarboxylase, YDR538W) and FDC1 (ferulic acid decarboxylase, YDR539W) genes are essential for the decarboxylation of phenylacrylic acids in S. cerevisiae. Pad1p and Fdc1p are homologous with UbiX and UbiD, respectively, in the ubiquinone synthetic pathway of Escherichia coli. However, ubiquinone was detected quantitatively in all of the yeast single-deletion mutants, Delta pad1, Delta fdc1, and double-deletion mutant, Delta pad1 Delta fdc1. PMID:20471595

Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Kawamukai, Makoto; Iefuji, Haruyuki

2010-06-01

212

Fungal Endophyte Diversity in Sarracenia  

PubMed Central

Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

Glenn, Anthony; Bodri, Michael S.

2012-01-01

213

Major Fungal and Bacterial Diseases  

Microsoft Academic Search

Although sweetpotato has a reputation as a durable crop able to withstand many adversities, numerous bacterial and fungal\\u000a diseases have been reported on this crop from different regions of the world. In-depth information on most of these diseases\\u000a has previously been published in comprehensive monographs. Much of the information in the classic 1929 monograph by Harter\\u000a and Weimer remains useful.

C. A. Clark; G. J. Holmes; D. M. Ferrin

214

Compatible solutes and fungal development  

PubMed Central

Compatible solutes are components that can be quickly accumulated and degraded inside fungal cells. They do not disturb the functioning of proteins and protect the cell under adverse conditions. In this issue of the Biochemical Journal, Solomon and co-workers evaluate the role of mannitol, one of these components, in Stagonospora nodorum, a plant-pathogenic fungus, and find surprising effects on the development of spores and spore-forming structures. PMID:16987106

Dijksterhuis, Jan; de Vries, Ronald P.

2006-01-01

215

Ferulic acid excretion as a marker of consumption of a French maritime pine ( Pinus maritima) bark extract  

Microsoft Academic Search

French maritime pine (Pinus maritima) bark extract (PBE) is a polyphenol-rich food supplement patented under the name of Pycnogenol and known to have strong antioxidant activity and different beneficial effects on human health. Although its biological properties have begun to be extensively studied both in vitro, in laboratory animals and more recently in humans, little is known about its bioavailability.

Fabio Virgili; George Pagana; Louise Bourne; Gerald Rimbach; Fausta Natella; Catherine Rice-Evans; Lester Packer

2000-01-01

216

Epidemiology of nosocomial fungal infections.  

PubMed Central

This paper briefly reviews the current knowledge of the epidemiology and modes of transmission of nosocomial fungal infections and some of the therapeutic options for treating these diseases. In the mid-1980s, many institutions reported that fungi were common pathogens in nosocomial infections. Most, if not all, hospitals care for patients at risk for nosocomial fungal infections. The proportion in all nosocomial infections reportedly caused by Candida spp. increased from 2% in 1980 to 5% in 1986 to 1989. Numerous studies have identified common risk factors for acquiring these infections, most of which are very common among hospitalized patients; some factors act primarily by inducing immunosuppression (e.g., corticosteroids, chemotherapy, malnutrition, malignancy, and neutropenia), while others primarily provide a route of infection (e.g., extensive burns, indwelling catheter), and some act in combination. Non-albicans Candida spp., including fluconazole-resistant C. krusei and Torulopsis (C.) glabrata, have become more common pathogens. Newer molecular typing techniques can assist in the determination of a common source of infection caused by several fungal pathogens. Continued epidemiologic and laboratory research is needed to better characterize these pathogens and allow for improved diagnostic and therapeutic strategies. PMID:8894349

Fridkin, S K; Jarvis, W R

1996-01-01

217

Overview of invasive fungal infections.  

PubMed

The incidence of invasive fungal infections (IFIs) has seen a marked increase in the last two decades. This is especially evident among transplant recipients, patients suffering from AIDS, in addition to those in receipt of immunosuppressive therapy. Worryingly, this increased incidence includes infections caused by opportunistic fungi and emerging fungal infections which are resistant to or certainly less susceptible than others to standard antifungal agents. As a direct response to this phenomenon, there has been a resolute effort over the past several decades to improve early and accurate diagnosis and provide reliable screening protocols thereby promoting the administration of appropriate antifungal therapy for fungal infections. Early diagnosis and treatment with antifungal therapy are vital if a patient is to survive an IFI. Substantial advancements have been made with regard to both the diagnosis and subsequent treatment of an IFI. In parallel, stark changes in the epidemiological profile of these IFIs have similarly occurred, often in direct response the type of antifungal agent being administered. The effects of an IFI can be far reaching, ranging from increased morbidity and mortality to increased length hospital stays and economic burden. PMID:23296882

Tuite, Nina L; Lacey, Katrina

2013-01-01

218

Tracking Fungal Community Responses to Maize Plants by DNA- and RNA-Based Pyrosequencing  

PubMed Central

We assessed soil fungal diversity and community structure at two sampling times (t1?=?47 days and t2?=?104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA). The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most “active” fungi (as recovered via RNA). Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production). Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time. PMID:23875012

Kuramae, Eiko E.; Verbruggen, Erik; Hillekens, Remy; de Hollander, Mattias; Roling, Wilfred F. M.; van der Heijden, Marcel G. A.; Kowalchuk, George A.

2013-01-01

219

Invasive Fungal Infections after Natural Disasters  

PubMed Central

The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed. PMID:24565446

Benedict, Kaitlin

2014-01-01

220

Natural maize phenolic acids for control of aflatoxigenic fungi on maize.  

PubMed

Natural phytochemicals may be an alternative to synthetic chemicals for controlling fungal growth and mycotoxin production in stored maize. A key to progress in this field is to select the best natural maize phytochemicals to be applied in a storage maize ecosystem. This research was undertaken to evaluate the effects of the natural phytochemicals trans-cinnamic acid (CA) and ferulic acid (FA) alone at concentrations of 20 to 30 mM and in 5 combinations on Aspergillus flavus Link and A. parasiticus Speare populations and aflatoxin B(1) production. Studies on Aspergillus population and aflatoxin B(1) production were carried out in maize grain in relation to a water activity a(w) of 0.99, 0.97, 0.95, and 0.93. CA and FA at concentrations of 25 to 30 mM, respectively, and CA-FA mixture T9 (25 + 30 mM) were the treatments most effective at inhibiting A. flavus and A. parasiticus population at all a(w) assayed after 11 d of incubation. At all a(w) values, the mixture CA-FA T9 (25 + 30 mM) completely inhibited (100%) aflatoxin B(1) production by both strains at a(w)= 0.99, 0.97, 0.95, and 0.93. Decreased aflatoxin B(1) levels in comparison with the control were observed with mixtures CA-FA T6 (10 + 25 mM), T7 (20 + 20 mM), and T8 (20 + 30 mM) of both strains in the majority of a(w) assayed. The data show that CA and FA could be considered as effective fungitoxicants for A. flavus and A. parasiticus in maize in the a(w) range 0.99 to 0.93. The information obtained shows promise for controlling aflatoxigenic fungi in stored maize. PMID:17995741

Nesci, A; Gsponer, N; Etcheverry, M

2007-06-01

221

Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress.  

PubMed

Hydroxycinnamic acids (HCAs) are phenolic compounds present in dietary plants, which possess considerable antioxidant activity. In order to increase the lipophilicity of HCAs, with the aim of improving their cellular absorption and expansion of their use in lipophilic media, methyl, ethyl, propyl and butyl esters of caffeic acid and ferulic acid have been synthesized. All caffeate esters had a slightly lower DPPH IC(50) (13.5-14.5 ?M) and higher ferric reducing antioxidant power (FRAP) values (1490-1588 mM quercetin/mole [mMQ/mole]) compared to caffeic acid (16.6 ?M and 1398 mMQ/mole, respectively) in antioxidant assays. In contrast, ferulate esters were less active in DPPH (56.3-74.7 ?M) and FRAP assays (193-262 mMQ/mole) compared to ferulic acid (44.6 ?M and 324 mMQ/mole, respectively). Redox properties of HCAs were in line with their antioxidant capacities, so that compounds with higher antioxidant activities had lower oxidation potentials. Measurement of partition coefficients disclosed the higher lipophilicity of the esters compared to parent compounds. All esters of caffeic acid significantly inhibited hydrogen peroxide-induced neuronal PC12 cell death assessed by MTT assay at 5 and 25 ?M. However, caffeic acid, ferulic acid and ferulate esters were not able to protect the cells. In conclusion, these findings suggest that alkyl esterification of some HCAs augments their antioxidant properties as well as their lipophilicity and as a consequence, improves their cell protective activity against oxidative stress. These compounds could have useful applications in conditions where oxidative stress plays a pathogenic role. PMID:22210493

Garrido, Jorge; Gaspar, Alexandra; Garrido, E Manuela; Miri, Ramin; Tavakkoli, Marjan; Pourali, Samaneh; Saso, Luciano; Borges, Fernanda; Firuzi, Omidreza

2012-04-01

222

Uptake and continued metabolic activity of azotobacter within fungal protoplasts.  

PubMed

Uptake of vegetative cells of Azotobacter vinelandii into protoplasts of the mycorrhizal fungus Rhizopogon sp. can be induced by treatment with polyethylene glycol (molecular weight, 6000). An L-form of the bacteria has been selected for within the differentiated fungal mycelium which is capable of acetylene reduction and nitrogen fixation, as confirmed by nitrogen-15 assays; this allows the fungus to grow on media lacking any combined nitrogen. The fungus grows and reduces acetylene on concentrations of antibiotics that prevent the growth and activity of free-living Azotobacter. Electron microscopy has revealed modified mitochondrial forms or included bacterial L-forms surrounded by an extra fungal membrane within the hyphae of the modified strains. Poly-beta-hydroxybutyric acid, a storage product of Azotobacter cysts, has also been identified in the hyphae. This would appear to be the first report of the transgenosis for acetylene reduction activity and nitrogen fixation into a eukaryote cell. PMID:17792751

Giles, K L; Whitehead, H

1976-09-17

223

Fungal Fragments as Indoor Air Biocontaminants  

PubMed Central

The aerosolization process of fungal propagules of three species (Aspergillus versicolor, Penicillium melinii, and Cladosporium cladosporioides) was studied by using a newly designed and constructed aerosolization chamber. We discovered that fungal fragments are aerosolized simultaneously with spores from contaminated agar and ceiling tile surfaces. Concentration measurements with an optical particle counter showed that the fragments are released in higher numbers (up to 320 times) than the spores. The release of fungal propagules varied depending on the fungal species, the air velocity above the contaminated surface, and the texture and vibration of the contaminated material. In contrast to spores, the release of fragments from smooth surfaces was not affected by air velocity, indicating a different release mechanism. Correlation analysis showed that the number of released fragments cannot be predicted on the basis of the number of spores. Enzyme-linked immunosorbent assays with monoclonal antibodies produced against Aspergillus and Penicillium fungal species showed that fragments and spores share common antigens, which not only confirmed the fungal origin of the fragments but also established their potential biological relevance. The considerable immunological reactivity, the high number, and the small particle size of the fungal fragments may contribute to human health effects that have been detected in buildings with mold problems but had no scientific explanation until now. This study suggests that future fungal spore investigations in buildings with mold problems should include the quantitation of fungal fragments. PMID:12089037

Gorny, Rafal L.; Reponen, Tiina; Willeke, Klaus; Schmechel, Detlef; Robine, Enric; Boissier, Marjorie; Grinshpun, Sergey A.

2002-01-01

224

Invasive Fungal Sinusitis of the Sphenoid Sinus  

PubMed Central

Objective This study was conducted to present the clinical outcome of invasive fungal sinusitis of the sphenoid sinus and to analyze clinical factors influencing patient survival. Methods A retrospective review of 12 cases of invasive fungal sphenoiditis was conducted. Results Cases were divided into acute fulminant invasive fungal spheonoidits (n=4) and chronic invasive fungal sphenoiditis (n=8). The most common underlying disease was diabetes mellitus (n=9). The most common presenting symptoms and signs included visual disturbance (100%). Intracranial extension was observed in 8 patients. Endoscopic debridement and intravenous antifungals were given to all patients. Fatal aneurysmal rupture of the internal carotid artery occurred suddenly in two patients. The mortality rate was 100% for patients with acute fulminant invasive fungal sphenoiditis and 25% for patients with chronic invasive fungal sphenoiditis. In survival analysis, intracranial extension was evaluated as a statistically significant factor (P=0.027). Conclusion The survival rate of chronic invasive fungal sphenoiditis was 75%. However, the prognosis of acute fulminant invasive fungal sphenoiditis was extremely poor despite the application of aggressive treatment, thus, a high index of suspicion should be required and new diagnostic markers need to be developed for early diagnosis of invasive fungal sinusitis of the sphenoid sinus. PMID:25177433

Lee, Dong Hoon; Yoon, Tae Mi; Lee, Joon Kyoo; Joo, Young Eun; Park, Kyung Hwa

2014-01-01

225

Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks  

PubMed Central

In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

McGuire, Krista L.; Payne, Sara G.; Palmer, Matthew I.; Gillikin, Caitlyn M.; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M.; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A.; Massmann, Audrey L.; Orazi, Giulia; Essene, Adam; Leff, Jonathan W.; Fierer, Noah

2013-01-01

226

Digging the New York City Skyline: soil fungal communities in green roofs and city parks.  

PubMed

In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

2013-01-01

227

Free and chemically bonded phenolic acids in barks of Viburnum opulus L. and Sambucus nigra L.  

PubMed

Liquid column chromatography, planar chromatography (TLC) on modified and unmodified silica layers, reversed-phase high-pressure liquid chromatography (HPLC), as well as ESI-TOF MS and 1H-NMR have been used for separation, purification and identification of phenolic acids in the barks of Sambucus nigra and Viburnum opulus (Caprifoliaceae). By the use of these procedures three cinnamic acid derivatives: caffeic acid, p-coumaric, and ferulic acid, four benzoic acid derivatives: gallic acid, protocatechuic acid, syringic acid, 3,4,5-trimethoxybenzoic acid, two phenylacetic acid derivatives: 3,4-dihydroxyphenylacetic acid, homogentisic acid, and two depsides: chlorogenic acid and ellagic acid were detected and identified in the bark of Viburnum opulus. Caffeic acid, p-coumaric acid, ferulic acid, gallic acid, syringic acid, 3,4,5-trimethoxybenzoic acid and chlorogenic acid were also detected and identified in the bark of Sambucus nigra. Except for chlorogenic acid, this is the first time these phenolic acids have been isolated, detected, and identified in the bark of V. opulus and S. nigra. PMID:18536165

Turek, Sebastian; Cisowski, Wojciech

2007-01-01

228

Influence of Soil Chemical Properties on Adsorption and Oxidation of Phenolic Acids in Soil Suspension  

Microsoft Academic Search

Relationships between abiotic oxidation and adsorption of phenolic acids added to soils and soil chemical properties were investigated by using 32 soil samples and ferulic, vanillic, and p-hydroxybenzoic acids. Soil properties studied were as follows: (as adsorption factors) contents of acid oxalate extractable Al (Alo), Fe (Feo), dithionite-citrate-bicarbonate (DCB) extractable Fe (Fed), total carbon and clay, and (as oxidation factors)

Tomoyuki Makino; Yoshiaki Takahashi; Yasuhiro Sakurai; Masami Nanzyo

1996-01-01

229

Cloning and functional characterization of a caffeic acid O -methyltransferase from Trigonella foenum - graecum L  

Microsoft Academic Search

A cDNA encoding an O-methyltransferase (namely FGCOMT1) was identified from the medicinal plant Trigonella foenum-graecum L. The FGCOMT1 enzyme is a functional caffeic acid O-methyltransferase (COMT) and is localized in the cytosol. Kinetic analysis indicated that FGCOMT1 protein exhibited the highest\\u000a catalyzing efficiency towards 5-hydroxy ferulic acid and caffeic acid as substrates, but did not possess the abilities to\\u000a methylate

Jian-chun QinYa-mei; Ya-mei Zhang; Chen-yong Lang; Yan-hua Yao; Hong-yu Pan; Xiang Li

230

Comparison of the Yeast Proteome to Other Fungal Genomes to Find Core Fungal Genes  

E-print Network

Comparison of the Yeast Proteome to Other Fungal Genomes to Find Core Fungal Genes Tom Hsiang,1 indicate what makes fungi different from other organisms. By comparing 6355 predicted or known yeast, a list of 3340 yeast genes was obtained with homologs present in at least 12 of 14 fungal genomes

Hsiang, Tom

231

Superficial fungal infections in children.  

PubMed

Superficial fungal infections can involve the hair, skin, and nails. Most affected children are healthy, although immunosuppression is a risk factor for more severe presentation. Causative organisms typically are members of the Trichophyton, Microsporum, and Epidermophyton genera (dermatophytes), can be acquired from other infected humans, animals, or soil, and illicit a host inflammatory response. Nondermatophyte infections include pityriasis versicolor. In this article, the most common clinical presentations, diagnostic recommendations, and treatment algorithms for dermatophyte and nondermatophyte mycoses in children and adolescents are described. PMID:24636655

Hawkins, Danielle M; Smidt, Aimee C

2014-04-01

232

Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression  

Microsoft Academic Search

BACKGROUND: The functions, actions, and regulation of tissue metabolism affected by the consumption of long chain polyunsaturated fatty acids (LC-PUFA) from fish oil and other sources remain poorly understood; particularly how LC-PUFAs affect transcription of genes involved in regulating metabolism. In the present work, mice were fed diets containing fish oil rich in eicosapentaenoic acid and docosahexaenoic acid, fungal oil

Alvin Berger; David M Mutch; J Bruce German; Matthew A Roberts

2002-01-01

233

Succinic acid production from wheat using a biorefining strategy  

Microsoft Academic Search

The biosynthesis of succinic acid from wheat flour was investigated in a two-stage bio-process. In the first stage, wheat\\u000a flour was converted into a generic microbial feedstock either by fungal fermentation alone or by combining fungal fermentation\\u000a for enzyme and fungal bio-mass production with subsequent flour hydrolysis and fungal autolysis. In the second stage, the\\u000a generic feedstock was converted into

Chenyu Du; Sze Ki Carol Lin; Apostolis Koutinas; Ruohang Wang; Colin Webb

2007-01-01

234

Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls  

Microsoft Academic Search

Industrial processes to produce ethanol from lignocellulosic materials are available, but improved efficiency is necessary\\u000a to make them economically viable. One of the limitations for lignocellulosic conversion to ethanol is the inaccessibility\\u000a of the cellulose and hemicelluloses within the tight cell wall matrix. Ferulates (FA) can cross-link different arabinoxylan\\u000a molecules in the cell wall of grasses via diferulate and oligoferulate

Fernando Piston; Cristobal Uauy; Lianhai Fu; James Langston; John Labavitch; Jorge Dubcovsky

2010-01-01

235

Outcomes of fungal interactions are determined by soil invertebrate grazers  

E-print Network

soil fauna may influence fungal community composition and diversity. Factors affecting soil composition in litter resources and soil (Boddy 2000). Species-specific fungal enzyme productionLETTER Outcomes of fungal interactions are determined by soil invertebrate grazers Thomas W

Bruns, Tom

236

Characterization of the Biosynthetic Pathway of Fungal Aromatic Polyketides  

E-print Network

PT) domain(80) found in fungal PKSs controls the immediatelength control and regioselective cyclization in fungal PKSsand control the regioselectivity of the first cyclization step to afford the F-mode folding of the fungal

Li, Yanran

2012-01-01

237

Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis.  

PubMed

While Brettanomyces can metabolize nonesterified hydroxycinnamic acids found in grape musts/wines (caffeic, p-coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p-coutaric, and fertaric acids, respectively). Red wines from Washington and Oregon were inoculated with B. bruxellensis, while hydroxycinnamic acids were monitored by HPLC. Besides consuming p-coumaric and ferulic acids, strains I1a, B1b, and E1 isolated from Washington wines metabolized 40-50% of caffeic acid, a finding in contrast to strains obtained from California wines. Higher molar recoveries of 4-ethylphenol and 4-ethylguaiacol synthesized from p-coumaric and ferulic acids, respectively, were observed in Washington Cabernet Sauvignon and Syrah but not Merlot. This finding suggested that Brettanomyces either (a) utilized vinylphenols formed during processing of some wines or (b) metabolized other unidentified phenolic precursors. None of the strains of Brettanomyces studied metabolized caftaric or p-coutaric acids present in wines from Washington or Oregon. PMID:24219184

Schopp, Lauren M; Lee, Jungmin; Osborne, James P; Chescheir, Stuart C; Edwards, Charles G

2013-11-27

238

Fungal invasion of epithelial cells.  

PubMed

Interaction between host cells and invasive Candida plays a large role in the pathogenicity of Candida species. Fungal-induced endocytosis and active penetration are the two distinct, yet complementary invasion mechanisms of invasive candidiasis. Induced endocytosis is a microorganism-triggered, epithelial-driven, clathrin-mediated and actin-dependent process. During the fundamental pathological process of induced endocytosis, invasins (Als3 and Ssa1), which mediate the binding of host epithelial surface proteins, are expressed by Candida species on the hyphal surface. Sequentially, the interaction between invasins and host epithelial surface proteins stimulates the recruitment of clathrin, dynamin and cortactin to the sites where Candida enters epithelial cells, which in turn induce the actin cytoskeleton reorganization. Actin cytoskeleton provides the force required for fungal internalization. Parallely, active penetration of Candida can directly pass through epithelial cells possibly due to progressive elongation of hyphae and physical forces. Several molecules, such as secreted hydrolases and Als3, can affect the protective barrier of the epithelium and make Candida actively penetrate into epithelial cells through intercellular gaps of epithelial layers. PMID:24670964

Yang, Weiming; Yan, Lei; Wu, Chunrong; Zhao, Xiangwang; Tang, Jianguo

2014-11-01

239

Fungal colonisation in digital silicone rubber prostheses  

Microsoft Academic Search

The fungal discolouration of silicone rubber prostheses is reported in four cases. In two of the cases, the discolouration was caused by the fungus Candida tropicalis. In the other two cases, two different fungal organisms, namely Trichoderma sp. and Scedosporium prolificans were incriminated. The non-porous silicone rubber layers create an enclosed environment in the suction cup of the prosthesis and

M. E. L. LEOW; A. K. KOUR; T. J. J. INGLIS; G. KUMARASINGHE; R. W. H. PHO

240

Fungal decolorization of dye wastewaters: a review  

Microsoft Academic Search

In recent years, there has been an intensive research on fungal decolorization of dye wastewater. It is becoming a promising alternative to replace or supplement present treatment processes. This paper examines various fungi, living or dead cells, which are capable of decolorizing dye wastewaters; discusses various mechanisms involved; reports some elution and regeneration methods for fungal biomass; summarizes the present

Yuzhu Fu; T Viraraghavan

2001-01-01

241

Optical spectroscopy on in vitro fungal diagnosis  

Microsoft Academic Search

The growing incidence of microbial infections and the increasing ability of such organisms to acquire resistance to antimicrobial treatment lead the requirement of fast bacteria and fungi identification methods. In this work we explored optical spectroscopic techniques on fungal identification. We show that some fungal infections can be identified by ultraviolet optical excitation of fungi fluorescence followed by the spectral

D. J. Rativa; A. S. L. Gomes; M. A. Benedetti; L. G. Souza Filho; A. Marsden; R. E. de Araujo

2008-01-01

242

Development of Prophylactic Anti-Fungal Preparations.  

National Technical Information Service (NTIS)

In order to develop better topical anti-fungal agents with prophylactic activity against common ringworm infection a chemical assay for sodium pyrithione (a known anti-fungal drug) was developed in stratum corneum and its persistence there determined a do...

S. Riegelman, W. L. Epstein, R. A. Upton

1980-01-01

243

Industrial Fungal Enzymes: An Occupational Allergen Perspective  

PubMed Central

Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes. PMID:21747869

Green, Brett J.; Beezhold, Donald H.

2011-01-01

244

Fungal natural products in research and development.  

PubMed

To date approximately 100?000 fungal species are known although far more than one million are expected. The variety of species and the diversity of their habitats, some of them less exploited, allow the conclusion that fungi continue to be a rich source of new metabolites. Besides the conventional fungal isolates, an increasing interest in endophytic and in marine-derived fungi has been noticed. In addition new screening strategies based on innovative chemical, biological, and genetic approaches have led to novel fungal metabolites in recent years. The present review focuses on new fungal natural products published from 2009 to 2013 highlighting the originality of the structures and their biological potential. Furthermore synthetic products based on fungal metabolites as well as new developments in the uses or the biological activity of known compounds or new derivatives are discussed. PMID:25122538

Schueffler, Anja; Anke, Timm

2014-10-01

245

Histone Acetylation in Fungal Pathogens of Plants  

PubMed Central

Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed. PMID:25288980

Jeon, Junhyun; Kwon, Seomun; Lee, Yong-Hwan

2014-01-01

246

Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents.  

PubMed

Thirty-three carbon sources were evaluated for their effects on spore germination, hyphal growth and sporulation of 11 fungal biocontrol agents, i.e. the nematophagous fungi Paecilomyces lilacinus, Pochonia chlamydosporia, Hirsutella rhossiliensis, H. minnesotensis and Arkansas Fungus 18, the entomopathogenic fungi Lecanicillium lecanii, Beauveria bassiana and Metarhizium anisopliae, and the mycoparasitic fungus Trichoderma viride. Variations in carbon requirements were found among the fungal species or strains tested. All strains studied except for T. viride grew on most carbon sources, although B. bassiana had more fastidious requirements for spore germination. Monosaccharides and disaccharides were suitable for fungal growth. For most isolates, D-glucose, D-mannose, sucrose and trehalose were superior to pectin and soluble starch among the polysaccharides and lactic acid among the organic acids. Both ethanol and methanol could accelerate growth of most isolates but not biomass. D-mannose, D-fructose and D-xylose were excellent carbon sources for sporulation, while D-glucose, sucrose, cellobiose, trehalose, chitin, dextrin, gelatin and lactic acid were better for some isolates. Neither sorbic acid nor linoleic acid could be utilized as a single carbon source. These findings provided a better understanding of the nutritional requirements of different fungal biocontrol agents that can benefit the mass production process. PMID:16649079

Sun, ManHong; Liu, XingZhong

2006-05-01

247

Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii  

PubMed Central

The role of reactive oxygen species (ROS) in cell communication, control of gene expression, and oxygen sensing is well established. Inappropriate regulation of ROS levels can damage cells, resulting in a diseased state. In Colletotrichum trifolii, a fungal pathogen of alfalfa, the mutationally activated oncogenic fungal Ras (DARas) elevates levels of ROS, causing abnormal fungal growth and development and eventual apoptotic-like cell death but only when grown under nutrient-limiting conditions. Remarkably, restoration to the wild-type phenotype requires only proline. Here, we describe a generally unrecognized function of proline: its ability to function as a potent antioxidant and inhibitor of programmed cell death. Addition of proline to DARas mutant cells effectively quenched ROS levels and prevented cell death. Treating cells with inhibitors of ROS production yielded similar results. In addition, proline protected wild-type C. trifolii cells against various lethal stresses, including UV light, salt, heat, and hydrogen peroxide. These observations appear to be general because proline also protected yeast cells from lethal levels of the ROS-generating herbicide methyl viologen (paraquat), suggesting a common protective role for proline in response to oxidative stress. The ability of proline to scavenge intracellular ROS and inhibit ROS-mediated apoptosis may be an important and broad-based function of this amino acid in responding to cellular stress, in addition to its well established role as an osmolyte. PMID:15699356

Chen, Changbin; Dickman, Martin B.

2005-01-01

248

The therapeutic potential of fungal ribotoxins.  

PubMed

Ribotoxins constitute a family of toxic extracellular fungal RNases that exert a highly specific activity on a conserved region of the larger molecule of rRNA, known as the sarcin-ricin loop. This cleavage of a single phosphodiester bond inactivates the ribosome and leads to protein synthesis inhibition and cell death. In addition to this ribonucleolytic activity, ribotoxins can cross lipid membranes in the absence of any known protein receptor. This ability is due to their capacity to interact with acid phospholipid-containing membranes. Both activities together explain their cytotoxic character, being rather specific when assayed against some transformed cell lines. The determination of high-resolution structures of some ribotoxins, the characterization of a large number of mutants, and the use of lipid model vesicles and transformed cell lines have been the tools used for the study of their mechanism of action at the molecular level. The present knowledge suggests that wild-type ribotoxins or some modified variants might be used in human therapies. Production of hypoallergenic mutants and immunotoxins designed against specific tumors stand out as feasible alternatives to treat some human pathology in the mid-term future. PMID:18673280

Carreras-Sangrà, Nelson; Alvarez-García, Elisa; Herrero-Galán, Elías; Tomé, Jaime; Lacadena, Javier; Alegre-Cebollada, Jorge; Oñaderra, Mercedes; Gavilanes, José G; Martínez-Del-Pozo, Alvaro

2008-06-01

249

Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores.  

PubMed

Bacteria associated with arbuscular mycorrhizal (AM) fungal spores may play functional roles in interactions between AM fungi, plant hosts and defence against plant pathogens. To study AM fungal spore-associated bacteria (AMB) with regard to diversity, source effects (AM fungal species, plant host) and antagonistic properties, we isolated AMB from surface-decontaminated spores of Glomus intraradices and Glomus mosseae extracted from field rhizospheres of Festuca ovina and Leucanthemum vulgare. Analysis of 385 AMB was carried out by fatty acid methyl ester (FAME) profile analysis, and some also identified using 16S rRNA gene sequence analysis. The AMB were tested for capacity to inhibit growth in vitro of Rhizoctonia solani and production of fluorescent siderophores. Half of the AMB isolates could be identified to species (similarity index 0.6) within 16 genera and 36 species. AMB were most abundant in the genera Arthrobacter and Pseudomonas and in a cluster of unidentified isolates related to Stenotrophomonas. The AMB composition was affected by AM fungal species and to some extent by plant species. The occurrence of antagonistic isolates depended on AM fungal species, but not plant host, and originated from G. intraradices spores. AM fungal spores appear to host certain sets of AMB, of which some can contribute to resistance by AM fungi against plant pathogens. PMID:18631178

Bharadwaj, Dharam Parkash; Lundquist, Per-Olof; Persson, Paula; Alström, Sadhna

2008-08-01

250

Detection of fungal development in closed spaces through the determination of specific chemical targets.  

PubMed

In addition to the biodegradation problems encountered in buildings, exposure of their occupants to moulds is responsible for numerous diseases: infections (invasive nosocomial aspergillosis), immediate or delayed allergies, food-borne infections and different types of irritation. In this context, the aim of our work has been to determine specific chemical tracers for fungal development on construction materials. More generally, by detecting a specific chemical fingerprint of fungal development, our objective was to propose a microbiological alert system which could control systems and/or procedures for the microbiological treatment of indoor areas. We therefore characterized the chemical emissions from six types of construction material contaminated artificially by moulds. Chemical fingerprints were established for 19 compounds arising specifically from fungal metabolism: 2-ethylhexanoic acid methyl ester, 1-octen-3-ol, 3-heptanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 1,3-octadiene, 2-(5H)-furanone, 2-heptene, alpha-pinene, 2-methylisoborneol, 4-heptanone, 2-methylfuran, 3-methylfuran, dimethyldisulfide, methoxybenzene, a terpenoid and three sesquiterpenes. Determining the origin of these compounds and their specific links with a growth substrate or fungal species made it possible to judge the pertinence of choosing these compounds as tracers. Thus the detecting specific volatile organic compounds emitted as from the second day of fungal growth demonstrated that this approach had the advantage of detecting fungal development both reliably and rapidly before any visible signs of contamination could be detected. PMID:18329690

Moularat, Stéphane; Robine, Enric; Ramalho, Olivier; Oturan, Mehmet A

2008-05-01

251

Chapter 8: Invasive fungal rhinosinusitis.  

PubMed

Invasive fungal rhinosinusitis (IFRS) is a disease of the paranasal sinuses and nasal cavity that typically affects immunocompromised patients in the acute fulminant form. Early symptoms can often mimic rhinosinusitis, while late symptoms can cause significant morbidity and mortality. Swelling and mucosal thickening can quickly progress to pale or necrotic tissue in the nasal cavity and sinuses, and the disease can rapidly spread and invade the palate, orbit, cavernous sinus, cranial nerves, skull base, carotid artery, and brain. IFRS can be life threatening if left undiagnosed or untreated. While the acute fulminant form of IFRS is the most rapidly progressive and destructive, granulomatous and chronic forms also exist. Diagnosis of IFRS often mandates imaging studies in conjunction with clinical, endoscopic, and histopathological examination. Treatment of IFRS consists of reversing the underlying immunosuppression, antifungal therapy, and aggressive surgical debridement. With early diagnosis and treatment, IFRS can be treated and increase patient survival. PMID:23711036

Duggal, Praveen; Wise, Sarah K

2013-01-01

252

Dancing genomes: fungal nuclear positioning  

PubMed Central

The many different mechanisms that fungi use to transmit and share genetic material are mediated by a broad range of chromosome and nuclear dynamics. The mechanics underlying nuclear migration are well integrated into detailed models, in which the forces supplied by plus- and minus-end-directed microtubule motors position and move the nucleus in a cell. Although we know much about how cells move nuclei, we know much less about why the cell invests in so many different nuclear ‘dances’. Here, we briefly survey the available models for the mechanics of nuclear migration in fungi and then focus on examples of how fungal cells use these nuclear dances — the movement of intact nuclei in and between cells — to control the integrity, ploidy and assortment of specific genomes or individual chromosomes. PMID:19898490

Gladfelter, Amy; Berman, Judith

2009-01-01

253

Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation.  

PubMed

Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities. PMID:22080256

McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L

2012-05-01

254

Phospholipid acylhydrolases trigger membrane degradation during fungal sporogenesis.  

PubMed

Armillaria ostoyae is a phytopathogen infecting coniferous trees. Fruiting bodies of this basidiomycete contain high phospholipase A(1) (PLA(1)) activity. In this paper, the role of phospholipid-deacylating activity, which was also detected in fruiting bodies of other basidiomycetes, in the fungal lipid metabolism is elucidated. For A. ostoyae the occurrence of PLA(1) activity is shown to be restricted to the late reproductive phase, correlating with the release of mature spores. Specific expression in the spore-producing tissue provides evidence for the involvement of PLA(1) in spore formation. Based on lipid analysis, the degradation of membrane phospholipids in this tissue can be ascribed mainly to PLA(1) activity because other enzymes such as phospholipases C and D, triglyceride lipase and phosphatidic acid phosphatase had only low activities. A concomitant increase in the concentration of fatty acids and their anabolites (di- and triglycerides), which are used as storage lipids in the developing fungal spore cells, was observed. Therefore, PLA(1) contributes to the formation of spores by providing membrane constituents as a source of fatty acids. PMID:21683150

Dippe, Martin; Ulbrich-Hofmann, Renate

2011-09-01

255

DAMP signaling in fungal infections and diseases  

PubMed Central

Fungal infections and diseases predominantly affect patients with deregulated immunity. Compelling experimental and clinical evidence indicate that severe fungal diseases belong to the spectrum of fungus-related inflammatory diseases. Some degree of inflammation is required for protection during the transitional response occurring temporally between the rapid innate and slower adaptive response. However, progressive inflammation worsens disease and ultimately prevents pathogen eradication. The challenge now is to elucidate cellular and molecular pathways distinguishing protective vs. pathogenic inflammation to fungi. In addition to fungal ligands of pattern recognition receptors (pathogen-associated molecular patterns, PAMPs), several host-encoded proteins, the damage-associated molecular patterns (DAMPs), are released during tissue injury and activate innate recognition receptors. DAMPs have been shown to regulate inflammation in fungal diseases. The DAMP/receptor for advanced glycation end-products axis integrated with the PAMP/Toll-like receptors axis in the generation of the inflammatory response in experimental and clinical fungal pneumonia. These emerging themes better accommodate fungal pathogenesis in the face of high-level inflammation seen in several clinical settings and point to DAMP targeting as a novel immunomodulatory strategy in fungal diseases. PMID:22973279

Cunha, Cristina; Carvalho, Agostinho; Esposito, Antonella; Bistoni, Francesco; Romani, Luigina

2012-01-01

256

New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics.  

PubMed

Non-ribosomal peptide synthetases (NRPSs) are a primary modality for fungal peptidic natural product assembly and are responsible for some of the best known, most useful, and most destructive fungal metabolites. Through genome sequencing and computer-assisted recognition of modular motifs of catalytic domains, one can now confidently identify most NRPS biosynthetic genes of a fungal strain. The biosynthetic gene clusters responsible for two of the most important classes of NRP fungal derived drugs, cyclosporine and the echinocandins, have been recently characterized by genomic sequencing and annotation. Complete biosynthetic gene clusters for the pneumocandins and echinocandins have been mapped at the genetic level and functionally characterized to some extent. Genomic sequencing of representative strains of most of the variants in the echinocandin family, including the wild-type of the three fungal strains employed for industrial-scale production of caspofungin, micafungin and anidulofungin, has enabled characterization of the basic architecture of the echinocandin NRPS pathways. A comparative analysis of how pathway genes cause variations in lipoinitiation, biosynthesis of the non-proteinogenic amino acids, amino acid substitutions, and hydroxylations and sulfonations of the core peptide and contribute to the molecular diversity of the family is presented. We also review new information on the natural functions of NRPs, the differences between fungal and bacterial NRPSs, and functional characterization of selected NRPS gene clusters. Continuing discovery of the new fungal nonribosomal peptides has contributed new structural diversity and potential insights into their biological functions among other natural peptides and peptaibiotics. We therefore provide an update on new peptides, depsipeptides and peptaibols discovered in the Fungi since 2009. PMID:25156669

Bills, Gerald; Li, Yan; Chen, Li; Yue, Qun; Niu, Xue-Mei; An, Zhiqiang

2014-10-01

257

OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study  

NASA Astrophysics Data System (ADS)

The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

2010-12-01

258

Fungal glycans and the innate immune recognition  

PubMed Central

Polysaccharides such as ?- and ?-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors. PMID:25353009

Barreto-Bergter, Eliana; Figueiredo, Rodrigo T.

2014-01-01

259

Microbial Pathogens in the Fungal Kingdom  

PubMed Central

The fungal kingdom is vast, spanning ~1.5 to as many as 5 million species diverse as unicellular yeasts, filamentous fungi, mushrooms, lichens, and both plant and animal pathogens. The fungi are closely aligned with animals in one of the six to eight supergroups of eukaryotes, the opisthokonts. The animal and fungal kingdoms last shared a common ancestor ~1 billion years ago, more recently than other groups of eukaryotes. As a consequence of their close evolutionary history and shared cellular machinery with metazoans, fungi are exceptional models for mammalian biology, but prove more difficult to treat in infected animals. The last common ancestor to the fungal/metazoan lineages is thought to have been unicellular, aquatic, and motile with a posterior flagellum, and certain extant species closely resemble this hypothesized ancestor. Species within the fungal kingdom were traditionally assigned to four phyla, including the basal fungi (Chytridiomycota, Zygomycota) and the more recently derived monophyletic lineage, the dikarya (Ascomycota, Basidiomycota). The fungal tree of life project has revealed that the basal lineages are polyphyletic, and thus there are as many as eight to ten fungal phyla. Fungi that infect vertebrates are found in all of the major lineages, and virulence arose multiple times independently. A sobering recent development involves the species Batrachochytrium dendrobatidis from the basal fungal phylum, the Chytridiomycota, which has emerged to cause global amphibian declines and extinctions. Genomics is revolutionizing our view of the fungal kingdom, and genome sequences for zygomycete pathogens (Rhizopus, Mucor), skin-associated fungi (dermatophytes, Malassezia), and the Candida pathogenic species clade promise to provide insights into the origins of virulence. Here we survey the diversity of fungal pathogens and illustrate key principles revealed by genomics involving sexual reproduction and sex determination, loss of conserved pathways in derived fungal lineages that are retained in basal fungi, and shared and divergent virulence strategies of successful human pathogens, including dimorphic and trimorphic transitions in form. The overarching conclusion is that fungal pathogens of animals have arisen repeatedly and independently throughout the fungal tree of life, and while they share general properties, there are also unique features to the virulence strategies of each successful microbial pathogen. PMID:21528015

Heitman, Joseph

2011-01-01

260

Invasive fungal infections in transplant recipients  

PubMed Central

Invasive fungal infections are an important cause of morbidity and mortality in hematopoietic stem cell transplant and solid organ transplant recipients. Evolving transplant modalities and techniques, complex and extensive immunosuppressant strategies, and the increased use of broad spectrum antifungal prophylaxis has greatly impacted the epidemiology and temporal pattern of invasive fungal infections in the transplant population. The goal of this article is to provide an up-to-date review of the most commonly encountered invasive fungal infections seen in transplant recipients, including epidemiology, risk factors, clinical features, diagnostic dilemmas, management and their overall influence on outcomes.

Miceli, Marisa H.; Alangaden, George

2013-01-01

261

Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis.  

PubMed

The synthesis of two caffeoyl-coumarin conjugates, derived from sagecoumarin, has been accomplished, starting from ferulic acid, isoferulic acid and sesamol. Both compounds exhibited potent inhibitory activities at micromolar concentrations against HIV-1 integrase in 3'-end processing reaction but were less effective against HIV-1 replication in a single-round infection assay of HeLa-beta-gal-CD4+ cells. PMID:16183277

Bailly, Fabrice; Queffelec, Clémence; Mbemba, Gladys; Mouscadet, Jean-François; Cotelle, Philippe

2005-11-15

262

Bacterial and fungal chitinase chiJ orthologs evolve under different selective constraints following horizontal gene transfer  

PubMed Central

Background Certain bacteria from the genus Streptomyces are currently used as biological control agents against plant pathogenic fungi. Hydrolytic enzymes that degrade fungal cell wall components, such as chitinases, are suggested as one possible mechanism in biocontrol interactions. Adaptive evolution of chitinases are previously reported for plant chitinases involved in defence against fungal pathogens, and in fungal chitinases involved in fungal-fungal interactions. In this study we investigated the molecular evolution of chitinase chiJ in the bacterial genus Streptomyces. In addition, as chiJ orthologs are previously reported in certain fungal species as a result from horizontal gene transfer, we conducted a comparative study of differences in evolutionary patterns between bacterial and fungal taxa. Findings ChiJ contained three sites evolving under strong positive selection and four groups of co-evolving sites. Regions of high amino acid diversity were predicted to be surface-exposed and associated with coil regions that connect certain ?-helices and ?-strands in the family 18 chitinase TIM barrel structure, but not associated with the catalytic cleft. The comparative study with fungal ChiJ orthologs identified three regions that display signs of type 1 functional divergence, where unique adaptations in the bacterial and fungal taxa are driven by positive selection. Conclusions The identified surface-exposed regions of chitinase ChiJ where sequence diversification is driven by positive selection may putatively be related to functional divergence between bacterial and fungal orthologs. These results show that ChiJ orthologs have evolved under different selective constraints following the horizontal gene transfer event. PMID:23095575

2012-01-01

263

Fungal communities associated with phytoedaphic communities in the semiarid southwest  

Microsoft Academic Search

Soil fungal populations, diversity, and the community composition of fungal groups were determined among soils from 11 plant communities occurring in the semiarid Southwest. In general, soils associated with treeland plant communities had significantly higher fungal populations than the soils associated with shrub or grassland plant communities. In contrast, the diversity and evenness of fungal groups were higher in soils

P. R. Fresquez; Richard E. Francis; G. L. Dennis

1988-01-01

264

PNNL Fungal Biotechnology Core DOE-OBP Project  

SciTech Connect

In 2009, we continued to address barriers to fungal fermentation in the primary areas of morphology control, genomics, proteomics, fungal hyperproductivity, biomass-to-products via fungal based consolidated bioprocesses, and filamentous fungal ethanol. “Alternative renewable fuels from fungi” was added as a new subtask. Plans were also made to launch a new advanced strain development subtask in FY2010.

Baker, Scott E.; Bruno, Kenneth S.; Butcher, Mark G.; Collett, James R.; Culley, David E.; Dai, Ziyu; Magnuson, Jon K.; Panisko, Ellen A.

2009-11-30

265

Soil science: Fungal friends against drought  

NASA Astrophysics Data System (ADS)

Fungal-based food webs of undisturbed grasslands resist and adapt to the effects of drought more than bacterial-based food webs of agricultural soils, indicating how soil biota might be able to withstand long-term climate change.

Six, Johan

2012-04-01

266

Succession of Wood-inhabiting Fungal Communities  

E-print Network

During the Decomposition of Norway Spruce Abstract Dead wood constitutes an important substrateSuccession of Wood-inhabiting Fungal Communities Diversity and Species Interactions During the Decomposition of Norway Spruce Elisabet Ottosson Faculty of Natural Resources and Agricultural Sciences

267

The structure and function of fungal cells  

NASA Technical Reports Server (NTRS)

The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

Nozawa, Y.

1984-01-01

268

Meeting report: fungal its workshop (october 2012).  

PubMed

This report summarizes a meeting held in Boulder, CO USA (19-20 October 2012) on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes. The meeting was organized as a two-day workshop, with the primary goal of supporting collaboration among researchers for improving fungal ITS sequence resources and developing recommendations for standard ITS primers for the research community. PMID:23961317

Bates, Scott T; Ahrendt, Steven; Bik, Holly M; Bruns, Thomas D; Caporaso, J Gregory; Cole, James; Dwan, Michael; Fierer, Noah; Gu, Dai; Houston, Shawn; Knight, Rob; Leff, Jon; Lewis, Christopher; Maestre, Juan P; McDonald, Daniel; Nilsson, R Henrik; Porras-Alfaro, Andrea; Robert, Vincent; Schoch, Conrad; Scott, James; Taylor, D Lee; Parfrey, Laura Wegener; Stajich, Jason E

2013-04-15

269

Meeting Report: Fungal ITS Workshop (October 2012)  

PubMed Central

This report summarizes a meeting held in Boulder, CO USA (19–20 October 2012) on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes. The meeting was organized as a two-day workshop, with the primary goal of supporting collaboration among researchers for improving fungal ITS sequence resources and developing recommendations for standard ITS primers for the research community. PMID:23961317

Bates, Scott T.; Ahrendt, Steven; Bik, Holly M.; Bruns, Thomas D.; Caporaso, J. Gregory; Cole, James; Dwan, Michael; Fierer, Noah; Gu, Dai; Houston, Shawn; Knight, Rob; Leff, Jon; Lewis, Christopher; Maestre, Juan P.; McDonald, Daniel; Nilsson, R. Henrik; Porras-Alfaro, Andrea; Robert, Vincent; Schoch, Conrad; Scott, James; Taylor, D. Lee; Parfrey, Laura Wegener; Stajich, Jason E.

2013-01-01

270

Chitin, Chitinase Responses, and Invasive Fungal Infections  

PubMed Central

The human immune system is capable of recognizing and degrading chitin, an important cell wall component of pathogenic fungi. In the context of host-immune responses to fungal infections, herein we review the particular contributions and interplay of fungus and chitin recognition, and chitin-degrading enzymes, known as chitinases. The mechanisms of host chitinase responses may have implications for diagnostic assays as well as novel therapeutic approaches for patients that are at risk of contracting fatal fungal infections. PMID:22187561

Vega, Karina; Kalkum, Markus

2012-01-01

271

Fungal Vaccines and Vaccination: Problems and Perspectives  

Microsoft Academic Search

Vaccines against human pathogenic fungi, a rather neglected medical need until few years ago, are now gaining steps in the\\u000a public health priority scale. The awareness of the rising medical threat represented by the opportunistic fungal infections\\u000a among the health care-associated infections, the advances in the knowledge of fungal pathogenicity and immune response and\\u000a the extraordinary progress of biotechnology have

Antonio Cassone

272

Atopic cough and fungal allergy  

PubMed Central

We have shown that some patients presenting with chronic bronchodilator-resistant non-productive cough have a global atopic tendency and cough hypersensitivity without nonspecific bronchial hyperresponsiveness, abbreviated as atopic cough (AC). The cough can be treated successfully with histamine H1 antagonists and/or glucocorticoids. Eosinophilic tracheobronchitis and cough hypersensitivity are pathological and physiological characteristics of AC. Fungus-associated chronic cough (FACC) is defined as chronic cough associated with basidiomycetous (BM) fungi found in induced sputum, and recognition of FACC has provided the possibility of using antifungal drugs as new treatment strategies. Bjerkandera adusta is a wood decay BM fungus, which has attracted attention because of its potential role in enhancing the severity of cough symptoms in FACC patients by sensitization to this fungus. Before making a diagnosis of “idiopathic cough” in cases of chronic refractory cough, remaining intractable cough-related laryngeal sensations, such as “a sensation of mucus in the throat (SMIT),” which is correlated with fungal colonization, should be evaluated and treated appropriately in each patient. The new findings, i.e., the detection of environmental mushroom spores that should not be present in the human airways in addition to the good clinical response of patients to antifungal drugs, may lead to the development of novel strategies for treatment of chronic cough. PMID:25383202

Fujimura, Masaki; Ohkura, Noriyuki; Makimura, Koichi

2014-01-01

273

Fungal infection in patients with Alzheimer's disease.  

PubMed

Alzheimer's disease is a progressive neurodegenerative disorder that leads to dementia mainly among the elderly. This disease is characterized by the presence in the brain of amyloid plaques and neurofibrillary tangles that provoke neuronal cell death, vascular dysfunction, and inflammatory processes. In the present work, we have analyzed the existence of fungal infection in Alzheimer's disease patients. A proteomic analysis provides compelling evidence for the existence of fungal proteins in brain samples from Alzheimer's disease patients. Furthermore, PCR analysis reveals a variety of fungal species in these samples, dependent on the patient and the tissue tested. DNA sequencing demonstrated that several fungal species can be found in brain samples. Together, these results show that fungal macromolecules can be detected in brain from Alzheimer's disease patients. To our knowledge these findings represent the first evidence that fungal infection is detectable in brain samples from Alzheimer's disease patients. The possibility that this may represent a risk factor or may contribute to the etiological cause of Alzheimer's disease is discussed. PMID:24614898

Alonso, Ruth; Pisa, Diana; Marina, Ana Isabel; Morato, Esperanza; Rábano, Alberto; Carrasco, Luis

2014-01-01

274

Fungal Keratitis - Improving Diagnostics by Confocal Microscopy  

PubMed Central

Purpose Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12–69), 6 out of 17 (35%) cultures were positive and a total of 6/7 (86%) IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. Conclusion IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis. PMID:24474933

Nielsen, E.; Heegaard, S.; Prause, J.U.; Ivarsen, A.; Mortensen, K.L.; Hjortdal, J.

2013-01-01

275

The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato.  

PubMed

The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants. PMID:17249424

Hondo, Daisuke; Hase, Shu; Kanayama, Yoshinori; Yoshikawa, Nobuyuki; Takenaka, Shigehito; Takahashi, Hideki

2007-01-01

276

Production of swainsonine by fungal endophytes of locoweed.  

PubMed

Consumption of locoweeds, legumes endemic in arid western USA, has long been associated with locoism, a disease of ruminant animals. To explore the relationship between fungi associated with locoweed and locoweed toxicity, 11 locoweed populations from various sites in New Mexico were assessed for endophytic fungi. Endophytes were isolated from the leaves, stems, seeds, and flowers of eight populations of the toxic locoweeds Astragalus mollissimus, Oxytropis lambertii, and O. sericea. Fungal cultures grew very slowly and sporadically produced subcylindrical conidia with very dark transverse septa. All cultured endophytes produced the alkaloid swainsonine, which causes locoism. Endophyte-infected locoweed populations produced swainsonine, and the swainsonine level of endophyte strains in vitro was highly correlated with the swainsonine level of their host plant populations. The rDNA ITS from mycelia from four endophyte isolates and beta-tubulin encoding regions from mycelia of 18 fungal endophyte isolates were amplified using PCR and the nucleic acid sequences were analyzed. The nucleic acid sequences of the beta-tubulin encoding regions were essentially identical among all the endophytes regardless of plant genus and locations. Morphological evidence and sequence analysis of the ITS region suggest that the endophytes are most closely related to Embellisia. However, with the paucity of Embellisia species represented in sequence databases, precise taxonomic placement will await further study. PMID:14531620

Braun, Karen; Romero, Jennifer; Liddell, Craig; Creamer, Rebecca

2003-08-01

277

Effects of sodium ferulate on amyloid-beta-induced MKK3\\/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus  

Microsoft Academic Search

Aim:To observe the effects of sodium ferulate (SF) on amyloid beta (A?)1–40 induced p38 mitogen-activated protein kinase (MAPK) signal transduction pathway and the neuroprotective effects of SF.Methods:Rats were injected intracerebroventricularly with A?1–40. Six hours after injection, Western blotting was used to determine the expressions of phosphorylated mitogen-activated protein kinase kinase (MKK) 3\\/MKK6, phospho-p38 MAPK, interleukin (IL)-1?, phospho-MAPK activating protein kinase

Ying Jin; Ying Fan; En-zhi Yan; Zhuo Liu; Zhi-hong Zong; Zhi-min Qi

2006-01-01

278

Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies  

PubMed Central

Current metabarcoding studies aiming to characterize microbial communities generally rely on the amplification and sequencing of relatively short DNA regions. For fungi, the internal transcribed spacer (ITS) region in the ribosomal RNA (rRNA) operon has been accepted as the formal fungal barcode. Despite an increasing number of fungal metabarcoding studies, the amplification efficiency of primers is generally not tested prior to their application in metabarcoding studies. Some of the challenges that metabarcoding primers should overcome efficiently are the amplification of target DNA strands in samples rich in non-target DNA and environmental pollutants, such as humic acids, that may have been co-extracted with DNA. In the current study, three selected primer pairs were tested for their suitability as fungal metabarcoding primers. The selected primer pairs include two primer pairs that have been frequently used in fungal metabarcoding studies (ITS1F/ITS2 and ITS3/ITS4) and a primer pair (ITS86F/ITS4) that has been shown to efficiently amplify the ITS2 region of a broad range of fungal taxa in environmental soil samples. The selected primer pairs were evaluated in a 454 amplicon pyrosequencing experiment, real-time PCR (qPCR) experiments and in silico analyses. Results indicate that experimental evaluation of primers provides valuable information that could aid in the selection of suitable primers for fungal metabarcoding studies. Furthermore, we show that the ITS86F/ITS4 primer pair outperforms other primer pairs tested in terms of in silico primer efficiency, PCR efficiency, coverage, number of reads and number of species-level operational taxonomic units (OTUs) obtained. These traits push the ITS86F/ITS4 primer pair forward as highly suitable for studying fungal diversity and community structures using DNA metabarcoding. PMID:24933453

Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Declerck, Stéphan; Vangronsveld, Jaco; Colpaert, Jan V.

2014-01-01

279

Pathogenic Roles for Fungal Melanins  

PubMed Central

Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

Jacobson, Eric S.

2000-01-01

280

Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.  

PubMed

The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters. PMID:9706802

Nielsen, M S; Frisvad, J C; Nielsen, P V

1998-06-30

281

Spread and change in stress resistance of Shiga toxin-producing Escherichia coli?O157 on fungal colonies.  

PubMed

To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. PMID:23919289

Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

2014-11-01

282

Dendritic Cells in Anti-Fungal Immunity and Vaccine Design  

PubMed Central

Life-threatening fungal infections have increased in recent years while treatment options remain limited. The development of vaccines against fungal pathogens represents a key advance sorely needed to combat the increasing fungal disease threat. Dendritic cells (DC) are uniquely able to shape anti-fungal immunity by initiating and modulating naive T cell responses. Targeting DC may allow for the generation of potent vaccines against fungal pathogens. In the context of anti-fungal vaccine design, we describe the characteristics of the varied DC subsets, how DC recognize fungi, their function in immunity against fungal pathogens, and how DC can be targeted in order to create new anti-fungal vaccines. Ongoing studies continue to highlight the critical role of DC in anti-fungal immunity and will help guide DC-based vaccine strategies. PMID:22607797

Roy, Rene M.; Klein, Bruce S.

2012-01-01

283

Phylogenetic analysis of fungal ABC transporters  

PubMed Central

Background The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. Results We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Conclusions Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions. PMID:20233411

2010-01-01

284

SOLID PHASE EXTRACTION OF THREE PHENOLIC ACIDS FROM SALICONIA HERBACEA L. BY DIFFERENT IONIC LIQUID-BASED SILICAS  

Microsoft Academic Search

Different ionic liquid-based silicas were prepared for solid-phase extraction of three phenolic acids (protocatechuic, ferulic, and caffeic) from Saliconia herbaces L. extraction solution, followed by high-performance liquid chromatography coupled to ultraviolet detection. By comparing the adsorption isotherms of the three phenolic acids on different ionic liquid-based silicas, the ionic interaction was shown as the dominant interaction with the highest adsorption

Wentao Bi; Jun Zhou; Kyung Ho Row

2012-01-01

285

Fungal spores as potential ice nuclei in fog/cloud water and snow  

NASA Astrophysics Data System (ADS)

INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 64, 109-119. Bauer, H., Schueller, E., Weinke, G. Berger, A., Hitzenberger, R., Marr, I.L., Puxbaum, H. (2008). Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos. Environ. 42, 5542-5549. Bowers, R.M., Lauber, C.L., Wiedinmyer, C., Hamady, M., Hallar, A.G., Fall, R., Knight, R., Fierer, N. (2009). Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol: 75, 5121-5130.

Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

2010-05-01

286

The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.  

PubMed

The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

2014-01-01

287

The Effect of Silver Nanoparticles on Seasonal Change in Arctic Tundra Bacterial and Fungal Assemblages  

PubMed Central

The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

Kumar, Niraj; Palmer, Gerald R.; Shah, Vishal; Walker, Virginia K.

2014-01-01

288

The insecticidal protein hirsutellin A from the mite fungal pathogen Hirsutella thompsonii is a ribotoxin.  

PubMed

The mite fungal pathogen Hirsutella thompsonii produces a single polypeptide chain, insecticidal protein named hirsutellin A (HtA) that is composed of 130 amino acid residues. This protein has been purified from its natural source and produced as a recombinant protein in Escherichia coli. Spectroscopic analysis has determined that the two protein forms are indistinguishable. HtA specifically inactivates ribosomes and produces the alpha-fragment characteristic of ribotoxin activity on rRNA. Behaving as a cyclizing ribonuclease, HtA specifically cleaves oligonucleotides that mimick the sarcin/ricin loop of the ribosome, as well as selected polynucleotides and dinucleosides. HtA interacts with phospholipid membranes as do other ribotoxins. As a consequence of its ribonuclease activity and its ability to interact with cell membranes, HtA exhibits cytotoxic activity on human tumor cells. On the basis of these results, HtA is considered to be a member of the ribotoxin group of proteins, although it is significantly smaller (130 aa) than all known ribotoxins that are composed of 149/150 amino acids. Ribotoxins are members of a larger family of fungal ribonucleases whose members of smaller size (100/110 aa) are not cytotoxic. Thus, the characterization of the fungal ribotoxin HtA represents an important milestone in the study of the diversity and the function of fungal ribonucleases. PMID:18214983

Herrero-Galán, Elías; Lacadena, Javier; Martínez del Pozo, Alvaro; Boucias, Drion G; Olmo, Nieves; Oñaderra, Mercedes; Gavilanes, José G

2008-07-01

289

Fatal fungal infection: the living dead.  

PubMed

Necrotizing fasciitis is an uncommon infection mainly caused by Streptococcus pyogenes, which is also known as flesh-eating bacteria. It is often caused by bacteria, but can also be caused and complicated by fungus. We report a case of bacterial necrotizing fasciitis that was complicated by a fatal fungal infection, a rare clinical presentation affecting the upper limbs, head and neck, in a young diabetic female patient. It was an unsuspected case of fungal infection with mucormycosis, which proved to be fatal due to a delay in diagnosis and treatment. PMID:25352577

Narayanan Ml, Sankar; Narayanan, C D; Kindo, Anupma J; Arora, Apurva; Haridas, Priya A

2014-01-01

290

Fungal lectins: structure, function and potential applications.  

PubMed

Lectins are a widespread class of proteins implicated in many essential cellular and molecular recognition processes. They recognize carbohydrates in a non-catalytic, specific and reversible manner. Fungi, which include mushrooms, microfungi and yeasts, have attracted wide interest in recent years. They are indeed a promising source for novel lectins with unique specificity and potential for biomedical and biotechnological applications. Information on fungal lectins, particularly structural insight, is scarce compared to that on their plant and animal counterparts. This review therefore focuses on the structure, function, and exploitable properties of fungal lectins. PMID:23920351

Varrot, Annabelle; Basheer, Soorej M; Imberty, Anne

2013-10-01

291

Fatal fungal infection: the living dead  

PubMed Central

Necrotizing fasciitis is an uncommon infection mainly caused by Streptococcus pyogenes, which is also known as flesh-eating bacteria. It is often caused by bacteria, but can also be caused and complicated by fungus. We report a case of bacterial necrotizing fasciitis that was complicated by a fatal fungal infection, a rare clinical presentation affecting the upper limbs, head and neck, in a young diabetic female patient. It was an unsuspected case of fungal infection with mucormycosis, which proved to be fatal due to a delay in diagnosis and treatment.

Narayanan ML, Sankar; Narayanan, C. D.; Kindo, Anupma J.; Arora, Apurva; Haridas, Priya A.

2014-01-01

292

Bioremediation of MGP soils with mixed fungal and bacterial cultures  

SciTech Connect

This culture selection study examines the degradation of polycyclic automatic hydrocarbon (PAH) by a number of brown- and white-rot fungi and bacterial cultures for the treatment of coal tar wastes. Cultures were screened for naphthalene degradation in shake flasks, and selected organisms were then examined for their ability to degrade a mixture of PAHs in aqueous culture. PAH degradation in the presence of the surfactant, TWEEN 80, was examined for some cultures. Many of the organisms were observed to be resistant to greater than 10 mg/L free cyanide. Solid substrate growth conditions were optimized for the selected fungal cultures in preparation for manufactured gas plant (MGP) soil microcosm experiments. The fungi generally produced more biomass under conditions of acidic to neutral pH, incubation at 30 C with 90% moisture saturation, and with granulated corncobs or alfalfa pellets supplied as a lignocellulosic substrate. Of the cultures screened, nine fungal cultures were selected based on their ability to degrade at least 40% of naphthalene, fluorene, or benzo(a)pyrene in 2 weeks or less. A bacterial culture capable of degrading 30 mg/L of naphthalene in 1 week was also selected, and the cultures were examined further in PAH-degradation studies in contaminated soils.

Lee, C.J.B.; Fletcher, M.A.; Avila, O.I.; Munnecke, D.M. [Environmental BioTechnologies, Inc., Menlo Park, CA (United States); Callanan, J. [New England Electric Service, Westborough, MA (United States); Yunker, S. [Electric Power Research Inst., Irving, TX (United States)

1995-12-31

293

Controlling Plant Pathogens with Bacterial/Fungal Antagonist Combinations.  

National Technical Information Service (NTIS)

Fungal/bacterial antagonist combinations, a seed coated with one of the combinations and a plant protected from plant pathogens by one of the combinations. The invention is also a fungal/bacterial antagonist combination comprising a Trichoderma virens fun...

T. D. Johnson

2004-01-01

294

Seasonality of root fungal colonization in low-alpine herbs  

Microsoft Academic Search

Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungal colonization of Alchemilla glomerulans, Carex vaginata, Ranunculus acris ssp. pumilus and Trollius europaeus growing in low-alpine meadows in the Finnish subarctic were studied at different times during the growing season. Fungal colonization was correlated to soil soluble phosphorus (P) concentration. The influence of flower bud removal on fungal colonization was investigated

A. Ruotsalainen; H. Väre; M. Vestberg

2002-01-01

295

Fungal viruses, hypovirulence, and biological control of Sclerotinia species  

Microsoft Academic Search

Hypovirulence in fungal plant pathogens refers to the reduced ability of selected isolates within a population of a pathogen to infect, colonize, kill, and (or) reproduce on susceptible host tissues and is often associated with fungal viruses and associated double-stranded RNA elements. It has been reported to occur in numerous fungal plant pathogens, including Sclerotinia sclerotiorum, S. minor, and the

Greg J. Boland

2004-01-01

296

Seasonality in Antarctic Airborne Fungal Spores  

PubMed Central

Airborne fungal spores were monitored over periods of up to 131/2 months at three sites on Signy Island in the maritime Antarctic. Fungal spore concentrations in the air were much lower than in other parts of the world. Concentrations were very low during the austral winter but increased during the austral summer. Chlamydospores were the most abundant fungal spore type found. Spores of Cladosporium spp. were the second most frequently trapped form. All spore types samples were most abundant in the summer months, except for chlamydospores, which were most numerous during the winter. The concentration of Cladosporium spores in the air at Signy Island was compared with the concentrations of this spore type found in the air in other parts of the world. It was evident that Cladosporium loses its dominance as the most abundant component of the air spora with increasingly high latitude. The peak concentration of fungal spores occurred at two sites following the start of the thaw; at the third site, the peak occurred with the arrival of spores by long-distance transport from more northerly regions. PMID:16535624

Marshall, W. A.

1997-01-01

297

Simple quantification of in planta fungal biomass.  

PubMed

An accurate assessment of the disease resistance status of plants to fungal pathogens is an essential requirement for the development of resistant crop plants. Many disease resistance phenotypes are partial rather than obvious immunity and are frequently scored using subjective qualitative estimates of pathogen development or plant disease symptoms. Here we report a method for the accurate comparison of total fungal biomass in plant tissues. This method, called the WAC assay, is based upon the specific binding of the plant lectin wheat germ agglutinin to fungal chitin. The assay is simple, high-throughput, and sensitive enough to discriminate between single Puccinia graminis f.sp tritici infection sites on a wheat leaf segment. It greatly lends itself to replication as large volumes of tissue can be pooled from independent experiments and assayed to provide truly representative quantification, or, alternatively, fungal growth on a single, small leaf segment can be quantified. In addition, as the assay is based upon a microscopic technique, pathogen infection sites can also be examined at high magnification prior to quantification if desired and average infection site areas are determined. Previously, we have demonstrated the application of the WAC assay for quantifying the growth of several different pathogen species in both glasshouse grown material and large-scale field plots. Details of this method are provided within. PMID:24643560

Ayliffe, Michael; Periyannan, Sambasivam K; Feechan, Angela; Dry, Ian; Schumann, Ulrike; Lagudah, Evans; Pryor, Anthony

2014-01-01

298

Opportunistic invasive fungal infections: diagnosis & clinical management.  

PubMed

Invasive fungal infections are a significant health problem in immunocompromised patients. The clinical manifestations vary and can range from colonization in allergic bronchopulmonary disease to active infection in local aetiologic agents. Many factors influence the virulence and pathogenic capacity of the microorganisms, such as enzymes including extracellular phospholipases, lipases and proteinases, dimorphic growth in some Candida species, melanin production, mannitol secretion, superoxide dismutase, rapid growth and affinity to the blood stream, heat tolerance and toxin production. Infection is confirmed when histopathologic examination with special stains demonstrates fungal tissue involvement or when the aetiologic agent is isolated from sterile clinical specimens by culture. Both acquired and congenital immunodeficiency may be associated with increased susceptibility to systemic infections. Fungal infection is difficult to treat because antifungal therapy for Candida infections is still controversial and based on clinical grounds, and for molds, the clinician must assume that the species isolated from the culture medium is the pathogen. Timely initiation of antifungal treatment is a critical component affecting the outcome. Disseminated infection requires the use of systemic agents with or without surgical debridement, and in some cases immunotherapy is also advisable. Preclinical and clinical studies have shown an association between drug dose and treatment outcome. Drug dose monitoring is necessary to ensure that therapeutic levels are achieved for optimal clinical efficacy. The objectives of this review are to discuss opportunistic fungal infections, diagnostic methods and the management of these infections. PMID:24718393

Badiee, Parisa; Hashemizadeh, Zahra

2014-02-01

299

Occupation, Lifestyle, Diet, and Invasive Fungal Infections  

Microsoft Academic Search

Background: Although the risk factors for invasive fungal infections (IFIs) in immunocompromised hosts are well described and associated with the net state of immunosuppression, much less is written on the effects of lifestyle on the risk of IFIs in the general population. Methods: We searched MEDLINE, EMBASE, and Current Contents databases for all reports on IFIs associated with occupation, lifestyle,

N. V. Sipsas; D. P. Kontoyiannis

2008-01-01

300

Biological Activity of Volatile Fungal Metabolites  

Microsoft Academic Search

A RECENT survey has measured the effects of volatile metabolites from sixty-two fungal cultures on chosen characters of growth and reproduction of five assay species, namely: Rhizopus sexualis (Smith) Callen, Chaetomium globosum Kunze ex Fr., Stereum hirsutum (Willd.) Fr., Aspergillus niger van Tiegh., and Botrytis cinerea Pers. ex Fr. The sixty-two species tested consisted of thirteen Phycomycetes, thirteen Ascomycetes, six

Christine M. Dick; S. A. Hutchinson

1966-01-01

301

Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives  

PubMed Central

The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and ?-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

2009-01-01

302

Trends in immunotherapy of fungal infections  

Microsoft Academic Search

Fungal infections are the primary cause of mortality in patients with severely impaired host defense mechanisms, such as neutropenic patients with acute leukemia or those who have undergone bone marrow transplantation. In view of the unacceptably high mortality due to disseminated candidiasis, it is rational to focus on augmentation of host defense mechanisms in addition to conventional antifungal therapy. In

B. J. Kullberg

1997-01-01

303

Health Effects of Indoor Fungal Bioaerosol Exposure  

Microsoft Academic Search

Occupational and environmental health professionals are confronted with issues concerning the health effects of indoor fungal bioaerosol exposure. This article reviews current data on the health effects of indoor mold exposure and provides practical suggestions for occupational and environmental health practitioners regarding how best to manage these exposures based on published human studies. We conducted MEDLINE searches and reviewed all

Frederick Fung; William G. Hughson

2003-01-01

304

Organ Transplant Patients and Fungal Infections  

MedlinePLUS

... Get email updates Contact Us: Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 Contact CDC–INFO Fungal Diseases Types of Diseases Aspergillosis Definition Symptoms People ...

305

ASSESSING ALLERGENICITY OF INDOOR AIR FUNGAL CONTAMINANTS  

EPA Science Inventory

Assessing Allergenicity of Indoor Air Fungal Contaminants M D W Ward1, M E Viana2, N Haykal-Coates1, L B Copeland1, S H Gavett1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA. Rationale: The indoor environment has increased in impor...

306

HIV/AIDS and Fungal Infections  

MedlinePLUS

... Telles F, Nucci M. Epidemiology of endemic systemic fungal infections in Latin America. Medical Mycology 2011;49:785-98. Top of Page Print page Get email updates Contact Us: Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333 ...

307

Fungal spore fragmentation as a function of airflow rates and fungal generation methods  

NASA Astrophysics Data System (ADS)

The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species ( Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences ( p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependent on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ?0.4 m s -1 for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and A. niger, but not for C. cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples ( p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, whilethe results obtained from the UVAPS and SMAS were not identical for the same samples.

Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

308

Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression.  

PubMed

Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%. PMID:18796351

Allison, Gordon G; Thain, Simon C; Morris, Phillip; Morris, Catherine; Hawkins, Sarah; Hauck, Barbara; Barraclough, Tim; Yates, Nicola; Shield, Ian; Bridgwater, Anthony V; Donnison, Iain S

2009-02-01

309

Cytochemical Labeling for Fungal and Host Components in Plant Tissues Inoculated with Fungal Wilt Pathogens  

NASA Astrophysics Data System (ADS)

Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.

Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.

2004-08-01

310

Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.  

PubMed

Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. PMID:24269825

Rasmussen, M L; Khanal, S K; Pometto, A L; van Leeuwen, J Hans

2014-01-01

311

Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog  

SciTech Connect

The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E. (Toledo)

2010-08-13

312

Studies on the enzymatic and fungal degradation of cross-linked gelatin and its graft copolymers  

Microsoft Academic Search

Glutaraldehyde cross-linked gelatin was graft copolymerized with acrylic acid, acrylamide, vinyl acetate, methyl acrylate, and methyl methacrylate either individually or in combination. The enzymatic and fungal degradation of these graft copolymers with trypsin, pepsin, and mixed cultures ofAspergillus niger, Penicillium ochrochloron, Penicillium funiculosum, andTrichoderma viride was studied for short and extended periods. The weight loss suffered by the samples, the

D. Satyanarayana; P. R. Chatterji

1995-01-01

313

Organic Acid Production by Filamentous Fungi  

E-print Network

12 Organic Acid Production by Filamentous Fungi Jon K. Magnuson and Linda L. Lasure 1. Introduction Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less vis- ible impact on human well

314

Symbiotic fungal associations in 'lower' land plants.  

PubMed

An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of these plants are similar to those seen in mycorrhizal associations of ericaceous plants like Vaccinium. Cross inoculation experiments have confirmed that a typical mycorrhizal endophyte of ericaceous plants, Hymenoscyphus ericae, will form associations in liverworts which are structurally identical to those seen in nature. Again, the functional significance of these associations remains to be examined. Some members of the Jungermanniales and Metzgeriales form associations with basidiomycetous fungi. These produce intracellular coils of hyphae, which are similar to the pelotons seen in orchid mycorrhizas, which also involve basidiomycetes. The fungal associates of the autotrophic Aneura and of its heterotrophic relative Cryptothallus mirabilis have been isolated. In the latter case it has been shown that the fungal symbiont is an ectomycorrhizal associate of Betula, suggesting that the apparently obligate nature of the association between the hepatic and Betula in nature is based upon requirement for this particular heterotroph. PMID:10905611

Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

2000-06-29

315

Symbiotic fungal associations in 'lower' land plants.  

PubMed Central

An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of these plants are similar to those seen in mycorrhizal associations of ericaceous plants like Vaccinium. Cross inoculation experiments have confirmed that a typical mycorrhizal endophyte of ericaceous plants, Hymenoscyphus ericae, will form associations in liverworts which are structurally identical to those seen in nature. Again, the functional significance of these associations remains to be examined. Some members of the Jungermanniales and Metzgeriales form associations with basidiomycetous fungi. These produce intracellular coils of hyphae, which are similar to the pelotons seen in orchid mycorrhizas, which also involve basidiomycetes. The fungal associates of the autotrophic Aneura and of its heterotrophic relative Cryptothallus mirabilis have been isolated. In the latter case it has been shown that the fungal symbiont is an ectomycorrhizal associate of Betula, suggesting that the apparently obligate nature of the association between the hepatic and Betula in nature is based upon requirement for this particular heterotroph. PMID:10905611

Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

2000-01-01

316

Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.  

PubMed

Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic. PMID:22379979

Stursová, Martina; Zif?áková, Lucia; Leigh, Mary Beth; Burgess, Robert; Baldrian, Petr

2012-06-01

317

Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.  

PubMed

Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. PMID:24171899

García-Guzmán, Graciela; Heil, Martin

2014-03-01

318

Fungal and bacterial community succession differs for three wood types during decay in a forest soil.  

PubMed

Wood decomposition by soil microorganisms is vital to carbon and nutrient cycles of forested ecosystems. Different wood types decompose at different rates; however, it is not known if there are differences in microbial community succession associated with the decay of different wood types. In this study, the microbial community associated with the decay of pine (decay-susceptible wood), western red cedar (decay resistant) and ACQ-treated pine (Ammoniacal Copper Quaternary, preservative-treated pine for decay resistance) in forest soil was characterized using DNA sequencing, phospholipid fatty acid (PLFA) analysis, and microbial activity over a 26-month period. Bray-Curtis ordination using an internal transcribed spacer (ITS) sequence and PLFA data indicated that fungal communities changed during succession and that wood type altered the pattern of succession. Nondecay fungi decreased over the 26 months of succession; however, by 18 months of decay, there was a major shift in the fungal communities. By this time, Trametes elegans dominated cedar and Phlebia radiata dominated pine and ACQ-treated pine. The description of PLFA associated with ACQ-treated pine resembled cedar more than pine; however, both PLFA and ITS descriptions indicated that fungal communities associated with ACQ-treated pine were less dynamic, perhaps a result of the inhibition by the ACQ preservative, compared with pine and cedar. Overall, fungal community composition and succession were associated with wood type. Further research into the differences in community composition will help to discern their functional importance to wood decay. PMID:24623527

Prewitt, Lynn; Kang, Youngmin; Kakumanu, Madhavi L; Williams, Mark

2014-08-01

319

Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat.  

PubMed

Raw and processed meat contaminated with pathogenic microorganisms is a continuing worldwide problem facing health and industry overseers. Fungal chitosan was extracted, purified and characterized from Aspergillus brasiliensis (niger) ATCC 16404 grown in date syrup (dips) and applied as a potential meat biopreservative. The main features of produced chitosan were a deacetylation degree of 81.3%, a molecular weight of 31,000Da, 96% solubility in 1% acetic acid solution and a harmonized IR-spectrum to standard commercial chitosan. The application of fungal chitosan, as a natural and safe biopreservative for minced meat, was conducted in comparison with potassium sorbate, as a commercial meat preservative. Treated meat samples with 0.02% chitosan was the least trials in microbial contents, i.e. total count, coliforms, ?-glucuronidase-positive Escherichia coli, Enterobacteriaceae, yeasts and molds, Staphylococcus aureus and coagulase positive staphylococci. The antimicrobial activity of fungal chitosan was considerably greater than that of potassium sorbate or their combination at 0.01% from each. Sensory characteristics, e.g. color, odor and texture, of treated meat with chitosan, were higher than those of control and potassium sorbate treated samples. Fungal chitosan, however, could be recommended as a powerful, natural and eco-friendly alternative for meat preservation and overall quality maintenance. PMID:24942991

Tayel, Ahmed A; Ibrahim, Sami I A; Al-Saman, Mahmoud A; Moussa, Shaaban H

2014-08-01

320

A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw.  

PubMed

This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B; Du, Chenyu

2013-12-01

321

Impact of fungal load on diagnosis and outcome of allergic fungal rhinosinusitis.  

PubMed

Fungal load colonization may modify the classic eosinophilic inflammation in allergic fungal rhinosinusitis (AFRS). We aimed to evaluate the impact of fungal load on diagnosis and outcome of AFRS. In the present cohort study fungal load differences were determined prospectively according to Gomori methenamine silver (GMS) fungal stained (histopathological and cytological examination) with the tenacious mucus, cheesy clay-like materials and sinus mucosa/polyps in 12 AFRS patients. Two groups with different fungal loads, AFRS with (six patients) and without (six patients) high fungal loads (HFL) were evaluated for nasal endoscopic score, paranasal sinuses CT score, histopathological and immunohistochemical changes. Endoscopic outcome scoring differences were evaluated for 1 year after endoscopic sinus surgery and 1 month oral corticosteroids treatment. No differences were observed between both groups (AFRS with/without HFL) concerning the total CT score and opacification features (P > 0.05). Eosinophils and CD3 + CD8 + T cell were dominant in both groups. More edema and less fibrosis were observed in HFL group. Gliotoxin producers Aspergilli were present in all HFL in comparison to 5/6 (83.3%) in cases without HFL. Fewer patients 1/6 (16.6%) and less number of recurrences/year 0.1 ± 0.4 occurred in the AFRS with HFL compared to the AFRS without HFL [5/6 (83.3%) and 1.16 ± 0.7) (P = 0.021 and 0.023, respectively]. In addition to mucus and mucosal tissues, cheesy clay-like materials must be assessed in AFRS cases. Although patients of AFRS with HFL had negligible clinical differences from ordinary AFRS without HFL, they had better outcome after treatment. PMID:23568040

Ragab, Ahmed; Samaka, Rehab Monir; Salem, Mohamed

2014-01-01

322

Nonmammalian model systems to investigate fungal biofilms.  

PubMed

Medical advances have resulted in an increase in the number of patients in immunocompromised states, vulnerable to infection, or individuals fitted with medical devices that form niches for microbial infections. These infections are difficult to treat and have significant morbidity and mortality rates. An important factor in the pathogenesis of fungal diseases is the development of biofilm-forming communities, enabling the invasion of host tissues and resistance to antimicrobial compounds. To investigate the genetic requirements for filamentation and seek compounds that inhibit the process, invertebrate hosts are employed as models of in vivo infection. The purpose of our review is to highlight methods that can be utilized to investigate fungal filamentation, an important step in the development of biofilms, in the invertebrate hosts Galleria mellonella, Caenorhabditis elegans, and Drosophila melanogaster. PMID:24664832

Arvanitis, Marios; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

2014-01-01

323

Rodentborne fungal pathogens in wetland agroecosystem  

PubMed Central

The past few decades have witnessed an overwhelming increase in the incidence of fungal infections, particularly in immunocompromised individuals. Consequently, zoonotic diseases, especially through rodents constitute a prominent group among the emerging diseases. Rodents are commensal to man and related health risks are common. Water rats (Rattus norvegicus) are typical to Vembanadu-Kol wetland agroecosystems, where they can act as a good carrier nexus for pathogens. The present study evaluates the carrier status of water rats with respect to fungal pathogens. A total of fifty two fungi covering eighteen families were isolated. Among the isolates, eight were dermaptophytes and Chrysosporium sp. (89.18%) was the frequent isolate. The source-wise analyses showed an increased isolation from ventral hair (67 isolates). Water rats of Vembanadu-Kol wetland agroecosystem are potent carrier of dermaptophytes and other opportunistic fungi, and strong carrier paths are existing too. PMID:24031825

Thomas, Manuel; Abraham Samuel, K.; Kurian, Punnen

2012-01-01

324

Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids  

PubMed Central

Mycoheterotrophic plants are achlorophyllous plants that obtain carbon from their mycorrhizal fungi. They are usually considered to associate with fungi that are (1) specific of each mycoheterotrophic species and (2) mycorrhizal on surrounding green plants, which are the ultimate carbon source of the entire system. Here we review recent works revealing that some mycoheterotrophic plants are not fungal-specific, and that some mycoheterotrophic orchids associate with saprophytic fungi. A re-examination of earlier data suggests that lower specificity may be less rare than supposed in mycoheterotrophic plants. Association between mycoheterotrophic orchids and saprophytic fungi arose several times in the evolution of the two partners. We speculate that this indirectly illustrates why transition from saprotrophy to mycorrhizal status is common in fungal evolution. Moreover, some unexpected fungi occasionally encountered in plant roots should not be discounted as ‘molecular scraps’, since these facultatively biotrophic encounters may evolve into mycorrhizal symbionts in some other plants. PMID:20061806

Martos, Florent; Perry, Brian A; Padamsee, Mahajabeen; Roy, Melanie; Pailler, Thierry

2010-01-01

325

Inhibitory Activities of Propolis and Its Promising Component, Caffeic Acid Phenethyl Ester, against Amyloidogenesis of Human Transthyretin.  

PubMed

Transthyretin (TTR) is a homotetrameric serum protein associated with amyloidoses such as familial amyloid polyneuropathy and senile systemic amyloidosis. The amyloid fibril formation of TTR can be inhibited through stabilization of the TTR tetramer by the binding of small molecules. In this study, we examined the inhibitory potency of caffeic acid phenethyl ester (CAPE) and its derivatives. Thioflavin T assay showed that CAPE suppressed the amyloid fibril formation of TTR. Comparative analysis of the inhibitory potencies revealed that phenethyl ferulate was the most potent among the CAPE derivatives. The binding of phenethyl ferulate and the selected compounds to TTR were confirmed by the 8-anilino-1-naphthalenesulfonic acid displacement and X-ray crystallography. It was also demonstrated that Bio 30, which is a CAPE-rich commercially available New Zealand propolis, inhibited TTR amyloidogenesis and stabilized the TTR tetramer. These results suggested that a propolis may be efficient for preventing TTR amyloidosis. PMID:25314129

Yokoyama, Takeshi; Kosaka, Yuto; Mizuguchi, Mineyuki

2014-11-13

326

In vitro anti-leishmanial and anti-fungal effects of new SbIII carboxylates  

PubMed Central

Ring opening of phthalic anhydride has been carried out in acetic acid with glycine, ?-alanine, L-phenylalanine, and 4-aminobenzoic acid to yield, respectively, 2-{[(carboxymethyl)amino]carbonyl}benzoic acid (I), 2-{[(2-carboxyethyl)amino]carbonyl}benzoic acid (II), 2-{[(1-carboxy-2-phenylethyl)amino]carbonyl}benzoic acid (III), and 2-[(4-carboxyanilino)carbonyl]benzoic acid (IV). Compounds I-IV have been employed as ligands for Sb(III) center (complexes V-VIII) in aqueous medium. FTIR and 1H NMR spectra proved the deprotonation of carboxylic protons and coordination of imine group and thereby tridentate behaviour of the ligands as chelates. Elemental, MS, and TGA analytic data confirmed the structural hypothesis based on spectroscopic results. All the compounds have been assayed in vitro for anti-leishmanial and anti-fungal activities against five leishmanial strains L. major (JISH118), L. major (MHOM/PK/88/DESTO), L. tropica (K27), L. infantum (LEM3437), L. mex mex (LV4), and L. donovani (H43); and Aspergillus Flavus, Aspergillus Fumigants, Aspergillus Niger, and Fusarium Solani. Compound VII exhibited good anti-leishmanial as well as anti-fungal impacts comparable to reference drugs.

2011-01-01

327

Fungal Scleral Keratitis Caused by Phomopsis phoenicicola?  

PubMed Central

We report a case of scleral keratitis caused by Phomopsis phoenicicola. Pterygium surgery was a predisposing factor, and the patient was treated with natamycin and fluconazole eye drops and oral fluconazole. The fungus was identified by sequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal DNA (rDNA) locus and confirmed on the basis of its typical pycnidia and conidia. PMID:21450952

Gajjar, Devarshi U.; Pal, Anuradha K.; Parmar, Trilok J.; Arora, Anshul I.; Ganatra, Darshini A.; Kayastha, Forum B.; Ghodadra, Bharat K.; Vasavada, Abhay R.

2011-01-01

328

Fungal aquaporins: cellular functions and ecophysiological perspectives.  

PubMed

Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today's MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker's yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function. PMID:25213914

Nehls, Uwe; Dietz, Sandra

2014-11-01

329

Effect of NaCl on biochemical changes and endophytic fungal assemblages in the leaves of a mangrove, Ceriops roxburghiana Arn  

Microsoft Academic Search

One of the universal protective responses of plants to any type of stress is the accumulation of low-molecular organic substances such as amino acids, sugars and proteins. In this study, the effect of salinity on leaf pigments, proteins, free amino acids, proline, polyphenols, sugars and starch content was investigated. Status on endophytic fungal assemblages in the salt treated leaves of

S. Sridevi; V. Gangadevi; A. Venkatesan; J. Muthumary

2008-01-01

330

Combination Treatment of Invasive Fungal Infections  

PubMed Central

The persistence of high morbidity and mortality from systemic fungal infections despite the availability of novel antifungals points to the need for effective treatment strategies. Treatment of invasive fungal infections is often hampered by drug toxicity, tolerability, and specificity issues, and added complications often arise due to the lack of diagnostic tests and to treatment complexities. Combination therapy has been suggested as a possible approach to improve treatment outcome. In this article, we undertake a historical review of studies of combination therapy and also focus on recent studies involving newly approved antifungal agents. The limitations surrounding antifungal combinations include nonuniform interpretation criteria, inability to predict the likelihood of clinical success, strain variability, and variations in pharmacodynamic/pharmacokinetic properties of antifungals used in combination. The issue of antagonism between polyenes and azoles is beginning to be addressed, but data regarding other drug combinations are not adequate for us to draw definite conclusions. However, recent data have identified potentially useful combinations. Standardization of assay methods and adoption of common interpretive criteria are essential to avoid discrepancies between different in vitro studies. Larger clinical trials are needed to assess whether combination therapy improves survival and treatment outcome in the most seriously debilitated patients afflicted with life-threatening fungal infections. PMID:15653825

Mukherjee, Pranab K.; Sheehan, Daniel J.; Hitchcock, Christopher A.; Ghannoum, Mahmoud A.

2005-01-01

331

The Filamentous Fungal Gene Expression Database (FFGED)  

PubMed Central

Filamentous fungal gene expression assays provide essential information for understanding systemic cellular regulation. To aid research on fungal gene expression, we constructed a novel, comprehensive, free database, the Filamentous Fungal Gene Expression Database (FFGED), available at http://bioinfo.townsend.yale.edu. FFGED features user-friendly management of gene expression data, which are assorted into experimental metadata, experimental design, raw data, normalized details, and analysis results. Data may be submitted in the process of an experiment, and any user can submit multiple experiments, thus classifying the FFGED as an “active experiment” database. Most importantly, FFGED functions as a collective and collaborative platform, by connecting each experiment with similar related experiments made public by other users, maximizing data sharing among different users, and correlating diverse gene expression levels under multiple experimental designs within different experiments. A clear and efficient web interface is provided with enhancement by AJAX (Asynchronous JavaScript and XML) and through a collection of tools to effectively facilitate data submission, sharing, retrieval and visualization. PMID:20025988

Zhang, Zhang; Townsend, Jeffrey P.

2010-01-01

332

Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes  

PubMed Central

Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae), which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as ‘endophytes’ have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems. PMID:21347229

Weiss, Michael; Sykorova, Zuzana; Garnica, Sigisfredo; Riess, Kai; Martos, Florent; Krause, Cornelia; Oberwinkler, Franz; Bauer, Robert; Redecker, Dirk

2011-01-01

333

Can fungal zoospores be the source of energy for the rumen protozoa Eudiplodinium maggii?  

PubMed

Results of our earlier studies showed the ability of ciliates Eudiplodinium maggii to digest and metabolize commercial chitin. The natural source of this polysaccharide in the rumen are fungi. The objectives of present research were to determine the effect of fungal zoospores on the survival and population density of E. maggii to quantify the concentration of chitin in the cells of protozoa and to examine the ability of E. maggii, to ferment chitin of fungal zoospores. The cultivation experiment showed that the survival of protozoa was shorter than 4 days when the culture medium was composed of buffer solution and lyophilized fungal spores. An enrichment of this medium with wheat gluten prolonged the survival of ciliates up to 8 days. The supplementation of the last medium with meadow hay enabled the protozoa to survive for 28 days but a positive effect was observed only during the last 8 days of experiment. The chitin content was 0.27 ng and 0.21-0.35 ng per single zoospore and ciliate, respectively. An increase in the concentration of volatile fatty acids (VFA) was found when protozoa were incubated with zoospores. The production rate of VFA was 46.3 pM/protozoan per h whereas the endogenous production did not exceed 31 pM/protozoan per h. The molar proportion of acetic acid was 77.7% and these of butyric and propionic acids-12.2 and 11.0%, respectively. The obtained results make it evident that carbohydrates present in fungal zoospores were utilized by protozoa in energy yielding processes. PMID:24012688

Miltko, Renata; Be??ecki, Grzegorz; Kowalik, Barbara; Micha?owski, Tadeusz

2014-10-01

334

Interaction of milk whey protein with common phenolic acids  

NASA Astrophysics Data System (ADS)

Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of ?-lactalbumin and ?-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of ?-helix and an increase in the amounts of ?-sheet and turn structures.

Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

2014-01-01

335

Patterns of fungal diversity and composition along a salinity gradient  

PubMed Central

Estuarine salinity gradients are known to influence plant, bacterial and archaeal community structure. We sequenced 18S rRNA genes to investigate patterns in sediment fungal diversity (richness and evenness of taxa) and composition (taxonomic and phylogenetic) along an estuarine salinity gradient. We sampled three marshes—a salt, brackish and freshwater marsh—in Rhode Island. To compare the relative effect of the salinity gradient with that of plants, we sampled fungi in plots with Spartina patens and in plots from which plants were removed 2 years prior to sampling. The fungal sediment community was unique compared with previously sampled fungal communities; we detected more Ascomycota (78%), fewer Basidiomycota (6%) and more fungi from basal lineages (16%) (Chytridiomycota, Glomeromycota and four additional groups) than typically found in soil. Across marshes, fungal composition changed substantially, whereas fungal diversity differed only at the finest level of genetic resolution, and was highest in the intermediate, brackish marsh. In contrast, the presence of plants had a highly significant effect on fungal diversity at all levels of genetic resolution, but less of an effect on fungal composition. These results suggest that salinity (or other covarying parameters) selects for a distinctive fungal composition, and plants provide additional niches upon which taxa within these communities can specialize and coexist. Given the number of sequences from basal fungal lineages, the study also suggests that further sampling of estuarine sediments may help in understanding early fungal evolution. PMID:20882058

Mohamed, Devon J; Martiny, Jennifer BH

2011-01-01

336

Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.  

PubMed

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts. PMID:22046142

Desjardins, Christopher A; Champion, Mia D; Holder, Jason W; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I; Henn, Matthew R; Kodira, Chinnappa D; León-Narváez, Henry; Longo, Larissa V G; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L; Morais, Flavia V; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M; Sykes, Sean M; Teixeira, Marcus Melo; Vallejo, Milene C; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H; Haas, Brian J; McEwen, Juan G; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W; Cuomo, Christina A

2011-10-01

337

Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis  

PubMed Central

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts. PMID:22046142

Desjardins, Christopher A.; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailao, Alexandre M.; Brigido, Marcelo Macedo; Ferreira, Marcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; Leon-Narvaez, Henry; Longo, Larissa V. G.; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L.; Morais, Flavia V.; Pereira, Maristela; Rodriguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M.; Sykes, Sean M.; Teixeira, Marcus Melo; Vallejo, Milene C.; Walter, Maria Emilia Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H.; Haas, Brian J.; McEwen, Juan G.; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W.; Cuomo, Christina A.

2011-01-01

338

The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands  

PubMed Central

Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought. PMID:24937200

Geml, Jozsef; Gravendeel, Barbara; van der Gaag, Kristiaan J.; Neilen, Manon; Lammers, Youri; Raes, Niels; Semenova, Tatiana A.; de Knijff, Peter; Noordeloos, Machiel E.

2014-01-01

339

Quantitative multiplexed detection of common pulmonary fungal pathogens by labeled primer polymerase chain reaction.  

PubMed

Context .- Invasive fungal infections are an important cause of morbidity and mortality among immunocompromised patients. Objective .- To design and evaluate a multiplexed assay aimed at quantitative detection and differentiation of the 5 molds that are most commonly responsible for pulmonary infections. Design .- Using labeled primer polymerase chain reaction chemistry, an assay was designed to target the 5.8S and 28S ribosomal RNA genes of Aspergillus spp, Fusarium spp, Scedosporium spp, and members of the order Mucorales ( Rhizopus oryzae , Rhizopus microsporus, Cunninghamella bertholletiae, Mucor circinelloides, Lichtheimia corymbifera, and Rhizomucor pusillus). This assay was split into 2 multiplexed reactions and was evaluated using both samples seeded with purified nucleic acid from 42 well-characterized clinical fungal isolates and 105 archived samples (47 blood [45%], 42 bronchoalveolar lavage fluid [40%], and 16 tissue [15%]) collected from rabbit models of invasive pulmonary fungal infections. Results .- Assay detection sensitivity was less than 25 copies of the target sequence per reaction for Aspergillus spp, 5 copies for Fusarium spp and Scedosporium spp, and 10 copies for the Mucorales. The assay showed quantitative linearity from 5 × 10(1) to 5 × 10(5) copies of target sequence per reaction. Sensitivities and specificities for bronchoalveolar lavage fluid, tissue, and blood samples were 0.86 and 0.99, 0.60 and 1.00, and 0.46 and 1.00, respectively. Conclusions .- Labeled primer polymerase chain reaction permits rapid, quantitative detection and differentiation of common agents of invasive fungal infection. The assay described herein shows promise for clinical implementation that may have a significant effect on the rapid diagnosis and treatment of patients' severe infections caused by these pulmonary fungal pathogens. PMID:25357108

Gu, Zhengming; Buelow, Daelynn R; Petraitiene, Ruta; Petraitis, Vidmantas; Walsh, Thomas J; Hayden, Randall T

2014-11-01

340

Free and bound cinnamic acid derivatives in corsica sweet blond oranges.  

PubMed

Total determination of cinnamic acids (CA), including hydroxycinnamic acid derivatives is generally not accurate since, during hydrolysis, a possible degradation of dihydroxy CA such as caffeic acid could occur. Evaluations of CA (ferulic, p-coumaric, sinapic, cinnamic and caffeic acids) before and after hydrolysis have been undertaken using standards and either with or without addition of ascorbic acid and EDTA. The method was then applied to the determination of free and bound CA in five blond cultivars (Navelina, Washington navel, Pera, Salustiana and Valencia late) of sweet oranges [Citrus sinensis (L.) Osb.]. Four parts of the fruits (peel juice, flavedo, albedo and juice) have been investigated. Results show that CA are mainly bound (86% up to 92%) in the four fruit parts. The mean of total CA contents was found to be higher in peel juice (1.5 g kg(-1)) in comparison with flavedo (0.7 g kg(-1)), albedo (0.1 g kg(-1)) and juice (0.6 g kg(-1)). Free and bound ferulic acid represented 55-70% of CA in juices, followed by p-coumaric acid (20%), sinapic acid (10%) and caffeic acid (9%). Total contents of each CA in the four fruit parts are discussed and show the potential interest in orange peel wastes. PMID:20420324

Carrera, Eric; El Kebir, Mohamed Vall Ould; Jacquemond, Camille; Luro, François; Lozano, Yves; Gaydou, Emile M

2010-03-01

341

Recent developments in the pharmacological properties of 4'-geranyloxyferulic acid, a colon cancer chemopreventive agent of natural origin.  

PubMed

3-(4'-Geranyloxy-3'-methoxyphenyl)-2-trans propenoic acid (4'-geranyloxyferulic acid, GOFA) is a secondary metabolite biosynthetically related to ferulic acid in which a geranyl chain is attached to the phenolic group, extracted in 1966 from Acronychia baueri Schott (Fam. Rutaceae). In the last decade the pharmacological properties of the title compound began to be characterized, revealing its good activity as anti-inflammatory and dietary feeding cancer chemopreventive agent. The aim of this review is to examine in detail the recently reported properties of 4'-geranyloxyferulic acid from a chemical and pharmacological point of view, including the recent acquisition about its mechanism of action. PMID:22594476

Genovese, Salvatore; Epifano, Francesco

2012-07-01

342

A resource for the in silico identification of fungal polyketide synthases from predicted fungal proteomes.  

PubMed

The goal of this study was to develop a tool specifically designed to identify iterative polyketide synthases (iPKSs) from predicted fungal proteomes. A fungi-based PKS prediction model, specifically for fungal iPKSs, was developed using profile hidden Markov models (pHMMs) based on two essential iPKS domains, the ?-ketoacyl synthase (KS) domain and acyltransferase (AT) domain, derived from fungal iPKSs. This fungi-based PKS prediction model was initially tested on the well-annotated proteome of Fusarium graminearum, identifying 15 iPKSs that matched previous predictions and gene disruption studies. These fungi-based pHMMs were subsequently applied to the predicted fungal proteomes of Alternaria brassicicola, Fusarium oxysporum f.sp. lycopersici, Verticillium albo-atrum and Verticillium dahliae. The iPKSs predicted were compared against those predicted by the currently available mixed-kingdom PKS models that include both bacterial and fungal sequences. These mixed-kingdom models have been proven previously by others to be better in predicting true iPKSs from non-iPKSs compared with other available models (e.g. Pfam and TIGRFAM). The fungi-based model was found to perform significantly better on fungal proteomes than the mixed-kingdom PKS model in accuracy, sensitivity, specificity and precision. In addition, the model was capable of predicting the reducing nature of fungal iPKSs by comparison of the bit scores obtained from two separate reducing and nonreducing pHMMs for each domain, which was confirmed by phylogenetic analysis of the KS domain. Biological confirmation of the predictions was obtained by polymerase chain reaction (PCR) amplification of the KS and AT domains of predicted iPKSs from V. dahliae using domain-specific primers and genomic DNA, followed by sequencing of the PCR products. It is expected that the fungi-based PKS model will prove to be a useful tool for the identification and annotation of fungal PKSs from predicted proteomes. PMID:22112245

Delgado, Javier A; Al-Azzam, Omar; Denton, Anne M; Markell, Samuel G; Goswami, Rubella S

2012-06-01

343

Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt.  

PubMed

Fungal influenced corrosion (FIC) of some corroded sites in three selected bridges [Embaba bridge (E-bridge), Kasr al-Nile-bridge (K-bridge) and University bridge (U-bridge)] located over the River Nile in Egypt were investigated. Six fungal species, belong to 12 fungal genera, were isolated from the corroded reinforced concrete of the three tested bridges. Fourier transform infrared spectroscopy (FTIR) was screened for the most dominant fungal species (Fusarium oxysporium) which showed in all tested bridges that indicated the presence of amine group accompanied with polysaccharides contents. FIC of the most deteriorated bridge (K-bridge) was documented with FTIR. The association of fungal spores with corrosion products was recorded with scanning electron microscope (SEM). Evaluation of ozone for preventing FIC of the K-bridge was carried out by recording the corrosion rate and the corresponding inhibition efficiency (IE%). No mycelial growth with 100% IE was observed at 3 ppm ozone concentration after 120 min exposure time. With longer duration of ozone exposure, the membrane permeability of F. oxysporium was compromised as indicated by protein and nucleic acid leakages accompanied with lipid and tryptophan oxidation. The total intracellular and extracellular proteins of F. oxysporium were run on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated the increasing of the supernatant protein on the expense of the cellular protein bands with extending ozone exposure time (0-80 min). PMID:20820884

Geweely, Neveen S I

2011-04-01

344

Current Thoughts in Fungal Keratitis: Diagnosis and Treatment  

PubMed Central

Fungal keratitis remains a challenging and often elusive diagnosis in geographic regions where it is endemic. Marred by delays in diagnosis, the sequelae of corneal fungal infections, though preventable, can be irreversible. Recent studies and advances in the arena have broadened the approach and treatment to mycotic keratitis. This review will discuss current diagnostic modalities of fungal keratitis and will particularly focus on treatment regimens. It will also explore future therapeutic models and critique the potential benefit of each. PMID:24040467

Ansari, Zubair; Miller, Darlene; Galor, Anat

2013-01-01

345

Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents  

SciTech Connect

Native fungal biomass of fungi Absidia orchids, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nugricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference: Pb>Cd>Ni. The highest metal uptake was q{sub max}=351 mg Pb/g for A. orchidis biomass. P. chrysogenum biomass could accumulate cadmium best at 56 mg Cd/G. The sorption of nickel was the weakest always at >5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosorylated sawdust reaching q{sub max}=224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The latter value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass. 40 refs., 5 figs., 3 tabs.

Holan, Z.R.; Volesky, B. [McGill Univ., Montreal (Canada)

1995-05-01

346

Root Exudates Regulate Soil Fungal Community Composition and Diversity?  

PubMed Central

Plants are in constant contact with a community of soil biota that contains fungi ranging from pathogenic to symbiotic. A few studies have demonstrated a critical role of chemical communication in establishing highly specialized relationships, but the general role for root exudates in structuring the soil fungal community is poorly described. This study demonstrates that two model plant species (Arabidopsis thaliana and Medicago truncatula) are able to maintain resident soil fungal populations but unable to maintain nonresident soil fungal populations. This is mediated largely through root exudates: the effects of adding in vitro-generated root exudates to the soil fungal community were qualitatively and quantitatively similar to the results observed for plants grown in those same soils. This effect is observed for total fungal biomass, phylotype diversity, and overall community similarity to the starting community. Nonresident plants and root exudates influenced the fungal community by both positively and negatively impacting the relative abundance of individual phylotypes. A net increase in fungal biomass was observed when nonresident root exudates were added to resident plant treatments, suggesting that increases in specific carbon substrates and/or signaling compounds support an increased soil fungal population load. This study establishes root exudates as a mechanism through which a plant is able to regulate soil fungal community composition. PMID:18083870

Broeckling, Corey D.; Broz, Amanda K.; Bergelson, Joy; Manter, Daniel K.; Vivanco, Jorge M.

2008-01-01

347

Fungal biogeography. Global diversity and geography of soil fungi.  

PubMed

Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. PMID:25430773

Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S; Wijesundera, Ravi; Villarreal Ruiz, Luis; Vasco-Palacios, Aída M; Thu, Pham Quang; Suija, Ave; Smith, Matthew E; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L; Nilsson, R Henrik; Morgado, Luis N; Mayor, Jordan; May, Tom W; Majuakim, Luiza; Lodge, D Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy

2014-11-28

348

Fungal diversity on fallen leaves of Ficus in northern Thailand.  

PubMed

Fallen leaves of Ficus altissima, F. virens, F. benjamina, F. fistulosa and F. semicordata, were collected in Chiang Mai Province in northern Thailand and examined for fungi. Eighty taxa were identified, comprising 56 anamorphic taxa, 23 ascomycetes and 1 basidiomycete. Common fungal species occurring on five host species with high frequency of occurrence were Beltraniella nilgirica, Lasiodiplodia theobromae, Ophioceras leptosporum, Periconia byssoides and Septonema harknessi. Colletotrichum and Stachybotrys were also common genera. The leaves of different Ficus species supported diverse fungal taxa, and the fungal assemblages on the different hosts showed varying overlap. The fungal diversity of saprobes at the host species level is discussed. PMID:18837113

Wang, Hong-Kai; Hyde, Kevin D; Soytong, Kasem; Lin, Fu-Cheng

2008-10-01

349

Fungal diversity on fallen leaves of Ficus in northern Thailand* §  

PubMed Central

Fallen leaves of Ficus altissima, F. virens, F. benjamina, F. fistulosa and F. semicordata, were collected in Chiang Mai Province in northern Thailand and examined for fungi. Eighty taxa were identified, comprising 56 anamorphic taxa, 23 ascomycetes and 1 basidiomycete. Common fungal species occurring on five host species with high frequency of occurrence were Beltraniella nilgirica, Lasiodiplodia theobromae, Ophioceras leptosporum, Periconia byssoides and Septonema harknessi. Colletotrichum and Stachybotrys were also common genera. The leaves of different Ficus species supported diverse fungal taxa, and the fungal assemblages on the different hosts showed varying overlap. The fungal diversity of saprobes at the host species level is discussed. PMID:18837113

Wang, Hong-kai; Hyde, Kevin D.; Soytong, Kasem; Lin, Fu-cheng

2008-01-01

350

[Fungal contamination of dwelling and public buildings: hygienic aspects].  

PubMed

Dwelling and public buildings underwent comprehensive hygienic studies for fungal contamination. Human allergization associated with fungal contamination within the building envelopes and with the viable fungal spores in the air of enclosed spaces was found to be prevalent. The leading factors determining the extent to which the internal environment of premises was exposed to fungal contamination: their increased air humidity due to leakages and inlets, the affected area of building envelopes, and a temperature factor were revealed. The criteria showing it necessary to undertake specific measures to optimize the living conditions of the population were defined. PMID:21344696

Gubernski?, Iu D; Nel'nikova, A I; Kalinina, N V; Chuprina, O V

2010-01-01

351

MycoCosm portal: gearing up for 1000 fungal genomes  

PubMed Central

MycoCosm is a fungal genomics portal (http://jgi.doe.gov/fungi), developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other ‘omics’ data by providing interactive web-based tools. MycoCosm also promotes and facilitates user community participation through the nomination of new species of fungi for sequencing, and the annotation and analysis of resulting data. By efficiently filling gaps in the Fungal Tree of Life, MycoCosm will help address important problems associated with energy and the environment, taking advantage of growing fungal genomics resources. PMID:24297253

Grigoriev, Igor V.; Nikitin, Roman; Haridas, Sajeet; Kuo, Alan; Ohm, Robin; Otillar, Robert; Riley, Robert; Salamov, Asaf; Zhao, Xueling; Korzeniewski, Frank; Smirnova, Tatyana; Nordberg, Henrik; Dubchak, Inna; Shabalov, Igor

2014-01-01

352

Emerging fungal threats to animal, plant and ecosystem health.  

PubMed

The past two decades have seen an increasing number of virulent infectious diseases in natural populations and managed landscapes. In both animals and plants, an unprecedented number of fungal and fungal-like diseases have recently caused some of the most severe die-offs and extinctions ever witnessed in wild species, and are jeopardizing food security. Human activity is intensifying fungal disease dispersal by modifying natural environments and thus creating new opportunities for evolution. We argue that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide. PMID:22498624

Fisher, Matthew C; Henk, Daniel A; Briggs, Cheryl J; Brownstein, John S; Madoff, Lawrence C; McCraw, Sarah L; Gurr, Sarah J

2012-04-12

353

Superficial fungal infections of the male genitalia: a review.  

PubMed

Fungal infections of the genitals are probably more common than realized; however, relatively few reports concerning fungal genital infections exist in the literature. In this review, the fungal microbiota of the penis are highlighted, and the epidemiological characteristics of Candida balanitis, penile pityriasis versicolor, and tinea genitalis are addressed. In addition, the benefits of circumcision on male genital infections are included. However, systemic mycoses affecting the penis and/or scrotum will not be addressed in this review. To obtain a reliable diagnosis of genital fungal infections, medical history, clinical examination, and mycological and histological investigations of the lesions are critical. PMID:21668404

Aridogan, Ibrahim Atilla; Izol, Volkan; Ilkit, Macit

2011-08-01

354

AM symbiosis alters phenolic acid content in tomato roots  

PubMed Central

Arbuscular mycorrhizal (AM) fungi colonize the roots of most plants to establish a mutualistic symbiosis leading to important benefits for plant health. We have recently shown that AM symbiosis alters both transcriptional and hormonal profiles in tomato roots, many of these changes related to plant defense. Here, we analytically demonstrate that the levels of other important defense-related compounds as phenolic acids are also altered in the symbiosis. Both caffeic and chlorogenic acid levels significantly decreased in tomato roots upon mycorrhization, while ferulic acid increased. Moreover, in the case of caffeic acid a differential reduction was observed depending on the colonizing AM fungus. The results confirm that AM associations imply the regulation of plant defense responses, and that the host changes may vary depending on the AM fungus involved. The potential implications of altered phenolic acid levels on plant control over mycorrhizal colonization and in the plant resistance to pathogens is discussed. PMID:21490421

Flors, Victor; Garcia, Juan M; Pozo, Maria J

2010-01-01

355

Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism  

PubMed Central

We report on a preliminary investigation of the use the Gram-negative bacterial cell wall constituent lipopolysaccharide (LPS) as a natural chemical cue to stimulate and alter the expression of fungal secondary metabolism. Integrated high-throughput micro-cultivation and micro-analysis methods determined that 6 of 40 (15%) of fungi tested responded to an optimal exposure to LPS (0.6 ng/mL) by activating, enhancing or accelerating secondary metabolite production. To explore the possible mechanisms behind this effect, we employed light and fluorescent microscopy in conjunction with a nitric oxide (NO)-sensitive fluorescent dye and an NO scavenger to provide evidence that LPS stimulation of fungal secondary metabolism coincided with LPS activation of NO. Several case studies demonstrated that LPS stimulation can be scaled from single microplate well (1.5 mL) to preparative (>400 mL) scale cultures. For example, LPS treatment of Penicillium sp. (ACM-4616) enhanced pseurotin A and activated pseurotin A1 and pseurotin A2 biosynthesis, whereas LPS treatment of Aspergillus sp. (CMB-M81F) substantially accelerated and enhanced the biosynthesis of shornephine A and a series of biosynthetically related ardeemins and activated production of neoasterriquinone. As an indication of broader potential, we provide evidence that cultures of Penicillium sp. (CMB-TF0411), Aspergillus niger (ACM-4993F), Rhizopus oryzae (ACM-165F) and Thanatephorus cucumeris (ACM-194F) were responsive to LPS stimulation, the latter two examples being particular noteworthy as neither are known to produce secondary metabolites. Our results encourage the view that LPS stimulation can be used as a valuable tool to expand the molecular discovery potential of fungal strains that either have been exhaustively studied by or are unresponsive to traditional culture methodology. PMID:25379339

Khalil, Zeinab G.; Kalansuriya, Pabasara; Capon, Robert J.

2014-01-01

356

Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants.  

PubMed

In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions. PMID:24385364

Radhakrishnan, Ramalingam; Khan, Abdul Latif; Lee, In-Jung

2013-12-01

357

Removal of Uranium(VI) from Solution by Fungal Biomass and Fungal Wall--Related Biopolymers  

Microsoft Academic Search

Penicillium digitatum mycelium can accumulate uranium from aqueous solutions of uranyl chloride. Azide present during the uptake tests does not inhibit the process. Killing the fungal biomass in boiling water or by treatment with alcohols, dimethyl sulfoxide, or potassium hydroxide increases the uptake capability to about 10,000 parts per million (dry weight). Formaldehyde killing does not enhance the uranium uptake.

M. Galun; P. Keller; D. Malki; H. Feldstein; E. Galun; S. M. Siegel; B. Z. Siegel

1983-01-01

358

Neonatal fungal infections: when to treat?  

PubMed Central

Candida infections are a major cause of morbidity and mortality in neonatal intensive care units. Mortality following Candida bloodstream infections is as high as 40%, and neurodevelopmental impairment is common among survivors. Because invasive fungal infections are common and extremely difficult to diagnose, empirical treatment with antifungal therapy should be considered in high-risk, low-birth-weight infants who fail to quickly respond to empirical antibacterial treatment. Risk factors to consider when deciding to administer empirical antifungal therapy include: prior exposure to third-generation cephalosporins, extreme prematurity, and presence of central venous catheters. PMID:22633516

Hsieh, Emily; Smith, P. Brian; Benjamin, Daniel K.

2012-01-01

359

Fungal contamination of Kashar cheese in Turkey.  

PubMed

Fifty random samples of Kashar cheese were collected from shops in different localities in Erzurum, all contained moulds. Mean count of total surface mould was 3.02 x 10(10)/g cheese and that of inner mould was 3.02 x 10(3)/g cheese. The genera Penicillium, Aspergillus, Mucor, Rhizopus and Geotrichum sp. were isolated from cheese samples. Aflatoxins were not detected in cheese samples. Potassium sorbate inhibited mould growth and sporulation in YES broth. The public health importance and economic significance of fungal contamination, and suggested measure for cheese quality are discussed. PMID:1491710

Kivanç, M

1992-01-01

360

Animal models to investigate fungal biofilm formation.  

PubMed

Microbial biofilms play an essential role in several infectious diseases and are defined as extensive communities of sessile organisms irreversibly associated with a surface, encased within a polysaccharide-rich extracellular matrix (ECM), and exhibiting enhanced resistance to antimicrobial drugs. Forming a biofilm provides the microbes protection from environmental stresses due to contaminants, nutritional depletion, or imbalances, but is dangerous to human health due to their inherent robustness and elevated resistance.The use of indwelling medical devices (e.g., central venous catheters, CVCs) in current therapeutic practice is associated with 80-90 % of hospital-acquired bloodstream and deep tissue infections. Most cases of catheter-related bloodstream infections (CRBSIs) involve colonization of microorganisms on catheter surfaces where they form a biofilm. Additionally, Fusarium solani and F. oxysporum were the causative organisms of the 2005/2006 outbreak of contact lens-associated fungal keratitis in the United States, Europe, the UK, and Singapore, and these infections involved formation of biofilms on contact lens. Fungal biofilm formation is studied using a number of techniques, involving the use of a wide variety of substrates and growth conditions. In vitro techniques involving the use of confocal scanning laser/scanning electron microscopy, metabolic activity assay, dry weight measurements, and antifungal susceptibility assays are increasingly used by investigators to quantify and evaluate biofilm morphology. However, there are not many in vivo models used to validate biofilm-associated infections. In this protocol, we describe a clinically relevant rabbit model of C. albicans biofilm-associated catheter infection to evaluate the morphology, topography, and architecture of fungal biofilms. We also describe a murine model of contact lens-associated Fusarium keratitis.Evaluation of the formation of fungal biofilms on catheters in vivo, their analysis using scanning electron microscopy (SEM) and quantitative catheter culture (QCC), and treatment of biofilms using antimicrobial lock therapy can be completed in ~20-25 days using the described methods. The rabbit model has utility in evaluating the efficacy of lock solutions. In addition, the murine model of contact lens-associated Fusarium keratitis enables characterizing/comparing the formation of Fusarium biofilms on contact lenses in vitro and determining their role in vivo. PMID:24664831

Chandra, Jyotsna; Pearlman, Eric; Ghannoum, Mahmoud A

2014-01-01

361

New bioactive fatty acids.  

PubMed

Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) through 10-hydroxy-8-octadecenoic acid, and racinoleic acid to 7,10,12-trihydroxy-8-octadecenoic acid. DOD showed antibacterial activity including against food-borne pathogens. Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. For example: linoleic acid was converted to12,13-epoxy-9-octadecenoic acid and then to 12,13-dihydroxy-9-octadecenoic acid (12,13-DHOA). From here, there are two bioconversion pathways. The major pathway is: 12,13-DHOA --> 12,13,17-trihydroxy-9(S)-octadecenoic acid (THOA) --> 12,17;13,17-diepoxy-16-hydroxy-9(Z)-octadecenoic acid (DEOA) --> 7-hydroxy-DEOA. The minor pathway is: 12,13-DHOA --> 12,13,16-THOA --> 12-hydroxy-13,16-epoxy-9(Z)-octadecenoic acid. 12,13,17-THOA has anti-plant pathogenic fungal activity. The tetrahydrofuranyl moiety is known in anti cancer drugs. Strain ALA2 also converts other n-3 and n-6 PUFAs such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) to many new oxygenated unsaturated fatty acid products. All of these new products have high potential for antimicrobial agents or biomedical applications. We also screened 12 Mortierella fungal strains from the ARS Culture Collection for the production of bioactive fatty acids such as dihomo-gama-linolenic acid (DGLA) and arachidonic acid. All of the strains tested produced AA and DGLA from glucose or glycerol. The top five AA producers (mg AA/g CDW) were in the following order: M. alpina > M. zychae > M. hygrophila > M. minutissima > M. parvispora. Both AA and DGLA are important natural precursors of a large family of prostaglandin and thromboxane groups. PMID:18296335

Hou, Ching T

2008-01-01

362

Factors Predicting Outcome of Fungal Peritonitis in Peritoneal Dialysis: Analysis of a 9Year Experience of Fungal Peritonitis in a Single Center  

Microsoft Academic Search

Fungal peritonitis causes significant morbidity and mortality for patients undergoing continuous ambulatory peritoneal dialysis (CAPD). We retrospectively reviewed 70 episodes of fungal peritonitis in a single center over the last 9 years in 896 CAPD patients. Seventy percent of the episodes of fungal peritonitis were caused by Candida species, among which 50% were Candida parapsilosis. As a result of fungal

Angela Yee Moon Wang; Alex Wai Yin Yu; Philip Kam Tao Li; Peggo Kwok Wai Lam; Chi Bon Leung; Kar Neng Lai; Siu Fai Lui

2000-01-01

363

Assay of phenolic compounds from four species of ber (Ziziphus mauritiana L.) fruits: comparison of three base hydrolysis procedure for quantification of total phenolic acids.  

PubMed

The present study was undertaken to investigate the flavonoid profile in four species of ber (Ziziphus mauritiana Lamk.) fruit. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, quercetin 3'-O-galactoside, quercetin 3'-O-glucoside, quercetin 3'-O-rhamnoside, quercetin 3'-O-pentosylhexoside, quercetin 3-O-6'malonylglucoside, quercetin 3'-O-malonylglucoside, luteolin 7-O-6'malonylglucoside, luteolin 7-O-malonylglucoside, myricetin 3-O-galactoside, and naringenin tri glycoside. This is the first report on extraction of nine additional flavonoids from the ber fruits. In addition, we also compared the impact of three different base hydrolysis techniques namely ultrasonic assisted base hydrolysis (UABH), microwave assisted base hydrolysis (MWABH), and pressurised liquid assisted base hydrolysis (PLABH) for the quantification of total phenolic acids. Nine phenolic acids, protocatechuic acid, p-hydroxybenzoic acid, ferulic acid, chlorogenic acid, vanillic acid, caffeic acid, vanillin, ortho- and para-coumaric acids, were identified and quantified. The three major phenolic acids identified in all four ber species were p-coumaric acid, vanillin and ferulic acids. Higher amounts (p<0.05) of total phenolic acids in all cultivars were obtained with the PLABH technique as compared to other two procedures (UABH and MWABH). PMID:23561136

Memon, Ayaz Ali; Memon, Najma; Bhanger, Muhammad Iqbal; Luthria, Devanand L

2013-08-15

364

Root fungal symbionts interact with mammalian herbivory, soil nutrient availability and specific habitat conditions.  

PubMed

Herbivory, competition and soil fertility interactively shape plant communities and exhibit an important role in modifying conditions for host-dependent fungal symbionts. However, field studies on the combined impacts of natural herbivory, competition and soil fertility on root fungal symbionts are rare. We asked how mammalian herbivory, fertilization, liming and plant-plant competition affect the root colonization of arbuscular mycorrhizal fungi (AMF) and dark septate endophytic (DSE) fungi of the dicot herb, Solidago virgaurea. The 2-year full-factorial experiment was conducted in two contrasting habitats: non-acidic and acidic mountain tundra. We found that herbivory increased arbuscular colonization (i.e. the site of resource exchange) at fertile non-acidic sites, where vegetation was rich in species having AMF symbionts, whereas at infertile acidic sites, where plants having AMF symbiont are scarce, the response was the opposite. Herbivory of the host plant negatively affected DSE hyphal and sclerotial colonization in unfertilized plots, possibly due to reduced carbon flow from the host plant while there was no effect of herbivory in fertilized plots. DSE colonization was highest in unfertilized exclosures where soil nutrient concentrations were also lowest. Liming had a negative effect on DSE hyphal colonization, and its effect also interacted with herbivory and the habitat. Biomass removal of the neighboring plants did not affect the root colonization percent of either arbuscules or DSE. Our results show that the impacts of aboveground mammalian herbivory, soil nutrient availability and specific habitat conditions on belowground root fungal symbionts are highly dependent on each other. Arbuscule response to herbivory appeared to be regulated by specific habitat conditions possibly caused by differences in the AMF availability in the soil while DSE response was associated with availability of host-derived carbon. Our result of the relationship between herbivory and soil nutrients suggests an important role of DSE in ecosystem processes. PMID:21301877

Ruotsalainen, Anna L; Eskelinen, Anu

2011-07-01

365

Bacterial, Fungal, Parasitic, and Viral Myositis  

PubMed Central

Infectious myositis may be caused by a broad range of bacterial, fungal, parasitic, and viral agents. Infectious myositis is overall uncommon given the relative resistance of the musculature to infection. For example, inciting events, including trauma, surgery, or the presence of foreign bodies or devitalized tissue, are often present in cases of bacterial myositis. Bacterial causes are categorized by clinical presentation, anatomic location, and causative organisms into the categories of pyomyositis, psoas abscess, Staphylococcus aureus myositis, group A streptococcal necrotizing myositis, group B streptococcal myositis, clostridial gas gangrene, and nonclostridial myositis. Fungal myositis is rare and usually occurs among immunocompromised hosts. Parasitic myositis is most commonly a result of trichinosis or cystericercosis, but other protozoa or helminths may be involved. A parasitic cause of myositis is suggested by the travel history and presence of eosinophilia. Viruses may cause diffuse muscle involvement with clinical manifestations, such as benign acute myositis (most commonly due to influenza virus), pleurodynia (coxsackievirus B), acute rhabdomyolysis, or an immune-mediated polymyositis. The diagnosis of myositis is suggested by the clinical picture and radiologic imaging, and the etiologic agent is confirmed by microbiologic or serologic testing. Therapy is based on the clinical presentation and the underlying pathogen. PMID:18625683

Crum-Cianflone, Nancy F.

2008-01-01

366

Fungal Endophthalmitis Associated with Compounded Products  

PubMed Central

Fungal endophthalmitis is a rare but serious infection. In March 2012, several cases of probable and laboratory-confirmed fungal endophthalmitis occurring after invasive ocular procedures were reported nationwide. We identified 47 cases in 9 states: 21 patients had been exposed to the intraocular dye Brilliant Blue G (BBG) during retinal surgery, and the other 26 had received an intravitreal injection containing triamcinolone acetonide. Both drugs were produced by Franck’s Compounding Lab (Ocala, FL, USA). Fusarium incarnatum-equiseti species complex mold was identified in specimens from BBG-exposed case-patients and an unopened BBG vial. Bipolaris hawaiiensis mold was identified in specimens from triamcinolone-exposed case-patients. Exposure to either product was the only factor associated with case status. Of 40 case-patients for whom data were available, 39 (98%) lost vision. These concurrent outbreaks, associated with 1 compounding pharmacy, resulted in a product recall. Ensuring safety and integrity of compounded medications is critical for preventing further outbreaks associated with compounded products. PMID:24447640

Mikosz, Christina A.; Smith, Rachel M.; Kim, Moon; Tyson, Clara; Lee, Ellen H.; Adams, Eleanor; Straif-Bourgeois, Susanne; Sowadsky, Rick; Arroyo, Shannon; Grant-Greene, Yoran; Duran, Julie; Vasquez, Yvonne; Robinson, Byron F.; Harris, Julie R.; Lockhart, Shawn R.; Torok, Thomas J.; Mascola, Laurene

2014-01-01

367

Sexual reproduction of human fungal pathogens.  

PubMed

We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

Heitman, Joseph; Carter, Dee A; Dyer, Paul S; Soll, David R

2014-08-01

368

The temperature response of fungal enzyme kinetics  

NASA Astrophysics Data System (ADS)

Extracellular enzymes produced and excreted by microbes mediate the decomposition of carbon (C), nitrogen (N), and phosphorus (P) -containing compounds in their environment. Climate change has the potential to alter the rate of decomposition especially in high latitude regions where stocks of recalcitrant, or long-lived, C are abundant. This project compares extracellular enzyme activity (EEA) across ten fungi strains within the model family Neurospora in order to assess the range of variation in temperature sensitivities of fungal enzyme Vmax and Km. Vmax values of most enzymes tested increased exponentially,which was hypothesized and consistant with thermodynamic principles. We also hypothesized that Neurospora strains would exhibit different EEA temperature sensitivities based on their native climate. We observed strain-dependent variation in enzyme temperature responses consistent with strain-specific adaptation to local conditions. Since fungi are the major decomposers of organic carbon in high-latitude ecosystems, an increase in EEA in-situ would result in higher carbon dioxide emissions. These findings suggest a shift in fungal processing of soil organic carbon and nutrients in response to changing climate.

Curran, M.; Lu, Y.; Taylor, J.; Allison, S. D.

2013-12-01

369

Invasive Fungal Infections after Renal Transplantation  

PubMed Central

Background: Invasive fungal infection (IFI) is a leading cause of infection-related mortality among kidney allograft recipients.  Objective: To estimate the incidence and etiology of systemic fungal infection in renal allograft recipients in Sydney transplant facility. Methods: 471 kidney recipients, transplanted between 2000 and 2010 at the Westmead Hospital renal transplantation center, Sydney, Australia, were retrospectively surveyed. Results: IFI developed in 10 (2.1%) of 471 patients. With a mean±SD new kidney transplants per year of 42.9±13, the mean±SD incidence of IFI was 0.9±0.6 for each year of transplantation. 4 patients had received kidneys from living donors and 7 from cadavers with a mean±SD age of 50.5±14 years. The mean time to IFI was 33 months after transplantation with majority within the first 2 years. Cryptococcus neoformans was responsible for 50% of episodes (n=5) followed by Aspergillus fumigatus (n=3), and Pseudallescheria boydii (n=3); there was a single case of mucurmycosis. Lungs (n=5) followed by meninges (n=4) and skin (n=3) were the most commonly involved sites. Conclusion: IFI remains a major concern in renal transplantation. A high index of suspicion is required for early diagnosis and treatment to reduce the mortality. In this regard, appropriate diagnostic tests are necessary, particularly for C. neoformans. PMID:25013619

Ezzatzadegan, S.; Chen, S.; Chapman, J. R.

2012-01-01

370

Allergic fungal rhinosinusitis due to Curvularia lunata.  

PubMed

We report a case of Curvularia lunata infection in an immunocompetent male with an initial diagnosis of suspected left side allergic fungal rhinosinusitis (AFRS), treated surgically. He had a relapse of nasal polyposis and underwent a surgical revision under local anaesthesia with endoscopic nasal polypectomy. The histological examination of the surgical specimen showed an inflammatory polyp of the paranasal sinuses, with eosinophil and lymphocyte infiltration, but without evidence of fungi. However, Curvularia spp fungus grew in cultures of nasal sinus drainage and bioptical specimens. The fungus was identified by DNA sequencing as C. lunata. The patient was then treated with itraconazole (200 mg BID for 4 weeks), mometasone furoate nasal spray (100 mcg BID for 6 months) and normal saline nasal irrigations. At the last follow-up endoscopic evaluation after 19 month from treatment, the patient was symptomless and free from disease. No polyp recurrence nor seromucous discharges were noticed. This first case of C. lunata-associated AFRS reported in Italy, highlights the difficulty of this diagnosis and the usefulness of molecular identification of the fungal species involved. PMID:24858653

Cavanna, Caterina; Seminari, Elena; Pusateri, Alessandro; Mangione, Francesca; Lallitto, Fabiola; Esposto, Maria Carmela; Pagella, Fabio

2014-04-01

371

Fungal endophthalmitis associated with compounded products.  

PubMed

Fungal endophthalmitis is a rare but serious infection. In March 2012, several cases of probable and laboratory-confirmed fungal endophthalmitis occurring after invasive ocular procedures were reported nationwide. We identified 47 cases in 9 states: 21 patients had been exposed to the intraocular dye Brilliant Blue G (BBG) during retinal surgery, and the other 26 had received an intravitreal injection containing triamcinolone acetonide. Both drugs were produced by Franck's Compounding Lab (Ocala, FL, USA). Fusarium incarnatum-equiseti species complex mold was identified in specimens from BBG-exposed case-patients and an unopened BBG vial. Bipolaris hawaiiensis mold was identified in specimens from triamcinolone-exposed case-patients. Exposure to either product was the only factor associated with case status. Of 40 case-patients for whom data were available, 39 (98%) lost vision. These concurrent outbreaks, associated with 1 compounding pharmacy, resulted in a product recall. Ensuring safety and integrity of compounded medications is critical for preventing further outbreaks associated with compounded products. PMID:24447640

Mikosz, Christina A; Smith, Rachel M; Kim, Moon; Tyson, Clara; Lee, Ellen H; Adams, Eleanor; Straif-Bourgeois, Susanne; Sowadsky, Rick; Arroyo, Shannon; Grant-Greene, Yoran; Duran, Julie; Vasquez, Yvonne; Robinson, Byron F; Harris, Julie R; Lockhart, Shawn R; Török, Thomas J; Mascola, Laurene; Park, Benjamin J

2014-02-01

372

Phenolic acids in the flowers and leaves of Grindelia robusta Nutt. and Grindelia squarrosa Dun. (Asteraceae).  

PubMed

2D-TLC and RP-HPLC methods were applied to qualitatively determinate free phenolic acids and those liberated by acid and alkaline hydrolysis in the flowers and leaves of G. robusta and G. squarrosa. The presence of eleven phenolic acids, namely: caffeic, chlorogenic, p-coumaric, p-hydroxybenzoic, ferulic, gallic, protocatechuic, vanillic salicylic, p-hydroxyphenylacetic and ellagic acids was determined. Quantitative estimate of phenolic acids, expressed as caffeic acid, has been analyzed by the method described in the Polish Pharmacopoeia VIII. The content of phenolic acids in G. robusta reached 7.33 mg/g and 6.23 mg/g for flowers and leaves, respectively. The flowers and leaves of G. squarrosa were characterized by similar level of phenolic acids, namely 6.81 mg/g and 6.59 mg/g, respectively. PMID:22876612

Nowak, S?awomira; Rychli?ska, Izabela

2012-01-01

373

Analysis of fungal fruiting patterns at the Dawyck Botanic Garden  

Microsoft Academic Search

Since 1994 data on fungal fruiting have been gathered in the Dawyck Botanic Garden outside Edinburgh, including that for eight plots within a 7.5ha wood, which has been left unmanaged in order to investigate relationships amongst fungal succession, habitat characteristics and local weather patterns. The climatic data are provided by a small meteorological station situated on site. To handle nearly

V. Krivtsov; R. Watling; S. J. J. Walker; D. Knott; J. W. Palfreyman; H. J. Staines

2003-01-01

374

A Quick and Safe Method for Fungal DNA Extraction  

Microsoft Academic Search

A number of methods have been developed for genomic DNA extraction from fungal tissues. In general, DNA extraction methods consist of several steps, such as preparation of starting materials, generation of cell lysates, elimination of contaminants, and collection of DNA. Conventional fungal DNA extraction methods that are derived from plant genomic DNA extraction methods (Rogers and Bendich, 1985) require fresh

Myoung-Hwan Chi; Sook-Young Park; Yong-Hwan Lee

2009-01-01

375

Topographic diversity of fungal and bacterial communities in human skin.  

PubMed

Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14?skin sites in 10?healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis. PMID:23698366

Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

2013-06-20

376

Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum  

E-print Network

REPORT Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum mycorrhizal fungal spore communities and mycorrhizal inoculum potential (MIP) of a tropical rain forest soil and control plots. Seedlings of both plant species grown in control cores had significantly higher arbuscular-mycorrhizal

Gehring, Catherine "Kitty"

377

Hypovirulence: Mycoviruses at the fungal–plant interface  

Microsoft Academic Search

Whereas most mycoviruses lead 'secret lives', some reduce the ability of their fungal hosts to cause disease in plants. This property, known as hypovirulence, has attracted attention owing to the importance of fungal diseases in agriculture and the limited strategies that are available for the control of these diseases. Using one pathogen to control another is appealing, both intellectually and

Donald L. Nuss

2005-01-01

378

Influence of Storage on Fungal Infestation in Spices.  

National Technical Information Service (NTIS)

The present work was carried out to study the influence of storage and gamma radiation on fungal control in spices. The spices were irradiated with 5.0, 7.5 and 10.0 KGy and stored under ambient conditions for 12 months. Fungal infestation decreased to un...

T. Akhtar, A. Sattar, I. Khan

1988-01-01

379

448 PHYTOPATHOLOGY Population Genetics of Soilborne Fungal Plant Pathogens  

E-print Network

448 PHYTOPATHOLOGY Symposium Population Genetics of Soilborne Fungal Plant Pathogens The Population of populations of plant pathogens is needed to implement effective control strate- gies (48). Research on the genetic structure of fungal populations has mushroomed, and review papers that summarize these studies

McDonald, Bruce

380

Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems  

Microsoft Academic Search

Soil core (0–2.5 and\\/or 0–10 cm) samples were taken from wheat no till, wheat-conventional till, and fallow-conventional till soybean cropping systems from July to October of 1989 and extracted with water in an autoclave. The soil extracts were analyzed for seven common phenolic acids (p-coumaric, vanillic,p-hydroxybenzoic, syringic, caffeic, ferulic, and sinapic; in order of importance) by high-performance liquid chromatography. The

Uo BLUM; T. R. Wentworth; K. Klein; A. D. Worsham; L. D. King; T. M. Gerig; S.-W. Lyu

1991-01-01

381

Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere  

PubMed Central

The fungicides used to control diseases in cereal production can have adverse effects on non-target fungi, with possible consequences for plant health and productivity. This study examined fungicide effects on fungal communities on winter wheat leaves in two areas of Sweden. High-throughput 454 sequencing of the fungal ITS2 region yielded 235 operational taxonomic units (OTUs) at the species level from the 18 fields studied. It was found that commonly used fungicides had moderate but significant effect on fungal community composition in the wheat phyllosphere. The relative abundance of several saprotrophs was altered by fungicide use, while the effect on common wheat pathogens was mixed. The fungal community on wheat leaves consisted mainly of basidiomycete yeasts, saprotrophic ascomycetes and plant pathogens. A core set of six fungal OTUs representing saprotrophic species was identified. These were present across all fields, although overall the difference in OTU richness was large between the two areas studied. PMID:25369054

Karlsson, Ida; Friberg, Hanna; Steinberg, Christian; Persson, Paula

2014-01-01

382

Fungal endophytes characterization from four species of Diplazium Swartz  

NASA Astrophysics Data System (ADS)

Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

2014-09-01

383

Iron metabolism and fungal infections in patients with haematological malignancies.  

PubMed Central

AIM--To determine whether iron metabolism influences the incidence of systemic fungal infection in patients with haematological malignancies. METHODS--The study population comprised 74 patients who had undergone myeloablative chemotherapy. Systemic fungal infections were classified as confirmed (histological confirmation or characteristic septate hyphae) or possible (antibiotic resistant fever which resolved following administration of intravenous amphotericin B, together with either typical radiographic lesions or massive oropharyngeal candidiasis). Parameters of iron metabolism included serum iron concentrations, total iron binding capacity, serum transferrin, and ferritin concentrations and transferrin saturation values. RESULTS--Patients who developed a fungal infection had substantially increased transferrin saturation values and ferritin concentrations at diagnosis together with low serum transferrin and high serum iron concentrations. This profile was present in patients with a fungal infection regardless of the underlying haematological disorder. CONCLUSION--Increased transferrin saturation values and high ferritin concentrations may be additional risk factors for the development of systemic fungal infection in patients with haematological malignancies. PMID:7730481

Iglesias-Osma, C; Gonzalez-Villaron, L; San Miguel, J F; Caballero, M D; Vazquez, L; de Castro, S

1995-01-01

384

Twenty-second Fungal Genetics Conference - Asilomar, 2003  

SciTech Connect

The purpose of the Twenty Second Fungal Genetics Conference is to bring together scientists and students who are interested in genetic approaches to studying the biology of filamentous fungi. It is intended to stimulate thinking and discussion in an atmosphere that supports interactions between scientists at different levels and in different disciplines. Topics range from the basic to the applied. Filamentous fungi impact human affairs in many ways. In the environment they are the most important agents of decay and nutrient turnover. They are used extensively in the food industry for the production of food enzymes such as pectinase and food additives such as citric acid. They are used in the production of fermented foods such as alcoholic drinks, bread, cheese, and soy sauce. More than a dozen species of mushrooms are used as foods directly. Many of our most important antibiotics, such as penicillin, cyclosporin, and lovastatin, come from fungi. Fungi also have many negative impacts on human health and economics. Fungi are serious pathogens in immuno-compromised patients. Fungi are the single largest group of plant pathogens and thus a serious limit on crop productivity throughout the world. Many fungi are allergenic, and mold contamination of residences and commercial buildings is now recognized as a serious public health threat. As decomposers, fungi cause extensive damage to just about all natural and synthetic materials.

Jonathan D. Walton

2003-06-30

385

Penicillium chrysogenumTakes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion  

Microsoft Academic Search

Penicillium chrysogenum utilizes phenylacetic acid as a side chain precursor in penicillin G biosynthesis. During industrial production of penicillin G, phenylacetic acid is fed in small amounts to the medium to avoid toxic side effects. Phenylacetic acid is taken up from the medium and intracellularly coupled to 6-aminopeni- cillanic acid. To enter the fungal cell, phenylacetic acid has to pass

DIRK J. HILLENGA; HANNEKE J. M. VERSANTVOORT; SIEP VAN DERMOLEN; ARNOLD J. M. DRIESSEN; ANDWIL N. KONINGS

1995-01-01

386

Fungal accumulation of metals from building materials during brown rot wood decay.  

PubMed

This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay. PMID:24859913

Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody

2014-08-01

387

Molecular Characterization of Coprophilous Fungal Communities Reveals Sequences Related to Root-Associated Fungal Endophytes  

Microsoft Academic Search

This paper reports the use of molecular methods to characterize the coprophilous fungal communities (CFC) that inhabit the\\u000a dung of four species of mammalian herbivores at two sites, Sevilleta National Wildlife Refuge (SNWR) in New Mexico and Wind\\u000a Cave National Park (WCNP) in South Dakota. Results reveal that CFC from domesticated cattle (Bos taurus) at SNWR, and bison (Bison bison)

José Herrera; Ravin Poudel; Hana H. Khidir

2011-01-01

388

The Effect of Fungal Secondary Metabolites on Bacterial and Fungal Pathogens  

Microsoft Academic Search

Fungi are an extremely diverse group of organisms, with about 230,000 species distributed widely essentially in every ecosystem.\\u000a Among them, only limited species are considered to be effective biocontrol agents. The fungal antagonists restrict the growth\\u000a of plant pathogens by the three suggested mechanisms: antibiosis, competition and parasitism. Besides, they also induce the\\u000a defense responses in host plants, termed “induced

N. Mathivanan; V. R. Prabavathy; V. R. Vijayanandraj

389

Intact and Fragmentary Plant and Fungal Bioaerosols  

NASA Astrophysics Data System (ADS)

Primary bioaerosols include those that evolved to enable reproduction and propagation (pollen, spores, bacteria, viruses, etc.) and fragmentary particles whose origins are often linked to anthropogenic activities such as agriculture, waste processing, roadway abrasion. Natural fragmentation processes have often been linked to dispersal from water surfaces by wave breaking and bubble bursting. Fragmentation also occurs as part of natural plant processes. Exposure of live pollen to water, or even high humidity triggers osmotic shock and subsequent pollen rupture and release of cytoplasmic debris. Release of paucimicron and submicron aerosols follows this rupture under special circumstances that have been identified by inducing rupture in controlled laboratory experiments. Evidence that these processes occur naturally is provided by observations of pollen allergen proteins in fine (respirable) fractions of the atmospheric aerosol, and of ruptured pollen in atmospheric samples. The release mechanisms and rates vary among plant species. Related mechanisms have been observed for release of fragmentary particles from a number of fungal species.

Flagan, R. C.; Taylor, P. E.; Miguel, A. G.; House, J. M.; Glovsky, M. M.

2004-05-01

390

Fungal symbioses in hornworts: a chequered history  

PubMed Central

Hornworts are considered the sister group to vascular plants, but their fungal associations remain largely unexplored. The ancestral symbiotic condition for all plants is, nonetheless, widely assumed to be arbuscular mycorrhizal with Glomeromycota fungi. Owing to a recent report of other fungi in some non-vascular plants, here we investigate the fungi associated with diverse hornworts worldwide, using electron microscopy and molecular phylogenetics. We found that both Glomeromycota and Mucoromycotina fungi can form symbioses with most hornworts, often simultaneously. This discovery indicates that ancient terrestrial plants relied on a wider and more versatile symbiotic repertoire than previously thought, and it highlights the so far unappreciated ecological and evolutionary role of Mucoromycotina fungi. PMID:23536598

Desiro, Alessandro; Duckett, Jeffrey G.; Pressel, Silvia; Villarreal, Juan Carlos; Bidartondo, Martin I.

2013-01-01

391

[Invasive fungal infection in solid organ transplant].  

PubMed

Invasive fungal infections (IFI) represent a serious threat for patients undergoing solid organ transplantation (SOT). IFI in SOT has a significant incidence and mortality not due to negligence. The management of IFI in SOT involves specific recommendations and has been individualized to the type of transplant and patient. The current review presents an overview of epidemiology, diagnosis, treatment and prevention of IFI in TOS. Depending on risk factors for different IFIs and transplant type, this paper includes the main recommendations based on previous publications and on the opinion of the authors on the prophylaxis and treatment of these patients. These recommendations highlight epidemiology changes and the emergence of new antifungals. The current document has focused mainly on Candidaspp. and Aspergillusspp., with a special mention to the rest of yeasts and moulds that are common in SOT. PMID:23127517

Gavaldà, Joan; Meije, Yolanda; Len, Óscar; Pahissa, Albert

2012-12-01

392

Fungal extracellular ribotoxins as insecticidal agents.  

PubMed

Fungal ribotoxins were discovered almost 50 years ago as extracellular ribonucleases (RNases) with antitumoral properties. However, the biological function of these toxic proteins has remained elusive. The discovery of the ribotoxin HtA, produced by the invertebrates pathogen Hirsutella thompsonii, revived the old proposal that insecticidal activity would be their long searched function. Unfortunately, HtA is rather singular among all ribotoxins known in terms of sequence and structure similarities. Thus, it was intriguing to answer the question of whether HtA is just an exception or, on the contrary, the paradigmatic example of the ribotoxins function. The work presented uses HtA and ?-sarcin, the most representative member of the ribotoxins family, to show their strong toxic action against insect larvae and cells. PMID:23153726

Olombrada, Miriam; Herrero-Galán, Elías; Tello, Daniel; Oñaderra, Mercedes; Gavilanes, José G; Martínez-del-Pozo, Álvaro; García-Ortega, Lucía

2013-01-01

393

Selection to sequence: opportunities in fungal genomics  

SciTech Connect

Selection is a biological force, causing genotypic and phenotypic change over time. Whether environmental or human induced, selective pressures shape the genotypes and the phenotypes of organisms both in nature and in the laboratory. In nature, selective pressure is highly dynamic and the sum of the environment and other organisms. In the laboratory, selection is used in genetic studies and industrial strain development programs to isolate mutants affecting biological processes of interest to researchers. Selective pressures are important considerations for fungal biology. In the laboratory a number of fungi are used as experimental systems to study a wide range of biological processes and in nature fungi are important pathogens of plants and animals and play key roles in carbon and nitrogen cycling. The continued development of high throughput sequencing technologies makes it possible to characterize at the genomic level, the effect of selective pressures both in the lab and in nature for filamentous fungi as well as other organisms.

Baker, Scott E.

2009-12-01

394

Fungal biofiltration of alpha-pinene: effects of temperature, relative humidity, and transient loads.  

PubMed

Over the past decade much effort has been made to develop new carrier materials, more performant biocatalysts, and new types of bioreactors for waste gas treatment. In biofilters fungal biocatalysts are more resistant to acid and dry conditions and take up hydrophobic compounds from the gas phase more easily than wet bacterial biofilms. In the present study, a biofilter packed with a mixture of perlite and Pall rings and fed alpha-pinene-polluted air was inoculated with a new fungal isolate identified as Ophiostoma species. alpha-Pinene is a volatile pollutant typically found in waste gases from wood-related industries. The temperature of waste gas streams from pulp and paper industries containing alpha-pinene is usually higher than ambient temperature. Studies were undertaken here on the effect on performance of temperature changes in the range of 15-40 degrees C. The effect of temperature on biodegradation kinetics in continuous reactors was elucidated through equations derived from the Arrhenius formula. Moreover, the effects of the relative humidity (RH) of the inlet gas phase, transient loads (shock or starvation), and the nature of the nitrogen source on alpha-pinene removal were also studied in this research. The results suggest that the fungal biofilter appears to be an effective treatment process for the removal of alpha-pinene. The optimal conditions are: temperature around 30 degrees C, RH of the inlet waste gas stream around 85%, and nitrate as nitrogen source. The fungal biofilter also showed a good potential to withstand shock loads and recovered rapidly its full performance after a 3-7 days starvation period. PMID:17036365

Jin, Yaomin; Guo, Ling; Veiga, María C; Kennes, Christian

2007-02-15

395

Fungal spore transport through a building structure.  

PubMed

The study carried out laboratory measurements with a full-scale timber frame structure to determine penetration of inert particles with size distribution from 0.6 to 4 microm and spores of Penicillium and Cladosporium through the structure. Pressure difference over and air leakage through the structure were varied. Measurements at moderate pressure differences resulted in the penetration factors within the range of 0.05-0.2 for inert particles, and indicated also the penetration of fungal spores through the structure. The measurements showed that the penetration was highly dependent on pressure difference over the structure but not on holes in surface boards of the structure. The results show that surface contacts between the frames and mineral wool may have a significant effect on penetration. The penetration was approximately constant within particle size rage of 0.6-2.5 microm, but particles with diameter of 4.0 microm did not penetrate through the structure at all even at a higher-pressure difference of 20 Pa, except in the case of direct flow-path through the structure. Results have important consequences for practical design showing that penetration of fungal spores through the building envelope is difficult to prevent by sealing. The only effective way to prevent penetration seems to be balancing or pressurizing the building. In cold climates, moisture condensation risk should be taken into account if pressure is higher indoors than outdoors. Determined penetration factors were highly dependent on the pressure difference. Mechanical exhaust ventilation needs a special consideration as de-pressurizing the building may cause health risk if there is hazardous contamination in the building envelope exists. PMID:15009415

Airaksinen, M; Kurnitski, J; Pasanen, P; Seppänen, O

2004-04-01

396

Primordial Enemies: Fungal Pathogens in Thrips Societies  

PubMed Central

Microbial pathogens are ancient selective agents that have driven many aspects of multicellular evolution, including genetic, behavioural, chemical and immune defence systems. It appears that fungi specialised to attack insects were already present in the environments in which social insects first evolved and we hypothesise that if the early stages of social evolution required antifungal defences, then covariance between levels of sociality and antifungal defences might be evident in extant lineages, the defences becoming stronger with group size and increasing social organisation. Thus, we compared the activity of cuticular antifungal compounds in thrips species (Insecta: Thysanoptera) representing a gradient of increasing group size and sociality: solitary, communal, social and eusocial, against the entomopathogen Cordyceps bassiana. Solitary and communal species showed little or no activity. In contrast, the social and eusocial species killed this fungus, suggesting that the evolution of sociality has been accompanied by sharp increases in the effectiveness of antifungal compounds. The antiquity of fungal entomopathogens, demonstrated by fossil finds, coupled with the unequivocal response of thrips colonies to them shown here, suggests two new insights into the evolution of thrips sociality: First, traits that enabled nascent colonies to defend themselves against microbial pathogens should be added to those considered essential for social evolution. Second, limits to the strength of antimicrobials, through resource constraints or self-antibiosis, may have been overcome by increase in the numbers of individuals secreting them, thus driving increases in colony size. If this is the case for social thrips, then we may ask: did antimicrobial traits and microbes such as fungal entomopathogens play an integral part in the evolution of insect sociality in general? PMID:23185420

Turnbull, Christine; Wilson, Peter D.; Hoggard, Stephen; Gillings, Michael; Palmer, Chris; Smith, Shannon; Beattie, Doug; Hussey, Sam; Stow, Adam; Beattie, Andrew

2012-01-01

397

Overview of opportunistic fungal infections in India.  

PubMed

In recent years fungi have been flourishing in immunocompromised patients of tertiary care centers. The data on the burden of opportunistic mycoses in India is not clear though the climate in this country is well suited for a wide variety of fungal infections. There are very few good diagnostic mycology laboratories and clinicians are still not aware of the emerging trends. Within the limited data available, an increased incidence of invasive candidiasis, aspergillosis, and zygomycosis are reported. The emergence of fungal rhinosinusitis, penicilliosis marneffei and zygomycosis due to Apophysomyces elegans is unique in the Indian scenario. Invasive candidiasis is the most common opportunistic mycosis. The global change in spectrum of Candida species is also observed in India; however, the higher prevalence of candidemia due to Candida tropicalis instead of C. glabrata or C. parapsilosis is interesting. Invasive aspergillosis is the second contender. Though due to difficulty in antemortem diagnosis the exact prevalence of this disease is not known, high prevalence is expected in Indian hospitals where construction activities continue in the hospital vicinity without a proper impervious barrier. The other opportunistic mycosis, invasive zygomycosis is an important concern as the world's highest number of cases of this disease is reported from India. The infection is commonly observed in patients with uncontrolled diabetes mellitus. Though antiretroviral therapy in AIDS patients has been introduced in most Indian hospitals, no decline in the incidence of cryptococcosis and penicilliosis has yet been observed. Thus there is need of good diagnostic mycology laboratories, rapid diagnosis, and refinement of antifungal strategies in India. PMID:18689964

Chakrabarti, Arunaloke; Chatterjee, Shiv Sekhar; Shivaprakash, M R

2008-01-01

398

Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes.  

PubMed

This paper reports the use of molecular methods to characterize the coprophilous fungal communities (CFC) that inhabit the dung of four species of mammalian herbivores at two sites, Sevilleta National Wildlife Refuge (SNWR) in New Mexico and Wind Cave National Park (WCNP) in South Dakota. Results reveal that CFC from domesticated cattle (Bos taurus) at SNWR, and bison (Bison bison) and black-tailed prairie dogs (Cynomys ludovicianus) at WCNP were diverse but dominated primarily by members within eight taxonomic orders, including the rarely cultured and anaerobic order Neocallimastigales. In addition, 7.7% (138 of 1,788) of the sequences obtained from all dung samples were at least 97% similar to root-associated fungal (RAF) sequences previously described from blue grama (Bouteloua gracilis), a common forage grass found throughout North America and growing at both study sites. In contrast, 95.8% (295 of 308) of the sequences and four of the total seven operational taxonomic units obtained from pronghorn antelope (Antilocapra americana) dung belonged to the Pleosporalean order. We hypothesize that some herbivore vectors disperse non-systemic (non-clavicipitaceous) fungal endophytes. These dispersal events, it is argued, are most likely to occur via herbivores that occasionally forage and masticate root tissue, especially in arid regions where aboveground vegetation is sparse. The results of this study suggest that some (possibly many) members of the RAF community can expand their ecological role to include colonizing dung. PMID:20842497

Herrera, José; Poudel, Ravin; Khidir, Hana H

2011-02-01

399

Fungal biodegradation of dibutyl phthalate and toxicity of its breakdown products on the basis of fungal and bacterial growth.  

PubMed

Phthalates are esters of phthalic acid that give flexibility to polyvinyl chloride. Diverse studies have reported that these compounds might be carcinogenic, mutagenic and/or teratogenic. Radial growth rate, biomass, hyphal thickness of Neurospora sitophyla, Trichoderma harzianum and Aspergillus niger, grown in two different concentrations of dibutyl phthalate (DBP) (500 and 1,000 mg/l) in agar and in submerged fermentation were studied. The inhibitory concentration (IC50) and the constant of biodegradation of dibutyl phthalate in Escherichia coli cultures were used to evaluate toxicity. The radial growth rate and thickness of the hypha were positively correlated with the concentration of phthalate. The pH of the cultures decreased as the fermentation proceeded. It is shown that these fungi are able to degrade DBP to non-toxic compounds and that these can be used as sole carbon and energy sources by this bacterium. It is demonstrated that the biodegradation of the DBP is directly correlated with the IC50. This is the first study that reports a method to determine the biodegradation of DBP on the basis of the IC50 and fungal growth, and the effect of this phthalate on the growth and thickness of hyphae of filamentous fungi in agar and in submerged fermentation. PMID:25063688

Ahuactzin-Pérez, M; Torres, J L; Rodríguez-Pastrana, B R; Soriano-Santos, J; Díaz-Godínez, G; Díaz, R; Tlecuitl-Beristain, S; Sánchez, C

2014-11-01

400

Cultured fungal associates from the deep-sea coral Lophelia pertusa  

USGS Publications Warehouse

The cold-water coral Lophelia pertusa provides important habitat to many deep-sea fishes and invertebrates. Studies of the microbial taxa associated with L. pertusa thus far have focused on bacteria, neglecting the microeukaryotic members. This is the first study to culture fungi from living L. pertusa and to investigate carbon source utilization by the fungal associates. Twenty-seven fungal isolates from seven families, including both filamentous and yeast morphotypes, were cultured from healthy L. pertusa colonies collected from the northern Gulf of Mexico, the West Florida Slope, and the western Atlantic Ocean off the Florida coast. Isolates from different sites were phylogenetically closely related, indicating these genera are widely distributed in association with L. pertusa. Biolog™ Filamentous Fungi microtiter plates were employed to determine the functional capacity of a subset of isolates to grow on varied carbon sources. While four of the isolates exhibited no growth on any provided carbon source, the rest (n=10) grew on 8.3–66.7% of carbon sources available. Carbohydrates, carboxylic acids, and amino acids were the most commonly metabolized carbon sources, with overlap between the carbon sources used and amino acids found in L. pertusa mucus. This study represents the first attempt to characterize a microeukaryotic group associated with L. pertusa. However, the functional role of fungi within the coral holobiont remains unclear.

Galkiewicz, Julia P.; Stellick, Sarah H.; Gray, Michael A.; Kellogg, Christina A.

2012-01-01

401

Cultured fungal associates from the deep-sea coral Lophelia pertusa  

NASA Astrophysics Data System (ADS)

The cold-water coral Lophelia pertusa provides important habitat to many deep-sea fishes and invertebrates. Studies of the microbial taxa associated with L. pertusa thus far have focused on bacteria, neglecting the microeukaryotic members. This is the first study to culture fungi from living L. pertusa and to investigate carbon source utilization by the fungal associates. Twenty-seven fungal isolates from seven families, including both filamentous and yeast morphotypes, were cultured from healthy L. pertusa colonies collected from the northern Gulf of Mexico, the West Florida Slope, and the western Atlantic Ocean off the Florida coast. Isolates from different sites were phylogenetically closely related, indicating these genera are widely distributed in association with L. pertusa. Biolog™ Filamentous Fungi microtiter plates were employed to determine the functional capacity of a subset of isolates to grow on varied carbon sources. While four of the isolates exhibited no growth on any provided carbon source, the rest (n=10) grew on 8.3-66.7% of carbon sources available. Carbohydrates, carboxylic acids, and amino acids were the most commonly metabolized carbon sources, with overlap between the carbon sources used and amino acids found in L. pertusa mucus. This study represents the first attempt to characterize a microeukaryotic group associated with L. pertusa. However, the functional role of fungi within the coral holobiont remains unclear.

Galkiewicz, Julia P.; Stellick, Sarah H.; Gray, Michael A.; Kellogg, Christina A.

2012-09-01

402

Structure and total synthesis of fungal calpinactam, a new antimycobacterial agent.  

PubMed

A new fungal metabolite designated calpinactam (1) was isolated from the culture broth of Mortierella alpina FKI-4905, and its structure was elucidated by spectroscopic analyses including NMR experiments. Calpinactam was found to be a hexapeptide with a caprolactam ring at its C-terminal. Its absolute stereochemistry was determined by amino acid analysis and total synthesis. Calpinactam selectively inhibited the growth of mycobacteria among various microorganisms. The MIC values of calpinactam against Mycobacterium smegmatis and M. tuberculosis were 0.78 and 12.5 microg/mL, respectively. PMID:20030344

Koyama, Nobuhiro; Kojima, Shigenobu; Fukuda, Takeo; Nagamitsu, Tohru; Yasuhara, Tadashi; Omura, Satoshi; Tomoda, Hiroshi

2010-02-01