Science.gov

Sample records for fungal spore coatings

  1. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    PubMed Central

    2010-01-01

    Background Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. Methods Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. Results K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. Conclusions K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore

  2. Fungal spores: hazardous to health?

    PubMed Central

    Sorenson, W G

    1999-01-01

    Fungi have long been known to affect human well being in various ways, including disease of essential crop plants, decay of stored foods with possible concomitant production of mycotoxins, superficial and systemic infection of human tissues, and disease associated with immune stimulation such as hypersensitivity pneumonitis and toxic pneumonitis. The spores of a large number of important fungi are less than 5 microm aerodynamic diameter, and therefore are able to enter the lungs. They also may contain significant amounts of mycotoxins. Diseases associated with inhalation of fungal spores include toxic pneumonitis, hypersensitivity pneumonitis, tremors, chronic fatigue syndrome, kidney failure, and cancer. PMID:10423389

  3. Fungal Spores Viability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-04-01

    long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.

  4. Source strength of fungal spore aerosolization from moldy building material

    NASA Astrophysics Data System (ADS)

    Górny, Rafał L.; Reponen, Tiina; Grinshpun, Sergey A.; Willeke, Klaus

    The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm -2 from surfaces with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration at a frequency of 1 Hz at a power level of 14 W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71-88% of the spores released during a 30-min interval became airborne during the first 10 min.

  5. Model simulations of fungal spore distribution over the Indian region

    NASA Astrophysics Data System (ADS)

    Ansari, Tabish U.; Valsan, Aswathy E.; Ojha, N.; Ravikrishna, R.; Narasimhan, Balaji; Gunthe, Sachin S.

    2015-12-01

    Fungal spores play important role in the health of humans, animals, and plants by constituting a class of the primary biological aerosol particles (PBAPs). Additionally, these could mediate the hydrological cycle by acting as nuclei for ice and cloud formation (IN and CCN respectively). Various processes in the biosphere and the variations in the meteorological conditions control the releasing mechanism of spores through active wet and dry discharge. In the present paper, we simulate the concentration of fungal spores over the Indian region during three distinct meteorological seasons by combining a numerical model (WRF-Chem) with the fungal spore emissions based on land-use type. Maiden high-resolution regional simulations revealed large spatial gradient and strong seasonal dependence in the concentration of fungal spores over the Indian region. The fungal spore concentrations are found to be the highest during winter (0-70 μg m-3 in December), moderately higher during summer (0-35 μg m-3 in May) and lowest during the monsoon (0-25 μg m-3 in July). The elevated concentrations during winter are attributed to the shallower boundary layer trapping the emitted fungal spores in smaller volume. In contrast, the deeper boundary layer mixing in May and stronger monsoonal-convection in July distribute the fungal spores throughout the lower troposphere (∼5 km). We suggest that the higher fungal spore concentrations during winter could have potential health impacts. While, stronger vertical mixing could enable fungal spores to influence the cloud formation during summer and monsoon. Our study provides the first information about the distribution and seasonal variation of fungal spores over the densely populated and observationally sparse Indian region.

  6. Thirty-four identifiable airborne fungal spores in Havana, Cuba.

    PubMed

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F Javier; Fernandez-Gonzalez, Maria; Rojas-Flores, Teresa I

    2015-01-01

    The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 - October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores) and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. Cladosporium cladosporioides type was the most abundant with a total of 148,717 spores, followed by Leptosphaeria, Coprinus and the Aspergillus-Penicillium type spores, all of them with total values ranging from 20,591 - 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores) and the lowest in December (7,314 spores). Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores) was higher compared with that observed during the rainy season (17,460 spores). PMID:26094511

  7. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  8. Spore Coat Architecture of Clostridium novyi-NT spores

    SciTech Connect

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  9. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  10. The Fungal Spores Survival Under the Low-Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Soušková, Hana; Scholtz, V.; Julák, J.; Savická, D.

    This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

  11. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  12. Sources of Variability in the Measurement of Fungal Spore Yields

    PubMed Central

    Smith, C. S.; Slade, S. J.; Nordheim, E. V.; Cascino, J. J.; Harris, R. F.; Andrews, J. H.

    1988-01-01

    Variability in the production of fungal spores and in the measurement of spore yields was investigated in four species of fungi: Colletotrichum gloeosporioides, Colletotrichum coccodes, Colletotrichum phomoides, and Acremonium strictum. When the fungi were grown on solid medium in microplates and spore yields were measured by counting the subsamples with a hemacytometer, the variability among hemacytometer squares was always the largest source of variation, accounting for 51 to 91% of the total variation. Variability among replicate cultures and results of repeat experiments were generally also significant. The effect of square-to-square variability on the precision of spore yield measurement was minimized by counting a moderate number (ca. 30) of squares per culture. Culture-to-culture variability limited the practical precision of spore production measurements to a 95% confidence interval of approximately the mean ± 25%. We provide guidelines for determining the number of replicate cultures required to attain this or other degrees of precision. Particle counter-derived spore counts and counts based on spore weights were much less variable than were hemacytometer counts, but they did not improve spore production estimates very much because of culture-to-culture variability. Results obtained by both of these methods differed from those obtained with a hemacytometer; particle counter measurements required a correction for spore pairs, while the relationship between spore weights and spore counts changed as the cultures aged. PMID:16347653

  13. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    NASA Astrophysics Data System (ADS)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  14. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K.

    2010-10-01

    Recent atmospheric measurements show that biological particles are important ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm), 1% of the droplets froze by -28.5 °C and 10% froze by -30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. As such, freezing temperatures for droplets containing 1-5 spores are expected to be approximately -35.1±2.3 °C (1σ S.D.). Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, do not appear to explain recent atmospheric measurements showing that biological particles are important ice nuclei. The poor ice nucleation ability of Cladosporium sp. spores may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi). Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  15. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Pringle, A.; Martin, S. T.; Bertram, A. K.

    2011-02-01

    Recent atmospheric measurements show that biological particles are a potentially important class of ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm ), 1% of the droplets froze by -28.5 °C and 10% froze by -30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. Mean freezing temperatures for droplets containing 1-5 spores are expected to be approximately -35.1 ± 2.3 °C (1σ S. D.). Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, thus do not appear to explain recent atmospheric measurements showing that biological particles participate as atmospheric ice nuclei. The poor ice nucleation ability of Cladosporium sp. may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi). Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  16. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  17. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  18. Fungal microcolonies on indoor surfaces — an explanation for the base-level fungal spore counts in indoor air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Heinonen-Tanski, H.; Kalliokoski, P.; Jantunen, M. J.

    In the subarctic winter, fungal spores are found in indoor air even when outdoor spore levels are very low. The results of this study support an explanation that some indoor airborne fungal spores are derived from unnoticeable fungal microcolonies, which may develop on temporarily wet surfaces. Laboratory experiments on Penicillium verrucosum indicated that the fungus germinated on new wallpaper very quickly (about half an hour) under moist conditions. Hyphal growth and sporulation of the fungus on moist wallpaper occured within one day of incubation. In gravity-settling tape samples from occasionally wet surfaces in a suburban home, large spore aggregates, hyphal fragments with some spores and spores in the germination stage were found, indicating fungal growth. These experiments showed that fungal microcolonies can develop within a week on occasionally wet indoor surfaces.

  19. Fungal spore fragmentation as a function of airflow rates and fungal generation methods

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species ( Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences ( p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependent on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤0.4 m s -1 for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and A. niger, but not for C. cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples ( p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, whilethe results obtained from the UVAPS and SMAS were not identical for the same samples.

  20. Characterizing and handling different kinds of AM fungal spores in the rhizosphere.

    PubMed

    Sun, Xueguang; Hu, Wentao; Tang, Ming; Chen, Hui

    2016-06-01

    Spores are important propagules as well as the most reliable species-distinguishing traits of arbuscular mycorrhizal (AM) fungi. During surveys of AM fungal communities, spore enumeration and spore identification are frequently conducted, but generally little attention is given to the age and viability of the spores. In this study, AM fungal spores in the rhizosphere were characterized as live or dead by vital staining and by performing a germination assay. A considerable proportion of the spores in the rhizosphere were dead despite their intact appearance. Furthermore, morphological and molecular analyses of spores to determine species identity revealed that both viable spores and dead spores with contents were identified. The accurate identification of spores at different developmental stages on the basis of morphology requires considerable experience. Our findings suggest that surveys of AM fungal communities based on spore enumeration and morphological and molecular identification are likely to be inaccurate, primarily because of the large proportion of dead spores in the rhizosphere. A viability check is recommended prior to spore molecular identification, and the use of trap cultures would give more reliable morphological identification results. We show that the abundance and activity of AM fungi in the rhizosphere can be determined by calculating the density of viable spores and the density of spores that could germinate. The adoption of these methods should provide a more reliable basis for further AM fungal community analysis. PMID:27116963

  1. Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins

    PubMed Central

    Ferencko, Linda; Rotman, Boris

    2010-01-01

    Background Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as a sieve to exclude exogenous large toxic molecules, such as lytic enzymes. Over recent years, however, new information about the coat's architecture and function have emerged from experiments using innovative tools such as automated scanning microscopy, and high resolution atomic force microscopy. Principal Findings Using thin-section electron microscopy, we found that the coat of Bacillus spores has topologically specific proteins forming a layer that is identifiable because it spontaneously becomes decorated with hydrophobic fluorogenic probes from the milieu. Moreover, spores with decorated coat proteins (termed F-spores) have the unexpected attribute of responding to external germination signals by generating intense fluorescence. Fluorescence data from diverse experimental designs, including F-spores constructed from five different Bacilli species, indicated that the fluorogenic ability of F-spores is under control of a putative germination-dependent mechanism. Conclusions This work uncovers a novel attribute of spore-coat proteins that we exploited to decorate a specific layer imparting germination-dependent fluorogenicity to F-spores. We expect that F-spores will provide a model system to gain new insights into structure/function dynamics of spore-coat proteins. PMID:20174569

  2. The Ice Nucleation Ability of Selected Atmospherically Abundant Fungal Spores

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Bertram, A. K.

    2010-12-01

    Ice clouds are widely recognized for their roles in the earth’s radiation budget and climate systems. However, their formation mechanisms are poorly understood thus constituting an uncertainty in the evaluation of the global radiation budget. An important mechanism of ice cloud formation is heterogeneous nucleation on aerosol particles. The surface properties of these particles, called ice nuclei (IN), directly affect the temperature at which ice nucleation occurs. There is a growing emphasis on the study of bioaerosols (e.g., bacteria, fungi, pollen) as IN since they are ubiquitous in the atmosphere. The focus of the current study is to determine the ice nucleation properties of spores obtained from a variety of fungi. Aerosolized spores were impacted onto a hydrophobic glass substrate and immersed in ultrapure water. A technique involving an optical light microscope coupled to a flow cell was used to precisely control temperature and humidity within the cell. A digital camera captured high-resolution video of the particles undergoing ice nucleation, allowing for the analyses of freezing events and particle sizes. The first experimental results using spores obtained from the fungal genera Cladosporium and Penicillium reveal an average temperature increase of ~1-5 K in the ice nucleation temperature compared to homogeneous nucleation (i.e., freezing of pure liquid water). Furthermore, there appears to be a relationship between the amount of spores present per droplet and the freezing temperature of water. These results are presented and discussed, and the potential contribution of these data to further the understanding of heterogeneous nucleation in the atmosphere is provided. Box plot summarizing freezing data for homogeneous nucleation experiments (leftmost box) and binned data from heterogeneous nucleation experiments involving spores of Cladosporium. Freezing data are distributed into 200 µm2 bins that represent the total area of all observable inclusions

  3. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    PubMed Central

    Fiester, S. E.; Helfinstine, S. L.; Redfearn, J. C.; Uribe, R. M.; Woolverton, C. J.

    2012-01-01

    Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB) irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy). Irradiated spores were found (1) to contain structural damage as observed by electron microscopy, (2) to have spilled cytoplasmic contents as measured by spectroscopy, (3) to have reduced membrane integrity as determined by fluorescence cytometry, and (4) to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation. PMID:22319535

  4. Architecture and Assembly of the Bacillus subtilis Spore Coat

    PubMed Central

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  5. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  6. Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy).

    PubMed

    Telloli, Chiara; Chicca, Milvia; Leis, Marilena; Vaccaro, Carmela

    2016-08-01

    Airborne particulate matter (PM) containing fungal spores and pollen grains was sampled within a monitoring campaign of wheat threshing, plowing and sowing agricultural operations. Fungal spores and pollen grains were detected and identified on morphological basis. No studies were previously available about fungal spore and pollen content in agricultural PM in the Po Valley. Sampling was conducted in a Po Valley farmland in Mezzano (Ferrara, Italy). The organic particles collected were examined by scanning electron microscopy with energy dispersive X-ray spectrometer. Fungal spores and pollen grains were identified when possible at the level of species. The most frequent components of the organic particles sampled were spores of Aspergillus sp., which could represent a risk of developing allergies and aspergillosis for crop farmers. PMID:27521955

  7. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    SciTech Connect

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  8. Functional Characterization of Clostridium difficile Spore Coat Proteins

    PubMed Central

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R.; Fairweather, Neil; Hong, Huynh A.

    2013-01-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. PMID:23335421

  9. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  10. A versatile nano display platform from bacterial spore coat proteins

    PubMed Central

    Wu, I-Lin; Narayan, Kedar; Castaing, Jean-Philippe; Tian, Fang; Subramaniam, Sriram; Ramamurthi, Kumaran S.

    2015-01-01

    Dormant bacterial spores are encased in a thick protein shell, the ‘coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation. PMID:25854653

  11. Fungal Spore Concentrations and Ergosterol Content in Aerosol Samples in the Caribbean During African Dust Events

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Bolaños-Rosero, B.; Mayol-Bracero, O. L.

    2015-12-01

    Fungal spores are a major component of primary biogenic aerosol particles that are emitted to the atmosphere, are ubiquitous, and play an important role in the chemistry and physics of the atmosphere, climate, and public health. Every year, during summer months, African dust (AD) particles are transported to the Caribbean region causing an increase in the concentrations of particulate matter in the atmosphere. AD is one of the most important natural sources of mineral particulate matter at the global scale, and many investigations suggest that it has the ability to transport dust-associated biological particles through long distances. The relationship between AD incursions and the concentration of fungal spores in the Caribbean region is poorly understood. In order to investigate the effects of AD incursions on fungal spore's emissions, fungal spore concentrations were monitored using a Burkard spore trap at the tropical montane cloud forest of Pico del Este at El Yunque National Forest, Puerto Rico. The presence of AD was supported with satellite images of aerosol optical thickness, and with the results from the air masses backward trajectories calculated with the NOAA HYSPLIT model. Basidiospores and Ascospores comprised the major components of the total spore's concentrations, up to a maximum of 98%, during both AD incursions and background days. A considerably decrease in the concentration of fungal spores during AD events was observed. Ergosterol, biomarker for measuring fungal biomass, concentrations were determined in aerosols that were sampled at a marine site, Cabezas de San Juan Nature Reserve, in Fajardo Puerto Rico, and at an urban site, Facundo Bueso building at the University of Puerto Rico. Additional efforts to understand the relationship between the arrival of AD to the Caribbean and a decrease in spore's concentrations are needed in order to investigate changes in local spore's vs the contribution of long-range spores transported within the AD.

  12. Modelling the impact of fungal spore ice nuclei on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Sesartic, Ana; Lohmann, Ulrike; Storelvmo, Trude

    2013-04-01

    Fungal spores are part of the atmospheric bioaerosols such as pollen or bacteria. Interest in bioaerosols is mainly related to their health effects, impacts on agriculture, ice nucleation and cloud droplet activation, as well as atmospheric chemistry (Morris et al. 2011). Spores of some fungal species have been found to be very efficient ice nuclei, e.g. in laboratory studies by Pouleur et al. (1992). Recent field studies by Poehlker et al. (2012) found that fungal spores are important contributors to the development of mist and clouds in rainforest ecosystems. In our study we investigated the impact of fungal spores acting as ice nuclei on clouds and precipitation on a global scale. Fungal spores as a new aerosol species were introduced into the global climate model ECHAM5-HAM (Sesartic et al. 2012) using observational fungal spore data compiled by Sesartic & Dallafior (2011). The addition of fungal spores lead to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path as well as stratiform precipitation in the model were observed in the boreal regions where tundra and forests act as sources of fungal spores. This goes hand in hand with a decreased ice crystal number concentration and increased effective radius of ice crystals. An increase in stratiform precipitation and snowfall can be observed in those regions as well. Although fungal spores contribute to heterogeneous freezing, their impact in the model was reduced by their low numbers compared to other heterogeneous ice nuclei. These results for fungal spores are comparable to the ones achieved with bacteria (Sesartic et al. 2012). REFERENCES Morris, C. E. et al. 2011: Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate, Biogeosciences, 8, 17-25. Poehlker, C. et al. 2012: Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol

  13. In silico modeling of spore inhalation reveals fungal persistence following low dose exposure

    PubMed Central

    Tanaka, Reiko J.; Boon, Neville J.; Vrcelj, Katarina; Nguyen, Anita; Vinci, Carmelina; Armstrong-James, Darius; Bignell, Elaine

    2015-01-01

    The human lung is constantly exposed to spores of the environmental mould Aspergillus fumigatus, a major opportunistic pathogen. The spectrum of resultant disease is the outcome of complex host-pathogen interactions, an integrated, quantitative understanding of which lies beyond the ethical and technical reach permitted by animal studies. Here we construct a mathematical model of spore inhalation and clearance by concerted actions of macrophages and neutrophils, and use it to derive a mechanistic understanding of pathogen clearance by the healthy, immunocompetent host. In particular, we investigated the impact of inoculum size upon outcomes of single-dose fungal exposure by simulated titrations of inoculation dose, from 106 to 102 spores. Simulated low-dose (102) spore exposure, an everyday occurrence for humans, revealed a counter-intuitive prediction of fungal persistence (>3 days). The model predictions were reflected in the short-term dynamics of experimental murine exposure to fungal spores, thereby highlighting the potential of mathematical modelling for studying relevant behaviours in experimental models of fungal disease. Our model suggests that infectious outcomes can be highly dependent upon short-term dynamics of fungal exposure, which may govern occurrence of cyclic or persistent subclinical fungal colonisation of the lung following low dose spore inhalation in non-neutropenic hosts. PMID:26364644

  14. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  15. Fungal spores are transported long distances in smoke from biomass fires

    NASA Astrophysics Data System (ADS)

    Mims, Sarah A.; Mims, Forrest M.

    Viable fungal spores are present in smoke from distant biomass fires. This finding has potentially important implications for prescribed burning, agricultural management and public health. While attempting to find fungal spores in dust blown from China to Texas, one of us (S.A.M.) discovered that smoke from Yucatan contains viable bacteria and fungal spores, including the genera Alternaria, Cladosporium, Fusariella and Curvularia. There was a high correlation ( r2=0.78) of spores and coarse carbon particles collected on microscope slides during 13 days of the 2002 smoke season. To eliminate possible contamination by local spores, an air sampler was flown from a kite at a Texas Gulf Coast beach during and after the 2003 smoke season on days when the NOAA back trajectory showed air arriving from Yucatan. Fifty-two spores and 19 coarse black carbon particles (>2.5 μm) were collected during a 30-min kite flight on the smoke day and 12 spores and four carbons on the day without smoke. We have found spores in smoke from an Arizona forest fire and in Asian smoke at Mauna Loa Observatory, Hawaii. We have tested these findings by burning dried grass, leaves, twigs and flood detritus. The smoke from all test fires contained many spores.

  16. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): diversity and origin.

    PubMed

    Docampo, Silvia; Trigo, M Mar; Recio, Marta; Melgar, Marta; García-Sánchez, José; Cabezudo, Baltasar

    2011-01-15

    Fungal spores are of great interest in aerobiology and allergy due to their high incidence in both outdoor and indoor environments and their widely recognized ability to cause respiratory diseases and other pathologies. In this work, we study the spore content of the atmosphere of the Cave of Nerja, a karstic cavity and an important tourist attraction situated on the eastern coast of Malaga (southern Spain), which receives more than half a million visitors every year. This study was carried out over an uninterrupted period of 4 years (2002-2005) with the aid of two Hirst-type volumetric pollen traps (Lanzoni VPPS 2000) situated in different halls of the cave. In the atmosphere of the Cave of Nerja, 72 different spore types were detected during the studied period and daily mean concentrations of up to 282,195 spores/m(3) were reached. Thirty-five of the spore types detected are included within Ascomycota and Basidiomycota (19 and 16 types, respectively). Of the remaining spore types, 32 were categorized within the group of so-called imperfect fungi, while Oomycota and Myxomycota were represented by 2 and 3 spore types, respectively. Aspergillus/Penicillium was the most abundant spore type with a yearly mean percentage that represented 50% of the total, followed by Cladosporium. Finally, the origin of the fungal spores found inside the cave is discussed on the basis of the indoor/outdoor concentrations and the seasonal behaviour observed. PMID:21138779

  17. Evaluation of fungal spore characteristics in Beijing, China, based on molecular tracer measurements

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui

    2013-03-01

    PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) and PM10 (particulate matter with aerodynamic diameters less than 10 μm) samples were collected by high-volume air samplers simultaneously at a rural site and an urban site in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, recently proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the urban site were 7.4 ± 9.4 and 21.0 ± 20.4 ng m-3, and the respective mannitol concentrations were 10.3 ± 9.5 and 31.9 ± 26.9 ng m-3. During summer and autumn, higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry season (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces (e.g., soil resuspension, transported dust, etc) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Moreover, statistical analysis according to typical seasonal patterns, including a dry season (December 2010 to March 2011) and a wet season (July to September 2011), revealed different variations of fungal spores in different seasons. Although fungal spore levels at rural sites were reported to be consistently higher than those at urban sites in other studies, our findings showed the opposite pattern, indicating a high abundance of fungal spores in the urban area of this Chinese megacity.

  18. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores

    NASA Astrophysics Data System (ADS)

    Reponen, Tiina; Willeke, Klaus; Ulevicius, Vidmantas; Reponen, Auvo; Grinshpun, Sergey A.

    Exposure to airborne fungal spores may cause respiratory symptoms. The hygroscopicity of airborne spores may significantly affect their aerodynamic diameter, and thus change their deposition pattern in the human respiratory tract. We have investigated the change in aerodynamic diameter of five different fungal species as a function of relative humidity. Liquid and dry dispersion methods were explored for the aerosolization of the fungal spores. A new system that produces non-aggregated spore aerosol directly from a moldy surface was designed and found suitable for this study. The spores were aerosolized from a mold growth on agar by ducting dry air over the surface, and spore chains in the flow were broken up by passing the entire flow through a critical orifice. Size-spectrometric measurements with an Aerodynamic Particle Sizer showed that the aerodynamic diameter of the tested fungal spores does not change significantly when the relative humidity increases from 30% to 90%. A more distinct spore size increase was found at a relative humidity of ˜ 100%. The highest change of the aerodynamic diameter was found with Cladosporium cladosporioides: it increased from 1.8 μm to 2.3 μm when the relative humidity increased from 30% to ˜ 100%. The size increase corresponds to an approximate doubling of the particle volume. In order to estimate the effect of hygroscopic growth on the respiratory deposition of spores, the mean depositions in the human respiratory tract were calculated for fungal spores with various size changes due to hygroscopic growth. A recently developed model of the International Commission of Radiological Protection was used for the respiratory deposition calculations. We found that the 27% increase in Cladosporium size results in a 20-30% increase in the respiratory deposition of these spores. We conclude that most fungal spores are only slightly hygroscopic and the hygroscopic increase does not significantly affect their respiratory deposition. Our

  19. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China

    NASA Astrophysics Data System (ADS)

    Wu, Pei-Chih; Tsai, Jui-Chen; Li, Fang-Chun; Lung, Shih-Chun; Su, Huey-Jen

    2004-09-01

    Fungi are ubiquitous in nature and their spores are often dispersed into the atmosphere through turbulent airstreams. As yellow sandstorm blown from deserts in China had affected the ambient air quality with increasing levels of ambient particulates, often including significant amounts of biologically active particles has therefore become imperative for concerns of their health implications. Our study was aimed to examine the effects of yellow sandstorm events on the fungal composition and concentrations in ambient air. Atmospheric fungal spores were continuously collected using Burkard Volumetric Spore Trap. Samples collected between December 2000 and April 2001 were selected for priority analysis from days when the yellow sandstorms were reported to affect Taiwan according to the Central Weather Bureau in Taiwan. The composition of dominant spores such as Basidiospore, Penicillium/Aspergillus, Nigrospora, Arthrinium, Curvularia, Rusts, Stemphylium, Cercospora, Pithomyces, and unidentified fungi were significantly higher than those of background days. The increase of Basidiospore, Penicillium/Aspergillus, Nigrospora, and those unidentified fungi seems to be significantly associated with the increase of ambient particulate levels with regression coefficients ranging from 0.887 to 31.98. Our study has identified increasing ambient concentrations during sandstorm episodes are observed for some major fungi, Basidiospore, Penicillium, Aspergillus, and those unidentified fungi and the trends of the increase seems to associate with ambient particulate levels. Further efforts to clarify the relationship between those high fungal spore exposures and clinical adverse health effects are suggested in the future. In addition, effects of climatic factors and other particulate levels on the variation of ambient fungal spore levels are also desired in further study. Additional monitoring of ambient fungal spores in the first line of west coastline is hoped to assist in

  20. Asthma admissions and thunderstorms: a study of pollen, fungal spores, rainfall, and ozone.

    PubMed

    Anderson, W; Prescott, G J; Packham, S; Mullins, J; Brookes, M; Seaton, A

    2001-08-01

    Asthma admissions have been reported to increase during thunderstorms. In some cases, this has been attributed to rises in pollen or fungal spore counts occurring alone or in combination with rainfall. We tested the hypothesis that thunderstorms in general are associated with asthma admissions, and investigated the possible roles of pollen, fungal spores, ozone, and other meteorological factors. We obtained data on multiple pollen and fungal spore counts, rainfall, temperature, ambient ozone concentrations, and asthma admissions for 32 dates when lightning strikes were recorded in the Cardiff/Newport area, and 64 matched dates in previous and subsequent years. Poisson regression models were used to investigate associations between admissions and proposed causative environmental factors. The number of asthma admissions was greater on days with thunderstorms than on control days (p<0.001). There were no associations or interactions between admissions and any pollen or fungal spore counts or rainfall. After adjusting for thunderstorms, there was an independent association between increasing ozone concentration, when temperature was included in the model, and increasing admissions (p=0.02). Asthma admissions are increased during thunderstorms. The effect is more marked in warmer weather, and is not explained by increases in grass pollen, total pollen or fungal spore counts, nor by an interaction between these and rainfall. There was an independent, positive association between ozone concentrations and asthma admissions. PMID:11493720

  1. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors.

    PubMed

    Hasnain, Syed M; Akhter, Tasneem; Waqar, Muhammad A

    2012-03-01

    Airborne fungal spores are well known to cause respiratory allergic diseases particularly bronchial asthma, allergic rhinitis, rhino-conjunctivitis and allergic broncho-pulmonary aspergillosis in both adults and children. In order to monitor and analyze airborne fungal flora of the Karachi environment, an aeromycological study was conducted using a Burkard 7-Day Recording Volumetric Spore Trap from January to December 2010. The data recorded from the Spore Trap was further analyzed for percent catch determination, total spores concentration, seasonal periodicities and diurnal variations. Cladosporium spp (44.8%), Alternaria spp. (15.5%), Periconia spp (6.1%), Curvularia spp (2.1%), Stemphylium spp (1.3%) and Aspergillus/Penicillium type (1%) emerged to be major components constituting more than 70% of the airborne fungal flora. Cladosporium, Curvularia and Stemphylium displayed a clear seasonal trend, while there were no clear seasonal trends for other fungal spore types. Diurnal variations were observed to be mainly having daytime maxima. Spearman Rank Correlation Coefficient analysis was conducted using various weather parameters. The various fungal types showed a negative correlation with heat index, dew point, wind velocity and wind chill. However, a positive correlation was found with humidity, rain and barometric pressure. In fact, Alternaria, Bipolaris and Periconia showed a negative correlation with temperature, while Cladosporium and Periconia showed a negative correlation with heat index, dew point, wind velocity and wind chill. The barometric pressure was positively correlated with Cladosporium. On the basis of these findings, it can be concluded that a number of fungal spores are present in the atmosphere of Karachi throughout the year, with certain atmospheric conditions influencing the release, dispersion, and sedimentation processes of some genera. It is expected that clinicians will use the identified fungal flora for diagnosis and treatment and

  2. A natural O-ring optimizes the dispersal of fungal spores

    PubMed Central

    Fritz, Joerg A.; Seminara, Agnese; Roper, Marcus; Pringle, Anne; Brenner, Michael P.

    2013-01-01

    The forcibly ejected spores of ascomycete fungi must penetrate several millimetres of nearly still air surrounding sporocarps to reach dispersive airflows, and escape is facilitated when a spore is launched with large velocity. To launch, the spores of thousands of species are ejected through an apical ring, a small elastic pore. The startling diversity of apical ring and spore shapes and dimensions make them favoured characters for both species descriptions and the subsequent inference of relationships among species. However, the physical constraints shaping this diversity and the adaptive benefits of specific morphologies are not understood. Here, we develop an elastohydrodynamic theory of the spore's ejection through the apical ring and demonstrate that to avoid enormous energy losses during spore ejection, the four principal morphological dimensions of spore and apical ring must cluster within a nonlinear one-dimensional subspace. We test this prediction using morphological data for 45 fungal species from two different classes and 18 families. Our sampling encompasses multiple loss and gain events and potentially independent origins of this spore ejection mechanism. Although the individual dimensions of the spore and apical ring are only weakly correlated with each other, they collapse into the predicted subspace with high accuracy. The launch velocity appears to be within 2 per cent of the optimum for over 90 per cent of all forcibly ejected species. Although the morphological diversity of apical rings and spores appears startlingly diverse, a simple principle can be used to organize it. PMID:23782534

  3. Spores

    MedlinePlus

    A spore is a cell that certain fungi, plants (moss, ferns), and bacteria produce. Spores are involved in reproduction. Certain bacteria make spores as a way to defend themselves. These spores have thick walls. They can resist high temperatures, ...

  4. Development of an approach to analyze the interaction between Nosema bombycis (microsporidia) deproteinated chitin spore coats and spore wall proteins.

    PubMed

    Yang, Donglin; Dang, Xiaoqun; Tian, Rui; Long, Mengxian; Li, Chunfeng; Li, Tian; Chen, Jie; Li, Zhi; Pan, Guoqing; Zhou, Zeyang

    2014-01-01

    Nosema bombycis is an obligate intracellular parasite of the Bombyx mori insect. The spore wall of N. bombycis is composed of an electron-dense proteinaceous outer layer and an electron-transparent chitinous inner layer, and the spore wall is connected to the plasma membrane. In this study, the deproteinated chitin spore coats (DCSCs) were acquired by boiling N. bombycis in 1M NaOH. Under a transmission electron microscope, the chitin spore coat resembles a loosely curled ring with strong refractivity; organelles and nuclei were not observed inside the spore. The anti-SWP25, 26, 30 and 32 antibodies were used to detect whether spore wall proteins within the total soluble and mature spore proteins could bind to the DCSCs. Furthermore, a chitin binding assay showed that within the total soluble and mature spore proteins, the SWP26, SWP30 and SWP32 spore wall proteins, bound to the deproteinated chitin spore coats, although SWP25 was incapable of this interaction. Moreover, after the DCSCs were incubated with the alkali-soluble proteins, the latter were obtained by treating N. bombycis with 0.1M NaOH. Following this treatment, SWP32 was still capable of binding the DCSCs, while SWP26 and SWP30 were unable to bind. Collectively, the DCSCs are useful for investigating the arrangement of spore wall proteins, and they shed light on how the microsporidia spore wall is self-assembled. PMID:24161881

  5. Development of a new technique using glass beads for dry dispersion of airborne fungal spores.

    PubMed

    Shimasaki, Noriko; Okaue, Akira; Kikuno, Ritsuko; Okuda, Shunji; Abe, Keiko

    2015-01-01

    To evaluate the removal of airborne microbes by air cleaners, a technique for generating airborne fungal spores in the dry state in a test chamber (dry dispersion) become necessary. The Society of Indoor Environment Japan (SIEJ) published SIEJ Standard Method No. 20110001 (SIEJ standard),in which an aerial ultrasonic oscillator was used as the device for dry dispersion. However, a more versatile apparatus is also necessary from a practical point of view. Therefore, we developed a new device using glass beads for the dispersion. Glass beads and a fungal sheet containing spores of Wallemia sebi were set in a midget impinger, which was connected to a compressor and a compact test chamber (1 m(3)). Air was blown into the impinger from the compressor. The spores on the fungal sheet were released by impingement of the glass beads when the beads were induced to float by the air blown into the impinger, and the spores were introduced to the chamber by the airflow. This newly developed technique can be used in a compact chamber system and could be applicable as an improved method for generating airborne fungal spores in the dry state in the SIEJ standard. PMID:25817813

  6. Rarely reported fungal spores and structures: An overlooked source of probative trace evidence in criminal investigations.

    PubMed

    Hawksworth, David L; Wiltshire, Patricia E J; Webb, Judith A

    2016-07-01

    The value of pollen and plant spores as trace evidence has long been established, but it is only in the last eight years that fungal spores have been analysed routinely from the same palynological samples. They have greatly enhanced the specificity of links between people, objects, and places. Most fungal species occupy restricted ecological niches and their distributions can be limited both spatially and geographically. Spores may be dispersed over very short distances from the fungal sporophore,(1) and their presence in any palynological assemblage may indicate a restricted area of ground, or the presence of particular plants (even specific dead plant material). Fungal spores can represent primary, secondary, or even tertiary proxy evidence of a location, and can indicate the presence of a plant even though the plant is not obvious at a crime scene. In some cases, spores from fungi which have rarely been reported, and are considered to be rare, have been of particular value in providing intelligence or evidence of contact. Ten examples are given from case work in which rarely reported or unusual fungi have proved to be important in criminal investigations. PMID:27017083

  7. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens

    PubMed Central

    Posada, Francisco J.; Vega, Fernando E.

    2005-01-01

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619

  8. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    PubMed

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires. PMID:26473720

  9. Two ways fungal spores can affect cotton color

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For a long time, we have observed that cotton can undergo color change when moisture conditions of the cotton sample would not be expected to support bacterial activity which normally requires free water. Several fungi can grow under low moisture pressures. It has been speculated that the spores p...

  10. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Ribeiro, H.; Delgado, J. L.; Abreu, I.

    2009-01-01

    Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005-2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores ( Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores ( Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.

  11. Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit.

    PubMed

    Saucedo-Lucero, J O; Quijano, G; Arriaga, S; Muñoz, R

    2014-07-15

    The performance of a fungal perlite-based biofilter coupled to a post-treatment photoreactor was evaluated over 234 days in terms of n-hexane removal, emission and deactivation of fungal spores. The biofilter and photoreactor were operated at gas residence times of 1.20 and 0.14min, respectively, and a hexane loading rate of 115±5gm(-3)h(-1). Steady n-hexane elimination capacities of 30-40gm(-3)h(-1) were achieved, concomitantly with pollutant mineralization efficiencies of 60-90%. No significant influence of biofilter irrigation frequency or irrigation nitrogen concentration on hexane abatement was recorded. Photolysis did not support an efficient hexane post-treatment likely due to the short EBRT applied in the photoreactor, while overall hexane removal and mineralization enhancements of 25% were recorded when the irradiated photoreactor was packed with ZnO-impregnated perlite. However, a rapid catalyst deactivation was observed, which required a periodic reactivation every 48h. Biofilter irrigation every 3 days supported fungal spore emissions at concentrations ranging from 2.4×10(3) to 9.0×10(4)CFUm(-3). Finally, spore deactivation efficiencies of ≈98% were recorded for the photolytic and photocatalytic post-treatment processes. This study confirmed the potential of photo-assisted post-treatment processes to mitigate the emission of hazardous fungal spores and boost the abatement performance of biotechnologies. PMID:24887128

  12. Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination.

    PubMed

    Barkal, Layla J; Walsh, Naomi M; Botts, Michael R; Beebe, David J; Hull, Christina M

    2016-05-16

    Germination of spores into actively growing cells is a process essential for survival and pathogenesis of many microbes. Molecular mechanisms governing germination, however, are poorly understood in part because few tools exist for evaluating and interrogating the process. Here, we introduce an assay that leverages developments in microfluidic technology and image processing to quantitatively measure germination with unprecedented resolution, assessing both individual cells and the population as a whole. Using spores from Cryptococcus neoformans, a leading cause of fatal fungal disease in humans, we developed a platform to evaluate spores as they undergo morphological changes during differentiation into vegetatively growing yeast. The assay uses pipet-accessible microdevices that can be arrayed for efficient testing of diverse microenvironmental variables, including temperature and nutrients. We discovered that temperature influences germination rate, a carbon source alone is sufficient to induce germination, and the addition of a nitrogen source sustains it. Using this information, we optimized the assay for use with fungal growth inhibitors to pinpoint stages of germination inhibition. Unexpectedly, the clinical antifungal drugs amphotericin B and fluconazole did not significantly alter the process or timing of the transition from spore to yeast, indicating that vegetative growth and germination are distinct processes in C. neoformans. Finally, we used the high temporal resolution of the assay to determine the precise defect in a slow-germination mutant. Combining advances in microfluidics with a robust fungal molecular genetic system allowed us to identify and alter key temporal, morphological, and molecular events that occur during fungal germination. PMID:27026574

  13. ELEVATED CO2 AND PLANT PLANT SPECIES RICHNESS IMPACT ARBUSCULAR MYCORRHIZAL FUNGAL SPORE COMMUNITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We enumerated arbuscular mycorrhizal fungal spore communities for three years as part of a long-term Free-Air CO2 Enrichment experiment (BioCON) at Cedar Creek, Minnesota, USA. Complete factorial combinations of two levels of CO2 and N, and sixteen perennial plant species grown in monoculture and si...

  14. Distribution of sterols in the fungi. I - Fungal spores

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  15. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    SciTech Connect

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ≅ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric

  16. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain)

    NASA Astrophysics Data System (ADS)

    Sabariego, S.; Díaz de la Guardia, C.; Alba, F.

    A study was made of the link between climatic factors and the daily content of certain fungal spores in the atmosphere of the city of Granada in 1994. Sampling was carried out with a Burkard 7-day-recording spore trap. The spores analysed corresponded to the taxa Alternaria, Ustilago and Cladosporium, with two morphologically different spore types in the latter genus, cladosporioides and herbarum. These spores were selected both for their allergenic capacity and for the high level of their presence in the atmosphere, particularly during the spring and autumn. The spores of Cladosporium were the most abundant (93.82% of the total spores identified). The Spearman correlation coefficients between the spore concentrations studied and the meteorological parameters show different indices depending on the taxon being analysed. Alternaria and Cladosporium are significantly correlated with temperature and hours of sunlight, while Ustilago shows positive correlation indices with relative humidity and negative indices with wind speed.

  17. Spores

    MedlinePlus

    ... do not destroy their spores. A process called sterilization destroys spores and bacteria. It is done at ... and under high pressures. In health care settings, sterilization is usually done using a device called an ...

  18. Pulmonary Injury after Combined Exposures to Low-Dose Low-LET Radiation and Fungal Spores

    PubMed Central

    Marples, B.; Downing, L.; Sawarynski, K. E.; Finkelstein, J. N.; Williams, J. P.; Martinez, A. A.; Wilson, G. D.; Sims, M. D.

    2013-01-01

    Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury. PMID:21275606

  19. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  20. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion.

    PubMed

    Fischer, Mark W F; Stolze-Rybczynski, Jessica L; Davis, Diana J; Cui, Yunluan; Money, Nicholas P

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m s(-1) over a distance of <0.1mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m s(-1) and travel as far as 2.5m (Re>100). PMID:21036338

  1. Solving the aerodynamics of fungal flight: How air viscosity slows spore motion

    PubMed Central

    Fischer, Mark W. F.; Stolze-Rybczynski, Jessica L.; Davis, Diana J.; Cui, Yunluan; Money, Nicholas P.

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m/s over a distance of <0.1 mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m/s and travel as far as 2.5 m (Re>100). PMID:21036338

  2. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores

    NASA Astrophysics Data System (ADS)

    Sousa, S. I. V.; Martins, F. G.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Ribeiro, H.; Oliveira, M.; Abreu, I.

    The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, pollen and fungal spores. Considering the potential relevance of crossed effects of non-biological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants and meteorological parameters on the concentrations of pollen and fungal spores using linear correlations and multiple linear regressions. For that, the seasonal variation of ozone, particulate matter with an equivalent aerodynamic diameter smaller than 10 μm, pollen and fungal spores were assessed and statistical correlations were analysed between those parameters. The data were collected through 2003-2005 in Porto, Portugal. The linear correlations showed that ozone and particulate matter had no significant influence on the concentration of pollen and fungal spores. On the contrary, when using multiple linear regressions those parameters showed to have some influence on the biological pollutants, although results were different depending on the year analysed. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations, both when using linear and multiple linear correlations. Relative humidity also showed to have some influence on the fungal spore dispersion when multiple linear regressions were used. Nevertheless, the conclusions for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant may not be, even so, consistent enough. Furthermore, the comparison of the results here presented with those obtained by other authors for only one period should be made carefully.

  3. Study on the ice nucleation activity of fungal spores (Ascomycota and Basidiomycota)

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2012-04-01

    Biogenic ice nucleation (IN) in the atmosphere is a topic of growing interest, as, according to IPCC, the impact of IN on global climate is crucial to perform reliable climate model calculations. About 20 years ago IN activity of a few lichen and Fusarium species [1,2] was reported, while all other investigated fungi were IN-negative. However, as the fungal kingdom is vast, many abundant species, especially the Basidiomycota (most mushrooms), were not tested before. Furthermore, the focus of the past studies was on the IN activity of the mycelium as a cryoprotective mechanism, and not on the airborne spores. We carried out oil immersion measurements [3] with spores from 17 different fungal species of ecological, economical or sanitary importance. Most of these species have not been investigated before, like exponents of Aspergillus, Trichoderma and Agaricales (most mushrooms). Apart from F. avenaceum, spores of all measured species showed moderate or no IN activity, supporting the hypothesis that significant IN activity is a rather exclusive property of only a few species within the fungal kingdom. [1] Kieft TL and Ruscetti T: J. Bacteriol. 172, 3519-3523, 1990. [2] Pouleur S et al.: Appl. Environ. Microbiol., 58, 2960-2964, 1992. [3] Marcolli C et al.: Atmos. Chem. Phys. 7, 5081-5091, 2007.

  4. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  5. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  6. A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern.

    PubMed

    Glassman, Sydney I; Peay, Kabir G; Talbot, Jennifer M; Smith, Dylan P; Chung, Judy A; Taylor, John W; Vilgalys, Rytas; Bruns, Thomas D

    2015-03-01

    Ecologists have long acknowledged the importance of seed banks; yet, despite the fact that many plants rely on mycorrhizal fungi for survival and growth, the structure of ectomycorrhizal (ECM) fungal spore banks remains poorly understood. The primary goal of this study was to assess the geographic structure in pine-associated ECM fungal spore banks across the North American continent. Soils were collected from 19 plots in forests across North America. Fresh soils were pyrosequenced for fungal internal transcribed spacer (ITS) amplicons. Adjacent soil cores were dried and bioassayed with pine seedlings, and colonized roots were pyrosequenced to detect resistant propagules of ECM fungi. The results showed that ECM spore banks correlated strongly with biogeographic location, but not with the identity of congeneric plant hosts. Minimal community overlap was found between resident ECM fungi vs those in spore banks, and spore bank assemblages were relatively simple and dominated by Rhizopogon, Wilcoxina, Cenococcum, Thelephora, Tuber, Laccaria and Suillus. Similar to plant seed banks, ECM fungal spore banks are, in general, depauperate, and represent a small and rare subset of the mature forest soil fungal community. Yet, they may be extremely important in fungal colonization after large-scale disturbances such as clear cuts and forest fires. PMID:25557275

  7. Mixed Production of Filamentous Fungal Spores for Preventing Soil-Transmitted Helminth Zoonoses: A Preliminary Analysis

    PubMed Central

    Arias, M. S.; Cazapal-Monteiro, C. F.; Suárez, J.; Miguélez, S.; Francisco, I.; Arroyo, F. L.; Suárez, J. L.; Paz-Silva, A.; Sánchez-Andrade, R.; Mendoza de Gives, P.

    2013-01-01

    Helminth zoonoses are parasitic infections shared by humans and animals, being the soil-transmitted helminths (STHs) mainly caused by roundworms (ascarids) and hookworms. This study was aimed to assess the individual and/or mixed production of two helminth-antagonistic fungi, one ovicide (Mucor circinelloides) and other predator (Duddingtonia flagrans). Fungi were grown both in Petri plates and in a submerged culture (composed by water, NaCl, Na2HPO4· 12 H2O, and wheat (Triticum aestivum)). A Fasciola hepatica recombinant protein (FhrAPS) was incorporated to the cultures to improve fungal production. All the cultured plates showed fungal growth, without difference in the development of the fungi when grown alone or mixed. High counts of Mucor spores were produced in liquid media cultures, and no significant differences were achieved regarding single or mixed cultures, or the incorporation of the FhrAPS. A significantly higher production of Duddingtonia spores after the incorporation of the FhrAPS was observed. When analyzing the parasiticide efficacy of the fungal mixture, viability of T. canis eggs reduced to 51%, and the numbers of third stage cyathostomin larvae reduced to 4%. It is concluded, the capability of a fungal mixture containing an ovicide (Mucor) and a predator species (Duddingtonia) for growing together in a submerged medium containing the FhrAPS offers a very interesting tool for preventing STHs. PMID:23710451

  8. Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Pan, Yong-Le; Hill, Steven C.; Redding, Brandon

    2015-03-01

    Photophoretic trapping-Raman spectroscopy (PTRS) is a new technique for measuring Raman spectra of particles that are held in air using photophoretic forces. It was initially demonstrated with Raman spectra of strongly-absorbing carbon nanoparticles (Pan et al. [44] (Opt Express 2012)). In the present paper we report the first demonstration of the use of PTRS to measure Raman spectra of absorbing and weakly-absorbing bioaerosol particles (pollens and spores). Raman spectra of three pollens and one smut spore in a size range of 6.2-41.8 μm illuminated at 488 nm are shown. Quality spectra were obtained in the Raman shift range of 1600-3400 cm-1 in this exploratory study. Distinguishable Raman scattering signals with one or a few clear Raman peaks for all four aerosol particles were observed within the wavenumber region 2940-3030 cm-1. Peaks in this region are consistent with previous reports of Raman peaks in the 1600-3400 cm-1 range for pollens and spores excited at 514 nm measured by a conventional Raman spectrometer. Noise in the spectra, the fluorescence background, and the weak Raman signals in most of the 1600-3400 cm-1 region make some of the spectral features barely discernable or not discernable for these bioaerosols except the strong signal within 2940-3030 cm-1. Up to five bands are identified in the three pollens and only two bands appear in the fungal spore, but this may be because the fungal spore is so much smaller than any of the pollens. The fungal spore signal relative to the air-nitrogen Raman band is approximately 10 times smaller than that ratio for the pollens. The five bands are tentatively assigned to the CH2 symmetric stretch at 2948 cm-1, CH2 Fermi resonance stretch at 2970 cm-1, CH3 symmetric stretch at 2990 cm-1, CH3 out-of-plane end asymmetric stretch at 3010 cm-1, and unsaturated =CH stretch at 3028 cm-1. The two dominant bands of the up-to-five Raman bands in the 2940-3030 cm-1 region have a consistent band spacing of 25 cm-1 in all

  9. Effects of Surface Fires and Below Ground Heating on the Biogeochemical Structures of Endomycorrhizal Fungal Spores

    NASA Astrophysics Data System (ADS)

    Bishop, M.; Werts, S. P.

    2015-12-01

    The impact of surface fires on soil properties can vary from negligible to severe, depending on a multitude of factors on both the surface of the soil and within the soil itself. Once a fire moves through an ecosystem, there are no simple ways to know exactly how deep the heat from the fire penetrated into the soil or what those temperatures actually were. Having this information may provide insight into ecosystem recovery and may have further applications to archaeological studies. We are investigating the biogeochemical structure of endomycorrhizal fungal spores, which show little to no morphological change when exposed to temperatures exceeding 500°C and should remain present in the soil following a fire event. We obtained soil samples from a pine dominated forest and a deciduous forest in two different soil types from the piedmont of the southeastern US and extracted the fungal spores for temperature experiments. We utilized a scanning electron microscope with emission dispersive spectroscopy to seek information on the biogeochemical structure of the spores and note any changes in nature of the structure and makeup as temperature increased. Initial results suggest that oxygen ratios may be changing with temperature, however, more work is being done on various species to see if there are species-specific trends.

  10. Production of Beauveria bassiana Fungal Spores on Rice to Control the Coffee Berry Borer, Hypothenemus hampei, in Colombia

    PubMed Central

    Posada-Flórez, Francisco J

    2008-01-01

    Two isolates of fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) were grown on cooked rice using diphasic liquid-solid fermentation in plastic bags to produce and harvest spore powder. The cultures were dried and significant differences were found for isolates and time of harvest. The spores were harvested manually and mechanically and after the cultures were dried for nine days, when moisture content was near 10%. After harvesting, spores were submitted to quality control to assess concentration, germination, purity, moisture content, particle size and pathogenicity to the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae). Spore productivity on cooked rice was less than 1×1010 spores/g using both manually and mechanically harvesting methodologies. Germination at 24 hours was over 75% and pathogenicity against H. hampei was over 92.5%. This methodology is suitable for laboratory and field studies, but not for industrial production when a high concentration of spores are required for formulation and field applications.

  11. The effect of outdoor fungal spore concentrations on daily asthma severity.

    PubMed Central

    Delfino, R J; Zeiger, R S; Seltzer, J M; Street, D H; Matteucci, R M; Anderson, P R; Koutrakis, P

    1997-01-01

    The relationship between day-to-day changes in asthma severity and combined exposures to community air pollutants and aeroallergens remains to be clearly defined. We examined the effects of outdoor air pollutants, fungi, and pollen on asthma. Twenty-two asthmatics ages 9-46 years were followed for 8 weeks (9 May-3 July 1994) in a semirural Southern California community around the air inversion base elevation (1,200 ft). Daily diary responses included asthma symptom severity (6 levels), morning and evening peak expiratory flow rates (PEFR), and as-needed beta-agonist inhaler use. Exposures included 24-hr outdoor concentrations of fungi, pollen, and particulate matter with a diameter < 10 microns (PM10; maximum = 51 micrograms/m3) and 12-hour day-time personal ozone (O3) measurements (90th percentile = 38 ppb). Random effects longitudinal regression models controlled for autocorrelation and weather. Higher temperatures were strongly protective, probably due to air conditioning use and diminished indoor allergens during hot, dry periods. Controlling for weather, total fungal spore concentrations were associated with all outcomes: per minimum to 90th percentile increase of nearly 4,000 spores/m3, asthma symptom scores increased 0.36 (95% CI, 0.16-0.56), inhaler use increased 0.33 puffs (95% CI, -0.02-0.69), and evening PEFR decreased 12.1 l/min (95% CI, -1.8-22.3). These associations were greatly enhanced by examining certain fungal types (e.g., Alternaria, basidiospores, and hyphal fragments) and stratifying on 16 asthmatics allergic to tested deuteromycete fungi. There were no significant associations to low levels of pollen or O3, but inhaler use was associated with PM10 (0.15 inhaler puffs/10 micrograms/m3; p < 0.02). These findings suggest that exposure to fungal spores can adversely effect the daily respiratory status of some asthmatics. Images Figure 1. PMID:9288497

  12. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  13. Nanoparticle uptake by airway phagocytes after fungal spore challenge in murine allergic asthma and chronic bronchitis

    PubMed Central

    2014-01-01

    Background In healthy lungs, deposited micrometer-sized particles are efficiently phagocytosed by macrophages present on airway surfaces; however, uptake of nanoparticles (NP) by macrophages appears less effective and is largely unstudied in lung disease. Using mouse models of allergic asthma and chronic obstructive pulmonary disease (COPD), we investigated NP uptake after challenge with common biogenic ambient air microparticles. Methods Bronchoalveolar lavage (BAL) cells from diseased mice (allergic asthma: ovalbumin [OVA] sensitized and COPD: Scnn1b-transgenic [Tg]) and their respective healthy controls were exposed ex vivo first to 3-μm fungal spores of Calvatia excipuliformis and then to 20-nm gold (Au) NP. Electron microscopic imaging was performed and NP uptake was assessed by quantitative morphometry. Results Macrophages from diseased mice were significantly larger compared to controls in OVA-allergic versus sham controls and in Scnn1b-Tg versus wild type (WT) mice. The percentage of macrophages containing AuNP tended to be lower in Scnn1b-Tg than in WT mice. In all animal groups, fungal spores were localized in macrophage phagosomes, the membrane tightly surrounding the spore, whilst AuNP were found in vesicles largely exceeding NP size, co-localized in spore phagosomes and occasionally, in the cytoplasm. AuNP in vesicles were located close to the membrane. In BAL from OVA-allergic mice, 13.9 ± 8.3% of all eosinophils contained AuNP in vesicles exceeding NP size and close to the membrane. Conclusions Overall, AuNP uptake by BAL macrophages occurred mainly by co-uptake together with other material, including micrometer-sized ambient air particles like fungal spores. The lower percentage of NP containing macrophages in BAL from Scnn1b-Tg mice points to a change in the macrophage population from a highly to a less phagocytic phenotype. This likely contributes to inefficient macrophage clearance of NP in lung disease. Finally, the AuNP containing

  14. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  15. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium

    NASA Astrophysics Data System (ADS)

    Recio, Marta; del Mar Trigo, María; Docampo, Silvia; Melgar, Marta; García-Sánchez, José; Bootello, Lourdes; Cabezudo, Baltasar

    2012-11-01

    Alternaria and Cladosporium are two fungal taxa whose spores (conidia) are included frequently in aerobiological studies of outdoor environments. Both spore types are present in the atmosphere of Malaga (Spain) throughout almost the entire year, although they reach their highest concentrations during spring and autumn. To establish predicting variables for daily and weekly fluctuations, Spearman's correlations and stepwise multiple regressions between spore concentrations (measured using a volumetric 7-day recorder) and meteorological variables were made with results obtained for both spore types in 1996 and 1997. Correlations and regressions were also made between the different taxa and their concentrations in different years. Significant and positive correlation coefficients were always obtained between spore concentrations of both taxa, followed by temperature, their concentrations in different years, sunshine hours and relative humidity (this last in a negative sense). For the two spore types we obtained higher correlation and regression coefficients using weekly data. We showed different regression models using weekly values. From the results and a practical point of view, it was concluded that weekly values of the atmospheric concentration of Alternaria spores can be predicted from the maximum temperature expected and its concentrations in the years sampled. As regards the atmospheric concentration of Cladoposrium spores, the weekly values can be predicted based on the concentration of Alternaria spores, thus saving the time and effort that would otherwise be employed in counting them by optical microscopy.

  16. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  17. Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations

    NASA Astrophysics Data System (ADS)

    Gonçalves, Fábio Luiz Teixeira; Bauer, Heidi; Cardoso, Maria Regina Alves; Pukinskas, Sandra; Matos, Dulcilena; Melhem, Márcia; Puxbaum, Hans

    2010-07-01

    The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m-3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m-3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.

  18. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  19. Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales.

    PubMed

    Ji, Baoming; Bentivenga, Stephen P; Casper, Brenda B

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi are ubiquitous and ecologically important microbes in grasslands. Both the host plant species and soil properties have been suggested as potentially important factors structuring AM fungal communities based on studies within local field sites. However, characterizations of the communities in relation to both host plant identity and soil properties in natural plant communities across both local and broader geographic scales are rare. We examined the AM fungal spore communities associated with the same C(4) grasses in two Eastern serpentine grasslands, where soils have elevated heavy metals, and two Iowa tallgrass prairie sites. We compared AM fungal spore communities among host plants within each site, looked for correlations between fungal communities and local soil properties, and then compared communities among sites. Spore communities did not vary with host plant species or correlate with local soil chemical properties at any site. They did not differ between the two serpentine sites or between the two prairie sites, despite geographic separation, but they did differ between serpentine and prairie. Soil characteristics are suggested as a driving force because spore communities were strongly correlated with soil properties when data from all four sites are considered, but climatic differences might also play a role. PMID:21769630

  20. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols

    NASA Astrophysics Data System (ADS)

    Fu, Pingqing; Zhuang, Guoshun; Sun, Yele; Wang, Qiongzhen; Chen, Jing; Ren, Lujie; Yang, Fan; Wang, Zifa; Pan, Xiaole; Li, Xiangdong; Kawamura, Kimitaka

    2016-04-01

    Biogenic primary organic aerosols (POA) and secondary organic aerosols (SOA) are important organic constituents of atmospheric particulate matter (PM). In order to better understand the atmospheric abundances, molecular compositions and sources of the desert aerosols, biomass-burning tracers (e.g. levoglucosan), primary saccharides including fungal spore tracers, and SOA tracers from the oxidation of biogenic volatile organic compounds (e.g. isoprene, monoterpenes and sesquiterpene) have been studied in ambient aerosols from the Taklimakan desert, using gas chromatography-mass spectrometry. Results showed that the total concentrations of biomass-burning tracers at Hetian (177-359 ng m-3, mean 233 ng m-3 in PM2.5) in the south rim of the desert were much higher than those at Tazhong (1.9-8.8 ng m-3 in PM2.5 and 5.9-32 ng m-3 in TSP) in the central Taklimakan desert. Molecular markers of fungal spores were also detected in all the desert aerosols, highlighting the importance of primary bioaerosols in the Asian dust particles. A specific pattern of the dominance of 2-methylglyceric acid over 2-methyltetrols and C5-alkene triols was found in the Taklimakan desert aerosols, especially during the dust storm events, which is different from the 2-methyltetrols-dominated pattern in other ambient aerosols. Our results provide direct evidence on the biogenic POA and SOA tracers in the Taklimakan desert region, which help to better understand their impact on the aerosol chemistry in the down-wind regions.

  1. A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material

    NASA Astrophysics Data System (ADS)

    Healy, David A.; O'Connor, David J.; Burke, Aoife M.; Sodeau, John R.

    2012-12-01

    A Bioaerosol sensing instrument referred to as WIBS-4, designed to continuously monitor ambient bioaerosols on-line, has been used to record a multiparameter “signature” from each of a number of Primary Biological Aerosol Particulate (PBAP) samples found in air. These signatures were obtained in a controlled laboratory environment and are based on the size, asymmetry (“shape”) and auto-fluorescence of the particles. Fifteen samples from two separate taxonomic ranks (kingdoms), Plantae (×8) and Fungi (×7) were individually introduced to the WIBS-4 for measurement along with two non-fluorescing chemical solids, common salt and chalk. Over 2000 individual-particle measurements were recorded for each sample type and the ability of the WIBS spectroscopic technique to distinguish between chemicals, pollen and fungal spore material was examined by identifying individual PBAP signatures. The results obtained show that WIBS-4 could potentially be a very useful analytical tool for distinguishing between natural airborne PBAP samples, such as the fungal spores and may potentially play an important role in detecting and discriminating the toxic fungal spore, Aspergillus fumigatus, from others in real-time. If the sizing range of the commercial instrument was customarily increased and permitted to operate simultaneously in its two sizing ranges, pollen and spores could potentially be discriminated between. The data also suggest that the gain setting sensitivity on the detector would also have to be reduced by a factor >5, to routinely detect, in-range fluorescence measurements for pollen samples.

  2. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.

    PubMed

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam; Moeller, Ralf

    2015-10-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes. PMID:26187959

  3. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments

    PubMed Central

    Nagler, Katja; Setlow, Peter; Reineke, Kai; Driks, Adam

    2015-01-01

    The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes. PMID:26187959

  4. Role of Glutathione in the Morphogenesis of the Bacterial Spore Coat

    PubMed Central

    Cheng, H. M.; Aronson, A. I.; Holt, S. C.

    1973-01-01

    There is a marked increase in the half-cystine content of bacterial spores, especially the coat layers at the time of formation of the outer coat. When a cysteine auxotroph of Bacillus cereus T is grown on limiting cysteine, the spores contain the normal content of half-cystine, suggesting an alternate source. Glutathione appears to be such a supply of cysteine since it is hydrolyzed during sporulation and there are increased activities of the hydrolyzing enzymes at the same time. In addition, a cysteine auxotroph with a second alteration, a temperature-sensitive glutathione disulfide reductase, produces lysozyme-sensitive spores at 40 C. These spores appear to be defective in the formation of outer spore coat. During sporulation at 40 C, the double mutant accumulates oxidized glutathione which is a poor substrate for the hydrolytic enzymes. As a result, sporulating cells are deficient in half-cystines which are essential for outer spore coat morphogenesis. This alteration can be overcome by a shift to 30 C or by addition of cystinyl-pencillamine or cysteinyl-glycine to cultures sporulating at 40 C. PMID:4632393

  5. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis.

    PubMed

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  6. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis

    PubMed Central

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  7. Analysis of Endomycorrhizal Fungal Spores at Elevated Temperatures from Semi-Arid Arizona Soils; Applications to Geoarcheology

    NASA Astrophysics Data System (ADS)

    White, H.; Werts, S. P.; Adams, C.

    2011-12-01

    The objective of this study is to investigate the elemental structure of endomycorrhizal fungal spores at temperatures up to 500°C in hopes of establishing a correlation between elemental abundances and fire temperature. Prior research of endomycorrhizal spores from a deciduous forest in Maryland has shown that these spores are structurally resistant to high temperatures and show an increase in the percentage of silicon and aluminum when exposed to increasing temperatures. In this study, we are attempting to investigate whether a similar trend is present in endomycorrhizal fungal spores from arid environments and to possibly apply these results to archeological studies. In the high plains of Arizona, there are numerous archeological sites in which structures from Hopi settlements burned in the 14th century. The potential causes of these fires are still being debated. We collected samples from a structure within Homolovi State Park that was burned in 2006 and designed to simulate these fire events. Samples were collected at 1 cm intervals within individual burned layers in order to investigate any potential changes in chemistry due to changing temperature during the fire. Several of these samples were analyzed in a Scanning Electron Microscope (SEM) coupled with Energy-dispersive X-ray Spectroscopy (EDS) to gain insight into their elemental composition. These samples were compared to the elemental composition of modern fungal spores collected from the same area which were burned at increasing temperatures up to 500°C within the laboratory. Results from this study have implications in the development of a post-fire temperature proxy in both modern and archeological settings.

  8. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period

    NASA Astrophysics Data System (ADS)

    Yeo, Hwan-Goo; Kim, Jong-Ho

    The relationship between suspended particulate matter (SPM) and fungal spore was investigated in Seosan, a rural county along the west coast of Korea, in the spring of 2000. SPM concentrations in the air were 199.8 μg m -3 in the first Asian dust period (23-24 March), 249.4 μg m -3 in the second Asian dust period (7-9 April) and 98.9 μg m -3 in the non-Asian dust period (12-16 May), respectively. The majority of the total SPM were composed of coarse particles sized about 5 μm during the two Asian dust periods. Four molds genera grown from airborne fungal spores were identified in colonies grown from SPM samples taken during the Asian dust periods. All the genera found, Fusarium, Aspergillus, Penicillium and Basipetospora, are hyphomycetes in the division Deuteromycota. Morphologically, more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1 to 2.1 μm sized SPM than on the other sized samples gathered in the dust periods. On the other hand, no mold was observed on the sample of 1.1-2.1 μm sized SPM in the non-Asian dust period. From these results, it seems evident that several sorts of fine sized fungal spores were suspended in the atmospheric environment of this study area during Asian dust periods.

  9. Phosphorylation of spore coat proteins by a family of atypical protein kinases.

    PubMed

    Nguyen, Kim B; Sreelatha, Anju; Durrant, Eric S; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R; Pawłowski, Krzysztof; Dixon, Jack E; Tagliabracci, Vincent S

    2016-06-21

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology. PMID:27185916

  10. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  11. Involvement of Superoxide Dismutase in Spore Coat Assembly in Bacillus subtilis

    PubMed Central

    Henriques, Adriano O.; Melsen, Lawrence R.; Moran, Charles P.

    1998-01-01

    Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus. sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in a cotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer. PMID:9573176

  12. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  13. Fungal alteration of organic coatings on sand grains

    NASA Astrophysics Data System (ADS)

    Rothhardt, S.; Gleixner, G.; Benzerara, K.; Fischer, C.; Gaupp, R.

    2012-04-01

    We studied the fungal alteration of organically coated sand particles, sampled in Eocene sediments in the open cast mining Profen, near Leipzig (Germany). These organic coatings were formed on sand grains after their sedimentation owing to mobilization of organic matter from younger coal layers. The organic coatings formed non-continuous layers on quartz grains, measuring few micrometers up to 30 µm in thickness. It has been shown that organic coatings on sand grains retain efficiently dissolved metals by adsorption from groundwaters. They consequently might be used as adsorbent to purify low heavy metal contaminated water. However, their stability has not been assessed yet especially in the oxic environment and, more specifically, in the presence of microorganisms. This is important in order to evaluate whether coated sands could act as a reliable tool in remediation. In order to address this question we characterized the fungal alteration of organic coatings on sand grains using several techniques, including scanning electron microscopy (SEM), scanning transmission X-ray microscopy (STXM) and vertical scanning interferometry (VSI). Sand grains coated with organics were incubated on complex yeast medium with and without Schizophyllum commune to estimate changes in heavy metal retention. Formation of biominerals and etch pits is induced by fungal colonization as shown by SEM. Surface topography analysis was performed using VSI technique. Etch pit depth ranges from 0.5 to 1 µm. Pit formation is limited to the organic coating; dissolution of quartz grains was not detected. Using STXM we measured near-edge X-ray absorption fine structure (NEXAFS) spectra at the C K-edge, N-edge, and O K-edge to characterize the different organic compartments (fungi, genuine organic coatings, altered organic coatings) down to the 25-nm scale. We observed in the spectra measured at the C K-edge on the altered organic coatings a decrease in aromatic and phenolic groups as well as an

  14. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2012-03-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  15. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the eastern mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2011-10-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rohovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  16. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    NASA Astrophysics Data System (ADS)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  17. Transglutaminase-Mediated Cross-Linking of GerQ in the Coats of Bacillus subtilis Spores

    PubMed Central

    Ragkousi, Katerina; Setlow, Peter

    2004-01-01

    The spores of Bacillus subtilis show remarkable resistance to many environmental stresses, due in part to the presence of an outer proteinaceous structure known as the spore coat. GerQ is a spore coat protein essential for the presence of CwlJ, an enzyme involved in the hydrolysis of the cortex during spore germination, in the spore coat. Here we show that GerQ is cross-linked into higher-molecular-mass forms due in large part to a transglutaminase. GerQ is the only substrate for this transglutaminase identified to date. In addition, we show that cross-linking of GerQ into high-molecular-mass forms occurs only very late in sporulation, after mother cell lysis. These findings, as well as studies of GerQ cross-linking in mutant strains where spore coat assembly is perturbed, lead us to suggest that coat proteins must assemble first and that their cross-linking follows as a final step in the spore coat formation pathway. PMID:15317760

  18. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. PMID:27376781

  19. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  20. Contrasting evolutionary patterns of spore coat proteins in two Bacillus species groups are linked to a difference in cellular structure

    PubMed Central

    2013-01-01

    Background The Bacillus subtilis-group and the Bacillus cereus-group are two well-studied groups of species in the genus Bacillus. Bacteria in this genus can produce a highly resistant cell type, the spore, which is encased in a complex protective protein shell called the coat. Spores in the B. cereus-group contain an additional outer layer, the exosporium, which encircles the coat. The coat in B. subtilis spores possesses inner and outer layers. The aim of this study is to investigate whether differences in the spore structures influenced the divergence of the coat protein genes during the evolution of these two Bacillus species groups. Results We designed and implemented a computational framework to compare the evolutionary histories of coat proteins. We curated a list of B. subtilis coat proteins and identified their orthologs in 11 Bacillus species based on phylogenetic congruence. Phylogenetic profiles of these coat proteins show that they can be divided into conserved and labile ones. Coat proteins comprising the B. subtilis inner coat are significantly more conserved than those comprising the outer coat. We then performed genome-wide comparisons of the nonsynonymous/synonymous substitution rate ratio, dN/dS, and found contrasting patterns: Coat proteins have significantly higher dN/dS in the B. subtilis-group genomes, but not in the B. cereus-group genomes. We further corroborated this contrast by examining changes of dN/dS within gene trees, and found that some coat protein gene trees have significantly different dN/dS between the B subtilis-clade and the B. cereus-clade. Conclusions Coat proteins in the B. subtilis- and B. cereus-group species are under contrasting selective pressures. We speculate that the absence of the exosporium in the B. subtilis spore coat effectively lifted a structural constraint that has led to relaxed negative selection pressure on the outer coat. PMID:24283940

  1. Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.

    PubMed

    Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio

    2012-01-01

    The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission. PMID:22375544

  2. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat.

    PubMed

    McKenney, Peter T; Driks, Adam; Eskandarian, Haig A; Grabowski, Paul; Guberman, Jonathan; Wang, Katherine H; Gitai, Zemer; Eichenberger, Patrick

    2010-05-25

    Bacillus subtilis spores are encased in a protein assembly called the spore coat that is made up of at least 70 different proteins. Conventional electron microscopy shows the coat to be organized into two distinct layers. Because the coat is about as wide as the theoretical limit of light microscopy, quantitatively measuring the localization of individual coat proteins within the coat is challenging. We used fusions of coat proteins to green fluorescent protein to map genetic dependencies for coat assembly and to define three independent subnetworks of coat proteins. To complement the genetic data, we measured coat protein localization at subpixel resolution and integrated these two data sets to produce a distance-weighted genetic interaction map. Using these data, we predict that the coat comprises at least four spatially distinct layers, including a previously uncharacterized glycoprotein outermost layer that we name the spore crust. We found that crust assembly depends on proteins we predicted to localize to the crust. The crust may be conserved in all Bacillus spores and may play critical functions in the environment. PMID:20451384

  3. Intact cell/intact spore mass spectrometry (IC/ISMS) on polymer-based, nano-coated disposable targets.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2014-01-01

    Identification and differentiation of microorganisms has and still is a long arduous task, involving culturing of the organism in question on different growth media. This procedure, which is still commonly applied, is an established method, but takes a lot of time, up to several days or even longer. It has thus been a great achievement when other analytical tools like matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were introduced for faster analysis based on the surface protein pattern. Differentiation and identification of human pathogens as well as plant/animal pathogens is of increasing importance in medical care (e.g. infection, sepsis, and antibiotics resistance), biotechnology, food sciences and detection of biological warfare agents. A distinction between microorganisms on the species and strain level was made by comparing peptide/protein profiles to patterns already stored in databases. These profiles and patterns were obtained from the surface of vegetative forms of microorganisms or even their spores by MALDI MS. Thus, an unknown sample can be compared against a database of known pathogens or microorganisms of interest. To benefit from newly available, metal-based disposable microscope-slide format MALDI targets that promise a clean and even surface at a fraction of the cost from full metal targets or MTP (microtiter plate) format targets, IC/ISMS analysis was performed on these and the data evaluated. Various types of bacteria as well as fungal spores were identified unambiguously on this disposable new type of metal nano-coated targets. The method even allowed differentiation between strains of the same species. The results were compared with those gained from using full metal standard targets and found to be equal or even better in several aspects, making the use of disposable MALDI targets a viable option for use in IC/ISMS, especially e.g. for large sample throughput and highly pathogenic species. PMID:24225366

  4. Fungal spore germination into yeast or mycelium: possible implications of dimorphism in evolution and human pathogenesis

    NASA Astrophysics Data System (ADS)

    Ghormade, Vandana; Deshpande, M. V.

    The ability of dimorphism in fungi is conventionally regarded as a reversible change between the two vegetative forms, yeast and mycelium, in response to environmental change. A zygomycetous isolate, Benjaminiella poitrasii, exhibited yeast-mycelium transition in response to the change in temperature (37-28 °C) and decrease in glucose concentration. For the first time the presence of dimorphic response during asexual and sexual spore germination is reported under the dimorphism-triggering conditions in B. poitrasii. The zygospores germinated into budding yeast when subjected to yeast-form supporting conditions. The mycelium-form favoring conditions gave rise to true mycelium. Similarly, the asexual spores displayed a dimorphic response during germination. Our observations suggest that dimorphism is an intrinsic ability present in the vegetative, asexual, and sexual forms of the fungus. As dimorphic fungi are intermediate to the unicellular yeast and the filamentous forms, understanding of the dimorphic character could be useful to trace the evolutionary relationships among taxonomically different fungi. Moreover, the implications of spore germination during the onset of pathogenesis and in drug development for human health care are discussed.

  5. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell

    PubMed Central

    Brunt, Jason; Cross, Kathryn L.; Peck, Michael W.

    2015-01-01

    Clostridium sporogenes forms highly heat resistant endospores, enabling this bacterium to survive adverse conditions. Subsequently, spores may germinate, giving rise to vegetative cells that multiply and lead to food spoilage. Electron microscopy was used to visualise changes in spore structures during germination, emergence and outgrowth. C. sporogenes spores were surrounded by an exosporium that was oval in shape and typically 3 μm in length. An aperture of 0.3–0.4 μm was observed at one end of the exosporium. The rupture of the spore coats occurs adjacent to the opening in the exosporium. The germinated cell emerges through this hole in the spore coat and then through the pre-existing aperture in the exosporium, before eventually being released, leaving behind a largely intact exosporium with an enlarged aperture (0.7–1.0 μm) and coat shell. The formation of this aperture, its function and its alignment with the spore coat is discussed. PMID:26187826

  6. Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol by HPLC-MS-MS and GC-MS.

    PubMed

    Buiarelli, Francesca; Canepari, Silvia; Di Filippo, Patrizia; Perrino, Cinzia; Pomata, Donatella; Riccardi, Carmela; Speziale, Roberto

    2013-02-15

    Airborne microorganisms, as bacteria and fungi, are ubiquitous components of the atmospheric aerosol particles. In this paper, we report a method for the simultaneous extraction, purification, separation, identification and quantification of ergosterol, mannitol and arabitol as biomarkers of fungal spores in bioaerosol particles. After sampling by a low volume sampler, filters were spiked with mannitol-(13)C and dehydrocholesterol as internal standards. Samples were then extracted by accelerated solvent extraction using pure ethanol. The extract was then passed through an amino cartridge and divided in two parts: the apolar fraction, released from the cartridge, was subjected to liquid liquid extraction (by n-hexane), while polar compounds, retained by the cartridge, were eluted by a mixture of methanol-water. The two fractions were joined and analyzed by HPLC equipped with two different columns in series, and coupled to a triple-quadrupole mass spectrometer with Atmospheric Pressure Chemical Ionization source. In addition, the same fractions were analyzed, after derivatization, by GC-MS. The results obtained by the two techniques were finally compared, showing good agreement between them. Last, the contents of the three biomarkers have been estimated in three atmospheric samples collected in a suburban/rural site and, using literature conversion factors, correlated to fungal biomass. PMID:23598001

  7. Altered immunological response in mice subjected to stress and exposed to fungal spores

    NASA Technical Reports Server (NTRS)

    Kurup, Viswanath P.; Choi, Hongyung; Kumar, Anoopa; Murali, Pazhayannur S.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    Space flight and related factors such as stress appear to have an adverse effect on astronauts' immune systems. The presence of potentially pathogenic microbes including several genera of fungi reported from spacecraft environment may be a cause of concern in such situations. In order to study the role of such organisms in causing opportunistic or allergic diseases in crewmembers, we have tried to develop an animal model. BALB/c mice were suspended upside down for varying periods of time to induce stress, and their lymphocyte functions were evaluated. These studies indicate that the stress resulted in lowered mitogen induced lymphocyte stimulation as represented by 3H-thymidine uptake. We have also studied the ability of these animals to respond to Aspergillus fumigatus spores. The results of the study clearly demonstrate a definite down-regulation in T-cell proliferation and a higher incidence of infection with A. fumigatus.

  8. Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines.

    PubMed Central

    Huttunen, Kati; Hyvärinen, Anne; Nevalainen, Aino; Komulainen, Hannu; Hirvonen, Maija-Riitta

    2003-01-01

    We compared the inflammatory and cytotoxic responses caused by household mold and bacteria in human and mouse cell lines. We studied the fungi Aspergillus versicolor, Penicillium spinulosum, and Stachybotrys chartarum and the bacteria Bacillus cereus, Pseudomonas fluorescens, and Streptomyces californicus for their cytotoxicity and ability to stimulate the production of inflammatory mediators in mouse RAW264.7 and human 28SC macrophage cell lines and in the human A549 lung epithelial cell line in 24-hr exposure to 10(5), 10(6), and 10(7) microbes/mL. We studied time dependency by terminating the exposure to 10(6) microbes/mL after 3, 6, 12, 24, and 48 hr. We analyzed production of the cytokines tumor necrosis factor-alpha and interleukins 6 and 1ss (TNF-alpha, IL-6, IL-1ss, respectively) and measured nitric oxide production using the Griess method, expression of inducible NO-synthase with Western Blot analysis, and cytotoxicity with the MTT-test. All bacteria strongly induced the production of TNF-alpha, IL-6 and, to a lesser extent, the formation of IL-1ss in mouse macrophages. Only the spores of Str. californicus induced the production of NO and IL-6 in both human and mouse cells. In contrast, exposure to fungal strains did not markedly increase the production of NO or any cytokine in the studied cell lines except for Sta. chartarum, which increased IL-6 production somewhat in human lung epithelial cells. These microbes were less cytotoxic to human cells than to mouse cells. On the basis of equivalent numbers of bacteria and spores of fungi added to cell cultures, the overall potency to stimulate the production of proinflammatory mediators decreased in the order Ps. fluorescens > Str. californicus > B. cereus > Sta. chartarum > A. versicolor > P. spinulosum. These data suggest that bacteria in water-damaged buildings should also be considered as causative agents of adverse inflammatory effects. PMID:12515684

  9. The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis

    PubMed Central

    Isticato, Rachele; Sirec, Teja; Vecchione, Stefano; Crispino, Anna; Saggese, Anella; Baccigalupi, Loredana; Notomista, Eugenio; Driks, Adam; Ricca, Ezio

    2015-01-01

    In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction. PMID:26484546

  10. Diverse supramolecular structures formed by self‐assembling proteins of the B acillus subtilis spore coat

    PubMed Central

    Jiang, Shuo; Wan, Qiang; Krajcikova, Daniela; Tang, Jilin; Tzokov, Svetomir B.; Barak, Imrich

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange intracellularly into highly stable macro‐structures through processes of self‐assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one‐dimensional fibres, two‐dimensional sheets and three‐dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross‐linking. Assemblies of this kind could form exquisitely adapted building blocks for higher‐order assembly across all spore‐formers. These physically robust arrayed units could also have novel applications in nano‐biotechnology processes. PMID:25872412

  11. Promotion of Fern Rhizoid Elongation by Metal Ions and the Function of the Spore Coat as an Ion Reservoir 1

    PubMed Central

    Miller, John H.; Vogelmann, Thomas C.; Bassel, Alix R.

    1983-01-01

    The perine, or outer coat, of spores of the fern Onoclea sensibilis L. may be chemically removed by a brief treatment with dilute NaClO. Treated spores germinate normally on glass-redistilled H2O, but elongation of the rhizoid which is differentiated during germination is severely limited. Rhizoid elongation in perine-free spores, however, is normal when the spores are germinated on Knop's mineral medium or on single-salt solutions of Ca2+, Mn2+, or Mg2+. In intact spores which retain their perine, rhizoid elongation is normal on distilled H2O, and the perine serves as a source of ions which are available to the spores and can sustain rhizoid elongation, even when the external medium is deficient. Electron micrographs show that there are structural differences in the rhizoid wall between perine-free spores germinated on distilled H2O or on nutrient solutions, and also a difference in the number of vesicles in the apical cytoplasm. Localization of Mg2+ and Ca2+ in the elongating rhizoid can be visualized with chlorotetracycline fluorescence. No concentration of these ions can be detected by this technique in the small rhizoid initial cell before cell elongation begins. Images Fig. 3 Fig. 4 PMID:16662915

  12. Mate Finding, Sexual Spore Production, and the Spread of Fungal Plant Parasites.

    PubMed

    Hamelin, Frédéric M; Castella, François; Doli, Valentin; Marçais, Benoît; Ravigné, Virginie; Lewis, Mark A

    2016-04-01

    Sexual reproduction and dispersal are often coupled in organisms mixing sexual and asexual reproduction, such as fungi. The aim of this study is to evaluate the impact of mate limitation on the spreading speed of fungal plant parasites. Starting from a simple model with two coupled partial differential equations, we take advantage of the fact that we are interested in the dynamics over large spatial and temporal scales to reduce the model to a single equation. We obtain a simple expression for speed of spread, accounting for both sexual and asexual reproduction. Taking Black Sigatoka disease of banana plants as a case study, the model prediction is in close agreement with the actual spreading speed (100 km per year), whereas a similar model without mate limitation predicts a wave speed one order of magnitude greater. We discuss the implications of these results to control parasites in which sexual reproduction and dispersal are intrinsically coupled. PMID:27066983

  13. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects. PMID:25442289

  14. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  15. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores

    PubMed Central

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O.; Carlin, Frédéric

    2015-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. PMID:26497467

  16. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    PubMed

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2016-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. PMID:26497467

  17. Dihydroxynaphthalene-based mimicry of fungal melanogenesis for multifunctional coatings.

    PubMed

    Jeon, Jong-Rok; Le, Thao Thanh; Chang, Yoon-Seok

    2016-05-01

    Material-independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene-based fungal melanin mimetic, which exhibit a catechol-free structure, can act as a coating agent for material-independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7-dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared-attenuated total reflectance and X-ray photoelectron spectroscopy, bactericidal action, charge-dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C-O coupling and C-C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7-DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin-like polymerization could be used to co-immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7-DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7-DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7-DHN) illuminate its potential applications as bactericidal, radical-scavenging and pollutant-sorbing agents. PMID:26833568

  18. Aerodynamic characteristics and respiratory deposition of fungal fragments

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  19. CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation.

    PubMed Central

    Henriques, A O; Beall, B W; Moran, C P

    1997-01-01

    We cloned and characterized a gene, cotM, that resides in the 173 degrees region of the Bacillus subtilis chromosome and is involved in spore outer coat assembly. We found that expression of the cotM gene is induced during development under sigma K control and is negatively regulated by the GerE transcription factor. Disruption of the cotM gene resulted in spores with an abnormal pattern of coat proteins. Electron microscopy revealed that the outer coat in cotM mutant spores had lost its multilayered type of organization, presenting a diffuse appearance. In particular, significant amounts of material were absent from the outer coat layers, which in some areas had a lamellar structure more typical of the inner coat. Occasionally, a pattern of closely spaced ridges protruding from its surface was observed. No deficiency associated with the inner coat or any other spore structure was found. CotM is related to the alpha-crystallin family of low-molecular-weight heat shock proteins, members of which can be substrates for transglutaminase-mediated protein cross-linking. CotM was not detected among the extractable spore coat proteins. These observations are consistent with a model according to which CotM is part of a cross-linked insoluble skeleton that surrounds the spore, serves as a matrix for the assembly of additional outer coat material, and confers structural stability to the final structure. PMID:9068633

  20. Spore Resistance Properties.

    PubMed

    Setlow, Peter

    2014-10-01

    Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus. PMID:26104355

  1. Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain

    NASA Astrophysics Data System (ADS)

    Hollins, P. D.; Kettlewell, P. S.; Atkinson, M. D.; Stephenson, D. B.; Corden, J. M.; Millington, W. M.; Mullins, J.

    Cladosporium conidia have been shown to be important aeroallergens in many regions throughout the world, but annual spore concentrations vary considerably between years. Understanding these annual fluctuations may be of value in the clinical management of allergies. This study investigates the number of days in summer when spore concentration exceeds the allergenic threshold in relation to regional temperature and precipitation at two sites in England and Wales over 27 years. Results indicate that number of days in summer when the Cladosporium spores are above the allergenic concentration is positively correlated with regional temperature and negatively correlated with precipitation for both sites over the study period. Further analysis used a winter North Atlantic Oscillation index to explore the potential for long-range forecasting of the aeroallergen. For both spore measurement sites, a positive correlation exists between the winter North Atlantic Oscillation index and the number of days in summer above the allergenic threshold for Cladosporium spore concentration.

  2. ANALYSIS OF FUNGAL SPORE MYCOTOXIN AND THE RELATIONSHIP BETWEEN SPORE SURFACE AREA AND MYCOTOXIN CONTENT UTILIZING A PROTEIN TRANSLATION INHIBITION ASSAY

    EPA Science Inventory

    Due to mounting evidence suggesting that biological contamination in the built environment may cause a myriad of adverse health effects, research aimed at understanding the potential exposure to fungal organisms and their metabolites is of utmost importance. To this end we utiliz...

  3. The RodA hydrophobin on Aspergillus fumigatus spores masks Dectin-1 and Dectin-2 dependent responses and enhances fungal survival in vivo

    PubMed Central

    de Jesus Carrion, Steven; Leal, Sixto M.; Ghannoum, Mahmoud A.; Pearlman, Eric

    2014-01-01

    Aspergillus and Fusarium species are important causes of fungal infections worldwide. Airborne spores (conidia) of these filamentous fungi express a surface protein that confers hydrophobicity (hydrophobin), and which covers cell wall components that would otherwise induce a host immune cell response. Using a mutant Aspergillus fumigatus strain that does not express the RodA hydrophobin (ΔrodA), and Aspergillus and Fusarium conidia from clinical isolates that were treated with hydrofluoric acid (HF, which removes the A. fumigatus RodA protein), we observed increased surface exposure of β1,3-glucan and α-mannose on Aspergillus and Fusarium conidia. We also found that ΔrodA and HF treated conidia stimulate significantly higher NF-κB p65 nuclear translocation and cytokine production by macrophages from C57BL/6, but not from Dectin-1−/− or Dectin-2−/− mice. Using a murine model of A. fumigatus corneal infection, we found that ΔrodA conidia exhibited increased cytokine production, neutrophil infiltration, and more rapid fungal clearance from C57BL/6 corneas compared with the parent G10 strain, which was dependent on Dectin-1 and Dectin-2. Together, these findings identify the hydrophobin RodA as a virulence factor that masks Dectin-1 and Dectin-2 recognition of conidia, resulting in impaired neutrophil recruitment to the cornea and increased fungal survival and clinical disease. PMID:23926321

  4. Fifth international fungus spore conference

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  5. Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2013-10-01

    Spores of coprophilous fungi, and in particular those of Sporormiella, are a routinely used proxy for detecting late Quaternary herbivore extinction events in sedimentary records. Spore abundance is typically quantified as a percentage of the total, or dryland, pollen sum. Although this is a quick method that does not require the development of site-specific age-depth models, it relies on stable pollen accumulation rates and is therefore highly sensitive to changes in vegetation. This may lead to incorrect placement of extinction events in sedimentary records, particularly when they occur contemporaneously with major climatic/vegetation transitions. We suggest that the preferred method of quantification should be accumulation rate, and that pollen abundance data should also be presented, particularly for periods of major vegetation change. This approach provides a more reliable record of past herbivore abundance independent of vegetation change, allowing extinction events to be more accurately placed in stratigraphic sequences.

  6. Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England

    NASA Astrophysics Data System (ADS)

    Sadyś, M.; Skjøth, C. A.; Kennedy, R.

    2014-02-01

    We propose here the hypothesis that all of United Kingdom (UK) is likely to be affected by Ganoderma sp. spores, an important plant pathogen. We suggest that the main sources of this pathogen, which acts as a bioaerosol, are the widely scattered woodlands in the country, although remote sources must not be neglected. The hypothesis is based on related studies on bioaerosols and supported by new observations from a non-forest site and model calculations to support our hypothesis.

  7. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  8. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  9. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  10. Regulation of Pathogenic Spore Germination by CgRac1 in the Fungal Plant Pathogen Colletotrichum gloeosporioides ▿ ‡

    PubMed Central

    Nesher, Iris; Minz, Anna; Kokkelink, Leonie; Tudzynski, Paul; Sharon, Amir

    2011-01-01

    Colletotrichum gloeosporioides is a facultative plant pathogen: it can live as a saprophyte on dead organic matter or as a pathogen on a host plant. Different patterns of conidial germination have been recognized under saprophytic and pathogenic conditions, which also determine later development. Here we describe the role of CgRac1 in regulating pathogenic germination. The hallmark of pathogenic germination is unilateral formation of a single germ tube following the first cell division. However, transgenic strains expressing a constitutively active CgRac1 (CA-CgRac1) displayed simultaneous formation of two germ tubes, with nuclei continuing to divide in both cells after the first cell division. CA-CgRac1 also caused various other abnormalities, including difficulties in establishing and maintaining cell polarity, reduced conidial and hyphal adhesion, and formation of immature appressoria. Consequently, CA-CgRac1 isolates were completely nonpathogenic. Localization studies with cyan fluorescent protein (CFP)-CgRac1 fusion protein showed that the CgRac1 protein is abundant in conidia and in hyphal tips. Although the CFP signal was equally distributed in both cells of a germinating conidium, reactive oxygen species accumulated only in the cell that produced a germ tube, indicating that CgRac1 was active only in the germinating cell. Collectively, our results show that CgRac1 is a major regulator of asymmetric development and that it is involved in the regulation of both morphogenesis and nuclear division. Modification of CgRac1 activity disrupts the morphogenetic program and prevents fungal infection. PMID:21460190

  11. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states.

    PubMed

    Inglis, Diane O; Voorhies, Mark; Hocking Murray, Davina R; Sil, Anita

    2013-06-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  12. The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat

    PubMed Central

    Motomura, Kei; Matsuyama, Satoshi; Abdelhamid, Mohamed A. A.; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2015-01-01

    ABSTRACT Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a bicistronic operon with its paralog, cotB2, the product of which, however, lacks the C-terminal zwitterionic sequence. A ΔcotB1B2 mutant strain grew as fast and formed spores at the same rate as wild-type bacteria but did not show biosilicification. Complementation analysis showed that CotB1, but neither CotB2 nor C-terminally truncated mutants of CotB1, could restore the biosilicification activity in the ΔcotB1B2 mutant, suggesting that the C-terminal zwitterionic sequence of CotB1 is essential for the process. We found that the kinetics of CotB1 expression, as well as its localization, correlated well with the time course of biosilicification and the location of the deposited silica. To our knowledge, this is the first report of a protein directly involved in prokaryotic biosilicification. IMPORTANCE Biosilicification is the process by which organisms incorporate soluble silicate in the form of insoluble silica. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification was not studied until recently. We previously demonstrated that biosilicification occurs in Bacillus cereus and its close relatives, and that silica is deposited in and around a spore coat layer as a protective coating against acid

  13. Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy.

    PubMed

    Liu, Huiqing; Qiao, Haiyan; Krajcikova, Daniela; Zhang, Zhe; Wang, Hongda; Barak, Imrich; Tang, Jilin

    2016-08-01

    The spore of Bacillus subtilis, a dormant type of cell, is surrounded by a complex multilayered protein structure known as the coat. It is composed of over 70 proteins and essential for the spore to withstand extreme environmental conditions and allow germination under favorable conditions. However, understanding how the properties of the coat arise from the interactions among all these proteins is an important challenge. Moreover, many specific protein-protein interactions among the coat proteins are crucial for coat assembly. In this study, atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) was applied to investigate the interaction as a dynamic process between two morphogenetic coat proteins, CotE and CotZ. The unbinding force and kinetic parameters characterizing the interaction between CotE and CotZ were obtained. It is found that there is a strong affinity between CotE and CotZ. Furthermore, the assembly behaviors of CotE and CotZ, individually or in combination, were studied by AFM at solid-liquid interfaces. Our results revealed that CotE-CotZ assembly is dependent on their molar ratios and the interaction between CotE and CotZ involves in the CotE-CotZ assembly. PMID:27320701

  14. Ultrastructure and properties of Paecilomyces lilacinus spores.

    PubMed

    Holland, R J; Gunasekera, T S; Williams, K L; Nevalainen, K M H

    2002-10-01

    Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability. PMID:12489777

  15. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection.

    PubMed

    Nugaeva, Natalia; Gfeller, Karin Y; Backmann, Natalija; Lang, Hans Peter; Düggelin, Marcel; Hegner, Martin

    2005-12-15

    We demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays. We exploited the specific biomolecular interactions of surface grafted proteins with the molecular structures on the fungal cell surface. It was found that these proteins have different affinities and efficiencies to bind the spores. Maximum spore immobilization, germination and mycelium growth was observed on the immunoglobulin G functionalized cantilever surfaces. We show that spore immobilization and germination of the mycelial fungus A. niger and yeast S. cerevisiae led to shifts in resonance frequency within a few hours as measured by dynamically operated cantilever arrays, whereas conventional techniques would require several days. The biosensor could detect the target fungi in a range of 10(3) - 10(6) CFUml(-1). The measured shift is proportional to the mass of single fungal spores and can be used to evaluate spore contamination levels. Applications lie in the field of medical and agricultural diagnostics, food- and water-quality monitoring. PMID:16257652

  16. NbHSWP11, a microsporidia Nosema bombycis protein, localizing in the spore wall and membranes, reduces spore adherence to host cell BME.

    PubMed

    Yang, Donglin; Dang, Xiaoqun; Peng, Pai; Long, Mengxian; Ma, Cheng; Qin, Junjie Jia Guowei; Wu, Haijing; Liu, Tie; Zhou, Xiaowei; Pan, Guoqing; Zhou, Zeyang

    2014-10-01

    Microsporidia are obligate intracellular parasites, and a derivative of fungi, which harbor a rigid spore wall to resist adverse environmental pressures. The spore wall protein, which is thought to be the first and direct protein interacting with the host cell, may play a key role in the process of microsporidia infection. In this study, we report a protein, NbHSWP11, with a dnaJ domain. The protein also has 6 heparin-binding motifs which are known to interact with extracellular glycosaminoglycans. Syntenic analysis indicated that gene loci of Nbhswp11 are conserved and syntenic between Nosema bombycis and Nosema ceranae. Phylogenetic tree analysis showed that Nbhswp11 clusters with fungal dnaJ proteins and has 98% identity with an N. bombycis dnaJ protein. Nbhswp11 was transcribed throughout the entire life stages, and gradually increased during 1-7 days, in a silkworm that was infected by N. bombycis, as determined by reverse-transcription PCR (RT-PCR). The recombinant protein NbHSWP11 (rSWP11-HIS) was obtained and purified using gene cloning and prokaryotic expression. Western blotting analysis displayed NbHSWP11 expressed in the total mature spore proteins and spore coat proteins. Indirect immunofluorescence assay revealed NbHSWP11 located at the spore wall of mature spores and the spore coats. Furthermore, immune electron microscopy showed that NbHSWP11 localized in the cytoplasm of the sporont. Within the developmental process of N. bombycis, a portion of NbHSWP11 is targeted to the spore wall of sporoblasts and mature spores. However, most of NbHSWP11 distributes on the membraneous structures of the sporoblast and mature spore. In addition, using a host cell binding assay, native protein NbHSWP11 in the supernatant of total soluble mature spore proteins is shown to bind to the host cell BmE surface. Finally, an antibody blocking assay showed that purified rabbit antibody of NbHSWP11 inhibits spore adherence and decreases the adherence rate of spores by 20

  17. Fungal allergens.

    PubMed Central

    Horner, W E; Helbling, A; Salvaggio, J E; Lehrer, S B

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immunotherapy of allergy to fungi require well-characterized or standardized extracts that contain the relevant allergen(s) of the appropriate fungus. Production of standardized extracts is difficult since fungal extracts are complex mixtures and a variety of fungi are allergenic. Thus, the currently available extracts are largely nonstandardized, even uncharacterized, crude extracts. Recent significant progress in isolating and characterizing relevant fungal allergens is summarized in the present review. Particularly, some allergens from the genera Alternaria, Aspergillus, and Cladosporium are now thoroughly characterized, and allergens from several other genera, including some basidiomycetes, have also been purified. The availability of these extracts will facilitate definitive studies of fungal allergy prevalence and immunotherapy efficacy as well as enhance both the diagnosis and therapy of fungal allergy. PMID:7621398

  18. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  19. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment.

    PubMed

    Rieux, Adrien; Soubeyrand, Samuel; Bonnot, François; Klein, Etienne K; Ngando, Josue E; Mehl, Andreas; Ravigne, Virginie; Carlier, Jean; de Lapeyre de Bellaire, Luc

    2014-01-01

    Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy. PMID:25116080

  20. Fifth international fungus spore conference. [Abstracts]: Final technical report

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  1. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  2. Main airborne Ascomycota spores: characterization by culture, spore morphology, ribosomal DNA sequences and enzymatic analysis.

    PubMed

    Oliveira, Manuela; Amorim, M Isabel; Ferreira, Elsa; Delgado, Luís; Abreu, Ilda

    2010-04-01

    The aim of this work was to identify the main allergy-related Ascomycetes fungal spores present in the atmosphere of Porto, using different and complementary techniques. The atmospheric sampling, performed in the atmosphere of Porto (Portugal) from August 2006 to July 2008, indicated Cladosporium, Penicillium, Aspergillus and Alternaria as the main fungal spore taxa. Alternaria and Cladosporium peaks were registered during summer. Aspergillus and Penicillium highest values were registered from late winter to early spring. Additionally, the Andersen sampler allowed the culture and isolation of the collected viable spores subsequently used for different identification approaches. The internal-transcribed spacer region of the nuclear ribosomal repeat unit sequences of airborne Ascomycetes fungi isolates revealed 11 taxonomically related fungal species. Among the identified taxa, Penicillum and Aspergillus presented the highest diversity, while only one species of Cladosporium and Alternaria, respectively, were identified. All selected fungal spore taxa possessed phosphatase, esterase, leucine arylamidase and beta-glucosidase enzymatic activity, while none had lipase, cystine arylamidase, trypsin or beta-glucuronidase activity. The association between the spore cell wall morphology, DNA-based techniques and enzymatic activity approaches allowed a more reliable identification procedure of the airborne Ascomycota fungal spores. PMID:20143229

  3. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.

    PubMed

    Rozema, J; Blokker, P; Mayoral Fuertes, M A; Broekman, R

    2009-09-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole (1974-present day), but also on the development and variation of the stratospheric ozone layer and solar surface UV during the evolution of life on Earth. Sporopollenin and cutin are highly resistant biopolymers, preserving well in the geological record and contain the phenolic acids p-coumaric (pCA) and ferulic acid (FA). pCA and FA represent a good perspective for a plant-based proxy for past surface UV radiation since they are induced by solar UV-B via the phenylpropanoid pathway (PPP). UV-B absorption by these monomers in the wall of pollen and spores and in cuticles may prevent damage to the cellular metabolism. Increased pCA and FA in pollen of Vicia faba exposed to enhanced UV-B was found in greenhouse experiments. Further correlative evidence comes from UV-absorbing compounds in spores from 1960-2000 comparing exposure of land plants (Lycopodium species) to solar UV before and during ozone depletion and comparing plants from Antarctica (severe ozone depletion), Arctic, and other latitudes with less or negligible ozone depletion. Wood-derived compounds guaiacyl (G), syringyl (S), and p-hydroxyphenyl (P) are produced via the PPP. The proportions of P, G, and S in the lignin differ between various plant groups (e.g. dicotyledons/monocotyledons, gymnosperms/angiosperms). It is hypothesized that this lignin composition and derived physiological and physical properties of lignin (such as tree-ring wood density) has potential as a proxy for palaeo-UV climate. However validation by exposure of trees to enhanced UV is lacking. pCA and FA also form part of cutin polymers and are found in extant and fossil Ginkgo leaf cuticles as shown by thermally-assisted hydrolysis and

  4. Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cladosporium cucumerinum spore germination in vitro depended on spore suspension density. Different fungal isolates displayed maximum germination at different spore concentrations. For one isolate, maximum spore density was observed at both 18 and 25 °C, although germination percentage increased sli...

  5. Lyophilized spore dispenser

    NASA Technical Reports Server (NTRS)

    Jessup, A. D. (Inventor)

    1973-01-01

    A lyophilized spore dispenser is provided which produces a finely divided, monoparticulate cloud of bacterial spores. The spores are contained within a tightly sealed chamber, and a turbulator orifice connected to an air supply source provides a jet of air which stirs up the spores and causes the spores to be suspended in eddy currents within the chamber. This air jet also produces a positive pressure within the chamber which forces the spores out of an injection orifice.

  6. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis

    PubMed Central

    Jones, C.A.; Padula, N.L.; Setlow, P.

    2005-01-01

    Aims To elucidate the factors influencing the sensitivity of Bacillus subtilis spores to killing and disruption by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. Methods and Results Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. Conclusions Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore’s cortex-lytic enzymes. Significance and Importance This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion. PMID:16313421

  7. Mushrooms use convectively created airflows to disperse their spores.

    PubMed

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-03-15

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal--that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  8. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  9. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  10. Revival of biocide-treated spores of Bacillus subtilis.

    PubMed

    Williams, N D; Russell, A D

    1993-07-01

    Spores of Bacillus subtilis NCTC 8236 were treated with biocides and then subjected to various revival procedures. Sodium hydroxide (optimum concentration 25 mmol l-1) revived a small portion of glutaraldehyde-treated spores but not of spores exposed to formaldehyde, polyvinylpyrrolidone-iodine (PVP-I), Lugol's iodine, sodium hypochlorite or sodium dichloroisocyanurate (NaDCC). Post-treatment heat shock (at 70 degrees or 80 degrees C) increased the numbers of colony-forming units (cfu) of formaldehyde-injured spores. Coat-extraction procedures had the greatest effect on iodine-pretreated spores. The uptake of iodine and chlorine was more rapid and occurred to a greater extent with outgrowing, germinating and especially coat-deficient spores than with mature, resting spores. PMID:7690020

  11. Fungal arthritis

    MedlinePlus

    ... and irritation (inflammation) of a joint by a fungal infection. It is also called mycotic arthritis. Causes Fungal ... symptoms of fungal arthritis. Prevention Thorough treatment of fungal infections elsewhere in the body may help prevent fungal ...

  12. Development of Fungal Inocula for Bioaugmentation of Contaminated Soils

    PubMed Central

    Lestan, D.; Lamar, R. T.

    1996-01-01

    This report describes novel fungal inocula for bioaugmentation of soils contaminated with hazardous organic compounds. The inocula are in the form of pelleted solid substrates coated with a sodium alginate suspension of fungal spores or mycelial fragments and incubated until overgrown with the mycelium of selected lignin-degrading fungi. The organisms evaluated were Phanerochaete chrysosporium (BKM F-1767, ATCC 42725), P. sordida (HHB-8922-Sp), Irpex lacteus (Mad-517, ATCC 11245), Bjerkandera adusta (FP-135160-Sp, ATCC 62023), and Trametes versicolor (MD-277). The pelleted fungal inocula resisted competition and proliferation from indigenous soil microbes, were lower in moisture content than current fungal inocula, and had sufficient mechanical strength to allow handling and introduction into the soil without a change in the mechanical consistency of the pellets. Inoculated at a rate of 3% in artificially contaminated nonsterile soil, I. lacteus, B. adusta, and T. versicolor removed 86, 82, and 90%, respectively, of the pentachlorophenol in 4 weeks. A mathematical model was developed to explain moisture distribution in a hydrogel-coated pelleted substrate. PMID:16535337

  13. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  14. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  15. Surface Display of Recombinant Proteins on Bacillus subtilis Spores

    PubMed Central

    Isticato, Rachele; Cangiano, Giuseppina; Tran, Hoa T.; Ciabattini, Annalisa; Medaglini, Donata; Oggioni, Marco R.; De Felice, Maurilio; Pozzi, Gianni; Ricca, Ezio

    2001-01-01

    We developed a novel surface display system based on the use of bacterial spores. A protein of the Bacillus subtilis spore coat, CotB, was found to be located on the spore surface and used as fusion partner to express the 459-amino-acid C-terminal fragment of the tetanus toxin (TTFC). Western, dot blot and fluorescent-activated cell sorting analyses were used to monitor TTFC surface expression on purified spores. We estimated that more than 1.5 × 103 TTFC molecules were exposed on the surface of each spore and recognized by TTFC-specific antibodies. The efficient surface presentation of the heterologous protein, together with the simple purification procedure and the high stability and safety record of B. subtilis spores, makes this spore-based display system a potentially powerful approach for surface expression of bioactive molecules. PMID:11591673

  16. Intervention study of airborne fungal spora in homes with portable HEPA filtration units.

    PubMed

    Cheong, C D; Neumeister-Kemp, H G; Dingle, P W; Hardy, G St J

    2004-11-01

    The concentrations and composition of airborne fungal spores in homes fitted with portable HEPA filtration units were examined to provide information to evaluate the importance of varying levels of fungal spores in residential environments in Perth, Australia. A novel method for simulating activity/impaction on carpeted environments was also investigated. Reductions in fungal (35%) and particulate (38%) levels were achieved in the air filter homes. Penicillium, Cladosporium and yeasts were the most common and widespread fungi recovered indoors and outdoors. Fungal range decreased over the study period but this could be due to an overall reduced dissemination of spores (less spores in the air). PMID:15536499

  17. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, Beauveria bassiana.

    PubMed

    Fan, Yanhua; Ortiz-Urquiza, Almudena; Garrett, Timothy; Pei, Yan; Keyhani, Nemat O

    2015-11-01

    Eukaryotic cells store lipids in membrane-encased droplets. The entomopathogenic fungus, Beauveria bassiana, initiates infection via attachment of its spores to the epicuticle or waxy layer of target insects, degrading and assimilating host surface hydrocarbons, carbohydrates and proteins. Caleosins are components of the proteinaceous coat of lipid droplets and a single B. bassiana caleosin homologue, Bbcal1, was identified and characterized. The BbCal1 sequence contained an EF-hand Ca(2+) binding domain and potential hydrophobic stretches similar to those found in plant caleosins, along with a proline knot motif defined by only two proline residues. Targeted gene inactivation of Bbcal1 did not appear to affect spore germination, growth on lipid substrates or stress response, but changes in lipid, vacuole and endoplasmic reticulum/multilamellar vesicle-like structures, and altered cellular lipid profiles were seen in conidia grown on a variety of substrates including potato dextrose agar, olive oil, glyceride trioleate, oleic acid and the alkane, C16 . The ΔBbcal1 mutant produced more compact assemblages of conidia, displayed a reduced and delayed spore dispersal phenotype, and showed decreased virulence in insect bioassays using the greater wax moth, Galleria mellonella. Our data indicate novel functions for caleosins in fungal virulence, spore development and the trafficking and/or turnover of lipid-related structures. PMID:26235819

  18. Bioherbicidal activity from washed spores of Myrothecium verrucaria.

    PubMed

    Weaver, Mark A; Boyette, C Douglas; Hoagland, Robert E

    2012-05-01

    The fungal plant pathogen, Myrothecium verrucaria, is highly virulent to several important weed species and has potential utility as a bioherbicide. However the production of macrocyclic trichothecene mycotoxins by this fungus presents significant safety concerns. It was discovered that trichothecenes are removed from M. verrucaria spores by repeated washes with water. These washed spores retained bioherbicidal efficacy against kudzu when tested in field trials and on sicklepod when tested under greenhouse conditions. Changes in the growth medium combined with washing spores with water resulted in greater than 95% reduction in roridin A and verrucarin A. Washing spores reduced trichothecene concentrations in spore preparations with no significant effect on plant biomass reduction, thus demonstrating the possibility of M. verrucaria formulations with improved safety to researchers, producers and applicators. PMID:22806015

  19. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.

    2012-02-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, next to nothing is known about this deep, concealed biosphere. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (~50-200 μm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few μm:s to ∼20 μm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma, and probably still is. It is suggested that near future ocean drilling programs prioritize sampling of live species to better understand this concealed biosphere.

  20. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.

    2012-09-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50-200 µm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  1. Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores

    PubMed Central

    Cermak, Nathan; Feijó Delgado, Francisco; Setlow, Barbara; Setlow, Peter

    2015-01-01

    ABSTRACT We use a suspended microchannel resonator to characterize the water and small-molecule permeability of Bacillus subtilis spores based on spores' buoyant mass in different solutions. Consistent with previous results, we found that the spore coat is not a significant barrier to small molecules, and the extent to which small molecules may enter the spore is size dependent. We have developed a method to directly observe the exchange kinetics of intraspore water with deuterium oxide, and we applied this method to wild-type spores and a panel of congenic mutants with deficiencies in the assembly or structure of the coat. Compared to wild-type spores, which exchange in approximately 1 s, several coat mutant spores were found to have relatively high water permeability with exchange times below the ∼200-ms temporal resolution of our assay. In addition, we found that the water permeability of the spore correlates with the ability of spores to germinate with dodecylamine and with the ability of TbCl3 to inhibit germination with l-valine. These results suggest that the structure of the coat may be necessary for maintaining low water permeability. IMPORTANCE Spores of Bacillus species cause food spoilage and disease and are extremely resistant to standard decontamination methods. This hardiness is partly due to spores' extremely low permeability to chemicals, including water. We present a method to directly monitor the uptake of molecules into B. subtilis spores by weighing spores in fluid. The results demonstrate the exchange of core water with subsecond resolution and show a correlation between water permeability and the rate at which small molecules can initiate or inhibit germination in coat-damaged spores. The ability to directly measure the uptake of molecules in the context of spores with known structural or genetic deficiencies is expected to provide insight into the determinants of spores' extreme resistance. PMID:26483518

  2. Indoor fungal exposure.

    PubMed

    Rogers, Christine A

    2003-08-01

    Fungi affect humans in complex ways and are capable of eliciting a number of disease responses, such as infectious, allergic, and irritant and toxic effects. Fungal exposure is unequivocally associated with exacerbations of asthma, although the role of fungi in causing the disease is yet to be determined. The association between home dampness and respiratory health effects is strong, and fungal exposure is suspected to be associated with this linkage. Fear of toxin exposures has generated debate over the possible toxic health effects of airborne fungi; however, several recent reviews discount the health impacts of mycotoxin through indoor exposures. Nevertheless, fungal contamination of indoor environments is undesirable. Knowledge of sources and characteristics of fungal spore release and dispersal are important for understanding the processes of exposure. Environmental monitoring for fungi and their disease agents are important aspects of exposure assessment, but few guidelines exist for interpreting their health impacts. Much work is needed in isolating, characterizing and standardizing fungal disease agents to properly assess the prevalence of fungal health effects. PMID:14524388

  3. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  4. Hydrazine inactivates bacillus spores

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  5. Identification of a New Gene Essential for Germination of Bacillus subtilis Spores with Ca2+-Dipicolinate

    PubMed Central

    Ragkousi, Katerina; Eichenberger, Patrick; van Ooij, Christiaan; Setlow, Peter

    2003-01-01

    Bacillus subtilis spores can germinate with a 1:1 chelate of Ca2+ and dipicolinic acid (DPA), a compound present at high levels in the spore core. Using a genetic screen to identify genes encoding proteins that are specifically involved in spore germination by Ca2+-DPA, three mutations were identified. One was in the gene encoding the cortex lytic enzyme, CwlJ, that was previously shown to be essential for spore germination by Ca2+-DPA. The other two were mapped to an open reading frame, ywdL, encoding a protein of unknown function. Analysis of ywdL expression showed that the gene is expressed during sporulation in the mother cell compartment of the sporulating cell and that its transcription is σE dependent. Functional characterization of YwdL demonstrated that it is a new spore coat protein that is essential for the presence of CwlJ in the spore coat. Assembly of YwdL itself into the spore coat is dependent on the coat morphogenetic proteins CotE and SpoIVA. However, other than lacking CwlJ, ywdL spores have no obvious defect in their spore coat. Because of the role for YwdL in a part of the spore germination process, we propose renaming ywdL as a spore germination gene, gerQ. PMID:12644503

  6. In vitro high-resolution structural dynamics of single germinating bacterial spores

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2006-11-14

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  7. In vitro high-resolution structural dynamics of single germinating bacterial spores

    SciTech Connect

    Lawrence Livermore National Laboratory

    2006-12-11

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  8. Cryopreservation of fern spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  9. Non-Seasonal Variation of Airborne Aspergillus Spore Concentration in a Hospital Building.

    PubMed

    Oberle, Michael; Reichmuth, Markus; Laffer, Reto; Ottiger, Cornelia; Fankhauser, Hans; Bregenzer, Thomas

    2015-11-01

    Nosocomial fungal infections are gaining increased attention from infectiologists. An adequate investigation into the levels of airborne Aspergillus and other fungal spores in hospital settings, under normal conditions, is largely unknown. We monitored airborne spore contamination in a Swiss hospital building in order to establish a seasonally-dependent base-line level. Air was sampled using an impaction technique, twice weekly, at six different locations over one year. Specimens were seeded in duplicate on Sabouraud agar plates. Grown colonies were identified to genus levels. The airborne Aspergillus spore concentration was constantly low throughout the whole year, at a median level of 2 spores/m³ (inter-quartile range = IQR 1-4), and displayed no seasonal dependency. The median concentration of other fungal spores was higher and showed a distinct seasonal variability with the ambient temperature change during the different seasons: 82 spores/m³ (IQR 26-126) in summer and 9 spores/m³ (IQR 6-15) in winter. The spore concentration varied considerably between the six sampling sites in the building (10 to 26 spores/m³). This variability may explain the variability of study results in the literature. PMID:26516890

  10. Non-Seasonal Variation of Airborne Aspergillus Spore Concentration in a Hospital Building

    PubMed Central

    Oberle, Michael; Reichmuth, Markus; Laffer, Reto; Ottiger, Cornelia; Fankhauser, Hans; Bregenzer, Thomas

    2015-01-01

    Nosocomial fungal infections are gaining increased attention from infectiologists. An adequate investigation into the levels of airborne Aspergillus and other fungal spores in hospital settings, under normal conditions, is largely unknown. We monitored airborne spore contamination in a Swiss hospital building in order to establish a seasonally-dependent base-line level. Air was sampled using an impaction technique, twice weekly, at six different locations over one year. Specimens were seeded in duplicate on Sabouraud agar plates. Grown colonies were identified to genus levels. The airborne Aspergillus spore concentration was constantly low throughout the whole year, at a median level of 2 spores/m3 (inter-quartile range = IQR 1–4), and displayed no seasonal dependency. The median concentration of other fungal spores was higher and showed a distinct seasonal variability with the ambient temperature change during the different seasons: 82 spores/m3 (IQR 26–126) in summer and 9 spores/m3 (IQR 6–15) in winter. The spore concentration varied considerably between the six sampling sites in the building (10 to 26 spores/m3). This variability may explain the variability of study results in the literature. PMID:26516890

  11. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops.

    PubMed

    Hassett, Maribeth O; Fischer, Mark W F; Money, Nicholas P

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  12. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops

    PubMed Central

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  13. Lipids stimulate spore germination in the entomopathogenic ascomycete Ascosphaera aggregata.

    PubMed

    James, R R; Buckner, J S

    2004-10-01

    The alfalfa leafcutting bee (Megachile rotundata) is solitary and managed on a large scale for pollination of alfalfa seed crops. The bees nest in holes drilled in wood or polystyrene blocks, and their larvae are highly prone to a fungal disease called chalkbrood. The most prevalent form of chalkbrood is caused by Ascosphaera aggregata, but this ascomycete is difficult to culture. Hyphae will grow on standard fungal media, but spore germination is difficult to achieve and highly variable. We found that germination can be enhanced with oils. Lipids derived from plants and bee larvae increased germination from 50% (without oil) to 75-85% (with oil). Percent germination was significantly greater in the presence of lipids but germination was not significantly different when different oils, including mineral oil, were used. A. aggregata spores oriented along the oil-aqueous interface in the broth in a polar fashion, with swelling and germ tube formation always occurring into the aqueous portion of the broth. The other half of the spore tended to attach to a lipid droplet, where it remained, without swelling, during germ tube formation. The physical attachment of spores to the oil-aqueous interface is what most probably stimulates spore germination, as opposed to some nutritional stimulation. However, further research is needed to determine if and where the spores encounter such an interface when germinating in the host gut, where germination normally occurs. PMID:15645171

  14. Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage.

    PubMed

    de Oliveira, Carlos Eduardo Vasconcelos; Magnani, Marciane; de Sales, Camila Veríssimo; Pontes, Alline Lima de Souza; Campos-Takaki, Galba Maria; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite

    2014-12-01

    The aim of this study was to extract chitosan (CHI) from Mucor circinelloides UCP 050 grown in a corn steep liquor (CSL)-based medium under optimized conditions and to assess the efficacy of the obtained CHI to inhibit the post-harvest pathogenic fungi Aspergillus niger URM 5162 and Rhizopus stolonifer URM 3482 in laboratory media and as a coating on table grapes (Vitis labrusca L.). The effect of CHI coating on some physical, physicochemical and sensory characteristics of the fruits during storage was assessed. The greatest amount of CHI was extracted from M. circinelloides UCP 050 grown in medium containing 7 g of CSL per 100 mL at pH 5.5 with rotation at 180 rpm. CHI from M. circinelloides UCP 050 caused morphological changes in the spores of the fungal strains tested and inhibited mycelial growth and spore germination. CHI coating delayed the growth of the assayed fungal strains in artificially infected grapes, as well as autochthonous mycoflora during storage. CHI coating preserved the quality of grapes during storage, as measured by their physical, physicochemical and sensory attributes. These results demonstrate that edible coatings derived from M. circinelloides CHI could be a useful alternative for controlling pathogenic fungi and maintaining the post-harvest quality of table grapes. PMID:25084665

  15. Microplate Assay for Colletotrichum Spore Production

    PubMed Central

    Slade, S. J.; Harris, R. F.; Smith, C. S.; Andrews, J. H.; Nordheim, E. V.

    1987-01-01

    A simple microplate method was devised to assay spore production by Colletotrichum gloeosporioides by growing the fungus on 1 ml of solid media in the wells of tissue culture plates. Growth and sporulation on microplates were compared at days 4 and 8 with growth and sporulation in 100-ml liquid batch cultures that involved 11 common media. Spore production per unit volume of medium was the same for solid and liquid forms of the media. Qualitative assessment of mycelial growth measured on microplates agreed with that of growth measured in liquid cultures. The microplate assay indicated that V8 juice was the best medium and that an organic content of about 6 mg/ml was optimal for high sporulation and low mycelium production. The assay provides a convenient, rapid, and inexpensive means of screening media for the production of fungal conidia in large numbers, to be used, for example, in biological control programs. PMID:16347310

  16. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  17. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces. PMID:12573965

  18. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus

    PubMed Central

    Huang, Mingwei; Hebert, Alexander S.; Coon, Joshua J.; Hull, Christina M.

    2015-01-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote. PMID:26313153

  19. Spores of most common airborne fungi reveal no ice nucleation activity

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  20. [Sporogenesis, sporoderm and mature spore ornamentation in Lycopodiaceae].

    PubMed

    Rincon Baron, Edgar Javier; Rolleri, Cristina Hilda; Passarelli, Lilian M; Espinosa Matías, Silvia; Torres, Alba Marina

    2014-09-01

    Studies on reproductive aspects, spore morphology and ultrastructure of Lycopodiaceae are not very common in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. In order to complete existing information, adding new and broader contributions on these topics, a comparative analysis of the sporogenesis ultrastructure, with emphasis on cytological aspects of the sporocyte coat development, tapetum, monoplastidic and polyplastidic meiosis, sporoderm ontogeny and ornamentation of the mature spores, was carried out in 43 taxa of eight genera of the Lycopodiaceae: Austrolycopodium, Diphasium, Diphasiastrum, Huperzia (including Phlegmariurus), Lycopodium, Lycopodiella, Palhinhaea and Pseudolycopodiella growing in the Andes of Colombia and the Neotropics. For this study, the transmission elec- tron microscopy (TEM) samples were collected in Cauca and Valle del Cauca Departments, while most of the spores for scanning electron microscopy (SEM) analysis were obtained from herbarium samples. We followed standard preparation procedures for spore observation by TEM and SEM. Results showed that the sporocyte coat is largely composed by primary wall components; the sporocyte develop much of their metabolic activity in the production of their coat, which is retained until the spores release; protective functions for the diploid cells undergoing meiosis is postulated here for this layer. The abundance of dictyosomes in the sporocyte cytoplasm was related to the formation and development of the sporocyte coat. Besides microtubule activity, the membrane of sporocyte folds, associated with electrodense material, and would early determine the final patterns of spore ornamentation. Monoplastidic condition is common in Lycopodium s.l., whereas polyplastidic condition was observed in species of Huperzia and Lycopodiella s. l. In monoplastidic species, the tapetum presents abun- dant multivesicular bodies, while in

  1. Fungal Tests

    MedlinePlus

    ... effectiveness of treatment. For many superficial skin and yeast infections, a clinical examination of the affected person ... the chemical solution dissolves non-fungal elements; reveals yeast cells and fungal hyphae (branching filaments) on a ...

  2. Protoplast dehydration correlated with heat resistance of bacterial spores.

    PubMed Central

    Nakashio, S; Gerhardt, P

    1985-01-01

    Water content of the protoplast in situ within the fully hydrated dormant bacterial spore was quantified by use of a spore in which the complex of coat and outer (pericortex) membrane was genetically defective or chemically removed, as evidenced by susceptibility of the cortex to lysozyme and by permeability of the periprotoplast integument to glucose. Water content was determined by equilibrium permeability measurement with 3H-labeled water (confirmed by gravimetric measurement) for the entire spore, with 14C-labeled glucose for the integument outside the inner (pericytoplasm) membrane, and by the difference for the protoplast. The method was applied to lysozyme-sensitive spores of Bacillus stearothermophilus, B. subtilis, B. cereus, B. thuringiensis, and B. megaterium (four types). Comparable lysozyme-resistant spores, in which the outer membrane functioned as the primary permeability barrier to glucose, were employed as controls. Heat resistances were expressed as D100 values. Protoplast water content of the lysozyme-sensitive spore types correlated with heat resistance exponentially in two distinct clusters, with the four B. megaterium types in one alignment, and with the four other species types in another. Protoplast water contents of the B. megaterium spore types were sufficiently low (26 to 29%, based on wet protoplast weight) to account almost entirely for their lesser heat resistance. Corresponding values of the other species types were similar or higher (30 to 55%), indicating that these spores depended on factors additional to protoplast dehydration for their much greater heat resistance. PMID:3988704

  3. Walking and jumping spores

    NASA Astrophysics Data System (ADS)

    Marmottant, Philippe

    2012-02-01

    The Equisetum plants, more commonly called ``horsetail,'' emit 50-microns spores that are spherical in shape and present four hygroscopic arms. Under high humidity, the arms are retracted. But under lower humidity, less than 70%, the four arms deploy beautifully. With time-lapse image recordings, we show that under repeated cycles of dry and high humidity, the spores behave as random walkers, since they move by about their size in a different direction at every cycle. The process is apparently stochastic because of the complex shape of the arms and hysteretic friction of the arms on the ground. For some spores, a decrease in humidity level results in very fast jumps, the spores taking off at a typical velocity of a meter per second, as recorded on high-speed camera. With these jumps, they reach centimetric elevations, much larger than their size. The physical mechanism at the root of these ``Levy-flight'' jumps is still under investigation. The walking and jumping phenomena thus provide motility, which we believe is helpful for the understanding of the biological dispersion of the spores. It could also bring biomimetic inspiration to engineer new motile elastic structures.

  4. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  5. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  6. Atmospheric transport of mold spores in clouds of desert dust

    USGS Publications Warehouse

    Shinn, E.A.; Griffin, Dale W.; Seba, D.B.

    2003-01-01

    Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.

  7. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2009-11-01

    A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004-2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.

  8. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2011-03-01

    Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004-2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.

  9. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    PubMed Central

    Butzin, Xuan Yi; Troiano, Anthony J.; Coleman, William H.; Griffiths, Keren K.; Doona, Christopher J.; Feeherry, Florence E.; Wang, Guiwen; Li, Yong-qing

    2012-01-01

    As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca2+ divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP+ spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores' inner membrane. PMID:22904285

  10. Anthrax surrogate spores are destroyed by PDT mediated by phenothiazinium dyes

    NASA Astrophysics Data System (ADS)

    Demidova, Tatiana N.; Hamblin, Michael R.

    2005-04-01

    Some Gram-positive bacteria (including the causative agent of anthrax - Bacillus anthracis) survive conditions of stress and starvation by producing dormant stage spores. The spore"s multilayered capsule consists of inner and outer membranes, cortex, proteinaceous spore coat, and in some species an exosporium. These outer layers enclose dehydrated and condensed DNA, saturated with small, acid-soluble proteins. These protective structures make spores highly resistant to damage by heat, radiation, and commonly employed anti-bacterial agents. Previously Bacillus spores have been shown to be resistant to photodynamic inactivation (PDI) using dyes and light that easily destroy the corresponding vegetative bacteria, but recently we have discovered that they are susceptible to PDI. Photoinactivation, however, is only possible if phenothiazinium dyes are used. Dimethylmethylene blue, methylene blue, new methylene blue and toluidine blue O are all effective photosensitizers. Alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin and benzoporphyrin derivative are ineffective against spores even though they can easily kill vegetative cells. Spores of B. cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, while B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores and for which conventional sporicides would have unacceptable tissue toxicity.

  11. Fungal Infections

    MedlinePlus

    ... primitive organism. Mushrooms, mold and mildew are examples. Fungi live in air, in soil, on plants and ... body. Only about half of all types of fungi are harmful. Some fungi reproduce through tiny spores ...

  12. Fungal Infections

    MedlinePlus

    ... fungus. A fungus is a primitive organism. Mushrooms, mold and mildew are examples. Fungi live in air, in soil, on plants and ... body. Only about half of all types of fungi are harmful. Some fungi reproduce through tiny spores ...

  13. Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2008-11-01

    Alternaria is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we constructed predictive models for the fungal spore circulation in Szczecin, Poland. Monthly forecasting models were developed for the airborne spore concentrations of Alternaria, which is one of the most abundant fungal taxa in the area. Aerobiological sampling was conducted over 2004-2007, using a Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation; maximum and average wind speed; relative humidity; and maximum, minimum, average, and dew point temperature. The original factors as well as with lags (up to 3 days) were used as the explaining variables. Due to non-linearity and non-normality of the data set, the modelling technique applied was the artificial neural network (ANN) method. The final model was a split model with classification (spore presence or absence) followed by regression for spore seasons and log(x+1) transformed Alternaria spore concentration. All variables except maximum wind speed and precipitation were important factors in the overall classification model. In the regression model for spore seasons, close relationships were noted between Alternaria spore concentration and average and maximum temperature (on the same day and 3 days previously), humidity (with lag 1) and maximum wind speed 2 days previously. The most important variable was humidity recorded on the same day. Our study illustrates a novel approach to modelling of time series with short spore seasons, and indicates that the ANN method provides the possibility of forecasting Alternaria spore concentration with high accuracy.

  14. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    PubMed Central

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  15. Changes in concentration of Alternaria and Cladosporium spores during summer storms

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.

  16. Changes in concentration of Alternaria and Cladosporium spores during summer storms.

    PubMed

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms. PMID:23161270

  17. Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects.

    PubMed

    Chen, Gao; Zhang, Rui-Rui; Liu, Yang; Sun, Wei-Bang

    2014-08-01

    The ecological roles and biological mechanisms of zoochory in plants have long been foci in studies of co-evolutionary processes between plants and animals. However, the dispersal of fungal spores by animals has received comparatively little attention. In this study, the dispersal of spores of a selected fetid fungus, Lysurus mokusin, via feces of mycophagous insects was explored by: collecting volatiles emitted by the fungus using dynamic headspace extraction and analyzing them by GC-MS; testing the capacity of mycophagous insects to disperse its spores by counting spores in their feces; comparing the germinability of L. mokusin spores extracted from feces of nocturnal earwigs and natural gleba of the fungus; and assessing the ability of L. mokusin volatiles to attract insects in bioassays with synthetic scent mixtures. Numerous spores were detected in insects' feces, the bioassays indicated that L. mokusin odor (similar to that of decaying substances) attracts diverse generalist mycophagous insects, and passage through the gut of Anisolabis maritima earwigs significantly enhanced the germination rate of L. mokusin spores. Therefore, nocturnal earwigs and diurnal flies probably play important roles in dispersal of L. mokusin spores, and dispersal via feces may be an important common dispersal mechanism for fungal reproductive tissue. PMID:25064696

  18. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  19. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy

    PubMed Central

    Wang, Shiwei; Shen, Aimee; Setlow, Peter

    2015-01-01

    ABSTRACT The Gram-positive spore-forming anaerobe Clostridium difficile is a leading cause of nosocomial diarrhea. Spores of C. difficile initiate infection when triggered to germinate by bile salts in the gastrointestinal tract. We analyzed germination kinetics of individual C. difficile spores using Raman spectroscopy and differential interference contrast (DIC) microscopy. Similar to Bacillus spores, individual C. difficile spores germinating with taurocholate plus glycine began slow leakage of a ∼15% concentration of a chelate of Ca2+ and dipicolinic acid (CaDPA) at a heterogeneous time T1, rapidly released CaDPA at Tlag, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlysis. T1 and Tlag values for individual spores were heterogeneous, but ΔTrelease periods (Trelease − Tlag) were relatively constant. In contrast to Bacillus spores, heat treatment did not stimulate spore germination in the two C. difficile strains tested. C. difficile spores did not germinate with taurocholate or glycine alone, and different bile salts differentially promoted spore germination, with taurocholate and taurodeoxycholate being best. Transient exposure of spores to taurocholate plus glycine was sufficient to commit individual spores to germinate. C. difficile spores did not germinate with CaDPA, in contrast to B. subtilis and C. perfringens spores. However, the detergent dodecylamine induced C. difficile spore germination, and rates were increased by spore coat removal although cortex hydrolysis did not follow Trelease, in contrast with B. subtilis. C. difficile spores lacking the cortex-lytic enzyme, SleC, germinated extremely poorly, and cortex hydrolysis was not observed in the few sleC spores that partially germinated. Overall, these findings indicate that C. difficile and B. subtilis spore germination exhibit key differences. IMPORTANCE Spores of the Gram-positive anaerobe Clostridium difficile are responsible for initiating infection

  20. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  1. Antibacterial polymer coatings.

    SciTech Connect

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  2. Indirect Immunodetection of Fungal Fragments by Field Emission Scanning Electron Microscopy

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Nayak, Ajay P.; Skaar, Ida; Hjeljord, Linda; Tronsmo, Arne; Green, Brett James

    2015-01-01

    Submicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample. PMID:26092450

  3. Indirect Immunodetection of Fungal Fragments by Field Emission Scanning Electron Microscopy.

    PubMed

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Nayak, Ajay P; Skaar, Ida; Hjeljord, Linda; Tronsmo, Arne; Eduard, Wijnand; Green, Brett James

    2015-09-01

    Submicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample. PMID:26092450

  4. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  5. Fungal endophytes characterization from four species of Diplazium Swartz

    NASA Astrophysics Data System (ADS)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  6. Spore Dispersion of Tricholoma matsutake at a Pinus densiflora Stand in Korea

    PubMed Central

    Ka, Kang-Hyeon

    2010-01-01

    The spore of Tricholoma matsutake is considered to be the starting point of the mushroom growth cycle, but the mechanism of mycelial development from the spore stage is not yet clarified. In this study, we tried to measure how far the spores of T. matsutake disperse from a fruiting body located at a Pinus densiflora stand in Korea. We established 16 slide glasses coated with glycerin near a fruiting body in four directions separated by four different distance intervals within a mushroom productive stand after removing all other fruiting bodies from three plots. The number of dispersed spores increased with time from the first day (475 spores/cm2) to the fourth day (836 spores/cm2) after the pileus opened. The number of spores dispersed downward was about 1.5 times greater than that dispersed toward the ridge. The number of dispersed spores decreased exponentially as the distance from each fruiting body increased. More than 95% of the spores dropped within a meter from the fruiting body, with 75% dropping within 0.5 m. Even so, the number of spores dispersed over 5 m from the fruiting body was more than 50 million when considering the total number of spores produced by a fruiting body is about 5 billion. PMID:23956655

  7. Dielectric properties of native and decoated spores of Bacillus megaterium.

    PubMed Central

    Carstensen, E L; Marquis, R E; Child, S Z; Bender, G R

    1979-01-01

    A general model for use in interpreting dielectric data obtained with bacterial endospores is developed and applied to past results for Bacillus cereus spores and new results for Bacillus megaterium spores. The latter were also subjected to a decoating treatment to yield dormant cells with damaged outer membranes that could be germinated with lysozyme. For both spore types, core ions appeared to be completely immobilized, and decoating of B. megaterium spores did not affect this extreme state of electrostasis in the core. The cortex of B. megaterium appeared to contain a high level of mobile ions, in the cortex of B. cereus. The outer membrane-coat complex of B. megaterium acted dielectrically as an insulating layer around the cortex, so that native dormant spores showed a Maxwell-Wagner dispersion over the frequency range from about 1 to 20 MHz. The decoating treatment resulted in a shift in the dispersion to frequencies below the range of observation. Increases in cell conductivity in response to increases in environmental ionic strength indicated that the coats. of B. megaterium could be penetrated by environmental ions and that they had an inherent fixed charge concentration of about 10 to 20 milliequivalents per liter. In contrast, the dispersion for B. cereus spores was very sensitive to changes in environmental ion concentration, and it appeared that some 40% of the spore volume could be penetrated by environmental ions and that these ions traversed a dielectrically effective layer, either the exosporium or the outer membrane. It appears that dormancy is associated with extreme electrostasis of core ions but not necessarily of ions in enveloping structures and that the coat-outer membrane complex is dielectrically effective but not required for maintenance of extreme electrostasis in the core. PMID:118161

  8. Thermal Spore Exposure Vessels

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry

    2006-01-01

    Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.

  9. Synthesis and Assembly of a Novel Glycan Layer in Myxococcus xanthus Spores*

    PubMed Central

    Holkenbrink, Carina; Hoiczyk, Egbert; Kahnt, Jörg; Higgs, Penelope I.

    2014-01-01

    Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1–4- and 1–3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1–4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA–H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix. PMID:25271164

  10. Fungal contribution to size-segregated aerosol measured through biomarkers

    NASA Astrophysics Data System (ADS)

    Di Filippo, Patrizia; Pomata, Donatella; Riccardi, Carmela; Buiarelli, Francesca; Perrino, Cinzia

    2013-01-01

    Fungal spores are the dominant biological component of air. Although ubiquitous in outdoor air, they are scarcely measured due to the inadequacy of measurement methods. The use of biomarkers as tools for the determination of fungal contribution to bioaerosol has often been suggested, and ergosterol, arabitol and mannitol have been associated to fungal spores as tracers. In the present paper, the fungal component of aerosol was studied at suburban/rural and at urban sites. Ergosterol, arabitol, and mannitol contents in airborne particulate matter, even at different sizes, were determined. Literature conversion factors and calculated conversion factors correlating ergosterol, arabitol, and mannitol masses to fungi mass were applied and compared to each other. The obtained fungal spore concentrations were different depending on the marker utilized both with the conversion factors found in literature and the calculated ones. Size-segregated marker distribution suggested different sources for the three tracers indicating ergosterol as the only reliable biomarker at our latitudes. The fungal spore concentrations were higher at the suburban/rural location and respectively inversely and directly proportional to temperature and relative humidity.

  11. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl; Warren, Barbara Panessa

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  12. In-situ observations on the influence of wood moisture content and temperature on spore germination and wood colonization by Poria carbonica

    SciTech Connect

    Przybylowicz, P.R.; Corden, M.E.

    1986-01-01

    A method for observing germinating fungal spores on wood was developed in which temperature and wood moisture content could be easily controlled and subsequent wood colonization could be determined. Thin radial sections of Douglas fir (Pseudotsuga menziesii) heartwood (8 mm x 8 mm x 60 mu m) were inoculated with a spore suspension and a similar wood section was placed over the inoculated section forming a ''spore sandwich''. The ''spore sandwiches'' were incubated between larger blocks of Douglas fir heartwood to maintain control of the wood moisture content during incubation in controlled temperature-humidity chambers. Spore germination was observed by opening the ''spore sandwiches'' and staining the spores in situ for microscopic observation. Wood colonization was determined by isolations from the surrounding wood blocks. The ''spore sandwich'' method was used to study the influences of temperature and wood moisture content on spore germination of Poria carbonica. Basidiospores and asexual spores germinated and colonized wood at and above the fibre saturation point (c 30% moisture content), but not below. Both spore types germinated and colonized wood at 22 and 30 degrees Centigrade, but basidiospores failed to germinate at 5 and 35 degrees, whereas asexual spores germinated at 5 and 35 degrees, but were unable to colonize the wood. The ''spore sandwich'' method provides a means for assessing spore germination and wood colonization by wood decaying fungi under conditions simulating those occurring naturally in wood in service. (Refs. 21).

  13. Clostridium difficile Spore-Macrophage Interactions: Spore Survival

    PubMed Central

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2012-01-01

    Background Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. Methodology/Principal Findings In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. Conclusions/Significance These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells. PMID:22952726

  14. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma

    NASA Astrophysics Data System (ADS)

    Troutt, C.; Levetin, E.

    Different spore types are abundant in the atmosphere depending on the weather conditions. Ascospores generally follow precipitation, while spore types such as Alternaria and Cladosporium are abundant in dry conditions. This project attempted to correlate fungal spore concentrations with meteorological data from Tulsa, Oklahoma during May 1998 and May 1999. Air samples were collected and analyzed by the 12-traverse method. The spore types included were Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, and other spores. Weather variables included precipitation levels, temperature, dew point, air pressure, wind speed, wind direction and wind gusts. There were over 242.57 mm of rainfall in May 1999 and only 64.01 mm in May 1998. The most abundant spore types during May 1998 and May 1999 were Cladosporium, ascospores, and basidiospores. Results showed that there were significant differences in the dry-air spora between May 1998 and May 1999. There were twice as many Cladosporium in May 1998 as in May 1999; both ascospores and basidiospores showed little change. Multiple regression analysis was used to determine which meteorological variables influenced spore concentrations. Results showed that there was no single model for all spore types. Different combinations of factors were predictors of concentration for the various fungi examined; however, temperature and dew point seemed to be the most important meteorological factors.

  15. Detection of presumptive mycoparasites associated with Entomophaga maimaiga resting spores in forest soils.

    PubMed

    Castrillo, Louela A; Hajek, Ann E

    2015-01-01

    The fungal pathogen Entomophaga maimaiga can provide high levels of control of the gypsy moth, Lymantria dispar, an important forest defoliator. This fungus persists in the soil as resting spores and occurs naturally throughout many areas where gypsy moth is established. Studies on the spatial dynamics of gypsy moth population have shown high variability in infection levels, and one possible biological factor could be the variable persistence of E. maimaiga resting spores in the soil due to attacks by mycoparasites. We surveyed presumptive mycoparasites associated with parasitized E. maimaiga resting spores using baiting and molecular techniques and identified an ascomycete (Pochonia sp.) and oomycetes (Pythium spp.). PMID:25433313

  16. Fungal hemolysins

    PubMed Central

    Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented. PMID:22769586

  17. Characterizations of atmospheric fungal aerosol in Beijing, China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu

    2013-04-01

    Fungal aerosols constitute the most abundant fraction of biological aerosols in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is still poorly understood and quantified. PM10 and PM2.5 samples were collected by high volume samplers simultaneously at a rural site (MY) and an urban site (THU) in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the THU site were 7.4±9.4 ng/m3 and 10.3±9.5 ng/m3, and the respective mannitol concentrations were 21.0±20.4 ng/m3 and 31.9±26.9 ng/m3. Compared to PM10, the monthly average concentrations of arabitol and mannitol in PM2.5 did not vary significantly and were present at nearly consistent levels in the different seasons. Moreover, during summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry period (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces, (e.g., soil resuspension, transported dust, etc.) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Mannitol and arabitol correlated well with each other, both in PM10 (R2 = 0.71) and PM2.5 (R2 = 0.81). Although fungal spore levels at rural sites were consistently higher than those at urban sites in other studies, the findings in our study were

  18. Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia).

    PubMed

    Wu, Zhengli; Li, Yanhong; Pan, Guoqing; Tan, Xiaohui; Hu, Junhua; Zhou, Zeyang; Xiang, Zhonghuai

    2008-06-01

    Microsporidia are fungal-like unicellular eukaryotes which develop as obligate intracellular parasites. They differentiate into resistant spores that are protected by a thick spore wall composed of a glycoprotein-rich outer layer or exospore and a chitin-rich inner layer or endospore. In this study performed on the silkworm pathogen Nosema bombycis, we analyzed the spore wall proteins (SWPs) by proteomic-based approaches, MALDI-TOF MS and LC-MS/MS, and 14 hypothetical spore wall proteins (HSWPs) or peptides were obtained in total. Furthermore, we have examined the SWPs by SDS-PAGE and three main spore wall peptides were detected with molecular weights of 32.7 kDa (SWP32), 30.4 kDa (SWP30), and 25.3 kDa (SWP25), respectively. By N-terminal amino acid residue sequencing, and searching the genomic DNA shotgun database of N. bombycis, the complete ORFs of SWP30 and SWP32 were obtained, which encode for a 278- and a 316-amino acid peptide, respectively. Mouse polyclonal antibodies were raised against SWP30 and SWP32 recombinant proteins produced in Escherichia coli, and the results of indirect immunofluorescence assay (IFA) and immunoelectron microscopy (IEM) analyses indicated SWP30 to be an endosporal protein while SWP32 was shown to be an exosporal protein. Both SWP30 and SWP32 are included in the 14 HSWPs identified by MS, confirming the results of the proteomic-based approaches. PMID:18563739

  19. Interaction of Bacillus subtilis spores with sodium hypochlorite, sodium dichloroisocyanurate and chloramine-T.

    PubMed

    Bloomfield, S F; Arthur, M

    1992-02-01

    Solutions of chlorine-releasing agents (CRAs) show varying activity against Bacillus subtilis spores; sodium hypochlorite (NaOCl) shows higher activity than sodium dichloroisocyanurate (NaDCC) which is more active than chloramine-T. Investigations with coat- and cortex-extracted spores indicate that resistance to CRAs depends not only on the spore coat but also the cortex. Whereas extraction of alkali-soluble coat protein increased sensitivity to NaOCl and NaDCC, degradation of coat and cortex material was required to achieve significant activity with chloramine-T. NaOCl (in the presence and absence of NaOH) and NaDCC (in the presence of NaOH only) produced degradation of spore coat and cortex material which may be related to their rapid sporicidal action at low concentrations under these conditions. By contrast, chloramine-T produced no degradation of cortex peptidoglycan and was only effective against normal and alkali-treated spores at high concentrations, requiring extraction of peptidoglycan with urea/dithiothreitol/sodium lauryl sulphate (UDS) or UDS/lysozyme to achieve significant activity at low concentrations. Results suggest that the sporicidal action of CRAs is associated with spore coat and cortex degradation causing rehydration of the protoplast allowing diffusion to the site of action on the underlying protoplast. PMID:1556040

  20. The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation.

    PubMed

    Butterfield, Cristina N; Lee, Sung-Woo; Tebo, Bradley M

    2016-04-01

    Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents. PMID:27227313

  1. Display of native proteins on Bacillus subtilis spores.

    PubMed

    Pan, Jae-Gu; Choi, Soo-Keun; Jung, Heung-Chae; Kim, Eui-Joong

    2014-09-01

    In principle, protein display is enabled by fusing target proteins to naturally secreted, surface-anchored protein motifs. In this work, we developed a method of native protein display on the Bacillus spore surface that obviates the need to construct fusion proteins to display a motif. Spore coat proteins are expressed in the mother cell compartment and are subsequently assembled and deposited on the surface of spores. Therefore, target proteins overexpressed in the mother cell compartment during the late sporulation phase were expected to be targeted and displayed on the spore surface. As a proof of principle, we demonstrated the display of carboxymethylcellulase (CMCase) in its native form on the spore surface. The target protein, CMCase, was expressed under the control of the cry1Aa promoter, which is controlled by σ(E) and σ(K) and is expressed in the mother cell compartment. The correct display was confirmed using enzyme activity assays, flow cytometry, and immunogold electron microscopy. In addition, we demonstrated the display of a β-galactosidase tetramer and confirmed its correct display using enzyme activity assays and protein characterization. This native protein display system, combined with the robust nature of Bacillus spores, will broaden the range of displayable target proteins. Consequently, the applications of display technology will be expanded, including high-throughput screening, vaccines, biosensors, biocatalysis, bioremediation, and other innovative bioprocesses. PMID:25168353

  2. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air

    NASA Astrophysics Data System (ADS)

    O'Gorman, Céline M.; Fuller, Hubert T.

    2008-06-01

    Temporal and spatial variations in airborne spore concentrations of selected allergenic and pathogenic fungi were examined in Dublin, Ireland, in 2005. Air samples were taken at four outdoor locations in the city every 2 weeks, coupled with measurements of meteorological conditions. Total culturable airborne fungal spore concentrations in Dublin ranged from 30-6800 colony forming units per cubic metre of air (CFU m-3) over the 12-month period. Cladosporium, Penicillium, Aspergillus and Alternaria spores were constantly present in the Dublin atmosphere, representing >20% of the total culturable spore count. Concentrations of Cladosporium increased significantly in summer and reached allergenic threshold levels, peaking at over 3200 CFU m-3 in August. Penicillium spore concentrations never reached allergenic threshold levels, with average concentrations of <150 CFU m-3. Alternaria conidia formed only 0.3% of the total culturable fungal spore count and concentrations never exceeded 50 CFU m-3, attributable to the coastal position of Dublin and its low levels of arable production. The opportunistic human pathogen Aspergillus fumigatus was present throughout the year in nominal concentrations (<10 CFU m-3), but sporadic high counts were also recorded (300-400 CFU m-3), the potential health implications of which give cause for concern. Spores of neither Cryptococcus neoformans nor Stachybotrys chartarum were detected, but airborne basidiospores of Schizophyllum commune were evidenced by the dikaryotization of monokaryon tester strains following exposure to the air. The relationships between airborne fungal spore concentrations and meteorological factors were analysed by redundancy analysis and revealed positive correlations between temperature and Cladosporium and relative humidity and Penicillium and Aspergillus.

  3. Release and characteristics of fungal fragments in various conditions.

    PubMed

    Mensah-Attipoe, Jacob; Saari, Sampo; Veijalainen, Anna-Maria; Pasanen, Pertti; Keskinen, Jorma; Leskinen, Jari T T; Reponen, Tiina

    2016-03-15

    Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, dp ≥ 0.8 μm) and fragments (dp ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment-spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based on elemental

  4. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  5. Spore-displayed streptavidin: A live diagnostic tool in biotechnology

    SciTech Connect

    Kim, June-Hyung; Lee, Chang-Soo; Kim, Byung-Gee . E-mail: byungkim@snu.ac.kr

    2005-05-27

    Streptavidin, which is one of the most widely used proteins in biotechnological application field and is active only in tetrameric form, was surface expressed on the surface of Bacillus subtilis spore. Spore coat protein of B. subtilis, CotG, was used as an anchoring motif to display streptavidin. FACS using anti-streptavidin antibody was used for the verification of surface localization of expressed CotG-streptavidin fusion protein. FACS and dot-blot were used for the verification of biological activity of displayed streptavidin with FITC-labeled biotin.

  6. Proton dynamics in bacterial spores, a neutron scattering investigation

    NASA Astrophysics Data System (ADS)

    Colas de la Noue, Alexandre; Peters, Judith; Gervais, Patrick; Martinez, Nicolas; Perrier-Cornet, Jean-Marie; Natali, Francesca

    2015-01-01

    Results from first neutron scattering experiments on bacterial spores are reported. The elastic intensities and mean square displacements have a non-linear behaviour as function of temperature, which is in agreement with a model presenting more pronounced variations at around 330 K (57 ∘C) and 400 K (127 ∘C). Based on the available literature on thermal properties of bacterial spores, mainly referring to differential scanning calorimetry, they are suggested to be associated to main endothermic transitions induced by coat and/or core bacterial response to heat treatment.

  7. Crop harvest in Central Europe causes episodes of high airborne Alternaria spore concentrations in Copenhagen

    NASA Astrophysics Data System (ADS)

    Skjøth, C. A.; Sommer, J.; Frederiksen, L.; Gosewinkel Karlson, U.

    2012-06-01

    This study tests the hypothesis that Danish agricultural areas are the main source to airborne Alternaria spores in Copenhagen, Denmark. We suggest that the source to the overall load is mainly local, but with intermittent Long Distance Transport (LDT) from more remote agricultural areas. This hypothesis is supported by investigating a 10 yr bi-hourly record of Alternaria spores in the air from Copenhagen. This record shows 232 clinically relevant episodes with a distinct daily profile. The data analysis also revealed potential LDT episodes almost every year. A source map and analysis of atmospheric transport suggest that LDT always originates from the main agricultural areas in Central Europe. A dedicated emission study in cereal crops under harvest during 2010 also supports our hypothesis. The emission study showed that although the fields had been treated against fungal infections, harvesting still produced large amounts of airborne fungal spores. It is likely that such harvesting periods can cause clinically relevant levels of fungal spores in the atmosphere. Our findings suggest that crop harvest in Central Europe causes episodes of high airborne Alternaria spore concentrations in Copenhagen as well as other urban areas in this region. It is likely that such episodes could be simulated using atmospheric transport models.

  8. Raman spectroscopic study of Lactarius spores (Russulales, Fungi).

    PubMed

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products. PMID:16165029

  9. Raman spectroscopic study of Lactarius spores (Russulales, Fungi)

    NASA Astrophysics Data System (ADS)

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products.

  10. Control of airborne fungal spores in a university hospital

    SciTech Connect

    Streifel, A.J.; Vesley, D. ); Rhame, F.S. ); Murray, B. )

    1989-01-01

    A new university hospital was designed to maximize the air quality protection of severely compromised patients undergoing transplantation or treatment for malignant disorders. The entire hospital was designed as a sealed building with two filter systems having >95% efficiencies for 1.0 {mu}m particles. Controlled airflow and isolation of the most severely compromised patients were also design features. Air quality monitoring of particles and airborne fungi demonstrate effective control in the patient environment. The results show the areas with the greatest control of personnel and air changes have the lowest airborne concentrations of fungi and the smallest particles. Larger indoor airborne particle ranking indicate highest levels depending on local human activity, air changes rates, or filtration efficiency.

  11. Detection of Phakopsora pachyrhizi Spores in Rain Using a Real-Time PCR Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of rust fungal spores along the Puccinia Pathway has been well recognized. In 2005 and 2006, rain was collected weekly from May-August at 112 selected National Atmospheric Deposition Program/ National Trends Network sites across the soybean growing region of the central and eastern US. Rai...

  12. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  13. Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibitory effect of a heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by a HT (43 degrees C) for 10, 20 o...

  14. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  15. Cytology of Spore Formation in Clostridium perfringens1

    PubMed Central

    Hoeniger, Judith F. M.; Stuart, Philip F.; Holt, Stanley C.

    1968-01-01

    The sequential morphological events in spore formation by Clostridium perfringens type D were observed in Ellner's medium where 80 to 100% of the cells formed spores. Gross structural changes were studied with the light microscope under phase-contrast, and in fixed cells by the use of both nigrosin and Giemsa preparations. Fine structure was examined with the electron microscope in both thin sections and frozen-etched preparations. During the first 3 hr of incubation, the original rod-shaped cells became ellipsoid to ovoid in shape; by 5 to 6 hr, subterminal spores had developed within these enlarged cells. The fine structural sequence was in most respects identical to that in other Bacillaceae, although some stages were illustrated with particular clarity. A unique feature was the development of a convoluted, membranous exosporium which adhered to the outer surface of the two coats and had an unusual fine structure resembling a rectangular array of subunits. Images PMID:4302300

  16. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  17. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    SciTech Connect

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  18. PERMEABILITY OF BACTERIAL SPORES I.

    PubMed Central

    Black, S. H.; Gerhardt, Philipp

    1961-01-01

    Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. I. Characterization of glucose uptake. J. Bacteriol. 82:743–749. 1961.—The total uptake of glucose by masses of clean, dormant spores was measured to assess their permeability. After correction for intercellular space, packed spores of Bacillus cereus strain terminalis were found in 87 determinations to be permeated by glucose to 40% of their weight. The glucose uptake was relatively independent of environmental variables, and thus was concluded to occur principally through a process of passive diffusion. PMID:13869665

  19. Microbial profile modification with spores

    SciTech Connect

    Bae, J.H.; Chambers, K.T.; Lee, H.O.

    1996-08-01

    To overcome the shortcomings of conventional, near-wellbore profile modification methods, a microbial profile modification (MPM) method with spores was investigated. A halotolerant, spore-forming mesophile was isolated and characterized. These biopolymer-producing spores propagate easily in Berea cores with permeabilities more than about 500 md. With a specifically formulated nutrient package, they are readily germinated and produce biofilm, which reduces the permeability of the rock. The depth of penetration and the degree of permeability reduction can be controlled by varying injection schemes.

  20. Spore and the sociocultural moment

    NASA Astrophysics Data System (ADS)

    Meyer, W. Max

    2012-12-01

    Analyses of the game Spore have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the Spore discussion relative to the general dissatisfaction with the science presented in the game. The paper proposes that analysis of Spore and other technological tools in science education may be embedded in an historical moment which directs the discussion towards satisfying sociocultural and organizational needs and away from pedagogical ones.

  1. Fungal Entomopathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal entomopathogens are important biological control agents worldwide and have been the subject of intense research for more than100 years. They exhibit both sexual and asexual reproduction and produce different types of infective propagules. Their mode of action against insects involves attachme...

  2. Fungal Infections

    MedlinePlus

    ... it, you'll be saying bye-bye to fungi (say: FUN-guy). What Is a Fungal Infection? Fungi , the word for more than one fungus, can ... but of course, they're not!). Because the fungi that cause tinea (ringworm) live on different parts ...

  3. Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica Y. W.; Chan, Chak K.; Lee, C.-T.; Lau, Arthur P. S.

    Interest in the role and contribution of fungi to atmospheric aerosols and processes grows in the past decade. Substantial data or information such as fungal mass or carbon loading to ambient aerosols is however still lacking. This study aimed to quantify the specific organic carbon content (OC per spore) of eleven fungal species commonly found airborne in the subtropics, and estimated their contribution to organic carbon in aerosols. The specific OC contents showed a size-dependent relationship ( r = 0.64, p < 0.05) and ranged from 3.6 to 201.0 pg carbon per spore or yeast cell, giving an average of 6.0 pg carbon per spore (RSD 51%) for spore or cell size less than 10 μm. In accounting for natural variations in the composition and abundance of fungal population, weighted-average carbon content for field samples was adopted using the laboratory determined specific OC values. An average of 5.97 pg carbon per spore (RSD 3.8%) was enumerated from 28 field samples collected at the university campus. The mean fungal OC concentration was 3.7, 6.0 and 9.7 ng m -3 in PM 2.5, PM 2.5-10 and PM 10, respectively. These corresponded to 0.1%, 1.2% and 0.2% of the total OC in PM 2.5, PM 2.5-10 and PM 10, respectively. In the study period, rain provided periods with low total OC but high fungal prevalence and fungi contributed 7-32% OC in PM 2.5-10 or 2.4-7.1% OC in PM 10. More extensive studies are deserved to better understand the spatial-, temporal- and episodic dependency on the fungal OC contribution to the atmospheric aerosols.

  4. Investigation of the effect of VUV radiation on the viability of microfungi spores

    NASA Astrophysics Data System (ADS)

    Zvereva, G.; Kirtsideli, I.; Benken, K.; Saifitdinova, A.; Galkina, S.; Parfenov, V.

    2015-12-01

    Irradiation of various types of microfungi spores by vacuum ultraviolet radiation (VUV) (λ = 172 nm, 2 mW/cm2 ) was carried out in this work. It was found, that the VUV radiation leads to inactivation of spores in the dose range 10-240 mJ/cm2 , depending on the fungal species. Shadowing effect of overlapping layers of spores was observed. Protective property of melanin at λ = 172 nm has been proven experimentally. Presence of melanin in the cell structure led to an increase of the inactivation dose of VUV radiation in more than one order. Fluorescence microscopy have revealed differences in the structure of the membrane of control and irradiated spore. VUV irradiation of DNA samples (200 ng) at λ=172 nm showed almost complete absence of double-stranded DNA parts at doses of more than 240 mJ/cm2 .

  5. Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning Electron Microscopy (FESEM)

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Skaar, Ida; Hjeljord, Linda; Skare, Øivind; Green, Brett James; Tronsmo, Arne; Eduard, Wijnand

    2016-01-01

    Fungal aerosols consist of spores and fragments with diverse array of morphologies; however, the size, shape, and origin of the constituents require further characterization. In this study, we characterize the profile of aerosols generated from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum grown for 8 weeks on gypsum boards. Fungal particles were aerosolized at 12 and 20 L min−1 using the Fungal Spore Source Strength Tester (FSSST) and the Stami particle generator (SPG). Collected particles were analyzed with field emission scanning electron microscopy (FESEM). We observed spore particle fraction consisting of single spores and spore aggregates in four size categories, and a fragment fraction that contained submicronic fragments and three size categories of larger fragments. Single spores dominated the aerosols from A. fumigatus (median: 53%), while the submicronic fragment fraction was the highest in the aerosols collected from A. versicolor (median: 34%) and P. chrysogenum (median: 31%). Morphological characteristics showed near spherical particles that were only single spores, oblong particles that comprise some spore aggregates and fragments (<3.5 μm), and fiber-like particles that regroup chained spore aggregates and fragments (>3.5 μm). Further, the near spherical particles dominated the aerosols from A. fumigatus (median: 53%), while oblong particles were dominant in the aerosols from A. versicolor (68%) and P. chrysogenum (55%). Fiber-like particles represented 21% and 24% of the aerosols from A. versicolor and P. chrysogenum, respectively. This study shows that fungal particles of various size, shape, and origin are aerosolized, and supports the need to include a broader range of particle types in fungal exposure assessment. PMID:26855468

  6. Bioluminescence: a fungal nightlight with an internal timer.

    PubMed

    Bechara, Etelvino J H

    2015-03-30

    A recent study shows that green light emission by Neonothopanus gardneri mushrooms, endemic to coconut forests of Northern Brazil, is controlled by a circadian clock. Furthermore, insects are attracted by the light, raising the possibility that bioluminescence functions in spore dispersal and fungal dissemination. PMID:25829013

  7. NASA Facts: SporeSat

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    SporeSat is an autonomous, free-flying three-unit (3U) spacecraft that will be used to conduct scientific experiments to gain a deeper knowledge of the mechanisms of plant cell gravity sensing. SporeSat is being developed through a partnership between NASAs Ames Research Center and the Department of Agricultural and Biological Engineering at Purdue University. Amani Salim and Jenna L. Rickus are the Purdue University Principal Investigators. The SporeSat mission will be flown using a 3U nanosatellite weighing approximately 12 pounds and measuring 14 inches long by 4 inches wide by 4 inches tall. SporeSat will utilize flight-proven spacecraft technologies demonstrated on prior Ames nanosatellite missions such as PharmaSat and OrganismOrganic Exposure to Orbital Stresses (OOREOS) as well as upgrades that increase the hardware integration capabilities with SporeSat science instrumentation. In addition, the SporeSat science payload will serve as a technology platform to evaluate new microsensor technologies for enabling future fundamental biology missions.

  8. Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen

    NASA Astrophysics Data System (ADS)

    Skjøth, C. A.; Sommer, J.; Frederiksen, L.; Gosewinkel Karlson, U.

    2012-11-01

    This study examines the hypothesis that Danish agricultural areas are the main source of airborne Alternaria spores in Copenhagen, Denmark. We suggest that the contribution to the overall load is mainly local or regional, but with intermittent long distance transport (LDT) from more remote agricultural areas. This hypothesis is supported by investigating a 10 yr bi-hourly record of Alternaria spores in the air from Copenhagen. This record shows 232 clinically relevant episodes (daily average spore concentration above 100 m-3) with a distinct daily profile. The data analysis also revealed potential LDT episodes almost every year. A source map and analysis of atmospheric transport suggest that LDT always originates from the main agricultural areas in Central Europe. A dedicated emission study in cereal crops under harvest during 2010 also supports our hypothesis. The emission study showed that although the fields had been treated against fungal infections, harvesting still produced large amounts of airborne fungal spores. It is likely that such harvesting periods can cause clinically relevant levels of fungal spores in the atmosphere. Our findings suggest that crop harvest in Central Europe causes episodes of high airborne Alternaria spore concentrations in Copenhagen as well as other urban areas in this region. It is likely that such episodes could be simulated using atmospheric transport models.

  9. Microcycle Conidiation and Spore-Carrying Capacity of Colletotrichum gloeosporioides on Solid Media

    PubMed Central

    Slade, S. J.; Harris, R. F.; Smith, C. S.; Andrews, J. H.

    1987-01-01

    The effect of spore inoculum density, medium concentration, and temperature on slime-spot formation, spore yield, and mycelium production by Colletotrichum gloeosporioides on agar media were studied with a simple microplate assay. A steady-state spore yield (spore-carrying capacity) independent of inoculum density was reached only on media that supported good fungal growth and sporulation. The spore-carrying capacity was reached earlier, the denser the inoculum. On standard mycological media a high inoculum density (2.5 × 106 spores per ml) resulted in a slimy mass of conidia forming a slime spot, a phenomenon associated with greatly reduced mycelium formation and indicative of microcycle conidiation. In contrast, for a similar inoculum density, enhanced mycelial growth preceded sporulation and overrode slime-spot formation on highly concentrated media; a very low medium concentration resulted in much less mycelium, but spore production was also decreased. Exposure to suboptimal growth temperatures of 36 to 48°C for up to 8 days did not induce microcycle conidiation from inocula that did not form a slime spot at 28°C. Images PMID:16347433

  10. Fungal Diagnostics

    PubMed Central

    Kozel, Thomas R.; Wickes, Brian

    2014-01-01

    Early diagnosis of fungal infection is critical to effective treatment. There are many impediments to diagnosis such as a diminishing number of clinical mycologists, cost, time to result, and requirements for sensitivity and specificity. In addition, fungal diagnostics must meet the contrasting needs presented by the increasing diversity of fungi found in association with the use of immunosuppressive agents in countries with high levels of medical care and the need for diagnostics in resource-limited countries where large numbers of opportunistic infections occur in patients with AIDS. Traditional approaches to diagnosis include direct microscopic examination of clinical samples, histopathology, culture, and serology. Emerging technologies include molecular diagnostics and antigen detection in clinical samples. Innovative new technologies that use molecular and immunoassay platforms have the potential to meet the needs of both resource-rich and resource-limited clinical environments. PMID:24692193

  11. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    PubMed Central

    2012-01-01

    Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust) were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure. Although the molecular details of

  12. New detection targets for amyloid-reactive probes: spectroscopic recognition of bacterial spores

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Landsman, Pavel

    2005-05-01

    We report characteristic changes in fluorescence of amyloid-binding dyes Thioflavin T (TfT), pinacyanol (PIN) and related dyes, caused by their interaction with suspended Bacillus spore cultures (B. subtilis, B thuringiensis). The gain in TfT emission in the presence of spores allowed their immediate detection in aqueous suspensions, with a sensitivity limit of < 105 spores per ml. The spectroscopic signatures are consistent with a large number of binding sites for the two dyes on spore coats. The possible structural relationship of these dye binding loci with characteristic motifs (β-stacks) of amyloid deposits and other misfolded protein formations suggests new designs for probing biocontamination and also for clinical studies of non-microbial human pathogens (e.g., amyloid-related protein aggregates in prion-related transmissible encephalopathies or in Alzheimer's disease). Also reported is a special screening technique that was designed and used herein for calibration of new detection probes and assays for spore detection. It employed spectroscopic interactions between the candidate amyloid stains and poly(vinylpyrrolidone)-coated colloid silica (Percoll) nanoparticles that also display remarkable parallelism with the corresponding dye-amyloid and dye-spore reactivities. Percoll may thus find new applications as a convenient non-biological structural model mimicking the putative probe-targeted motifs in both classes of bioanalytes. These findings are important in the design of new probes and assays for important human pathogens (i.e. bacterial spores and amyloidogenic protein aggregates).

  13. A Serum Response Factor homolog is required for spore differentiation in Dictyostelium.

    PubMed

    Escalante, R; Sastre, L

    1998-10-01

    A homolog of the Serum Response Factor (SRF) has been isolated from Dictyostelium discoideum and its function studied by analyzing the consequences of its gene disruption. The MADS-box region of Dictyostelium SRF (DdSRF) is highly conserved with those of the human, Drosophila and yeast homologs. srfA is a developmentally regulated gene expressed in prespore and spore cells. This gene plays an essential role in sporulation as its disruption leads to abnormal spore morphology and loss of viability. The mutant spores were round and cellulose deposition seemed to be partially affected. Initial prestalk and prespore cell differentiation did not seem to be compromised in the mutant since the expression of several cell-type-specific markers were found to be unaffected. However, the mRNA level of the spore marker spiA was greatly reduced. Activation of the cAMP-dependent protein kinase (PKA) by 8-Br-cAMP was not able to fully bypass the morphological defects of srfA- mutant spores, although this treatment induced spiA mRNA expression. Our results suggest that DdSRF is required for full maturation of spores and participates in the regulation of the expression of the spore-coat marker spiA and probably other maturation genes necessary for proper spore cell differentiation. PMID:9729488

  14. Urea-Mercaptoethanol-Soluble Protein from Spores of Bacillus thuringiensis and Other Species

    PubMed Central

    Somerville, H. J.; Delafield, F. P.; Rittenberg, S. C.

    1970-01-01

    Treatment with urea-mercaptoethanol of purified spores of Bacillus thuringiensis, other Bacillus species, and Clostridium roseum solubilizes a protein fraction between 5 and 12% of the dry weight of the spores. This fraction behaves identically to the crystal protein of B. thuringiensis on acrylamide-gel electrophoresis. The protein from all of the Bacillus species shows partial homology with crystal protein, using the Ouchterlony immunodiffusion technique. A further fraction, similar in amount, can be removed from spores of B. thuringiensis by the addition of sodium lauryl sulfate to the urea-mercaptoethanol. Spores of B. thuringiensis extracted in these ways show no difference when compared to untreated spores with respect to viability or resistance to heat and ultraviolet-irradiation. The extracted spores do show differences in their germination requirements and their susceptibility to phase-darkening by lysozyme. It is concluded that an urea-mercaptoethanol-soluble protein or class of protein is a widespread component of bacterial spores, possibly located in the spore coat, and that this protein may be related to the crystal protein of B. thuringiensis. Images PMID:4984077

  15. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  16. Measuring Total and Germinable Spore Populations

    NASA Astrophysics Data System (ADS)

    Noell, A. C.; Yung, P. T.; Yang, W.; Ponce, A.; Lee, C.

    2011-10-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  17. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  18. The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi

    PubMed Central

    Yafetto, Levi; Carroll, Loran; Cui, Yunluan; Davis, Diana J.; Fischer, Mark W. F.; Henterly, Andrew C.; Kessler, Jordan D.; Kilroy, Hayley A.; Shidler, Jacob B.; Stolze-Rybczynski, Jessica L.; Sugawara, Zachary; Money, Nicholas P.

    2008-01-01

    Background A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include “squirt guns” that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. Methodology/Principal Findings In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s−1 and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. Conclusions/Significance The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation. PMID:18797504

  19. The SpmA/B and DacF proteins of Clostridium perfringens play important roles in spore heat resistance.

    PubMed

    Orsburn, Benjamin; Sucre, Katie; Popham, David L; Melville, Stephen B

    2009-02-01

    Strains of Clostridium perfringens that cause acute food poisoning have been shown to produce spores that are significantly more heat resistant than those of other strains. Previous studies demonstrated that the spore core density and the ratio of spore cortex peptidoglycan relative to the germ cell wall were factors that correlated with the heat resistance of a C. perfringens spore. To further evaluate these relationships, mutant strains of C. perfringens SM101 were constructed with null mutations in dacF, encoding a D,D-carboxypeptidase, and in the spmA-spmB operon, which is involved in spore core dehydration. The dacF mutant was shown to produce less spore cortex peptidoglycan and had a corresponding decrease in spore heat resistance. The spmA-spmB strain produced highly unstable spores with significantly lower core densities and increased heat sensitivity, which were easily destroyed during treatments affecting the spore coat layers. These results support the previous assertion that a threshold core density as well as a high ratio of cortex peptidoglycan relative to the germ cell wall contribute to the formation of a more heat-resistant spore in this species. PMID:19189487

  20. Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal.

    PubMed

    Savage, David; Barbetti, Martin J; MacLeod, William J; Salam, Moin U; Renton, Michael

    2012-04-01

    Many of the fungal pathogens that threaten agricultural and natural systems undergo wind-assisted dispersal. During turbulent wind conditions, long-distance dispersal can occur, and airborne spores are carried over distances greater than the mean. The occurrence of long-distance dispersal is an important ecological process, as it can drastically increase the extent to which pathogen epidemics spread across a landscape, result in rapid transmission of disease to previously uninfected areas, and influence the spatial structure of pathogen populations in fragmented landscapes. Since the timing of spore release determines the wind conditions that prevail over a dispersal event, this timing is likely to affect the probability of long-distance dispersal occurring. Using a Lagrangian stochastic model, we test the effect of seasonal and diurnal variation in the release of spores on wind-assisted dispersal. Spores released during the hottest part of the day are shown to be more likely to undergo long-distance dispersal than those released at other times. Furthermore, interactions are shown to occur between seasonal and diurnal patterns of release. These results have important consequences for further modelling of wind-assisted dispersal and the use of models to predict the spread of fungal pathogens and resulting population and epidemic dynamics. PMID:21968611

  1. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores

    PubMed Central

    Park, Hee-Soo; Man Yu, Yeong; Lee, Mi-Kyung; Jae Maeng, Pil; Chang Kim, Sun; Yu, Jae-Hyuk

    2015-01-01

    Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores. PMID:25960370

  2. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores.

    PubMed

    Park, Hee-Soo; Yu, Yeong Man; Lee, Mi-Kyung; Maeng, Pil Jae; Kim, Sun Chang; Yu, Jae-Hyuk

    2015-01-01

    Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores. PMID:25960370

  3. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    SciTech Connect

    Chung, Eunhyea; Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida; Joy, David Charles; Palumbo, Anthony Vito; Tsouris, Costas

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  4. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi.

    PubMed

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-08-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at -25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges. PMID:26380666

  5. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi

    PubMed Central

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-01-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at −25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges. PMID:26380666

  6. A Gene Encoding a Holin-Like Protein Involved in Spore Morphogenesis and Spore Germination in Bacillus subtilis

    PubMed Central

    Real, Gonçalo; Pinto, Sérgio M.; Schyns, Ghislain; Costa, Teresa; Henriques, Adriano O.; Moran, Charles P.

    2005-01-01

    We report here studies of expression and functional analysis of a Bacillus subtilis gene, ywcE, which codes for a product with features of a holin. Primer extension analysis of ywcE transcription revealed that a single transcript accumulated from the onset of sporulation onwards, produced from a σA-type promoter bearing the TG dinucleotide motif of “extended” −10 promoters. No primer extension product was detected in vivo during growth. However, specific runoff products were produced in vitro from the ywcE promoter by purified σA-containing RNA polymerase (EσA), and the in vivo and in vitro transcription start sites were identical. These results suggested that utilization of the ywcE promoter by EσA during growth was subjected to repression. Studies with a lacZ fusion revealed that the transition-state regulator AbrB repressed the transcription of ywcE during growth. This repression was reversed at the onset of sporulation in a Spo0A-dependent manner, but Spo0A did not appear to contribute otherwise to ywcE transcription. We found ywcE to be required for proper spore morphogenesis. Spores of the ywcE mutant showed a reduced outer coat which lacked the characteristic striated pattern, and the outer coat failed to attach to the underlying inner coat. The mutant spores also accumulated reduced levels of dipicolinic acid. ywcE was also found to be important for spore germination. PMID:16159778

  7. Surveillance of Fungal Allergic Sensitization Using the Fluorescent Halogen Immunoassay

    PubMed Central

    Green, Brett J.; Tovey, Euan R.; Beezhold, Donald H.; Perzanowski, Matthew S.; Acosta, Luis M.; Divjan, Adnan I.; Chew, Ginger L.

    2010-01-01

    SUMMARY Objective Conidia derived from a small number of common fungal genera are widely accepted as the etiological agents responsible for fungal allergic sensitization. The contribution of fungal conidia, spores, airborne hyphae, and subcellular fragments from other uncharacterized fungal genera remains unclear. In this proof-of-concept study, we examined the composition of mycoaerosols that atopic women were exposed and sensitized to in their own indoor environment using the fluorescent halogen immunoassay (fHIA). Patients and Methods Mycoaerosols were collected onto mixed cellulose ester protein binding membranes (PBMs) for 30 minutes with volumetric air sampling pumps. The PBMs were laminated with an adhesive cover slip and indirectly immunostained with individual patient serum IgE using the fHIA. Samples were examined using confocal laser scanning microscopy and immunostained particles were expressed as a percentage of total particles. Results All air samples contained a broad spectrum of fungal spores, conidia, hyphae, and other fungal particulates. Airborne concentrations varied between individual study participant environments. Positively immunostained conidia belonging to moniliaceous amerospores, Cladosporium, Alternaria, and many unknown species were observed in the majority of air samples. Other fungal genera including Bipolaris, Curvularia, Pithomyces, and Stachybotrys, in addition to, ascospore genera and dematiaceous hyphal fragments released detectable allergen. Twelve percent of all fHIA haloes quantified in the analysis were directed towards fungal particles. No immunostaining was detected to conidia belonging to Epicoccum, Fusarium, and Spegazzinia species. Conclusion In addition to characterized fungal aeroallergens, we observed a wider composition of fungi that bound human IgE. Field surveillance studies that utilize immunodiagnostic techniques such as the fHIA will provide further insight into the diversity of fungi that function as

  8. NanoSIMS analysis of Bacillus spores for forensics

    SciTech Connect

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  9. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations.

    PubMed

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m(-3)), moderate (50-99 s m(-3)), high (100-149 s m(-3)) and very high (150 < n s m(-3)), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68). PMID:26266481

  10. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  11. Can airborne fungal allergens pass through an air-conditioning system. [Aspergillus fumigatus

    SciTech Connect

    Elixmann, J.H. ); Linskens, H.F.; Schata, M.; Jorde, W. )

    1989-01-01

    Fungal spores, an important fraction of aeroplankton particles, can be filtered in an air-conditioning system, resulting in a drastic reduction of the spore count in the air-conditioned rooms. Nevertheless, using the EISA inhibition test against Aspergillus fumigatus, it was found that air samples from air-conditioned rooms show inhibition of the serum activity of a highly sensitized patient. There is evidence that airborne allergens can pass both coarse and fine filters of an air-conditioning system.

  12. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  13. Preparation and evaluation of spore-specific affinity- augmented bio-imprinted beads

    SciTech Connect

    Harvey, Scott D.; Mong, Gary M.; Ozanich, Rich M.; Mclean, Jeffrey S.; Goodwin, Shannon M.; Valentine, Nancy B.; Fredrickson, Jim K.

    2006-09-01

    The procedures previously described for imprinting bead surfaces with bacteria were applied to create novel affinity-augmented bacterial spore-imprinted beads. The imprinted beads are intended as a front-end spore capture/concentration stage of an integrated biological detection system. Our approach involves embedding bead surfaces with Bacillus thuringiensis kurstaki (Bt) spores (as a surrogate for Bacillus anthracis) during synthesis. Subsequent steps involved lithographic deactivation using a perfluoroether, spore removal to create imprint sites, and coating imprints with the lectin, concanavalin A, to provide general affinity. The synthesis of the intended material with the desired imprints was verified by scanning electron and confocal laser-scanning microscopy. The material was evaluated using spore-binding assays with either Bt or Bacillus subtilis (Bs) spores. The binding assays indicated strong spore-binding capability and a robust imprinting effect that accounted for 25 percent additional binding over nonimprinted controls. The binding assay results also indicated that further refinement of the surface deactivation procedure would enhance the performance of the imprinted substrate.

  14. Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity.

    PubMed

    Harrold, Zoë R; Hertel, Mikaela R; Gorman-Lewis, Drew

    2011-12-01

    Investigating the biochemistry, resilience and environmental interactions of bacterial endospores often requires a pure endospore biomass free of vegetative cells. Numerous endospore isolation methods, however, neglect to quantify the purity of the final endospore biomass. To ensure low vegetative cell contamination we developed a quality control technique that enables rapid quantification of endospore harvest purity. This method quantifies spore purity using bright-field and fluorescence microscopy imaging in conjunction with automated cell counting software. We applied this method to Bacillus subtilis endospore harvests isolated using a two-phase separation method that utilizes mild chemicals. The average spore purity of twenty-two harvests was 88±11% (error is 1σ) with a median value of 93%. A spearman coefficient of 0.97 correlating automated and manual bacterial counts confirms the accuracy of software generated data. PMID:21989299

  15. Isolating and Purifying Clostridium difficile Spores.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2016-01-01

    The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  16. Scanning electron microscopy of the nail plate in onychomycosis patients with negative fungal culture.

    PubMed

    Yue, Xueping; Li, Qing; Wang, Hongwei; Sun, Yilin; Wang, Aiping; Zhang, Qi; Zhang, Cuiping

    2016-03-01

    Onychomycosis is a common dermatological problem and can be identified by direct microscopic examination and fungal culture. However, the positive rate of fungal culture is low. This study investigated the application of scanning electron microscopy in the diagnosis of onychomycosis in 20 patients with negative fungal culture. In this study, a routine glutaraldehyde fixation method was used to prepare specimens for electron microscope examination. Results showed that under the scanning electron microscope, significant structural damage was observed in the nail plate in all patients. Hyphaes were seen in 70% of cases. A mixture of scattered hyphaes, pseudohyphaes, and spores was observed in 30% of cases. A mixture of spores and bacteria was observed in 10% of cases. A mixture of hyphaes and bacteria was observed in 20% of cases. The typical hyphae pierced a thin layer or single layer of corneocytes. Hyphaes could be smooth, sleek, and straight with visible separation, or dry, bent, and folded with a smooth surface. The diameter of hyphaes was 1-2 µm. The scattered spores were the main form of spore growth, and the growth of budding spores can be seen attached to the surface of layered armor. Most of the bacteria were gathered in clumps on the ventral surface, especially in grooves. In conclusion, scanning electron microscopy can be used to preliminarily identify the pathogen involved and the degree of damage in cases where onychomycosis is clinically diagnosed, but fungal culture is negative. SCANNING 38:172-176, 2016. © 2015 Wiley Periodicals, Inc. PMID:26291603

  17. Effect of air-conditioner on fungal contamination

    NASA Astrophysics Data System (ADS)

    Hamada, Nobuo; Fujita, Tadao

    Air-conditioners (AC) produce much dew and wet conditions inside their apparatus, when in operation. We studied the fungal contamination in AC and found that the average fungal contamination of AC filters was about 5-fold greater than that of a carpet, and Cladosporium and Penicillium were predominant in AC filters. The fungal contamination inside AC, which were used everyday, increased more markedly than those not used daily, e.g. a few days per week or rarely. Moreover, the airborne fungal contamination in rooms during air-conditioning was about 2-fold greater than one in rooms without AC, and was highest when air-conditioning started and decreased gradually with time. We recognized that the airborne fungal contamination was controlled by the environmental condition of the rooms, in which AC were used. It is suggested that AC might promote mold allergies in users via airborne fungal spores derived from the AC. On the other hand, AC was estimated to remove moisture in the room atmosphere and carpets, and reduce the relative humidity in rooms. It was found that the average fungal contamination in the house dust of carpets with AC was suppressed by two-third of that in rooms without AC. The use of AC for suppressing fungal hazards was discussed.

  18. Ultraviolet-Resistant Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  19. Fungal fragments in moldy houses: A field study in homes in New Orleans and Southern Ohio

    NASA Astrophysics Data System (ADS)

    Reponen, Tiina; Seo, Sung-Chul; Grimsley, Faye; Lee, Taekhee; Crawford, Carlos; Grinshpun, Sergey A.

    Smaller-sized fungal fragments (<1 μm) may contribute to mold-related health effects. Previous laboratory-based studies have shown that the number concentration of fungal fragments can be up to 500 times higher than that of fungal spores, but this has not yet been confirmed in a field study due to lack of suitable methodology. We have recently developed a field-compatible method for the sampling and analysis of airborne fungal fragments. The new methodology was utilized for characterizing fungal fragment exposures in mold-contaminated homes selected in New Orleans, Louisiana and Southern Ohio. Airborne fungal particles were separated into three distinct size fractions: (i) >2.25 μm (spores), (ii) 1.05-2.25 μm (mixture), and (iii) <1.0 μm (submicrometer-sized fragments). Samples were collected in five homes in summer and winter and analyzed for (1→3)- β- D-glucan. The total (1→3)- β- D-glucan varied from 0.2 to 16.0 ng m -3. The ratio of (1→3)- β- D-glucan mass in fragment size fraction to that in spore size fraction ( F/ S) varied from 0.011 to 2.163. The mass ratio was higher in winter (average=1.017) than in summer (0.227) coinciding with a lower relative humidity in the winter. Assuming a mass-based F/ S-ratio=1 and the spore size=3 μm, the corresponding number-based F/ S-ratio (fragment number/spore number) would be 10 3 and 10 6, for the fragment sizes of 0.3 and 0.03 μm, respectively. These results indicate that the actual (field) contribution of fungal fragments to the overall exposure may be very high, even much greater than that estimated in our earlier laboratory-based studies.

  20. Antimicrobial Effects of Interferon-Inducible CXC Chemokines against Bacillus anthracis Spores and Bacilli▿

    PubMed Central

    Crawford, Matthew A.; Zhu, Yinghua; Green, Candace S.; Burdick, Marie D.; Sanz, Patrick; Alem, Farhang; O'Brien, Alison D.; Mehrad, Borna; Strieter, Robert M.; Hughes, Molly A.

    2009-01-01

    Based on previous studies showing that host chemokines exert antimicrobial activities against bacteria, we sought to determine whether the interferon-inducible Glu-Leu-Arg-negative CXC chemokines CXCL9, CXCL10, and CXCL11 exhibit antimicrobial activities against Bacillus anthracis. In vitro analysis demonstrated that all three CXC chemokines exerted direct antimicrobial effects against B. anthracis spores and bacilli including marked reductions in spore and bacillus viability as determined using a fluorometric assay of bacterial viability and CFU determinations. Electron microscopy studies revealed that CXCL10-treated spores failed to undergo germination as judged by an absence of cytological changes in spore structure that occur during the process of germination. Immunogold labeling of CXCL10-treated spores demonstrated that the chemokine was located internal to the exosporium in association primarily with the spore coat and its interface with the cortex. To begin examining the potential biological relevance of chemokine-mediated antimicrobial activity, we used a murine model of inhalational anthrax. Upon spore challenge, the lungs of C57BL/6 mice (resistant to inhalational B. anthracis infection) had significantly higher levels of CXCL9, CXCL10, and CXCL11 than did the lungs of A/J mice (highly susceptible to infection). Increased CXC chemokine levels were associated with significantly reduced levels of spore germination within the lungs as determined by in vivo imaging. Taken together, our data demonstrate a novel antimicrobial role for host chemokines against B. anthracis that provides unique insight into host defense against inhalational anthrax; these data also support the notion for an innovative approach in treating B. anthracis infection as well as infections caused by other spore-forming organisms. PMID:19179419

  1. Assessment of Bacterial Spores in Solid Materials: Curriculum Improvements Partnership Award for the Integration of Research (CIPAIR)

    NASA Technical Reports Server (NTRS)

    Lavallee, Richard J.

    2012-01-01

    This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.

  2. Reaerosolization of Fluidized Spores in Ventilation Systems▿

    PubMed Central

    Krauter, Paula; Biermann, Arthur

    2007-01-01

    This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522

  3. The walk and jump of Equisetum spores.

    PubMed

    Marmottant, Philippe; Ponomarenko, Alexandre; Bienaimé, Diane

    2013-11-01

    Equisetum plants (horsetails) reproduce by producing tiny spherical spores that are typically 50 µm in diameter. The spores have four elaters, which are flexible ribbon-like appendages that are initially wrapped around the main spore body and that deploy upon drying or fold back in humid air. If elaters are believed to help dispersal, the exact mechanism for spore motion remains unclear in the literature. In this manuscript, we present observations of the 'walks' and 'jumps' of Equisetum spores, which are novel types of spore locomotion mechanisms compared to the ones of other spores. Walks are driven by humidity cycles, each cycle inducing a small step in a random direction. The dispersal range from the walk is limited, but the walk provides key steps to either exit the sporangium or to reorient and refold. Jumps occur when the spores suddenly thrust themselves after being tightly folded. They result in a very efficient dispersal: even spores jumping from the ground can catch the wind again, whereas non-jumping spores stay on the ground. The understanding of these movements, which are solely driven by humidity variations, conveys biomimetic inspiration for a new class of self-propelled objects. PMID:24026816

  4. ASSESSING ALLERGENICITY OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing Allergenicity of Indoor Air Fungal Contaminants
    M D W Ward1, M E Viana2, N Haykal-Coates1, L B Copeland1, S H Gavett1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA.
    Rationale: The indoor environment has increased in impor...

  5. Influence of urban climate upon distribution of airborne Deuteromycete spore concentrations in Mexico City

    NASA Astrophysics Data System (ADS)

    Calderón, C.; Lacey, J.; McCartney, A.; Rosas, I.

    The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October-December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = -0.35 central, r = -0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200-0400, 1400 and 2000-2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2-4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The

  6. MRI contrast agent delivery using spore capsules: controlled release in blood plasma.

    PubMed

    Lorch, Mark; Thomasson, Matthew J; Diego-Taboada, Alberto; Barrier, Sylvain; Atkin, Stephen L; Mackenzie, Grahame; Archibald, Stephen J

    2009-11-14

    The exine coatings of spores can be used to encapsulate drug molecules. We have demonstrated that these microcapsules can be filled with a commercial gadolinium(III) MRI contrast agent (in this proof of concept study Gd-DTPA-BMA was used) which is slowly released in plasma due to enzymatic digestion of the capsule. PMID:19841803

  7. Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors.

    PubMed

    Favero-Longo, S E; Sandrone, S; Matteucci, E; Appolonia, L; Piervittori, R

    2014-01-01

    Fungal particulates are a dominant component of the bioaerosol, but aerobiological studies traditionally focused on a limited set of fungi having relevance as allergens or plant pathogens. This study first analyzes the occurrence of lichen meiospores in the mycoaerosol, quantitatively evaluating in the atmosphere of an alpine environment the occurrence of polar diblastic spores, unequivocally attributable to the lichen family Teloschistaceae. The analysis of air-samples collected one week per month for one year with a Hirst-type sampler displayed a low percentage occurrence of polar-diblastic spores (<0.1%) with respect to the whole mycoaerosol, dominated by Cladosporium. Spearman's correlation tests on aerobiological and climatic data highlighted a strong relationship between the detection of Teloschistaceae spores and rainfall events, excluding seasonal patterns or daily rhythms of dispersion. The fact that all the air-sampled spores were attributable to the species of Teloschistaceae occurring in the site, together with laboratory observations of predominant short range dispersal patterns for polar diblastic and other lichen spores, indicated that sexual reproduction is mostly involved in the local expansion of colonization, dispersal from a long distance appearing a less probable phenomenon. These findings indicated that responses of lichen communities to climate factors, usually related to physiological processes, also depend on their influence on meiospore dispersal dynamics. Spatial limitations in dispersal, however, have to be taken into account in evaluating lichen distributional shifts as indicators of environmental changes. PMID:23892020

  8. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes. PMID:27052695

  9. Isolation and Characterization of a Galactosamine Wall from Spores and Spherules of Physarum polycephalum

    PubMed Central

    McCormick, J. Justin; Blomquist, Judith C.; Rusch, Harold P.

    1970-01-01

    The myxomycete, Physarum polycephalum, can be induced under laboratory conditions to form two different hard-walled forms, spores and spherules. Characterization of both types of walls revealed only a single sugar, galactosamine. It was identified after acid hydrolysis of the isolated walls by chromatography in three solvent systems, by its positive reaction with ammoniacal silver nitrate, ninhydrin, Galactostat, and the Elson-Morgan test, and by ninhydrin degradation to lyxose. Galactosamine was present as a polymer with solubility characteristics the same as the β1-4–linked glucosamine polymer (chitosan). The walls were also found to contain about 2% protein. Spherule walls revealed a single glycoprotein on gel electrophoresis. Spore walls contained a similar protein component. The phosphate content of isolated spherule walls was 9.8%, and that of spore walls was 1.4%. Spore walls also contained about 15% melanin which was shown to be similar to fungal melanin. A novel method was used to measure the rate of mature spherule formation based on the loss of extractability of P. polycephalum natural pigment. The presence of a rare galactosamine polymer in P. polycephalum spore and spherule walls as the only carbohydrate suggests that the myxomycetes are not closely related to the fungi or the protozoa. PMID:16559084

  10. Use of microbial spores as a biocatalyst

    SciTech Connect

    Murata, Kousaku . Research Inst. for Food Science)

    1993-01-01

    Endospores of a bacterium Bacillus subtilis and ascospores of a yeast Saccharomyces cerevisiae contained almost all the activities for the same enzymes as vegetative cells. The biotechnological potential of spores was studied by selecting adenosine 5[prime]-triphosphatase and alkaline phosphatase in bacterial and yeast spores, respectively, as model enzymes. The activity of both enzymes was efficiently expressed when the spores were treated by physical (sonication or electric field pulse) and chemical (organic solvents or detergents) methods. The yeast spores were immobilized in polyacrylamide gel without any appreciable loss of activity. The immobilized spores were packed in a column and used successfully for the continuous reactions of alkaline phosphatase and glyoxalase I. The microbial spores were confirmed to be promising as a biocatalyst for the production of useful chemicals in bioreactor systems.

  11. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine. PMID:10919516

  12. Identification of a Nosema bombycis (Microsporidia) spore wall protein corresponding to spore phagocytosis.

    PubMed

    Cai, Shunfeng; Lu, Xingmeng; Qiu, Haihong; Li, Mingqian; Feng, Zhenzhen

    2011-08-01

    Life-cycle stages of the microsporidia Nosema bombycis, the pathogen causing silkworm pebrine, were separated and purified by an improved method of Percoll-gradient centrifugation. Soluble protein fractions of late sporoblasts (spore precursor cells) and mature spores were analysed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Protein spots were recovered from gels and analysed by mass spectrometry. The most abundant differential protein spot was identified by database search to be a hypothetical spore wall protein. Using immunoelectron microscopy, we demonstrated that HSWP5 is localized to the exospore of mature spores and renamed it as spore wall protein 5 (NbSWP5). Further spore phagocytosis assays indicated that NbSWP5 can protect spores from phagocytic uptake by cultured insect cells. This spore wall protein may function both for structural integrity and in modulating host cell invasion. PMID:21756420

  13. Inducing and Quantifying Clostridium difficile Spore Formation.

    PubMed

    Shen, Aimee; Fimlaid, Kelly A; Pishdadian, Keyan

    2016-01-01

    The Gram-positive nosocomial pathogen Clostridium difficile induces sporulation during growth in the gastrointestinal tract. Sporulation is necessary for this obligate anaerobe to form metabolically dormant spores that can resist antibiotic treatment, survive exit from the mammalian host, and transmit C. difficile infections. In this chapter, we describe a method for inducing C. difficile sporulation in vitro. This method can be used to study sporulation and maximize spore purification yields for a number of C. difficile strain backgrounds. We also describe procedures for visualizing spore formation using phase-contrast microscopy and for quantifying the efficiency of sporulation using heat resistance as a measure of functional spore formation. PMID:27507338

  14. Fungal Skin Infections

    MedlinePlus

    ... Fungal Skin Infections Overview of Fungal Skin Infections Candidiasis Overview of Dermatophytoses (Ringworm, Tinea) Athlete's Foot Jock ... are caused by yeasts (such as Candida —see Candidiasis ) or dermatophytes, such as Epidermophyton, Microsporum, and Trichophyton ( ...

  15. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    PubMed

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology. PMID:27130499

  16. EnP1, a Microsporidian Spore Wall Protein That Enables Spores To Adhere to and Infect Host Cells In Vitro▿

    PubMed Central

    Southern, Timothy R.; Jolly, Carrie E.; Lester, Melissa E.; Hayman, J. Russell

    2007-01-01

    Microsporidia are spore-forming fungal pathogens that require the intracellular environment of host cells for propagation. We have shown that spores of the genus Encephalitozoon adhere to host cell surface glycosaminoglycans (GAGs) in vitro and that this adherence serves to modulate the infection process. In this study, a spore wall protein (EnP1; Encephalitozoon cuniculi ECU01_0820) from E. cuniculi and Encephalitozoon intestinalis is found to interact with the host cell surface. Analysis of the amino acid sequence reveals multiple heparin-binding motifs, which are known to interact with extracellular matrices. Both recombinant EnP1 protein and purified EnP1 antibody inhibit spore adherence, resulting in decreased host cell infection. Furthermore, when the N-terminal heparin-binding motif is deleted by site-directed mutagenesis, inhibition of adherence is ablated. Our transmission immunoelectron microscopy reveals that EnP1 is embedded in the microsporidial endospore and exospore and is found in high abundance in the polar sac/anchoring disk region, an area from which the everting polar tube is released. Finally, by using a host cell binding assay, EnP1 is shown to bind host cell surfaces but not to those that lack surface GAGs. Collectively, these data show that given its expression in both the endospore and the exospore, EnP1 is a microsporidian cell wall protein that may function both in a structural capacity and in modulating in vitro host cell adherence and infection. PMID:17557882

  17. The high-resolution architecture and structural dynamics of Bacillus spores

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Malkin, A J

    2004-05-06

    The capability to image single microbial cell surfaces at nanometer scale under native conditions would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, environmental resistance and biotransformation. We report here that advances in atomic force microscopy (AFM) have allowed us to directly visualize high-resolution native structures of bacterial endospores, including the exosporium and spore coats of four Bacillus species in air and water environments. The dimensions of individual Bacillus atrophaeus spores were found to decrease reversibly by 12% in response to a change in the environment from aqueous to aerial phase. Intraspecies spore size distribution analyses revealed that spore length could vary by a factor of 2 while the absolute deviation is 7 - 13% in length and 4 - 6 % in width. AFM analysis also demonstrated that the mechanisms of spore coat self-assembly are similar to those described for inorganic and macromolecular crystallization. These results establish AFM as a powerful new tool for the analysis of molecular architecture and variability as a function of spatial, temporal and developmental organizational scales.

  18. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  19. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    PubMed Central

    Cote, Christopher K.; Welkos, Susan L.

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions. PMID:26287244

  20. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence

    PubMed Central

    Gu, Chunfang; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A.; Xu, Yi

    2016-01-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  1. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    PubMed

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. PMID:27304426

  2. Entomopathogenic fungal endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes are quite common in nature and some of them have been shown to have adverse effects against insects, nematodes, and plant pathogens. An introduction to fungal endophytes will be presented, followed by a discussion of research aimed at introducing Beauveria bassiana as a fungal endo...

  3. Submicronic fungal bioaerosols: high-resolution microscopic characterization and quantification.

    PubMed

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Nilsen, Terje; Synnes, Ole; Skaar, Ida; Hjeljord, Linda; Tronsmo, Arne; Green, Brett James; Eduard, Wijnand

    2014-11-01

    Submicronic particles released from fungal cultures have been suggested to be additional sources of personal exposure in mold-contaminated buildings. In vitro generation of these particles has been studied with particle counters, eventually supplemented by autofluorescence, that recognize fragments by size and discriminate biotic from abiotic particles. However, the fungal origin of submicronic particles remains unclear. In this study, submicronic fungal particles derived from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum cultures grown on agar and gypsum board were aerosolized and enumerated using field emission scanning electron microscopy (FESEM). A novel bioaerosol generator and a fungal spores source strength tester were compared at 12 and 20 liters min(-1) airflow. The overall median numbers of aerosolized submicronic particles were 2 × 10(5) cm(-2), 2.6 × 10(3) cm(-2), and 0.9 × 10(3) cm(-2) for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. A. fumigatus released significantly (P < 0.001) more particles than A. versicolor and P. chrysogenum. The ratios of submicronic fragments to larger particles, regardless of media type, were 1:3, 5:1, and 1:2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Spore fragments identified by the presence of rodlets amounted to 13%, 2%, and 0% of the submicronic particles released from A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Submicronic particles with and without rodlets were also aerosolized from cultures grown on cellophane-covered media, indirectly confirming their fungal origin. Both hyphae and conidia could fragment into submicronic particles and aerosolize in vitro. These findings further highlight the potential contribution of fungal fragments to personal fungal exposure. PMID:25217010

  4. Submicronic Fungal Bioaerosols: High-Resolution Microscopic Characterization and Quantification

    PubMed Central

    Afanou, Komlavi Anani; Straumfors, Anne; Skogstad, Asbjørn; Nilsen, Terje; Synnes, Ole; Skaar, Ida; Hjeljord, Linda; Tronsmo, Arne; Green, Brett James

    2014-01-01

    Submicronic particles released from fungal cultures have been suggested to be additional sources of personal exposure in mold-contaminated buildings. In vitro generation of these particles has been studied with particle counters, eventually supplemented by autofluorescence, that recognize fragments by size and discriminate biotic from abiotic particles. However, the fungal origin of submicronic particles remains unclear. In this study, submicronic fungal particles derived from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum cultures grown on agar and gypsum board were aerosolized and enumerated using field emission scanning electron microscopy (FESEM). A novel bioaerosol generator and a fungal spores source strength tester were compared at 12 and 20 liters min−1 airflow. The overall median numbers of aerosolized submicronic particles were 2 × 105 cm−2, 2.6 × 103 cm−2, and 0.9 × 103 cm−2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. A. fumigatus released significantly (P < 0.001) more particles than A. versicolor and P. chrysogenum. The ratios of submicronic fragments to larger particles, regardless of media type, were 1:3, 5:1, and 1:2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Spore fragments identified by the presence of rodlets amounted to 13%, 2%, and 0% of the submicronic particles released from A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Submicronic particles with and without rodlets were also aerosolized from cultures grown on cellophane-covered media, indirectly confirming their fungal origin. Both hyphae and conidia could fragment into submicronic particles and aerosolize in vitro. These findings further highlight the potential contribution of fungal fragments to personal fungal exposure. PMID:25217010

  5. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model. PMID:15692863

  6. FATE OF BACILLUS SPHAERICUS 2362 SPORES IN NONTARGET INVERTEBRATES

    EPA Science Inventory

    Predatory stonefly larvae (Paragnetina media) acquired B. sphaericus spores by eating spore-laden midge larvae. eaf shredding stonefly larvae (Pteronarcys proteus) and cranefly larvae (Tipula abdominalis) acquired spores by feeding on contaminated leaf discs. pon switching to unc...

  7. Spore heat resistance and specific mineralization.

    PubMed Central

    Bender, G R; Marquis, R E

    1985-01-01

    Spores of Bacillus megaterium ATCC 19213, Bacillus subtilis niger and Bacillus stearothermophilus ATCC 7953 were converted to fully demineralized, but viable, H forms by controlled acid titration. H forms were more heat sensitive than were native forms, but z values were greater for killing of H spores than those for native spores. Therefore, the differences in heat sensitivity between native and H forms decreased with increasing killing temperature. The increase in heat sensitivity associated with demineralization did not appear to be due to damage to cortex lytic enzymes of the germination system because it could not be moderated by decoating heated H spores and plating them on medium with added lysozyme. H spores could be remineralized by means of back titration with appropriate base solutions. The remineralized spores, except for the Na form, were then more heat resistant than were H spores. Ca and Mn were more effective in restoring resistance than were Mg and K. Generally, the remineralized forms (except for the Na form) had z values greater than those of the native forms but still less than those of the H forms. At lower killing temperatures, the reinstatement of resistance could be related to the extent of remineralization. However, at higher killing temperatures, only a fraction of the mineral was effective in restoring resistance, and higher levels of remineralization did not result in greater resistance. Mineralization is clearly an important factor in spore heat resistance, but the relationship between resistance and mineralization is complex and dependent on killing temperature. PMID:3937495

  8. Spore formation in plants: sporocyteless and more.

    PubMed

    Yuan, Li; Sundaresan, Venkatesan

    2015-01-01

    Plant reproduction is initiated by the specification of sporocytes that form haploid spores through meiosis. A new study in Arabidopsis published in Cell Research shows how the product of sporocyteless/nozzle, a key gene in this process, partners with co-repressors and transcription factors to promote spore formation, and draws interesting parallels with fungi. PMID:25512340

  9. Leaf-footed bug, Leptoglossus phyllopus (Hemiptera: Coreidae), as a potential vector of sorghum fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-footed bugs from a sorghum ergot-infected field located at the USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, were collected on a weekly basis to determine whether the insects can be passive vectors of sorghum fungal pathogens. Spores from several pathogens of sor...

  10. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic fungus Beauveria bassiana was established in coffee seedlings after fungal spore suspensions were applied as foliar sprays, stem injections, or soil drenches. Direct injection yielded the highest post-inoculation recovery of endophytic B. bassiana. Establishment, based on per...

  11. Plasma Assisted Decontamination of Bacterial Spores

    PubMed Central

    Kuo, Spencer P

    2008-01-01

    The efficacy and mechanism of killing bacterial spores by a plasma torch is studied. Bacterial-spore (Bacillus cereus) suspension is inoculated onto glass/paper slide-coupons and desiccated into dry samples, and inoculated into well-microplate as wet sample. The exposure distance of all samples is 4 cm from the nozzle of the torch. In the experiment, paper slide-coupon is inserted inside an envelope. The kill times on spores in three types of samples are measured to be about 3, 9, and 24 seconds. The changes in the morphology and shape of still viable spores in treated wet samples are recorded by scanning electron and atomic force microscopes. The loss of appendages and exosporium in the structure and squashed/flattened cell shape are observed. The emission spectroscopy of the torch indicates that the plasma effluent carries abundant reactive atomic oxygen, which is responsible for the destruction of spores. PMID:19662115

  12. Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy

    PubMed Central

    Wang, Shiwei; Yu, Jing; Suvira, Milomir; Setlow, Peter; Li, Yong-qing

    2015-01-01

    Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis). PMID:26636757

  13. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    PubMed

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ. PMID:18341580

  14. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates.

    PubMed

    Calkins, Shelby; Elledge, Nicole C; Hanafy, Radwa A; Elshahed, Mostafa S; Youssef, Noha

    2016-08-01

    Anaerobic gut fungi (AGF) represent a basal fungal lineage (phylum Neocallimastigomycota) that resides in the rumen and alimentary tracts of herbivores. The AGF reproduce asexually, with a life cycle that involves flagellated zoospores released from zoosporangia followed by encystment, germination and the subsequent development of rhizomycelia. A fast and reliable approach for AGF spore collection is critical not only for developmental biology studies, but also for molecular biological (e.g. AMT-transformation and RNAi) approaches. Here, we developed and optimized a simple and reliable procedure for the collection of viable, competent, and developmentally synchronized AGF spores under strict anaerobic conditions. The approach involves growing AGF on agar medium in serum bottles under anaerobic conditions, and flooding the observed aerial growth to promote spore release from sporangia into the flooding suspension. The released spores are gently collected using a wide bore sterile needle. Process optimization resulted in the recovery of up to 7×10(9) spores per serum bottle. Further, the released spores exhibited synchronized development from flagellated spores to encysted spores and finally to germinating spores within 90min from the onset of flooding. At the germinating spore stage, the obtained spores were competent, and readily uptook small interfering RNA (siRNA) oligonucleotides. Finally, using multiple monocentric and polycentric AGF isolates, we demonstrate that AGF grown on agar surface could retain viability for up to 16weeks at 39°C, and hence this solid surface growth procedure represents a simple, cryopreservative- and freezing temperature-free approach for AGF storage. PMID:27288952

  15. Impact of water activity of diverse media on spore germination of Aspergillus and Penicillium species.

    PubMed

    Nanguy, Sidjè Paule-Marina; Perrier-Cornet, Jean-Marie; Bensoussan, Maurice; Dantigny, Philippe

    2010-08-15

    The effects of water activity (a(w)) of diverse media i/ culture medium for sporogenesis, a(w sp) ii/ liquid spore suspension medium, a(w su) and iii/ medium for germination, a(w ge), on the germination time t(G) of Aspergillus carbonarius, Aspergillus flavus, Penicillium chrysogenum and Penicillium expansum were assessed according to a screening matrix at 0.95 and 0.99 a(w). It was shown that i/ reduced t(G)s were obtained at 0.95 a(w sp) except for P. expansum ii/ a significant effect of a(w su) on t(G) was demonstrated for A. carbonarius, P. chrysogenum and P. expansum iii/ the most important factor for controlling the germination time was the medium for germination except for A. carbonarius (a(w su)). In accordance with the fact that fungal spores can swell as soon as they are suspended in an aqueous solution it is recommended to re-suspend fungal spores in a solution at the same water activity as that of subsequent germination studies. PMID:20673593

  16. Slow Leakage of Ca-Dipicolinic Acid from Individual Bacillus Spores during Initiation of Spore Germination

    PubMed Central

    Wang, Shiwei; Setlow, Peter

    2015-01-01

    When exposed to nutrient or nonnutrient germinants, individual Bacillus spores can return to life through germination followed by outgrowth. Laser tweezers, Raman spectroscopy, and either differential interference contrast or phase-contrast microscopy were used to analyze the slow dipicolinic acid (DPA) leakage (normally ∼20% of spore DPA) from individual spores that takes place prior to the lag time, Tlag, when spores begin rapid release of remaining DPA. Major conclusions from this work with Bacillus subtilis spores were as follows: (i) slow DPA leakage from wild-type spores germinating with nutrients did not begin immediately after nutrient exposure but only at a later heterogeneous time T1; (ii) the period of slow DPA leakage (ΔTleakage = Tlag − T1) was heterogeneous among individual spores, although the amount of DPA released in this period was relatively constant; (iii) increases in germination temperature significantly decreased T1 times but increased values of ΔTleakage; (iv) upon germination with l-valine for 10 min followed by addition of d-alanine to block further germination, all germinated spores had T1 times of less than 10 min, suggesting that T1 is the time when spores become committed to germinate; (v) elevated levels of SpoVA proteins involved in DPA movement in spore germination decreased T1 and Tlag times but not the amount of DPA released in ΔTleakage; (vi) lack of the cortex-lytic enzyme CwlJ increased DPA leakage during germination due to longer ΔTleakage times in which more DPA was released; and (vii) there was slow DPA leakage early in germination of B. subtilis spores by the nonnutrients CaDPA and dodecylamine and in nutrient germination of Bacillus cereus and Bacillus megaterium spores. Overall, these findings have identified and characterized a new early event in Bacillus spore germination. PMID:25583976

  17. Protein profile of Bacillus subtilis spore.

    PubMed

    Mao, Langyong; Jiang, Shantong; Wang, Bin; Chen, Liang; Yao, Qin; Chen, Keping

    2011-08-01

    Natural wild-type strains of Bacillus subtilis spore is regarded as a non-pathogenic for both human and animal, and has been classified as a novel food which is currently being used as probiotics added in the consumption. To identify B. subtilis spore proteins, we have accomplished a preliminary proteomic analysis of B. subtilis spore, with a combination of two-dimensional electrophoretic separations and matrix-assisted laser desorption ionization tandem time of flight mass spectrometry (MALDI-TOF-MS). In this article, we presented a reference map of 158 B. subtilis spore proteins with an isoelectric point (pI) between 4 and 7. Followed by mass spectrometry (MS) analysis, we identified 71 B. subtilis spore proteins with high level of confidence. Database searches, combined with hydropathy analysis and GO analysis revealed that most of the B. subtilis spore proteins were hydrophilic proteins related to catalytic function. These results should accelerate efforts to understand the resistance of spore to harsh conditions. PMID:21667307

  18. Analysis of Bacillus globigii spores by CE.

    PubMed

    Chichester, Kimberly D; Silcott, David B; Colyer, Christa L

    2008-02-01

    It is imperative in today's world that harmful airborne or solution-based microbes can be detected quickly and efficiently. Bacillus globigii (Bg) spores are used as a simulant for Bacillus anthracis (Ba) due to their similar shape, size, and cellular makeup. The utility of CE to separate and detect low levels of Bg spore concentrations will be evaluated. To differentiate spores from background particulates, several dyes, including fluorescamine, C-10, NN-127, Red-1c, and indocyanine green (ICG), were utilized as noncovalent labels for proteins on the Bg spore surface, as well as for HSA and homoserine standards. On-column labeling, with dye present in the running buffer, was utilized to obtain greater sensitivity and better separation. CE with LIF detection enables interactions between the dye and spore surface proteins to be observed, with enhanced fluorescence occurring upon binding of the dye to surface protein. Resulting electropherograms showed unique fingerprints for each dye with Bg spores. Migration times were under 10 min for all dye-spore complexes, with net mobilities ranging from 3.5x10(-4) to 6.9x10(-4) cm(2) V(-1) s(-1), and calibration curves yielded correlation coefficients of 0.98 or better for four of the dyes studied. PMID:18203249

  19. Atopic cough and fungal allergy

    PubMed Central

    Fujimura, Masaki; Ohkura, Noriyuki; Makimura, Koichi

    2014-01-01

    We have shown that some patients presenting with chronic bronchodilator-resistant non-productive cough have a global atopic tendency and cough hypersensitivity without nonspecific bronchial hyperresponsiveness, abbreviated as atopic cough (AC). The cough can be treated successfully with histamine H1 antagonists and/or glucocorticoids. Eosinophilic tracheobronchitis and cough hypersensitivity are pathological and physiological characteristics of AC. Fungus-associated chronic cough (FACC) is defined as chronic cough associated with basidiomycetous (BM) fungi found in induced sputum, and recognition of FACC has provided the possibility of using antifungal drugs as new treatment strategies. Bjerkandera adusta is a wood decay BM fungus, which has attracted attention because of its potential role in enhancing the severity of cough symptoms in FACC patients by sensitization to this fungus. Before making a diagnosis of “idiopathic cough” in cases of chronic refractory cough, remaining intractable cough-related laryngeal sensations, such as “a sensation of mucus in the throat (SMIT),” which is correlated with fungal colonization, should be evaluated and treated appropriately in each patient. The new findings, i.e., the detection of environmental mushroom spores that should not be present in the human airways in addition to the good clinical response of patients to antifungal drugs, may lead to the development of novel strategies for treatment of chronic cough. PMID:25383202

  20. Atopic cough and fungal allergy.

    PubMed

    Ogawa, Haruhiko; Fujimura, Masaki; Ohkura, Noriyuki; Makimura, Koichi

    2014-10-01

    We have shown that some patients presenting with chronic bronchodilator-resistant non-productive cough have a global atopic tendency and cough hypersensitivity without nonspecific bronchial hyperresponsiveness, abbreviated as atopic cough (AC). The cough can be treated successfully with histamine H1 antagonists and/or glucocorticoids. Eosinophilic tracheobronchitis and cough hypersensitivity are pathological and physiological characteristics of AC. Fungus-associated chronic cough (FACC) is defined as chronic cough associated with basidiomycetous (BM) fungi found in induced sputum, and recognition of FACC has provided the possibility of using antifungal drugs as new treatment strategies. Bjerkandera adusta is a wood decay BM fungus, which has attracted attention because of its potential role in enhancing the severity of cough symptoms in FACC patients by sensitization to this fungus. Before making a diagnosis of "idiopathic cough" in cases of chronic refractory cough, remaining intractable cough-related laryngeal sensations, such as "a sensation of mucus in the throat (SMIT)," which is correlated with fungal colonization, should be evaluated and treated appropriately in each patient. The new findings, i.e., the detection of environmental mushroom spores that should not be present in the human airways in addition to the good clinical response of patients to antifungal drugs, may lead to the development of novel strategies for treatment of chronic cough. PMID:25383202

  1. Memory of Germinant Stimuli in Bacterial Spores

    PubMed Central

    Wang, Shiwei; Faeder, James R.; Setlow, Peter

    2015-01-01

    ABSTRACT Bacterial spores, despite being metabolically dormant, possess the remarkable capacity to detect nutrients and other molecules in their environment through a biochemical sensory apparatus that can trigger spore germination, allowing the return to vegetative growth within minutes of exposure of germinants. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. The magnitude and decay of these memory effects depend on the pulse duration as well as on the separation time, incubation temperature, and pH values between the pulses. Spores of Bacillus species germinate in response to nutrients that interact with germinant receptors (GRs) in the spore’s inner membrane, with different nutrient types acting on different receptors. In our experiments, B. subtilis spores display memory when the first and second germinant pulses target different receptors, suggesting that some components of spore memory are downstream of GRs. Furthermore, nonnutrient germinants, which do not require GRs, exhibit memory either alone or in combination with nutrient germinants, and memory of nonnutrient stimulation is found to be more persistent than that induced by GR-dependent stimuli. Spores of B. cereus and Clostridium difficile also exhibit germination memory, suggesting that memory may be a general property of bacterial spores. These observations along with experiments involving strains with mutations in various germination proteins suggest a model in which memory is stored primarily in the metastable states of SpoVA proteins, which comprise a channel for release of dipicolinic acid, a major early event in spore germination. PMID:26604257

  2. Effect of Storage Method on Spore Viability in Five Globally Threatened Fern Species

    PubMed Central

    QUINTANILLA, LUIS G.; AMIGO, JAVIER; PANGUA, EMILIA; PAJARÓN, SANTIAGO

    2002-01-01

    Spore germination of five globally threatened fern species [Culcita macrocarpa C. Presl, Dryopteris aemula (Aiton) O. Kuntze, D. corleyi Fraser‐Jenkins, D. guanchica Gibby and Jermy and Woodwardia radicans (L.) Sm.] was determined after 1, 6 or 12 months of storage in glass vials (dry storage) or on agar (wet storage) at –20, 5 or 20 °C. In all species, storage technique, storage temperature and the technique–temperature interaction all had a significant effect on germination percentage. In most cases, the germination percentage was best maintained by wet storage at 5 or 20 °C. In the case of the hygrophilous species C. macrocarpa and W. radicans, 6 or 12 months’ dry storage killed most spores. Only Woodwardia radicans germinated in the dark during wet storage at 20 °C. Wet storage at 5 °C prevented dark germination, and reduced bacterial and fungal contamination. Wet storage at –20 °C killed all or most spores in all species. In the three Dryopteris species, the differences among the storage conditions tested were smaller than in C. macrocarpa and W. radicans, and the decline in spore viability during storage was less marked, with high germination percentages being observed after 12 months of dry storage at all three temperatures. Dry storage, which has lower preparation time and space requirements than wet storage, was generally more effective at the lower temperatures (–20 or 5 °C). PMID:12324269

  3. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales.

    PubMed

    Healy, R A; Smith, M E; Bonito, G M; Pfister, D H; Ge, Z-W; Guevara, G G; Williams, G; Stafford, K; Kumar, L; Lee, T; Hobart, C; Trappe, J; Vilgalys, R; McLaughlin, D J

    2013-03-01

    Fungal mitospores may function as dispersal units and/ or spermatia and thus play a role in distribution and/or mating of species that produce them. Mitospore production in ectomycorrhizal (EcM) Pezizales is rarely reported, but here we document mitospore production by a high diversity of EcM Pezizales on three continents, in both hemispheres. We sequenced the internal transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA from 292 spore mats (visible mitospore clumps) collected in Argentina, Chile, China, Mexico and the USA between 2009 and 2012. We collated spore mat ITS sequences with 105 fruit body and 47 EcM root sequences to generate operational taxonomic units (OTUs). Phylogenetic inferences were made through analyses of both molecular data sets. A total of 48 OTUs from spore mats represented six independent EcM Pezizales lineages and included truffles and cup fungi. Three clades of seven OTUs have no known meiospore stage. Mitospores failed to germinate on sterile media, or form ectomycorrhizas on Quercus, Pinus and Populus seedlings, consistent with a hypothesized role of spermatia. The broad geographic range, high frequency and phylogenetic diversity of spore mats produced by EcM Pezizales suggests that a mitospore stage is important for many species in this group in terms of mating, reproduction and/or dispersal. PMID:23205556

  4. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  5. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    SciTech Connect

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  6. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.

    2016-06-01

    The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus ( A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.

  7. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.

    2016-01-01

    The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus (A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.

  8. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits.

    PubMed

    de Souza, Evandro L; Sales, Camila V; de Oliveira, Carlos E V; Lopes, Laênia A A; da Conceição, Maria L; Berger, Lúcia R R; Stamford, Thayza C M

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage. PMID:26257717

  9. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    PubMed Central

    de Souza, Evandro L.; Sales, Camila V.; de Oliveira, Carlos E. V.; Lopes, Laênia A. A.; da Conceição, Maria L.; Berger, Lúcia R. R.; Stamford, Thayza C. M.

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage. PMID:26257717

  10. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin; Bundela, Pushpendra Singh; Wong, Jonathan W C; Selvam, Ammaiyappan

    2014-09-01

    Influence of fungal consortium and different turning frequency on composting of organic fraction of municipal solid waste (OFMSW) was investigated to produce compost with higher agronomic value. Four piles of OFMSW were prepared: three piles were inoculated with fungal consortium containing 5l each spore suspensions of Trichoderma viride, Aspergillus niger and Aspergillus flavus and with a turning frequency of weekly (Pile 1), twice a week (Pile 2) and daily (Pile 3), while Pile 4 with weekly turning and without fungal inoculation served as control. The fungal consortium with weekly (Pile 1) turning frequency significantly affected temperature, pH, TOC, TKN, C/N ratio and germination index. High degradation of organic matter and early maturity was observed in Pile 1. Results indicate that fungal consortium with weekly turning frequency of open windrows were more cost-effective in comparison with other technologies for efficient composting and yield safe end products. PMID:24507579

  11. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  12. Quantification and Single-Spore Detection of Phakopsora pachyrhizi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microscopic identification and quantification of Phakopsora pachyrhizi spores from environmental samples, spore traps, and laboratory specimens can represent a challenge. Such reports, especially from passive spore traps, commonly describe the number of “rust-like” spores; for other forensic sa...

  13. Comparison of four commercial DNA extraction kits for the recovery of Bacillus spp. spore DNA from spiked powder samples.

    PubMed

    Mölsä, Markos; Kalin-Mänttäri, Laura; Tonteri, Elina; Hemmilä, Heidi; Nikkari, Simo

    2016-09-01

    Bacillus spp. include human pathogens such as Bacillus anthracis, the causative agent of anthrax and a biothreat agent. Bacillus spp. form spores that are physically highly resistant and may remain active over sample handling. We tested four commercial DNA extraction kits (QIAamp DNA Mini Kit, RTP Pathogen Kit, ZR Fungal/Bacterial DNA MiniPrep, and genesig Easy DNA/RNA Extraction kit) for sample inactivation and DNA recovery from two powders (icing sugar and potato flour) spiked with Bacillus thuringiensis spores. The DNA was analysed using a B. thuringiensis-specific real-time PCR assay. The detection limit was 3×10(1)CFU of spiked B. thuringiensis spores with the QIAamp DNA Mini, RTP Pathogen, and genesig Easy DNA/RNA Extraction kits, and 3×10(3)CFU with the ZR Fungal/Bacterial DNA MiniPrep kit. The results showed that manual extraction kits are effective and safe for fast and easy DNA extraction from powder samples even in field conditions. Adding a DNA filtration step to the extraction protocol ensures the removal of Bacillus spp. spores from DNA samples without affecting sensitivity. PMID:27435532

  14. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    PubMed

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. PMID:26880797

  15. Rapid onsite assessment of spore viability.

    SciTech Connect

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  16. Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004-2006 and relation to some meteorological factors

    NASA Astrophysics Data System (ADS)

    Grinn-Gofroń, Agnieszka; Rapiejko, Piotr

    2009-08-01

    The concentration of airborne spores of Cladosporium spp. and Alternaria spp. has been investigated at three monitoring stations situated along the west-north and central-east transect in Poland (Szczecin, Olsztyn, Warszawa,) i.e. from a height of 100 m to 149 m above sea level. The aerobiological monitoring of fungal spores was performed by means of three Lanzoni volumetric spore traps. Cladosporium spp. spores were dominant at all the stations. The highest Cladosporium spp. and Alternaria spp. numbers of spores were observed at all the cities in July and August. Statistically significant correlations have been found between the Cladosporium spp. and Alternaria spp. concentration in the air and the mean air temperature, amount of precipitation, air pressure and relative air humidity. The spore count of Cladosporium spp. and Alternaria spp. is determined by the diversity of local flora and weather conditions, especially by the air temperature. The identification of factors, which influence and shape spore concentrations, may significantly improve the current methods of allergy prevention.

  17. Fungal and Bacterial Diseases.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial diseases are important constraints to production. Recognition of diseases and information on their biology is important in disease management. This chapter is aimed at providing diagnostic information on fungal and bacterial diseases of sugar beet and their biology, epidemiolo...

  18. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    PubMed

    Wüthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  19. Calnexin induces expansion of antigen-specific CD4+ T cells that confer immunity to fungal ascomycetes via conserved epitopes

    PubMed Central

    Wüthrich, Marcel; Brandhorst, Tristan T.; Sullivan, Thomas D.; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S.; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A.; Jenkins, Marc K.; Klein, Bruce

    2015-01-01

    Fungal infections remain a threat due to the lack of broad spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown, but conserved antigen. Using transgenic CD4+ T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats induces expansion of calnexin-specific CD4+ T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4+ T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogeneticity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  20. Fungal communities in the soils of early medieval settlements in the taiga zone

    NASA Astrophysics Data System (ADS)

    Marfenina, O. E.; Ivanova, A. E.; Kislova, E. E.; Zazovskaya, E. P.; Chernov, I. Yu.

    2008-07-01

    The difference between the mycobiota in anthropogenically transformed soils of the settlements of the 9th 14th centuries and in the background zonal Podzols and umbric Albeluvisols of the middle and southern taiga subzones in the European part of Russia is demonstrated. The mycological specificity of anthropogenically transformed soils with a cultural layer (CL) in comparison with the background soils is similar for all the studied objects. Its characteristic features are as follows: (1) the redistribution of the fungal biomass in the profile of anthropogenically transformed soils in comparison with zonal soils, (2) the lower amount of fungal mycelium in the CL with the accumulation of fungal spores in this layer, (3) the increased species diversity of fungal communities in the CL manifested by the greater morphological diversity of the spore pool and by the greater diversity of the fungi grown on nutrient media, (4) the change in the composition and species structure of fungal communities in the CL, (5) the replacement of dominant species typical of the zonal soils by eurytopic species, and (6) the significant difference between the fungal communities in the CL and in the above-and lower-lying horizons and buried soils of the same age. Most of the mycological properties of the soils of ancient settlements are also typical of modern urban soils. Thus, the mycological properties of soils can be considered informative carriers of soil memory about ancient anthropogenic impacts.

  1. MALDI-based intact spore mass spectrometry of downy and powdery mildews.

    PubMed

    Chalupová, Jana; Sedlářová, Michaela; Helmel, Michaela; Rehulka, Pavel; Marchetti-Deschmann, Martina; Allmaier, Günter; Sebela, Marek

    2012-08-01

    Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI-TOF MS-based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer-based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5 × 10(9) spores per ml. The best peptide/protein profiles (in terms of signal-to-noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves. PMID:22899506

  2. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  3. Identification of a novel chitin-binding spore wall protein (NbSWP12) with a BAR-2 domain from Nosema bombycis (microsporidia).

    PubMed

    Chen, Jie; Geng, Lina; Long, Mengxian; Li, Tian; Li, Zhi; Yang, Donglin; Ma, Chao; Wu, Haijing; Ma, Zhengang; Li, Chunfeng; Pan, Guoqing; Zhou, Zeyang

    2013-09-01

    The spore wall of Nosema bombycis plays an important role in microsporidian pathogenesis. Protein fractions from germinated spore coats were analysed by two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF/TOF mass spectrometry. Three protein spots were identified as the hypothetical spore wall protein NbHSWP12. A BAR-2 domain (e-value: 1.35e-03) was identified in the protein, and an N-terminal protein-heparin interaction motif, a potential N-glycosylation site, and 16 phosphorylation sites primarily activated by protein kinase C were also predicted. The sequence analysis suggested that Nbhswp12 and its homologous genes are widely distributed among microsporidia. Additionally, Nbhswp12 gene homologues share similar sequence features. An indirect immunofluorescence analysis showed that NbHSWP12 localized to the spore wall, and thus we renamed it spore wall protein 12 (NbSWP12). Moreover, NbSWP12 could adhere to deproteinized N. bombycis chitin coats that were obtained by hot alkaline treatment. This novel N. bombycis spore wall protein may function in a structural capacity to facilitate microsporidial spore maintenance. PMID:23920053

  4. Thermal Death of Bacillus subtilis var. niger Spores on Selected Lander Capsule Surfaces

    PubMed Central

    Paik, W. W.; Sherry, E. J.; Stern, J. A.

    1969-01-01

    Dry-heat sterilization of planetary lander capsules requires a knowledge of the thermal resistivity of microorganisms in the environment to which they will be subjected during sterilization of the space hardware. The dry-heat resistance of Bacillus subtilis var. niger spores on various lander capsule materials was determined at 125 C. Eight surface materials were evaluated, including a reference material, stainless steel. Survivor curves were computed, and decimal reduction times (D values) were obtained by a linear regression analysis. In four tests on stainless steel, the average value of D at 125 C was 17.07 min. The D values for the other seven materials tested ranged from 18.64 min on magnesium surfaces to 20.83 min on conversion-coated magnesium. Of the materials evaluated, the results indicate that there is only a significant difference in the thermal resistance of B. subtilis var. niger spores on conversion-coated magnesium and conversion-coated aluminum from that on the reference material, stainless steel. The differences in D values for all the test surfaces may be the result of variations in test procedures rather than the effect of the surfaces on the thermal resistivity of the spores. PMID:4391845

  5. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  6. Interaction and assembly of two novel proteins in the spore wall of the microsporidian species Nosema bombycis and their roles in adherence to and infection of host cells.

    PubMed

    Yang, Donglin; Pan, Guoqing; Dang, Xiaoqun; Shi, Yawei; Li, Chunfeng; Peng, Pai; Luo, Bo; Bian, Maofei; Song, Yue; Ma, Cheng; Chen, Jie; Ma, Zhengang; Geng, Lina; Li, Zhi; Tian, Rui; Wei, Cuifang; Zhou, Zeyang

    2015-04-01

    Microsporidia are obligate intracellular parasites with rigid spore walls that protect against various environmental pressures. Despite an extensive description of the spore wall, little is known regarding the mechanism by which it is deposited or the role it plays in cell adhesion and infection. In this study, we report the identification and characterization of two novel spore wall proteins, SWP7 and SWP9, in the microsporidian species Nosema bombycis. SWP7 and SWP9 are mainly localized to the exospore and endospore of mature spores and the cytoplasm of sporonts, respectively. In addition, a portion of SWP9 is targeted to the spore wall of sporoblasts earlier than SWP7 is. Both SWP7 and SWP9 are specifically colocalized to the spore wall in mature spores. Furthermore, immunoprecipitation, far-Western blotting, unreduced SDS-PAGE, and yeast two-hybrid data demonstrated that SWP7 interacted with SWP9. The chitin binding assay showed that, within the total spore protein, SWP9 and SWP7 can bind to the deproteinated chitin spore coats (DCSCs) of N. bombycis. However, binding of the recombinant protein rSWP7-His to the DCSCs is dependent on the combination of rSWP9-glutathione S-transferase (GST) with the DCSCs. Finally, rSWP9-GST, anti-SWP9, and anti-SWP7 antibodies decreased spore adhesion and infection of the host cell. In conclusion, SWP7 and SWP9 may have important structural capacities and play significant roles in modulating host cell adherence and infection in vitro. A possible major function of SWP9 is as a scaffolding protein that supports other proteins (such as SWP7) that form the integrated spore wall of N. bombycis. PMID:25605761

  7. Interaction and Assembly of Two Novel Proteins in the Spore Wall of the Microsporidian Species Nosema bombycis and Their Roles in Adherence to and Infection of Host Cells

    PubMed Central

    Yang, Donglin; Pan, Guoqing; Dang, Xiaoqun; Shi, Yawei; Li, Chunfeng; Peng, Pai; Luo, Bo; Bian, Maofei; Song, Yue; Ma, Cheng; Chen, Jie; Ma, Zhengang; Geng, Lina; Li, Zhi; Tian, Rui; Wei, Cuifang

    2015-01-01

    Microsporidia are obligate intracellular parasites with rigid spore walls that protect against various environmental pressures. Despite an extensive description of the spore wall, little is known regarding the mechanism by which it is deposited or the role it plays in cell adhesion and infection. In this study, we report the identification and characterization of two novel spore wall proteins, SWP7 and SWP9, in the microsporidian species Nosema bombycis. SWP7 and SWP9 are mainly localized to the exospore and endospore of mature spores and the cytoplasm of sporonts, respectively. In addition, a portion of SWP9 is targeted to the spore wall of sporoblasts earlier than SWP7 is. Both SWP7 and SWP9 are specifically colocalized to the spore wall in mature spores. Furthermore, immunoprecipitation, far-Western blotting, unreduced SDS-PAGE, and yeast two-hybrid data demonstrated that SWP7 interacted with SWP9. The chitin binding assay showed that, within the total spore protein, SWP9 and SWP7 can bind to the deproteinated chitin spore coats (DCSCs) of N. bombycis. However, binding of the recombinant protein rSWP7-His to the DCSCs is dependent on the combination of rSWP9–glutathione S-transferase (GST) with the DCSCs. Finally, rSWP9-GST, anti-SWP9, and anti-SWP7 antibodies decreased spore adhesion and infection of the host cell. In conclusion, SWP7 and SWP9 may have important structural capacities and play significant roles in modulating host cell adherence and infection in vitro. A possible major function of SWP9 is as a scaffolding protein that supports other proteins (such as SWP7) that form the integrated spore wall of N. bombycis. PMID:25605761

  8. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    PubMed

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity. PMID:23053578

  9. Characterization of a novel spore wall protein NbSWP16 with proline-rich tandem repeats from Nosema bombycis (microsporidia).

    PubMed

    Wang, Ying; Dang, Xiaoqun; Ma, Qiang; Liu, Fangyan; Pan, Guoqing; Li, Tian; Zhou, Zeyang

    2015-04-01

    Nosema bombycis, a pathogen of silkworm pebrine, is an obligate unicellular eukaryotic parasite. It is reported that the spore wall proteins have essential functions in the adherence and infection process of microsporidia. To date, the information related to spore wall proteins from microsporidia is still limited. Here, a 44 kDa spore wall protein NbSWP16 was characterized in N. bombycis. In NbSWP16, a 25 amino acids signal peptide and 3 heparin binding motifs were predicted. Interestingly, a region that contains 3 proline-rich tandem repeats lacking homology to any known protein was also present in this protein. The immunofluorescence analysis (IFA) demonstrated that distinct fluorescent signals were detected both on the surface of mature spores and the germinated spore coats. Immunolocation by electron microscopy revealed that NbSWP16 localized on the exospore regions. Finally, spore adherence analysis indicated that spore adherence to host cell was decreased more than 20% by anti-NbSWP16 blocking compared with the negative control in vitro. In contrast with anti-NbSWP16, no remarkable decrement inhibition was detected when antibodies of NbSWP16 and NbSWP5 were used simultaneously. Collectively, these results suggest that NbSWP16 is a new exospore protein and probably be involved in spore adherence of N. bombycis. PMID:25363531

  10. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth. PMID:9830122

  11. Aerodynamics of puffball mushroom spore dispersal

    NASA Astrophysics Data System (ADS)

    Amador, Guillermo; Barberie, Alex; Hu, David

    2012-11-01

    Puffball mushrooms Lycoperdon are spherical fungi that release a cloud of spores in response to raindrop impacts. In this combined experimental and theoretical study, we elucidate the aerodynamics of this unique impact-based spore-dispersal. We characterize live puffball ejections by high speed video, the geometry and elasticity of their shells by cantilever experiments, and the packing fraction and size of their spores by scanning electron microscope. We build a dynamically similar puffball mimic composed of a tied-off latex balloon filled with baby powder and topped with a 1-cm slit. A jet of powder is elicited by steady lateral compression of the mimic between two plates. The jet height is a bell-shaped function of force applied, with a peak of 18 cm at loads of 45 N. We rationalize the increase in jet height with force using Darcy's Law: the applied force generates an overpressure maintained by the air-tight elastic membrane. Pressure is relieved as the air travels through the spore interstitial spaces, entrains spores, and exits through the puffball orifice. This mechanism demonstrates how powder-filled elastic shells can generate high-speed jets using energy harvested from rain.

  12. Bacillus subtilis Spore Inner Membrane Proteome.

    PubMed

    Zheng, Linli; Abhyankar, Wishwas; Ouwerling, Natasja; Dekker, Henk L; van Veen, Henk; van der Wel, Nicole N; Roseboom, Winfried; de Koning, Leo J; Brul, Stanley; de Koster, Chris G

    2016-02-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets. PMID:26731423

  13. Early quantitative method for measuring germination in non-green spores of Dryopteris paleacea using an epifluorescence-microscope technique

    NASA Technical Reports Server (NTRS)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1988-01-01

    A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.

  14. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated detection of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2003-08-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  15. Near-infrared Surface-Enhanced-Raman-Scattering (SERS) mediated discrimination of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2004-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  16. Size-selective assessment of agricultural workers' personal exposure to airborne fungi and fungal fragments.

    PubMed

    Lee, Shu-An; Liao, Chien-Hua

    2014-01-01

    Fungi are ubiquitous agents that cause human respiratory diseases. Very few studies have size-selectively assessed farmers' exposure to fungi and fungal fragments in agricultural settings. In this study, a two-stage bio-aerosol cyclone personal sampler was employed to collect airborne fungi and fungal fragments size-selectively at corn, swine, poultry, and mushroom farms. The collected air samples were analyzed for culturable fungi, fungal spores, viable fungi and (1 → 3)-β-D-glucan. The results show that the median concentrations ranged from 3.2 × 10(5) to 1.3 × 10(8)spores/m(3) for total fungal spores, from 1.3 × 10(5) to 5.1 × 10(7)spores/m(3) for total viable fungi, from 1.9 × 10(3) to 1.5 × 10(7)CFU/m(3) for total culturable fungi, and from 4.3 × 10(3) to 2.4 × 10(6)pg/m(3) for total (1 → 3)-β-D-glucan. The aerodynamic sizes of most of the collected fungal contaminants were larger than 1.8 μm. Total (1 → 3)-β-D-glucan significantly correlated with total fungal spores (r = 0.65, p < 0.001), total viable fungi (r = 0.68, p < 0.001) and total culturable fungi (r = 0.72, p < 0.001). Total (1 → 3)-β-D-glucan significantly correlated with Aspergillus/Penicillium, Alternaria, and Cladosporium. Alternaria and Botrytis were also found to highly correlate with (1 → 3)-β-D-glucan at the size <1 μm, which was less than the expected spore sizes (the mean measured aerodynamic sizes were 18.5 μm for Alternaria and 6.1 μm for Botrytis); therefore, Alternaria and Botrytis might release small fragments that could enter the deep lung and cause respiratory diseases. PMID:23973538

  17. Insect pathology and fungal entomopathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi that occur inside asymptomatic plant tissues are known as fungal endophytes. Different genera of fungal entomopathogens have been reported as naturally occurring fungal endophytes, and it has been shown that it is possible to inoculate plants with fungal entomopathogens, making them endophytic...

  18. The Composition and Attributes of Colletotrichum truncatum Spores Are Altered by the Nutritional Environment

    PubMed Central

    Jackson, Mark A.; Schisler, David A.

    1992-01-01

    Previous sporulation studies with Colletotrichum truncatum NRRL 13737, a fungal pathogen of the noxious weed Sesbania exaltata, showed that the carbon-to-nitrogen (CN) ratio of the conidiation medium influenced spore yield, morphology, and efficacy in inciting disease in S. exaltata. Spores produced in a medium with a CN ratio of 10:1 were more effective than were spores produced in a 30:1 or 80:1 ratio in causing disease in S. exaltata. With a basal salts medium supplemented with glucose and Casamino Acids, substrate utilization, spore production, biomass accumulation, and biomass and spore composition were compared in submerged cultures of C. truncatum grown in media with CN ratios of 80:1, 30:1, and 10:1. All cultures were sporulating by day 2, and spore concentrations in 5-day-old cultures were significantly different: 30:1 > 10:1 > 80:1. Amino acid and glucose utilization was balanced in cultures grown in media with a CN ratio of 10:1, whereas cultures grown in media with a CN ratio of 30:1 or 80:1 depleted amino acids prior to glucose. Conidia produced in media with a CN ratio of 10:1 contained significantly more protein (32% of dry weight) and less lipid (17% of dry weight) than conidia produced in media with a CN ratio of either 30:1 (15% protein, 33% lipid) or 80:1 (12% protein, 37% lipid). The higher lipid content of spores produced in media with a CN ratio of 30:1 or 80:1 was associated with the presence of increased numbers of lipid droplets. Optimization studies on conidia produced in media with CN ratios between 30:1 and 10:1 which compared yield, attributes, and efficacy in inciting disease in S. exaltata suggest that media with a CN ratio of 15:1 to 20:1 may be optimal for conidium production. Images PMID:16348737

  19. Experimental observations on fungal diagenesis of carbonate substrates

    NASA Astrophysics Data System (ADS)

    Kolo, Kamal; Keppens, Eddy; PréAt, Alain; Claeys, Philippe

    2007-03-01

    Carbonate substrates (dolomites and limestones) are susceptible to fungal attack that results in significant microbial diagenesis of these substrates. In a 15-day experimental study, fungi growing in Petri dishes from airborne spores attacked petrographic thin sections and chips prepared from the dolomites of Terwagne Formation (Viséan, Bocahut quarry at Avesnes-sur-Helpe, northern France) and limestones of the Morrone di Pacentro Formation (Lower Cretaceous, Italy). The analyses of the fungal material (samples of mycelia), thin sections and chips under optical microscopy, scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy and stable isotopes (C and O) revealed an extensive fungally induced diagenesis. The results indicate strong diagenesis and biomineral neomorphism: neo-dolomite, glushinskite, weddellite, whewellite and possibly struvite, as well as intense substrate "de-micritization" and "micritization" with oxalates, grain bridging and cementation, open space filling, formation of intergranular and intragranular porosity, and permeability enhancement. Advanced stages of diagenesis were characterized by dissolution and replacement of original minerals by new substrates produced by fungal biomineralization. The formation of new substrates on the original attacked surfaces produced microscale stratification. Stable isotope analysis of fungal biomineralized material and of attacked and unattacked chip surfaces revealed marked differences in their isotopic signatures. The C and O isotopes of biomineralized material within the fungal mass were fractionated differently as compared to the signature measured in the original and unattacked surfaces. In sedimentary cycles, such microbially modified isotopic signature of carbonate substrates may be used to define microbial events, and consequently whether certain types of diagenesis were produced by microbial interaction. The finding of neo-dolomite formed

  20. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation.

    PubMed

    Sun, Xue-Guang; Bonfante, Paola; Tang, Ming

    2015-12-01

    Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L. japonicus mutant Ljcastor (which lacks the symbiotic cation channel CASTOR, which is required for inducing nuclear calcium spiking, which is necessary for symbiotic partner recognition), or Arabidopsis thaliana, separated by cellophane membranes (fungal exudates experiment), or on different media but with a shared head space (fungal volatiles experiment). Root development was monitored over time. Both germinating spore exudates (GSEs) and geminated-spore-emitted volatile organic compounds (GVCs) significantly promoted lateral root formation (LRF) in WT L. japonicus. LRF in Ljcastor was significantly enhanced in the presence of GVCs. GVCs stimulated LRF in A. thaliana, whereas GSEs showed an inhibitory effect. The expression profile of the genes involved in mycorrhizal establishment and root development were investigated using quantitative reverse transcription-PCR analysis. Only the expression of the LjCCD7 gene, an important component of the strigolactone synthesis pathway, was differentially expressed following exposure to GVCs. We conclude that volatile organic compounds released by the germinating AM fungal spores may stimulate LRF in a symbiosis signaling pathway (SYM)- and host-independent way, whereas GSEs stimulate LRF in a SYM- and host-dependent way. PMID:26397199

  1. Nail Fungal Infections

    MedlinePlus

    ... medicines can treat a fungal nail infection. Oral antifungal medicines help a new nail grow to replace ... infected nail. You might need to take the antifungal medicine for 6 to 12 weeks. It depends ...

  2. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  3. Fungal Nail Infection (Onychomycosis)

    MedlinePlus

    ... vinegar, vitamin E oil, Vicks® VapoRub®, or tea tree oil. When to Seek Medical Care Fungal nail ... Trusted Links Related diseases: Psoriasis View all diseases Community: Discussion Forum Skinmatters Blog About Us | Terms of ...

  4. Fungal Eye Infections

    MedlinePlus

    ... Zoonotic Infectious Disease Division of Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Fungal Eye Infections Recommend on ... Zoonotic Infectious Disease Division of Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch File Formats Help: How do ...

  5. Carotenoids present in halotolerant Bacillus spore formers.

    PubMed

    Duc, Le H; Fraser, Paul D; Tam, Nguyen K M; Cutting, Simon M

    2006-02-01

    Six isolates of pigmented spore-forming bacteria were recovered from human faeces from subjects in Vietnam. 16S rRNA analysis demonstrated close association with known pigmented Bacillus species. All isolates were able to tolerate growth on 8% NaCl and were resistant to arsenate, characteristics that make them most related to Bacillus indicus. Two visible pigments were apparent, a yellow pigment found in vegetative cells and an orange pigment found only in spores. We used high-performance liquid chromatography to characterize and quantify these pigments and found them to be carotenoids. The biosynthetic pathway that generates them branches with one that could lead to the spore-associated orange pigmentation. Although these bacteria were found in faeces, the seafood-rich diet of Vietnam and the recovery of other pigmented Bacillus species from seafood and marine environments makes it highly probable that the true origin of these bacteria is from ingested seafood. PMID:16448498

  6. Fungal diagnostics in pneumonia.

    PubMed

    Lease, Erika D; Alexander, Barbara D

    2011-12-01

    Fungal pneumonia is increasingly common, particularly in highly immunosuppressed patients, such as solid organ or hematopoietic stem cell transplant recipients, and the diagnosis is evolving. Although standard techniques such as microscopy and culture remain the mainstays of diagnosis, relatively recent advances in serological and molecular testing are important additions to the field. This article reviews the laboratory tools used to diagnose fungal respiratory disease. PMID:22167394

  7. Fungal Diagnostics in Pneumonia

    PubMed Central

    Lease, Erika D.; Alexander, Barbara D.

    2014-01-01

    Fungal pneumonia is increasingly common, particularly in highly immunosuppressed patients, such as solid organ or hematopoietic stem cell transplant recipients, and the diagnosis is evolving. While standard techniques such as microscopy and culture remain the mainstay of diagnosis, relatively recent advances in serologic and molecular testing are important additions to the field. This chapter will review the laboratory tools used to diagnose fungal respiratory disease. PMID:22167394

  8. Immunotherapy of Fungal Infections.

    PubMed

    Datta, Kausik; Hamad, Mawieh

    2015-11-01

    Fungal organisms are ubiquitous in the environment. Pathogenic fungi, although relatively few in the whole gamut of microbial pathogens, are able to cause disease with varying degrees of severity in individuals with normal or impaired immunity. The disease state is an outcome of the fungal pathogen's interactions with the host immunity, and therefore, it stands to reason that deep/invasive fungal diseases be amenable to immunotherapy. Therefore, antifungal immunotherapy continues to be attractive as an adjunct to the currently available antifungal chemotherapy options for a number of reasons, including the fact that existing antifungal drugs, albeit largely effective, are not without limitations, and that morbidity and mortality associated with invasive mycoses are still unacceptably high. For several decades, intense basic research efforts have been directed at development of fungal immunotherapies. Nevertheless, this approach suffers from a severe bench-bedside disconnect owing to several reasons: the chemical and biological peculiarities of the fungal antigens, the complexities of host-pathogen interactions, an under-appreciation of the fungal disease landscape, the requirement of considerable financial investment to bring these therapies to clinical use, as well as practical problems associated with immunizations. In this general, non-exhaustive review, we summarize the features of ongoing research efforts directed towards devising safe and effective immunotherapeutic options for mycotic diseases, encompassing work on antifungal vaccines, adoptive cell transfers, cytokines, antimicrobial peptides (AMPs), monoclonal antibodies (mAbs), and other agents. PMID:26575463

  9. Bacterial spores and chemical sporicidal agents.

    PubMed Central

    Russell, A D

    1990-01-01

    Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described. Images PMID:2187595

  10. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated. PMID:19826917

  11. The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra; Moeller, Ralf; Cadet, Jean; Douki, Thierry

    2015-01-01

    The experiment SPORES `Spores in artificial meteorites' was part of European Space Agency's EXPOSE-R mission, which exposed chemical and biological samples for nearly 2 years (March 10, 2009 to February 21, 2011) to outer space, when attached to the outside of the Russian Zvezda module of the International Space Station. The overall objective of the SPORES experiment was to address the question whether the meteorite material offers enough protection against the harsh environment of space for spores to survive a long-term journey in space by experimentally mimicking the hypothetical scenario of Lithopanspermia, which assumes interplanetary transfer of life via impact-ejected rocks. For this purpose, spores of Bacillus subtilis 168 were exposed to selected parameters of outer space (solar ultraviolet (UV) radiation at λ>110 or >200 nm, space vacuum, galactic cosmic radiation and temperature fluctuations) either as a pure spore monolayer or mixed with different concentrations of artificial meteorite powder. Total fluence of solar UV radiation (100-400 nm) during the mission was 859 MJ m-2. After retrieval the viability of the samples was analysed. A Mission Ground Reference program was performed in parallel to the flight experiment. The results of SPORES demonstrate the high inactivating potential of extraterrestrial UV radiation as one of the most harmful factors of space, especially UV at λ>110 nm. The UV-induced inactivation is mainly caused by photodamaging of the DNA, as documented by the identification of the spore photoproduct 5,6-dihydro-5(α-thyminyl)thymine. The data disclose the limits of Lithopanspermia for spores located in the upper layers of impact-ejected rocks due to access of harmful extraterrestrial solar UV radiation.

  12. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  13. A Flow-Through Ultrasonic Lysis System for the Disruption of Bacterial Spores

    SciTech Connect

    Warner, Cynthia L.; Bruckner-Lea, Cindy J.; Grate, Jay W.; Straub, Tim M.; Posakony, Gerald J.; Valentine, Nancy B.; Ozanich, Richard M.; Bond, Leonard J.; Matzke, Melissa M.; Dockendorff, Brian P.; Valdez, Catherine O.; Valdez, Patrick LJ; Owsley, Stanley L.

    2009-10-01

    An automated, flow-through spore lysis instrument that is capable of rapidly disrupting bacterial spores is described. The system utilizes a flow-through chamber that allows for direct injection of the sample without the need for a chemical or enzymatic pre-treatment step to soften the spore coat prior to lysis. Lysis of Bacillus subtilis spores, a benign simulant of Bacillus anthracis, is achieved by flowing the sample through a tube whose axis is parallel to the faces of two transducers that deliver 10 W cm-2 to the surface of the tube at 1.4 MHz frequency. Increases in amplifiable DNA were assessed by real-time PCR analysis, which showed at least a 25-fold increase in amplifiable DNA following ultrasonic treatment, and dilution-to-extinction PCR, which suggests up to a 100-1000-fold increase. The modular design of the ultrasonic system and integrated fluidics allow it to be incorporated into multi-step sample treatment and detection systems.

  14. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  15. Greenhouse germination and characterization of Synchytrium solstitiale resting spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchytrium solstitiale was evaluated for suitability in biological control of yellow starthisle (YST). A protocol was developed for maintenance of S. solstitiale in galled tissue under greenhouse conditions. Recently, protocol has been developed for germination of resting spores. Resting spores ...

  16. Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors

    PubMed Central

    2012-01-01

    Background New products aimed at augmenting or replacing chemical insecticides must have operational profiles that include both high efficacy in reducing vector numbers and/or blocking parasite transmission and be long lasting following application. Research aimed at developing fungal spores as a biopesticide for vector control have shown considerable potential yet have not been directly assessed for their viability after long-term storage or following application in the field. Methods Spores from a single production run of the entomopathogenic fungi Beauveria bassiana were dried and then stored under refrigeration at 7°C. After 585 days these spores were sub-sampled and placed at either 22°C, 26°C or 32°C still sealed in packaging (closed storage) or in open beakers and exposed to the 80% relative humidity of the incubator they were kept in. Samples were subsequently taken from these treatments over a further 165 days to assess viability. Spores from the same production run were also used to test their persistence following application to three different substrates, clay, cement and wood, using a hand held sprayer. The experiments were conducted at two different institutes with one using adult female Anopheles stephensi and the other adult female Anopheles gambiae. Mosquitoes were exposed to the treated substrates for one hour before being removed and their survival monitored for the next 14 days. Assays were performed at monthly intervals over a maximum seven months. Results Spore storage under refrigeration resulted in no loss of spore viability over more than two years. Spore viability of those samples kept under open and closed storage was highly dependent on the incubation temperature with higher temperatures decreasing viability more rapidly than cooler temperatures. Mosquito survival following exposure was dependent on substrate type. Spore persistence on the clay substrate was greatest achieving 80% population reduction for four months against An

  17. Decontamination of Bacillus anthracis Spores: Evaluation of Various Disinfectants

    PubMed Central

    Heninger, Sara J.; Anderson, Christine A.; Beltz, Gerald; Onderdonk, Andrew B.

    2009-01-01

    The present study compares the efficacy of various disinfectants against Bacillus anthracis spores. While Bleach Rite® and 10% bleach reduce spore numbers by 90% within 10 minutes, a long contact time is required for complete disinfection. By contrast, although SporGon® did not initially reduce the number of spores as quickly as Bleach Rite or 10% bleach, shorter contact times were required for complete eradication of viable spores. PMID:20967138

  18. Photocontrol of the Germination of Onoclea Spores

    PubMed Central

    Towill, Leslie R.; Ikuma, Hiroshi

    1973-01-01

    Light stimulates the germination of spores of the fern Onoclea sensibilis L. At high dosages, broad band red, far red, and blue light promote maximal germination. Maximal sensitivity to these spectral regions is attained from 6 to 48 hours of dark presoaking, and all induced rapid germination after a lag of 30 to 36 hours. Maximal germination is attained approximately 70 hours after irradiation. Dose response curves suggest log linearity. The action spectrum to cause 50% germination shows that spores are most sensitive to irradiation in the red region (620-680 nm) with an incident energy less than 1000 ergs cm−2; sensitivity decreases towards both shorter and longer wavelengths. Although the action spectrum is suggestive of phytochrome involvement, photoreversibility of germination between red and far red light has not been demonstrated with Onoclea spores. An absorption spectrum of the intact spores reveals the presence of chlorophylls and carotenoids. Since the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea does not inhibit germination, it is concluded that photosynthesis does not play a role in the germination process. PMID:16658448

  19. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  20. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  1. Requirements for in vitro germination of Paenibacillus larvae spores.

    PubMed

    Alvarado, Israel; Phui, Andy; Elekonich, Michelle M; Abel-Santos, Ernesto

    2013-03-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a disease affecting honey bee larvae. First- and second-instar larvae become infected when they ingest food contaminated with P. larvae spores. The spores then germinate into vegetative cells that proliferate in the midgut of the honey bee. Although AFB affects honey bees only in the larval stage, P. larvae spores can be distributed throughout the hive. Because spore germination is critical for AFB establishment, we analyzed the requirements for P. larvae spore germination in vitro. We found that P. larvae spores germinated only in response to l-tyrosine plus uric acid under physiologic pH and temperature conditions. This suggests that the simultaneous presence of these signals is necessary for spore germination in vivo. Furthermore, the germination profiles of environmentally derived spores were identical to those of spores from a biochemically typed strain. Because l-tyrosine and uric acid are the only required germinants in vitro, we screened amino acid and purine analogs for their ability to act as antagonists of P. larvae spore germination. Indole and phenol, the side chains of tyrosine and tryptophan, strongly inhibited P. larvae spore germination. Methylation of the N-1 (but not the C-3) position of indole eliminated its ability to inhibit germination. Identification of the activators and inhibitors of P. larvae spore germination provides a basis for developing new tools to control AFB. PMID:23264573

  2. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  3. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  4. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.

    PubMed

    Hintze, Paul E; Nicholson, Wayne L

    2010-06-01

    Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca-DPA). Spores excrete Ca-DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported. PMID:20396869

  5. THE ALLERGENIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory


    The Allergenic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yongjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, SPH,...

  6. ASSESSING THE ALLERGIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing the Allergic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yonjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, S...

  7. Antifungal efficiency assessment of the TiO2 coating on façade paints.

    PubMed

    Vučetić, Snežana B; Rudić, Ognjen Lj; Markov, Siniša L; Bera, Oskar J; Vidaković, Ana M; Skapin, Andrijana S Sever; Ranogajec, Jonjaua G

    2014-10-01

    The work studies the photocatalytic activity and the antifungal efficiency of the TiO2/Zn-Al coatings placed on the target commercial façade paints. The photocatalytic active nanocomposite based on TiO2 and Zn-Al-layered double hydroxides (ZnAl-LDHs) was synthesized by a wet impregnation technique with 3 % w/w TiO2. The freshly prepared suspension was applied by spray technique on the surfaces of the white façade paints. The goal of the work was to develop a method that quickly quantifies the antifungal activity of the commercial façade paints with and without biocidal components covered with a photocatalytic coating. The essence of the proposed method is the monitoring of the fungal growth (artificial ageing conditions) and the quantification of its development (UV-A 0.13 mWcm(-2)) on the façade paint surfaces. A special fungus nutrient (potato dextrose agar (PDA)) was inoculated with the spores of the Aspergillus niger ATCC 6275, and the test samples (façade paints with and without photocatalytic coating) were placed on the inoculated nutrient in the petri dishes. The images of the fungal growth on the samples of the facade paints, during a period of 5 days, were imported into Matlab R2012a where they were converted to binary images (BW), based on the adequate threshold. The percentage of the surface coverage was calculated by applying the specifically written program code which determines the ratio of the black and white pixels. The black pixels correspond to the surface covered with hyphae and mycelia of the fungus. PMID:24875311

  8. Distribution and mycotoxin-producing ability of some fungal isolates from the air

    NASA Astrophysics Data System (ADS)

    Cvetnić, Zdenka; Pepeljnjak, S.

    Research was carried out on presence and prevalence of common fungal air spores at locations in Croatia. The sampling method employed in the study was by exposure 350 of Petri agar plates to the air for 10 min. Approximately 3400 colonies were found and mould spores belonging to 22 fungal genera were identified. Cladosporium (44.7%), Penicillium (34.4%), Alternaria (26.3%), Aspergillus (21.6%) and Absidia (12.2%) were the most prevalent fungi encountered. Investigation of toxigenic potential of airborne fungi isolates of genera Aspergillus, Fusarium and Trichoderma showed 16.9% mycotoxin-producing strains. The production of aflatoxin B 1 by A. flavus sterigmatocystin by A. versicolor zearalenon and T-2 toxin by F. graminearum and diacetoscirpenol by strains of T. viride were obtained.

  9. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Eshet, Yoram; Rampino, Michael R.; Visscher, Henk

    1995-11-01

    The end of the Permian Period was marked by the most severe mass extinction in the geologic record. Detailed quantitative study of pollen and spores from shallow-marine deposits spanning the Permian-Triassic (P-Tr) boundary in Israel reveals a sequence of palynological-ecological stages reflecting a major crisis among land plants. The disappearance of the gymnosperm-dominated palynoflora of the Late Permian Lueckisporites virkkiae Zone is recorded at a claystone horizon containing almost exclusively abundant fungal remains and carbonized terrestrial plant debris. This “fungal spike” is followed by a zone dominated by marine acritarchs and a succession showing ecological recovery with abundant lycopod spores and eventual reappearance of bisaccate gymnosperm pollen in the Early Triassic. The latest Permian proliferation of fungi is recognizable worldwide and can be correlated with other paleontological and geochemical markers of a global ecological disaster.

  10. Genome Diversity of Spore-Forming Firmicutes

    PubMed Central

    Galperin, Michael Y.

    2015-01-01

    Summary Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes: Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in nutrient-rich environment. It argues that systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework. Later the Bacillus filaments begin to prepare for spore formation. In their homogenous contents strongly refracting bodies appear. From each of these bodies develops an oblong or shortly cylindrical, strongly refracting, dark-rimmed spore. Ferdinand Cohn. 1876. Untersuchungen über Bacterien. IV. Beiträge zur Biologie der Bacillen. Beiträge zur Biologie der Pflanzen, vol. 2, pp. 249–276. (Studies on the biology of the bacilli. In: Milestones in Microbiology: 1546 to 1940. Translated and edited by Thomas D. Brock. Prentice-Hall, Englewood Cliffs, NJ, 1961, pp. 49–56). PMID:26184964

  11. Effects of Ionizing Radiation on Postharvest Fungal Pathogens.

    PubMed

    Jeong, Rae-Dong; Shin, Eun-Jung; Chu, Eun-Hee; Park, Hae-Jun

    2015-06-01

    Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3-4 kGy for B. cinerea and 1-2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation. PMID:26060436

  12. Metabolomics reveals insect metabolic responses associated with fungal infection.

    PubMed

    Xu, Yong-Jiang; Luo, Feifei; Gao, Qiang; Shang, Yanfang; Wang, Chengshu

    2015-06-01

    The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions. PMID:25895944

  13. Fungal volatiles as indicators of food and feeds spoilage.

    PubMed

    Schnürer, J; Olsson, J; Börjesson, T

    1999-01-01

    Fungal growth leads to spoilage of food and animal feeds and to formation of mycotoxins and potentially allergenic spores. Fungi produce volatile compounds, during both primary and secondary metabolism, which can be used for detection and identification. Fungal volatiles from mainly Aspergillus, Fusarium, and Penicillium have been characterized with gas chromatography, mass spectrometry, and sensory analysis. Common volatiles are 2-methyl-1-propanol, 3-methyl-1-butanol, 1-octen-3-ol, 3-octanone, 3-methylfuran, ethyl acetate, and the malodorous 2-methyl-isoborneol and geosmin. Volatile sesquiterpenes can be used for taxonomic classification and species identification in Penicillium, as well as to indicate mycotoxin formation in Fusarium and Aspergillus. Developments in sensor technology have led to the construction of "electronic noses" (volatile compound mappers). Exposure of different nonspecific sensors to volatile compounds produces characteristic electrical signals. These are collected by a computer and processed by multivariate statistical methods or in an artificial neural network (ANN). Such systems can grade cereal grain with regard to presence of molds as efficiently as sensory panels evaluating grain odor. Volatile compound mapping can also be used to predict levels of ergosterol and fungal colony-forming units in grain. Further developments should make it possible to detect individual fungal species as well as the degree of mycotoxin contamination of food and animal feeds. PMID:10441446

  14. Microfungal spores (Ustilago maydis and U. digitariae) immobilised chitosan microcapsules for heavy metal removal.

    PubMed

    Sargın, İdris; Arslan, Gulsin; Kaya, Murat

    2016-03-15

    Designing effective chitosan-based biosorbents from unexploited biomass for heavy metal removal has received much attention over the past decade. Ustilago, loose smut, is a ubiquitous fungal plant pathogen infecting over 4000 species including maize and weed. This study aimed to establish whether the spores of the phytopathogenic microfungi Ustilago spores can be immobilised in cross-linked chitosan matrix, and it reports findings on heavy metal sorption performance of chitosan/Ustilago composite microcapsules. Immobilisation of Ustilago maydis and U. digitariae spores (from maize and weed) in chitosan microcapsules was achieved via glutaraldehyde cross-linking. The cross-linked microcapsules were characterised using scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Sorption capacities of chitosan-U. maydis and chitosan-U. digitariae microcapsules were investigated and compared to cross-linked chitosan beads: Cu(II): 66.72, 69.26, 42.57; Cd(II): 49.46, 53.96, 7.87; Cr(III): 35.88, 49.40, 43.68; Ni(II): 41.67, 33.46, 16.43 and Zn(II): 30.73, 60.81, 15.04mg/g, respectively. Sorption experiments were conducted as a function of initial metal ion concentration (2-10mg/L), contact time (60-480min), temperature (25, 35 and 45°C), amount of the sorbent (0.05-0.25g) and pH of the metal solution. The microcapsules with spores exhibited better performance over the plain chitosan beads, demonstrating their potential use in water treatment. PMID:26794753

  15. Assessing total fungal concentrations on commercial passenger aircraft using mixed-effects modeling.

    PubMed

    McKernan, Lauralynn Taylor; Hein, Misty J; Wallingford, Kenneth M; Burge, Harriet; Herrick, Robert

    2008-01-01

    The primary objective of this study was to compare airborne fungal concentrations onboard commercial passenger aircraft at various in-flight times with concentrations measured inside and outside airport terminals. A secondary objective was to investigate the use of mixed-effects modeling of repeat measures from multiple sampling intervals and locations. Sequential triplicate culturable and total spore samples were collected on wide-body commercial passenger aircraft (n = 12) in the front and rear of coach class during six sampling intervals: boarding, midclimb, early cruise, midcruise, late cruise, and deplaning. Comparison samples were collected inside and outside airport terminals at the origin and destination cities. The MIXED procedure in SAS was used to model the mean and the covariance matrix of the natural log transformed fungal concentrations. Five covariance structures were tested to determine the appropriate models for analysis. Fixed effects considered included the sampling interval and, for samples obtained onboard the aircraft, location (front/rear of coach section), occupancy rate, and carbon dioxide concentrations. Overall, both total culturable and total spore fungal concentrations were low while the aircraft were in flight. No statistical difference was observed between measurements made in the front and rear sections of the coach cabin for either culturable or total spore concentrations. Both culturable and total spore concentrations were significantly higher outside the airport terminal compared with inside the airport terminal (p-value < 0.0001) and inside the aircraft (p-value < 0.0001). On the aircraft, the majority of total fungal exposure occurred during the boarding and deplaning processes, when the aircraft utilized ancillary ventilation and passenger activity was at its peak. PMID:18041644

  16. Discrimination of fungal infections on grape berries via spectral signatures

    NASA Astrophysics Data System (ADS)

    Molitor, Daniel; Griesser, Michaela; Schütz, Erich; Khuen, Marie-Therese; Schefbeck, Christa; Ronellenfitsch, Franz Kai; Schlerf, Martin; Beyer, Marco; Schoedl-Hummel, Katharina; Anhalt, Ulrike; Forneck, Astrid

    2016-04-01

    The fungal pathogens Botrytis cinerea and Penicillium expansum are causing economic damages on grapevine worldwide. Especially the simultaneous occurrence of both often results in off-flavours highly threatening wine quality. For the classification of grape quality as well as for the determination of targeted enological treatments, the knowledge of the level of fungal attack is of highest interest. However, visual assessment and pathogen discrimination are cost-intensive. Consequently, a pilot laboratory study aimed at (i) detecting differences in spectral signatures between grape berry lots with different levels of infected berries (B. cinerea and/or P. expansum) and (ii) detecting links between spectral signatures and biochemical as well as quantitative molecular markers for fungal attack. To this end, defined percentages (infection levels) of table grape berries were inoculated with fungal spore suspensions. Spectral measurements were taken using a FieldSpec 3 Max spectroradiometer (ASD Inc., Boulder/Colorado, USA) in regular intervals after inoculation. In addition, fungal attack was determined enzymatically) and quantitatively (real-time PCR). In addition, gluconic acid concentrations (as a potential markers for fungal attack) were determined photometrically. Results indicate that based on spectral signatures, a discrimination of P. expansum and B. cinerea infections as well as of different B. cinerea infection levels is possible. Real-time PCR analyses, detecting DNA levels of both fungi, showed yet a low detection level. Whereas the gluconic acid concentrations turned out to be specific for the two fungi tested (B. cinerea vs. P. expansum) and thus may serve as a differentiating biochemical marker. Correlation analyses between spectral measurements and biological data (gluconic acid concentrations, fungi DNA) as well as further common field and laboratory trials are targeted.

  17. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides

    PubMed Central

    Nesher, Iris; Barhoom, Sima; Sharon, Amir

    2008-01-01

    Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable throughout the infection cycle

  18. Allergic Fungal Rhinosinusitis.

    PubMed

    Hoyt, Alice E W; Borish, Larry; Gurrola, José; Payne, Spencer

    2016-01-01

    This article reviews the history of allergic fungal rhinosinusitis and the clinical, pathologic, and radiographic criteria necessary to establish its diagnosis and differentiate this disease from other types of chronic rhinosinusitis. Allergic fungal rhinosinusitis is a noninvasive fungal form of sinus inflammation characterized by an often times unilateral, expansile process in which the typical allergic "peanut-butter-like" mucin contributes to the formation of nasal polyps, hyposmia/anosmia, and structural changes of the face. IgE sensitization to fungi is a necessary, but not sufficient, pathophysiologic component of the disease process that is also defined by microscopic visualization of mucin-containing fungus and characteristic radiological imaging. This article expounds on these details and others including the key clinical and scientific distinctions of this diagnosis, the pathophysiologic mechanisms beyond IgE-mediated hypersensitivity that must be at play, and areas of current and future research. PMID:27393774

  19. Fungal synthesis of exopolysaccharides

    SciTech Connect

    Griffith, W.L.; Compere, A.L.

    1984-01-01

    Several fungal polysaccharides are currently used as thickening agents for materials ranging from enhanced oil recovery brines and drilling muds to foods. These polymers are generally produced during exponential fungal growth and appear to be normal cell wall constituents. As thickeners, they tend to be comparable to xanthan, and exhibit a similar non-Newtonian response to shear. Polymers which do not have carboxyl or amine group substituents tend to be less sensitive to high concentrations of multivalent ions, a problem in many brine and food systems. The fungal polymers have related fermentations and separations. They compete for a similar product market. Where families of polymers have a common backdone, they are susceptible to hydrolysis by the same enzymes.

  20. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  1. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins

    PubMed Central

    Fimlaid, Kelly A.; Jensen, Owen; Donnelly, M. Lauren; Siegrist, M. Sloan; Shen, Aimee

    2015-01-01

    Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the “feeding tube,” that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission. PMID:26465937

  2. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.

    PubMed

    Reynolds, A M

    2012-11-01

    ABSTRACT The turbulent dispersal of fungal spores within plant canopies is very different from that within atmospheric boundary-layers and closely analogous to dispersal within turbulent mixing-layers. The process is dominated by the presence of large coherent flow structures, high-velocity downdrafts (sweeps) and updrafts (ejections), that punctuate otherwise quiescent flow. Turbulent dispersion within plant canopies is best predicted by Lagrangian stochastic (particle-tracking) models because other approaches (e.g., diffusion models and similarity theory) are either inappropriate or invalid. Nonetheless, attempts to construct such models have not been wholly successful. Accounting for sweeps and ejections has substantially worsened rather than improved model agreement with experimental dispersion data. Here we show how this long-standing difficulty with the formulation of Lagrangian stochastic models can be overcome. The new model is shown to be in good agreement with data from a carefully controlled, well-documented wind-tunnel study of scalar dispersion within plant canopy turbulence. Equally good agreement with this data is obtained using Thomson's (1987) Gaussian model. This bolsters confidence in the application of this simple model to the prediction of spore dispersal within plant canopy turbulence. Contact distributions-the probability distribution function for the distance of viable fungal spore movement until deposition-are predicted to have "heavy" inverse power-law tails. It is known that heavy-tailed contact distributions also characterize the dispersal of spores which pass through the canopy turbulence and enter into the overlying atmospheric boundary-layer. Plant disease epidemics due to the airborne dispersal of fungal spores are therefore predicted to develop as accelerating waves over a vast range of scales-from the within field scale to intercontinental scales. This prediction is consistent with recent analyses of field and historical data for

  3. Australian dust storm associated with extensive Aspergillus sydowii fungal "bloom" in coastal waters.

    PubMed

    Hallegraeff, Gustaaf; Coman, Frank; Davies, Claire; Hayashi, Aiko; McLeod, David; Slotwinski, Anita; Whittock, Lucy; Richardson, Anthony J

    2014-06-01

    A massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m(3)) and hyphae in coastal waters between Brisbane (27°S) and Sydney (34°S). These spores were successfully germinated from formalin-preserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS[, and beta-tubulin gene), they were conclusively identified as Aspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility of Alexandrium or Chattonella algal cultures but had their greatest impacts on Symbiodinium dinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non- or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains. PMID:24657868

  4. Australian Dust Storm Associated with Extensive Aspergillus sydowii Fungal “Bloom” in Coastal Waters

    PubMed Central

    Coman, Frank; Davies, Claire; Hayashi, Aiko; McLeod, David; Slotwinski, Anita; Whittock, Lucy; Richardson, Anthony J.

    2014-01-01

    A massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m3) and hyphae in coastal waters between Brisbane (27°S) and Sydney (34°S). These spores were successfully germinated from formalin-preserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS[, and beta-tubulin gene), they were conclusively identified as Aspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility of Alexandrium or Chattonella algal cultures but had their greatest impacts on Symbiodinium dinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non- or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains. PMID:24657868

  5. Regulation of trehalose metabolism by Streptomyces griseus spores.

    PubMed Central

    McBride, M J; Ensign, J C

    1990-01-01

    Spores of Streptomyces griseus contain trehalose and trehalase, but trehalose is not readily hydrolyzed until spore germination is initiated. Trehalase in crude extracts of spores, germinated spores, and mycelia of S. griseus had a pH optimum of approximately 6.2, had a Km value for trehalose of approximately 11 mM, and was most active in buffers having ionic strengths of 50 to 200 mM. Inhibitors or activators or trehalase activity were not detected in extracts of spores or mycelia. Several lines of evidence indicated that trehalose and trehalase are both located in the spore cytoplasm. Spores retained their trehalose and most of their trehalase activity following brief exposure to dilute acid. Protoplasts formed by enzymatic removal of the spore walls in buffer containing high concentrations of solutes also retained their trehalose and trehalase activity. Protoplasts formed in buffer containing lower levels of solutes contained low levels of trehalose. The mechanism by which trehalose metabolism is regulated in S. griseus spores is unresolved. A low level of hydration of the cytoplasm of the dormant spores and an increased level of hydration during germination may account for the apparent inactivity of trehalase in dormant spores and the rapid hydrolysis of trehalose upon initiation of germination. Images PMID:2113908

  6. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    PubMed Central

    Kong, Lingbo; Doona, Christopher J.; Setlow, Peter

    2014-01-01

    Germination of Bacillus spores with a high pressure (HP) of ∼150 MPa is via activation of spores' germinant receptors (GRs). The HP germination of multiple individual Bacillus subtilis spores in a diamond anvil cell (DAC) was monitored with phase-contrast microscopy. Major conclusions were that (i) >95% of wild-type spores germinated in 40 min in a DAC at ∼150 MPa and 37°C but individual spores' germination kinetics were heterogeneous; (ii) individual spores' HP germination kinetic parameters were similar to those of nutrient-triggered germination with a variable lag time (Tlag) prior to a period of the rapid release (ΔTrelease) of the spores' dipicolinic acid in a 1:1 chelate with Ca2+ (CaDPA); (iii) spore germination at 50 MPa had longer average Tlag values than that at ∼150 MPa, but the ΔTrelease values at the two pressures were identical and HPs of <10 MPa did not induce germination; (iv) B. subtilis spores that lacked the cortex-lytic enzyme CwlJ and that were germinated with an HP of 150 MPa exhibited average ΔTrelease values ∼15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and (v) the germination of wild-type spores given a ≥30-s 140-MPa HP pulse followed by a constant pressure of 1 MPa was the same as that of spores exposed to a constant pressure of 140 MPa that was continued for ≥35 min; (vi) however, after short 150-MPa HP pulses and incubation at 0.1 MPa (ambient pressure), spore germination stopped 5 to 10 min after the HP was released. These results suggest that an HP of ∼150 MPa for ≤30 s is sufficient to fully activate spores' GRs, which remain activated at 1 MPa but can deactivate at ambient pressure. PMID:24162576

  7. Activation and injury of Clostridium perfringens spores by alcohols.

    PubMed Central

    Craven, S E; Blankenship, L C

    1985-01-01

    The activation properties of Clostridium perfringens NCTC 8679 spores were demonstrated by increases in CFU after heating in water or aqueous alcohols. The temperature range for maximum activation, which was 70 to 80 degrees C in water, was lowered by the addition of alcohols. The response at a given temperature was dependent on the time of exposure and the alcohol concentration. The monohydric alcohols and some, but not all, of the polyhydric alcohols could activate spores at 37 degrees C. The concentration of a monohydric alcohol that produced optimal spore activation was inversely related to its lipophilic character. Spore injury, which was manifested as a dependence on lysozyme for germination and colony formation, occurred under some conditions of alcohol treatment that exceeded those for optimal spore activation. Treatment with aqueous solutions of monohydric alcohols effectively activated C. perfringens spores and suggests a hydrophobic site for spore activation. PMID:2864897

  8. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  9. Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR

    PubMed Central

    Bai, Yubin; Wang, Yanfei; Goulian, Mark; Driks, Adam

    2014-01-01

    Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures. PMID:25089181

  10. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Taylor, P. E.; Andreae, M. O.; Pöschl, U.

    2007-09-01

    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7-2.3 μg m-3). For the particle diameter range of 1-10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10-68 ng m-3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7-49 ng m-3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17-43 ng m-3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air

  11. Biological responses of Raw 264.7 macrophage exposed to two strains of Stachybotrys chartarum spores grown on four different wallboard types.

    PubMed

    Kim, J H; Harvey, L A; Evans, A L; Byfield, G E; Betancourt, D A; Dean, T R

    2016-06-01

    The many benefits of building "green" have motivated the use of sustainable products in the design and execution of the built environment. However, the use of these natural or recycled materials, some of which have been treated with antimicrobials, provides a growth opportunity for microorganisms with the potential to elicit adverse health effects especially in the presence of an antimicrobial. The focus of this research was to determine the effects of Stachybotrys chartarum (strains Houston and 51-11) grown under different conditions on a macrophage cell line (Raw 264.7) using endpoints, including cytotoxicity, and those associated with immunity specifically inflammation and MHC class II expression. The fungi were grown on four different gypsum products, and macrophages were exposed to whole spores of both strains and fragmented spores of strain 51-11. Whole spores of the Houston strain elicited no cytotoxicity with some level of inflammation, while exposure to whole spores of 51-11 caused variable responses depending on the wallboard type supporting the fungal growth. High concentrations of fragmented 51-11 spores primarily resulted in the apoptosis of macrophage with no inflammation. None of the fungal strains caused elevated levels of major histocompatibility complex (MHC) class II expression on the surface of Raw cells. Mycotoxin levels of 51-11 spores from all of the wallboard types measured  >250 ng/μL of T2 equivalent toxin based on activity. Collectively, the data demonstrated that all of the wallboard types supported growth of fungi with the ability to elicit harmful biological responses with the potential to negatively impact human health. PMID:27097835

  12. Pulmonary fungal infections.

    PubMed

    Smith, Jeannina A; Kauffman, Carol A

    2012-08-01

    This review details some of the advances that have been made in the recent decade in the diagnosis, treatment and epidemiology of pulmonary fungal infections. These advances have occurred because of increasing knowledge regarding the fungal genome, better understanding of the structures of the fungal cell wall and cell membrane and the use of molecular epidemiological techniques. The clinical implications of these advances are more rapid diagnosis and more effective and less toxic antifungal agents. For example, the diagnosis of invasive pulmonary aspergillosis, as well as histoplasmosis and blastomycosis, has improved with the use of easily performed antigen detection systems in serum and bronchoalveolar lavage fluid. Treatment of angioinvasive moulds has improved with the introduction of the new azoles, voriconazole and posaconazole that have broad antifungal activity. Amphotericin B is less frequently used, and when used is often given as lipid formulation to decrease toxicity. The newest agents, the echinocandins, are especially safe as they interfere with the metabolism of the fungal cell wall, a structure not shared with humans cells. Epidemiological advances include the description of the emergence of Cryptococcus gattii in North America and the increase in pulmonary mucormycosis and pneumonia due to Fusarium and Scedosporium species in transplant recipients and patients with haematological malignancies. The emergence of azole resistance among Aspergillus species is especially worrisome and is likely related to increased azole use for treatment of patients, but also to agricultural use of azoles as fungicides in certain countries. PMID:22335254

  13. Who Gets Fungal Infections?

    MedlinePlus

    ... infections can also happen in people without weak immune systems Fungal infections that are not life-threatening, such ... likely to cause an infection. People with weak immune systems Infections that happen because a person’s immune system ...

  14. Chemical syntheses of oligodeoxyribonucleotides containing spore photoproduct

    PubMed Central

    Jian, Yajun; Li, Lei

    2013-01-01

    5-(α-Thyminyl)-5,6-dihydrothymine, also called spore photoproduct or SP, is commonly found in the genomic DNA of UV irradiated bacterial endospores. Despite the fact that SP was discovered nearly 50 years ago, its biochemical impact is still largely unclear due to the difficulty to prepare SP containing oligonucleotide in high purity. Here, we report the first synthesis of the phosphoramidite derivative of dinucleotide SP TpT, which enables successful incorporation of SP TpT into oligodeoxyribonucleotides with high efficiency via standard solid phase synthesis. This result provides the scientific community a reliable means to prepare SP containing oligonucleotides, laying the foundation for future SP biochemical studies. Thermal denaturation studies of the SP containing oligonucleotide found that SP destabilizes the duplex by 10–20 kJ/mole, suggesting that its presence in the spore genomic DNA may alter the DNA local conformation. PMID:23506239

  15. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  16. Metal reduction by spores of Desulfotomaculum reducens.

    PubMed

    Junier, Pilar; Frutschi, Manon; Wigginton, Nicholas S; Schofield, Eleanor J; Bargar, John R; Bernier-Latmani, Rizlan

    2009-12-01

    The bioremediation of uranium-contaminated sites is designed to stimulate the activity of microorganisms able to catalyze the reduction of soluble U(VI) to the less soluble mineral UO(2). U(VI) reduction does not necessarily support growth in previously studied bacteria, but it typically involves viable vegetative cells and the presence of an appropriate electron donor. We characterized U(VI) reduction by the sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1 grown fermentatively on pyruvate and observed that spores were capable of U(VI) reduction. Hydrogen gas - a product of pyruvate fermentation - rather than pyruvate, served as the electron donor. The presence of spent growth medium was required for the process, suggesting that an unknown factor produced by the cells was necessary for reduction. Ultrafiltration of the spent medium followed by U(VI) reduction assays revealed that the factor's molecular size was below 3 kDa. Pre-reduced spent medium displayed short-term U(VI) reduction activity, suggesting that the missing factor may be an electron shuttle, but neither anthraquinone-2,6-disulfonic acid nor riboflavin rescued spore activity in fresh medium. Spores of D. reducens also reduced Fe(III)-citrate under experimental conditions similar to those for U(VI) reduction. This is the first report of a bacterium able to reduce metals while in a sporulated state and underscores the novel nature of the mechanism of metal reduction by strain MI-1. PMID:19601961

  17. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures. PMID:26502561

  18. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production

    PubMed Central

    Crowther, Grace S.; Ashwin, Helen; Longshaw, Chris M.; Wilcox, Mark H.

    2016-01-01

    Background We have previously shown that fidaxomicin instillation prevents spore recovery in an in-vitro gut model, whereas vancomycin does not. The reasons for this are unclear. Here, we have investigated persistence of fidaxomicin and vancomycin on C. difficile spores, and examined post-antibiotic exposure spore recovery, outgrowth and toxin production. Methods Prevalent UK C. difficile ribotypes (n = 10) were incubated with 200mg/L fidaxomicin, vancomycin or a non-antimicrobial containing control for 1 h in faecal filtrate or Phosphate Buffered Saline. Spores were washed three times with faecal filtrate or phosphate buffered saline, and residual spore-associated antimicrobial activity was determined by bioassay. For three ribotypes (027, 078, 015), antimicrobial-exposed, faecal filtrate-washed spores and controls were inoculated into broth. Viable vegetative and spore counts were enumerated on CCEYL agar. Percentage phase bright spores, phase dark spores and vegetative cells were enumerated by phase contrast microscopy at 0, 3, 6, 24 and 48 h post-inoculation. Toxin levels (24 and 48h) were determined by cell cytotoxicity assay. Results Fidaxomicin, but not vancomycin persisted on spores of all ribotypes following washing in saline (mean = 10.1mg/L; range = 4.0-14mg/L) and faecal filtrate (mean = 17.4mg/L; 8.4–22.1mg/L). Outgrowth and proliferation rates of vancomycin-exposed spores were similar to controls, whereas fidaxomicin-exposed spores showed no vegetative cell growth after 24 and 48 h. At 48h, toxin levels averaged 3.7 and 3.3 relative units (RU) in control and vancomycin-exposed samples, respectively, but were undetectable in fidaxomicin-exposed samples. Conclusion Fidaxomicin persists on C. difficile spores, whereas vancomycin does not. This persistence prevents subsequent growth and toxin production in vitro. This may have implications on spore viability, thereby impacting CDI recurrence and transmission rates. PMID:27556739

  19. Evaluating fungal populations by genera/species on wide body commercial passenger aircraft and in airport terminals.

    PubMed

    McKernan, Lauralynn Taylor; Burge, Harriet; Wallingford, Kenneth M; Hein, Misty J; Herrick, Robert

    2007-04-01

    Given the potential health effects of fungi and the amount of time aircrew and passengers spend inside aircraft, it is important to study fungal populations in the aircraft environment. Research objectives included documenting the genera/species of airborne culturable fungal concentrations and total spore concentrations on a twin-aisle wide body commercial passenger aircraft. Twelve flights between 4.5 and 6.5 h in duration on Boeing 767 (B-767) aircraft were evaluated. Two air cooling packs and 50% recirculation rate (i.e. 50:50 mix of outside air and filtered inside air) were utilized during flight operations. Passenger occupancy rates varied from 67 to 100%. N-6 impactors and total spore traps were used to collect sequential, triplicate air samples in the front and rear of coach class during six sampling intervals throughout each flight: boarding, mid-climb, early cruise, mid-cruise, late cruise and deplaning. Comparison air samples were also collected inside and outside the airport terminals at the origin and destination cities resulting in a total of 522 culturable and 517 total spore samples. A total of 45 surface wipe samples were collected using swabs onboard the aircraft and inside the airport terminals. A variety of taxa were observed in the culturable and total spore samples. A frequency analysis of the fungal data indicated that Cladosporium, Aspergillus and Penicillium were predominant genera in the culturable samples whereas Cladosporium, Basidiospores and Penicillium/Aspergillus were predominant in the total spore samples. Fungal populations observed inside the aircraft were comprised of similar genera, detected significantly less frequently and with lower mean concentrations than those observed in typical office buildings. Although sources internal to the aircraft could not be ruled out, our data demonstrate the importance of passenger activity as the source of the fungi observed on aircraft. Isolated fungal peak events occurred occasionally when

  20. Large-spored Alternaria pathogens in section Porri disentangled

    PubMed Central

    Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W.

    2014-01-01

    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia. PMID:25492985

  1. Large-spored Alternaria pathogens in section Porri disentangled.

    PubMed

    Woudenberg, J H C; Truter, M; Groenewald, J Z; Crous, P W

    2014-09-01

    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia. PMID:25492985

  2. The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms.

    PubMed

    Cheeke, Tanya E; Pace, Brian A; Rosenstiel, Todd N; Cruzan, Mitchell B

    2011-02-01

    Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level. PMID:21198682

  3. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases. PMID:10084207

  4. Fungal diseases of horses.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Otranto, Domenico

    2013-11-29

    Among diseases of horses caused by fungi (=mycoses), dermatophytosis, cryptococcosis and aspergillosis are of particular concern, due their worldwide diffusion and, for some of them, zoonotic potential. Conversely, other mycoses such as subcutaneous (i.e., pythiosis and mycetoma) or deep mycoses (i.e., blastomycosis and coccidioidomycosis) are rare, and/or limited to restricted geographical areas. Generally, subcutaneous and deep mycoses are chronic and progressive diseases; clinical signs include extensive, painful lesions (not pathognomonic), which resemble to other microbial infections. In all cases, early diagnosis is crucial in order to achieve a favorable prognosis. Knowledge of the epidemiology, clinical signs, and diagnosis of fungal diseases is essential for the establishment of effective therapeutic strategies. This article reviews the clinical manifestations, diagnosis and therapeutic protocols of equine fungal infections as a support to early diagnosis and application of targeted therapeutic and control strategies. PMID:23428378

  5. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  6. Assay for Spore Wall Integrity Using a Yeast Predator.

    PubMed

    Okada, Hiroki; Neiman, Aaron M; Ohya, Yoshikazu

    2016-01-01

    During the budding yeast life cycle, a starved diploid cell undergoes meiosis followed by production of four haploid spores, each surrounded by a spore wall. The wall allows the spores to survive in harsh environments until conditions improve. Spores are also more resistant than vegetative cells to treatments such as ether vapor, glucanases, heat shock, high salt concentrations, and exposure to high or low pH, but the relevance of these treatments to natural environmental stresses remains unclear. This protocol describes a method for assaying the yeast spore wall under natural environmental conditions by quantifying the survival of yeast spores that have passed through the digestive system of a yeast predator, the fruit fly. PMID:27480715

  7. Semiochemicals from ex situ abiotically stressed cactus tissue: a contributing role of fungal spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiochemicals play a central role in communication between plants and insects, such as signaling the location of a suitable host. Fungi on host plants can also play an influential role in communicating certain plant vulnerabilities to an insect. The spiroketal conophthorin is an important semiochem...

  8. Developments in Fungal Taxonomy

    PubMed Central

    Guarro, Josep; Gené, Josepa; Stchigel, Alberto M.

    1999-01-01

    Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales). PMID:10398676

  9. Fungal toenail infections

    PubMed Central

    2014-01-01

    Introduction Fungal infections are reported to cause 23% of foot diseases and 50% of nail conditions in people seen by dermatologists, but are less common in the general population, affecting 3% to 12% of people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of oral treatments for fungal toenail infections in adults? What are the effects of topical treatments for fungal toenail infections in adults? We searched: Medline, Embase, The Cochrane Library, and other important databases up to October 2013 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 13 studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: amorolfine, butenafine, ciclopirox, fluconazole, itraconazole, terbinafine, tioconazole, and topical ketoconazole. PMID:24625577

  10. Fungal toenail infections

    PubMed Central

    2011-01-01

    Introduction Fungal infections are reported to cause 23% of foot diseases and 50% of nail conditions in people seen by dermatologists, but are less common in the general population, affecting 3% to 5% of people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of oral treatments for fungal toenail infections? What are the effects of topical treatments for fungal toenail infections? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 12 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: amorolfine, butenafine, ciclopirox, fluconazole, griseofulvin, itraconazole, ketoconazole, mechanical debridement, terbinafine, and tioconazole. PMID:21846413

  11. Fungal toenail infections

    PubMed Central

    2008-01-01

    Introduction Fungal infections are reported to cause 23% of foot diseases and 50% of nail conditions in people seen by dermatologists, but are less common in the general population, affecting 3-5% of people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of oral treatments for fungal toenail infections? What are the effects of topical treatments for fungal toenail infections? We searched: Medline, Embase, The Cochrane Library, and other important databases up to May 2008 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 11 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: amorolfine, butenafine, ciclopirox, fluconazole, griseofulvin, itraconazole, ketoconazole, mechanical debridement, terbinafine, and tioconazole. PMID:19445781

  12. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient.

    PubMed

    Çetinkaya, Erdoğan; Çörtük, Mustafa; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved. PMID:27418930

  13. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient

    PubMed Central

    Çetinkaya, Erdoğan; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H. Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved. PMID:27418930

  14. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.

    PubMed

    Cho, Min; Kim, Jae-Hong; Yoon, Jeyong

    2006-08-01

    The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes. PMID:16884760

  15. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    PubMed

    Vannini, Candida; Carpentieri, Andrea; Salvioli, Alessandra; Novero, Mara; Marsoni, Milena; Testa, Lorenzo; de Pinto, Maria Concetta; Amoresano, Angela; Ortolani, Francesca; Bracale, Marcella; Bonfante, Paola

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions. PMID:26914272

  16. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    PubMed

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  17. Quantitative and sensitive RNA based detection of Bacillus spores

    PubMed Central

    Osmekhina, Ekaterina; Shvetsova, Antonina; Ruottinen, Maria; Neubauer, Peter

    2014-01-01

    The fast and reliable detection of bacterial spores is of great importance and still remains a challenge. Here we describe a direct RNA-based diagnostic method for the specific detection of viable bacterial spores which does not depends on an enzymatic amplification step and therefore is directly appropriate for quantification. The procedure includes the following steps: (i) heat activation of spores, (ii) germination and enrichment cultivation, (iii) cell lysis, and (iv) analysis of 16S rRNA in crude cell lysates using a sandwich hybridization assay. The sensitivity of the method is dependent on the cultivation time and the detection limit; it is possible to detect 10 spores per ml when the RNA analysis is performed after 6 h of enrichment cultivation. At spore concentrations above 106 spores per ml the cultivation time can be shortened to 30 min. Total analysis times are in the range of 2–8 h depending on the spore concentration in samples. The developed procedure is optimized at the example of Bacillus subtilis spores but should be applicable to other organisms. The new method can easily be modified for other target RNAs and is suitable for specific detection of spores from known groups of organisms. PMID:24653718

  18. The fungal colonisation of rock-art caves: experimental evidence.

    PubMed

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France-both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity. PMID:19484211

  19. The fungal colonisation of rock-art caves: experimental evidence

    NASA Astrophysics Data System (ADS)

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France—both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity.

  20. Improved coverage of fungal diversity in polluted groundwaters by semi-nested PCR.

    PubMed

    Solé, M; Chatzinotas, A; Sridhar, K R; Harms, H; Krauss, G

    2008-11-15

    Traditional methods used for studying communities of aquatic hyphomycetes are based on the detection and identification of their asexual spores under a microscope. These techniques limit detection to aquatic fungi present in sufficient quantity and capable of sporulating under laboratory conditions. Our objective was to develop a molecular approach to detect and monitor all types of fungi (i.e. strictly or facultatively aquatic) in harsh habitats (i.e. groundwater wells and heavily polluted surface water) where fungal biomass may become limited. We developed a semi-nested PCR protocol for fungal 18S ribosomal RNA genes coupled to subsequent analysis of the PCR products by Temperature Gradient Gel Electrophoresis (TGGE) to monitor the fungal community structure in aquatic habitats characterized by a pollution gradient. Our TGGE-protocol was compared with the traditional morphological approach and revealed a higher diversity in groundwaters and in some polluted surface waters. Thus, PCR-TGGE is a promising alternative in particular in habitats with low fungal biomass. The dynamics of fungal biomass and sporulation rates during the first weeks of leaf colonization showed that habitats with adverse ecological conditions allow only reduced fungal growth, which might subsequently impact upper trophic levels and thus interfere with key ecological processes of leaf decomposition. PMID:18715627

  1. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  2. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    PubMed Central

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  3. Spore-Forming Bacteria that Resist Sterilization

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  4. Coated Solid Substrate Microbe Formulations: Pseudomonas spp. and Zeolite.

    PubMed

    Bunt, Craig R; Price, Sally; Hampton, John; Stelting, Scott

    2016-01-01

    Formulation provides a means to stabilize for storage and delivery biocontrol and bioremediation agents based on microbes such as bacteria and fungi. Typically it is difficult to both stabilize and deliver fragile non-spore-forming bacteria. Fungal spores might intuitively appear to be easy to stabilize; however, their tendency to germinate in low moisture environments presents challenges for the formulation scientist. Here we present a light background regarding issues with formulating microbes and strategies to help overcome instability and delivery issues. PMID:27565491

  5. Snow in the city as a spore bank of potentially pathogenic fungi.

    PubMed

    Ejdys, Elżbieta; Biedunkiewicz, Anna; Dynowska, Maria; Sucharzewska, Ewa

    2014-02-01

    This study evaluates the role of snow as a specific ecological niche and a vector in fungal spreading with particular emphasis on potential pathogens in seasonally and daily changing conditions. The experimental material was fungi isolated from the atmospheric air, snow cover, and fragments of ice and soil from underneath the snow cover. The total count of microfungi in the air before snowfall, i.e. in the autumn, reached 1756.1 CFU/m(3) on average. After the first snowfalls, it dropped to 85.2 CFU/m(3). The analyzed samples of snow cover contained from 101.6 to 8500.0 CFU/m(3) of fungi. Furthermore, 26 species of yeast and yeast-like fungi were isolated from the experimental material. Amongst the analyzed species, 13 were potential anthropopathogens. Though another three species were isolated from organ ontocenoses, i.e. Candida intermedia, Saccharomyces bayanus and Zygosaccharomyces rouxii, their pathogenic potential has not yet been explicitly confirmed. The results of the presented study may be applied in predicting concentrations of fungal spores responsible for mycoses. The first snowfalls significantly reduced the number of colony-forming units of fungi in the air. Under conditions of temperate climate, snow becomes a temporary bank of yeast-like fungi spores and while it melts cells of deposited microfungi migrate to the atmosphere. Hence, individuals with impaired immunity or in the course of immunosuppression or recovery should avoid long walks during periods of snow melting. The count of fungi in urban bioaerosol during the melt may be reduced through systematic removal of snow cover, which is a significant reservoir of potential pathogens. In addition, it should be noted that even a typical psychrophilic strain, capable of surviving at a temperature of 37°C, may bear a significant pathogenic potential. PMID:24176713

  6. Contamination of healthcare workers' hands with bacterial spores.

    PubMed

    Sasahara, Teppei; Ae, Ryusuke; Watanabe, Michiyo; Kimura, Yumiko; Yonekawa, Chikara; Hayashi, Shunji; Morisawa, Yuji

    2016-08-01

    Clostridium species and Bacillus spp. are spore-forming bacteria that cause hospital infections. The spores from these bacteria are transmitted from patient to patient via healthcare workers' hands. Although alcohol-based hand rubbing is an important hand hygiene practice, it is ineffective against bacterial spores. Therefore, healthcare workers should wash their hands with soap when they are contaminated with spores. However, the extent of health care worker hand contamination remains unclear. The aim of this study is to determine the level of bacterial spore contamination on healthcare workers' hands. The hands of 71 healthcare workers were evaluated for bacterial spore contamination. Spores attached to subject's hands were quantitatively examined after 9 working hours. The relationship between bacterial spore contamination and hand hygiene behaviors was also analyzed. Bacterial spores were detected on the hands of 54 subjects (76.1%). The mean number of spores detected was 468.3 CFU/hand (maximum: 3300 CFU/hand). Thirty-seven (52.1%) and 36 (50.7%) subjects were contaminated with Bacillus subtilis and Bacillus cereus, respectively. Nineteen subjects (26.8%) were contaminated with both Bacillus species. Clostridium difficile was detected on only one subject's hands. There was a significant negative correlation between the hand contamination level and the frequency of handwashing (r = -0.44, P < 0.01) and a significant positive correlation between the hand contamination level and the elapsed time since last handwashing (r = 0.34, P < 0.01). Healthcare workers' hands may be frequently contaminated with bacterial spores due to insufficient handwashing during daily patient care. PMID:27236515

  7. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation

    NASA Astrophysics Data System (ADS)

    Chen, Juanni; Peng, Hui; Wang, Xiuping; Shao, Feng; Yuan, Zhaodong; Han, Heyou

    2014-01-01

    To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range

  8. The dynamics of the fungal aerospores Alternaria sp. and Cladosporium sp. in Parisian atmospheric air, in France

    NASA Astrophysics Data System (ADS)

    Brezoczki, V. M.

    2016-08-01

    The bioallergens occurring naturally in the atmospheric air are microorganisms, pollen grains, plant seeds, leaf and stem scrap, or their protein molecules. The presence of various airborne fungal spores determines a high allergenic potential for public health. This effect is due to the high number of produced spores, which under favourable meteorological conditions (dry weather and wind) reach the surrounding air. This paper traces the dynamics of two types of fungi, Alternaria sp and Cladosporium sp, fungi which can be found outdoors, in the surrounding air, as well as indoors, inside houses (especially the conidia of Cladosporium sp). The effects of these fungal spores on human health are varies, ranging from seasonal allergies (hay fever, rhinitis, sinusitis etc.) to sever afflictions of the respiratory system, onset of asthma, disfunctionalities of the nervous systems, of the immune system, zymoses etc. The monitoring of the dynamics of the aerospores Alternaria sp and Cladosporium sp was carried out between 2010 and 2013, over a period of 42 weeks during one calendar year, from February to the end of September, in the surrounding air in the French capital, Paris. The regional and global climate and meteorological conditions are directly involved in the occurrence and development of fungi colonies, the transportation and dispersion of fungal spores in the atmospheric air, as well as in the creation of the environment required for the interaction of chemical and biological components in the air. Knowledge of the dynamics of the studied fungal aerospores, coupled with climate and meteorological changes, offers a series of information on the magnitude of the allergenic potential these airborne spores can determine. Legal regulations in this domain set the allergen risk threshold for the Alternaria sp aerospores at 3500 ÷ 7000 spores/m3 air/week, and for the Cladosporium sp aerospores at 56,000 spores/m3 air/week. Besides these regulations there exist a series of

  9. Growth dynamics of geographically different arbuscular mycorrhizal fungal isolates belonging to the 'Rhizophagus clade' under monoxenic conditions.

    PubMed

    Silvani, Vanesa Analía; Bidondo, Laura Fernández; Bompadre, María Josefina; Colombo, Roxana Paula; Pérgola, Mariana; Bompadre, Agustín; Fracchia, Sebastián; Godeas, Alicia

    2014-01-01

    The growth dynamics of extraradical mycelium and spore formation of 14 "Rhizophagus" isolates from different sites in Argentina were evaluated under monoxenic conditions. A modified Gompertz model was used to characterize the development of mycelium and spores for each isolate under the same conditions. The lag time, maximal growth rate and total quantity of both extraradical hyphae and spores were determined. Wide variability among isolates was detected, and all growth parameters were significantly altered by fungal isolate. Discriminant analysis differentiated isolates primarily based on the extent of extraradical hyphae produced, yet such differences did not conclusively correspond to phylogenetic relationships among closely related isolates based on partial SSU sequences. Given that the "Rhizophagus" isolates were grown under controlled conditions for many generations, the expression of phenotypic variability could be attributed to genetic differences that are not completely resolved by phylogenetic analysis employing the small ribosomal gene. PMID:24891409

  10. The effects of climate change on fungal diversity patterns in the UK and Greece: Contrasting trends and ecological interpretations

    NASA Astrophysics Data System (ADS)

    Damialis, A.; Gange, A. C.; Mohammad, A. B.; Halley, J. M.

    2013-05-01

    It is well known that climate change has been affecting the ecology of living organisms. However, very little research has been done concerning alterations in fungal ecology. The changes in climate are expected to have an impact on fungal biodiversity patterns. Such changes in turn might have implications for public health since the spores of certain fungal taxa (e.g. Alternaria, Cladosporium) cause respiratory problems in sensitised individuals, with symptoms manifested even as acute respiratory failure. The objectives of this study were: a) to perform a comprehensive analysis of trends in long-term time series of fungal fruiting and sporulation variables for a wide range of fungal taxa, b) to investigate the response of fungal abundance and diversity to environmental variability. Data from two different geoclimatic areas were used: a) England, UK from more than 350 fungal species belonging to 10 different functional groups and with phenological records of fungal fruiting (start, end and duration) since 1950, b) Thessaloniki, Greece for 14 airborne fungal types with quantitative records (total annual concentration) and phenological records (start, peak, end, duration) of the atmospheric spore season since 1987. In parallel, various meteorological factors were examined in both areas in order to elucidate the relationship between climate and fungal diversity patterns. Long-term trends were found in most cases: these were particularly pronounced in the UK, where more than 300 species (~82%) displayed trends. Of these, ~77% were towards an earlier beginning and ~81% towards a later ending of the fruiting season; overall, an extension of the fruiting season seems to occur in more than 200 species. On a per-functional-group basis, except for manure, soil and mycorrhizal deciduous fungal species, all the other (137 species) exhibited earlier first fruiting dates and extended seasons. On the other hand, in Greece, although a tendency was observed towards lower yearly

  11. Fungal Susceptibility of Polyurethanes

    PubMed Central

    Darby, Richard T.; Kaplan, Arthur M.

    1968-01-01

    One hundred laboratory-synthesized polyurethanes were tested by a mixed-culture petri dish method for susceptibility to fungus attack. Polyether polyurethanes were moderately to highly resistant to fungal attack, whereas all polyester polyurethanes tested were highly susceptible. The susceptibility of the polyethers was related to the number of adjacent methylene groups in the polymer chain. At least two such groups were required for appreciable attack to occur. The presence of side chains on the diol moiety of the polyurethane reduced susceptibility. Images Fig. 1 Fig. 2 Fig. 3 PMID:16349806

  12. Effect of Lysozyme on Ionic Forms of Spores of Clostridium perfringens Type A

    PubMed Central

    Ando, Yoshiaki

    1975-01-01

    H spores of Clostridium perfringens type A (two strains) were more sensitive to germination by lysozyme than native spores. Resistance to lysozyme of H spores was restored by calcium loading. PMID:236284

  13. Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae).

    PubMed

    Bonito, Gregory; Brenneman, Timothy; Vilgalys, Rytas

    2011-10-01

    Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts. PMID:21369784

  14. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  15. The Role of the Electrostatic Force in Spore Adhesion

    SciTech Connect

    Chung, Eunhyea; Yiacoumi, Sotira; Lee, Ida; Tsouris, Costas

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  16. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  17. Factors influencing Saprolegnia spp. spore numbers in Norwegian salmon hatcheries.

    PubMed

    Thoen, E; Evensen, Ø; Skaar, I

    2016-06-01

    A quantitative survey of Saprolegnia spp. in the water systems of Norwegian salmon hatcheries was performed. Water samples from 14 salmon hatcheries distributed along the Norwegian coastline were collected during final incubation in the hatcheries. Samples of inlet and effluent water were analyzed to estimate Saprolegnia propagule numbers. Saprolegnia spores were found in all samples at variable abundance. Number of spores retrieved varied from 50 to 3200 L(-1) in inlet water and from 30 to >5000 L(-1) in effluent water. A significant elevation of spore levels in effluent water compared to inlet water was detected. The estimated spore levels were related to recorded managerial and environmental parameters, and the number of spores in inlet water and temperature was the factor having most influence on the spore concentration in the incubation units (effluent water). Further, the relative impact of spore concentration on hatching rates was investigated by correlation analysis. From this was found that even high spore counts did not impact significantly on hatching success. PMID:26123005

  18. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  19. Short-Term Effect of Pollen and Spore Exposure on Allergy Morbidity in the Brussels-Capital Region.

    PubMed

    Guilbert, Ariane; Simons, Koen; Hoebeke, Lucie; Packeu, Ann; Hendrickx, Marijke; De Cremer, Koen; Buyl, Ronald; Coomans, Danny; Van Nieuwenhuyse, An

    2016-06-01

    Belgium is among the European countries that are the most affected by allergic rhinitis. Pollen grains and fungal spores represent important triggers of symptoms. However, few studies have investigated their real link with disease morbidity over several years. Based on aeroallergen counts and health insurance datasets, the relationship between daily changes in pollen, fungal spore concentrations and daily changes in reimbursable systemic antihistamine sales has been investigated between 2005 and 2011 in the Brussels-Capital Region. A Generalized Linear Model was used and adjusted for air pollution, meteorological conditions, flu, seasonal component and day of the week. We observed an augmentation in drug sales despite no significant increase in allergen levels in the long term. The relative risk of buying allergy medications associated with an interquartile augmentation in pollen distributions increased significantly for Poaceae, Betula, Carpinus, Fraxinus and Quercus. Poaceae affected the widest age group and led to the highest increase of risk which reached 1.13 (95% CI [1.11-1.14]) among the 19- to 39-year-old men. Betula showed the second most consistent relationship across age groups. Clear identification of the provoking agents may improve disease management by customizing prevention programmes. This work also opens several research perspectives related to impact of climate modification or subpopulation sensitivity. PMID:27174430

  20. Development of an in vitro, isolated, infected spore testing model for disinfectant testing of Microsporum canis isolates.

    PubMed

    Moriello, Karen A; Deboer, Douglas J; Volk, Lynn M; Sparkes, Andrew; Robinson, Ann

    2004-06-01

    The isolated infected hair model is a commonly used technique to test the fungicidal efficacy of topical therapies against Microsporum canis. The most commonly used model uses mats of infective hairs, and results from various laboratories have differed. The objectives of this study were to develop a method to produce spores for testing when only mycelial forms were available and to develop a semiquantitative testing method that used only infective spores from hairs, and not pooled hair samples for testing. Ten isolates of M. canis were used in this study. Juvenile guinea pigs were easily infected using mycelial forms of M. canis and large numbers of spores were easily harvested for testing. Eight dilutions of disinfectants were tested. Fungal culture data were evaluated using an endpoint dilution at which there was 100% fungicidal activity, i.e. no growth on the plates. The 10 samples showed identical results. Chlorhexidine and Virkon(R) S were ineffective even when used at x4 the manufacturer's recommended dilution. Lime sulphur (1 : 33), enilconazole (20 microL mL(-1)), and bleach (1 : 10) were consistently effective when used at the recommended dilution. In addition, lime sulphur and enilconazole were 100% fungicidal even when the recommended concentration was diluted 1 : 4 or x4 as dilute as recommended. PMID:15214954

  1. Biosorption of Arsenic(III) from Aqueous Solutions by Modified Fungal Biomass of Paecilomyces sp.

    PubMed Central

    Acosta Rodríguez, Ismael; Martínez-Juárez, Víctor M.; Cárdenas-González, Juan F.; Moctezuma-Zárate, María de Guadalupe

    2013-01-01

    The biosorption of As(III) on iron-coated fungal biomass of Paecilomyces sp. was studied in this work. It was found that the biomass was very efficient removing the metal in solution, using Atomic Absorption, reaching the next percentage of removals: 64.5%. The highest adsorption was obtained at pH 6.0, at 30°C after 24 hours of incubation, with 1 mg/L of modified fungal biomass. PMID:24235911

  2. Fungal biodiversity to biotechnology.

    PubMed

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application. PMID:26810078

  3. Surface sampling methods for Bacillus anthracis spore contamination.

    PubMed

    Sanderson, Wayne T; Hein, Misty J; Taylor, Lauralynn; Curwin, Brian D; Kinnes, Gregory M; Seitz, Teresa A; Popovic, Tanja; Holmes, Harvey T; Kellum, Molly E; McAllister, Sigrid K; Whaley, David N; Tupin, Edward A; Walker, Timothy; Freed, Jennifer A; Small, Dorothy S; Klusaritz, Brian; Bridges, John H

    2002-10-01

    During an investigation conducted December 17-20, 2001, we collected environmental samples from a U.S. postal facility in Washington, D.C., known to be extensively contaminated with Bacillus anthracis spores. Because methods for collecting and analyzing B. anthracis spores have not yet been validated, our objective was to compare the relative effectiveness of sampling methods used for collecting spores from contaminated surfaces. Comparison of wipe, wet and dry swab, and HEPA vacuum sock samples on nonporous surfaces indicated good agreement between results with HEPA vacuum and wipe samples. However, results from HEPA vacuum sock and wipe samples agreed poorly with the swab samples. Dry swabs failed to detect spores >75% of the time when they were detected by wipe and HEPA vacuum samples. Wipe samples collected after HEPA vacuum samples and HEPA vacuum samples collected after wipe samples indicated that neither method completely removed spores from the sampled surfaces. PMID:12396930

  4. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  5. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores

    PubMed Central

    2013-01-01

    Background Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. Results and discussion The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). Conclusions The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on

  6. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  7. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  8. Evolutionary development of the plant and spore wall

    PubMed Central

    Wallace, Simon; Fleming, Andrew; Wellman, Charles H.; Beerling, David J.

    2011-01-01

    Background and aims Many key innovations were required to enable plants to colonize terrestrial habitats successfully. One of these was the acquisition of a durable spore/pollen wall capable of withstanding the harsh desiccating and UV-B-rich environment encountered on land. The spores of ‘lower’ spore-bearing plants and the pollen of ‘higher’ seed plants are homologous. In recent years, researchers have begun to investigate the molecular genetics of pollen wall development in angiosperms (including the model organism Arabidopsis thaliana). However, research into the molecular genetics of spore wall development in more basal plants has thus far been extremely limited. This review summarizes the literature on spore/pollen wall development, including the molecular genetics associated with pollen wall development in angiosperms, in a preliminary attempt to identify possible candidate genes involved in spore wall development in more basal plants. Presence in moss of genes involved in pollen wall development Bioinformatic studies have suggested that genes implicated in pollen wall development in angiosperms are also present in moss and lycopsids, and may therefore be involved in spore wall development in basal plants. This suggests that the molecular genetics of spore/pollen development are highly conserved, despite the large morphological and functional differences between spores and pollen. Future work The use of high-throughput sequencing strategies and/or microarray experiments at an appropriate stage of ‘lower’ land plant sporogenesis will allow the identification of candidate genes likely to be involved in the development of the spore wall by way of comparison with those genes known to be involved in pollen wall development. Additionally, by conducting gene knock-out and gene swap experiments between ‘lower’ land plant species, such as the moss model species Physcomitrella patens, and the angiosperm model species arabidopsis it will be possible to

  9. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    SciTech Connect

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  10. Fungal Entomopathogens in the Rhizosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic fungi are found in a wide variety of fungal groups from water molds to basidiomycetes, yet there are a number of fungal groups with no entomopathogenic representative. The order Hypocreales contains the largest number of entomogenous fungi including two of the most widely studied, ...

  11. Fungal rhinosinusitis and imaging modalities

    PubMed Central

    Gorovoy, Ian R.; Kazanjian, Mia; Kersten, Robert C.; Kim, H. Jane; Vagefi, M. Reza

    2012-01-01

    This report provides an overview of fungal rhinosinusitis with a particular focus on acute fulminant invasive fungal sinusitis (AFIFS). Imaging modalities and findings that aid in diagnosis and surgical planning are reviewed with a pathophysiologic focus. In addition, the differential diagnosis based on imaging suggestive of AFIFS is considered. PMID:23961027

  12. Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland.

    PubMed

    Varela-Cervero, Sara; López-García, Álvaro; Barea, José Miguel; Azcón-Aguilar, Concepción

    2016-07-01

    As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs. PMID:26883142

  13. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  14. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  15. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  16. Methods for neutralizing anthrax or anthrax spores

    DOEpatents

    Sloan, Mark A; Vivekandanda, Jeevalatha; Holwitt, Eric A; Kiel, Johnathan L

    2013-02-26

    The present invention concerns methods, compositions and apparatus for neutralizing bioagents, wherein bioagents comprise biowarfare agents, biohazardous agents, biological agents and/or infectious agents. The methods comprise exposing the bioagent to an organic semiconductor and exposing the bioagent and organic semiconductor to a source of energy. Although any source of energy is contemplated, in some embodiments the energy comprises visible light, ultraviolet, infrared, radiofrequency, microwave, laser radiation, pulsed corona discharge or electron beam radiation. Exemplary organic semiconductors include DAT and DALM. In certain embodiments, the organic semiconductor may be attached to one or more binding moieties, such as an antibody, antibody fragment, or nucleic acid ligand. Preferably, the binding moiety has a binding affinity for one or more bioagents to be neutralized. Other embodiments concern an apparatus comprising an organic semiconductor and an energy source. In preferred embodiments, the methods, compositions and apparatus are used for neutralizing anthrax spores.

  17. Analytical framework for modeling of long-range transport of fungal plant epidemics

    NASA Astrophysics Data System (ADS)

    Kogan, Oleg; O'Keeffe, Kevin; Schneider, David; Myers, Christopher; Analytical FrameworksInfectious Disease Dynamics Team

    2015-03-01

    A new framework for the study of long-range transport of fungal plant epidemics is proposed. The null nonlinear model includes advective transport through the free atmosphere, spore production on the ground, and transfer of spores between the ground and the advective atmospheric layer. The competition between the growth wave on the ground and the effect of the wind is most strongly reflected in upwind fronts, which can propagate into the wind for exponential initial conditions. If the rate of spore transfer into the advective layer is below critical, this happens for initital conditions with arbitrary steepness. Upwind fronts from localized initial conditions will propagate in the direction of the wind above this critical parameter, and will not propagate below it. On the other hand, the speed of the downwind front does not have a strong dependence on the rate of spore transfer between the advective layer and the ground. Thus, even vanishingly small, but finite transfer rates result in a substantial epidemic wave in the direction of the wind. We also consider the effect of an additional, random-walk like mechanism of transport through the near-ground atmospheric boundary layer, and attempt to understand which route dominates the transport ov