Science.gov

Sample records for fusarium heterosporum lipase

  1. Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production.

    PubMed

    Hama, Shinji; Tamalampudi, Sriappareddy; Suzuki, Yuya; Yoshida, Ayumi; Fukuda, Hideki; Kondo, Akihiko

    2008-12-01

    In this paper, we provide the first report of utilizing recombinant fungal whole cells in enzymatic biodiesel production. Aspergillus oryzae, transformed with a heterologous lipase-encoding gene from Fusarium heterosporum, produced fully processed and active forms of recombinant F. heterosporum lipase (FHL). Cell immobilization within porous biomass support particles enabled the convenient usage of FHL-producing A. oryzae as a whole-cell biocatalyst for lipase-catalyzed methanolysis. The addition of 5% water to the reaction mixture was effective in both preventing the lipase inactivation by methanol and facilitating the acyl migration in partial glycerides, resulting in the final methyl ester content of 94% even in the tenth batch cycle. A comparative study showed that FHL-producing A. oryzae attained a higher final methyl ester content and higher lipase stability than Rhizopus oryzae, the previously developed whole-cell biocatalyst. Although both FHL and R. oryzae lipase exhibit 1,3-regiospecificity towards triglyceride, R. oryzae accumulated a much higher amount of sn-2 isomers of partial glycerides, whereas FHL-producing A. oryzae maintained a low level of the sn-2 isomers. This is probably because FHL efficiently facilitates the acyl migration from the sn-2 to the sn-1(3) position in partial glycerides. These findings indicate that the newly developed FHL-producing A. oryzae is an effective whole-cell biocatalyst for enzymatic biodiesel production. PMID:18795281

  2. The galactolipase activity of Fusarium solani (phospho)lipase.

    PubMed

    Jallouli, Raida; Othman, Houcemeddine; Amara, Sawsan; Parsiegla, Goetz; Carriere, Frédéric; Srairi-Abid, Najet; Gargouri, Youssef; Bezzine, Sofiane

    2015-03-01

    The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests. PMID:25529980

  3. Effect of culture conditions on lipase production by Fusarium solani in batch fermentation.

    PubMed

    Maia, M M; Heasley, A; Camargo de Morais, M M; Melo, E H; Morais, M A; Ledingham, W M; Lima Filho, J L

    2001-01-01

    Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase specific activity was highest (0.45 U mg(-1)) for sesame oil. When this medium was supplemented with trace elements using olive oil, corn oil and sesame oil the lipase specific activity increased to 0.86, 1.89 and 1.64 U mg(-1), respectively, after 96 h cultivation without any considerable biomass increase. The Km of this lipase using pNPP (p-nitrophenylpalmitate) as substrate, was 1.8 mM with a Vmax of 1.7 micromol min(-1) mg protein(-1). Lipase activity increased in the presence of increasing concentrations of hexane and toluene. In contrast, incubation of this enzyme with water-soluble solvents decreased its activity after 10% concentration (v/v) of the solvent. The lipase activity was stable below 35 degrees C but above this temperature activity losses were observed. PMID:11315806

  4. Biological Activities of a Mixture of Biosurfactant from Bacillus subtilis and Alkaline Lipase from Fusarium oxysporum

    PubMed Central

    Pereira de Quadros, Cedenir; Cristina Teixeira Duarte, Marta; Maria Pastore, Gláucia

    2011-01-01

    In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix) on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC) micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1). In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05). PMID:24031642

  5. Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae.

    PubMed

    Takaya, Tomohiro; Koda, Risa; Adachi, Daisuke; Nakashima, Kazunori; Wada, Junpei; Bogaki, Takayuki; Ogino, Chiaki; Kondo, Akihiko

    2011-05-01

    In the present study, a system with high lipase expression in Aspergillus oryzae was developed using an improved enolase promoter (P-enoA124) and the 5' untranslated region of a heat-shock protein (Hsp-UTR). P-enoA142 enhanced the transcriptional level of a heterologous lipase gene and Hsp-UTR improved its translational efficiency. Fusarium heterosporum lipase (FHL) was inserted into a pSENSU-FHL expression vector harboring P-enoA142 and Hsp-UTR and was transformed into an A. oryzae NS4 strain. Transformants possessing pSENSU-FHL in single (pSENSU-FHL#1) and double copies (pSENSU-FHL#2) were selected to evaluate the lipase activity of the whole-cell biocatalyst. The two strains, pSENSU-FHL#1 and #2, showed excellent lipase activity in hydrolysis compared with the strain transformed with conventional expression vector pNAN8142-FHL. Furthermore, by using pSENSU-FHL#2, methanolysis could proceed much more effectively without deactivation, which allowed a swift addition of methanol to the reaction mixture, thereby reducing reaction time. PMID:21380514

  6. An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase-catalyzed ethanolysis in a water-containing system.

    PubMed

    Adachi, Daisuke; Koda, Risa; Hama, Shinji; Yamada, Ryosuke; Nakashima, Kazunori; Ogino, Chiaki; Kondo, Akihiko

    2013-02-01

    We attempted to integrate lipase-catalyzed ethanolysis into fermentative bioethanol production. To produce bioethanol, ethanol fermentation from brown rice was conducted using a tetraploid Saccharomyces cerevisiae expressing α-amylase and glucoamylase. The resultant ethanol was distilled and separated into three fractions with different concentrations of water and fusel alcohols. In ethanolysis using the first fraction with 89.3% ethanol, a recombinant Aspergillus oryzae whole-cell biocatalyst expressing Fusarium heterosporum lipase (r-FHL) afforded the highest ethyl ester content of 94.0% after 96 h. Owing to a high concentration of water in the bioethanol solutions, r-FHL, which works best in the presence of water when processing ethanolysis, was found to be more suitable for the integrative process than a commercial immobilized Candida antarctica lipase. In addition, r-FHL was used for repeated-batch ethanolysis, resulting in an ethyl ester content of more than 80% even after the fifth batch. Fusel alcohols such as 1-butanol and isobutyl alcohol are thought to decrease the lipase activity of r-FHL. Using this process, a high ethyl ester content was obtained by simply mixing bioethanol, plant oil, and lipase with an appropriate adjustment of water concentration. The developed process model, therefore, would contribute to biodiesel production from only biomass-derived feedstocks. PMID:23273281

  7. Lipase

    MedlinePlus

    ... Lipase is used for indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and ... that is associated with cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. ...

  8. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection.

    PubMed

    Nguyen, Long Nam; Bormann, Jörg; Le, Giang Thi Thu; Stärkel, Cornelia; Olsson, Stefan; Nosanchuk, Joshua D; Giese, Henriette; Schäfer, Wilhelm

    2011-03-01

    Autophagy is a non-selective degradation pathway in eukaryotic cells that is conserved from yeasts to humans. Autophagy is involved in the virulence of several pathogenic fungi such as Magnaporthe grisea or Colletotrichum orbiculare. In the current study, we identified and disrupted an autophagy-like lipase FgATG15 in Fusarium graminearum. We showed that FgATG15 exhibits lipase activity when heterologously expressed in P. pastoris. We used a gene deletion approach to characterize the function of the enzyme. We demonstrate that FgATG15 is involved in fungal growth and aerial hyphae production. FgATG15 is also involved in conidia production and germination, and disruption of FgATG15 led to aberrant conidia shapes. FgATG15 disruptants were reduced in storage lipid degradation under starvation conditions, implicating FgATG15's involvement in lipid turnover. Moreover, wheat head infection by the disruptants was severely attenuated, indicating the involvement of FgATG15 in pathogenesis. Additionally, we found that the deoxynivalenol levels of FgATG15 disruptants were significantly decreased compared with the wild type strain. Taken together, we show that FgATG15 is involved in numerous developmental processes and could be exploited as an antifungal target. PMID:21094265

  9. Corn seedling disease, fusaric acid as the wilt toxin and the need for biocontrol of Fusarium verticillioides and other Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid (5-butylpicolinic acid) was first discovered during the laboratory culture of Fusarium heterosporum, and was one of the first fungal metabolites implicated in the pathogenesis of wilt symptoms of plants especially under adverse conditions. In addition to a primary role in plant pathoge...

  10. The Use of Response Surface Methodology as a Statistical Tool for Media Optimization in Lipase Production from the Dairy Effluent Isolate Fusarium solani

    PubMed Central

    Kanmani, P.; Karthik, S.; Aravind, J.; Kumaresan, K.

    2013-01-01

    The optimization of extracellular lipase production by Fusarium isolani strain SKWF7 isolated from dairy wastewater was carried out in this study. Initially, the physicochemical factors significantly influencing enzyme production were studied by varying one-factor-at-a-time (OFAT). A mesophilic temperature of 40°C, alkaline pH of 8, and incubation period of 72 hours were found to be the optimal conditions for lipase production. Among the media components, the disaccharide sucrose acted as the best carbon source; palm oil as the best inducing lipid substrate; casein and (NH4)2SO4 as the best organic and inorganic nitrogen sources; Ca2+ ion as the best trace element. In the next phase of work, statistical optimization of medium components was performed by employing the Box-Behnken design of Response Surface Methodology (RSM). The optimum concentrations of three significant factors, namely, palm oil, (NH4)2SO4, and CaCO3 were determined by this method to be 5% (v/v), 5.5 g/L, and 0.1 g/L, respectively. RSM-guided design of experiments resulted in a maximum lipase production of 73.3 U/ml, which is a 1.7-fold increase in comparison with that obtained in the unoptimized medium. These results point towards the success of the model in developing a process for the production of lipase, an enzyme of enormous industrial significance. PMID:25969775

  11. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  12. Lipases in autolysed cultures of filamentous fungi.

    PubMed

    García-Lepe, R; Nuero, O M; Reyes, F; Santamaría, F

    1997-08-01

    Fifty-one fungi from different genera and strains were checked in plate to determine lipase activity in protein precipitates from their autolysed cultures. Each of them was then analysed at 3.5, 6.5 and 9.2 pH units and, as a consequence, basic lipases with high activity at 9.2 pH were found after 1 h of incubation. Only 25% of the studied fungi showed this lipase activity, among them the best producers were fungi from genus Fusarium (47% of fungi had lipase activity). In addition to lipase activity, Fusaria showed a low hydrolytic activity on cutin and suberin. The genus Aspergillus produced lipase and cutinase activity to a similar extent. Aspergillus nidulans 2544 also showed suberinase activity in a considerable amount. Penicillium species had very low activities. Other species and strains from genus Trichoderma, order Mucorales and class Basidiomycetes, did not show lipase activity in their degradative processes. PMID:9281862

  13. Lipase test

    MedlinePlus

    ... for disease of the pancreas, most often acute pancreatitis . Lipase appears in the blood when the pancreas ... Forsmark CE. Pancreatitis. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 144. ...

  14. Lipase test

    MedlinePlus

    ... the bowel (bowel obstruction) Celiac disease Duodenal ulcer Cancer of the pancreas Infection or swelling of the pancreas This test may also be done for familial lipoprotein lipase deficiency . Risks ... Update Date 2/4/2015 Updated ...

  15. Fusarium Pathogenomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed compartmentalization of genomes into regions responsible for metabolism and reproduction (core genome) and p...

  16. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  17. Fusarium Infection

    PubMed Central

    Muhammed, Maged; Anagnostou, Theodora; Desalermos, Athanasios; Kourkoumpetis, Themistoklis K.; Carneiro, Herman A.; Glavis-Bloom, Justin; Coleman, Jeffrey J.

    2013-01-01

    Abstract Fusarium species is a ubiquitous fungus that causes opportunistic infections. We present 26 cases of invasive fusariosis categorized according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria of fungal infections. All cases (20 proven and 6 probable) were treated from January 2000 until January 2010. We also review 97 cases reported since 2000. The most important risk factors for invasive fusariosis in our patients were compromised immune system, specifically lung transplantation (n = 6) and hematologic malignancies (n = 5), and burns (n = 7 patients with skin fusariosis), while the most commonly infected site was the skin in 11 of 26 patients. The mortality rates among our patients with disseminated, skin, and pulmonary fusariosis were 50%, 40%, and 37.5%, respectively. Fusarium solani was the most frequent species, isolated from 49% of literature cases. Blood cultures were positive in 82% of both current study and literature patients with disseminated fusariosis, while the remaining 16% had 2 noncontiguous sites of infection but negative blood cultures. Surgical removal of focal lesions was effective in both current study and literature cases. Skin lesions in immunocompromised patients should raise the suspicion for skin or disseminated fusariosis. The combination of medical monotherapy with voriconazole or amphotericin B and surgery in such cases is highly suggested. PMID:24145697

  18. Lipases, industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases are enzymes that catalyze the hydrolysis of triglycerides to glycerol and fatty acids. Microbial lipases are relatively stable and are capable of catalyzing a variety of reactions; they are potentially of importance for diverse industrial applications. Lipases can be divided generally into...

  19. Fusarium MLST database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CBS-KNAW Fungal Biodiversity Centre’s Fusarium MLST website (http://www.cbs.knaw.nl/Fusarium), and the corresponding Fusarium-ID site hosted at the Pennsylvania State University (http://isolate.fusariumdb.org; Geiser et al. 2004, Park et al. 2010) were constructed to facilitate identification of...

  20. CHARACTERIZATION OF LEPTOSPIRAL LIPASE

    PubMed Central

    Patel, Virendra; Goldberg, Herbert S.; Blenden, Donald

    1964-01-01

    Patel, Virendra (University of Missouri, Columbia), Herbert S. Goldberg, and Donald Blenden. Characterization of leptospiral lipase. J. Bacteriol. 88:877–884. 1964.—A technique for leptospiral lipase extraction which yielded a highly active, stable, and concentrated lipase preparation was developed. The chief characteristics of leptospiral lipase were determined and are summarized below. Leptospiral lipase was soluble in water and stable in both the dry state and in aqueous solution. Tributyrin was found to be the substrate upon which the enzyme was most active. With this substrate, leptospiral lipase was found to display optimal activity at pH 7 and at 30 C. The Michaelis constant of leptospiral lipase with tributyrin substrate was determined to be 4.76 × 10-2m. The enzyme was not inhibited by low concentrations of mercury, iron, cobalt, or copper or by —SH blocking agents. Bile and calcium chloride in low concentrations were able to increase lipase activity at alkaline pH. The isoelectric point of leptospiral lipase was determined to be in the range of pH 5.2 to 5.4. PMID:14219049

  1. Fusarium Wilt of Orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  2. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and ... discuss your diet needs with a registered dietitian. Pancreatitis that is related to lipoprotein lipase deficiency responds ...

  3. Molecular biology of Fusarium mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides, and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic...

  4. Molecular Biology of Fusarium Mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic ...

  5. Fusarium wilt in seedless watermelons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai], caused by Fusarium oxysporum f. sp. niveum (E.F. Sm.) Snyd. & Hans., was first reported in the United States in 1894. Historically, Fusarium wilt has been the greatest yield-limiting disease of watermelon worldwide. The stat...

  6. General characterization of noncommercial microbial lipases in hydrolytic and synthetic reactions.

    PubMed

    Otero, C; Berrendero, M A; Cardenas, F; Alvarez, E; Elson, S W

    2005-03-01

    Fourteen noncommercial preparations of microbial lipases were investigated with respect to their catalytic activity for hydrolysis and synthesis of ester bonds. Six of the lipases were derived from microorganisms that have not previously been described as lipase producers, and another four were characterized for the first time. The synthetic reactions were carried out in two solvents of different polarities (n-heptane and acetone) using a series of fatty acids and primary and secondary alcohols with different chain lengths. Under the culture conditions employed, Pseudomonas cepacia produced more active enzyme than the other microorganisms. The lipase preparations produced using Ovadendron sulphureo-ochraceum, Monascus mucoroides, Monascus sp., Fusarium oxysporum, Penicillium chrysogenum, Rhodotorula araucariae, Pseudomonas cepacia, Streptomyces halstedii, and Streptomyces sp.were the most efficient catalysts for hydrolysis at lipid-water interfaces. Enzyme preparations from P. cepacia, Streptomyces sp., S. halstedii, and R. araucariae were good biocatalysts for esterification in the polar medium (acetone). When the lipase preparations with the greatest activity for hydrolytic reactions were excluded, regression analysis of the data for the hydrolytic and synthetic activities of the remaining lipase preparations yielded high multiple correlation coefficients for these reactions in both n-heptane and acetone (R = 0.82 and 0.91, respectively). PMID:15767695

  7. Microbial lipases: production and applications.

    PubMed

    Ghosh, P K; Saxena, R K; Gupta, R; Yadav, R P; Davidson, S

    1996-01-01

    Lipases occupy a prominent place among biocatalysts and have a wide spectrum of biotechnological applications. Lipases are unique as they hydrolyse fats into fatty acids and glycerol at the water-lipid interface and can reverse the reaction in non-aqueous media. The stability of these enzymes in organic solvents have pushed them into the frontier areas of organic synthesis leading to the designing of novel drugs, surfactants, bioactive compounds and oleochemicals. In addition, lipase-catalysed trans-esterification and inter-esterification reactions have been exploited in the fat industry. Looking into the wide scenario of lipase applications, commercialization of lipase production is a prime area of interest for microbiologists, process engineers and biochemists. Research carried out in this field has revealed that microbes, especially fungi and bacteria, are the tools of choice for commercial production. Recently, the structure determination of a few microbial lipases has widened our knowledge about the unique mechanism of catalysis of this enzyme. PMID:8828407

  8. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere. PMID:26057187

  9. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    PubMed

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J

    2008-08-25

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  10. Lipases in lipophilization reactions.

    PubMed

    Villeneuve, Pierre

    2007-01-01

    Lipases are used in various sectors, as pharmaceutical, food or detergency industry. Their advantage versus classical chemical catalysts is that they exhibit a better selectivity and operate in milder reaction conditions. Theses enzymes can also be used in lipophilization reactions corresponding to the grafting of a lipophilic moiety to a hydrophilic one such as sugar, amino acids and proteins, or phenolic compounds. The major difficulty to overcome in such enzyme-catalyzed reaction resides in the fact that the two involved substrates greatly differ in term of polarity and solvent affinity. Therefore, several key parameters are to be considered in order to achieve the reaction in satisfactory kinetics and yields. The present review discusses the nature of such parameters (eg solvent nature, water activity, chemical modification of substrates) and illustrates their effect with examples of lipase-catalyzed lipophilization reactions of various sugar, amino acids or phenolic derivatives. PMID:17681737

  11. Synthesis and kinetic evaluation of Cyclophostin and Cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases

    PubMed Central

    Point, Vanessa; Malla, Raj K.; Diomande, Sadia; Martin, Benjamin P.; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P.; Spilling, Christopher D.; Cavalier, Jean-François

    2012-01-01

    New series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. Best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat towards same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these 7-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents. PMID:23095026

  12. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. PMID:20580809

  13. Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol.

    PubMed

    Blümke, Antje; Sode, Björn; Ellinger, Dorothea; Voigt, Christian A

    2015-06-01

    The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild-type and defined mutants: the DON-deficient Δtri5 mutant and the DON-producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen-activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post-inoculation, the glucose amounts in the non-cellulosic cell wall fraction were only increased in spikelets infected with the DON-producing strains wild-type, Δfgl1 and Δgpmk1. Hence, we tested for DON-induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild-type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence-related gene expression after DON pretreatment and fungal infection suggested that DON-induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB. PMID:25202860

  14. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.

    PubMed

    Wang, Ziyun; Li, Shen; Sun, Lidan; Fan, Jianglin; Liu, Zhenming

    2013-01-01

    The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad "Ser-Asp-His", a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis. PMID:23991054

  15. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years. PMID:26156413

  16. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis.

    PubMed

    Costa, L; Brissos, V; Lemos, F; Ribeiro, F Ramôa; Cabral, J M S

    2008-06-01

    The activity of various lipases was compared, in both free and immobilized forms, using the kinetics of the hydrolysis reaction of p-nitrophenyl butyrate, which was followed with in situ UV/Vis diode array spectrophotometry. Several enzymes were used to catalyze the reaction, namely Candida antarctica lipase B and Fusarium solani pisi cutinase wildtype and three single-mutation variants. The enzymes were tested in three different forms: free, immobilized as cross-linked aggregates and supported on zeolite NaY. A simple kinetic model was used to allow a quantitative comparison of the behavior of the different catalysts. It was concluded that although immobilization reduces the activity of the enzyme, the zeolite offers a much higher specific activity when compared to the cross-linked aggregates, thus supplying a heterogeneous catalyst with promising catalytic properties. PMID:17940805

  17. Regulation by light in Fusarium.

    PubMed

    Avalos, Javier; Estrada, Alejandro F

    2010-11-01

    The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation. PMID:20460165

  18. Overview of fungal lipase: a review.

    PubMed

    Singh, Abhishek Kumar; Mukhopadhyay, Mausumi

    2012-01-01

    Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering. PMID:22072143

  19. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism.

    PubMed

    Péterfy, Miklós

    2012-05-01

    Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomeric, lipases, it is likely involved in the assembly of inactive lipase subunits into active enzymes and/or the stabilization of active dimers. Herein, we provide an overview of current understanding of LMF1 function and propose that it may play a regulatory role in lipase activation and lipid metabolism. Further studies will be required to test this hypothesis and elucidate the full spectrum of phenotypes in combined lipase deficiency. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. PMID:22063272

  20. Fusarium subglutinans: A new eumycetoma agent☆

    PubMed Central

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-01-01

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans. PMID:24432236

  1. Wax ester-synthesizing activity of lipases.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-11-01

    The synthesis/hydrolysis of wax esters was studied in an aqueous solution using purified rat pancreatic lipase, porcine pancreatic carboxylester lipase, and Pseudomonas fluorescens lipase. The equilibrium between wax ester synthesis and hydrolysis favored ester formation at neutral pH. The synthesizing activities were measured using free fatty acid or triacylglycerol as the acyl donor and an equimolar amount of long-chain alcohol as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with these lipases, wax ester was synthesized, in a dose- and time-dependent manner, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was about 0.9/0.1. These lipases catalyzed the hydrolysis of palmityl oleate emulsified with gum arabic, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was also about 0.9/0.1. The apparent equilibrium ratio of wax ester/free fatty acid catalyzed by lipase depended on incubation pH and fatty alcohol chain length. When equimolar amounts of trioleoylglycerol and fatty acyl alcohol were incubated with pancreatic lipase, carboxylester lipase, or P. fluorescens lipase, wax esters were synthesized dose-dependently. These results suggest that lipases can catalyze the synthesis of wax esters from free fatty acids or through degradation of triacylglycerol in an aqueous medium. PMID:10606038

  2. Structural dynamics of Fusarium genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi in the genus Fusarium have a great negative impact on the world economy, yet also hold great potential for answering many fundamental biological questions. The advance of sequencing technologies has made possible the connection between phenotypes and genetic mechanisms underlying the acquisiti...

  3. Fusarium Keratitis - Multiple States, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Centers for Disease Control and Prevention investigated an outbreak of corneal infections caused by Fusarium involving at least 17 states as of April, 2006. Initial outbreak reports were from Singapore and Hong Kong. Preliminary results suggest that these outbreaks may be linked ...

  4. GENOMIC ANALYSIS OF FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the ...

  5. Grower Recommendations: Fusarium Race 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium, particularly race 4, has become a significant management issue in the San Joaquin Valley cotton production area of California. Recommendations for limiting spread of inoculum of this fungal disease have been modified somewhat over the approximately 10 years of experience with this disease,...

  6. The realm of microbial lipases in biotechnology.

    PubMed

    Pandey, A; Benjamin, S; Soccol, C R; Nigam, P; Krieger, N; Soccol, V T

    1999-04-01

    In this review, a comprehensive and illustrious survey is made of the applied aspects of microbial lipases in modern biotechnological practices. Lipases are the most versatile biocatalyst and bring about a range of bioconversion reactions such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. After a brief description of the microbial sources of lipases, the pivotal role of lipases in the processes and products of the food and flavourings industry is illustrated. An illustration is presented of biomedical applications. The panorama of lipases in the manufacture of fine chemicals is depicted with special emphasis on pharmaceuticals, pesticides, cosmetics, biosensors and detergents. Widening applications such as those in waste management and improved tanning techniques are other novel aspects of lipase utilization that are discussed in this review. PMID:10075908

  7. Wheat kernel black point and fumonisin contamination by Fusarium Proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by several Fusarium species, especially Fusarium proliferatum and Fusarium verticillioides, which are common pathogens of maize worldwide. Consumption of fumonisins has been shown to cause a number of mycotoxicoses, including leucoencephalomalacia in horses, pulmon...

  8. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    PubMed

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  9. Isolation and Characterization of a Staphylococcal Lipase

    PubMed Central

    Troller, J. A.; Bozeman, M. A.

    1970-01-01

    A number of coagulase-negative staphylococci isolated from human skin were found to produce lipase. Lipolytic activity appeared in the growth medium during the stationary phase of growth but did not appear as a result of autolysis of the cells. Maximal lipase synthesis was obtained when the medium was adjusted to pH 7.5 before inoculation. The purified enzyme hydrolyzed tributyrin and tridecanoin most actively, and a relatively high rate of hydrolysis of triolein was also noted. The optimal activity of the purified lipase was at pH 7.5. The characteristics of the concentrated crude enzyme and purified lipase were compared. PMID:5485729

  10. Adsorption of lipase on polypropylene powder.

    PubMed

    Gitlesen, T; Bauer, M; Adlercreutz, P

    1997-04-01

    Adsorption of different lipases by EP-100 polypropylene powder from crude and pure lipase preparations was studied. Langmuir isotherms described the adsorption equilibria well both for protein and lipase activity adsorption. Adsorption isotherms for five different proteins all gave a similar saturation level of 220 mg protein per g carrier. Twelve commercial lipase preparations were tested for selectivity in the adsorption of lipase. For all preparations the selectivity factor was larger than one. In a crude lipase preparation from Pseudomonas fluorescence, the specific activity in solution decreased by two orders of magnitude after adsorption. The adsorption was not significantly influenced by pH changes in the adsorption buffer, indicating that hydrophobic and not electrostatic interactions are the dominating adsorption forces. Adsorption of a crude lipase from Candida rugosa (Sigma) was fast and equilibrium was reached in 30 and 100 min for protein and lipase activity adsorption respectively. Desorption in aqueous solution was negligible. Investigations with seven different lipases showed no correlation between the specific lipolytic activity of dissolved enzyme in aqueous solution and the specific activity of adsorbed enzyme in an esterification reaction in organic solvent. PMID:9106498

  11. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    PubMed

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis. PMID:26966007

  12. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides. PMID:22178764

  13. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  14. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  15. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  16. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  17. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies....1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic tissue. The...

  18. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  19. Developing Fusarium head blight resistant wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major disease problem in wheat and barley around the world. During infection, F. graminearum produces trichothecene mycotoxins that act as virulence factors and cause a reduction in grain quality. Therefore, developing approaches to detoxi...

  20. Biological and chemical complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  1. Diversity of polyketide synthases in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium can produce a structurally diverse array of secondary metabolites (SMs) with a range of biological activities, including pigmentation, plant growth regulation, and toxicity to humans and other animals. Contamination of grain-based food and feed with toxic SMs produced by Fusarium is associa...

  2. Fusarium-Resistant Barley Through Genetic Transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation with antifungal genes could provide barley with the resistance to Fusarium graminearum (F.g.). More molecular studies are needed to 1) identify effective anti-Fusarium genes, 2) develop more tissue-specific gene promoters to target expression to the path of infection, and 3) ...

  3. Resistance to Fusarium wilt in chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of chickpea, caused by the fungal pathogen Fusarium oxysporum f. sp. ciceris (Foc), is a destructive disease and is distributed in almost all chickpea producing regions of the world. Foc has eight physiological races designated as 0, 1A, 1B/C, 2, 3, 4, 5 and 6. The races are different...

  4. Systemic ketoconazole treatment for Fusarium leg ulcers.

    PubMed

    Landau, M; Srebrnik, A; Wolf, R; Bashi, E; Brenner, S

    1992-07-01

    Fusarium oxysporum was isolated from a large foot ulcer in an otherwise healthy 69-year-old man. Although tissue invasion could not be proven histologically, systemic antifungal treatment was administered with satisfactory response. Fusarium species are common soil-inhabiting organisms and plant pathogens. In humans, Fusarium is considered an opportunistic agent in skin ulcers, interdigital spaces, and burned skin, but can also cause mycotic keratitis, onychomycosis, and rarely deep-seated or disseminated infections, especially in an immunocompromised host. The distinction between skin infection and saprophytic growth, as well as optimal treatment regimens for the two types of infection, have not been clearly defined. We describe a case of leg ulcers caused by Fusarium oxysporum in a 69-year-old man treated successfully with oral ketoconazole. "Silent" immunologic disturbances were found in this apparently healthy patient. The case illustrates a relatively benign infection caused by Fusarium that responded to systemic antifungal drug treatment. PMID:1500248

  5. Endothelial lipase: Its role in cardiovascular disease

    PubMed Central

    Paradis, Marie-Eve; Lamarche, Benoit

    2006-01-01

    Endothelial lipase (EL) has recently been identified as a new member of the triglyceride lipase gene family. EL shares a relatively high degree of homology with lipoprotein lipase and hepatic lipase, but it appears to be more specific at hydrolyzing phospholipids than lipoprotein lipase and hepatic lipase. EL is also the only identified lipase that is synthesized and expressed by endothelial cells. Data from in vitro and in vivo animal studies have suggested that EL may play a key role in modulating the metabolism of high density lipoproteins. Data are less consistent in clarifying how EL contributes to the metabolism of apolipoprotein B-containing lipoproteins. Investigations in humans are scarce. To date, increased plasma EL concentrations have been associated with a deteriorated lipoprotein-lipid profile along with elevated plasma triglyceride and apolipoprotein B concentrations, as well as with smaller low density lipoprotein particle size. Elevated proinflammatory cytokine concentrations and an increased prevalence of the metabolic syndrome have also been observed among individuals with elevated plasma EL concentrations. Taken together, data suggest that EL is one of several key regulatory enzymes of lipoprotein-lipid metabolism and that a proinflammatory state, such as the metabolic syndrome, may be implicated in the processes relating plasma EL concentrations and lipoprotein concentrations. EL should thus be considered to play an important role in the pathophysiology of cardiovascular disease. PMID:16498510

  6. Synthesis of hepatic lipase in liver and extrahepatic tissues

    SciTech Connect

    Doolittle, M.H.; Wong, H.; Davis, R.C.; Schotz, M.C.

    1987-11-01

    Immunoprecipitations of hepatic lipase from pulse-labeled rat liver have demonstrated that hepatic lipase is synthesized in two distinct molecular weight forms, HL-I (Mr = 51,000) and HL-II (Mr = 53,000). Both forms are immunologically related to purified hepatic lipase, but not to lipoprotein lipase. HL-I and HL-II are also kinetically related and represent different stages of intracellular processing. Glycosidase experiments suggest that HL-I is the high mannose microsomal form of the mature, sialylated HL-II enzyme. Hepatic lipase activity was detected in liver and adrenal gland but was absent in brain, heart, kidney, testes, small intestine, lung, and spleen. The adrenal and liver lipase activities were inhibited in a similar dose-dependent manner by hepatic lipase antiserum. Immunoblot analysis of partially purified adrenal lipase showed an immunoreactive band co-migrating with HL-II at 53,000 daltons which was absent in a control blot treated with preimmune serum. Adrenal lipase and authentic hepatic lipase yielded similar peptide maps, confirming the presence of the lipase in adrenal gland. However, incorporation of L-(/sup 35/S)methionine into immunoprecipitable hepatic lipase was not detected in this tissue. In addition, Northern blot analysis showed the presence of hepatic lipase mRNA in liver but not adrenal gland. The presence of hepatic lipase in adrenal gland in the absence of detectable synthesis or messenger suggests that hepatic lipase originates in liver and is transported to this extrahepatic site.

  7. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family

    SciTech Connect

    Kirchgessner, T.G.; Heinzmann, C.; Svenson, K.; Ameis, D.; Lusis, A.J. ); Chuat, J.C.; Etienne, J.; Guilhot, S.; Pilon, C.; D'Auriol, L.; Galibert, F. ); Schotz, M.C. Wadsworth Medical Center, Los Angeles, CA )

    1989-12-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning {approx} 30 kilobase. The first exon encodes the 5{prime}-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3{prime}-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5{prime}-flanking region were also determined. The authors compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events.

  8. The selectivity of some fungal lipases.

    PubMed

    Adamczak, M; Bednarski, W

    2003-01-01

    Selectivity is one of the most important lipase properties which depends on a wide range of factors. In order to choose the right enzyme for a special purpose, it is necessary to check its selectivity. Fatty acid selectivity of lipases determined for natural substrales was different from that determined for p-nitrophenyl esters and those determined for each substrate. Enantoiselectivity of lipase from Mucor circinelloides (MCL) determined for 2 was over 100 (E > > 100). In this case, inversion of enantiopreferences was observed; the conversion was 10% and (R)-alcohol was preferentially produced PMID:24757816

  9. [Lipases in catalytic reactions of organic chemistry].

    PubMed

    Bezborodov, A M; Zagustina, N A

    2014-01-01

    Aspects of enzymatic catalysis in lipase-catalyzed reactions of organic synthesis are discussed in the review. The data on modern methods of protein engineering and enzyme modification allowing a broader range of used substrates are briefly summarized. The application of lipase in the preparation of pharmaceuticals and agrochemicals containing no inactive enantiomers and in the synthesis of secondary alcohol enantiomers and optically active amides is demonstrated. The subject of lipase involvement in the C-C bond formation in the Michael reaction is discussed. Data on the enzymatic synthesis of construction materials--polyesters, siloxanes, etc.--are presented. Examples demonstrating the application of lipase enzymatic catalysis in industry are given. PMID:25707112

  10. [Water binding of adsorptive immobilized lipases].

    PubMed

    Loose, S; Meusel, D; Muschter, A; Ruthe, B

    1990-01-01

    It is supposed that not only the total water content of lipase preparations but more their state of water binding is of technological importance in enzymatic interesterification reactions in systems nearly free from water. The isotherms at 65 degrees C of two microbial lipases immobilized on various adsorbents as well as different adsorbents themselves are shown. The water binding capacity in the range of water content of technological interest decreases from the anion exchange resin Amberlyst A 21 via nonpolar adsorbent Amberlite XAD-2 to kieselguhr Celite 545. It is demonstrated that water binding by lipases is depending on temperature but is also affected by adsorptive immobilization. Adsorptive immobilized lipases show hysteresis, which is very important for preparing a definite water content of the enzyme preparations. PMID:2325750

  11. Introductory biology of Fusarium moniliforme.

    PubMed

    Leslie, J F

    1996-01-01

    Fusarium moniliforme is a name that has been applied to any of six biological species (or mating populations) that share the teleomorph (sexual stage) Gibberella fujikuroi. Two of these six biological species, termed "A" and "D", are known to produce fumonisin mycotoxins. Strains from the "A" biological species grow as endophytes on maize and often comprise 90+% of the Fusarium isolates recovered from healthy maize seed. It is possible to distinguish all six biological species using sexual fertility and isozymes. Other attributes, such as morphological characters and sequences from the ribosomal DNA internally transcribed spacer (rDNA-ITS) region, can be used to identify some, but not all, of the biological species. Within a biological species, genetic variability and population structure can be assessed with anonymous RFLPs and tests of vegetative compatibility. The "A" biological species is genetically diverse, and the sexual cycle appears to be important in the life cycle of field populations of this organism in the United States. PMID:8850614

  12. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  13. Monoglyceride lipase: Structure and inhibitors.

    PubMed

    Scalvini, Laura; Piomelli, Daniele; Mor, Marco

    2016-05-01

    Monoglyceride lipase (MGL), the main enzyme responsible for the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), is an intracellular serine hydrolase that plays critical roles in many physiological and pathological processes, such as pain, inflammation, neuroprotection and cancer. The crystal structures of MGL that are currently available provide valuable information about how this enzyme might function and interact with site-directed small-molecule inhibitors. On the other hand, its conformational equilibria and the contribution of regulatory cysteine residues present within the substrate-binding pocket or on protein surface remain open issues. Several classes of MGL inhibitors have been developed, from early reversible ones, such as URB602 and pristimerin, to carbamoylating agents that react with the catalytic serine, such as JZL184 and more recent O-hexafluoroisopropyl carbamates. Other inhibitors that modulate MGL activity by interacting with conserved regulatory cysteines act through mechanisms that deserve to be more thoroughly investigated. PMID:26216043

  14. Onychomycosis caused by Fusarium solani and Fusarium oxysporum in São Paulo, Brazil.

    PubMed

    Godoy, P; Nunes, E; Silva, V; Tomimori-Yamashita, J; Zaror, L; Fischman, O

    2004-04-01

    Fusarium species are common soil saprophytes and plant pathogens that have been frequently reported as etiologic agents of opportunistic infections in humans. We report eight cases of onychomycosis caused by Fusarium solani (4) and Fusarium oxysporum (4) in São Paulo, Brazil. These species were isolated from toenails in all cases. The infections were initially considered to be caused by dermatophytes. The clinical appearance of the affected toenails was leukonychia or distal subungual hyperkeratosis with yellowish brown coloration. The eight cases reported here suggest that Fusarium spp. should be taken into consideration in the differential diagnosis of tinea unguium. PMID:15180157

  15. Immobilization and characterization of a thermostable lipase.

    PubMed

    Song, Chongfu; Sheng, Liangquan; Zhang, Xiaobo

    2013-12-01

    Lipases have found a number of commercial applications. However, thermostable lipase immobilized on nanoparticle is not extensively characterized. In this study, a recombinant thermostable lipase (designated as TtL) from Thermus thermophilus WL was expressed in Escherichia coli and immobilized onto 3-APTES-modified Fe3O4@SiO2 supermagnetic nanoparticles. Based on analyses with tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer observation, the diameter of immobilized lipase nanoparticle was 18.4 (± 2.4) nm, and its saturation magnetization value was 52.3 emu/g. The immobilized lipase could be separated from the reaction medium rapidly and easily in a magnetic field. The biochemical characterizations revealed that, comparing with the free one, the immobilized lipase exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The K m value for the immobilized TtL (2.56 mg/mL) was found to be lower than that of the free one (3.74 mg/mL), showing that the immobilization improved the affinity of lipase for its substrate. In addition, the immobilized TtL exhibited good reusability. It retained more than 79.5 % of its initial activity after reusing for 10 cycles. Therefore, our study presented that the possibility of the efficient reuse of the thermostable lipase immobilized on supermagnetic nanoparticles made it attractive from the viewpoint of practical application. PMID:23748908

  16. Bacterial lipases and chronic blepharitis.

    PubMed

    Dougherty, J M; McCulley, J P

    1986-04-01

    Eyelids and conjunctivae of 36 normal individuals and 60 patients from six clinical groups of chronic blepharitis were cultured for aerobic and anaerobic bacteria. The most common species isolated were coagulase-negative staphylococci (C-NS) and Propionibacterium acnes. All strains of these species, and all Staphylococcus aureus strains isolated were tested for the ability to break down triglycerides, cholesterol esters, and fatty waxes. Each strain was incubated independently with appropriate substrates in nutrient media. Each medium was then extracted and assayed for the presence of substrate hydrolysis products by thin-layer chromatography. The percentage of strains capable of hydrolyzing a particular substrate was determined for each individual. S. aureus was a consistent and strong lipase producer, able to hydrolyze all three substrates. P. acnes was able to hydrolyze triolein and behenyl oleate but not cholesteryl oleate. No differences were observed among groups for P. acnes or S. aureus. C-NS showed a high degree of strain variability. Eighty-three percent of C-NS strains could hydrolyze triolein, 82% behenyl oleate, and 40% cholesteryl oleate. Significant group differences were seen in the percentage of lipase positive C-NS strains isolated per individual. Patients in the mixed staphylococcal/seborrheic, meibomian seborrheic, secondary meibomitis, and the meibomian keratoconjunctivitis (MKC) groups harbored significantly more C-NS strains capable of hydrolyzing cholesteryl oleate than did normal individuals. Patients in the meibomian seborrheic, secondary meibomitis, and MKC groups harbored significantly more C-NS strains capable of hydrolyzing behenyl oleate than did normals. No group differences were seen among groups with triolein hydrolyzing C-NS strains. PMID:3957566

  17. Lipase

    MedlinePlus

    ... indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and cystic fibrosis. ... cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. Heartburn. Other conditions. More evidence ...

  18. Lipases and their industrial applications: an overview.

    PubMed

    Houde, Alain; Kademi, Ali; Leblanc, Danielle

    2004-01-01

    Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are part of the family of hydrolases that act on carboxylic ester bonds. The physiologic role of lipases is to hydrolyze triglycerides into diglycerides, monoglycerides, fatty acids, and glycerol. These enzymes are widely found throughout the animal and plant kingdoms, as well as in molds and bacteria. Of all known enzymes, lipases have attracted the most scientific attention. In addition to their natural function of hydrolyzing carboxylic ester bonds, lipases can catalyze esterification, interesterification, and transesterification reactions in nonaqueous media. This versatility makes lipases the enzymes of choice for potential applications in the food, detergent, pharmaceutical, leather, textile, cosmetic, and paper industries. The most significant industrial applications of lipases have been mainly found in the food, detergent, and pharmaceutical sectors. Limitations of the industrial use of these enzymes have mainly been owing to their high production costs, which may be overcome by molecular technologies, enabling the production of these enzymes at high levels and in a virtually purified form. PMID:15304746

  19. Conversion of a Mono- and Diacylglycerol Lipase into a Triacylglycerol Lipase by Protein Engineering.

    PubMed

    Lan, Dongming; Popowicz, Grzegorz Maria; Pavlidis, Ioannis V; Zhou, Pengfei; Bornscheuer, Uwe T; Wang, Yonghua

    2015-07-01

    Despite the fact that most lipases are believed to be active against triacylglycerides, there is a small group of lipases that are active only on mono- and diacylglycerides. The reason for this difference in substrate scope is not clear. We tried to identify the reasons for this in the lipase from Malassezia globosa. By protein engineering, and with only one mutation, we managed to convert this enzyme into a typical triacylglycerol lipase (the wild-type lipase does not accept triacylglycerides). The variant Q282L accepts a broad spectrum of triacylglycerides, although the catalytic behavior is altered to some extent. From in silico analysis it seems that specific hydrophobic interactions are key to the altered substrate specificity. PMID:25955297

  20. Onychomycosis caused by Fusarium proliferatum.

    PubMed

    Hattori, N; Shirai, A; Sugiura, Y; Li, W; Yokoyama, K; Misawa, Y; Okuzumi, K; Tamaki, K

    2005-09-01

    Fusarium infections in humans are usually opportunistic, but the fungus sometimes infects healthy persons, causing keratomycosis or onychomycosis. Onychomycosis is usually caused by F. solani or F. oxysporum. We report the first two cases of onychomycosis caused by F. proliferatum, and discuss methods of diagnosis and effective treatment. Nail samples from the two patients were examined by direct microscopy, cultured, and identified morphologically and genetically as F. proliferatum. Both patients were treated successfully with oral itraconazole, even though the minimum inhibitory concentration of itraconazole was relatively high in Patient 1. This is the first report of F. proliferatum as an agent of onychomycosis. Itraconazole may be effective in the treatment of onychomycosis caused by F. proliferatum. PMID:16120158

  1. Lipase production by diverse phylogenetic clades of Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains i...

  2. Stimulation of Lipase Production During Bacterial Growth on Alkanes

    PubMed Central

    Breuil, Colette; Shindler, D. B.; Sijher, J. S.; Kushner, D. J.

    1978-01-01

    Acinetobacter lwoffi strain O16, a facultative psychrophile, can grow on crude oil, hexadecane, octadecane, and most alkanes when tested at 20 but not at 30°C. Growth occurred on a few alkanes at 30°C but after a longer lag than at 20°C. Cells grown on alkanes as sole carbon sources had high levels of cell-bound lipase. In contrast, previous work has shown that those grown on complex medium produced cell-free lipase and those grown on defined medium without alkanes produced little or no lipase. Low concentrations of the detergent Triton X-100 caused the liberation of most of the lipase activity of alkane-grown cells and increased total lipase activity. When ethanol and hexadecane were both present in a mineral medium, diauxic growth occurred; until the ethanol was completely used up, hexadecane was not utilized, and the lipase activity was very low. When growth on hexadecane began, lipase activity increased, reaching a level 50- to 100-fold higher than that of cells growing on ethanol. A similar pattern of lipase formation and hexadecane utilization was observed with Pseudomonas aeruginosa. Whenever A. lwoffi and other bacteria degraded alkanes they exhibited substantial lipase activity. Not all bacteria that produced lipase, however, could attack alkanes. Bacteria that could not produce lipase did not attack alkanes. The results suggest that a correlation may exist between lipase formation and alkane utilization. PMID:627533

  3. TRANSFORMATION TO PRODUCE BARLEY RESISTANT TO FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium graminearum destroys barley and wheat crops by causing scab disease (Fusarium head blight, FHB). Spores infect seed spike tissues, leading to production of mycotoxins. There are no known barleys with biochemical resistance to Fusarium, although some have various levels ...

  4. Diversity of the Fusarium complex on French maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ear rot caused by Fusarium species is a major threat to maize production worldwide, causing yield reduction and poor grain quality. In addition, various species of the genus Fusarium can produce mycotoxins, which accumulate in the grain. The distribution and predominance of the different Fusarium sp...

  5. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  6. Temperature effects on the interactions of sugar beet Fusarium yellows caused by Fusarium oxysporum f. sp. betae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugar beet (Beta vulgaris L.), caused by Fusarium oxysporum f. sp. betae, causes a significant reduction in root yield, sucrose percentage, and juice purity. The environmental or agronomic factors that contribute to development and severity of Fusarium yellows have not been desc...

  7. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    SciTech Connect

    Dousset, N.; Negre, A.; Salvayre, R.; Rogalle, P.; Dang, Q.Q.; Douste-Blazy, L.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  8. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes. PMID:19238625

  9. [The characterization of microbial lipases. 1. The determination of lipase activity].

    PubMed

    Bariszlovich, M; Meusel, D; Tülsner, M

    1990-01-01

    In the selection of an appropriate method for activity determination of lipases existing technical equipment, kind of enzymes, number of samples investigated (e.g. in routine analysis), and expected sensitivity range have to be taken into account. Titrimetric methods and above all copper salt methods with their high detection sensitivity are the most suitable procedures for activity determination of lipases used in laboratories and institutions without equipment for radiochemical analysis. PMID:2233988

  10. The complete mitogenome of Fusarium culmorum.

    PubMed

    Kulik, Tomasz; Brankovics, Balazs; Sawicki, Jakub; van Diepeningen, Anne

    2016-07-01

    The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2 ribosomal RNA (rRNA), and 28 transfer RNA (tRNA) genes, all coded on the same strand of DNA. The gene order is identical to that of the other Fusarium and Hypocreales mitogenomes. Maximum likelihood and Bayesian analysis based on the concatenated amino acid dataset of mitochondrial protein-coding genes confirmed close genetic relationship of F. culmorum to the other type B trichothecene producers F. graminearum and F. gerlachii. PMID:26016874

  11. Fusarium wilt of Prunus armeniaca seedlings.

    PubMed

    Afifi, A F

    1977-01-01

    Fusarium solani (Mart.) Sacc. was found to be the causal pathogen of Fusarium wilt of Prunus armeniaca seedlings. The fungus pathogenicity could be correlated with the increase in its mycelial growth and conidial germination under the influence of the host root exudates, volatile and gaseous exudates of either germinating seeds or roots, and the content of the host seedlings. Chromatographic and biological detection for indol derivatives in host root exudates indicated the presence of beta-indolacetic acid and indol-3-carbonic acid. Benzaldehyde, acetaldehyde, ethanol, ethylene, in addition to carbon dioxide, were among the volatile and gaseous exudates of either germinating seeds or roots of the host. PMID:878711

  12. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  13. Structural characterization of MAPLE deposited lipase biofilm

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  14. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  15. Design of ionic liquids for lipase purification.

    PubMed

    Ventura, Sónia P M; Sousa, Sílvia G; Freire, Mara G; Serafim, Luísa S; Lima, Alvaro S; Coutinho, João A P

    2011-09-15

    Aqueous two-phase systems (ATPS) are considered as efficient downstream processing techniques in the production and purification of enzymes, since they can be considered harmless to biomolecules due to their high water content and due to the possibility of maintaining a neutral pH value in the medium. A recent type of alternative ATPS is based on hydrophilic ionic liquids (ILs) and salting-out inducing salts. The aim of this work was to study the lipase (Candida antarctica lipase B - CaLB) partitioning in several ATPS composed of ionic liquids (ILs) and inorganic salts, and to identify the best IL for the enzyme purification. For that purpose a wide range of IL cations and anions, and some of their combinations were studied. For each system the enzyme partitioning between the two phases was measured and the purification factors and enzyme recoveries were determined. The results indicate that the lipase maximum purification and recovery were obtained for cations with a C(8) side alkyl chain, the [N(CN)(2)] anion and ILs belonging to the pyridinium family. However, the highest purification parameters were observed for 1-methyl-3-octylimidazolium chloride [C(8)mim]Cl, suggesting that the IL extraction capability does not result from a cumulative character of the individual characteristics of ILs. The results indicate that the IL based ATPS have an improved performance in the lipase purification and recovery. PMID:21852207

  16. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia.

    PubMed

    Tan, Diana C; Flematti, Gavin R; Ghisalberti, Emilio L; Sivasithamparam, Krishnapillai; Chakraborty, Sukumar; Obanor, Friday; Jayasena, Kithsiri; Barbetti, Martin J

    2012-05-01

    An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites. PMID:23606046

  17. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. PMID:25841054

  18. Occurrence of Fusarium verticillioides and Fusarium musae on banana fruits marketed in Hungary.

    PubMed

    Molnár, Orsolya; Bartók, Tibor; Szécsi, Árpád

    2015-06-01

    Fusarium strains were isolated from rotten banana fruit imported into Hungary from some African and some Neotropical countries. The strains were identified using morphological features, 2-benzoxazolinone tolerance, translation elongation factor (EF-1α) sequences and inter simple sequence repeat (ISSR) analysis. All strains from Africa proved to be F. verticillioides whereas the strains from the Neotropics are Fusarium musae. According to the PCR proof and the fumonisin toxin measurement F. musae strains cannot produce any fumonisins (FB1-4). PMID:26132832

  19. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity.

    PubMed

    Forsyth, Leanne M; Smith, Linda J; Aitken, Elizabeth A B

    2006-08-01

    Fusarium wilt of banana is a potentially devastating disease throughout the world. Options for control of the causal organism, Fusarium oxysporum f.sp. cubense (Foc) are limited. Suppressive soil sites have previously been identified where, despite the presence of Foc, Fusarium wilt does not develop. In order to understand some aspects of this disease suppression, endophytic Fusarium oxysporum isolates were obtained from banana roots. These isolates were genetically characterized and compared with an isolate of Fusarium oxysporum previously identified as being capable of suppressing Fusarium wilt of banana in glasshouse trials. Three additional isolates were selected for glasshouse trials to assess suppression of Fusarium wilt in two different cultivars of banana, Cavendish and Lady Finger. One isolate (BRIP 29089) was identified as a potential biocontrol organism, reducing the disease severity of Fusarium wilt in Lady Finger and Cavendish cultivars. Interestingly, one isolate (BRIP 45952) increased Fusarium wilt disease severity on Cavendish. The implications of an isolate of Fusarium oxysporum, non-pathogenic on banana, increasing disease severity and the potential role of non-pathogenic isolates of Fusarium oxysporum in disease complexes are discussed. PMID:16891106

  20. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-04-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein's diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes.

  1. Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM).

    PubMed

    Barrett, Helen L; Kubala, Marta H; Scholz Romero, Katherin; Denny, Kerina J; Woodruff, Trent M; McIntyre, H David; Callaway, Leonie K; Nitert, Marloes Dekker

    2014-01-01

    Infants of women with gestational diabetes mellitus (GDM) are more likely to be born large for gestational age with a higher percentage body fat. Elevated maternal lipids may contribute to this. Placental lipases such as lipoprotein lipase (LPL), endothelial lipase (EL) and hormone sensitive lipase (HSL) are involved in transferring lipids from mother to fetus. Previous studies of expression of these lipases in placentae in women with diabetes in pregnancy have reported divergent results. Intracellular lipases such as adipose triglyceride lipase (ATGL), and HSL are central to lipid droplet metabolism. The activities of these lipases are both influenced by Perilipin 1, and ATGL is also activated by a co-factor comparative gene identification-58 (CGI-58) and inhibited by G0/G1 switch gene 2 (GS02). None of these modifying factors or ATGL have been examined previously in placenta. The purpose of this study was therefore to examine the expression of ATGL, HSL, LPL, EL, as well as Perilipin 1, GS02 and CGI-58 in term pregnancies complicated by GDM. mRNA and protein expression of the lipases were measured in placentae from 17 women with GDM and 17 normoglycaemic pregnancies, matched for maternal BMI and gestational age of delivery. ATGL mRNA expression was increased and HSL mRNA expression reduced in placentae from GDM although there was no differences in protein expression of any of the lipases. All lipases were localised to trophoblasts and endothelial cells. The expression of Perilipin 1 and CGI-58 mRNA was increased and GS02 not altered in GDM. These results suggest that there is no difference in expression in these four lipases between GDM and normoglycaemic placentae, and therefore altered lipid transfer via these lipases does not contribute to large for gestational age in infants of women with GDM. PMID:25118138

  2. Molecular Identification and Databases in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA sequence-based methods for identifying pathogenic and mycotoxigenic Fusarium isolates have become the gold standard worldwide. Moreover, fusarial DNA sequence data are increasing rapidly in several web-accessible databases for comparative purposes. Unfortunately, the use of Basic Alignment Sea...

  3. Fusarium and other opportunistic hyaline fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  4. Toxicity of fumonisins, mycotoxins from Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by Fusarium, predominantly F. verticillioides. They are present in variable amounts in corn and corn-based feeds and food products. They are suspected risk factors for esophageal cancer and neural tube defects in some human populations depending on corn as a diet s...

  5. Investigating Spore killer of Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most important crops in the world. Fusarium verticillioides may colonize maize as an endophyte or as a pathogen, causing disease at any life stage of the plant. During growth on maize, F. verticillioides can synthesis a number of mycotoxins including fumonisins, which have been l...

  6. Biological and Chemical Complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad ho...

  7. Update: Fusarium Keratitis - United States, 2005 - 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the results of a Fusarium keratitis outbreak investigation being conducted by the United States Centers for Disease Control and Prevention. The epidemiological data indicate that the 2005-2006 outbreaks of corneal infections within the United States are linked to the use of on...

  8. Fusarium verticillioides: Talking to Friends and Enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is both a symptomless endophyte and a pathogen of maize. At some point, the fungus may synthesize fumonisins which have been linked to a variety of animal diseases including cancer in some animals. In order to minimize losses due to contaminated food or feed, we are workin...

  9. Mycotoxigenic Fusarium species in animal feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are among the most studied plant pathogenic fungi, with several species causing diseases on corn, wheat, barley, and other food and feed grains. Decreased yield, as well as diminished quality and value of the grain, results in significant worldwide economic losses. Additionally, ...

  10. HISTOLOGY AND PHYSIOLOGY OF FUSARIUM HEAD BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight re-emerged as a devastating disease of wheat and barley in the 1990s in the midwestern U.S. Research efforts to control the disease have been hampered by limited knowledge of how the fungal head blight pathogens infect and damage head tissue and what natural defenses the plant h...

  11. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  12. Screening for lipase activity in the oil palm.

    PubMed

    Sambanthamurthi, R; Rajanaidu, N; Hasnah Parman, S

    2000-12-01

    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value. PMID:11171201

  13. Gastric lipase: localization of the enzyme in the stomach

    SciTech Connect

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-03-05

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using /sup 3/H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined.

  14. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential.

    PubMed

    Snellman, Erick A; Colwell, Rita R

    2004-10-01

    Lipases (EC 3.1.1.3) have received increased attention recently, evidenced by the increasing amount of information about lipases in the current literature. The renewed interest in this enzyme class is due primarily to investigations of their role in pathogenesis and their increasing use in biotechnological applications. Also, many microbial lipases are available as commercial products, the majority of which are used in detergents, cosmetic production, food flavoring, and organic synthesis. Lipases are valued biocatalysts because they act under mild conditions, are highly stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereo-selectivity in catalysis. A number of lipolytic strains of Acinetobacter have been isolated from a variety of sources and their lipases possess many biochemical properties similar to those that have been developed for biotechnological applications. This review discusses the biology of lipase expression in Acinetobacter, with emphasis on those aspects relevant to potential biotechnology applications. PMID:15378387

  15. Novel lipase purification methods - a review of the latest developments.

    PubMed

    Tan, Chung Hong; Show, Pau Loke; Ooi, Chien Wei; Ng, Eng-Poh; Lan, John Chi-Wei; Ling, Tau Chuan

    2015-01-01

    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided. PMID:25273633

  16. Porcine pancreatic lipase related protein 2 has high triglyceride lipase activity in the absence of colipase.

    PubMed

    Xiao, Xunjun; Ross, Leah E; Sevilla, Wednesday A; Wang, Yan; Lowe, Mark E

    2013-09-01

    Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy. PMID:23770034

  17. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.

    PubMed

    Oldenburg, Elisabeth; Ellner, Frank

    2015-08-01

    Red ear rot an important disease of maize cultivated in Europe is caused by toxigenic Fusarium species like Fusarium graminearum and Fusarium culmorum. To get detailed information on the time course of the infection process leading to the accumulation of Fusarium mycotoxins in maize ears, a field study was conducted over 2 years with two maize varieties, which were inoculated with F. culmorum or F. graminearum isolates at the stage of female flowering. Every fortnight after inoculation, infection and contamination progress in the ears was followed by visually evaluating disease signs and analysing Fusarium toxin concentrations in the infected ear tissues. In principle, infection and mycotoxin distribution were similar in respect of pathogens, varieties, and years. External infection symptoms showing some small pale or brown-marbled kernels with dark brown pedicels were mainly seen at the ear tip, whereas internal infection symptoms on the rachis were much more pronounced and spread in the upper half showing greyish brownish or pink discoloration of the pith. Well correlated with disease symptoms, a top-down gradient from high to low toxin levels within the ear with considerably higher concentrations in the rachis compared with the kernels was observed. It is suggested that both Fusarium pathogens primarily infect the rachis from the tip toward the bottom, whereas the kernels are subsequently infected via the rachillae connected to the rachis. A special focus on the pronounced disease symptoms visible in the rachis may be an approach to improve the evaluation of maize-genotype susceptibility against red ear rot pathogens. It has to be underlined that the accumulation of Fusarium mycotoxins in the rachis greatly accelerated 6 weeks after inoculation; therefore, highest contamination risk is indicated for feedstuffs containing large amounts of rachis (e.g., corn cob mix), especially when cut late in growing season. PMID:25904523

  18. Production of lipase by clinical isolates of Pseudomonas cepacia.

    PubMed Central

    Lonon, M K; Woods, D E; Straus, D C

    1988-01-01

    Ten clinical isolates of Pseudomonas cepacia from the sputum of cystic fibrosis patients were examined for the ability to produce lipase. Lipase substrates used included egg yolk agar, four different polyoxyethylene sorbitans (Tweens), and p-nitrophenylphosphorylcholine, a chromogenic substrate used to assay for phospholipase C. Lipase activity was detected in the filtrates of organisms grown to the exponential phase in either tryptose minimal medium or chemically defined medium. Lipase activity increased in the filtrates if the cultures were allowed to proceed into the stationary phase. None of the isolates produced phospholipase C. Lipase activity on Tween 20 ranged from 41.6 X 10(-3) to 640.0 X 10(-3) U/micrograms of protein. The activity was similar or slightly lower when Tween 40, 60, or 80 was used as the substrate. There was no correlation between lipase activity on Tween and that demonstrated on egg yolk agar. Lipase activity increased as pH increased from 7.0 to 9.0. Boiling for 5 min resulted in 66% loss of enzyme activity. The remaining activity continued to decrease with increasing boiling time. The enzyme was purified by gel filtration on Sephadex G-200, and the resultant preparation, when subjected to polyacrylamide gel electrophoresis, resulted in a single protein band (molecular weight, approximately 25,000) from which lipase activity could be eluted. The purified lipase was not cytotoxic to HeLa cells, nor was it toxic when injected intravenously into mice. PMID:3384918

  19. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  20. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  1. Biosensor Applications of MAPLE Deposited Lipase

    PubMed Central

    Califano, Valeria; Bloisi, Francesco; Aronne, Antonio; Federici, Stefania; Nasti, Libera; Depero, Laura E.; Vicari, Luciano R. M.

    2014-01-01

    Matrix Assisted Pulsed Laser Evaporation (MAPLE) is a thin film deposition technique derived from Pulsed Laser Deposition (PLD) for deposition of delicate (polymers, complex biological molecules, etc.) materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest) molecules to be deposited in a volatile substance (matrix). Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis. PMID:25587426

  2. Efficient lipase purification using reverse micellar extraction.

    PubMed

    Gaikaiwari, Raghavendra P; Wagh, Shilpa A; Kulkarni, Bhaskar D

    2012-03-01

    Reverse micellar extraction (RME) of enzyme provides an attractive option for conventional method with the potential to achieve purification and concentration in a single step with high yield. This study presents a methodology for optimization of RME with Pseudomonas lipase as model system. Fold-purification, percent recovery and extraction time were the objective functions while the type and concentration of surfactant, contact time, pH, ionic strength, and the ratio of organic to aqueous phase were the decision variables. Under optimized conditions, the AOT (Aerosol OT (bis 2-ethylhexyl) sodium sulfosuccinate)-isooctane system gave a 15-fold purification, 80% recovery and 2.5-fold concentration of the Pseudomonas lipase with process time of 45 min. PMID:22230773

  3. Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction o...

  4. Fate of Fusarium Toxins during the Malting Process.

    PubMed

    Habler, Katharina; Hofer, Katharina; Geißinger, Cajetan; Schüler, Jan; Hückelhoven, Ralph; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2016-02-17

    Little is known about the fate of Fusarium mycotoxins during the barley malting process. To determine the fungal DNA and mycotoxin concentrations during malting, we used barley grain harvested from field plots that we had inoculated with Fusarium species that produce type A or type B trichothecenes or enniatins. Using a recently developed multimycotoxin liquid chromatography-tandem mass stable isotope dilution method, we identified Fusarium-species-specific behaviors of mycotoxins in grain and malt extracts and compared toxin concentrations to amounts of fungal DNA in the same samples. In particular, the type B trichothecenes and Fusarium culmorum DNA contents were increased dramatically up to 5400% after kilning. By contrast, the concentrations of type A trichothecenes and Fusarium sporotrichioides DNA decreased during the malting process. These data suggest that specific Fusarium species that contaminate the raw grain material might have different impacts on malt quality. PMID:26813702

  5. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies.

    PubMed

    Mendes, Adriano A; Freitas, Larissa; de Carvalho, Ana Karine F; de Oliveira, Pedro C; de Castro, Heizir F

    2011-01-01

    The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g(-1) of support) was achieved when the lipase was immobilized on epoxy-SiO(2)-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g(-1) of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g(-1) of gel, and the highest activity (68.8 ± 2.70 IU·g(-1) of support) was obtained when 20 mg of protein·g(-1) was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO(2)-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase. PMID:21811674

  6. Production of lipase by soil fungi and partial characterization of lipase from a selected strain (Penicillium wortmanii).

    PubMed

    Costa, M A; Peralta, R M

    1999-01-01

    Filamentous fungi from soil were screened for their ability to produce lipase. Among 56 filamentous fungi tested, one strain identified as Penicillium wortmanii was selected as the highest lipase producer. Maximum lipase production (12.5 U/ml) was obtained in 7-days cultures utilizing 5% (w/v) olive oil as the carbon source. Optimum pH and temperature for crude lipase were 7.0 and 45 degrees C, respectively. The enzyme was stable at 40 and 45 degrees C and it retained about 55% of its activity when heated at 50 degrees C for 1 hour. PMID:10071862

  7. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.

    PubMed

    Shala-Mayrhofer, Vitore; Varga, Elisabeth; Marjakaj, Robert; Berthiller, Franz; Musolli, Agim; Berisha, Defrime; Kelmendi, Bakir; Lemmens, Marc

    2013-01-01

    After wheat, maize (Zea mays L.) is the second most important cereal crop in Kosovo and a major component of animal feed. The purpose of this study was to analyse the incidence and identity of the Fusarium species isolated from naturally infected maize kernels in Kosovo in 2009 and 2010, as well as the mycotoxin contamination. The disease incidence of Fusarium ear rot (from 0.7% to 40% diseased ears) on maize in Kosovo is high. The most frequently Fusarium spp. identified on maize kernels were Fusarium subglutinans, F. verticillioides/F. proliferatum and F. graminearum. Maize kernel samples were analysed by LC-MS/MS and found to be contaminated with deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, zearalenone, zearalenone-14-sulphate, moniliformin, fumonisin B1 and fumonisin B2. This is the first report on the incidence and identification of Fusarium species isolated from naturally infected maize as well as the mycotoxin contamination in Kosovo. PMID:24779930

  8. The Fusarium Graminearum virulence factor FGL targets an FKBP12 immunophilin of wheat.

    PubMed

    Niu, Xiao-Wei; Zheng, Zi-Yang; Feng, Yi-Gao; Guo, Wang-Zhen; Wang, Xin-Yu

    2013-08-01

    Wheat scab, caused by the fungal pathogen Fusarium graminearum is a devastating disease worldwide. Despite an extensive and coordinated effort to investigate this pathosystem, little progress has been made to understand the molecular basis of host-pathogen interactions, for example how the pathogen causes disease in plant. Recently, a secreted lipase (FGL1) has been identified from the fungus and shown to be an important virulence factor; however, the intrinsic function of FGL1 in plant is unknown. Here, we report the identification of the molecular components that may possibly be involved in the FGL virulence pathway using yeast two hybrid system. FGL gene was amplified from a local virulent strain (F15) and shown to be 99.5% identical to the original published FGL at the amino acid level. We showed that transient expression of this FGL gene by Agroinfiltration in tobacco leaves causes cell death further implicating the role of FGL in virulence. To identify FGL initial physical target in plant, we screened two wheat cDNA libraries using the FGL protein as the bait. From both libraries, a small FKBP-type immunophilin protein, designated wFKBP12, was found to physically interact with FGL. The direct interaction of FGL with wFKBP12 was confirmed in living onion epidermal cells by biomolecular fluorescence complementation (BiFC) assay. To investigate further, we then used wFKBP12 protein as bait and identified an elicitor-responsive protein that contains a potential Ca(2+) binding domain. Semi-quantitative PCR showed that this elicitor-responsive gene is down-regulated during the F. graminearum infection suggesting that this protein may be an important component in FGL virulence pathway. This work serves as an initial step to reveal how fungal lipases act as a general virulence factor. PMID:23648486

  9. New lipase assay using Pomegranate oil coating in microtiter plates.

    PubMed

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. PMID:26343557

  10. Cold active microbial lipases: some hot issues and recent developments.

    PubMed

    Joseph, Babu; Ramteke, Pramod W; Thomas, George

    2008-01-01

    Lipases are glycerol ester hydrolases that catalyze the hydrolysis of triglycerides to free fatty acids and glycerol. Lipases catalyze esterification, interesterification, acidolysis, alcoholysis and aminolysis in addition to the hydrolytic activity on triglycerides. The temperature stability of lipases has regarded as the most important characteristic for use in industry. Psychrophilic lipases have lately attracted attention because of their increasing use in the organic synthesis of chiral intermediates due to their low optimum temperature and high activity at very low temperatures, which are favorable properties for the production of relatively frail compounds. In addition, these enzymes have an advantage under low water conditions due to their inherent greater flexibility, wherein the activity of mesophilic and thermophilic enzymes are severely impaired by an excess of rigidity. Cold-adapted microorganisms are potential source of cold-active lipases and they have been isolated from cold regions and studied. Compared to other lipases, relatively smaller numbers of cold active bacterial lipases were well studied. Lipases isolated from different sources have a wide range of properties depending on their sources with respect to positional specificity, fatty acid specificity, thermostability, pH optimum, etc. Use of industrial enzymes allows the technologist to develop processes that closely approach the gentle, efficient processes in nature. Some of these processes using cold active lipase from C. antarctica have been patented by pharmaceutical, chemical and food industries. Cold active lipases cover a broad spectrum of biotechnological applications like additives in detergents, additives in food industries, environmental bioremediations, biotransformation, molecular biology applications and heterologous gene expression in psychrophilic hosts to prevent formation of inclusion bodies. Cold active enzymes from psychrotrophic microorganisms showing high catalytic

  11. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries. PMID:23648856

  12. Unraveling the rationale behind organic solvent stability of lipases.

    PubMed

    Chakravorty, Debamitra; Parameswaran, Saravanan; Dubey, Vikash Kumar; Patra, Sanjukta

    2012-06-01

    Organic solvent-stable lipases have pronounced impact on industrial economy as they are involved in synthesis by esterification, interesterification, and transesterification. However, very few of such natural lipases have been isolated till date. A study of the recent past provided few pillars to rely on for this work. The three-dimensional structure, inclusive of the surface and active site, of 29 organic solvent-stable lipases was analyzed by subfamily classification and protein solvent molecular docking based on fast Fourier transform correlation approach. The observations revealed that organic solvent stability of lipases is their intrinsic property and unique with respect to each lipase. In this paper, factors like surface distribution of charged, hydrophobic, and neutral residues, interaction of solvents with catalytically immutable residues, and residues interacting with essential water molecules required for lipase activity, synergistically and by mutualism contribute to render a stable lipase organic solvent. The propensity of surface charge in relation to stability in organic solvents by establishing repulsive forces to exclude solvent molecules from interacting with the surface and prohibiting the same from gaining entry to the protein core, thus stabilizing the active conformation, is a new finding. It was also interesting to note that lipases having equivalent surface-exposed positive and negative residues were stable in a wide range of organic solvents, irrespective of their LogP values. PMID:22562495

  13. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lipase test system. 862.1465 Section 862.1465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1465 Lipase test system. (a) Identification....

  14. Development and validation of a lipase nasogastric tube position test

    PubMed Central

    Anderson, Oliver; Carr, Reuben; Harbinson, Merrilee; Hanna, George Bushra

    2016-01-01

    Background Nasogastric tube position should be checked every day by either aspirate pH or chest radiography to prevent fatal misplaced feeding into the lungs. Many patients do not have acidic gastric aspirates and require daily chest radiographs. We developed and validated a lipase test that was compatible with non-acidic gastric aspirates. Methods We conducted evaluations of diagnostic test accuracy at a teaching hospital in development and validation stages. Development: We collected gastric and lung aspirates from 34 consecutive patients. We measured pH and human gastric lipase activity in the laboratory. These data helped us develop the lipase test. Ingenza Ltd (Roslin, Scotland) created tributyrin-coated pH test paper, which human gastric lipase converted into butyric acid, thus correcting false negatives. Validation: We tested nasogastric feeding tube aspirates from 36 consecutive patients with pH and lipase tests, using chest radiography or trial by use as the reference standard. Results Development: We demonstrated human gastric lipase activity in the non-acidic stomach aspirates. Validation: The accuracy of the lipase test (sensitivity 97.2%, specificity 100%) was significantly better than pH (sensitivity 65.7%, specificity 100%, p<0.05). Conclusions When nasogastric tube stomach aspirates were not acidic and pH was falsely negative, the lipase test showed a true positive and was significantly more accurate. PMID:26966548

  15. Lipase production by diverse phylogenetic clades of Aureobasidium pullulans.

    PubMed

    Leathers, Timothy D; Rich, Joseph O; Anderson, Amber M; Manitchotpisit, Pennapa

    2013-10-01

    Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains in clade 9, which exhibit a dark olivaceous pigment, produced the highest levels of lipase, with strain NRRL 62034 yielding 0.57 U lipase/ml. By comparison, Candida cylindracea strain NRRL Y-17506 produced 0.05 U lipase/ml under identical conditions. A. pullulans strain NRRL 62034 reached maximal lipase levels in 5 days on lipase induction medium, while A. pullulans strain NRRL Y-2311-1 and strains in clades 4 and 10 were highest after 6 days. A. pullulans strain NRRL Y-2311-1 and strains in clade 9 produced two extracellular proteins in common, at >50 and <37 kDa. PMID:23801121

  16. Modification of pancreatic lipase properties by directed molecular evolution.

    PubMed

    Colin, Damien Yann; Deprez-Beauclair, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-05-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by approximately 50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity. PMID:20150178

  17. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.

    PubMed

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  18. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  19. Continuous Production of Alkyl Esters Using an Immobilized Lipase Bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An immobilized lipase packed-bed bioreactor was developed for esterifying the free fatty acids in greases as a pretreatment step in the production of their simple alkyl esters for use as biodiesel. The immobilized lipases used in the study were immobilized preparations of Candida antarctica (C. a.)...

  20. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    PubMed

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  1. Mycotoxin production by Fusarium oxysporum and Fusarium sporotrichioides isolated from Baccharis spp. from Brazil.

    PubMed

    Mirocha, C J; Abbas, H K; Kommedahl, T; Jarvis, B B

    1989-01-01

    Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1). PMID:2705770

  2. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea

    PubMed Central

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun

    2015-01-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  3. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    PubMed

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease. PMID:27050570

  4. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    PubMed

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation. PMID:23985489

  5. Genomic organization of the murine CTL lipase gene

    SciTech Connect

    Kaplan, M.H.; Boyer, S.N.; Grusby, M.J.

    1996-08-01

    Murine cytotoxic T-lymphocyte (CTL) lipase was originally identified as an IL-4-inducible gene in CD8-positive T cells. To further our understanding of both the function and the regulation of CTL lipase in T cells, we have cloned and characterized the murine gene. Two overlapping phage clones spanning 29 kb contain the entire CTL lipase gene. The exon structure in similar to those characterized for the human and canine pancreatic lipase-related protein 1 genes, with notable differences in the 5{prime} end. Transcripts initiate from a site that matches a consensus for an initiator sequence. Potential cis-regulatory elements in the CTL lipase 5{prime} regulatory region that would confer dual tissue specificity in exocrine pancreas and cytotoxic T lymphocytes are identified. The implications of this promoter organization are discussed. 27 refs., 2 figs.

  6. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  7. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Vishnu Varthini, Lakshmanaperumal; Selvaraju, Kandasamy; Srinivasan, Malathi; Nachiappan, Vasanthi

    2015-01-01

    Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3Δrog1Δ) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis. PMID:25433290

  8. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  9. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.

    PubMed

    Mehta, Akshita; Kumar, Rakesh; Gupta, Reena

    2012-12-01

    Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. In the present study, thirty-two bacterial strains, isolated from soil sample of a hot spring were screened for lipase production. The strain TS-4, which gave maximum activity, was identified as Geobacillus sp. at MTCC, IMTECH, Chandigarh. The isolated lipase producing bacteria were grown on minimal salt medium containing olive oil. Maximal quantities of lipase were produced when 30 h old inoculum was used at 10% (v/v) in production medium and incubated in shaking conditions (150 rpm) for 72 h. The optimal temperature and pH for the bacterial growth and lipase production were found to be 60°C and 9.5, respectively. Maximal enzyme production resulted when mustard oil was used as carbon source and yeast extract as sole nitrogen source at a concentration of 1% (v/v) and 0.15% (w/v), respectively. The different optimized reaction parameters were temperature 65°C, pH 8.5, incubation time 10 min and substrate p-nitrophenyl palmitate. The Km and Vmax values of enzyme were found to be 14 mM and 17.86 μmol ml-1min-1, respectively, with p-nitrophenyl palmitate as substrate. All metal ions studied (1 mM) increased the lipase activity. PMID:23195552

  10. Small-angle X-ray scattering analysis of stearic acid modified lipase.

    PubMed

    Maruyama, T; Nakajima, M; Ichikawa, S; Sano, Y; Nabetani, H; Furusaki, S; Seki, M

    2001-04-01

    Stearic acid modified lipase (from Rhizopus japonicus) exhibited remarkable interesterification activity in n-hexane, but crude native lipase did not. The structure of the fatty acid modified lipase had not been analyzed until now. We analyzed the modified lipase by small-angle X-ray scattering (SAXS) measurements in order to clarify the structure. SAXS measurements showed that the modified lipase consisted of a lipid lamellar structure and implied that the lipase was incorporated into the lamellar structure of stearic acid. The long spacings in the lamellar structures of the modified lipase and stearic acid were measured. PMID:11388447

  11. Dry heat treatment of Fusarium-infected cotton seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 has emerged as the dominant disease concern for cotton growers in California. Originally described from Asia, race 4 has spread into multiple counties in the San Joaquin Valley (SJV) since its discovery in one California fiel...

  12. Diversity of Fusarium Species from Highland Areas in Malaysia

    PubMed Central

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-01-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia. PMID:24575229

  13. High speed sorting of Fusarium-damaged wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  14. Fusarium solani infection in a kidney transplant recipient

    PubMed Central

    Mohanty, N. K.; Sahu, S.

    2014-01-01

    Hyalo hypho mycosis due to Fusarium species mainly occurs in immunocompromised hosts. The clinical presentation varies from localized to disseminated involvement. A case of localized cutaneous fusariosis caused by Fusarium solani in a renal transplant patient is described and the skin manifestations of the disease are discussed. PMID:25249722

  15. Fusarium Race 4: Commercial cultivar screening for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt (FOV) of cotton in California has been considered a potentially serious fungal disease for many decades in areas of the San Joaquin Valley (SJV). In the past, damage from Fusarium has been notable only in areas with the combination of: (a) moderate to high populations of one or more sp...

  16. Fusarium oxysporum f. sp. vasinfectum race 4 in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief review of research on Fusarium oxysporum Schlechtend.:Fr. f. sp. vasinfectum (Atk.) W.C. Snyder & H.N. Hans. race 4 in California is presented. Fusarium wilt has recently emerged as the dominant disease concern for cotton (Gossypium hirsutum L., G. barbadense L.) growers in California. An es...

  17. Discovery of Fusarium wilt race 4 resistance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans)] is a soil-inhabiting fungus that can survive for long periods in the absence of a host, making it impractical to eradicate from infested fields. This cotton host specific forms of the fungus is comprised of different genotyp...

  18. Metabolomic studies for the interaction Glycine max- Fusarium tucumaniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden-death syndrome (SDS) of soybean can be caused in Argentina by 4 different Fusarium species: F. brasiliense, F. crassistipitatum, F. tucumaniae and F. virguliforme. Fusarium tucumaniae and F. virguliforme are the primary etiological agents of soybean SDS in Argentina and United States, respect...

  19. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  20. Fusarium seed stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium can cause damage to seed stalks that can cause reductions or complete loss of seed production. Fusarium oxysporum has been the reported cause of seed stalk blight, which is characterized by vascular discoloration. We sampled diseased seed stalks and examined isolates for their pathogenicity...

  1. Fusarium Mycotoxins: Biosynthetic Pathways and Role in Virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat and barley is a devastating disease that has reached global proportions. Not only does this disease result in lower yields, but the mycotoxins produced by the fungus affect the quality of the grain. Fusarium sp. can produce a number of mycotoxins, including tric...

  2. Taxonomy and Phylogeny of the Fusarium dimerum Species Group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphospecies Fusarium dimerum, known only from its anamorph, comprises at least 12 phylogenetically distinct species. Analyses of the large subunit ribosomal DNA (LSU rDNA) show they are taxa of the Nectriaceae (Hypocreales) and form a phylogenetically distinct clade within Fusarium. Accordin...

  3. A diagnostic guide for Fusarium Root Rot of pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  4. Genetic Variability Among Isolates of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Yellows, caused by the fungus Fusarium oxysporum f. sp. betae (FOB), can lead to significant yield losses for sugar beet growers. This fungus is variable in pathogenicity, morphology, host range, and symptoms; and, it is not a well characterized pathogen on sugar beet. From 1998 – 2003, 8...

  5. Diversity of the Fusarium graminearum species complex on French cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Gibberella ear rot (GER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern...

  6. Cross Pathogenicity of Fusarium oxysporum f. sp. betae on Sugar Beet and Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, also known as Fusarium yellows, is caused by the fungus Fusarium oxysporum. Fusarium oxysporum is a vascular pathogen with a broad host range including common bean (Phaseolus vulgaris L.) and sugar beet (Beta vulgaris L.) with formae speciales (f. sp.) defined by the ability to cause ...

  7. First report of Fusarium yellows of sugar beet caused by F. oxysporum in Michigan.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows is an important disease in the western United States, and has recently been reported in the Red River Valley. The primary causal agent is Fusarium oxysporum f.sp. betae. In 2005, beet samples were found in Michigan with symptoms typical of Fusarium yellows. Isolates of Fusarium o...

  8. Population of Fusarium graminearum Schwabe associated with head and seedling blight in Slovakia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth of Fusarium species associated with Fusarium Head Blight (FHB) varies depending on agronomic characters and edaphic conditions. We have identified 15 Fusarium species during the 10 years of our investigations in the Slovak Republic. The most commonly identified Fusarium species involved...

  9. [Fusarium graminearum presence in wheat samples for human consumption].

    PubMed

    Martinez, Mauro; Castañares, Eliana; Dinolfo, María I; Pacheco, Walter G; Moreno, María V; Stenglein, Sebastián A

    2014-01-01

    One of the most important diseases in cereal crops is Fusarium head blight, being Fusarium graminearum the main etiological agent. This fungus has the ability to produce a wide spectrum and quantity of toxins, especially deoxynivalenol (DON). During the last crop season (2012-2013) the climatic conditions favored Fusarium colonization. The objective of this work was to determine the presence of this fungus as well as the DON content in 50 wheat grain samples. Our results showed that 80% of the samples were contaminated with Fusarium graminearum. Twenty four percent (24%) of the samples contained ≥ 1μg/g DON, 26% ranged from 0,5 and 0,99μg/g, and the remaining 50% had values lower than 0,5μg/g. Correlation was found between the presence of Fusarium graminearum and DON. It is necessary to establish DON limit values in wheat grains for human consumption. PMID:24721273

  10. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    PubMed Central

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  11. Adventitious sporulation in Fusarium: The yeast that were not

    PubMed Central

    Lockwood, Matthew B.; Crescencio, Juan Carlos Rico

    2015-01-01

    In immunocompromised patients, Fusarium species cause infections that lead to high mortality. Our case report describes a case of disseminated fusariosis in a neutropenic patient with AML after myelosuppressive chemotherapy, and a neutropenic multiple myeloma patient with Fusarium fungemia awaiting stem cell collection. Both cases highlight the fact that Fusarium can grow as yeast-like structures in the blood causing a delay in diagnosis, and that Fusarium has a tendency to be a resistant organism. Fusarium was only susceptible to amphotericin B in both cases, but we chose to continue treatment with voriconazole in the first case with disseminated infection, despite culture results, in view of his good clinical response. Despite high mortality rates in disseminated infection, our two patients had good outcomes. PMID:26793480

  12. Adventitious sporulation in Fusarium: The yeast that were not.

    PubMed

    Lockwood, Matthew B; Crescencio, Juan Carlos Rico

    2016-01-01

    In immunocompromised patients, Fusarium species cause infections that lead to high mortality. Our case report describes a case of disseminated fusariosis in a neutropenic patient with AML after myelosuppressive chemotherapy, and a neutropenic multiple myeloma patient with Fusarium fungemia awaiting stem cell collection. Both cases highlight the fact that Fusarium can grow as yeast-like structures in the blood causing a delay in diagnosis, and that Fusarium has a tendency to be a resistant organism. Fusarium was only susceptible to amphotericin B in both cases, but we chose to continue treatment with voriconazole in the first case with disseminated infection, despite culture results, in view of his good clinical response. Despite high mortality rates in disseminated infection, our two patients had good outcomes. PMID:26793480

  13. Clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation

    PubMed Central

    Bang, Chang Seok; Kim, Jin Bong; Park, Sang Hyun; Baik, Gwang Ho; Su, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon

    2016-01-01

    Background/Aims: Non-pancreatic elevations of serum lipase have been reported, and differential diagnosis is necessary for clinical practice. This study aimed to evaluate the clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation. Methods: Patients who were referred for the serum lipase elevation were prospectively enrolled. Clinical findings and serum lipase subtypes were analyzed and compared by dividing the patients into pancreatitis and non-pancreatitis groups. Results: A total of 34 patients (12 pancreatitis vs. 22 non-pancreatitis cases) were enrolled. In univariate analysis, the fraction of pancreatic lipase (FPL) in the total amount of serum lipase subtypes was statistically higher in patients with pancreatitis ([median, 0.004; interquartile range [IQR], 0.003 to 0.011] vs. [median, 0.002; IQR, 0.001 to 0.004], p = 0.04). Based on receiver operating characteristic curve analysis for the prediction of acute pancreatitis, FPL was the most valuable predictor (area under the receiver-operating characteristic curve [AUROC], 0.72; 95% confidence interval [CI], 0.54 to 0.86; sensitivity, 83.3%; specificity, 63.6%; positive predictive value, 55.6%; negative predictive value, 97.5%). In multivariate analysis, a cut-off value higher than 0.0027 for the FPL was associated with acute pancreatitis (odds ratio, 8.3; 95% CI, 1.3 to 51.7; p = 0.02). Conclusions: The results did not support that serum lipase subtype analysis could replace standard lipase measurement for the diagnosis of acute pancreatitis. However, the test demonstrated adequate sensitivity for use in triage or as an add-on test for serum lipase elevation. PMID:27243230

  14. Soybean SDS in South Africa is caused by Fusarium brasiliense and a novel undescribed Fusarium sp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean sudden death syndrome (SDS) was detected in South Africa for the first time during pathogen surveys conducted in 2013-2014. The primary objective of this study was to characterize the 16 slow-growing Fusarium strains that were isolated from the roots of symptomatic plants. Molecular phylogen...

  15. Quantitative trait loci (QTL) for Fusarium ELISA compared to QTL for Fusarium head blight resistance and deoxynivalenol content in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Fusarium head blight (FHB) and the deoxynivalenol (DON) mycotoxin produced by the causal agent Fusarium graminearum have reduced barley yield and quality throughout the world. This study was conducted to locate quantitative trait loci (QTL) for FHB, DON, heading date, height, and spik...

  16. First report of Fusarium wilt caused by Fusarium oxysporum f. sp. niveum Race 2 in Georgia watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is the number one specialty crop grown in Georgia, a state that ranks fourth nationally in watermelon production. In the last five years, Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon), has been the greatest yield-limiting dise...

  17. Taxonomy and phylogeny of the Fusarium dimerum species group.

    PubMed

    Schroers, Hans-Josef; O'Donnell, Kerry; Lamprecht, Sandra C; Kammeyer, Patricia L; Johnson, Stuart; Sutton, Deanna A; Rinaldi, Michael G; Geiser, David M; Summerbell, Richard C

    2009-01-01

    The morphospecies Fusarium dimerum, known only from its anamorph, comprises at least 12 phylogenetically distinct species. Analyses of the large subunit ribosomal DNA (LSU rDNA) show they are taxa of the Nectriaceae (Hypocreales), related to F. domesticum and form a phylogenetically distinct clade within Fusarium. Fusarium dimerum, for which no herbarium material could be located, is characterized by macroconidia with a single, median septum, according to the original description and illustration. Fusarium lunatum (= F. dimerum var. violaceum) forms similar but longer macroconidia and purple, catenate or clustered chlamydospores. Fusarium delphinoides sp. nov., F. biseptatum sp. nov., F. penzigii sp. nov., F. nectrioides comb. nov. (= F. dimerum var. nectrioides) and two unnamed Fusarium spp. produce macroconidia with mostly two or rarely three septa. The name F. dimerum, which originally was applied to a fungus from a citron, is used for a taxon including isolates causing infections in immunocompetent and immunocompromised patients. Fusarium nectrioides, F. delphinoides, F. penzigii and F. biseptatum are known from soil and dead plant substrata or rarely as agents of trauma-related eye infections of humans. Fusarium lunatum is an inhabitant of the cladodes of species within the cactus genera Opuntia and Gymnocalycium. Its unnamed closest sister taxon, which also forms 1-septate macroconidia and purple, clustered chlamydospores, was isolated from a human sinus. Fusarium delphinoides is a pathogen of the cactus-like African species Hoodia gordonii (Apocynaceae). Phylogenetic analyses based on combined sequences of the internal transcribed spacer region, LSU rDNA and partial sequences of the elongation factor 1-alpha and beta-tubulin genes identified a clade of several species producing predominately 2-septate macroconidia as the reciprocally monophyletic sister of F. dimerum. The basal sister group of the two aforementioned clades includes Fusarium lunatum and two

  18. Influence of environmental factors on lipase production by Lactobacillus plantarum.

    PubMed

    Lopes, M de F; Cunha, A E; Clemente, J J; Carrondo, M J; Crespo, M T

    1999-02-01

    A strain of Lactobacillus plantarum, DSMZ 12028 (Deutsch Sammlung von Mikroorganismen und Zellkulturen), isolated from a Portuguese dry fermented sausage, "chouriço", was found to produce true lipase, producing free fatty acids from triolein (olive oil). This enzymatic activity was found in whole cells, but was negligible in comparison to lipolytic activity in culture supernatant. Therefore, only extracellular activity was studied. The effect of pH, temperature and glucose concentration on extracellular lipase production was studied in continuously stirred tank reactors, the first time this technology has been used to study the production of this enzyme in lactobacilli. Maximum lipase production was achieved at a pH of 5.5 and 30 degrees C and was kept at a significant level over a wide range of dilution rates (0.05-0.4 h-1); the production of lipase was still significant for low pH values, temperature and glucose concentration, conditions that are close to the ones present during chouriço ripening. The effect of glucose concentration was also studied in a batch system. The control of lipase production was found to be related both to glucose concentration in the medium and to the growth rate/dilution rate. Glucose concentration was found to be important for fast lipase production, although it did not influence the maximum lipase activity reached in a batch culture. PMID:10091332

  19. Purification and characterization of an extracellular lipase from Geotrichum marinum.

    PubMed

    Huang, Youliang; Locy, Robert; Weete, John D

    2004-03-01

    An extracellular lipase (EC 3.1.1.3) from Geotrichum marinum was purified 76-fold with 46% recovery using Octyl Sepharose 4 Fast Flow and Bio-Gel A 1.5 m chromatography. The purified enzyme showed a prominent band on SDS-PAGE and a single band on native PAGE based on the activity staining. The molecular mass of the lipase was estimated to be 62 kDa using SDS-PAGE and Bio-Gel A chromatography, indicating that the lipase likely functions as a monomer. The pl of the lipase was determined to be 4.54. The apparent V(max) and Km were 1000 micromol/min/mg protein and 11.5 mM, respectively, using olive oil emulsified with taurocholic acid as substrate. The lipase demonstrated a pH optimum at pH 8.0 and a temperature optimum at 40 degrees C. At 6 mM, Na+, K+, Ca2+, and Mg2+ stimulated activity, but Na+ and K+ at 500 mM and Fe2+ and Mn2+ at 6 mM reduced lipase activity. The anionic surfactant, taurocholic acid, and the zwitterionic surfactant, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, enhanced the activity at 0.1 mM. Other anionic surfactants such as SDS and sodium dioctyl sulfosuccinate, the cationic surfactants methylbenzethonium bromide and cetyltriethylammonium bromide, and the nonionic surfactants Tween-20 and Triton X-100 inhibited the lipase activity to different extents. The lipase was found to have a preference for TG containing cis double bonds in their FA side chains, and the reaction rate increased with an increasing number of double bonds in the side chain. The lipase had a preference for ester bonds at the sn-1 and sn-3 positions over the ester bond at the sn-2 position. PMID:15233404

  20. The cell wall of Fusarium oxysporum.

    PubMed

    Schoffelmeer, E A; Klis, F M; Sietsma, J H; Cornelissen, B J

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50-60% of the total mass of the wall. X-ray diffraction studies showed the presence of alpha-1, 3-glucan in the alkali-soluble cell wall fraction and of beta-1, 3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan. PMID:10441453

  1. Chlorinated organic compounds produced by Fusarium graminearum.

    PubMed

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

  2. Obtaining lipases from byproducts of orange juice processing.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Fleuri, Luciana Francisco

    2014-11-15

    The presence of lipases was observed in three byproducts of orange juice processing: peel, core and frit. The enzymes were characterised biochemically over a wide pH range from neutral (6-7) to alkaline (8-9). The optimal temperature for the activity of these byproducts showed wide range at 20°C to 70°C, indicating fairly high thermostability. The activities were monitored on p-NP-butyrate, p-NP-laurate and p-NP-palmitate. For the first time, lipase activity was detected in these residues, reaching 68.5 lipase U/g for the crude extract from fractions called frit. PMID:24912703

  3. Use of continuous culture to screen for lipase-producing microorganisms and interesterification of butter fat by lipase isolates.

    PubMed

    Pabai, F; Kermasha, S; Morin, A

    1996-05-01

    The continuous cultivation technique was used to investigate the screening for lipase-producing microorganisms from four commercial starters suitable for the degradation of domestic wastes. Using this technique, three strains of lipase-producing bacteria were isolated and identified: Pantoea agglomerans (BB96CC1, BB168CC2) and Pseudomonas fluorescens (BW96CC1). In addition, butter fat induced more lipase production when present in the growth medium. Interesterification of butter fat triacylglycerols by enzymatic extracts of the isolated strains of microorganisms resulted in an appreciable interesterification yield, implying that hydrolysis was suppressed and interesterification of butter fat triacylglycerols was maximized in a microemulsion free-cosurfactant system. PMID:8640605

  4. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: The first member of a new bacterial lipase family XVI.

    PubMed

    Li, Mu; Yang, Li-Rong; Xu, Gang; Wu, Jian-Ping

    2016-06-20

    Bacterial lipases are an important group of enzymes that offer enormous potential in organic synthesis, and there is considerable interest in identifying and developing novel bacterial lipases. In previous studies, strains of the genus Stenotrophomonas were proved to be potential source of lipases, but there is little genetic information describing lipase from the genus Stenotrophomonas. We have cloned and characterized a novel lipase (LipSM54), the first lipase described from the genus Stenotrophomonas. Enzymatic study showed that LipSM54 was a cold-active, solvent-tolerant and alkaline lipase. Using bioinformatics tools, LipSM54 was found to be related only to several putative lipases from different bacterial origins, none of which could be assigned to any previously described bacterial lipase family. LipSM54 and these related putative lipases share four conserved motifs around the catalytic residues. These motifs clearly distinguish them from the known bacterial lipase families. Consequently, LipSM54 is the first characterized member of the novel bacterial lipase family. PMID:27117245

  5. Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery.

    PubMed

    Stewart, Jane E; Kim, Mee-Sook; James, Robert L; Dumroese, R Kasten; Klopfenstein, Ned B

    2006-10-01

    ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore

  6. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    PubMed Central

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition. PMID:26240816

  7. Normal lipase drug-induced pancreatitis: a novel finding.

    PubMed

    Shafqet, Muhammad A; Brown, Teresa V; Sharma, Ranita

    2015-03-01

    Acute pancreatitis (AP) in the setting of a normal serum amylase has been previously reported in the literature. Serum lipase on the other hand has a negative predictive value approaching 100% and therefore is an excellent test to rule out AP in the emergency department. The occurrence of AP with a normal lipase is extremely rare and has never been reported in the setting of drug-induced pancreatitis. Thiazide diuretics have been implicated as a cause of pancreatic injury via a number of proposed mechanisms. However, all such cases have been in the setting of elevated serum amylase or lipase. We report the first case of radiographically proven hydrochlorothiazide-induced pancreatitis with a normal lipase. PMID:25227976

  8. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics. PMID:15176879

  9. Lipase Activity among Bacteria Isolated from Amazonian Soils

    PubMed Central

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  10. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase.

    PubMed

    Carrea, G; Corcelli, A; Palmisano, G; Riva, S

    1996-12-20

    Lipase from Aspergillus niger was used for the selective hydrolysis of the 3-O-acetate of cephalosporin C to give an intermediate useful for further chemical elaborations. This lipase was purified to homogeneity and its properties compared with previously published data that present some discrepancies. The lipase proved to be very effective in catalyzing 3-O-acetate hydrolysis and versatile toward substitution on the beta-lactamic ring. In fact, as an example, two other cephalosporinic derivatives, cephalotin and cefotaxime, were efficiently deacetylated. The lipase was immobilized on Eupergit C and employed continuously in either a column or a batch reactor for 2 months without appreciable loss of activity. (c) 1996 John Wiley & Sons, Inc. PMID:18629943

  11. Lipase Activity among Bacteria Isolated from Amazonian Soils.

    PubMed

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  12. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase.

    PubMed Central

    Kok, R G; van Thor, J J; Nugteren-Roodzant, I M; Vosman, B; Hellingwerf, K J

    1995-01-01

    Acinetobacter calcoaceticus BD413 produces an extracellular lipase, which is encoded by the lipA gene. Five lipase-deficient mutants have been generated via random insertion mutagenesis. Phenotypic characterization of these mutants revealed the presence of as many as four lipolytic enzymes in A. calcoaceticus. Biochemical evidence classified four of the mutants as export mutants, which presumably are defective in translocation of the lipase across the outer membrane. The additional mutant, designated AAC302, displays a LipA- phenotype, and yet the mutation in this strain was localized 0.84 kbp upstream of lipA. Sequence analysis of this region revealed an open reading frame, designated lipB, that is disrupted in AAC302. The protein encoded by this open reading frame shows extensive similarity to a chaperone-like helper protein of several pseudomonads, required for the production of extracellular lipase. Via complementation of AAC302 with a functional extrachromosomal copy of lipA, it could be determined that LipB is essential for lipase production. As shown by the use of a translational LipB-PhoA fusion construct, the C-terminal part of LipB of A. calcoaceticus BD413 is located outside the cytoplasm. Sequence analysis further strongly suggests that A. calcoaceticus LipB is N terminally anchored in the cytoplasmic membrane. Therefore, analogous to the situation in Pseudomonas species, however, lipB in A. calcoaceticus is located upstream of the structural lipase gene. lipB and lipA form a bicistronic operon, and the two genes are cotranscribed from an Escherichia coli sigma 70-type promoter. The reversed order of genes, in comparison with the situation in Pseudomonas species, suggests that LipA and LipB are produced in equimolar amounts. Therefore, the helper protein presumably does not only have a catalytic function, e.g., in folding of the lipase, but is also likely to act as a lipase-specific chaperone. A detailed model of the export route of the lipase of A

  13. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase.

    PubMed

    Kok, R G; van Thor, J J; Nugteren-Roodzant, I M; Vosman, B; Hellingwerf, K J

    1995-06-01

    Acinetobacter calcoaceticus BD413 produces an extracellular lipase, which is encoded by the lipA gene. Five lipase-deficient mutants have been generated via random insertion mutagenesis. Phenotypic characterization of these mutants revealed the presence of as many as four lipolytic enzymes in A. calcoaceticus. Biochemical evidence classified four of the mutants as export mutants, which presumably are defective in translocation of the lipase across the outer membrane. The additional mutant, designated AAC302, displays a LipA- phenotype, and yet the mutation in this strain was localized 0.84 kbp upstream of lipA. Sequence analysis of this region revealed an open reading frame, designated lipB, that is disrupted in AAC302. The protein encoded by this open reading frame shows extensive similarity to a chaperone-like helper protein of several pseudomonads, required for the production of extracellular lipase. Via complementation of AAC302 with a functional extrachromosomal copy of lipA, it could be determined that LipB is essential for lipase production. As shown by the use of a translational LipB-PhoA fusion construct, the C-terminal part of LipB of A. calcoaceticus BD413 is located outside the cytoplasm. Sequence analysis further strongly suggests that A. calcoaceticus LipB is N terminally anchored in the cytoplasmic membrane. Therefore, analogous to the situation in Pseudomonas species, however, lipB in A. calcoaceticus is located upstream of the structural lipase gene. lipB and lipA form a bicistronic operon, and the two genes are cotranscribed from an Escherichia coli sigma 70-type promoter. The reversed order of genes, in comparison with the situation in Pseudomonas species, suggests that LipA and LipB are produced in equimolar amounts. Therefore, the helper protein presumably does not only have a catalytic function, e.g., in folding of the lipase, but is also likely to act as a lipase-specific chaperone. A detailed model of the export route of the lipase of A

  14. S5 Lipase: an organic solvent tolerant enzyme.

    PubMed

    Rahman, Raja Noor Zaliha Abdul; Baharum, Syarul Nataqain; Salleh, Abu Bakar; Basri, Mahiran

    2006-12-01

    In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase. PMID:17205035

  15. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt.

    PubMed

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M; Saxena, Deep R; Jain, Yogendra K

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  16. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt

    PubMed Central

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M.; Saxena, Deep R.; Jain, Yogendra K.

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  17. Characterization of Fusarium verticillioides genes necessary for benzoxazolinone biotransformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize produces the benzoxazinones DIMBOA and DIBOA, which naturally transform into the more stable benzoxazolinones MBOA and BOA, respectively. These weed-suppressive allelopathic compounds are also implicated in resistance to microbial diseases and insect feeding. Fusarium verticillioides, the mo...

  18. Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution.

    PubMed

    Kawasaki, Kosei; Kondo, Hidemasa; Suzuki, Mamoru; Ohgiya, Satoru; Tsuda, Sakae

    2002-07-01

    Bacillus subtilis extracellular lipase (BsL) has an exceptionally low molecular weight (19.4 kDa) for a member of the lipase family. A crystallographic study was performed on BsL in order to design and produce mutant BsL that will be more suitable for industrial uses based on analysis of the three-dimensional structure. Recently, the crystal structure of BsL has been determined at 1.5 A resolution [van Pouderoyen et al. (2001). J. Mol. Biol. 309, 215-226]. In the present study, a new crystal form of BsL which provides diffraction data to higher resolution was obtained and its structure was determined at 1.3 A using the MAD method. It was found that the active-site residue Ser77 has alternate side-chain conformations. The O(gamma) atom of the first conformer forms a hydrogen bond to the N(epsilon) atom of His155, a member of the catalytic triad. In contrast, the second conformer is constructed with a hydrogen bond to the side-chain atom of the adjacent His76. These two conformers presumably correspond to the active and inactive states, respectively. Similar alternate conformations in the catalytic serine residue have been observed in Fusarium solani cutinase determined at 1.0 A resolution and Penicillium purpurogenum acetylxylan esterase at 0.9 A resolution. In addition, a glycerol molecule, which was used as a cryoprotectant, is found to be located in the active site. On the basis of these results, a model for substrate binding in the reaction-intermediate state of BsL is proposed. PMID:12077437

  19. Nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent host.

    PubMed

    Shah, S R; Dalal, B D; Modak, M S

    2016-03-01

    Fusarium onychomycosis is not uncommon in tropical countries but is worth reporting. We report a case of nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent woman from Buldhana district of Maharashtra (India). Bilateral involvement of great toe nail, chronic duration and acquisition of infection due to peculiar practice of daily pasting floors with mud and dung, is interesting. The case was successfully treated with topical and oral terbinafine with a dose of 250mg daily for 3 weeks. PMID:26852190

  20. Arabidopsis defense response against Fusarium oxysporum.

    PubMed

    Berrocal-Lobo, Marta; Molina, Antonio

    2008-03-01

    The plant fungal pathogen Fusarium oxysporum (Fox) is the causal agent of root rot or wilt diseases in several plant species, including crops such as tomato (Solanum lycopersicum), banana (Musa sapientum) and asparagus (Asparagus officinalis). Colonization of plants by Fox leads to the necrosis of the infected tissues, a subsequent collapse of vascular vessels and decay of the plant. Plant resistance to Fox appears to be monogenic or oligogenic depending on the host. Perception of Fox by plants follows the concept of elicitor-induced immune response, which in turn activates several plant defense signaling pathways. Here, we review the Fox-derived elicitors identified so far and the interaction among the different signaling pathways mediating plant resistance to Fox. PMID:18289920

  1. Genus-Specific Primers for Study of Fusarium Communities in Field Samples

    PubMed Central

    Edel-Hermann, Véronique; Gautheron, Nadine; Durling, Mikael Brandström; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula; Friberg, Hanna

    2015-01-01

    Fusarium is a large and diverse genus of fungi of great agricultural and economic importance, containing many plant pathogens and mycotoxin producers. To date, high-throughput sequencing of Fusarium communities has been limited by the lack of genus-specific primers targeting regions with high discriminatory power at the species level. In the present study, we evaluated two Fusarium-specific primer pairs targeting translation elongation factor 1 (TEF1). We also present the new primer pair Fa+7/Ra+6. Mock Fusarium communities reflecting phylogenetic diversity were used to evaluate the accuracy of the primers in reflecting the relative abundance of the species. TEF1 amplicons were subjected to 454 high-throughput sequencing to characterize Fusarium communities. Field samples from soil and wheat kernels were included to test the method on more-complex material. For kernel samples, a single PCR was sufficient, while for soil samples, nested PCR was necessary. The newly developed primer pairs Fa+7/Ra+6 and Fa/Ra accurately reflected Fusarium species composition in mock DNA communities. In field samples, 47 Fusarium operational taxonomic units were identified, with the highest Fusarium diversity in soil. The Fusarium community in soil was dominated by members of the Fusarium incarnatum-Fusarium equiseti species complex, contradicting findings in previous studies. The method was successfully applied to analyze Fusarium communities in soil and plant material and can facilitate further studies of Fusarium ecology. PMID:26519387

  2. A thermoalkaliphilic lipase of Geobacillus sp. T1.

    PubMed

    Leow, Thean Chor; Rahman, Raja Noor Zaliha Raja Abd; Basri, Mahiran; Salleh, Abu Bakar

    2007-05-01

    A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70 degrees C and pH 9, respectively. It was stable up to 65 degrees C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na(+), Ca(2+), Mn(2+), K(+) and Mg(2+ ), but inhibited by Cu(2+), Fe(3+) and Zn(2+). Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10-C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T(m) for T1 lipase was around 72.2 degrees C, as revealed by denatured protein analysis of CD spectra. PMID:17426920

  3. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification.

    PubMed

    Xie, Rong; Cui, Caixia; Chen, Biqiang; Tan, Tianwei

    2015-10-01

    The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity. PMID:26245260

  4. Isolation and characterization of some moderately halophilic bacteria with lipase activity.

    PubMed

    Ghasemi, Y; Rasoul-Amini, S; Kazemi, A; Zarrinic, G; Morowvat, M H; Kargar, M

    2011-01-01

    Lipases are an important class of enzymes which catalyze the hydrolysis of long chain triglycerides and constitute the most prominent group ofbiocatalysts for biotechnological applications. There are a number of lipases, produced by some halophilic microorganisms. In this study, some lipase producing bacteria from Maharlu salt lake located in south of Iran were isolated. All isolates were screened for true lipase activity on plates containing olive oil. The lipase activity was measured using titrimetric methods. Among thirty three isolates, thirteen strains demonstrating orange zone around colonies under UV light, were selected for identification using the molecular methods and some morphological characteristics. The bacterium Bacillus vallismortis BCCS 007 with 3.41 +/- 0.14 U/mL lipase activity was selected as the highest lipase producing isolate. This is the first report of isolation and molecular identification of lipase producing bacteria from Maharlu lake. PMID:22073547

  5. Endothelial lipase modulates pressure overload-induced heart failure through alternative pathway for fatty acid uptake.

    PubMed

    Nakajima, Hideto; Ishida, Tatsuro; Satomi-Kobayashi, Seimi; Mori, Kenta; Hara, Tetsuya; Sasaki, Naoto; Yasuda, Tomoyuki; Toh, Ryuji; Tanaka, Hidekazu; Kawai, Hiroya; Hirata, Ken-ichi

    2013-05-01

    Lipoprotein lipase has been considered as the only enzyme capable of generating lipid-derived fatty acids for cardiac energy. Endothelial lipase is another member of the triglyceride lipase family and hydrolyzes high-density lipoproteins. Although endothelial lipase is expressed in the heart, its function remains unclear. We assessed the role of endothelial lipase in the genesis of heart failure. Pressure overload-induced cardiac hypertrophy was generated in endothelial lipase(-/-) and wild-type mice by ascending aortic banding. Endothelial lipase expression in cardiac tissues was markedly elevated in the early phase of cardiac hypertrophy in wild-type mice, whereas lipoprotein lipase expression was significantly reduced. Endothelial lipase(-/-) mice showed more severe systolic dysfunction with left-ventricular dilatation compared with wild-type mice in response to pressure overload. The expression of mitochondrial fatty acid oxidation-related genes, such as carnitine palmitoyltransferase-1 and medium-chain acyl coenzyme A dehydrogenase, was significantly lower in the heart of endothelial lipase(-/-) mice than in wild-type mice. Also, endothelial lipase(-/-) mice had lower myocardial adenosine triphosphate levels than wild-type mice after aortic banding. In cultured cardiomyocytes, endothelial lipase was upregulated by inflammatory stimuli, whereas lipoprotein lipase was downregulated. Endothelial lipase-overexpression in cardiomyocytes resulted in an upregulation of fatty acid oxidation-related enzymes and intracellular adenosine triphosphate accumulation in the presence of high-density lipoprotein. Endothelial lipase may act as an alternative candidate to provide fatty acids to the heart and regulate cardiac function. This effect seemed relevant particularly in the diseased heart, where lipoprotein lipase action is downregulated. PMID:23460280

  6. Immobilization of active lipase B from Candida antarctica on the surface of polyhydroxyalkanoate inclusions.

    PubMed

    Jahns, Anika C; Rehm, Bernd H A

    2015-04-01

    Polyhydroxyalkanoate (PHA) beads, recombinantly produced in Escherichia coli, were functionalized to display lipase B from Candida antarctica as translational protein fusion. The respective beads were characterized in respect to protein content, functionality, long term storage capacity and re-usability. The direct fusion of the PHA synthase, PhaC, to lipase B yielded active PHA lipase beads capable of hydrolyzing glycerol tributyrate. Lipase B beads showed stable activity over several weeks and re-usability without loss of function. PMID:25407130

  7. Lipase-catalyzed fractionation of conjugated linoleic acid isomers.

    PubMed

    Haas, M J; Kramer, J K; McNeill, G; Scott, K; Foglia, T A; Sehat, N; Fritsche, J; Mossoba, M M; Yurawecz, M P

    1999-09-01

    The abilities of lipases produced by the fungus Geotrichum candidum to selectively fractionate mixtures of conjugated linoleic acid (CLA) isomers during esterification of mixed CLA free fatty acids and during hydrolysis of mixed CLA methyl esters were examined. The enzymes were highly selective for cis-9,trans-11-18:2. A commercial CLA methyl ester preparation, containing at least 12 species representing four positional CLA isomers, was incubated in aqueous solution with either a commercial G. candidum lipase preparation (Amano GC-4) or lipase produced from a cloned high-selectivity G. candidum lipase B gene. In both instances selective hydrolysis of the cis-9,trans-11-18:2 methyl ester occurred, with negligible hydrolysis of other CLA isomers. The content of cis-9, trans-11-18:2 in the resulting free fatty acid fraction was between 94 (lipase B reaction) and 77% (GC-4 reaction). The commercial CLA mixture contained only trace amounts of trans-9,cis-11-18:2, and there was no evidence that this isomer was hydrolyzed by the enzyme. Analogous results were obtained with these enzymes in the esterification in organic solvent of a commercial preparation of CLA free fatty acids containing at least 12 CLA isomers. In this case, G. candidum lipase B generated a methyl ester fraction that contained >98% cis-9,trans-11-18:2. Geotrichum candidum lipases B and GC-4 also demonstrated high selectivity in the esterification of CLA with ethanol, generating ethyl ester fractions containing 96 and 80%, respectively, of the cis-9,trans-11 isomer. In a second set of experiments, CLA synthesized from pure linoleic acid, composed essentially of two isomers, cis-9,trans-11 and trans-10,cis-12, was utilized. This was subjected to esterification with octanol in an aqueous reaction system using Amano GC-4 lipase as catalyst. The resulting ester fraction contained up to 97% of the cis-9,trans-11 isomer. After adjustment of the reaction conditions, a concentration of 85% trans-10,cis-12

  8. Fusarium TRI8 determines 3-acetyldeoxynivalenol (3ADON) or 15ADON production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins produced by Fusarium species can promote disease in small grain crops such as wheat and barley. Two main trichothecene production phenotypes (chemotypes) have been identified among strains of Fusarium graminearum and closely related species: strains produce either deoxyniv...

  9. Differentially expressed proteins associated with Fusarium head blight resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contr...

  10. INOCULATION METHODS TO ASSAY WHEAT SEEDLINGS FOR RESISTANCE TO FUSARIUM CROWN ROT IN A CONTROLLED ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adequate Fusarium screening systems must be established to appropriately phenotype mapping populations for accurate QTL identification. The objective of this research was to find an inoculation method with the greatest consistency and least variation for identifying QTL. Two Fusarium pseudograminear...

  11. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum.

    PubMed

    Barka, Frederik; Angstenberger, Max; Ahrendt, Tilman; Lorenzen, Wolfram; Bode, Helge B; Büchel, Claudia

    2016-03-01

    Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1. PMID:26747649

  12. Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum.

    PubMed

    Tutar, Havva; Yilmaz, Elif; Pehlivan, Erol; Yilmaz, Mustafa

    2009-10-01

    Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E((0.3))), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3U/mg protein, which is 0.46 times less than that of the free lipase (35.6U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 degrees C respectively. Kinetic parameters V(max) and K(m) were also determined for the immobilized lipase. It was observed that there is an increase of the K(m) value (7.54mM) and a decrease of the V(max) value (145.0U/mg-protein) comparing with that of the free lipase. PMID:19583977

  13. Lipase-mediated deacetylation and oligomerization of lactonic sophorolipids.

    PubMed

    Hu, Yongmei; Ju, Lu-Kwang

    2003-01-01

    The direct enzymatic polymerization of lactonic sophorolipids (SLs) was investigated with four lipases, including porcine pancreatic lipase (PPL), immobilized Mucor miehei lipase (MML), lyophilized Candida antarctica lipase (Fraction B, CAL-B), and lyophilized Pseudomonas sp. lipase (PSL). Several organic solvents, covering a wide range of polarity, were compared for suitability as the reaction medium. Isopropyl ether and toluene were found most effective. According to the quantification and structure identification by HPLC and LC-MS, the reaction proceeded with the formation of monoacetylated lactonic SLs and the subsequent conversion of the intermediates to oligomers and polymers, presumably through ring-opening polymerization. Temperature was found to have significant effects on the reaction. Both the conversion of reactant SLs and the subsequent formation of oligomers and polymers from the intermediates were faster at 60 degrees C than at 50 degrees C. The substrate selectivity among the three dominant reactant SLs also differed with the temperature. The conversion rate increased with the ring size of the lactones at 60 degrees C, but it decreased with the size at 50 degrees C. PMID:12675564

  14. Psychrotrophic lipase producers from Arctic soil and sediment samples.

    PubMed

    Rasol, R; Rashidah, A R; Nazuha, R Siti Nur; Smykla, J; Maznah, W O Wan; Alias, S A

    2014-01-01

    Culturable microorganisms were successfully isolated from soil and sediment samples collected in 2011 on the northern coast of Hornsund, West Spitsbergen. A total of 63 single colony isolates from three sampling sites obtained were subjected to temperature dependence study to assess whether they are obligate psychrophilic or psychrotrophic strains. From initial temperature screening, only 53 psychrotrophic isolates were selected that are capable of growing between 4-28 degrees C. The rest that were capable of tolerating higher temperatures up to 37 degrees C were not included in this study. These isolates were chosen for lipase enzyme screening confirmation with the standard plate assay of olive oil and fluorescent dye Rhodamine B. Six lipase positive isolates were also subjected for subsequent lipase enzyme plate screening on tributyrin, triolein, olive oil and palm oil agar. Lipase production by these six isolates was further assayed by using colorimetric method with palm oil and olive oil as the substrate. These isolates with promising lipase activity ranging from 20 U/ml up to 160 U/ml on palm oil and olive oil substrate were successfully identified. Molecular identification by using 16S rRNA revealed that five out of six isolates were Gram-negative Proteobacteria and the other one was a Gram-positive Actinobacteria. PMID:25033666

  15. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  16. Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis.

    PubMed

    Nerurkar, Madhura; Joshi, Manasi; Adivarekar, Ravindra

    2015-01-01

    Bioscouring refers to the enzymatic removal of impurities from cotton fabric, which imparts it with improved hydrophilicity for further wet processes. In the present study, the efficacy of lipase from newly isolated marine bacteria Bacillus sonorensis isolated from marine clams Paphia malabarica collected from Kalbadevi estuary, Mumbai, India, has been evaluated for scouring of cotton fabric and compared with conventional alkaline scouring of cotton. As a scouring agent for cotton fabrics, the lipase from B. sonorensis was capable of removing substantial amount of wax from the cotton surface and hydrolyzing it into fatty acids. Bioscouring carried out with lipase at a concentration of 8 % on the weight of the fabric (owf) at pH 9, temperature 60 °C for 120 min showed maximum weight loss and hydrophilicity. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies revealed that the lipase-scoured fabric showed smooth surface indicating no damage to the fabric whereas the surface of the alkaline-scoured fabric appeared rough causing damage to the fabric. Evaluation of fabric properties such as wettability, whiteness, dyeing behaviour, tensile strength and bending rigidity revealed that the bioscouring using lipase from B. sonorensis is as effective as conventional alkaline treatment. PMID:25256798

  17. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  18. Cloning and characterization of a salivary digestive lipase from Hessian fly (Diptera: Cecidomyiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secreted digestive lipases have been reported to be virulence factors in fungal pathogens. Here, we report the identification of a putative secreted digestive lipase from larval Hessian fly. Analysis by quantitative real-time PCR of temporal and spatial mRNA levels indicates the lipase is expresse...

  19. PARTIAL PURIFICATION AND PROPERTIES OF LIPASE FROM GERMINATING SEEDS OF JATROPHA CURCAS L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lipase present in the seeds of Jatropha curcas L. was isolated, partially purified, and some of its properties studied. Lipase activity was detected in both the dormant and germinating seeds. The lipase hydrolysed palm kernel, coconut, and olive oils at comparable rates (approximately 5 µg FFA...

  20. Estolides synthesis catalyzed by immobilized lipases.

    PubMed

    Aguieiras, Erika C G; Veloso, Cláudia O; Bevilaqua, Juliana V; Rosas, Danielle O; da Silva, Mônica A P; Langone, Marta A P

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (-24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  1. [The role of endothelial lipase in atherogenesis].

    PubMed

    Pierart Z, Camila; Serrano L, Valentina

    2012-03-01

    Endothelial lipase (EL) is synthetized by endothelial cells and its main substrates are lipoprotein phospholipids. Over expression of EL reduces high density lipoprotein (HDL) cholesterol and phospholipids, in vivo and in vitro. Inhibition of the enzyme achieves the opposite effects. The synthesis of the enzyme is regulated by interleukin 1 and tumor necrosis factor a. These inflammatory cytokines play a role in diabetes and vascular disease. An increase in vascular mechanical forces, that play a role in atherogenesis, also increase the synthesis of EL. There is expression of EL in endothelial cells, macrophages and muscle cells of atherosclerotic lesions of coronary arteries of humans. This evidence leads to the suspicion that EL plays a role in atherogenesis. There are also higher plasma levels of EL in subjects with type 2 diabetes, who are especially susceptible to the development of vascular lesions. Therefore the inhibition of EL could play an important role in HDL metabolism and could be a new therapeutic strategy for the prevention of atherosclerosis. PMID:22689120

  2. Endothelial dysfunction in adipose triglyceride lipase deficiency.

    PubMed

    Schrammel, Astrid; Mussbacher, Marion; Wölkart, Gerald; Stessel, Heike; Pail, Karoline; Winkler, Sarah; Schweiger, Martina; Haemmerle, Guenter; Al Zoughbi, Wael; Höfler, Gerald; Lametschwandtner, Alois; Zechner, Rudolf; Mayer, Bernd

    2014-06-01

    Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease. PMID:24657704

  3. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  4. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    SciTech Connect

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A. )

    1990-09-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for (14C)triolein, (14C)cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.

  5. Fasting upregulates adipose triglyceride lipase and hormone-sensitive lipase levels and phosphorylation in mouse kidney.

    PubMed

    Marvyn, Phillip M; Bradley, Ryan M; Button, Emily B; Mardian, Emily B; Duncan, Robin E

    2015-06-01

    Circulating non-esterified fatty acids (NEFA) rise during fasting and are taken up by the kidneys, either directly from the plasma or during re-uptake of albumin from glomerular filtrate, and are stored as triacylglycerol (TAG). Subsequent utilization of stored fatty acids requires their hydrolytic release from cellular lipid droplets, but relatively little is known about renal lipolysis. We found that total [(3)H]triolein hydrolase activity of kidney lysates was significantly increased by 15% in the fasted state. Adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) mRNA expression was time-dependently increased by fasting, along with other fatty acid metabolism genes (Pparα, Cd36, and Aox). ATGL and HSL protein levels were also significantly induced (by 239 ± 7% and 322 ± 8%, respectively). Concomitant with changes in total protein levels, there was an increase in ATGL phosphorylation at the AMPK-regulated serine 406 site in the 14-3-3 binding motif, and an increase in HSL phosphorylation at serines 565 and 660 that are regulated by AMPK and PKA, respectively. Using immunofluorescence, we further demonstrate nearly ubiquitous expression of ATGL in the renal cortex with a concentration on the apical/lumenal surface of some cortical tubules. Our findings suggest a role for ATGL and HSL in kidney lipolysis. PMID:25879679

  6. Disseminated Fusarium solani infection with cutaneous nodules in a bone marrow transplant patient.

    PubMed

    Mowbray, D N; Paller, A S; Nelson, P E; Kaplan, R L

    1988-12-01

    Fusarium is a ubiquitous fungus that commonly colonizes ulcerated, burned, or traumatized skin and may cause keratitis and onychomycosis in healthy hosts. Serious disseminated infection due to Fusarium has been reported with increasing frequency in immunocompromised patients. We describe a bone marrow transplant patient who developed fungal septicemia and disseminated skin nodules due to Fusarium solani. Fusarium should be recognized as a potential cause of deep fungal infection in immunocompromised patients. PMID:3069758

  7. Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis

    PubMed Central

    Scully, Erin D.; Hoover, Kelli; Carlson, John; Tien, Ming; Geib, Scott M.

    2012-01-01

    Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were

  8. Pathogenic and Phylogenetic analysis of Fusarium oxysporum from Sugarbeet in Michigan and Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugarbeet (Beta vulgaris L.), caused by Fusarium oxysporum Schlechtend:FR. f. sp. betae (Stewart) Snyd & Hans, can lead to significant reduction in root yield sucrose percentage, and juice purity. Fusarium yellows has become increasingly common in both Michigan and Minnesota sug...

  9. Evaluation of Methods for Assessing Resistance to Fusarium Crown Rot in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crown rot, caused by a complex of Fusarium species, of which F. pseudograminearum and F. culmorum are the most important, reduces wheat yields in the PNW by an average of 35%. Breeding for resistance requires adequate Fusarium screening systems. One common barrier in Fusarium screening is the large ...

  10. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease that can be caused by several Fusarium spp. A survey was conducted to establish the composition of Fusarium species causing dry rot of seed tubers in Michigan. A total of 370 dry rot symptomatic tubers were collected in 2009 ...

  11. First Report of Fusarium redolens Causing Crown Rot of Wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  12. Near-infrared versus visual sorting of Fusarium-damaged kernels in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels referred to as Fusarium-damaged kernels (FDK). FDK is one of the major grain grading factors and therefore is routinely determined for purposes of quality assurance. Determination o...

  13. Elite-upland cotton germplasm-pool assessment of Fusarium wilt resistance in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is currently the most economic and effective strategy for managing Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] disease. Over the past nine years, a new race of Fusarium (FOV race 4) has increasingly impacted cotton (Gossypium spp.) in production fields in the Sa...

  14. Candidate genes associated with QTL controlling resistance to fusarium root rot in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot (FRR) of pea (Pisum sativum L.) is a serious pathogen in the USA and Europe and genetic resistance offers an effective and economical control for this pathogen. Fusarium root rot is caused by the fungus pathogen (Haematonectria haematococca (Berk. & Broome) (Anamorph): Fusarium sol...

  15. First report of Fusarium torulosum causing dry rot of seed potato tubers in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Thirteen species of Fusarium have been implicated in fungal dry rots of potatoes worldwide. Among them, eight species have been reported in the northern United S...

  16. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  17. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  18. Evaluation of visual and optical sorting of Fusarium damaged kernels in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels referred to as Fusarium damaged kernels (FDK). Determination of FDK usually is done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from v...

  19. First report of Fusarium proliferatum causing dry rot in Michigan commercial potato (Solanum tuberosum) production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato is a postharvest disease caused by several Fusarium spp. and is of worldwide importance. Thirteen Fusarium spp. have been implicated in fungal dry rots of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern Un...

  20. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    PubMed

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers. PMID:26687343

  1. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms

    PubMed Central

    2012-01-01

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R2adj) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R2cv) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters. PMID:23016923

  2. Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity.

    PubMed

    Aguieiras, Erika C G; Ribeiro, Douglas S; Couteiro, Pedro P; Bastos, Caenam M B; de Queiroz, Danielle S; Parreira, Juliana M; Langone, Marta A P

    2016-06-01

    Biodiesel production catalyzed by immobilized lipases offers the possibility of easy reuse of the catalyst, which is very important to minimize costs and to make this process economically feasible. In this study, the reuse of three commercial immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM) was investigated in ethanolysis of soybean oil. The effect of the use of solvents (ethanol, butanol, and hexane) to wash the immobilized lipases before the enzyme reuse was evaluated, as well as the lipase reuse without solvent washing. The washing with butanol and ethanol led to the lowest decrease in ester yield after the first batch and allowed the highest glycerol removal (>85 %) from biocatalysts. The biocatalysts were incubated at 50 °C for 2 h in these three solvents. Esterification activities of the enzyme preparations, scanning electron microscopy (SEM) analyses of the beads, and protein content in organic phase were evaluated before and after incubation in the solvent. SEM analysis showed a significant change in beads morphology of Novozym 435 after contact with hexane. For Lipozyme TL IM lipase, this effect was visualized with ethanol. PMID:26883757

  3. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms.

    PubMed

    Wang, Haikuan; Wang, Xiaojie; Li, Xiaolu; Zhang, Yehong; Dai, Yujie; Guo, Changlu; Zheng, Heng

    2012-01-01

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R(2)(adj)) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R(2)(cv)) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters. PMID:23016923

  4. Interesterification of phosphatidylcholine with lipases in organic media.

    PubMed

    Svensson, I; Adlercreutz, P; Mattiasson, B

    1990-06-01

    Lipases were investigated with respect to their ability to catalyse the incorporation of fatty acids into phosphatidylcholine (PC) by interesterification reactions. The enzymes were dried onto solid support materials and the conversions were carried out in water-saturated toluene. Three lipases (two fungal and one plant enzyme) had the desired activity; immobilized lipase from Mucor miehei (Lipozyme) was the most active enzyme. The Lipozyme-catalysed interesterification was selective for the sn-1 position of PC and during 48 h of reaction around 50% of the fatty acids in this position were replaced with heptadecanoic acid, a fatty acid which was practically absent in the original phospholipid. Due to adsorption on the support material and the competing hydrolysis reaction the total amount of PC in the reaction solution decreased to about 40% of the original amount. Higher interesterification rates were obtained with free fatty acids as acyl donors than with fatty acid esters. PMID:1366637

  5. Purification and preliminary crystallographic analysis of a Penicillium expansum lipase.

    PubMed

    Bian, Chuanbing; Yuan, Cai; Lin, Lin; Lin, Junhan; Shi, Xiaoli; Ye, Xiaoming; Huang, Zixiang; Huang, Mingdong

    2005-08-31

    PF898 is a strain of Penicillium expansum optimized for the high level production of Penicillium expansum lipase (PEL). This PEL is unique compared with other lipases in several aspects, For example, the PEL shows low sequence identities (<30%) to all other known lipases, and high percentage of hydrophobic residues in the N-terminal region. The PEL was purified to homogeneity and shown to be 28 kDa by SDS-PAGE. Crystals suitable for X-ray diffraction analysis were obtained by the sitting-drop method of vapor diffusion with ammonia sulfate as the precipitating agent at 298 K. The crystals have tetragonal lattice and unit-cell parameters of a=b=88.09 A, c=126.54 A. Diffraction data were collected to a resolution of 2.08 A on an in-house rotating-anode generator. PMID:16112629

  6. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  7. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed. PMID:27192825

  8. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  9. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    PubMed

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  10. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    SciTech Connect

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF.