Science.gov

Sample records for fusarium heterosporum lipase

  1. Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production.

    PubMed

    Hama, Shinji; Tamalampudi, Sriappareddy; Suzuki, Yuya; Yoshida, Ayumi; Fukuda, Hideki; Kondo, Akihiko

    2008-12-01

    In this paper, we provide the first report of utilizing recombinant fungal whole cells in enzymatic biodiesel production. Aspergillus oryzae, transformed with a heterologous lipase-encoding gene from Fusarium heterosporum, produced fully processed and active forms of recombinant F. heterosporum lipase (FHL). Cell immobilization within porous biomass support particles enabled the convenient usage of FHL-producing A. oryzae as a whole-cell biocatalyst for lipase-catalyzed methanolysis. The addition of 5% water to the reaction mixture was effective in both preventing the lipase inactivation by methanol and facilitating the acyl migration in partial glycerides, resulting in the final methyl ester content of 94% even in the tenth batch cycle. A comparative study showed that FHL-producing A. oryzae attained a higher final methyl ester content and higher lipase stability than Rhizopus oryzae, the previously developed whole-cell biocatalyst. Although both FHL and R. oryzae lipase exhibit 1,3-regiospecificity towards triglyceride, R. oryzae accumulated a much higher amount of sn-2 isomers of partial glycerides, whereas FHL-producing A. oryzae maintained a low level of the sn-2 isomers. This is probably because FHL efficiently facilitates the acyl migration from the sn-2 to the sn-1(3) position in partial glycerides. These findings indicate that the newly developed FHL-producing A. oryzae is an effective whole-cell biocatalyst for enzymatic biodiesel production. PMID:18795281

  2. The galactolipase activity of Fusarium solani (phospho)lipase.

    PubMed

    Jallouli, Raida; Othman, Houcemeddine; Amara, Sawsan; Parsiegla, Goetz; Carriere, Frédéric; Srairi-Abid, Najet; Gargouri, Youssef; Bezzine, Sofiane

    2015-03-01

    The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests. PMID:25529980

  3. Effect of culture conditions on lipase production by Fusarium solani in batch fermentation.

    PubMed

    Maia, M M; Heasley, A; Camargo de Morais, M M; Melo, E H; Morais, M A; Ledingham, W M; Lima Filho, J L

    2001-01-01

    Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase specific activity was highest (0.45 U mg(-1)) for sesame oil. When this medium was supplemented with trace elements using olive oil, corn oil and sesame oil the lipase specific activity increased to 0.86, 1.89 and 1.64 U mg(-1), respectively, after 96 h cultivation without any considerable biomass increase. The Km of this lipase using pNPP (p-nitrophenylpalmitate) as substrate, was 1.8 mM with a Vmax of 1.7 micromol min(-1) mg protein(-1). Lipase activity increased in the presence of increasing concentrations of hexane and toluene. In contrast, incubation of this enzyme with water-soluble solvents decreased its activity after 10% concentration (v/v) of the solvent. The lipase activity was stable below 35 degrees C but above this temperature activity losses were observed. PMID:11315806

  4. Biological Activities of a Mixture of Biosurfactant from Bacillus subtilis and Alkaline Lipase from Fusarium oxysporum

    PubMed Central

    Pereira de Quadros, Cedenir; Cristina Teixeira Duarte, Marta; Maria Pastore, Gláucia

    2011-01-01

    In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix) on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC) micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1). In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05). PMID:24031642

  5. Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae.

    PubMed

    Takaya, Tomohiro; Koda, Risa; Adachi, Daisuke; Nakashima, Kazunori; Wada, Junpei; Bogaki, Takayuki; Ogino, Chiaki; Kondo, Akihiko

    2011-05-01

    In the present study, a system with high lipase expression in Aspergillus oryzae was developed using an improved enolase promoter (P-enoA124) and the 5' untranslated region of a heat-shock protein (Hsp-UTR). P-enoA142 enhanced the transcriptional level of a heterologous lipase gene and Hsp-UTR improved its translational efficiency. Fusarium heterosporum lipase (FHL) was inserted into a pSENSU-FHL expression vector harboring P-enoA142 and Hsp-UTR and was transformed into an A. oryzae NS4 strain. Transformants possessing pSENSU-FHL in single (pSENSU-FHL#1) and double copies (pSENSU-FHL#2) were selected to evaluate the lipase activity of the whole-cell biocatalyst. The two strains, pSENSU-FHL#1 and #2, showed excellent lipase activity in hydrolysis compared with the strain transformed with conventional expression vector pNAN8142-FHL. Furthermore, by using pSENSU-FHL#2, methanolysis could proceed much more effectively without deactivation, which allowed a swift addition of methanol to the reaction mixture, thereby reducing reaction time. PMID:21380514

  6. An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase-catalyzed ethanolysis in a water-containing system.

    PubMed

    Adachi, Daisuke; Koda, Risa; Hama, Shinji; Yamada, Ryosuke; Nakashima, Kazunori; Ogino, Chiaki; Kondo, Akihiko

    2013-02-01

    We attempted to integrate lipase-catalyzed ethanolysis into fermentative bioethanol production. To produce bioethanol, ethanol fermentation from brown rice was conducted using a tetraploid Saccharomyces cerevisiae expressing α-amylase and glucoamylase. The resultant ethanol was distilled and separated into three fractions with different concentrations of water and fusel alcohols. In ethanolysis using the first fraction with 89.3% ethanol, a recombinant Aspergillus oryzae whole-cell biocatalyst expressing Fusarium heterosporum lipase (r-FHL) afforded the highest ethyl ester content of 94.0% after 96 h. Owing to a high concentration of water in the bioethanol solutions, r-FHL, which works best in the presence of water when processing ethanolysis, was found to be more suitable for the integrative process than a commercial immobilized Candida antarctica lipase. In addition, r-FHL was used for repeated-batch ethanolysis, resulting in an ethyl ester content of more than 80% even after the fifth batch. Fusel alcohols such as 1-butanol and isobutyl alcohol are thought to decrease the lipase activity of r-FHL. Using this process, a high ethyl ester content was obtained by simply mixing bioethanol, plant oil, and lipase with an appropriate adjustment of water concentration. The developed process model, therefore, would contribute to biodiesel production from only biomass-derived feedstocks. PMID:23273281

  7. Lipase

    MedlinePlus

    ... Lipase is used for indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and ... that is associated with cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. ...

  8. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection.

    PubMed

    Nguyen, Long Nam; Bormann, Jörg; Le, Giang Thi Thu; Stärkel, Cornelia; Olsson, Stefan; Nosanchuk, Joshua D; Giese, Henriette; Schäfer, Wilhelm

    2011-03-01

    Autophagy is a non-selective degradation pathway in eukaryotic cells that is conserved from yeasts to humans. Autophagy is involved in the virulence of several pathogenic fungi such as Magnaporthe grisea or Colletotrichum orbiculare. In the current study, we identified and disrupted an autophagy-like lipase FgATG15 in Fusarium graminearum. We showed that FgATG15 exhibits lipase activity when heterologously expressed in P. pastoris. We used a gene deletion approach to characterize the function of the enzyme. We demonstrate that FgATG15 is involved in fungal growth and aerial hyphae production. FgATG15 is also involved in conidia production and germination, and disruption of FgATG15 led to aberrant conidia shapes. FgATG15 disruptants were reduced in storage lipid degradation under starvation conditions, implicating FgATG15's involvement in lipid turnover. Moreover, wheat head infection by the disruptants was severely attenuated, indicating the involvement of FgATG15 in pathogenesis. Additionally, we found that the deoxynivalenol levels of FgATG15 disruptants were significantly decreased compared with the wild type strain. Taken together, we show that FgATG15 is involved in numerous developmental processes and could be exploited as an antifungal target. PMID:21094265

  9. Corn seedling disease, fusaric acid as the wilt toxin and the need for biocontrol of Fusarium verticillioides and other Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid (5-butylpicolinic acid) was first discovered during the laboratory culture of Fusarium heterosporum, and was one of the first fungal metabolites implicated in the pathogenesis of wilt symptoms of plants especially under adverse conditions. In addition to a primary role in plant pathoge...

  10. The Use of Response Surface Methodology as a Statistical Tool for Media Optimization in Lipase Production from the Dairy Effluent Isolate Fusarium solani

    PubMed Central

    Kanmani, P.; Karthik, S.; Aravind, J.; Kumaresan, K.

    2013-01-01

    The optimization of extracellular lipase production by Fusarium isolani strain SKWF7 isolated from dairy wastewater was carried out in this study. Initially, the physicochemical factors significantly influencing enzyme production were studied by varying one-factor-at-a-time (OFAT). A mesophilic temperature of 40°C, alkaline pH of 8, and incubation period of 72 hours were found to be the optimal conditions for lipase production. Among the media components, the disaccharide sucrose acted as the best carbon source; palm oil as the best inducing lipid substrate; casein and (NH4)2SO4 as the best organic and inorganic nitrogen sources; Ca2+ ion as the best trace element. In the next phase of work, statistical optimization of medium components was performed by employing the Box-Behnken design of Response Surface Methodology (RSM). The optimum concentrations of three significant factors, namely, palm oil, (NH4)2SO4, and CaCO3 were determined by this method to be 5% (v/v), 5.5 g/L, and 0.1 g/L, respectively. RSM-guided design of experiments resulted in a maximum lipase production of 73.3 U/ml, which is a 1.7-fold increase in comparison with that obtained in the unoptimized medium. These results point towards the success of the model in developing a process for the production of lipase, an enzyme of enormous industrial significance. PMID:25969775

  11. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  12. Lipases in autolysed cultures of filamentous fungi.

    PubMed

    García-Lepe, R; Nuero, O M; Reyes, F; Santamaría, F

    1997-08-01

    Fifty-one fungi from different genera and strains were checked in plate to determine lipase activity in protein precipitates from their autolysed cultures. Each of them was then analysed at 3.5, 6.5 and 9.2 pH units and, as a consequence, basic lipases with high activity at 9.2 pH were found after 1 h of incubation. Only 25% of the studied fungi showed this lipase activity, among them the best producers were fungi from genus Fusarium (47% of fungi had lipase activity). In addition to lipase activity, Fusaria showed a low hydrolytic activity on cutin and suberin. The genus Aspergillus produced lipase and cutinase activity to a similar extent. Aspergillus nidulans 2544 also showed suberinase activity in a considerable amount. Penicillium species had very low activities. Other species and strains from genus Trichoderma, order Mucorales and class Basidiomycetes, did not show lipase activity in their degradative processes. PMID:9281862

  13. Lipase test

    MedlinePlus

    ... for disease of the pancreas, most often acute pancreatitis . Lipase appears in the blood when the pancreas ... Forsmark CE. Pancreatitis. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 144. ...

  14. Lipase test

    MedlinePlus

    ... the bowel (bowel obstruction) Celiac disease Duodenal ulcer Cancer of the pancreas Infection or swelling of the pancreas This test may also be done for familial lipoprotein lipase deficiency . Risks ... Update Date 2/4/2015 Updated ...

  15. Fusarium Pathogenomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed compartmentalization of genomes into regions responsible for metabolism and reproduction (core genome) and p...

  16. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  17. Fusarium Infection

    PubMed Central

    Muhammed, Maged; Anagnostou, Theodora; Desalermos, Athanasios; Kourkoumpetis, Themistoklis K.; Carneiro, Herman A.; Glavis-Bloom, Justin; Coleman, Jeffrey J.

    2013-01-01

    Abstract Fusarium species is a ubiquitous fungus that causes opportunistic infections. We present 26 cases of invasive fusariosis categorized according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria of fungal infections. All cases (20 proven and 6 probable) were treated from January 2000 until January 2010. We also review 97 cases reported since 2000. The most important risk factors for invasive fusariosis in our patients were compromised immune system, specifically lung transplantation (n = 6) and hematologic malignancies (n = 5), and burns (n = 7 patients with skin fusariosis), while the most commonly infected site was the skin in 11 of 26 patients. The mortality rates among our patients with disseminated, skin, and pulmonary fusariosis were 50%, 40%, and 37.5%, respectively. Fusarium solani was the most frequent species, isolated from 49% of literature cases. Blood cultures were positive in 82% of both current study and literature patients with disseminated fusariosis, while the remaining 16% had 2 noncontiguous sites of infection but negative blood cultures. Surgical removal of focal lesions was effective in both current study and literature cases. Skin lesions in immunocompromised patients should raise the suspicion for skin or disseminated fusariosis. The combination of medical monotherapy with voriconazole or amphotericin B and surgery in such cases is highly suggested. PMID:24145697

  18. Lipases, industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases are enzymes that catalyze the hydrolysis of triglycerides to glycerol and fatty acids. Microbial lipases are relatively stable and are capable of catalyzing a variety of reactions; they are potentially of importance for diverse industrial applications. Lipases can be divided generally into...

  19. Fusarium MLST database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CBS-KNAW Fungal Biodiversity Centre’s Fusarium MLST website (http://www.cbs.knaw.nl/Fusarium), and the corresponding Fusarium-ID site hosted at the Pennsylvania State University (http://isolate.fusariumdb.org; Geiser et al. 2004, Park et al. 2010) were constructed to facilitate identification of...

  20. CHARACTERIZATION OF LEPTOSPIRAL LIPASE

    PubMed Central

    Patel, Virendra; Goldberg, Herbert S.; Blenden, Donald

    1964-01-01

    Patel, Virendra (University of Missouri, Columbia), Herbert S. Goldberg, and Donald Blenden. Characterization of leptospiral lipase. J. Bacteriol. 88:877–884. 1964.—A technique for leptospiral lipase extraction which yielded a highly active, stable, and concentrated lipase preparation was developed. The chief characteristics of leptospiral lipase were determined and are summarized below. Leptospiral lipase was soluble in water and stable in both the dry state and in aqueous solution. Tributyrin was found to be the substrate upon which the enzyme was most active. With this substrate, leptospiral lipase was found to display optimal activity at pH 7 and at 30 C. The Michaelis constant of leptospiral lipase with tributyrin substrate was determined to be 4.76 × 10-2m. The enzyme was not inhibited by low concentrations of mercury, iron, cobalt, or copper or by —SH blocking agents. Bile and calcium chloride in low concentrations were able to increase lipase activity at alkaline pH. The isoelectric point of leptospiral lipase was determined to be in the range of pH 5.2 to 5.4. PMID:14219049

  1. Fusarium Wilt of Orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  2. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and ... discuss your diet needs with a registered dietitian. Pancreatitis that is related to lipoprotein lipase deficiency responds ...

  3. Molecular Biology of Fusarium Mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic ...

  4. Fusarium wilt in seedless watermelons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai], caused by Fusarium oxysporum f. sp. niveum (E.F. Sm.) Snyd. & Hans., was first reported in the United States in 1894. Historically, Fusarium wilt has been the greatest yield-limiting disease of watermelon worldwide. The stat...

  5. Molecular biology of Fusarium mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides, and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic...

  6. General characterization of noncommercial microbial lipases in hydrolytic and synthetic reactions.

    PubMed

    Otero, C; Berrendero, M A; Cardenas, F; Alvarez, E; Elson, S W

    2005-03-01

    Fourteen noncommercial preparations of microbial lipases were investigated with respect to their catalytic activity for hydrolysis and synthesis of ester bonds. Six of the lipases were derived from microorganisms that have not previously been described as lipase producers, and another four were characterized for the first time. The synthetic reactions were carried out in two solvents of different polarities (n-heptane and acetone) using a series of fatty acids and primary and secondary alcohols with different chain lengths. Under the culture conditions employed, Pseudomonas cepacia produced more active enzyme than the other microorganisms. The lipase preparations produced using Ovadendron sulphureo-ochraceum, Monascus mucoroides, Monascus sp., Fusarium oxysporum, Penicillium chrysogenum, Rhodotorula araucariae, Pseudomonas cepacia, Streptomyces halstedii, and Streptomyces sp.were the most efficient catalysts for hydrolysis at lipid-water interfaces. Enzyme preparations from P. cepacia, Streptomyces sp., S. halstedii, and R. araucariae were good biocatalysts for esterification in the polar medium (acetone). When the lipase preparations with the greatest activity for hydrolytic reactions were excluded, regression analysis of the data for the hydrolytic and synthetic activities of the remaining lipase preparations yielded high multiple correlation coefficients for these reactions in both n-heptane and acetone (R = 0.82 and 0.91, respectively). PMID:15767695

  7. Microbial lipases: production and applications.

    PubMed

    Ghosh, P K; Saxena, R K; Gupta, R; Yadav, R P; Davidson, S

    1996-01-01

    Lipases occupy a prominent place among biocatalysts and have a wide spectrum of biotechnological applications. Lipases are unique as they hydrolyse fats into fatty acids and glycerol at the water-lipid interface and can reverse the reaction in non-aqueous media. The stability of these enzymes in organic solvents have pushed them into the frontier areas of organic synthesis leading to the designing of novel drugs, surfactants, bioactive compounds and oleochemicals. In addition, lipase-catalysed trans-esterification and inter-esterification reactions have been exploited in the fat industry. Looking into the wide scenario of lipase applications, commercialization of lipase production is a prime area of interest for microbiologists, process engineers and biochemists. Research carried out in this field has revealed that microbes, especially fungi and bacteria, are the tools of choice for commercial production. Recently, the structure determination of a few microbial lipases has widened our knowledge about the unique mechanism of catalysis of this enzyme. PMID:8828407

  8. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere. PMID:26057187

  9. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    PubMed

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J

    2008-08-25

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  10. Lipases in lipophilization reactions.

    PubMed

    Villeneuve, Pierre

    2007-01-01

    Lipases are used in various sectors, as pharmaceutical, food or detergency industry. Their advantage versus classical chemical catalysts is that they exhibit a better selectivity and operate in milder reaction conditions. Theses enzymes can also be used in lipophilization reactions corresponding to the grafting of a lipophilic moiety to a hydrophilic one such as sugar, amino acids and proteins, or phenolic compounds. The major difficulty to overcome in such enzyme-catalyzed reaction resides in the fact that the two involved substrates greatly differ in term of polarity and solvent affinity. Therefore, several key parameters are to be considered in order to achieve the reaction in satisfactory kinetics and yields. The present review discusses the nature of such parameters (eg solvent nature, water activity, chemical modification of substrates) and illustrates their effect with examples of lipase-catalyzed lipophilization reactions of various sugar, amino acids or phenolic derivatives. PMID:17681737

  11. Synthesis and kinetic evaluation of Cyclophostin and Cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases

    PubMed Central

    Point, Vanessa; Malla, Raj K.; Diomande, Sadia; Martin, Benjamin P.; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P.; Spilling, Christopher D.; Cavalier, Jean-François

    2012-01-01

    New series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. Best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat towards same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these 7-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents. PMID:23095026

  12. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. PMID:20580809

  13. Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol.

    PubMed

    Blümke, Antje; Sode, Björn; Ellinger, Dorothea; Voigt, Christian A

    2015-06-01

    The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild-type and defined mutants: the DON-deficient Δtri5 mutant and the DON-producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen-activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post-inoculation, the glucose amounts in the non-cellulosic cell wall fraction were only increased in spikelets infected with the DON-producing strains wild-type, Δfgl1 and Δgpmk1. Hence, we tested for DON-induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild-type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence-related gene expression after DON pretreatment and fungal infection suggested that DON-induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB. PMID:25202860

  14. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.

    PubMed

    Wang, Ziyun; Li, Shen; Sun, Lidan; Fan, Jianglin; Liu, Zhenming

    2013-01-01

    The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad "Ser-Asp-His", a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis. PMID:23991054

  15. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years. PMID:26156413

  16. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis.

    PubMed

    Costa, L; Brissos, V; Lemos, F; Ribeiro, F Ramôa; Cabral, J M S

    2008-06-01

    The activity of various lipases was compared, in both free and immobilized forms, using the kinetics of the hydrolysis reaction of p-nitrophenyl butyrate, which was followed with in situ UV/Vis diode array spectrophotometry. Several enzymes were used to catalyze the reaction, namely Candida antarctica lipase B and Fusarium solani pisi cutinase wildtype and three single-mutation variants. The enzymes were tested in three different forms: free, immobilized as cross-linked aggregates and supported on zeolite NaY. A simple kinetic model was used to allow a quantitative comparison of the behavior of the different catalysts. It was concluded that although immobilization reduces the activity of the enzyme, the zeolite offers a much higher specific activity when compared to the cross-linked aggregates, thus supplying a heterogeneous catalyst with promising catalytic properties. PMID:17940805

  17. Regulation by light in Fusarium.

    PubMed

    Avalos, Javier; Estrada, Alejandro F

    2010-11-01

    The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation. PMID:20460165

  18. Overview of fungal lipase: a review.

    PubMed

    Singh, Abhishek Kumar; Mukhopadhyay, Mausumi

    2012-01-01

    Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering. PMID:22072143

  19. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism.

    PubMed

    Péterfy, Miklós

    2012-05-01

    Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomeric, lipases, it is likely involved in the assembly of inactive lipase subunits into active enzymes and/or the stabilization of active dimers. Herein, we provide an overview of current understanding of LMF1 function and propose that it may play a regulatory role in lipase activation and lipid metabolism. Further studies will be required to test this hypothesis and elucidate the full spectrum of phenotypes in combined lipase deficiency. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. PMID:22063272

  20. Fusarium subglutinans: A new eumycetoma agent☆

    PubMed Central

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-01-01

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans. PMID:24432236

  1. Wax ester-synthesizing activity of lipases.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-11-01

    The synthesis/hydrolysis of wax esters was studied in an aqueous solution using purified rat pancreatic lipase, porcine pancreatic carboxylester lipase, and Pseudomonas fluorescens lipase. The equilibrium between wax ester synthesis and hydrolysis favored ester formation at neutral pH. The synthesizing activities were measured using free fatty acid or triacylglycerol as the acyl donor and an equimolar amount of long-chain alcohol as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with these lipases, wax ester was synthesized, in a dose- and time-dependent manner, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was about 0.9/0.1. These lipases catalyzed the hydrolysis of palmityl oleate emulsified with gum arabic, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was also about 0.9/0.1. The apparent equilibrium ratio of wax ester/free fatty acid catalyzed by lipase depended on incubation pH and fatty alcohol chain length. When equimolar amounts of trioleoylglycerol and fatty acyl alcohol were incubated with pancreatic lipase, carboxylester lipase, or P. fluorescens lipase, wax esters were synthesized dose-dependently. These results suggest that lipases can catalyze the synthesis of wax esters from free fatty acids or through degradation of triacylglycerol in an aqueous medium. PMID:10606038

  2. GENOMIC ANALYSIS OF FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the ...

  3. Structural dynamics of Fusarium genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi in the genus Fusarium have a great negative impact on the world economy, yet also hold great potential for answering many fundamental biological questions. The advance of sequencing technologies has made possible the connection between phenotypes and genetic mechanisms underlying the acquisiti...

  4. Fusarium Keratitis - Multiple States, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Centers for Disease Control and Prevention investigated an outbreak of corneal infections caused by Fusarium involving at least 17 states as of April, 2006. Initial outbreak reports were from Singapore and Hong Kong. Preliminary results suggest that these outbreaks may be linked ...

  5. Grower Recommendations: Fusarium Race 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium, particularly race 4, has become a significant management issue in the San Joaquin Valley cotton production area of California. Recommendations for limiting spread of inoculum of this fungal disease have been modified somewhat over the approximately 10 years of experience with this disease,...

  6. The realm of microbial lipases in biotechnology.

    PubMed

    Pandey, A; Benjamin, S; Soccol, C R; Nigam, P; Krieger, N; Soccol, V T

    1999-04-01

    In this review, a comprehensive and illustrious survey is made of the applied aspects of microbial lipases in modern biotechnological practices. Lipases are the most versatile biocatalyst and bring about a range of bioconversion reactions such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. After a brief description of the microbial sources of lipases, the pivotal role of lipases in the processes and products of the food and flavourings industry is illustrated. An illustration is presented of biomedical applications. The panorama of lipases in the manufacture of fine chemicals is depicted with special emphasis on pharmaceuticals, pesticides, cosmetics, biosensors and detergents. Widening applications such as those in waste management and improved tanning techniques are other novel aspects of lipase utilization that are discussed in this review. PMID:10075908

  7. Wheat kernel black point and fumonisin contamination by Fusarium Proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by several Fusarium species, especially Fusarium proliferatum and Fusarium verticillioides, which are common pathogens of maize worldwide. Consumption of fumonisins has been shown to cause a number of mycotoxicoses, including leucoencephalomalacia in horses, pulmon...

  8. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    PubMed

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  9. Adsorption of lipase on polypropylene powder.

    PubMed

    Gitlesen, T; Bauer, M; Adlercreutz, P

    1997-04-01

    Adsorption of different lipases by EP-100 polypropylene powder from crude and pure lipase preparations was studied. Langmuir isotherms described the adsorption equilibria well both for protein and lipase activity adsorption. Adsorption isotherms for five different proteins all gave a similar saturation level of 220 mg protein per g carrier. Twelve commercial lipase preparations were tested for selectivity in the adsorption of lipase. For all preparations the selectivity factor was larger than one. In a crude lipase preparation from Pseudomonas fluorescence, the specific activity in solution decreased by two orders of magnitude after adsorption. The adsorption was not significantly influenced by pH changes in the adsorption buffer, indicating that hydrophobic and not electrostatic interactions are the dominating adsorption forces. Adsorption of a crude lipase from Candida rugosa (Sigma) was fast and equilibrium was reached in 30 and 100 min for protein and lipase activity adsorption respectively. Desorption in aqueous solution was negligible. Investigations with seven different lipases showed no correlation between the specific lipolytic activity of dissolved enzyme in aqueous solution and the specific activity of adsorbed enzyme in an esterification reaction in organic solvent. PMID:9106498

  10. Isolation and Characterization of a Staphylococcal Lipase

    PubMed Central

    Troller, J. A.; Bozeman, M. A.

    1970-01-01

    A number of coagulase-negative staphylococci isolated from human skin were found to produce lipase. Lipolytic activity appeared in the growth medium during the stationary phase of growth but did not appear as a result of autolysis of the cells. Maximal lipase synthesis was obtained when the medium was adjusted to pH 7.5 before inoculation. The purified enzyme hydrolyzed tributyrin and tridecanoin most actively, and a relatively high rate of hydrolysis of triolein was also noted. The optimal activity of the purified lipase was at pH 7.5. The characteristics of the concentrated crude enzyme and purified lipase were compared. PMID:5485729

  11. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    PubMed

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis. PMID:26966007

  12. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides. PMID:22178764

  13. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  14. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  15. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  16. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract....

  17. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies....1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic tissue. The...

  18. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  19. Developing Fusarium head blight resistant wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major disease problem in wheat and barley around the world. During infection, F. graminearum produces trichothecene mycotoxins that act as virulence factors and cause a reduction in grain quality. Therefore, developing approaches to detoxi...

  20. Biological and chemical complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  1. Fusarium-Resistant Barley Through Genetic Transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation with antifungal genes could provide barley with the resistance to Fusarium graminearum (F.g.). More molecular studies are needed to 1) identify effective anti-Fusarium genes, 2) develop more tissue-specific gene promoters to target expression to the path of infection, and 3) ...

  2. Diversity of polyketide synthases in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium can produce a structurally diverse array of secondary metabolites (SMs) with a range of biological activities, including pigmentation, plant growth regulation, and toxicity to humans and other animals. Contamination of grain-based food and feed with toxic SMs produced by Fusarium is associa...

  3. Resistance to Fusarium wilt in chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of chickpea, caused by the fungal pathogen Fusarium oxysporum f. sp. ciceris (Foc), is a destructive disease and is distributed in almost all chickpea producing regions of the world. Foc has eight physiological races designated as 0, 1A, 1B/C, 2, 3, 4, 5 and 6. The races are different...

  4. Systemic ketoconazole treatment for Fusarium leg ulcers.

    PubMed

    Landau, M; Srebrnik, A; Wolf, R; Bashi, E; Brenner, S

    1992-07-01

    Fusarium oxysporum was isolated from a large foot ulcer in an otherwise healthy 69-year-old man. Although tissue invasion could not be proven histologically, systemic antifungal treatment was administered with satisfactory response. Fusarium species are common soil-inhabiting organisms and plant pathogens. In humans, Fusarium is considered an opportunistic agent in skin ulcers, interdigital spaces, and burned skin, but can also cause mycotic keratitis, onychomycosis, and rarely deep-seated or disseminated infections, especially in an immunocompromised host. The distinction between skin infection and saprophytic growth, as well as optimal treatment regimens for the two types of infection, have not been clearly defined. We describe a case of leg ulcers caused by Fusarium oxysporum in a 69-year-old man treated successfully with oral ketoconazole. "Silent" immunologic disturbances were found in this apparently healthy patient. The case illustrates a relatively benign infection caused by Fusarium that responded to systemic antifungal drug treatment. PMID:1500248

  5. Endothelial lipase: Its role in cardiovascular disease

    PubMed Central

    Paradis, Marie-Eve; Lamarche, Benoit

    2006-01-01

    Endothelial lipase (EL) has recently been identified as a new member of the triglyceride lipase gene family. EL shares a relatively high degree of homology with lipoprotein lipase and hepatic lipase, but it appears to be more specific at hydrolyzing phospholipids than lipoprotein lipase and hepatic lipase. EL is also the only identified lipase that is synthesized and expressed by endothelial cells. Data from in vitro and in vivo animal studies have suggested that EL may play a key role in modulating the metabolism of high density lipoproteins. Data are less consistent in clarifying how EL contributes to the metabolism of apolipoprotein B-containing lipoproteins. Investigations in humans are scarce. To date, increased plasma EL concentrations have been associated with a deteriorated lipoprotein-lipid profile along with elevated plasma triglyceride and apolipoprotein B concentrations, as well as with smaller low density lipoprotein particle size. Elevated proinflammatory cytokine concentrations and an increased prevalence of the metabolic syndrome have also been observed among individuals with elevated plasma EL concentrations. Taken together, data suggest that EL is one of several key regulatory enzymes of lipoprotein-lipid metabolism and that a proinflammatory state, such as the metabolic syndrome, may be implicated in the processes relating plasma EL concentrations and lipoprotein concentrations. EL should thus be considered to play an important role in the pathophysiology of cardiovascular disease. PMID:16498510

  6. Synthesis of hepatic lipase in liver and extrahepatic tissues

    SciTech Connect

    Doolittle, M.H.; Wong, H.; Davis, R.C.; Schotz, M.C.

    1987-11-01

    Immunoprecipitations of hepatic lipase from pulse-labeled rat liver have demonstrated that hepatic lipase is synthesized in two distinct molecular weight forms, HL-I (Mr = 51,000) and HL-II (Mr = 53,000). Both forms are immunologically related to purified hepatic lipase, but not to lipoprotein lipase. HL-I and HL-II are also kinetically related and represent different stages of intracellular processing. Glycosidase experiments suggest that HL-I is the high mannose microsomal form of the mature, sialylated HL-II enzyme. Hepatic lipase activity was detected in liver and adrenal gland but was absent in brain, heart, kidney, testes, small intestine, lung, and spleen. The adrenal and liver lipase activities were inhibited in a similar dose-dependent manner by hepatic lipase antiserum. Immunoblot analysis of partially purified adrenal lipase showed an immunoreactive band co-migrating with HL-II at 53,000 daltons which was absent in a control blot treated with preimmune serum. Adrenal lipase and authentic hepatic lipase yielded similar peptide maps, confirming the presence of the lipase in adrenal gland. However, incorporation of L-(/sup 35/S)methionine into immunoprecipitable hepatic lipase was not detected in this tissue. In addition, Northern blot analysis showed the presence of hepatic lipase mRNA in liver but not adrenal gland. The presence of hepatic lipase in adrenal gland in the absence of detectable synthesis or messenger suggests that hepatic lipase originates in liver and is transported to this extrahepatic site.

  7. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family

    SciTech Connect

    Kirchgessner, T.G.; Heinzmann, C.; Svenson, K.; Ameis, D.; Lusis, A.J. ); Chuat, J.C.; Etienne, J.; Guilhot, S.; Pilon, C.; D'Auriol, L.; Galibert, F. ); Schotz, M.C. Wadsworth Medical Center, Los Angeles, CA )

    1989-12-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning {approx} 30 kilobase. The first exon encodes the 5{prime}-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3{prime}-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5{prime}-flanking region were also determined. The authors compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events.

  8. The selectivity of some fungal lipases.

    PubMed

    Adamczak, M; Bednarski, W

    2003-01-01

    Selectivity is one of the most important lipase properties which depends on a wide range of factors. In order to choose the right enzyme for a special purpose, it is necessary to check its selectivity. Fatty acid selectivity of lipases determined for natural substrales was different from that determined for p-nitrophenyl esters and those determined for each substrate. Enantoiselectivity of lipase from Mucor circinelloides (MCL) determined for 2 was over 100 (E > > 100). In this case, inversion of enantiopreferences was observed; the conversion was 10% and (R)-alcohol was preferentially produced PMID:24757816

  9. [Lipases in catalytic reactions of organic chemistry].

    PubMed

    Bezborodov, A M; Zagustina, N A

    2014-01-01

    Aspects of enzymatic catalysis in lipase-catalyzed reactions of organic synthesis are discussed in the review. The data on modern methods of protein engineering and enzyme modification allowing a broader range of used substrates are briefly summarized. The application of lipase in the preparation of pharmaceuticals and agrochemicals containing no inactive enantiomers and in the synthesis of secondary alcohol enantiomers and optically active amides is demonstrated. The subject of lipase involvement in the C-C bond formation in the Michael reaction is discussed. Data on the enzymatic synthesis of construction materials--polyesters, siloxanes, etc.--are presented. Examples demonstrating the application of lipase enzymatic catalysis in industry are given. PMID:25707112

  10. [Water binding of adsorptive immobilized lipases].

    PubMed

    Loose, S; Meusel, D; Muschter, A; Ruthe, B

    1990-01-01

    It is supposed that not only the total water content of lipase preparations but more their state of water binding is of technological importance in enzymatic interesterification reactions in systems nearly free from water. The isotherms at 65 degrees C of two microbial lipases immobilized on various adsorbents as well as different adsorbents themselves are shown. The water binding capacity in the range of water content of technological interest decreases from the anion exchange resin Amberlyst A 21 via nonpolar adsorbent Amberlite XAD-2 to kieselguhr Celite 545. It is demonstrated that water binding by lipases is depending on temperature but is also affected by adsorptive immobilization. Adsorptive immobilized lipases show hysteresis, which is very important for preparing a definite water content of the enzyme preparations. PMID:2325750

  11. Introductory biology of Fusarium moniliforme.

    PubMed

    Leslie, J F

    1996-01-01

    Fusarium moniliforme is a name that has been applied to any of six biological species (or mating populations) that share the teleomorph (sexual stage) Gibberella fujikuroi. Two of these six biological species, termed "A" and "D", are known to produce fumonisin mycotoxins. Strains from the "A" biological species grow as endophytes on maize and often comprise 90+% of the Fusarium isolates recovered from healthy maize seed. It is possible to distinguish all six biological species using sexual fertility and isozymes. Other attributes, such as morphological characters and sequences from the ribosomal DNA internally transcribed spacer (rDNA-ITS) region, can be used to identify some, but not all, of the biological species. Within a biological species, genetic variability and population structure can be assessed with anonymous RFLPs and tests of vegetative compatibility. The "A" biological species is genetically diverse, and the sexual cycle appears to be important in the life cycle of field populations of this organism in the United States. PMID:8850614

  12. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  13. Monoglyceride lipase: Structure and inhibitors.

    PubMed

    Scalvini, Laura; Piomelli, Daniele; Mor, Marco

    2016-05-01

    Monoglyceride lipase (MGL), the main enzyme responsible for the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), is an intracellular serine hydrolase that plays critical roles in many physiological and pathological processes, such as pain, inflammation, neuroprotection and cancer. The crystal structures of MGL that are currently available provide valuable information about how this enzyme might function and interact with site-directed small-molecule inhibitors. On the other hand, its conformational equilibria and the contribution of regulatory cysteine residues present within the substrate-binding pocket or on protein surface remain open issues. Several classes of MGL inhibitors have been developed, from early reversible ones, such as URB602 and pristimerin, to carbamoylating agents that react with the catalytic serine, such as JZL184 and more recent O-hexafluoroisopropyl carbamates. Other inhibitors that modulate MGL activity by interacting with conserved regulatory cysteines act through mechanisms that deserve to be more thoroughly investigated. PMID:26216043

  14. Onychomycosis caused by Fusarium solani and Fusarium oxysporum in São Paulo, Brazil.

    PubMed

    Godoy, P; Nunes, E; Silva, V; Tomimori-Yamashita, J; Zaror, L; Fischman, O

    2004-04-01

    Fusarium species are common soil saprophytes and plant pathogens that have been frequently reported as etiologic agents of opportunistic infections in humans. We report eight cases of onychomycosis caused by Fusarium solani (4) and Fusarium oxysporum (4) in São Paulo, Brazil. These species were isolated from toenails in all cases. The infections were initially considered to be caused by dermatophytes. The clinical appearance of the affected toenails was leukonychia or distal subungual hyperkeratosis with yellowish brown coloration. The eight cases reported here suggest that Fusarium spp. should be taken into consideration in the differential diagnosis of tinea unguium. PMID:15180157

  15. Immobilization and characterization of a thermostable lipase.

    PubMed

    Song, Chongfu; Sheng, Liangquan; Zhang, Xiaobo

    2013-12-01

    Lipases have found a number of commercial applications. However, thermostable lipase immobilized on nanoparticle is not extensively characterized. In this study, a recombinant thermostable lipase (designated as TtL) from Thermus thermophilus WL was expressed in Escherichia coli and immobilized onto 3-APTES-modified Fe3O4@SiO2 supermagnetic nanoparticles. Based on analyses with tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer observation, the diameter of immobilized lipase nanoparticle was 18.4 (± 2.4) nm, and its saturation magnetization value was 52.3 emu/g. The immobilized lipase could be separated from the reaction medium rapidly and easily in a magnetic field. The biochemical characterizations revealed that, comparing with the free one, the immobilized lipase exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The K m value for the immobilized TtL (2.56 mg/mL) was found to be lower than that of the free one (3.74 mg/mL), showing that the immobilization improved the affinity of lipase for its substrate. In addition, the immobilized TtL exhibited good reusability. It retained more than 79.5 % of its initial activity after reusing for 10 cycles. Therefore, our study presented that the possibility of the efficient reuse of the thermostable lipase immobilized on supermagnetic nanoparticles made it attractive from the viewpoint of practical application. PMID:23748908

  16. Bacterial lipases and chronic blepharitis.

    PubMed

    Dougherty, J M; McCulley, J P

    1986-04-01

    Eyelids and conjunctivae of 36 normal individuals and 60 patients from six clinical groups of chronic blepharitis were cultured for aerobic and anaerobic bacteria. The most common species isolated were coagulase-negative staphylococci (C-NS) and Propionibacterium acnes. All strains of these species, and all Staphylococcus aureus strains isolated were tested for the ability to break down triglycerides, cholesterol esters, and fatty waxes. Each strain was incubated independently with appropriate substrates in nutrient media. Each medium was then extracted and assayed for the presence of substrate hydrolysis products by thin-layer chromatography. The percentage of strains capable of hydrolyzing a particular substrate was determined for each individual. S. aureus was a consistent and strong lipase producer, able to hydrolyze all three substrates. P. acnes was able to hydrolyze triolein and behenyl oleate but not cholesteryl oleate. No differences were observed among groups for P. acnes or S. aureus. C-NS showed a high degree of strain variability. Eighty-three percent of C-NS strains could hydrolyze triolein, 82% behenyl oleate, and 40% cholesteryl oleate. Significant group differences were seen in the percentage of lipase positive C-NS strains isolated per individual. Patients in the mixed staphylococcal/seborrheic, meibomian seborrheic, secondary meibomitis, and the meibomian keratoconjunctivitis (MKC) groups harbored significantly more C-NS strains capable of hydrolyzing cholesteryl oleate than did normal individuals. Patients in the meibomian seborrheic, secondary meibomitis, and MKC groups harbored significantly more C-NS strains capable of hydrolyzing behenyl oleate than did normals. No group differences were seen among groups with triolein hydrolyzing C-NS strains. PMID:3957566

  17. Lipase

    MedlinePlus

    ... indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and cystic fibrosis. ... cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. Heartburn. Other conditions. More evidence ...

  18. Lipases and their industrial applications: an overview.

    PubMed

    Houde, Alain; Kademi, Ali; Leblanc, Danielle

    2004-01-01

    Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are part of the family of hydrolases that act on carboxylic ester bonds. The physiologic role of lipases is to hydrolyze triglycerides into diglycerides, monoglycerides, fatty acids, and glycerol. These enzymes are widely found throughout the animal and plant kingdoms, as well as in molds and bacteria. Of all known enzymes, lipases have attracted the most scientific attention. In addition to their natural function of hydrolyzing carboxylic ester bonds, lipases can catalyze esterification, interesterification, and transesterification reactions in nonaqueous media. This versatility makes lipases the enzymes of choice for potential applications in the food, detergent, pharmaceutical, leather, textile, cosmetic, and paper industries. The most significant industrial applications of lipases have been mainly found in the food, detergent, and pharmaceutical sectors. Limitations of the industrial use of these enzymes have mainly been owing to their high production costs, which may be overcome by molecular technologies, enabling the production of these enzymes at high levels and in a virtually purified form. PMID:15304746

  19. Conversion of a Mono- and Diacylglycerol Lipase into a Triacylglycerol Lipase by Protein Engineering.

    PubMed

    Lan, Dongming; Popowicz, Grzegorz Maria; Pavlidis, Ioannis V; Zhou, Pengfei; Bornscheuer, Uwe T; Wang, Yonghua

    2015-07-01

    Despite the fact that most lipases are believed to be active against triacylglycerides, there is a small group of lipases that are active only on mono- and diacylglycerides. The reason for this difference in substrate scope is not clear. We tried to identify the reasons for this in the lipase from Malassezia globosa. By protein engineering, and with only one mutation, we managed to convert this enzyme into a typical triacylglycerol lipase (the wild-type lipase does not accept triacylglycerides). The variant Q282L accepts a broad spectrum of triacylglycerides, although the catalytic behavior is altered to some extent. From in silico analysis it seems that specific hydrophobic interactions are key to the altered substrate specificity. PMID:25955297

  20. Onychomycosis caused by Fusarium proliferatum.

    PubMed

    Hattori, N; Shirai, A; Sugiura, Y; Li, W; Yokoyama, K; Misawa, Y; Okuzumi, K; Tamaki, K

    2005-09-01

    Fusarium infections in humans are usually opportunistic, but the fungus sometimes infects healthy persons, causing keratomycosis or onychomycosis. Onychomycosis is usually caused by F. solani or F. oxysporum. We report the first two cases of onychomycosis caused by F. proliferatum, and discuss methods of diagnosis and effective treatment. Nail samples from the two patients were examined by direct microscopy, cultured, and identified morphologically and genetically as F. proliferatum. Both patients were treated successfully with oral itraconazole, even though the minimum inhibitory concentration of itraconazole was relatively high in Patient 1. This is the first report of F. proliferatum as an agent of onychomycosis. Itraconazole may be effective in the treatment of onychomycosis caused by F. proliferatum. PMID:16120158

  1. Lipase production by diverse phylogenetic clades of Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains i...

  2. Stimulation of Lipase Production During Bacterial Growth on Alkanes

    PubMed Central

    Breuil, Colette; Shindler, D. B.; Sijher, J. S.; Kushner, D. J.

    1978-01-01

    Acinetobacter lwoffi strain O16, a facultative psychrophile, can grow on crude oil, hexadecane, octadecane, and most alkanes when tested at 20 but not at 30°C. Growth occurred on a few alkanes at 30°C but after a longer lag than at 20°C. Cells grown on alkanes as sole carbon sources had high levels of cell-bound lipase. In contrast, previous work has shown that those grown on complex medium produced cell-free lipase and those grown on defined medium without alkanes produced little or no lipase. Low concentrations of the detergent Triton X-100 caused the liberation of most of the lipase activity of alkane-grown cells and increased total lipase activity. When ethanol and hexadecane were both present in a mineral medium, diauxic growth occurred; until the ethanol was completely used up, hexadecane was not utilized, and the lipase activity was very low. When growth on hexadecane began, lipase activity increased, reaching a level 50- to 100-fold higher than that of cells growing on ethanol. A similar pattern of lipase formation and hexadecane utilization was observed with Pseudomonas aeruginosa. Whenever A. lwoffi and other bacteria degraded alkanes they exhibited substantial lipase activity. Not all bacteria that produced lipase, however, could attack alkanes. Bacteria that could not produce lipase did not attack alkanes. The results suggest that a correlation may exist between lipase formation and alkane utilization. PMID:627533

  3. TRANSFORMATION TO PRODUCE BARLEY RESISTANT TO FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium graminearum destroys barley and wheat crops by causing scab disease (Fusarium head blight, FHB). Spores infect seed spike tissues, leading to production of mycotoxins. There are no known barleys with biochemical resistance to Fusarium, although some have various levels ...

  4. Diversity of the Fusarium complex on French maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ear rot caused by Fusarium species is a major threat to maize production worldwide, causing yield reduction and poor grain quality. In addition, various species of the genus Fusarium can produce mycotoxins, which accumulate in the grain. The distribution and predominance of the different Fusarium sp...

  5. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  6. Temperature effects on the interactions of sugar beet Fusarium yellows caused by Fusarium oxysporum f. sp. betae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugar beet (Beta vulgaris L.), caused by Fusarium oxysporum f. sp. betae, causes a significant reduction in root yield, sucrose percentage, and juice purity. The environmental or agronomic factors that contribute to development and severity of Fusarium yellows have not been desc...

  7. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    SciTech Connect

    Dousset, N.; Negre, A.; Salvayre, R.; Rogalle, P.; Dang, Q.Q.; Douste-Blazy, L.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  8. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes. PMID:19238625

  9. [The characterization of microbial lipases. 1. The determination of lipase activity].

    PubMed

    Bariszlovich, M; Meusel, D; Tülsner, M

    1990-01-01

    In the selection of an appropriate method for activity determination of lipases existing technical equipment, kind of enzymes, number of samples investigated (e.g. in routine analysis), and expected sensitivity range have to be taken into account. Titrimetric methods and above all copper salt methods with their high detection sensitivity are the most suitable procedures for activity determination of lipases used in laboratories and institutions without equipment for radiochemical analysis. PMID:2233988

  10. The complete mitogenome of Fusarium culmorum.

    PubMed

    Kulik, Tomasz; Brankovics, Balazs; Sawicki, Jakub; van Diepeningen, Anne

    2016-07-01

    The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2 ribosomal RNA (rRNA), and 28 transfer RNA (tRNA) genes, all coded on the same strand of DNA. The gene order is identical to that of the other Fusarium and Hypocreales mitogenomes. Maximum likelihood and Bayesian analysis based on the concatenated amino acid dataset of mitochondrial protein-coding genes confirmed close genetic relationship of F. culmorum to the other type B trichothecene producers F. graminearum and F. gerlachii. PMID:26016874

  11. Fusarium wilt of Prunus armeniaca seedlings.

    PubMed

    Afifi, A F

    1977-01-01

    Fusarium solani (Mart.) Sacc. was found to be the causal pathogen of Fusarium wilt of Prunus armeniaca seedlings. The fungus pathogenicity could be correlated with the increase in its mycelial growth and conidial germination under the influence of the host root exudates, volatile and gaseous exudates of either germinating seeds or roots, and the content of the host seedlings. Chromatographic and biological detection for indol derivatives in host root exudates indicated the presence of beta-indolacetic acid and indol-3-carbonic acid. Benzaldehyde, acetaldehyde, ethanol, ethylene, in addition to carbon dioxide, were among the volatile and gaseous exudates of either germinating seeds or roots of the host. PMID:878711

  12. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  13. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  14. Design of ionic liquids for lipase purification.

    PubMed

    Ventura, Sónia P M; Sousa, Sílvia G; Freire, Mara G; Serafim, Luísa S; Lima, Alvaro S; Coutinho, João A P

    2011-09-15

    Aqueous two-phase systems (ATPS) are considered as efficient downstream processing techniques in the production and purification of enzymes, since they can be considered harmless to biomolecules due to their high water content and due to the possibility of maintaining a neutral pH value in the medium. A recent type of alternative ATPS is based on hydrophilic ionic liquids (ILs) and salting-out inducing salts. The aim of this work was to study the lipase (Candida antarctica lipase B - CaLB) partitioning in several ATPS composed of ionic liquids (ILs) and inorganic salts, and to identify the best IL for the enzyme purification. For that purpose a wide range of IL cations and anions, and some of their combinations were studied. For each system the enzyme partitioning between the two phases was measured and the purification factors and enzyme recoveries were determined. The results indicate that the lipase maximum purification and recovery were obtained for cations with a C(8) side alkyl chain, the [N(CN)(2)] anion and ILs belonging to the pyridinium family. However, the highest purification parameters were observed for 1-methyl-3-octylimidazolium chloride [C(8)mim]Cl, suggesting that the IL extraction capability does not result from a cumulative character of the individual characteristics of ILs. The results indicate that the IL based ATPS have an improved performance in the lipase purification and recovery. PMID:21852207

  15. Structural characterization of MAPLE deposited lipase biofilm

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  16. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia.

    PubMed

    Tan, Diana C; Flematti, Gavin R; Ghisalberti, Emilio L; Sivasithamparam, Krishnapillai; Chakraborty, Sukumar; Obanor, Friday; Jayasena, Kithsiri; Barbetti, Martin J

    2012-05-01

    An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites. PMID:23606046

  17. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. PMID:25841054

  18. Occurrence of Fusarium verticillioides and Fusarium musae on banana fruits marketed in Hungary.

    PubMed

    Molnár, Orsolya; Bartók, Tibor; Szécsi, Árpád

    2015-06-01

    Fusarium strains were isolated from rotten banana fruit imported into Hungary from some African and some Neotropical countries. The strains were identified using morphological features, 2-benzoxazolinone tolerance, translation elongation factor (EF-1α) sequences and inter simple sequence repeat (ISSR) analysis. All strains from Africa proved to be F. verticillioides whereas the strains from the Neotropics are Fusarium musae. According to the PCR proof and the fumonisin toxin measurement F. musae strains cannot produce any fumonisins (FB1-4). PMID:26132832

  19. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity.

    PubMed

    Forsyth, Leanne M; Smith, Linda J; Aitken, Elizabeth A B

    2006-08-01

    Fusarium wilt of banana is a potentially devastating disease throughout the world. Options for control of the causal organism, Fusarium oxysporum f.sp. cubense (Foc) are limited. Suppressive soil sites have previously been identified where, despite the presence of Foc, Fusarium wilt does not develop. In order to understand some aspects of this disease suppression, endophytic Fusarium oxysporum isolates were obtained from banana roots. These isolates were genetically characterized and compared with an isolate of Fusarium oxysporum previously identified as being capable of suppressing Fusarium wilt of banana in glasshouse trials. Three additional isolates were selected for glasshouse trials to assess suppression of Fusarium wilt in two different cultivars of banana, Cavendish and Lady Finger. One isolate (BRIP 29089) was identified as a potential biocontrol organism, reducing the disease severity of Fusarium wilt in Lady Finger and Cavendish cultivars. Interestingly, one isolate (BRIP 45952) increased Fusarium wilt disease severity on Cavendish. The implications of an isolate of Fusarium oxysporum, non-pathogenic on banana, increasing disease severity and the potential role of non-pathogenic isolates of Fusarium oxysporum in disease complexes are discussed. PMID:16891106

  20. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-04-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein's diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes.

  1. Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM).

    PubMed

    Barrett, Helen L; Kubala, Marta H; Scholz Romero, Katherin; Denny, Kerina J; Woodruff, Trent M; McIntyre, H David; Callaway, Leonie K; Nitert, Marloes Dekker

    2014-01-01

    Infants of women with gestational diabetes mellitus (GDM) are more likely to be born large for gestational age with a higher percentage body fat. Elevated maternal lipids may contribute to this. Placental lipases such as lipoprotein lipase (LPL), endothelial lipase (EL) and hormone sensitive lipase (HSL) are involved in transferring lipids from mother to fetus. Previous studies of expression of these lipases in placentae in women with diabetes in pregnancy have reported divergent results. Intracellular lipases such as adipose triglyceride lipase (ATGL), and HSL are central to lipid droplet metabolism. The activities of these lipases are both influenced by Perilipin 1, and ATGL is also activated by a co-factor comparative gene identification-58 (CGI-58) and inhibited by G0/G1 switch gene 2 (GS02). None of these modifying factors or ATGL have been examined previously in placenta. The purpose of this study was therefore to examine the expression of ATGL, HSL, LPL, EL, as well as Perilipin 1, GS02 and CGI-58 in term pregnancies complicated by GDM. mRNA and protein expression of the lipases were measured in placentae from 17 women with GDM and 17 normoglycaemic pregnancies, matched for maternal BMI and gestational age of delivery. ATGL mRNA expression was increased and HSL mRNA expression reduced in placentae from GDM although there was no differences in protein expression of any of the lipases. All lipases were localised to trophoblasts and endothelial cells. The expression of Perilipin 1 and CGI-58 mRNA was increased and GS02 not altered in GDM. These results suggest that there is no difference in expression in these four lipases between GDM and normoglycaemic placentae, and therefore altered lipid transfer via these lipases does not contribute to large for gestational age in infants of women with GDM. PMID:25118138

  2. Fusarium verticillioides: Talking to Friends and Enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is both a symptomless endophyte and a pathogen of maize. At some point, the fungus may synthesize fumonisins which have been linked to a variety of animal diseases including cancer in some animals. In order to minimize losses due to contaminated food or feed, we are workin...

  3. Molecular Identification and Databases in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA sequence-based methods for identifying pathogenic and mycotoxigenic Fusarium isolates have become the gold standard worldwide. Moreover, fusarial DNA sequence data are increasing rapidly in several web-accessible databases for comparative purposes. Unfortunately, the use of Basic Alignment Sea...

  4. Fusarium and other opportunistic hyaline fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  5. Toxicity of fumonisins, mycotoxins from Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by Fusarium, predominantly F. verticillioides. They are present in variable amounts in corn and corn-based feeds and food products. They are suspected risk factors for esophageal cancer and neural tube defects in some human populations depending on corn as a diet s...

  6. Investigating Spore killer of Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most important crops in the world. Fusarium verticillioides may colonize maize as an endophyte or as a pathogen, causing disease at any life stage of the plant. During growth on maize, F. verticillioides can synthesis a number of mycotoxins including fumonisins, which have been l...

  7. Biological and Chemical Complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad ho...

  8. Update: Fusarium Keratitis - United States, 2005 - 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the results of a Fusarium keratitis outbreak investigation being conducted by the United States Centers for Disease Control and Prevention. The epidemiological data indicate that the 2005-2006 outbreaks of corneal infections within the United States are linked to the use of on...

  9. HISTOLOGY AND PHYSIOLOGY OF FUSARIUM HEAD BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight re-emerged as a devastating disease of wheat and barley in the 1990s in the midwestern U.S. Research efforts to control the disease have been hampered by limited knowledge of how the fungal head blight pathogens infect and damage head tissue and what natural defenses the plant h...

  10. Mycotoxigenic Fusarium species in animal feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are among the most studied plant pathogenic fungi, with several species causing diseases on corn, wheat, barley, and other food and feed grains. Decreased yield, as well as diminished quality and value of the grain, results in significant worldwide economic losses. Additionally, ...

  11. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  12. Gastric lipase: localization of the enzyme in the stomach

    SciTech Connect

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-03-05

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using /sup 3/H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined.

  13. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential.

    PubMed

    Snellman, Erick A; Colwell, Rita R

    2004-10-01

    Lipases (EC 3.1.1.3) have received increased attention recently, evidenced by the increasing amount of information about lipases in the current literature. The renewed interest in this enzyme class is due primarily to investigations of their role in pathogenesis and their increasing use in biotechnological applications. Also, many microbial lipases are available as commercial products, the majority of which are used in detergents, cosmetic production, food flavoring, and organic synthesis. Lipases are valued biocatalysts because they act under mild conditions, are highly stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereo-selectivity in catalysis. A number of lipolytic strains of Acinetobacter have been isolated from a variety of sources and their lipases possess many biochemical properties similar to those that have been developed for biotechnological applications. This review discusses the biology of lipase expression in Acinetobacter, with emphasis on those aspects relevant to potential biotechnology applications. PMID:15378387

  14. Screening for lipase activity in the oil palm.

    PubMed

    Sambanthamurthi, R; Rajanaidu, N; Hasnah Parman, S

    2000-12-01

    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value. PMID:11171201

  15. Novel lipase purification methods - a review of the latest developments.

    PubMed

    Tan, Chung Hong; Show, Pau Loke; Ooi, Chien Wei; Ng, Eng-Poh; Lan, John Chi-Wei; Ling, Tau Chuan

    2015-01-01

    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided. PMID:25273633

  16. Porcine pancreatic lipase related protein 2 has high triglyceride lipase activity in the absence of colipase.

    PubMed

    Xiao, Xunjun; Ross, Leah E; Sevilla, Wednesday A; Wang, Yan; Lowe, Mark E

    2013-09-01

    Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy. PMID:23770034

  17. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.

    PubMed

    Oldenburg, Elisabeth; Ellner, Frank

    2015-08-01

    Red ear rot an important disease of maize cultivated in Europe is caused by toxigenic Fusarium species like Fusarium graminearum and Fusarium culmorum. To get detailed information on the time course of the infection process leading to the accumulation of Fusarium mycotoxins in maize ears, a field study was conducted over 2 years with two maize varieties, which were inoculated with F. culmorum or F. graminearum isolates at the stage of female flowering. Every fortnight after inoculation, infection and contamination progress in the ears was followed by visually evaluating disease signs and analysing Fusarium toxin concentrations in the infected ear tissues. In principle, infection and mycotoxin distribution were similar in respect of pathogens, varieties, and years. External infection symptoms showing some small pale or brown-marbled kernels with dark brown pedicels were mainly seen at the ear tip, whereas internal infection symptoms on the rachis were much more pronounced and spread in the upper half showing greyish brownish or pink discoloration of the pith. Well correlated with disease symptoms, a top-down gradient from high to low toxin levels within the ear with considerably higher concentrations in the rachis compared with the kernels was observed. It is suggested that both Fusarium pathogens primarily infect the rachis from the tip toward the bottom, whereas the kernels are subsequently infected via the rachillae connected to the rachis. A special focus on the pronounced disease symptoms visible in the rachis may be an approach to improve the evaluation of maize-genotype susceptibility against red ear rot pathogens. It has to be underlined that the accumulation of Fusarium mycotoxins in the rachis greatly accelerated 6 weeks after inoculation; therefore, highest contamination risk is indicated for feedstuffs containing large amounts of rachis (e.g., corn cob mix), especially when cut late in growing season. PMID:25904523

  18. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  19. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  20. Production of lipase by clinical isolates of Pseudomonas cepacia.

    PubMed Central

    Lonon, M K; Woods, D E; Straus, D C

    1988-01-01

    Ten clinical isolates of Pseudomonas cepacia from the sputum of cystic fibrosis patients were examined for the ability to produce lipase. Lipase substrates used included egg yolk agar, four different polyoxyethylene sorbitans (Tweens), and p-nitrophenylphosphorylcholine, a chromogenic substrate used to assay for phospholipase C. Lipase activity was detected in the filtrates of organisms grown to the exponential phase in either tryptose minimal medium or chemically defined medium. Lipase activity increased in the filtrates if the cultures were allowed to proceed into the stationary phase. None of the isolates produced phospholipase C. Lipase activity on Tween 20 ranged from 41.6 X 10(-3) to 640.0 X 10(-3) U/micrograms of protein. The activity was similar or slightly lower when Tween 40, 60, or 80 was used as the substrate. There was no correlation between lipase activity on Tween and that demonstrated on egg yolk agar. Lipase activity increased as pH increased from 7.0 to 9.0. Boiling for 5 min resulted in 66% loss of enzyme activity. The remaining activity continued to decrease with increasing boiling time. The enzyme was purified by gel filtration on Sephadex G-200, and the resultant preparation, when subjected to polyacrylamide gel electrophoresis, resulted in a single protein band (molecular weight, approximately 25,000) from which lipase activity could be eluted. The purified lipase was not cytotoxic to HeLa cells, nor was it toxic when injected intravenously into mice. PMID:3384918

  1. Biosensor Applications of MAPLE Deposited Lipase

    PubMed Central

    Califano, Valeria; Bloisi, Francesco; Aronne, Antonio; Federici, Stefania; Nasti, Libera; Depero, Laura E.; Vicari, Luciano R. M.

    2014-01-01

    Matrix Assisted Pulsed Laser Evaporation (MAPLE) is a thin film deposition technique derived from Pulsed Laser Deposition (PLD) for deposition of delicate (polymers, complex biological molecules, etc.) materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest) molecules to be deposited in a volatile substance (matrix). Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis. PMID:25587426

  2. Efficient lipase purification using reverse micellar extraction.

    PubMed

    Gaikaiwari, Raghavendra P; Wagh, Shilpa A; Kulkarni, Bhaskar D

    2012-03-01

    Reverse micellar extraction (RME) of enzyme provides an attractive option for conventional method with the potential to achieve purification and concentration in a single step with high yield. This study presents a methodology for optimization of RME with Pseudomonas lipase as model system. Fold-purification, percent recovery and extraction time were the objective functions while the type and concentration of surfactant, contact time, pH, ionic strength, and the ratio of organic to aqueous phase were the decision variables. Under optimized conditions, the AOT (Aerosol OT (bis 2-ethylhexyl) sodium sulfosuccinate)-isooctane system gave a 15-fold purification, 80% recovery and 2.5-fold concentration of the Pseudomonas lipase with process time of 45 min. PMID:22230773

  3. Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction o...

  4. Fate of Fusarium Toxins during the Malting Process.

    PubMed

    Habler, Katharina; Hofer, Katharina; Geißinger, Cajetan; Schüler, Jan; Hückelhoven, Ralph; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2016-02-17

    Little is known about the fate of Fusarium mycotoxins during the barley malting process. To determine the fungal DNA and mycotoxin concentrations during malting, we used barley grain harvested from field plots that we had inoculated with Fusarium species that produce type A or type B trichothecenes or enniatins. Using a recently developed multimycotoxin liquid chromatography-tandem mass stable isotope dilution method, we identified Fusarium-species-specific behaviors of mycotoxins in grain and malt extracts and compared toxin concentrations to amounts of fungal DNA in the same samples. In particular, the type B trichothecenes and Fusarium culmorum DNA contents were increased dramatically up to 5400% after kilning. By contrast, the concentrations of type A trichothecenes and Fusarium sporotrichioides DNA decreased during the malting process. These data suggest that specific Fusarium species that contaminate the raw grain material might have different impacts on malt quality. PMID:26813702

  5. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies.

    PubMed

    Mendes, Adriano A; Freitas, Larissa; de Carvalho, Ana Karine F; de Oliveira, Pedro C; de Castro, Heizir F

    2011-01-01

    The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g(-1) of support) was achieved when the lipase was immobilized on epoxy-SiO(2)-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g(-1) of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g(-1) of gel, and the highest activity (68.8 ± 2.70 IU·g(-1) of support) was obtained when 20 mg of protein·g(-1) was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO(2)-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase. PMID:21811674

  6. Production of lipase by soil fungi and partial characterization of lipase from a selected strain (Penicillium wortmanii).

    PubMed

    Costa, M A; Peralta, R M

    1999-01-01

    Filamentous fungi from soil were screened for their ability to produce lipase. Among 56 filamentous fungi tested, one strain identified as Penicillium wortmanii was selected as the highest lipase producer. Maximum lipase production (12.5 U/ml) was obtained in 7-days cultures utilizing 5% (w/v) olive oil as the carbon source. Optimum pH and temperature for crude lipase were 7.0 and 45 degrees C, respectively. The enzyme was stable at 40 and 45 degrees C and it retained about 55% of its activity when heated at 50 degrees C for 1 hour. PMID:10071862

  7. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.

    PubMed

    Shala-Mayrhofer, Vitore; Varga, Elisabeth; Marjakaj, Robert; Berthiller, Franz; Musolli, Agim; Berisha, Defrime; Kelmendi, Bakir; Lemmens, Marc

    2013-01-01

    After wheat, maize (Zea mays L.) is the second most important cereal crop in Kosovo and a major component of animal feed. The purpose of this study was to analyse the incidence and identity of the Fusarium species isolated from naturally infected maize kernels in Kosovo in 2009 and 2010, as well as the mycotoxin contamination. The disease incidence of Fusarium ear rot (from 0.7% to 40% diseased ears) on maize in Kosovo is high. The most frequently Fusarium spp. identified on maize kernels were Fusarium subglutinans, F. verticillioides/F. proliferatum and F. graminearum. Maize kernel samples were analysed by LC-MS/MS and found to be contaminated with deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, zearalenone, zearalenone-14-sulphate, moniliformin, fumonisin B1 and fumonisin B2. This is the first report on the incidence and identification of Fusarium species isolated from naturally infected maize as well as the mycotoxin contamination in Kosovo. PMID:24779930

  8. The Fusarium Graminearum virulence factor FGL targets an FKBP12 immunophilin of wheat.

    PubMed

    Niu, Xiao-Wei; Zheng, Zi-Yang; Feng, Yi-Gao; Guo, Wang-Zhen; Wang, Xin-Yu

    2013-08-01

    Wheat scab, caused by the fungal pathogen Fusarium graminearum is a devastating disease worldwide. Despite an extensive and coordinated effort to investigate this pathosystem, little progress has been made to understand the molecular basis of host-pathogen interactions, for example how the pathogen causes disease in plant. Recently, a secreted lipase (FGL1) has been identified from the fungus and shown to be an important virulence factor; however, the intrinsic function of FGL1 in plant is unknown. Here, we report the identification of the molecular components that may possibly be involved in the FGL virulence pathway using yeast two hybrid system. FGL gene was amplified from a local virulent strain (F15) and shown to be 99.5% identical to the original published FGL at the amino acid level. We showed that transient expression of this FGL gene by Agroinfiltration in tobacco leaves causes cell death further implicating the role of FGL in virulence. To identify FGL initial physical target in plant, we screened two wheat cDNA libraries using the FGL protein as the bait. From both libraries, a small FKBP-type immunophilin protein, designated wFKBP12, was found to physically interact with FGL. The direct interaction of FGL with wFKBP12 was confirmed in living onion epidermal cells by biomolecular fluorescence complementation (BiFC) assay. To investigate further, we then used wFKBP12 protein as bait and identified an elicitor-responsive protein that contains a potential Ca(2+) binding domain. Semi-quantitative PCR showed that this elicitor-responsive gene is down-regulated during the F. graminearum infection suggesting that this protein may be an important component in FGL virulence pathway. This work serves as an initial step to reveal how fungal lipases act as a general virulence factor. PMID:23648486

  9. New lipase assay using Pomegranate oil coating in microtiter plates.

    PubMed

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. PMID:26343557

  10. Cold active microbial lipases: some hot issues and recent developments.

    PubMed

    Joseph, Babu; Ramteke, Pramod W; Thomas, George

    2008-01-01

    Lipases are glycerol ester hydrolases that catalyze the hydrolysis of triglycerides to free fatty acids and glycerol. Lipases catalyze esterification, interesterification, acidolysis, alcoholysis and aminolysis in addition to the hydrolytic activity on triglycerides. The temperature stability of lipases has regarded as the most important characteristic for use in industry. Psychrophilic lipases have lately attracted attention because of their increasing use in the organic synthesis of chiral intermediates due to their low optimum temperature and high activity at very low temperatures, which are favorable properties for the production of relatively frail compounds. In addition, these enzymes have an advantage under low water conditions due to their inherent greater flexibility, wherein the activity of mesophilic and thermophilic enzymes are severely impaired by an excess of rigidity. Cold-adapted microorganisms are potential source of cold-active lipases and they have been isolated from cold regions and studied. Compared to other lipases, relatively smaller numbers of cold active bacterial lipases were well studied. Lipases isolated from different sources have a wide range of properties depending on their sources with respect to positional specificity, fatty acid specificity, thermostability, pH optimum, etc. Use of industrial enzymes allows the technologist to develop processes that closely approach the gentle, efficient processes in nature. Some of these processes using cold active lipase from C. antarctica have been patented by pharmaceutical, chemical and food industries. Cold active lipases cover a broad spectrum of biotechnological applications like additives in detergents, additives in food industries, environmental bioremediations, biotransformation, molecular biology applications and heterologous gene expression in psychrophilic hosts to prevent formation of inclusion bodies. Cold active enzymes from psychrotrophic microorganisms showing high catalytic

  11. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries. PMID:23648856

  12. Modification of pancreatic lipase properties by directed molecular evolution.

    PubMed

    Colin, Damien Yann; Deprez-Beauclair, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-05-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by approximately 50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity. PMID:20150178

  13. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.

    PubMed

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  14. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lipase test system. 862.1465 Section 862.1465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1465 Lipase test system. (a) Identification....

  15. Development and validation of a lipase nasogastric tube position test

    PubMed Central

    Anderson, Oliver; Carr, Reuben; Harbinson, Merrilee; Hanna, George Bushra

    2016-01-01

    Background Nasogastric tube position should be checked every day by either aspirate pH or chest radiography to prevent fatal misplaced feeding into the lungs. Many patients do not have acidic gastric aspirates and require daily chest radiographs. We developed and validated a lipase test that was compatible with non-acidic gastric aspirates. Methods We conducted evaluations of diagnostic test accuracy at a teaching hospital in development and validation stages. Development: We collected gastric and lung aspirates from 34 consecutive patients. We measured pH and human gastric lipase activity in the laboratory. These data helped us develop the lipase test. Ingenza Ltd (Roslin, Scotland) created tributyrin-coated pH test paper, which human gastric lipase converted into butyric acid, thus correcting false negatives. Validation: We tested nasogastric feeding tube aspirates from 36 consecutive patients with pH and lipase tests, using chest radiography or trial by use as the reference standard. Results Development: We demonstrated human gastric lipase activity in the non-acidic stomach aspirates. Validation: The accuracy of the lipase test (sensitivity 97.2%, specificity 100%) was significantly better than pH (sensitivity 65.7%, specificity 100%, p<0.05). Conclusions When nasogastric tube stomach aspirates were not acidic and pH was falsely negative, the lipase test showed a true positive and was significantly more accurate. PMID:26966548

  16. Lipase production by diverse phylogenetic clades of Aureobasidium pullulans.

    PubMed

    Leathers, Timothy D; Rich, Joseph O; Anderson, Amber M; Manitchotpisit, Pennapa

    2013-10-01

    Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains in clade 9, which exhibit a dark olivaceous pigment, produced the highest levels of lipase, with strain NRRL 62034 yielding 0.57 U lipase/ml. By comparison, Candida cylindracea strain NRRL Y-17506 produced 0.05 U lipase/ml under identical conditions. A. pullulans strain NRRL 62034 reached maximal lipase levels in 5 days on lipase induction medium, while A. pullulans strain NRRL Y-2311-1 and strains in clades 4 and 10 were highest after 6 days. A. pullulans strain NRRL Y-2311-1 and strains in clade 9 produced two extracellular proteins in common, at >50 and <37 kDa. PMID:23801121

  17. Continuous Production of Alkyl Esters Using an Immobilized Lipase Bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An immobilized lipase packed-bed bioreactor was developed for esterifying the free fatty acids in greases as a pretreatment step in the production of their simple alkyl esters for use as biodiesel. The immobilized lipases used in the study were immobilized preparations of Candida antarctica (C. a.)...

  18. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  19. Unraveling the rationale behind organic solvent stability of lipases.

    PubMed

    Chakravorty, Debamitra; Parameswaran, Saravanan; Dubey, Vikash Kumar; Patra, Sanjukta

    2012-06-01

    Organic solvent-stable lipases have pronounced impact on industrial economy as they are involved in synthesis by esterification, interesterification, and transesterification. However, very few of such natural lipases have been isolated till date. A study of the recent past provided few pillars to rely on for this work. The three-dimensional structure, inclusive of the surface and active site, of 29 organic solvent-stable lipases was analyzed by subfamily classification and protein solvent molecular docking based on fast Fourier transform correlation approach. The observations revealed that organic solvent stability of lipases is their intrinsic property and unique with respect to each lipase. In this paper, factors like surface distribution of charged, hydrophobic, and neutral residues, interaction of solvents with catalytically immutable residues, and residues interacting with essential water molecules required for lipase activity, synergistically and by mutualism contribute to render a stable lipase organic solvent. The propensity of surface charge in relation to stability in organic solvents by establishing repulsive forces to exclude solvent molecules from interacting with the surface and prohibiting the same from gaining entry to the protein core, thus stabilizing the active conformation, is a new finding. It was also interesting to note that lipases having equivalent surface-exposed positive and negative residues were stable in a wide range of organic solvents, irrespective of their LogP values. PMID:22562495

  20. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea

    PubMed Central

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun

    2015-01-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  1. Mycotoxin production by Fusarium oxysporum and Fusarium sporotrichioides isolated from Baccharis spp. from Brazil.

    PubMed

    Mirocha, C J; Abbas, H K; Kommedahl, T; Jarvis, B B

    1989-01-01

    Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1). PMID:2705770

  2. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    PubMed

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  3. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    PubMed

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease. PMID:27050570

  4. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    PubMed

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation. PMID:23985489

  5. Genomic organization of the murine CTL lipase gene

    SciTech Connect

    Kaplan, M.H.; Boyer, S.N.; Grusby, M.J.

    1996-08-01

    Murine cytotoxic T-lymphocyte (CTL) lipase was originally identified as an IL-4-inducible gene in CD8-positive T cells. To further our understanding of both the function and the regulation of CTL lipase in T cells, we have cloned and characterized the murine gene. Two overlapping phage clones spanning 29 kb contain the entire CTL lipase gene. The exon structure in similar to those characterized for the human and canine pancreatic lipase-related protein 1 genes, with notable differences in the 5{prime} end. Transcripts initiate from a site that matches a consensus for an initiator sequence. Potential cis-regulatory elements in the CTL lipase 5{prime} regulatory region that would confer dual tissue specificity in exocrine pancreas and cytotoxic T lymphocytes are identified. The implications of this promoter organization are discussed. 27 refs., 2 figs.

  6. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  7. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Vishnu Varthini, Lakshmanaperumal; Selvaraju, Kandasamy; Srinivasan, Malathi; Nachiappan, Vasanthi

    2015-01-01

    Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3Δrog1Δ) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis. PMID:25433290

  8. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  9. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.

    PubMed

    Mehta, Akshita; Kumar, Rakesh; Gupta, Reena

    2012-12-01

    Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. In the present study, thirty-two bacterial strains, isolated from soil sample of a hot spring were screened for lipase production. The strain TS-4, which gave maximum activity, was identified as Geobacillus sp. at MTCC, IMTECH, Chandigarh. The isolated lipase producing bacteria were grown on minimal salt medium containing olive oil. Maximal quantities of lipase were produced when 30 h old inoculum was used at 10% (v/v) in production medium and incubated in shaking conditions (150 rpm) for 72 h. The optimal temperature and pH for the bacterial growth and lipase production were found to be 60°C and 9.5, respectively. Maximal enzyme production resulted when mustard oil was used as carbon source and yeast extract as sole nitrogen source at a concentration of 1% (v/v) and 0.15% (w/v), respectively. The different optimized reaction parameters were temperature 65°C, pH 8.5, incubation time 10 min and substrate p-nitrophenyl palmitate. The Km and Vmax values of enzyme were found to be 14 mM and 17.86 μmol ml-1min-1, respectively, with p-nitrophenyl palmitate as substrate. All metal ions studied (1 mM) increased the lipase activity. PMID:23195552

  10. Small-angle X-ray scattering analysis of stearic acid modified lipase.

    PubMed

    Maruyama, T; Nakajima, M; Ichikawa, S; Sano, Y; Nabetani, H; Furusaki, S; Seki, M

    2001-04-01

    Stearic acid modified lipase (from Rhizopus japonicus) exhibited remarkable interesterification activity in n-hexane, but crude native lipase did not. The structure of the fatty acid modified lipase had not been analyzed until now. We analyzed the modified lipase by small-angle X-ray scattering (SAXS) measurements in order to clarify the structure. SAXS measurements showed that the modified lipase consisted of a lipid lamellar structure and implied that the lipase was incorporated into the lamellar structure of stearic acid. The long spacings in the lamellar structures of the modified lipase and stearic acid were measured. PMID:11388447

  11. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  12. Fusarium seed stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium can cause damage to seed stalks that can cause reductions or complete loss of seed production. Fusarium oxysporum has been the reported cause of seed stalk blight, which is characterized by vascular discoloration. We sampled diseased seed stalks and examined isolates for their pathogenicity...

  13. Fusarium Mycotoxins: Biosynthetic Pathways and Role in Virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat and barley is a devastating disease that has reached global proportions. Not only does this disease result in lower yields, but the mycotoxins produced by the fungus affect the quality of the grain. Fusarium sp. can produce a number of mycotoxins, including tric...

  14. Taxonomy and Phylogeny of the Fusarium dimerum Species Group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphospecies Fusarium dimerum, known only from its anamorph, comprises at least 12 phylogenetically distinct species. Analyses of the large subunit ribosomal DNA (LSU rDNA) show they are taxa of the Nectriaceae (Hypocreales) and form a phylogenetically distinct clade within Fusarium. Accordin...

  15. A diagnostic guide for Fusarium Root Rot of pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  16. Genetic Variability Among Isolates of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Yellows, caused by the fungus Fusarium oxysporum f. sp. betae (FOB), can lead to significant yield losses for sugar beet growers. This fungus is variable in pathogenicity, morphology, host range, and symptoms; and, it is not a well characterized pathogen on sugar beet. From 1998 – 2003, 8...

  17. Dry heat treatment of Fusarium-infected cotton seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 has emerged as the dominant disease concern for cotton growers in California. Originally described from Asia, race 4 has spread into multiple counties in the San Joaquin Valley (SJV) since its discovery in one California fiel...

  18. Diversity of Fusarium Species from Highland Areas in Malaysia

    PubMed Central

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-01-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia. PMID:24575229

  19. High speed sorting of Fusarium-damaged wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  20. Fusarium solani infection in a kidney transplant recipient

    PubMed Central

    Mohanty, N. K.; Sahu, S.

    2014-01-01

    Hyalo hypho mycosis due to Fusarium species mainly occurs in immunocompromised hosts. The clinical presentation varies from localized to disseminated involvement. A case of localized cutaneous fusariosis caused by Fusarium solani in a renal transplant patient is described and the skin manifestations of the disease are discussed. PMID:25249722

  1. Fusarium Race 4: Commercial cultivar screening for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt (FOV) of cotton in California has been considered a potentially serious fungal disease for many decades in areas of the San Joaquin Valley (SJV). In the past, damage from Fusarium has been notable only in areas with the combination of: (a) moderate to high populations of one or more sp...

  2. Fusarium oxysporum f. sp. vasinfectum race 4 in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief review of research on Fusarium oxysporum Schlechtend.:Fr. f. sp. vasinfectum (Atk.) W.C. Snyder & H.N. Hans. race 4 in California is presented. Fusarium wilt has recently emerged as the dominant disease concern for cotton (Gossypium hirsutum L., G. barbadense L.) growers in California. An es...

  3. Discovery of Fusarium wilt race 4 resistance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans)] is a soil-inhabiting fungus that can survive for long periods in the absence of a host, making it impractical to eradicate from infested fields. This cotton host specific forms of the fungus is comprised of different genotyp...

  4. Metabolomic studies for the interaction Glycine max- Fusarium tucumaniae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden-death syndrome (SDS) of soybean can be caused in Argentina by 4 different Fusarium species: F. brasiliense, F. crassistipitatum, F. tucumaniae and F. virguliforme. Fusarium tucumaniae and F. virguliforme are the primary etiological agents of soybean SDS in Argentina and United States, respect...

  5. Diversity of the Fusarium graminearum species complex on French cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Gibberella ear rot (GER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern...

  6. First report of Fusarium yellows of sugar beet caused by F. oxysporum in Michigan.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows is an important disease in the western United States, and has recently been reported in the Red River Valley. The primary causal agent is Fusarium oxysporum f.sp. betae. In 2005, beet samples were found in Michigan with symptoms typical of Fusarium yellows. Isolates of Fusarium o...

  7. Population of Fusarium graminearum Schwabe associated with head and seedling blight in Slovakia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth of Fusarium species associated with Fusarium Head Blight (FHB) varies depending on agronomic characters and edaphic conditions. We have identified 15 Fusarium species during the 10 years of our investigations in the Slovak Republic. The most commonly identified Fusarium species involved...

  8. Cross Pathogenicity of Fusarium oxysporum f. sp. betae on Sugar Beet and Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, also known as Fusarium yellows, is caused by the fungus Fusarium oxysporum. Fusarium oxysporum is a vascular pathogen with a broad host range including common bean (Phaseolus vulgaris L.) and sugar beet (Beta vulgaris L.) with formae speciales (f. sp.) defined by the ability to cause ...

  9. Adventitious sporulation in Fusarium: The yeast that were not

    PubMed Central

    Lockwood, Matthew B.; Crescencio, Juan Carlos Rico

    2015-01-01

    In immunocompromised patients, Fusarium species cause infections that lead to high mortality. Our case report describes a case of disseminated fusariosis in a neutropenic patient with AML after myelosuppressive chemotherapy, and a neutropenic multiple myeloma patient with Fusarium fungemia awaiting stem cell collection. Both cases highlight the fact that Fusarium can grow as yeast-like structures in the blood causing a delay in diagnosis, and that Fusarium has a tendency to be a resistant organism. Fusarium was only susceptible to amphotericin B in both cases, but we chose to continue treatment with voriconazole in the first case with disseminated infection, despite culture results, in view of his good clinical response. Despite high mortality rates in disseminated infection, our two patients had good outcomes. PMID:26793480

  10. Adventitious sporulation in Fusarium: The yeast that were not.

    PubMed

    Lockwood, Matthew B; Crescencio, Juan Carlos Rico

    2016-01-01

    In immunocompromised patients, Fusarium species cause infections that lead to high mortality. Our case report describes a case of disseminated fusariosis in a neutropenic patient with AML after myelosuppressive chemotherapy, and a neutropenic multiple myeloma patient with Fusarium fungemia awaiting stem cell collection. Both cases highlight the fact that Fusarium can grow as yeast-like structures in the blood causing a delay in diagnosis, and that Fusarium has a tendency to be a resistant organism. Fusarium was only susceptible to amphotericin B in both cases, but we chose to continue treatment with voriconazole in the first case with disseminated infection, despite culture results, in view of his good clinical response. Despite high mortality rates in disseminated infection, our two patients had good outcomes. PMID:26793480

  11. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    PubMed Central

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  12. [Fusarium graminearum presence in wheat samples for human consumption].

    PubMed

    Martinez, Mauro; Castañares, Eliana; Dinolfo, María I; Pacheco, Walter G; Moreno, María V; Stenglein, Sebastián A

    2014-01-01

    One of the most important diseases in cereal crops is Fusarium head blight, being Fusarium graminearum the main etiological agent. This fungus has the ability to produce a wide spectrum and quantity of toxins, especially deoxynivalenol (DON). During the last crop season (2012-2013) the climatic conditions favored Fusarium colonization. The objective of this work was to determine the presence of this fungus as well as the DON content in 50 wheat grain samples. Our results showed that 80% of the samples were contaminated with Fusarium graminearum. Twenty four percent (24%) of the samples contained ≥ 1μg/g DON, 26% ranged from 0,5 and 0,99μg/g, and the remaining 50% had values lower than 0,5μg/g. Correlation was found between the presence of Fusarium graminearum and DON. It is necessary to establish DON limit values in wheat grains for human consumption. PMID:24721273

  13. Clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation

    PubMed Central

    Bang, Chang Seok; Kim, Jin Bong; Park, Sang Hyun; Baik, Gwang Ho; Su, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon

    2016-01-01

    Background/Aims: Non-pancreatic elevations of serum lipase have been reported, and differential diagnosis is necessary for clinical practice. This study aimed to evaluate the clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation. Methods: Patients who were referred for the serum lipase elevation were prospectively enrolled. Clinical findings and serum lipase subtypes were analyzed and compared by dividing the patients into pancreatitis and non-pancreatitis groups. Results: A total of 34 patients (12 pancreatitis vs. 22 non-pancreatitis cases) were enrolled. In univariate analysis, the fraction of pancreatic lipase (FPL) in the total amount of serum lipase subtypes was statistically higher in patients with pancreatitis ([median, 0.004; interquartile range [IQR], 0.003 to 0.011] vs. [median, 0.002; IQR, 0.001 to 0.004], p = 0.04). Based on receiver operating characteristic curve analysis for the prediction of acute pancreatitis, FPL was the most valuable predictor (area under the receiver-operating characteristic curve [AUROC], 0.72; 95% confidence interval [CI], 0.54 to 0.86; sensitivity, 83.3%; specificity, 63.6%; positive predictive value, 55.6%; negative predictive value, 97.5%). In multivariate analysis, a cut-off value higher than 0.0027 for the FPL was associated with acute pancreatitis (odds ratio, 8.3; 95% CI, 1.3 to 51.7; p = 0.02). Conclusions: The results did not support that serum lipase subtype analysis could replace standard lipase measurement for the diagnosis of acute pancreatitis. However, the test demonstrated adequate sensitivity for use in triage or as an add-on test for serum lipase elevation. PMID:27243230

  14. Soybean SDS in South Africa is caused by Fusarium brasiliense and a novel undescribed Fusarium sp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean sudden death syndrome (SDS) was detected in South Africa for the first time during pathogen surveys conducted in 2013-2014. The primary objective of this study was to characterize the 16 slow-growing Fusarium strains that were isolated from the roots of symptomatic plants. Molecular phylogen...

  15. First report of Fusarium wilt caused by Fusarium oxysporum f. sp. niveum Race 2 in Georgia watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is the number one specialty crop grown in Georgia, a state that ranks fourth nationally in watermelon production. In the last five years, Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon), has been the greatest yield-limiting dise...

  16. Quantitative trait loci (QTL) for Fusarium ELISA compared to QTL for Fusarium head blight resistance and deoxynivalenol content in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Fusarium head blight (FHB) and the deoxynivalenol (DON) mycotoxin produced by the causal agent Fusarium graminearum have reduced barley yield and quality throughout the world. This study was conducted to locate quantitative trait loci (QTL) for FHB, DON, heading date, height, and spik...

  17. Taxonomy and phylogeny of the Fusarium dimerum species group.

    PubMed

    Schroers, Hans-Josef; O'Donnell, Kerry; Lamprecht, Sandra C; Kammeyer, Patricia L; Johnson, Stuart; Sutton, Deanna A; Rinaldi, Michael G; Geiser, David M; Summerbell, Richard C

    2009-01-01

    The morphospecies Fusarium dimerum, known only from its anamorph, comprises at least 12 phylogenetically distinct species. Analyses of the large subunit ribosomal DNA (LSU rDNA) show they are taxa of the Nectriaceae (Hypocreales), related to F. domesticum and form a phylogenetically distinct clade within Fusarium. Fusarium dimerum, for which no herbarium material could be located, is characterized by macroconidia with a single, median septum, according to the original description and illustration. Fusarium lunatum (= F. dimerum var. violaceum) forms similar but longer macroconidia and purple, catenate or clustered chlamydospores. Fusarium delphinoides sp. nov., F. biseptatum sp. nov., F. penzigii sp. nov., F. nectrioides comb. nov. (= F. dimerum var. nectrioides) and two unnamed Fusarium spp. produce macroconidia with mostly two or rarely three septa. The name F. dimerum, which originally was applied to a fungus from a citron, is used for a taxon including isolates causing infections in immunocompetent and immunocompromised patients. Fusarium nectrioides, F. delphinoides, F. penzigii and F. biseptatum are known from soil and dead plant substrata or rarely as agents of trauma-related eye infections of humans. Fusarium lunatum is an inhabitant of the cladodes of species within the cactus genera Opuntia and Gymnocalycium. Its unnamed closest sister taxon, which also forms 1-septate macroconidia and purple, clustered chlamydospores, was isolated from a human sinus. Fusarium delphinoides is a pathogen of the cactus-like African species Hoodia gordonii (Apocynaceae). Phylogenetic analyses based on combined sequences of the internal transcribed spacer region, LSU rDNA and partial sequences of the elongation factor 1-alpha and beta-tubulin genes identified a clade of several species producing predominately 2-septate macroconidia as the reciprocally monophyletic sister of F. dimerum. The basal sister group of the two aforementioned clades includes Fusarium lunatum and two

  18. Influence of environmental factors on lipase production by Lactobacillus plantarum.

    PubMed

    Lopes, M de F; Cunha, A E; Clemente, J J; Carrondo, M J; Crespo, M T

    1999-02-01

    A strain of Lactobacillus plantarum, DSMZ 12028 (Deutsch Sammlung von Mikroorganismen und Zellkulturen), isolated from a Portuguese dry fermented sausage, "chouriço", was found to produce true lipase, producing free fatty acids from triolein (olive oil). This enzymatic activity was found in whole cells, but was negligible in comparison to lipolytic activity in culture supernatant. Therefore, only extracellular activity was studied. The effect of pH, temperature and glucose concentration on extracellular lipase production was studied in continuously stirred tank reactors, the first time this technology has been used to study the production of this enzyme in lactobacilli. Maximum lipase production was achieved at a pH of 5.5 and 30 degrees C and was kept at a significant level over a wide range of dilution rates (0.05-0.4 h-1); the production of lipase was still significant for low pH values, temperature and glucose concentration, conditions that are close to the ones present during chouriço ripening. The effect of glucose concentration was also studied in a batch system. The control of lipase production was found to be related both to glucose concentration in the medium and to the growth rate/dilution rate. Glucose concentration was found to be important for fast lipase production, although it did not influence the maximum lipase activity reached in a batch culture. PMID:10091332

  19. Purification and characterization of an extracellular lipase from Geotrichum marinum.

    PubMed

    Huang, Youliang; Locy, Robert; Weete, John D

    2004-03-01

    An extracellular lipase (EC 3.1.1.3) from Geotrichum marinum was purified 76-fold with 46% recovery using Octyl Sepharose 4 Fast Flow and Bio-Gel A 1.5 m chromatography. The purified enzyme showed a prominent band on SDS-PAGE and a single band on native PAGE based on the activity staining. The molecular mass of the lipase was estimated to be 62 kDa using SDS-PAGE and Bio-Gel A chromatography, indicating that the lipase likely functions as a monomer. The pl of the lipase was determined to be 4.54. The apparent V(max) and Km were 1000 micromol/min/mg protein and 11.5 mM, respectively, using olive oil emulsified with taurocholic acid as substrate. The lipase demonstrated a pH optimum at pH 8.0 and a temperature optimum at 40 degrees C. At 6 mM, Na+, K+, Ca2+, and Mg2+ stimulated activity, but Na+ and K+ at 500 mM and Fe2+ and Mn2+ at 6 mM reduced lipase activity. The anionic surfactant, taurocholic acid, and the zwitterionic surfactant, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, enhanced the activity at 0.1 mM. Other anionic surfactants such as SDS and sodium dioctyl sulfosuccinate, the cationic surfactants methylbenzethonium bromide and cetyltriethylammonium bromide, and the nonionic surfactants Tween-20 and Triton X-100 inhibited the lipase activity to different extents. The lipase was found to have a preference for TG containing cis double bonds in their FA side chains, and the reaction rate increased with an increasing number of double bonds in the side chain. The lipase had a preference for ester bonds at the sn-1 and sn-3 positions over the ester bond at the sn-2 position. PMID:15233404

  20. The cell wall of Fusarium oxysporum.

    PubMed

    Schoffelmeer, E A; Klis, F M; Sietsma, J H; Cornelissen, B J

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50-60% of the total mass of the wall. X-ray diffraction studies showed the presence of alpha-1, 3-glucan in the alkali-soluble cell wall fraction and of beta-1, 3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan. PMID:10441453

  1. Chlorinated organic compounds produced by Fusarium graminearum.

    PubMed

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

  2. Obtaining lipases from byproducts of orange juice processing.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Fleuri, Luciana Francisco

    2014-11-15

    The presence of lipases was observed in three byproducts of orange juice processing: peel, core and frit. The enzymes were characterised biochemically over a wide pH range from neutral (6-7) to alkaline (8-9). The optimal temperature for the activity of these byproducts showed wide range at 20°C to 70°C, indicating fairly high thermostability. The activities were monitored on p-NP-butyrate, p-NP-laurate and p-NP-palmitate. For the first time, lipase activity was detected in these residues, reaching 68.5 lipase U/g for the crude extract from fractions called frit. PMID:24912703

  3. Use of continuous culture to screen for lipase-producing microorganisms and interesterification of butter fat by lipase isolates.

    PubMed

    Pabai, F; Kermasha, S; Morin, A

    1996-05-01

    The continuous cultivation technique was used to investigate the screening for lipase-producing microorganisms from four commercial starters suitable for the degradation of domestic wastes. Using this technique, three strains of lipase-producing bacteria were isolated and identified: Pantoea agglomerans (BB96CC1, BB168CC2) and Pseudomonas fluorescens (BW96CC1). In addition, butter fat induced more lipase production when present in the growth medium. Interesterification of butter fat triacylglycerols by enzymatic extracts of the isolated strains of microorganisms resulted in an appreciable interesterification yield, implying that hydrolysis was suppressed and interesterification of butter fat triacylglycerols was maximized in a microemulsion free-cosurfactant system. PMID:8640605

  4. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: The first member of a new bacterial lipase family XVI.

    PubMed

    Li, Mu; Yang, Li-Rong; Xu, Gang; Wu, Jian-Ping

    2016-06-20

    Bacterial lipases are an important group of enzymes that offer enormous potential in organic synthesis, and there is considerable interest in identifying and developing novel bacterial lipases. In previous studies, strains of the genus Stenotrophomonas were proved to be potential source of lipases, but there is little genetic information describing lipase from the genus Stenotrophomonas. We have cloned and characterized a novel lipase (LipSM54), the first lipase described from the genus Stenotrophomonas. Enzymatic study showed that LipSM54 was a cold-active, solvent-tolerant and alkaline lipase. Using bioinformatics tools, LipSM54 was found to be related only to several putative lipases from different bacterial origins, none of which could be assigned to any previously described bacterial lipase family. LipSM54 and these related putative lipases share four conserved motifs around the catalytic residues. These motifs clearly distinguish them from the known bacterial lipase families. Consequently, LipSM54 is the first characterized member of the novel bacterial lipase family. PMID:27117245

  5. Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery.

    PubMed

    Stewart, Jane E; Kim, Mee-Sook; James, Robert L; Dumroese, R Kasten; Klopfenstein, Ned B

    2006-10-01

    ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore

  6. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    PubMed Central

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition. PMID:26240816

  7. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics. PMID:15176879

  8. Normal lipase drug-induced pancreatitis: a novel finding.

    PubMed

    Shafqet, Muhammad A; Brown, Teresa V; Sharma, Ranita

    2015-03-01

    Acute pancreatitis (AP) in the setting of a normal serum amylase has been previously reported in the literature. Serum lipase on the other hand has a negative predictive value approaching 100% and therefore is an excellent test to rule out AP in the emergency department. The occurrence of AP with a normal lipase is extremely rare and has never been reported in the setting of drug-induced pancreatitis. Thiazide diuretics have been implicated as a cause of pancreatic injury via a number of proposed mechanisms. However, all such cases have been in the setting of elevated serum amylase or lipase. We report the first case of radiographically proven hydrochlorothiazide-induced pancreatitis with a normal lipase. PMID:25227976

  9. Lipase Activity among Bacteria Isolated from Amazonian Soils.

    PubMed

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  10. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase.

    PubMed

    Carrea, G; Corcelli, A; Palmisano, G; Riva, S

    1996-12-20

    Lipase from Aspergillus niger was used for the selective hydrolysis of the 3-O-acetate of cephalosporin C to give an intermediate useful for further chemical elaborations. This lipase was purified to homogeneity and its properties compared with previously published data that present some discrepancies. The lipase proved to be very effective in catalyzing 3-O-acetate hydrolysis and versatile toward substitution on the beta-lactamic ring. In fact, as an example, two other cephalosporinic derivatives, cephalotin and cefotaxime, were efficiently deacetylated. The lipase was immobilized on Eupergit C and employed continuously in either a column or a batch reactor for 2 months without appreciable loss of activity. (c) 1996 John Wiley & Sons, Inc. PMID:18629943

  11. Lipase Activity among Bacteria Isolated from Amazonian Soils

    PubMed Central

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  12. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase.

    PubMed Central

    Kok, R G; van Thor, J J; Nugteren-Roodzant, I M; Vosman, B; Hellingwerf, K J

    1995-01-01

    Acinetobacter calcoaceticus BD413 produces an extracellular lipase, which is encoded by the lipA gene. Five lipase-deficient mutants have been generated via random insertion mutagenesis. Phenotypic characterization of these mutants revealed the presence of as many as four lipolytic enzymes in A. calcoaceticus. Biochemical evidence classified four of the mutants as export mutants, which presumably are defective in translocation of the lipase across the outer membrane. The additional mutant, designated AAC302, displays a LipA- phenotype, and yet the mutation in this strain was localized 0.84 kbp upstream of lipA. Sequence analysis of this region revealed an open reading frame, designated lipB, that is disrupted in AAC302. The protein encoded by this open reading frame shows extensive similarity to a chaperone-like helper protein of several pseudomonads, required for the production of extracellular lipase. Via complementation of AAC302 with a functional extrachromosomal copy of lipA, it could be determined that LipB is essential for lipase production. As shown by the use of a translational LipB-PhoA fusion construct, the C-terminal part of LipB of A. calcoaceticus BD413 is located outside the cytoplasm. Sequence analysis further strongly suggests that A. calcoaceticus LipB is N terminally anchored in the cytoplasmic membrane. Therefore, analogous to the situation in Pseudomonas species, however, lipB in A. calcoaceticus is located upstream of the structural lipase gene. lipB and lipA form a bicistronic operon, and the two genes are cotranscribed from an Escherichia coli sigma 70-type promoter. The reversed order of genes, in comparison with the situation in Pseudomonas species, suggests that LipA and LipB are produced in equimolar amounts. Therefore, the helper protein presumably does not only have a catalytic function, e.g., in folding of the lipase, but is also likely to act as a lipase-specific chaperone. A detailed model of the export route of the lipase of A

  13. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase.

    PubMed

    Kok, R G; van Thor, J J; Nugteren-Roodzant, I M; Vosman, B; Hellingwerf, K J

    1995-06-01

    Acinetobacter calcoaceticus BD413 produces an extracellular lipase, which is encoded by the lipA gene. Five lipase-deficient mutants have been generated via random insertion mutagenesis. Phenotypic characterization of these mutants revealed the presence of as many as four lipolytic enzymes in A. calcoaceticus. Biochemical evidence classified four of the mutants as export mutants, which presumably are defective in translocation of the lipase across the outer membrane. The additional mutant, designated AAC302, displays a LipA- phenotype, and yet the mutation in this strain was localized 0.84 kbp upstream of lipA. Sequence analysis of this region revealed an open reading frame, designated lipB, that is disrupted in AAC302. The protein encoded by this open reading frame shows extensive similarity to a chaperone-like helper protein of several pseudomonads, required for the production of extracellular lipase. Via complementation of AAC302 with a functional extrachromosomal copy of lipA, it could be determined that LipB is essential for lipase production. As shown by the use of a translational LipB-PhoA fusion construct, the C-terminal part of LipB of A. calcoaceticus BD413 is located outside the cytoplasm. Sequence analysis further strongly suggests that A. calcoaceticus LipB is N terminally anchored in the cytoplasmic membrane. Therefore, analogous to the situation in Pseudomonas species, however, lipB in A. calcoaceticus is located upstream of the structural lipase gene. lipB and lipA form a bicistronic operon, and the two genes are cotranscribed from an Escherichia coli sigma 70-type promoter. The reversed order of genes, in comparison with the situation in Pseudomonas species, suggests that LipA and LipB are produced in equimolar amounts. Therefore, the helper protein presumably does not only have a catalytic function, e.g., in folding of the lipase, but is also likely to act as a lipase-specific chaperone. A detailed model of the export route of the lipase of A

  14. S5 Lipase: an organic solvent tolerant enzyme.

    PubMed

    Rahman, Raja Noor Zaliha Abdul; Baharum, Syarul Nataqain; Salleh, Abu Bakar; Basri, Mahiran

    2006-12-01

    In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase. PMID:17205035

  15. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt.

    PubMed

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M; Saxena, Deep R; Jain, Yogendra K

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  16. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt

    PubMed Central

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M.; Saxena, Deep R.; Jain, Yogendra K.

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  17. Characterization of Fusarium verticillioides genes necessary for benzoxazolinone biotransformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize produces the benzoxazinones DIMBOA and DIBOA, which naturally transform into the more stable benzoxazolinones MBOA and BOA, respectively. These weed-suppressive allelopathic compounds are also implicated in resistance to microbial diseases and insect feeding. Fusarium verticillioides, the mo...

  18. Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution.

    PubMed

    Kawasaki, Kosei; Kondo, Hidemasa; Suzuki, Mamoru; Ohgiya, Satoru; Tsuda, Sakae

    2002-07-01

    Bacillus subtilis extracellular lipase (BsL) has an exceptionally low molecular weight (19.4 kDa) for a member of the lipase family. A crystallographic study was performed on BsL in order to design and produce mutant BsL that will be more suitable for industrial uses based on analysis of the three-dimensional structure. Recently, the crystal structure of BsL has been determined at 1.5 A resolution [van Pouderoyen et al. (2001). J. Mol. Biol. 309, 215-226]. In the present study, a new crystal form of BsL which provides diffraction data to higher resolution was obtained and its structure was determined at 1.3 A using the MAD method. It was found that the active-site residue Ser77 has alternate side-chain conformations. The O(gamma) atom of the first conformer forms a hydrogen bond to the N(epsilon) atom of His155, a member of the catalytic triad. In contrast, the second conformer is constructed with a hydrogen bond to the side-chain atom of the adjacent His76. These two conformers presumably correspond to the active and inactive states, respectively. Similar alternate conformations in the catalytic serine residue have been observed in Fusarium solani cutinase determined at 1.0 A resolution and Penicillium purpurogenum acetylxylan esterase at 0.9 A resolution. In addition, a glycerol molecule, which was used as a cryoprotectant, is found to be located in the active site. On the basis of these results, a model for substrate binding in the reaction-intermediate state of BsL is proposed. PMID:12077437

  19. Nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent host.

    PubMed

    Shah, S R; Dalal, B D; Modak, M S

    2016-03-01

    Fusarium onychomycosis is not uncommon in tropical countries but is worth reporting. We report a case of nondermatophytic onychomycosis by Fusarium oxysporum in an immunocompetent woman from Buldhana district of Maharashtra (India). Bilateral involvement of great toe nail, chronic duration and acquisition of infection due to peculiar practice of daily pasting floors with mud and dung, is interesting. The case was successfully treated with topical and oral terbinafine with a dose of 250mg daily for 3 weeks. PMID:26852190

  20. Arabidopsis defense response against Fusarium oxysporum.

    PubMed

    Berrocal-Lobo, Marta; Molina, Antonio

    2008-03-01

    The plant fungal pathogen Fusarium oxysporum (Fox) is the causal agent of root rot or wilt diseases in several plant species, including crops such as tomato (Solanum lycopersicum), banana (Musa sapientum) and asparagus (Asparagus officinalis). Colonization of plants by Fox leads to the necrosis of the infected tissues, a subsequent collapse of vascular vessels and decay of the plant. Plant resistance to Fox appears to be monogenic or oligogenic depending on the host. Perception of Fox by plants follows the concept of elicitor-induced immune response, which in turn activates several plant defense signaling pathways. Here, we review the Fox-derived elicitors identified so far and the interaction among the different signaling pathways mediating plant resistance to Fox. PMID:18289920

  1. Genus-Specific Primers for Study of Fusarium Communities in Field Samples

    PubMed Central

    Edel-Hermann, Véronique; Gautheron, Nadine; Durling, Mikael Brandström; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula; Friberg, Hanna

    2015-01-01

    Fusarium is a large and diverse genus of fungi of great agricultural and economic importance, containing many plant pathogens and mycotoxin producers. To date, high-throughput sequencing of Fusarium communities has been limited by the lack of genus-specific primers targeting regions with high discriminatory power at the species level. In the present study, we evaluated two Fusarium-specific primer pairs targeting translation elongation factor 1 (TEF1). We also present the new primer pair Fa+7/Ra+6. Mock Fusarium communities reflecting phylogenetic diversity were used to evaluate the accuracy of the primers in reflecting the relative abundance of the species. TEF1 amplicons were subjected to 454 high-throughput sequencing to characterize Fusarium communities. Field samples from soil and wheat kernels were included to test the method on more-complex material. For kernel samples, a single PCR was sufficient, while for soil samples, nested PCR was necessary. The newly developed primer pairs Fa+7/Ra+6 and Fa/Ra accurately reflected Fusarium species composition in mock DNA communities. In field samples, 47 Fusarium operational taxonomic units were identified, with the highest Fusarium diversity in soil. The Fusarium community in soil was dominated by members of the Fusarium incarnatum-Fusarium equiseti species complex, contradicting findings in previous studies. The method was successfully applied to analyze Fusarium communities in soil and plant material and can facilitate further studies of Fusarium ecology. PMID:26519387

  2. A thermoalkaliphilic lipase of Geobacillus sp. T1.

    PubMed

    Leow, Thean Chor; Rahman, Raja Noor Zaliha Raja Abd; Basri, Mahiran; Salleh, Abu Bakar

    2007-05-01

    A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70 degrees C and pH 9, respectively. It was stable up to 65 degrees C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na(+), Ca(2+), Mn(2+), K(+) and Mg(2+ ), but inhibited by Cu(2+), Fe(3+) and Zn(2+). Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10-C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T(m) for T1 lipase was around 72.2 degrees C, as revealed by denatured protein analysis of CD spectra. PMID:17426920

  3. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification.

    PubMed

    Xie, Rong; Cui, Caixia; Chen, Biqiang; Tan, Tianwei

    2015-10-01

    The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity. PMID:26245260

  4. Isolation and characterization of some moderately halophilic bacteria with lipase activity.

    PubMed

    Ghasemi, Y; Rasoul-Amini, S; Kazemi, A; Zarrinic, G; Morowvat, M H; Kargar, M

    2011-01-01

    Lipases are an important class of enzymes which catalyze the hydrolysis of long chain triglycerides and constitute the most prominent group ofbiocatalysts for biotechnological applications. There are a number of lipases, produced by some halophilic microorganisms. In this study, some lipase producing bacteria from Maharlu salt lake located in south of Iran were isolated. All isolates were screened for true lipase activity on plates containing olive oil. The lipase activity was measured using titrimetric methods. Among thirty three isolates, thirteen strains demonstrating orange zone around colonies under UV light, were selected for identification using the molecular methods and some morphological characteristics. The bacterium Bacillus vallismortis BCCS 007 with 3.41 +/- 0.14 U/mL lipase activity was selected as the highest lipase producing isolate. This is the first report of isolation and molecular identification of lipase producing bacteria from Maharlu lake. PMID:22073547

  5. Immobilization of active lipase B from Candida antarctica on the surface of polyhydroxyalkanoate inclusions.

    PubMed

    Jahns, Anika C; Rehm, Bernd H A

    2015-04-01

    Polyhydroxyalkanoate (PHA) beads, recombinantly produced in Escherichia coli, were functionalized to display lipase B from Candida antarctica as translational protein fusion. The respective beads were characterized in respect to protein content, functionality, long term storage capacity and re-usability. The direct fusion of the PHA synthase, PhaC, to lipase B yielded active PHA lipase beads capable of hydrolyzing glycerol tributyrate. Lipase B beads showed stable activity over several weeks and re-usability without loss of function. PMID:25407130

  6. Endothelial lipase modulates pressure overload-induced heart failure through alternative pathway for fatty acid uptake.

    PubMed

    Nakajima, Hideto; Ishida, Tatsuro; Satomi-Kobayashi, Seimi; Mori, Kenta; Hara, Tetsuya; Sasaki, Naoto; Yasuda, Tomoyuki; Toh, Ryuji; Tanaka, Hidekazu; Kawai, Hiroya; Hirata, Ken-ichi

    2013-05-01

    Lipoprotein lipase has been considered as the only enzyme capable of generating lipid-derived fatty acids for cardiac energy. Endothelial lipase is another member of the triglyceride lipase family and hydrolyzes high-density lipoproteins. Although endothelial lipase is expressed in the heart, its function remains unclear. We assessed the role of endothelial lipase in the genesis of heart failure. Pressure overload-induced cardiac hypertrophy was generated in endothelial lipase(-/-) and wild-type mice by ascending aortic banding. Endothelial lipase expression in cardiac tissues was markedly elevated in the early phase of cardiac hypertrophy in wild-type mice, whereas lipoprotein lipase expression was significantly reduced. Endothelial lipase(-/-) mice showed more severe systolic dysfunction with left-ventricular dilatation compared with wild-type mice in response to pressure overload. The expression of mitochondrial fatty acid oxidation-related genes, such as carnitine palmitoyltransferase-1 and medium-chain acyl coenzyme A dehydrogenase, was significantly lower in the heart of endothelial lipase(-/-) mice than in wild-type mice. Also, endothelial lipase(-/-) mice had lower myocardial adenosine triphosphate levels than wild-type mice after aortic banding. In cultured cardiomyocytes, endothelial lipase was upregulated by inflammatory stimuli, whereas lipoprotein lipase was downregulated. Endothelial lipase-overexpression in cardiomyocytes resulted in an upregulation of fatty acid oxidation-related enzymes and intracellular adenosine triphosphate accumulation in the presence of high-density lipoprotein. Endothelial lipase may act as an alternative candidate to provide fatty acids to the heart and regulate cardiac function. This effect seemed relevant particularly in the diseased heart, where lipoprotein lipase action is downregulated. PMID:23460280

  7. Lipase-catalyzed fractionation of conjugated linoleic acid isomers.

    PubMed

    Haas, M J; Kramer, J K; McNeill, G; Scott, K; Foglia, T A; Sehat, N; Fritsche, J; Mossoba, M M; Yurawecz, M P

    1999-09-01

    The abilities of lipases produced by the fungus Geotrichum candidum to selectively fractionate mixtures of conjugated linoleic acid (CLA) isomers during esterification of mixed CLA free fatty acids and during hydrolysis of mixed CLA methyl esters were examined. The enzymes were highly selective for cis-9,trans-11-18:2. A commercial CLA methyl ester preparation, containing at least 12 species representing four positional CLA isomers, was incubated in aqueous solution with either a commercial G. candidum lipase preparation (Amano GC-4) or lipase produced from a cloned high-selectivity G. candidum lipase B gene. In both instances selective hydrolysis of the cis-9,trans-11-18:2 methyl ester occurred, with negligible hydrolysis of other CLA isomers. The content of cis-9, trans-11-18:2 in the resulting free fatty acid fraction was between 94 (lipase B reaction) and 77% (GC-4 reaction). The commercial CLA mixture contained only trace amounts of trans-9,cis-11-18:2, and there was no evidence that this isomer was hydrolyzed by the enzyme. Analogous results were obtained with these enzymes in the esterification in organic solvent of a commercial preparation of CLA free fatty acids containing at least 12 CLA isomers. In this case, G. candidum lipase B generated a methyl ester fraction that contained >98% cis-9,trans-11-18:2. Geotrichum candidum lipases B and GC-4 also demonstrated high selectivity in the esterification of CLA with ethanol, generating ethyl ester fractions containing 96 and 80%, respectively, of the cis-9,trans-11 isomer. In a second set of experiments, CLA synthesized from pure linoleic acid, composed essentially of two isomers, cis-9,trans-11 and trans-10,cis-12, was utilized. This was subjected to esterification with octanol in an aqueous reaction system using Amano GC-4 lipase as catalyst. The resulting ester fraction contained up to 97% of the cis-9,trans-11 isomer. After adjustment of the reaction conditions, a concentration of 85% trans-10,cis-12

  8. Differentially expressed proteins associated with Fusarium head blight resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contr...

  9. Fusarium TRI8 determines 3-acetyldeoxynivalenol (3ADON) or 15ADON production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins produced by Fusarium species can promote disease in small grain crops such as wheat and barley. Two main trichothecene production phenotypes (chemotypes) have been identified among strains of Fusarium graminearum and closely related species: strains produce either deoxyniv...

  10. INOCULATION METHODS TO ASSAY WHEAT SEEDLINGS FOR RESISTANCE TO FUSARIUM CROWN ROT IN A CONTROLLED ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adequate Fusarium screening systems must be established to appropriately phenotype mapping populations for accurate QTL identification. The objective of this research was to find an inoculation method with the greatest consistency and least variation for identifying QTL. Two Fusarium pseudograminear...

  11. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum.

    PubMed

    Barka, Frederik; Angstenberger, Max; Ahrendt, Tilman; Lorenzen, Wolfram; Bode, Helge B; Büchel, Claudia

    2016-03-01

    Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1. PMID:26747649

  12. Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum.

    PubMed

    Tutar, Havva; Yilmaz, Elif; Pehlivan, Erol; Yilmaz, Mustafa

    2009-10-01

    Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E((0.3))), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3U/mg protein, which is 0.46 times less than that of the free lipase (35.6U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 degrees C respectively. Kinetic parameters V(max) and K(m) were also determined for the immobilized lipase. It was observed that there is an increase of the K(m) value (7.54mM) and a decrease of the V(max) value (145.0U/mg-protein) comparing with that of the free lipase. PMID:19583977

  13. Lipase-mediated deacetylation and oligomerization of lactonic sophorolipids.

    PubMed

    Hu, Yongmei; Ju, Lu-Kwang

    2003-01-01

    The direct enzymatic polymerization of lactonic sophorolipids (SLs) was investigated with four lipases, including porcine pancreatic lipase (PPL), immobilized Mucor miehei lipase (MML), lyophilized Candida antarctica lipase (Fraction B, CAL-B), and lyophilized Pseudomonas sp. lipase (PSL). Several organic solvents, covering a wide range of polarity, were compared for suitability as the reaction medium. Isopropyl ether and toluene were found most effective. According to the quantification and structure identification by HPLC and LC-MS, the reaction proceeded with the formation of monoacetylated lactonic SLs and the subsequent conversion of the intermediates to oligomers and polymers, presumably through ring-opening polymerization. Temperature was found to have significant effects on the reaction. Both the conversion of reactant SLs and the subsequent formation of oligomers and polymers from the intermediates were faster at 60 degrees C than at 50 degrees C. The substrate selectivity among the three dominant reactant SLs also differed with the temperature. The conversion rate increased with the ring size of the lactones at 60 degrees C, but it decreased with the size at 50 degrees C. PMID:12675564

  14. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  15. Psychrotrophic lipase producers from Arctic soil and sediment samples.

    PubMed

    Rasol, R; Rashidah, A R; Nazuha, R Siti Nur; Smykla, J; Maznah, W O Wan; Alias, S A

    2014-01-01

    Culturable microorganisms were successfully isolated from soil and sediment samples collected in 2011 on the northern coast of Hornsund, West Spitsbergen. A total of 63 single colony isolates from three sampling sites obtained were subjected to temperature dependence study to assess whether they are obligate psychrophilic or psychrotrophic strains. From initial temperature screening, only 53 psychrotrophic isolates were selected that are capable of growing between 4-28 degrees C. The rest that were capable of tolerating higher temperatures up to 37 degrees C were not included in this study. These isolates were chosen for lipase enzyme screening confirmation with the standard plate assay of olive oil and fluorescent dye Rhodamine B. Six lipase positive isolates were also subjected for subsequent lipase enzyme plate screening on tributyrin, triolein, olive oil and palm oil agar. Lipase production by these six isolates was further assayed by using colorimetric method with palm oil and olive oil as the substrate. These isolates with promising lipase activity ranging from 20 U/ml up to 160 U/ml on palm oil and olive oil substrate were successfully identified. Molecular identification by using 16S rRNA revealed that five out of six isolates were Gram-negative Proteobacteria and the other one was a Gram-positive Actinobacteria. PMID:25033666

  16. Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis.

    PubMed

    Nerurkar, Madhura; Joshi, Manasi; Adivarekar, Ravindra

    2015-01-01

    Bioscouring refers to the enzymatic removal of impurities from cotton fabric, which imparts it with improved hydrophilicity for further wet processes. In the present study, the efficacy of lipase from newly isolated marine bacteria Bacillus sonorensis isolated from marine clams Paphia malabarica collected from Kalbadevi estuary, Mumbai, India, has been evaluated for scouring of cotton fabric and compared with conventional alkaline scouring of cotton. As a scouring agent for cotton fabrics, the lipase from B. sonorensis was capable of removing substantial amount of wax from the cotton surface and hydrolyzing it into fatty acids. Bioscouring carried out with lipase at a concentration of 8 % on the weight of the fabric (owf) at pH 9, temperature 60 °C for 120 min showed maximum weight loss and hydrophilicity. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies revealed that the lipase-scoured fabric showed smooth surface indicating no damage to the fabric whereas the surface of the alkaline-scoured fabric appeared rough causing damage to the fabric. Evaluation of fabric properties such as wettability, whiteness, dyeing behaviour, tensile strength and bending rigidity revealed that the bioscouring using lipase from B. sonorensis is as effective as conventional alkaline treatment. PMID:25256798

  17. Cloning and characterization of a salivary digestive lipase from Hessian fly (Diptera: Cecidomyiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secreted digestive lipases have been reported to be virulence factors in fungal pathogens. Here, we report the identification of a putative secreted digestive lipase from larval Hessian fly. Analysis by quantitative real-time PCR of temporal and spatial mRNA levels indicates the lipase is expresse...

  18. PARTIAL PURIFICATION AND PROPERTIES OF LIPASE FROM GERMINATING SEEDS OF JATROPHA CURCAS L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lipase present in the seeds of Jatropha curcas L. was isolated, partially purified, and some of its properties studied. Lipase activity was detected in both the dormant and germinating seeds. The lipase hydrolysed palm kernel, coconut, and olive oils at comparable rates (approximately 5 µg FFA...

  19. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  20. Estolides synthesis catalyzed by immobilized lipases.

    PubMed

    Aguieiras, Erika C G; Veloso, Cláudia O; Bevilaqua, Juliana V; Rosas, Danielle O; da Silva, Mônica A P; Langone, Marta A P

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (-24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  1. [The role of endothelial lipase in atherogenesis].

    PubMed

    Pierart Z, Camila; Serrano L, Valentina

    2012-03-01

    Endothelial lipase (EL) is synthetized by endothelial cells and its main substrates are lipoprotein phospholipids. Over expression of EL reduces high density lipoprotein (HDL) cholesterol and phospholipids, in vivo and in vitro. Inhibition of the enzyme achieves the opposite effects. The synthesis of the enzyme is regulated by interleukin 1 and tumor necrosis factor a. These inflammatory cytokines play a role in diabetes and vascular disease. An increase in vascular mechanical forces, that play a role in atherogenesis, also increase the synthesis of EL. There is expression of EL in endothelial cells, macrophages and muscle cells of atherosclerotic lesions of coronary arteries of humans. This evidence leads to the suspicion that EL plays a role in atherogenesis. There are also higher plasma levels of EL in subjects with type 2 diabetes, who are especially susceptible to the development of vascular lesions. Therefore the inhibition of EL could play an important role in HDL metabolism and could be a new therapeutic strategy for the prevention of atherosclerosis. PMID:22689120

  2. Endothelial dysfunction in adipose triglyceride lipase deficiency.

    PubMed

    Schrammel, Astrid; Mussbacher, Marion; Wölkart, Gerald; Stessel, Heike; Pail, Karoline; Winkler, Sarah; Schweiger, Martina; Haemmerle, Guenter; Al Zoughbi, Wael; Höfler, Gerald; Lametschwandtner, Alois; Zechner, Rudolf; Mayer, Bernd

    2014-06-01

    Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease. PMID:24657704

  3. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  4. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    SciTech Connect

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A. )

    1990-09-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for (14C)triolein, (14C)cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.

  5. Fasting upregulates adipose triglyceride lipase and hormone-sensitive lipase levels and phosphorylation in mouse kidney.

    PubMed

    Marvyn, Phillip M; Bradley, Ryan M; Button, Emily B; Mardian, Emily B; Duncan, Robin E

    2015-06-01

    Circulating non-esterified fatty acids (NEFA) rise during fasting and are taken up by the kidneys, either directly from the plasma or during re-uptake of albumin from glomerular filtrate, and are stored as triacylglycerol (TAG). Subsequent utilization of stored fatty acids requires their hydrolytic release from cellular lipid droplets, but relatively little is known about renal lipolysis. We found that total [(3)H]triolein hydrolase activity of kidney lysates was significantly increased by 15% in the fasted state. Adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) mRNA expression was time-dependently increased by fasting, along with other fatty acid metabolism genes (Pparα, Cd36, and Aox). ATGL and HSL protein levels were also significantly induced (by 239 ± 7% and 322 ± 8%, respectively). Concomitant with changes in total protein levels, there was an increase in ATGL phosphorylation at the AMPK-regulated serine 406 site in the 14-3-3 binding motif, and an increase in HSL phosphorylation at serines 565 and 660 that are regulated by AMPK and PKA, respectively. Using immunofluorescence, we further demonstrate nearly ubiquitous expression of ATGL in the renal cortex with a concentration on the apical/lumenal surface of some cortical tubules. Our findings suggest a role for ATGL and HSL in kidney lipolysis. PMID:25879679

  6. Disseminated Fusarium solani infection with cutaneous nodules in a bone marrow transplant patient.

    PubMed

    Mowbray, D N; Paller, A S; Nelson, P E; Kaplan, R L

    1988-12-01

    Fusarium is a ubiquitous fungus that commonly colonizes ulcerated, burned, or traumatized skin and may cause keratitis and onychomycosis in healthy hosts. Serious disseminated infection due to Fusarium has been reported with increasing frequency in immunocompromised patients. We describe a bone marrow transplant patient who developed fungal septicemia and disseminated skin nodules due to Fusarium solani. Fusarium should be recognized as a potential cause of deep fungal infection in immunocompromised patients. PMID:3069758

  7. Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis

    PubMed Central

    Scully, Erin D.; Hoover, Kelli; Carlson, John; Tien, Ming; Geib, Scott M.

    2012-01-01

    Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were

  8. Candidate genes associated with QTL controlling resistance to fusarium root rot in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot (FRR) of pea (Pisum sativum L.) is a serious pathogen in the USA and Europe and genetic resistance offers an effective and economical control for this pathogen. Fusarium root rot is caused by the fungus pathogen (Haematonectria haematococca (Berk. & Broome) (Anamorph): Fusarium sol...

  9. First report of Fusarium torulosum causing dry rot of seed potato tubers in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Thirteen species of Fusarium have been implicated in fungal dry rots of potatoes worldwide. Among them, eight species have been reported in the northern United S...

  10. Pathogenic and Phylogenetic analysis of Fusarium oxysporum from Sugarbeet in Michigan and Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugarbeet (Beta vulgaris L.), caused by Fusarium oxysporum Schlechtend:FR. f. sp. betae (Stewart) Snyd & Hans, can lead to significant reduction in root yield sucrose percentage, and juice purity. Fusarium yellows has become increasingly common in both Michigan and Minnesota sug...

  11. Evaluation of Methods for Assessing Resistance to Fusarium Crown Rot in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crown rot, caused by a complex of Fusarium species, of which F. pseudograminearum and F. culmorum are the most important, reduces wheat yields in the PNW by an average of 35%. Breeding for resistance requires adequate Fusarium screening systems. One common barrier in Fusarium screening is the large ...

  12. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease that can be caused by several Fusarium spp. A survey was conducted to establish the composition of Fusarium species causing dry rot of seed tubers in Michigan. A total of 370 dry rot symptomatic tubers were collected in 2009 ...

  13. First Report of Fusarium redolens Causing Crown Rot of Wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  14. Near-infrared versus visual sorting of Fusarium-damaged kernels in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels referred to as Fusarium-damaged kernels (FDK). FDK is one of the major grain grading factors and therefore is routinely determined for purposes of quality assurance. Determination o...

  15. Elite-upland cotton germplasm-pool assessment of Fusarium wilt resistance in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is currently the most economic and effective strategy for managing Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] disease. Over the past nine years, a new race of Fusarium (FOV race 4) has increasingly impacted cotton (Gossypium spp.) in production fields in the Sa...

  16. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  17. Evaluation of visual and optical sorting of Fusarium damaged kernels in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels referred to as Fusarium damaged kernels (FDK). Determination of FDK usually is done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from v...

  18. First report of Fusarium proliferatum causing dry rot in Michigan commercial potato (Solanum tuberosum) production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato is a postharvest disease caused by several Fusarium spp. and is of worldwide importance. Thirteen Fusarium spp. have been implicated in fungal dry rots of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern Un...

  19. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  20. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    PubMed

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers. PMID:26687343

  1. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms

    PubMed Central

    2012-01-01

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R2adj) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R2cv) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters. PMID:23016923

  2. Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity.

    PubMed

    Aguieiras, Erika C G; Ribeiro, Douglas S; Couteiro, Pedro P; Bastos, Caenam M B; de Queiroz, Danielle S; Parreira, Juliana M; Langone, Marta A P

    2016-06-01

    Biodiesel production catalyzed by immobilized lipases offers the possibility of easy reuse of the catalyst, which is very important to minimize costs and to make this process economically feasible. In this study, the reuse of three commercial immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM) was investigated in ethanolysis of soybean oil. The effect of the use of solvents (ethanol, butanol, and hexane) to wash the immobilized lipases before the enzyme reuse was evaluated, as well as the lipase reuse without solvent washing. The washing with butanol and ethanol led to the lowest decrease in ester yield after the first batch and allowed the highest glycerol removal (>85 %) from biocatalysts. The biocatalysts were incubated at 50 °C for 2 h in these three solvents. Esterification activities of the enzyme preparations, scanning electron microscopy (SEM) analyses of the beads, and protein content in organic phase were evaluated before and after incubation in the solvent. SEM analysis showed a significant change in beads morphology of Novozym 435 after contact with hexane. For Lipozyme TL IM lipase, this effect was visualized with ethanol. PMID:26883757

  3. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms.

    PubMed

    Wang, Haikuan; Wang, Xiaojie; Li, Xiaolu; Zhang, Yehong; Dai, Yujie; Guo, Changlu; Zheng, Heng

    2012-01-01

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R(2)(adj)) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R(2)(cv)) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters. PMID:23016923

  4. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  5. Purification and preliminary crystallographic analysis of a Penicillium expansum lipase.

    PubMed

    Bian, Chuanbing; Yuan, Cai; Lin, Lin; Lin, Junhan; Shi, Xiaoli; Ye, Xiaoming; Huang, Zixiang; Huang, Mingdong

    2005-08-31

    PF898 is a strain of Penicillium expansum optimized for the high level production of Penicillium expansum lipase (PEL). This PEL is unique compared with other lipases in several aspects, For example, the PEL shows low sequence identities (<30%) to all other known lipases, and high percentage of hydrophobic residues in the N-terminal region. The PEL was purified to homogeneity and shown to be 28 kDa by SDS-PAGE. Crystals suitable for X-ray diffraction analysis were obtained by the sitting-drop method of vapor diffusion with ammonia sulfate as the precipitating agent at 298 K. The crystals have tetragonal lattice and unit-cell parameters of a=b=88.09 A, c=126.54 A. Diffraction data were collected to a resolution of 2.08 A on an in-house rotating-anode generator. PMID:16112629

  6. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed. PMID:27192825

  7. Interesterification of phosphatidylcholine with lipases in organic media.

    PubMed

    Svensson, I; Adlercreutz, P; Mattiasson, B

    1990-06-01

    Lipases were investigated with respect to their ability to catalyse the incorporation of fatty acids into phosphatidylcholine (PC) by interesterification reactions. The enzymes were dried onto solid support materials and the conversions were carried out in water-saturated toluene. Three lipases (two fungal and one plant enzyme) had the desired activity; immobilized lipase from Mucor miehei (Lipozyme) was the most active enzyme. The Lipozyme-catalysed interesterification was selective for the sn-1 position of PC and during 48 h of reaction around 50% of the fatty acids in this position were replaced with heptadecanoic acid, a fatty acid which was practically absent in the original phospholipid. Due to adsorption on the support material and the competing hydrolysis reaction the total amount of PC in the reaction solution decreased to about 40% of the original amount. Higher interesterification rates were obtained with free fatty acids as acyl donors than with fatty acid esters. PMID:1366637

  8. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  9. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    PubMed

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  10. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    SciTech Connect

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF.

  11. Control of Fusarium wilt in banana with Chinese leek.

    PubMed

    Huang, Y H; Wang, R C; Li, C H; Zuo, C W; Wei, Y R; Zhang, L; Yi, G J

    2012-09-01

    The inhibitory effects of Chinese leek(Allium tuberosum) on Fusarium oxysporum f. sp. cubense (Foc) and on Fusarium wilt incidence were studied in order to identify a potential efficient way to control the disease. Adopting the rotation system of Chinese leek-banana reduced the Fusarium wilt incidence and disease severity index by 88 %-97 % and 91 %-96 %, respectively, improved the crop value by 36 %-86 %, in an area heavily infested by Foc between 2007 and 2009. As a result of inoculation in the greenhouse, Chinese leek treatment reduced disease incidence and the disease severity index by 58 % and 62 %, respectively in the variety Baxi (AAA) and by 79 % and 81 %, respectively in the variety Guangfen NO.1 (ABB). Crude extracts of Chinese leek completely inhibited the growth of Foc race 4 on Petri dishes, suppressed the proliferation of the spores by 91 % and caused 87 % spore mortality. The findings of this study suggest that Chinese leek has the potential to inhibit Foc growth and Fusarium wilt incidence. This potential may be developed into an environmentally friendly treatment to control Fusarium wilt of banana. PMID:23144534

  12. Control of Fusarium wilt in banana with Chinese leek

    PubMed Central

    Huang, Y.H.; Wang, R.C.; Li, C. H.; Zuo, C.W.; Wei, Y. R.; Zhang, L.; Yi, G.J.

    2012-01-01

    The inhibitory effects of Chinese leek(Allium tuberosum) on Fusarium oxysporum f. sp. cubense (Foc) and on Fusarium wilt incidence were studied in order to identify a potential efficient way to control the disease. Adopting the rotation system of Chinese leek-banana reduced the Fusarium wilt incidence and disease severity index by 88 %-97 % and 91 %-96 %, respectively, improved the crop value by 36 %-86 %, in an area heavily infested by Foc between 2007 and 2009. As a result of inoculation in the greenhouse, Chinese leek treatment reduced disease incidence and the disease severity index by 58 % and 62 %, respectively in the variety Baxi (AAA) and by 79 % and 81 %, respectively in the variety Guangfen NO.1 (ABB). Crude extracts of Chinese leek completely inhibited the growth of Foc race 4 on Petri dishes, suppressed the proliferation of the spores by 91 % and caused 87 % spore mortality. The findings of this study suggest that Chinese leek has the potential to inhibit Foc growth and Fusarium wilt incidence. This potential may be developed into an environmentally friendly treatment to control Fusarium wilt of banana. PMID:23144534

  13. Taxonomy, biology, and clinical aspects of Fusarium species.

    PubMed Central

    Nelson, P E; Dignani, M C; Anaissie, E J

    1994-01-01

    There are several taxonomic systems available for identifying Fusarium species. The philosophy used in each taxonomic system is discussed as well as problems encountered in working with Fusarium species in culture. Fusarium species are toxigenic, and the mycotoxins produced by these organisms are often associated with animal and human diseases. The implications for the association of the carcinogens, fumonisins, produced by Fusarium moniliforme and other Fusarium species with human diseases are discussed. Foreign-body-associated fusarial infection such as keratitis in contact lens wearers, onychomycosis, skin infections, and disseminated multiorgan infections are discussed. Disseminated fusarial hyalohyphomycosis has emerged as a significant, usually fatal infection in the immunocompromised host. Successful outcome is determined by the degree of immunosuppression, the extent of the infection, and the presence of a removable focus such as an indwelling central venous catheter. These infections may be clinically suspected on the basis of a constellation of clinical and laboratory findings, which should lead to prompt therapy, probably with one of the newer antifungal agents. Perhaps the use of such agents or the use of colony-stimulating factors may improve the outcome of this devastating infection. However, until new approaches for treatment develop, effective preventive measures are urgently needed. Images PMID:7834602

  14. Structural and Functional Characterization of the TRI101 Trichothecene 3-O-Acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: KINETIC INSIGHTS TO COMBATING FUSARIUM HEAD BLIGHT

    SciTech Connect

    Garvey, Graeme S.; McCormick, Susan P.; Rayment, Ivan

    2008-06-30

    Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction of an indigenous fungal protective gene into cereals such as wheat barley and rice. Thus far the gene of choice has been tri101 whose gene product catalyzes the transfer of an acetyl group from acetyl coenzyme A to the C3 hydroxyl moiety of several trichothecene mycotoxins. In vitro this has been shown to reduce the toxicity of the toxins by {approx}100-fold but has demonstrated limited resistance to FHB in transgenic cereal. To understand the molecular basis for the differences between in vitro and in vivo resistance the three-dimensional structures and kinetic properties of two TRI101 orthologs isolated from Fusarium sporotrichioides and Fusarium graminearum have been determined. The kinetic results reveal important differences in activity of these enzymes toward B-type trichothecenes such as deoxynivalenol. These differences in activity can be explained in part by the three-dimensional structures for the ternary complexes for both of these enzymes with coenzyme A and trichothecene mycotoxins. The structural and kinetic results together emphasize that the choice of an enzymatic resistance gene in transgenic crop protection strategies must take into account the kinetic profile of the selected protein.

  15. Microemulsion-based organogels as matrices for lipase immobilization.

    PubMed

    Zoumpanioti, Maria; Stamatis, Haralambos; Xenakis, Aristotelis

    2010-01-01

    Organogels based on water-in-oil microemulsions can be formed using various natural polymers such as gelatin, agar or cellulose derivatives. Enzymes entrapped in the water core of the microemulsion can keep their activity and enhance their stability within the gel matrix. The importance of the microemulsion based organogels (MBGs) leans on their numerous potential biotechnological applications. An important example is the use of various lipase microemulsion systems for hydrolytic or synthetic reactions. In this review, several MBGs are being evaluated as immobilization matrices for various enzymes. The main subject focuses on the parameters that affect the use of MBGs as media for bioorganic reactions using lipases as catalysts. PMID:20156546

  16. JCL Roundtable: Hypertriglyceridemia due to defects in lipoprotein lipase function

    PubMed Central

    Brown, W. Virgil; Goldberg, Ira J.; Young, Stephen G.

    2015-01-01

    In this Roundtable, our intent is to discuss those rare genetic disorders that impair the function of lipoprotein lipase. These cause severe hypertriglyceridemia that appears in early childhood with Mendelian inheritance and usually with full penetrance in a recessive pattern. Dr Ira Goldberg from New York University School of Medicine and Dr Stephen Young from the University of California, Los Angeles have agreed to answer my questions about this topic. Both have done fundamental work in recent years that has markedly altered our views on lipoprotein lipase function. I am going to start by asking them to give us a brief history of this enzyme system as a clinical entity. PMID:26073384

  17. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  18. The allosteric modulation of lipases and its possible biological relevance

    PubMed Central

    Köhler, Jens; Wünsch, Bernhard

    2007-01-01

    Background During the development of an enantioselective synthesis using the lipase from Mucor miehei an unusual reaction course was observed, which was analyzed precisely. For the first time an allosteric modulation of a lipase changing its selectivity was shown. Theory Considering the biological relevance of the discovered regulation mechanism we developed a theory that describes the regulation of energy homeostasis and fat metabolism. Conclusion This theory represents a new approach to explain the cause of the metabolic syndrome and provides an innovative basis for further research activity. PMID:17825093

  19. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases. PMID:23142242

  20. Segregation of secondary metabolite biosynthesis in hybrids of Fusarium fujikuroi and Fusarium proliferatum.

    PubMed

    Studt, L; Troncoso, C; Gong, F; Hedden, P; Toomajian, C; Leslie, J F; Humpf, H-U; Rojas, M C; Tudzynski, B

    2012-07-01

    Fusarium fujikuroi and Fusarium proliferatum are two phylogenetically closely related species of the Gibberella fujikuroi species complex (GFC). In some cases, strains of these species can cross and produce a few ascospores. In this study, we analyzed 26 single ascospore isolates of an interspecific cross between F. fujikuroi C1995 and F. proliferatum D4854 for their ability to produce four secondary metabolites: gibberellins (GAs), the mycotoxins fusarin C and fumonisin B(1), and a family of red polyketides, the fusarubins. Both parental strains contain the biosynthetic genes for all four metabolites, but differ in their ability to produce these metabolites under certain conditions. F. fujikuroi C1995 produces GAs and fusarins, while F. proliferatum D4854 produces fumonisins and fusarubins. The segregation amongst the progeny of these traits is not the expected 1:1 Mendelian ratio. Only eight, six, three and three progeny, respectively, produce GAs, fusarins, fumonisin B(1) and fusarubins in amounts similar to those synthesized by the producing parental strain. Beside the eight highly GA(3)-producing progeny, some of the progeny produce small amounts of GAs, predominantly GA(1), although these strains contain the GA gene cluster of the non-GA-producing F. proliferatum parental strain. Some progeny had recombinant secondary metabolite profiles under the conditions examined indicating that interspecific crosses can yield secondary metabolite production profiles that are atypical of the parent species. PMID:22626844

  1. Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. winter wheat.

    PubMed

    Jin, Feng; Bai, Guihua; Zhang, Dadong; Dong, Yanhong; Ma, Lingjian; Bockus, William; Dowell, Floyd

    2014-05-01

    Fusarium head blight (FHB) is a devastating disease that threatens wheat (Triticum aestivum) production in many areas worldwide. FHB infection results in Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) that dramatically reduce grain yield and quality. More effective and accurate disease evaluation methods are imperative for successful identification of FHB-resistant sources and selection of resistant cultivars. To determine the relationships among different types of resistance, 363 (74 soft and 289 hard) U.S. winter wheat accessions were repeatedly evaluated for FDK and DON concentration in greenhouse and field experiments. Single-kernel near-infrared (SKNIR)-estimated FDK and DON were compared with visually estimated FDK and gas chromatography-mass spectroscopy-estimated DON. Significant correlations were detected between percentage of symptomatic spikelets and visual FDK in the greenhouse and field, although correlations were slightly lower in the field. High correlation coefficients also were observed between visually scored FDK and SKNIR-estimated FDK (0.72, P < 0.001) and SKNIR-estimated DON (0.68, P < 0.001); therefore, both visual scoring and SKNIR methods are useful for estimating FDK and DON in breeding programs. PMID:24400658

  2. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    PubMed

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-01

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications. PMID:26496638

  3. Biological control of Fusarium moniliforme in maize.

    PubMed Central

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-01-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  4. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-01-01

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process. PMID:27323127

  5. Biological control of Fusarium moniliforme in maize.

    PubMed

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-05-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  6. Metabolic engineering of Lactococcus lactis influence of the overproduction of lipase enzyme.

    PubMed

    Raftari, Mohammad; Ghafourian, Sobhan; Bakar, Fatimah Abu

    2013-11-01

    The dairy industry uses lipase extensively for hydrolysis of milk fat. Lipase is used in the modification of the fatty acid chain length, to enhance the flavours of various chesses. Therefore finding the unlimited source of lipase is a concern of dairy industry. Due to the importance of lipase, this study was an attempt to express the lipase from Burkholderia cepacia in Lactococcus lactis. To achieve this, a gene associated with lipase transport was amplified and subcloned in inducible pNZ8148 vector, and subsequently transformed into Lc. lactis NZ9000. The enzyme assay as well as SDS-PAGE and western blotting were carried out to analysis the recombinant lipase expression. Nucleotide sequencing of the DNA insert from the clone revealed that the lipase activity corresponded to an open reading frame consisting of 1092 bp coding for a 37·5-kDa size protein. Blue colour colonies on nile blue sulphate agar and sharp band on 37·5-kD size on SDS-PAGE and western blotting results confirm the successful expression of lipase by Lc. lactis. The protein assay also showed high expression, approximately 152·2 μg/ml.h, of lipase by recombinant Lc. lactis. The results indicate that Lc. lactis has high potential to overproduce the recombinant lipase which can be used commercially for industrially purposes. PMID:24063299

  7. Pancreas-specific lipase concentrations and amylase and lipase activities in the peritoneal fluid of dogs with suspected pancreatitis.

    PubMed

    Chartier, Marie A; Hill, Steve L; Sunico, Sarena; Suchodolski, Jan S; Robertson, Jane E; Steiner, Joerg M

    2014-09-01

    Diagnosing acute pancreatitis in the dog can be challenging. The aim of this study was to determine the concentrations of pancreas-specific lipase immunoreactivity (cPLI), and the activities of amylase and lipase, in the peritoneal fluid from a population of dogs diagnosed with acute pancreatitis based on clinical signs, ultrasonographic findings and serum cPLI concentrations. In a prospective study, cPLI concentrations, and amylase and lipase activities, were measured in the peritoneal fluid of 14 dogs with pancreatitis and 19 dogs with non-pancreatic disease. The sensitivity and specificity of peritoneal fluid cPLI concentration (cut-off value 500 µg/L) were 100.0% (95% confidence interval, CI, 80.7-100.0%) and 94.7% (95% CI 76.7-99.7%), respectively. The sensitivity and specificity of peritoneal fluid amylase (cut-off value 1050 U/L) and lipase activities (cut-off value 500 U/L) were 71.4% (95% CI 44.5-90.2%) and 84.2% (95% CI 62.8-95.8%) for amylase activity, and 92.9% (95% CI 69.5-99.6%) and 94.7% (95% CI 76.7-99.7%) for lipase activity, respectively. In conclusion, peritoneal fluid cPLI concentration was highly sensitive as a complementary diagnostic tool in a group of dogs with suspected acute pancreatitis. Peritoneal fluid lipase activity was not as sensitive as cPLI concentration, but may also support a diagnosis of acute pancreatitis in dogs. PMID:25106805

  8. Black-white differences in postprandial triglyceride response and postheparin lipoprotein lipase and hepatic triglyceride lipase among young men.

    PubMed

    Friday, K E; Srinivasan, S R; Elkasabany, A; Dong, C; Wattigney, W A; Dalferes, E; Berenson, G S

    1999-06-01

    Black-white differences in serum triglycerides and high-density lipoprotein (HDL) cholesterol concentrations are known. However, the metabolic basis for these differences is not clear. This study determined the magnitude of postprandial triglyceride concentrations, lipoprotein lipase and hepatic triglyceride lipase activities in postheparin plasma, and serum lipid and lipoprotein cholesterol concentrations in healthy young adult black men (n = 22) and white men (n = 28). Postprandial triglyceride concentrations were measured at 2, 3, 4, 5, 6, and 8 hours after a standardized test meal. Serum lipid and lipoprotein cholesterol concentrations were similar between the races in this study sample. However, incremental (above basal) increases in triglycerides were significantly greater in white men versus black men at 2 hours (P = .01) and tended to be greater at 3 hours (P = .12) and 4 hours (P = .06) after the fat load. In a multivariate analysis that included age, race, apolipoprotein E (apoE) genotype, fasting triglycerides, obesity measures, alcohol intake, and cigarette use, fasting triglycerides (P = .04) and, to a lesser extent, race (P = .07) were associated independently with the 2-hour incremental increase in triglycerides. The incremental triglyceride response correlated inversely with HDL cholesterol in both whites (r = -.38, P = .04) and blacks (r = -.59, P = .004). Lipoprotein lipase activity was higher (P = .049) and hepatic triglyceride lipase activity lower (P = .0001) in black men compared with white men; racial differences persisted after adjusting for the covariates. While lipoprotein lipase activity tended to associate inversely with the postprandial triglyceride concentration in both races, hepatic triglyceride lipase activity tended to correlate positively in whites and inversely in blacks. These results suggest that compared with whites, blacks may have an efficient lipid-clearing mechanism that could explain the black-white differences in

  9. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus.

    PubMed

    Prathumpai, Wai; Flitter, Simon J; McIntyre, Mhairi; Nielsen, Jens

    2004-11-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y(xp total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7+/-0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3+/-0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60+/-0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10+/-0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall. PMID:15316684

  10. Characterization of Fusarium secorum, a new species causing Fusarium yellowing decline of sugar beet in north central USA.

    PubMed

    Secor, Gary A; Rivera-Varas, Viviana; Christ, Daniela S; Mathew, Febina M; Khan, Mohamed F R; Varrelmann, Mark; Bolton, Melvin D

    2014-01-01

    This study characterized a novel sugar beet (Beta vulgaris L.) pathogen from the Red River Valley in north central USA, which was formally named Fusarium secorum. Molecular phylogenetic analyses of three loci (translation elongation factor1α, calmodulin, mitochondrial small subunit) and phenotypic data strongly supported the inclusion of F. secorum in the Fusarium fujikuroi species complex (FFSC). Phylogenetic analyses identified F. secorum as a sister taxon of F. acutatum and a member of the African subclade of the FFSC. Fusarium secorum produced circinate hyphae sometimes bearing microconidia and abundant corkscrew-shaped hyphae in culture. To assess mycotoxin production potential, 45 typical secondary metabolites were tested in F. secorum rice cultures, but only beauvericin was produced in detectable amounts by each isolate. Results of pathogenicity experiments revealed that F. secorum isolates are able to induce half- and full-leaf yellowing foliar symptoms and vascular necrosis in roots and petioles of sugar beet. Inoculation with F. acutatum did not result in any disease symptoms. The sugar beet disease caused by F. secorum is named Fusarium yellowing decline. Since Fusarium yellowing decline incidence has been increasing in the Red River Valley, disease management options are discussed. PMID:25209635

  11. Colorimetric assay for heterogeneous-catalyzed lipase activity: enzyme-regulated gold nanoparticle aggregation.

    PubMed

    Zhang, Wei; Tang, Yan; Liu, Jia; Jiang, Ling; Huang, Wei; Huo, Feng-Wei; Tian, Danbi

    2015-01-14

    Lipase is a neglected enzyme in the field of gold nanoparticle-based enzyme assays. This paper reports a novel colorimetric probe to rapidly visualize lipase activities by using Tween 20 functioned GNPs (Tween 20-GNPs) as a reporter. The present strategy hence could overcome the limitations caused by the heterogeneous interface in lipase assay. Catalytic hydrolytic cleavage of the ester bond in Tween 20-GNPs by lipase will trigger the rapid aggregation of GNPs at a high salt solution. The color change from red to purple could be used to sense the activity of lipase. The detection limit (3σ) is as low as 2.8 × 10-2 mg/mL. A preliminary enzyme activity screening was carried out for seven commercially purchased lipase samples. It also has been successfully applied to detecting lipase in fermentation broth of Bacillus subtilis without any pretreatment. PMID:25516269

  12. Resorufin butyrate as a soluble and monomeric high-throughput substrate for a triglyceride lipase.

    PubMed

    Lam, Vincent; Henault, Martin; Khougaz, Karine; Fortin, Louis-Jacques; Ouellet, Marc; Melnyk, Roman; Partridge, Anthony

    2012-02-01

    Triglyceride lipases such as lipoprotein lipase, endothelial lipase, and hepatic lipase play key roles in controlling the levels of plasma lipoprotein. Accordingly, small-molecule modulation of these species could alter patient lipid profiles with corresponding health effects. Screening of these enzymes for small-molecule therapeutics has historically involved the use of lipid-based particles to mimic native substrates. However, particle-based artifacts can complicate the discovery of therapeutic molecules. As a simplifying solution, the authors sought to develop an approach involving a soluble and monomeric lipase substrate. Using purified bovine lipoprotein lipase as a model system, they show that the hydrolysis of resorufin butyrate can be fluorescently monitored to give a robust assay (Z' > 0.8). Critically, using parallel approaches, they show that resorufin butyrate is soluble and monomeric under assay conditions. The presented assay should be useful as a simple and inexpensive primary or secondary screen for the discovery of therapeutic lipase modulators. PMID:21956174

  13. A solid-state bioprocess for selecting lipase-producing filamentous fungi.

    PubMed

    Colla, Luciane Maria; Rezzadori, Kátia; Câmara, Stela Kochenborger; Debon, Janaina; Tibolla, Márcia; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2009-01-01

    A solid-state bioprocess with wheat bran and rice husk as substrate was used to isolate filamentous fungi with lipase activity from dairy effluent and soil contaminated with diesel oil. The lipase activity was measured in units, with one unit (U) being defined as the amount of enzyme required to liberate 1 micromol of fatty acids per minute per gram of bran substrate (1 U = 1 micromol min(-1) g(-1)). We obtained 24 isolates of filamentous fungi with lipase activity, 17 from the dairy effluent and 7 from the diesel oil-contaminated soil. The best lipase producers were the dairy effluent isolate Aspergillus E-6, with a maximum lipase activity of 49.81 U, and Aspergillus isolate O-4 recovered from the diesel oil-contaminated soil, with a maximum lipase activity of 45.49 U. Both isolates produced their maximum lipase activity eight days after the start of the bioprocess. PMID:19323278

  14. A convenient test for lipase activity in aqueous-based solutions.

    PubMed

    Guo, Jin; Chen, Cheng-Peng; Wang, Shu-Gen; Huang, Xiao-Jun

    2015-04-01

    We proposed a convenient and accurate method for the measurement of lipase activity in a uniform aqueous-based substrate solution. In this work, lipase from Candida rugosa was used as the model lipase to test its catalytic ability toward p-nitrophenyl palmitate (p-NPP), which was suspended in a mixture of p-NPP ethanol solution and buffer. An ultraviolet-visible spectrophotometer was used to efficiently measure the liberated p-nitrophenol without extraction or centrifugation. Several factors that affected lipase activity were investigated, such as the ratio of p-NPP ethanol solution to buffer, the concentrations of p-NPP and lipase, as well as the temperature, reaction time, pH and agitation rate. Additionally, enzyme catalytic parameters such as Km, Vm and "activation energy" were also assessed. We determined the optimal conditions for lipase in this homogeneous system and demonstrated lipase's catalytic performance in this condition followed Michealis-Menten kinetics. PMID:25765304

  15. A Bioactivity-Based Method for Screening, Identification of Lipase Inhibitors, and Clarifying the Effects of Processing Time on Lipase Inhibitory Activity of Polygonum Multiflorum.

    PubMed

    Chang, Yan-Xu; Ge, Ai-Hua; Jiang, Yan; Teye Azietaku, John; Li, Jin; Gao, Xiu-Mei

    2016-01-01

    Traditional Chinese medicine (TCM) has been used for the treatment of many complex diseases. However, the bioactive components are always undefined. In this study, a bioactivity-based method was developed and validated to screen lipase inhibitors and evaluate the effects of processing on the lipase inhibitory activity of TCM by ultrahigh performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and fraction collector (UHPLC/Q-TOF-MS-FC). The results showed that both Polygonum multiflorum and processed P. multiflorum extracts had inhibitory effect against lipase with IC50 values of 38.84 μg/mL and 190.6 μg/mL, respectively. Stilbenes, phenolic acid, flavonoids, and anthraquinones were considered to be the potential lipase inhibitors. Eleven potential lipase inhibitors were simultaneously determined by UHPLC. Principal component analysis (PCA) was employed in exploring the effects of processing time on lipase inhibitory activity of P. multiflorum. Compared with conventional methods, a bioactivity-based method could quantitatively analyze lipase inhibitory activity of individual constituent and provide the total lipase inhibitory activity of the samples. The results demonstrated that the activity integrated UHPLC/Q-TOF-MS-FC method was an effective and powerful tool for screening and identifying lipase inhibitors from traditional Chinese medicines. PMID:26925151

  16. A Bioactivity-Based Method for Screening, Identification of Lipase Inhibitors, and Clarifying the Effects of Processing Time on Lipase Inhibitory Activity of Polygonum Multiflorum

    PubMed Central

    Chang, Yan-xu; Ge, Ai-hua; Jiang, Yan; Teye Azietaku, John; Li, Jin; Gao, Xiu-mei

    2016-01-01

    Traditional Chinese medicine (TCM) has been used for the treatment of many complex diseases. However, the bioactive components are always undefined. In this study, a bioactivity-based method was developed and validated to screen lipase inhibitors and evaluate the effects of processing on the lipase inhibitory activity of TCM by ultrahigh performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and fraction collector (UHPLC/Q-TOF-MS-FC). The results showed that both Polygonum multiflorum and processed P. multiflorum extracts had inhibitory effect against lipase with IC50 values of 38.84 μg/mL and 190.6 μg/mL, respectively. Stilbenes, phenolic acid, flavonoids, and anthraquinones were considered to be the potential lipase inhibitors. Eleven potential lipase inhibitors were simultaneously determined by UHPLC. Principal component analysis (PCA) was employed in exploring the effects of processing time on lipase inhibitory activity of P. multiflorum. Compared with conventional methods, a bioactivity-based method could quantitatively analyze lipase inhibitory activity of individual constituent and provide the total lipase inhibitory activity of the samples. The results demonstrated that the activity integrated UHPLC/Q-TOF-MS-FC method was an effective and powerful tool for screening and identifying lipase inhibitors from traditional Chinese medicines. PMID:26925151

  17. Host to a Stranger: Arabidopsis and Fusarium Ear Blight.

    PubMed

    Brewer, Helen C; Hammond-Kosack, Kim E

    2015-10-01

    Fusarium ear blight (FEB) is a devastating fungal disease of cereal crops. Outbreaks are sporadic and current control strategies are severely limited. This review highlights the use of Arabidopsis to study plant-FEB interactions. Use of this pathosystem has identified natural variation in Fusarium susceptibility in Arabidopsis, and native plant genes and signalling processes modulating the interaction. Recent breakthroughs include the identification of plant- and insect-derived small molecules which increase disease resistance, and the use of a host-induced gene silencing (HIGS) construct to silence an important Fusarium gene to prevent infection. Arabidopsis has also been used to study other fungi that cause cereal diseases. These findings offer the potential for translational research in cereals which could yield much-needed novel control strategies. PMID:26440434

  18. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance.

    PubMed Central

    Desjardins, A E; Hohn, T M; McCormick, S P

    1993-01-01

    Several species of the genus Fusarium and related fungi produce trichothecenes which are sesquiterpenoid epoxides that act as potent inhibitors of eukaryotic protein synthesis. Interest in the trichothecenes is due primarily to their widespread contamination of agricultural commodities and their adverse effects on human and animal health. In this review, we describe the trichothecene biosynthetic pathway in Fusarium species and discuss genetic evidence that several trichothecene biosynthetic genes are organized in a gene cluster. Trichothecenes are highly toxic to a wide range of eukaryotes, but their specific function, if any, in the survival of the fungi that produce them is not obvious. Trichothecene gene disruption experiments indicate that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts. Understanding the regulation and function of trichothecene biosynthesis may aid in development of new strategies for controlling their production in food and feed products. Images PMID:8246841

  19. Fusarium langsethiae sp. nov. on cereals in Europe.

    PubMed

    Torp, Mona; Nirenberg, Helgard I

    2004-09-15

    A new species of Fusarium, Fusarium langsethiae, is described, illustrated and discussed. This species is isolated from kernels of oats, wheat and barley in several European countries. Morphologically, the species resembles Fusarium poae. It is differentiated from F. poae by slower growth, less aerial mycelium and absence of odour; its napiform or globose conidia are borne in the aerial mycelium on the agar surface on often bent phialides which exhibit sometimes more than one opening, whereas those of F. poae are produced on straight monophialides mostly in the aerial mycelium. No sporodochial conidia are formed by F. langsethiae even under near-UV light (nUV). Based on morphological characters, the species is placed in the section Sporotrichiella. PMID:15337590

  20. Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms.

    PubMed

    Boekema, Bouke K H L; Beselin, Anke; Breuer, Michael; Hauer, Bernhard; Koster, Margot; Rosenau, Frank; Jaeger, Karl-Erich; Tommassen, Jan

    2007-06-01

    Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased approximately 7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indicating that hexadecane did not affect lipase gene expression at the transcriptional level, which was confirmed using lipA-gfp reporter constructs. Instead, hexadecane appeared to enhance lipase secretion, since the amounts of lipase in the culture supernatant increased in the presence of hexadecane, with a concomitant decrease in the cells, even when protein synthesis was inhibited with chloramphenicol. In the presence of olive oil as a carbon source, nonionic detergents, such as Tween 80, increased extracellular lipase activity twofold. Like hexadecane, Tween 80 appeared to stimulate lipase secretion, although in a more disruptive manner, since other, normally nonsecreted proteins were found in the culture supernatant. Additionally, like olive oil, Tween 80 was found to induce lipase gene expression in strain PG1 in medium containing sucrose as a carbon source but not in glucose-containing medium, suggesting that lipase gene expression is prone to catabolite repression. In contrast, lipase production in the lipase-overproducing strain LU8093 was independent of the presence of an inducer and was not inhibited by glucose. In conclusion, hexadecane and Tween 80 enhance lipase production in B. glumae, and they act via different mechanisms. PMID:17468265

  1. Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms▿

    PubMed Central

    Boekema, Bouke K. H. L.; Beselin, Anke; Breuer, Michael; Hauer, Bernhard; Koster, Margot; Rosenau, Frank; Jaeger, Karl-Erich; Tommassen, Jan

    2007-01-01

    Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased ∼7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indicating that hexadecane did not affect lipase gene expression at the transcriptional level, which was confirmed using lipA-gfp reporter constructs. Instead, hexadecane appeared to enhance lipase secretion, since the amounts of lipase in the culture supernatant increased in the presence of hexadecane, with a concomitant decrease in the cells, even when protein synthesis was inhibited with chloramphenicol. In the presence of olive oil as a carbon source, nonionic detergents, such as Tween 80, increased extracellular lipase activity twofold. Like hexadecane, Tween 80 appeared to stimulate lipase secretion, although in a more disruptive manner, since other, normally nonsecreted proteins were found in the culture supernatant. Additionally, like olive oil, Tween 80 was found to induce lipase gene expression in strain PG1 in medium containing sucrose as a carbon source but not in glucose-containing medium, suggesting that lipase gene expression is prone to catabolite repression. In contrast, lipase production in the lipase-overproducing strain LU8093 was independent of the presence of an inducer and was not inhibited by glucose. In conclusion, hexadecane and Tween 80 enhance lipase production in B. glumae, and they act via different mechanisms. PMID:17468265

  2. Identification of Fusarium species isolated from stored apple fruit in Croatia.

    PubMed

    Sever, Zdravka; Ivić, Dario; Kos, Tomislav; Miličević, Tihomir

    2012-12-01

    Several species of the genus Fusarium can cause apple fruit to rot while stored. Since Fusarium taxonomy is very complex and has constantly been revised and updated over the last years, the aim of this study was to identify Fusarium species from rotten apples, based on combined morphological characteristics and molecular data. We identified 32 Fusarium isolates from rotten apple fruit of cultivars Golden Delicious, Jonagold, Idared, and Pink Lady, stored in Ultra Low Oxygen (ULO) conditions. Fusarium rot was detected in 9.4 % to 33.2 % of naturally infected apples, depending on the cultivar. The symptoms were similar in all four cultivars: a soft circular brown necrosis of different extent, with or without visible sporulation. Fusarium species were identified by the morphology of cultures grown on potato-dextrose agar (PDA) and carnation leaf agar (CLA). Twenty one isolates were identified as Fusarium avenaceum and confirmed as such with polymerase chain reaction (PCR) using specific primer pair FA-ITSF and FA-ITSR. F. pseudograminearum,F. semitectum, F. crookwellense, and F. compactum were identified by morphological characteristics. F.avenaceum can produce several mycotoxins and its dominance in Fusarium rot points to the risk of mycotoxin contamination of apple fruit juices and other products for human consumption. Pathogenicity tests showed typical symptoms of Fusarium rot in most of the inoculated wounded apple fruits. In this respect Fusarium avenaceum, as the dominant cause of Fusarium rot in stored apple fruits is a typical wound parasite. PMID:23334041

  3. Disseminated infection by Fusarium moniliforme during treatment for malignant lymphoma.

    PubMed Central

    Young, N A; Kwon-Chung, K J; Kubota, T T; Jennings, A E; Fisher, R I

    1978-01-01

    Disseminated infection caused by Fusarium moniliforme is described in a 32-year-old granulocytopenic man with malignant lymphoma being treated with cytotoxic drugs and corticosteroids. Infected skin denuded by antecedent severe varicella-zoster infection was the probable source of fungemia. F. moniliforme grows rapidly on common mycological media as a lavender- to violet-colored mold at 25 to 37 degrees C. Its aerial hyphae produce fusoid macroconidia and characteristic fusiform microconidia in chains. The morphology of hyphae in tissue closely resembles species of Aspergillus and is not diagnostically specific. Morphological characteristics which distinguish cultures of F. moniliforme from other medically important species of Fusarium are discussed. Images PMID:670381

  4. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lipase test system. 862.1465 Section 862.1465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  5. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lipase test system. 862.1465 Section 862.1465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  6. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lipase test system. 862.1465 Section 862.1465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lipase test system. 862.1465 Section 862.1465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  9. Immobilization of lipase onto micron-size magnetic beads.

    PubMed

    Liu, Xianqiao; Guan, Yueping; Shen, Rui; Liu, Huizhou

    2005-08-01

    A novel and economical magnetic poly(methacrylate-divinylbenzene) microsphere (less than 8 microm in diameter) was synthesized by the modified suspension polymerization of methacrylate and cross-linker divinylbenzene in the presence of magnetic fluid. Then, surface aminolysis was employed to obtain a high content of surface amino groups (0.40-0.55 mmolg(-1) supports). The morphology and properties of these magnetic supports were characterized with scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and a vibrating sample magnetometer. These magnetic supports exhibited superparamagnetism with a high specific saturation magnetization (sigma(s)) of 14.6 emicrog(-1). Candida cylindracea lipase was covalently immobilized on the amino-functionalized magnetic supports with the activity recovery up to 72.4% and enzyme loading of 34.0 mgg(-1) support, remarkably higher than the previous studies. The factors involved in the activity recovery and enzymatic properties of the immobilized lipase prepared were studied in comparison with free lipase, for which olive oil was chosen as the substrate. The results show that the immobilized lipase has good stability and reusability after recovery by magnetic separation within 20s. PMID:15998604

  10. Influence of surface hydrophobicity on immobilized lipase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candida antarctica lipase B (CALB) has considerable commercial synthetic utility, particularly in the nonaqueous preparation of chiral pharmaceuticals, polymers, and various bio-based materials. CALB is typically used in an immobilized form, such as Novozym 435, in which the enzyme is non-covalentl...

  11. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    PubMed

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry. PMID:27067648

  12. Maximizing production of Penicillium cyclopium partial acylglycerol lipase.

    PubMed

    Vanot, G; Valérie, D; Guilhem, M-C; Phan Tan Luu, R; Comeau, L-C

    2002-12-01

    Penicillium cyclopium partial acylglycerol lipase production was maximized in shaken batch culture. The effect of inoculum size and substrate concentration on the lipase activity released in the culture medium was visualized using a surface response methodology based on a Doehlert experimental design. The main advantage of this approach is the low number of experiments required to construct a predictive model of the experimental domain. Substrate percentage (corn steep, w/v) ranged from 0.1% to 1.9% and inoculum from 100 spores/ml to 3,200 spores/ml. We determined that an optimal set of experimental conditions for high lipase production was 1.0% substrate and 3,200 spores/ml, with initial pH 5.0, temperature 25 degrees C and shaking speed 120 rpm. Between the conditions giving the minimum and the maximum lipase production, we observed a three-fold increase in both the predicted and the measured values. PMID:12466881

  13. Purification and physicochemical properties of lipase from thermophilic Bacillus aerius.

    PubMed

    Saun, Nitin Kumar; Mehta, Poonam; Gupta, Reena

    2014-01-01

    A thermophilic bacterial isolate producing lipase was isolated from soil of hot spring and identified as Bacillus aerius (MTCC 10978). Peak lipase activity was observed when 30 h old inoculum was used and incubated in shaking conditions for 48 h. The optimal temperature and pH for the bacterial growth and lipase production was found to be 55°C and 8.0 respectively with cottonseed oil as carbon source, yeast extract and beef extract as nitrogen source. The enzyme produced by thermophilic Bacillus aerius (MTCC 10978) was purified to 9-fold with 7.2% recovery by ammonium sulfate precipitation and DEAE-Cellulose Column Chromatography. The enzyme was found to be a protein having a molecular weight of 33 kDa on SDS-PAGE. The Km and Vmax value of lipase using p-nitrophenyl palmitate as calculated from Lineweaver-Burk plot was 2.13 mM and 0.66 µmol/ml/min respectively. PMID:25391687

  14. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  15. Lipase production by Aspergillus ibericus using olive mill wastewater.

    PubMed

    Abrunhosa, Luís; Oliveira, Felisbela; Dantas, Danielle; Gonçalves, Cristiana; Belo, Isabel

    2013-03-01

    Olive mill wastewater (OMW) characteristics make it a suitable resource to be used as a microbial culture media to produce value-added compounds, such as enzymes. In this work, the ability of the novel species Aspergillus ibericus to discolor OMW and produce lipase was studied. An initial screening on plates containing an OMW-based agar medium and an emulsified olive oil/rhodamine-B agar medium was employed to select the strain A. ibericus MUM 03.49. Then, experiments in conical flasks with liquid OMW-based media showed that the fungus could growth on undiluted OMW, with a chemical oxygen demand (COD) of 97 ± 2 g/L, and to produce up to 2,927 ± 54 U/L of lipase. When pure OMW was used in the media, the maximum COD and color reduction achieved were 45 and 97 %, respectively. When OMW diluted to 10 % was used, A. ibericus was able to reduce phenolic and aromatic compounds by 37 and 39 %, respectively. Additionally, lipase production was found to be promoted by the addition of mineral nutrients. When the fermentations were scaled up to a 2-L bioreactor, A. ibericus produced up to 8,319 ± 33 U/L of lipase, and the maximum COD and color reduction were 57 and 24 %, respectively. PMID:22791217

  16. Fatty Acid Signaling: The New Function of Intracellular Lipases

    PubMed Central

    Papackova, Zuzana; Cahova, Monika

    2015-01-01

    Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed. PMID:25674855

  17. Adipocyte lipases and defect of lipolysis in human obesity.

    PubMed

    Langin, Dominique; Dicker, Andrea; Tavernier, Geneviève; Hoffstedt, Johan; Mairal, Aline; Rydén, Mikael; Arner, Erik; Sicard, Audrey; Jenkins, Christopher M; Viguerie, Nathalie; van Harmelen, Vanessa; Gross, Richard W; Holm, Cecilia; Arner, Peter

    2005-11-01

    The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice. In human adipocytes, catecholamine- and natriuretic peptide-induced lipolysis were completely blunted by the HSL inhibitor. When fat cells were not stimulated, glycerol but not fatty acid release was inhibited. HSL and ATGL mRNA levels increased concomitantly during adipocyte differentiation. Abundance of the two transcripts in human adipose tissue was highly correlated in habitual dietary conditions and during a hypocaloric diet, suggesting common regulatory mechanisms for the two genes. Comparison of obese and nonobese subjects showed that obesity was associated with a decrease in catecholamine-induced lipolysis and HSL expression in mature fat cells and in differentiated preadipocytes. In conclusion, HSL is the major lipase for catecholamine- and natriuretic peptide-stimulated lipolysis, whereas ATGL mediates the hydrolysis of triglycerides during basal lipolysis. Decreased catecholamine-induced lipolysis and low HSL expression constitute a possibly primary defect in obesity. PMID:16249444

  18. Lipase-catalyzed synthesis of partial acylglycerols of acetoacetate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available immobilized preparation of Rhizomucor miehei lipase (Lipozyme RMIM) has been employed in the synthesis of partial glycerides of acetoacetate. Due to the chemical reactivitity of the acetoacetyl group, these glycerides could have novel uses in e.g. polymer formation. Both 1...

  19. Fusarial toxins: secondary metabolites of Fusarium fungi.

    PubMed

    Nesic, Ksenija; Ivanovic, Snezana; Nesic, Vladimir

    2014-01-01

    Exposure to mycotoxins occurs worldwide, even though there are geographic and climatic differences in the amounts produced and occurrence of these substances.Mycotoxins are secondary chemical metabolites of different fungi. They are natural contaminants of cereals, so their presence is often inevitable. Among many genera that produce mycotoxins, Fusarium fungi are the most widespread in cereal-growing areas of the planet. Fusarium fungi produce a diversity of mycotoxin types, whose distributions are also diverse. What is produced and where it is produced is influenced primarily by environmental conditions, and crop production and storage methods. The amount of toxin produced depends on physical (viz., moisture, relative humidity, temperature, and mechanical damage), chemical (viz., carbon dioxide,oxygen, composition of substrate, insecticides and fungicides), and biological factors (viz., plant variety, stress, insects, spore load, etc.). Moisture and temperature have a major influence on mold growth rate and mycotoxin production.Among the most toxic and prevalent fusaria) toxins are the following: zearalenone,fumonisins, moniliformin and trichothecenes (T-2/HT-2 toxin, deoxynivalenol,diacetoxyscirpenol, nivalenol). Zearalenone (ZEA; ZON, F-2 toxin) isaphy to estrogenic compound, primarily a field contaminant, which exhibits estrogenic activity and has been implicated in numerous mycotoxicoses of farm animals,especially pigs. Recently, evidence suggests that ZEA has potential to stimulate the growth of human breast cancer cells. Fumonisins are also cancer-promoting metabolites,of which Fumonisin 8 I (FBI) is the most important. Moniliformin (MON) isalso highly toxic to both animals and humans. Trichothecenes are classified as gastrointestinal toxins, dermatotoxins, immunotoxins, hematotoxins, and gene toxins.T-2 and HT-2 toxin, and diacetoxyscirpenol (DAS, anguidine) are the most toxic mycotoxins among the trichothecene group. Deoxynivalenol (DON, vomitoxin) and

  20. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    SciTech Connect

    Deckelbaum, R.J. ); Hamilton, J.A.; Butbul, E.; Gutman, A. ); Moser, A. ); Bengtsson-Olivecrona, G.; Olivecrona, T. ); Carpentier, Y.A. )

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.

  1. Carbon utilization profiles of Fusarium virguliforme isolates.

    PubMed

    Tang, E; Hill, C B; Hartman, G L

    2010-12-01

    Fusarium virguliforme is the cause of sudden death syndrome in soybean. Physiological variability among isolates of the fungus is unknown. One way to measure physiologic variability is to analyze growth on different carbon sources. The carbon source utilization profiles of 18 F. virguliforme isolates were examined using the Biolog FF 96-well microplate, which contains 95 different carbon sources. The utilization of dextrin,D-mannitol, maltotriose,D-lactic acid methyl ester, N-acetyl-D-galactosamine, salicin, D-trehalose, and L-alanine differed significantly among isolates (P = 0.05). Carbon sources were grouped into 3 clusters based on their ability to promote growth of F. virguliforme, after calculating Euclidean distances among them. About 12% of the carbon sources promoted a high amount of mycelial growth, 39% promoted a medium amount of growth, and 49% promoted a low amount of mycelial growth; the latter was not significantly different from the water blank control. A hierarchical tree diagram was produced for the 18 isolates based on their carbon source utilization profiles using Ward's hierarchical analysis method. Two main clusters of isolates were formed. One cluster represented greater average mycelial growth on all of the carbon sources than the other cluster. In this study, variability in carbon source utilization among F. virguliforme isolates was evident, but the results were not associated with geographic origin of the isolates, year collected, or published data on aggressiveness. Additional research is needed to determine if these carbon utilization profiles are associated with other biological characteristics, like spore germination, propagule formation, and saprophytic competitiveness. PMID:21164567

  2. Structure of product-bound SMG1 lipase: active site gating implications.

    PubMed

    Guo, Shaohua; Xu, Jinxin; Pavlidis, Ioannis V; Lan, Dongming; Bornscheuer, Uwe T; Liu, Jinsong; Wang, Yonghua

    2015-12-01

    Monoacylglycerol and diacylglycerol lipases are industrially interesting enzymes, due to the health benefits that arise from the consumption of diglycerides compared to the traditional triglyceride oils. Most lipases possess an α-helix (lid) directly over the catalytic pocket which regulates the activity of the enzyme. Generally, lipases exist in active and inactive conformations, depending on the positioning of this lid subdomain. However, lipase SMG1, a monoacylglycerol and diacylglycerol specific lipase, has an atypical activation mechanism. In the present study we were able to prove by crystallography, in silico analysis and activity tests that only two positions, residues 102 and 278, are responsible for a gating mechanism that regulates the active and inactive states of the lipase, and that no significant structural changes take place during activation except for oxyanion hole formation. The elucidation of the gating effect provided data enabling the rational design of improved lipases with 6-fold increase in the hydrolytic activity toward diacylglycerols, just by providing additional substrate stabilization with a single mutation (F278N or F278T). Due to the conservation of F278 among the monoacylglycerol and diacylglycerol lipases in the Rhizomucor miehei lipase-like family, the gating mechanism described herein might represent a general mechanism applicable to other monoacylglycerol and diacylglycerol lipases as well. Database: Structural data are available in the Protein Data Bank under the accession numbers 4ZRE (F278D mutant) and 4ZRD (F278N mutant). PMID:26365206

  3. Root Rot of Balloon Flower (Platycodon grandiflorum) Caused by Fusarium solani and Fusarium oxysporum.

    PubMed

    Jeon, Chi Sung; Kim, Gyoung Hee; Son, Kyeong In; Hur, Jae-Seoun; Jeon, Kwon-Seok; Yoon, Jun-Hyuck; Koh, Young Jin

    2013-12-01

    Balloon flower (Platycodon grandiflorum) is a kind of mountain herbs whose roots have restorative properties and the cultivating acreage of balloon flower has been steadily increasing in Korea. More frequent rain and high amount of rainfalls as a result of climate changes predisposed balloon flower to the outbreaks of root rot at high-density cultivation area in recent years. Root crowns were usually discolored into brown to blackish brown at first and the infected plants showed slight wilting symptom at early infection stage. Severely infected roots were entirely rotted and whole plants eventually died at late infection stage. The overall disease severities of root rot of balloon flower were quite variable according to the surveyed fields in Jeonnam, Gyeongnam and Jeju Provinces, which ranged from 0.1% to 40%. The root rot occurred more severely at the paddy or clay soils than the sandy soils and their severities were much higher at lowland than upland in the same localty. The disease increased with aging of the balloon flower. The causal fungi were identified as Fusarium solani and F. oxysporum on the basis of their mycological characteristics. The optimum temperature ranges of their mycelial growths was found to be 24°C. The pathogenic characters of F. solani and F. oxysporum treated by artificial wounding inoculation on healthy roots of balloon flower revealed that F. solani was more virulent than F. oxysporum. This study identified the causal agents of root rot of balloon flower as Fusarium solani and F. oxysporum, probably for the first time. PMID:25288973

  4. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...

  5. Controlling fusarium wilt of California strawberries by anaerobic soil disinfestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 2014-15 season, the ASD-treated berry acreage exceeded 1,000 acres in California; more than doubled from the previous season. Fusarium wilt an emerging lethal disease of strawberries in California, can also be controlled by ASD. However, a study has shown that higher soil temperatures are n...

  6. Interaction of varying Fusarium oxysporum isolates with different sugarbeet lines.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum can cause a wilt or yellows, as well as a root rot of sugar beet. Isolates that cause yellows symptoms on sugar beet are classified as F. oxysporum f. sp. betae (FOB). While host resistance to FOB is available, growers have reported variable results when using resistant material...

  7. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium proliferatum is a major cause of maize ear rot and fumonisin contamination and also can cause wheat kernel black point disease. The primary objective of this study was to characterize nine F. proliferatum strains from wheat from Nepal for ability to cause black point and fumonisin contamin...

  8. Cytotoxicity and Phytotoxicity of Trichothecene Mycotoxins Produced by Fusarium spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to plants, causing blights, wilts and other economically-important plant diseases, and to mammals, for example feed-refusal caused by deoxynivalenol (vomitoxin). Macrocyclic trichothec...

  9. DISCONTINUOUS DISTRIBUTION OF THE FUMONISIN BIOSYNTHETIC GENE CLUSTER IN FUSARIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are polyketide mycotoxins produced by Fusarium verticillioides, one of the most common ear and stalk rot pathogens of maize. Consumption of fumonisins has been associated epidemiologically with esophageal cancer in humans and experimentally with kidney and liver cancer in rodents. We us...

  10. Trehalose-related Gene Deletions in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioides...

  11. Case of Keratitis Caused by an Uncommon Fusarium Species

    PubMed Central

    Guarro, Josep; Rubio, Carmen; Gené, Josepa; Cano, Josep; Gil, Joaquina; Benito, Rafael; Moranderia, M. José; Miguez, Enrique

    2003-01-01

    Fusarium polyphialidicum caused a corneal ulcer in a Spanish man. Diagnosis was established by a histopathological study and repeated cultures. The isolate was clearly resistant in vitro to the antifungal agents tested. This is the first case of human or animal mycosis by this rare fungus. PMID:14662993

  12. Current perspectives on Fusarium mycotoxins: fumonisin and deoxynivalenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trichothecene deoxynivalenol (DON) and the fumonisins (FBs) are among the structurally diverse mycotoxins produced by Fusarium species. DON is a contaminant of wheat, barley, and maize, FBs occur mainly in maize, and both are found in grain-based foodstuffs. Both cause diseases in farm animals...

  13. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often refered to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based foo...

  14. The transcriptome of Fusarium graminearum during the infection of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum causes head blight disease in wheat and barley. To help understand the infection process on wheat we studied global gene expression of F. graminearum in a time series from 24 to 196 hours after inoculation, compared to a water control. The infection is rapid and already after 48...

  15. Effects of xanthotoxin treatment on trichothecene production in Fusarium sporotrichioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are four P450 oxygenases involved in the biosynthesis of T-2 toxin in Fusarium sporotrichioides. Exactly how these enzymes react to antimicrobial plant defense compounds is unknown. Xanthotoxin (8-methoxypsoralen), a phototoxic furanocoumarin, is a P450 oxygenase inhibitor. A previous study...

  16. Biosynthesis of fusaric acid by Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically unique biotype of the Fusarium wilt pathogen was first recognized in wilted and dead Upland cotton (Gossypium hirsutum) seedlings in Australia in 1993. Since that time, the disease has spread rapidly with losses greater than 90 percent in some Australian fields where it was first disc...

  17. Effector profiles distinguish formae speciales of Fusarium oxysporum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formae speciales (ff. spp.) of the fungus Fusarium oxysporum are often polyphyletic in their origin, meaning that strains that infect a particular plant species are not necessarily more closely related to each other than to strains that cause disease in another host. Nevertheless, since strains of t...

  18. Spore development and trichothecene mutants of Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts are ongoing to understand the population structure of Fusarium graminearum sensu stricto (Fg) in the U.S., its dynamics and its significance for small grain production. At previous FHB forums, we described the existence of genetically divergent populations of Fg in some regions of Minnesota ...

  19. Molecular genetic classification of Fusarium oxysporum f. sp. vasinfectum races

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the pathogenic diversity present in a population of a given disease organism is necessary for the effective development and deployment of host-plant resistance. The need for rapid and accurate diagnostic tools for identifying races or genotypes of the Fusarium wilt pathogen, Fusa...

  20. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  1. Incidence of Fusarium Species and Mycotoxins in Silage Maize

    PubMed Central

    Eckard, Sonja; Wettstein, Felix E.; Forrer, Hans-Rudolf; Vogelgsang, Susanne

    2011-01-01

    Maize is frequently infected by the Fusarium species producing mycotoxins. Numerous investigations have focused on grain maize, but little is known about the Fusarium species in the entire plant used for silage. Furthermore, mycotoxins persist during the ensiling process and thus endanger feed safety. In the current study, we analyzed 20 Swiss silage maize samples from growers’ fields for the incidence of Fusarium species and mycotoxins. The species spectrum was analyzed morphologically and mycotoxins were measured by LC-MS/MS. A pre-harvest visual disease rating showed few disease symptoms. In contrast, the infection rate of two-thirds of the harvest samples ranged from 25 to 75% and twelve different Fusarium species were isolated. The prevailing species were F. sporotrichioides, F. verticillioides and F. graminearum. No infection specificity for certain plant parts was observed. The trichothecene deoxynivalenol (DON) was found in each sample (ranging from 780 to 2990 µg kg−1). Other toxins detected in descending order were zearalenone, further trichothecenes (nivalenol, HT-2 and T-2 toxin, acetylated DON) and fumonisins. A generalized linear regression model containing the three cropping factors harvest date, pre-precrop and seed treatment was established, to explain DON contamination of silage maize. Based on these findings, we suggest a European-wide survey on silage maize. PMID:22069750

  2. Proposal for a new ISHAM Working group on Clinical Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections caused by Fusarium species can be classified in three classes: 1) Superficial infections of skin and nails; 2) Keratitis of the cornea; and 3) Deep and disseminated infections. Whereas the first two types of these opportunistic infections are generally seen in immunocompetent hosts, the d...

  3. Transgenic resistance to Fusarium head blight in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) and its mycotoxin deoxynivalenol (DON) have been a major problem in the primary malting barley growing regions in North America since 1993. Resistance to FHB and DON accumulation in barley is quantitative, with no immunity available in the primary or secondary gene pools. ...

  4. Fusarium verticillioides gene expression profiling by microarray analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a pathogen of maize and it can produce the toxic polyketide derived secondary metabolites called fumonisins. Fumonisins have been shown to cause animal diseases and are epidemiologically correlated to esophageal cancer and neural tube defects in humans. The genes necess...

  5. FUSARIUM SPECIES SYNTHESIZE ALKALINE PROTEINASES IN INFESTED BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) that is infested with Fusarium head blight (FHB, `scab') is unsuitable for malting and brewing because it may contain mycotoxins and has unacceptable malting quality. Fungal proteinases are apparently involved in plant-microbe interactions, because they degrade the storag...

  6. Functional genomic studies of pathogenicity in Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head blight or scab caused by Fusarium graminearum is a disease of wheat and barley that occurs worldwide and that has great impact on U.S. agriculture and society. Infested cereals are often contaminated with trichothecene and estrogenic mycotoxins. To better understand fungal pathogenesis and deve...

  7. Antifungal Effect of Essential Oils against Fusarium Keratitis Isolates.

    PubMed

    Homa, Mónika; Fekete, Ildikó Pálma; Böszörményi, Andrea; Singh, Yendrembam Randhir Babu; Selvam, Kanesan Panneer; Shobana, Coimbatore Subramanian; Manikandan, Palanisamy; Kredics, László; Vágvölgyi, Csaba; Galgóczy, László

    2015-09-01

    The present study was carried out to investigate the antifungal effects of Cinnamomum zeylanicum, Citrus limon, Juniperus communis, Eucalyptus citriodora, Gaultheria procumbens, Melaleuca alternifolia, Origanum majorana, Salvia sclarea, and Thymus vulgaris essential oils against Fusarium species, the most common etiologic agents of filamentous fungal keratitis in South India. C. zeylanicum essential oil showed strong anti-Fusarium activity, whereas all the other tested essential oils proved to be less effective. The main component of C. zeylanicum essential oil, trans-cinnamaldehyde, was also tested and showed a similar effect as the oil. The in vitro interaction between trans-cinnamaldehyde and natamycin, the first-line therapeutic agent of Fusarium keratitis, was also investigated; an enhanced fungal growth inhibition was observed when these agents were applied in combination. Light and fluorescent microscopic observations revealed that C. zeylanicum essential oil/trans-cinnamaldehyde reduces the cellular metabolism and inhibits the conidia germination. Furthermore, necrotic events were significantly more frequent in the presence of these two compounds. According to our results, C. zeylanicum essential oil/trans-cinnamaldehyde provides a promising basis to develop a novel strategy for the treatment of Fusarium keratitis. PMID:26227503

  8. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  9. Soil treatments against Fusarium oxysporum f. sp. vasinfectum race 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few economically feasible disease management options are available for California cotton producers with fields infested with race 4 of Fusarium oxysporum f. sp. vasinfectum. For treating soil to reduce inoculum levels, past studies indicate that solarization and fumigation with metam-sodium may be a...

  10. ELISA ANALYSIS FOR FUSARIUM IN BARLEY: APPLICATION IN FIELD NURSERIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we described a system of quantifying Fusarium Head Blight (FHB) in barley by ELISA. ELISA had lower variability (lower CV's) than visual scoring or deoxynivalenol (DON) analyses. Thus we tested ELISA, DON, and visual assessment of FHB in 1) selections from a barley doubled-haploid mappi...

  11. Presence of Fusarium graminearum in air associated with sorghum fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum can be included in crop rotations with wheat. However, there are no known reports on the effects of sorghum grown in rotation with wheat on the epidemiology of head scab caused by Fusarium graminearum. Conidia in air samples within two sorghum fields were collected by passive spore trapping ...

  12. Fusarin C production by North American isolates of Fusarium moniliforme.

    PubMed Central

    Farber, J M; Sanders, G W

    1986-01-01

    A liquid culture medium was developed to screen North American isolates of Fusarium moniliforme Sheldon and Fusarium subglutinans (Wollenw. and Reink.) Nelson, Toussoun, and Marasas for their ability to produce fusarin C. Parameters which were important for the optimal biosynthesis of fusarin C included pH (3.0 to 4.0), aeration, and sugar concentration (30 to 40%). Of seven sugars tested, sucrose and glucose were the best carbohydrate sources for mycotoxin production, resulting in levels of fusarin C of greater than 60 ppm (greater than 60 micrograms/g) in liquid culture (28 degrees C; 7 days). A time-course study of fusarin C production was done over a 21-day period, during which time pH values, glucose concentrations, nitrogen levels, and fungal biomass were determined. Of the two Fusarium spp. studied, 13 of 16 isolates of F. moniliforme produced fusarin C in liquid medium (14 of 16 in corn), while none of the 15 isolates of F. subglutinans studied was found to produce the compound. Levels of fusarin C produced by Fusarium sp. isolates growing on corn ranged from 18.7 to 332.0 micrograms/g. PMID:3954349

  13. Fusarin C production by North American isolates of Fusarium moniliforme.

    PubMed

    Farber, J M; Sanders, G W

    1986-02-01

    A liquid culture medium was developed to screen North American isolates of Fusarium moniliforme Sheldon and Fusarium subglutinans (Wollenw. and Reink.) Nelson, Toussoun, and Marasas for their ability to produce fusarin C. Parameters which were important for the optimal biosynthesis of fusarin C included pH (3.0 to 4.0), aeration, and sugar concentration (30 to 40%). Of seven sugars tested, sucrose and glucose were the best carbohydrate sources for mycotoxin production, resulting in levels of fusarin C of greater than 60 ppm (greater than 60 micrograms/g) in liquid culture (28 degrees C; 7 days). A time-course study of fusarin C production was done over a 21-day period, during which time pH values, glucose concentrations, nitrogen levels, and fungal biomass were determined. Of the two Fusarium spp. studied, 13 of 16 isolates of F. moniliforme produced fusarin C in liquid medium (14 of 16 in corn), while none of the 15 isolates of F. subglutinans studied was found to produce the compound. Levels of fusarin C produced by Fusarium sp. isolates growing on corn ranged from 18.7 to 332.0 micrograms/g. PMID:3954349

  14. RAS2 regulates growth and pathogenesis in Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is a ubiquitous pathogen of cereal crops including wheat, barley, and maize. Diseases caused by F. graminearum are of particular concern because harvested grains are frequently contaminated with harmful mycotoxins such as deoxynivalenol (DON). Currently, little is known about ...

  15. Trehalose-related gene deletions in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a widespread corn pathogen that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioide...

  16. Characterization of polyketide synthase genes in the genus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a stalk and ear rot pathogen of maize and can produce the fumonisin mycotoxins. Although the genetics and biochemistry of fumonisin biosynthesis is relatively well understood, little is known about the biosynthesis of other secondary metabolites produced by F. verticilli...

  17. Lignin Degradation by Fusarium solani f. sp. glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome (SDS), caused by the soilborne fungal pathogen Fusarium solani f. sp. glycines, is one of the most important diseases of soybean. Lignin degradation may play a role in the infection, colonization, and survival of the fungus in root tissue . Lignin degradation by F. solani f. sp...

  18. Quantitative and Qualitative Analysis of Biomarkers in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a combination HPLC-DART-TOF-MS system was utilized to identify and quantitatively analyze carbohydrates in wild type and mutant strains of Fusarium verticillioides. Carbohydrate fractions were isolated from F. verticillioides cellular extracts by HPLC using a cation-exchange size-excl...

  19. Fusarium Race 4 host plant resistance: upland and pima screening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wide range of commercial varieties and experimental germplasm from seed companies have been screened for relative susceptibility to Fusarium oxysporum vasinfectum (race 4) in both naturally-infested grower field sites and artificially inoculated greenhouse evaluations. Evaluations have included a ...

  20. Gene Deletion and Functional Analysis of Fusarium verticillioides Trehalose Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a species of fungus that causes stalk, ear, and kernel rot of corn and produces fumonisins, a group of mycotoxins that have dangerous health effects. We have observed previously that the intracellular concentration of trehalose, a disaccharide involved in resistance to st...

  1. Update on Fusarium Race 4 Varietal Evaluations in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, differences have been noted in field situations with the fungal pathogen, Fusarium oxysporum f. sp. vas infectum (FOV), in Acala and Pima cotton in the San Joaquin Valley of California. Typically, earlier-recognized races of FOV only caused significant crop damage and yield impacts ...

  2. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    PubMed

    Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  3. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  4. Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity.

    PubMed

    Parra, Loreto P; Espina, Giannina; Devia, Javier; Salazar, Oriana; Andrews, Barbara; Asenjo, Juan A

    2015-01-01

    Cold-active enzymes are valuable catalysts showing high activity at low and moderate temperatures and low thermostability. Among cold-active enzymes, lipases offer a great potential in detergent, cosmetic, biofuel and food or feed industries. In this paper we describe the identification of novel lipase coding genes and the expression of a lipase with high activity at low temperatures. The genomic DNA from Antarctic seawater bacteria showing lipolytic activity at 4°C was used to amplify five DNA fragments that partially encode novel lipases using specifically designed COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP). All the fragments were found to have a high identity with an α/β-hydrolase domain-containing protein identified by the sequencing of the complete genome of Shewanella frigidimarina NCIMB 400. The complete sequence of one of the lipase-coding gene fragments, lipE13, was obtained by genome walking. Considering that the other fragments had a high identity to the putative lipase from S. frigidimarina NCIMB 400, the complete lipase genes were amplified using oligonucleotide primers designed based on the 5' and 3' regions of the coding sequence of the related protein. This strategy allowed the amplification of 3 lipase-encoding genes of which one was expressed in the periplasm using the Escherichia coli BL21(DE3)/pET-22b(+) expression system. The recombinant protein was obtained with activity toward p-nitrophenyl caproate showing a high specific activity between 15 and 25°C. PMID:25435506

  5. A novel rat contact lens model for Fusarium keratitis

    PubMed Central

    Abou Shousha, Mohamed; Santos, Andrea Rachelle C.; Oechsler, Rafael A.; Iovieno, Alfonso; Maestre-Mesa, Jorge; Ruggeri, Marco; Echegaray, Jose J.; Dubovy, Sander R.; Perez, Victor L.; Miller, Darlene; Alfonso, Eduardo C.

    2013-01-01

    Purpose The aim of this study was to develop and characterize a new contact lens–associated fungal keratitis rat model and to assess the ability of non-invasive spectral-domain optical coherence tomography (SD-OCT) to detect pathological changes in vivo in fungal keratitis. Methods We used SD-OCT to image and measure the cornea of Sprague Dawley rats. Fusarium infection was initiated in the rat eye by fitting Fusarium solani–soaked contact lenses on the experimental eye, while the control animals received contact lenses soaked in sterile saline. The fungal infection was monitored with periodic slit-lamp examination and in vivo SD-OCT imaging of the rat eye, and confirmed by histology, counting of viable fungi in the infected rat cornea, and PCR with specific primers for Fusarium sp. Results We imaged and measured the rat cornea with SD-OCT. Custom-made contact lenses were developed based on the OCT measurements. Incubation of contact lenses in a F. solani suspension resulted in biofilm formation. We induced contact lens–associated Fusarium keratitis by fitting the rat eyes for 4 h with the Fusarium-contaminated contact lenses. The SD-OCT images of the cornea correlated well with the slit-lamp and histopathological results and clearly defined clinical signs of infection, namely, increased corneal thickening, loss of epithelial continuity, hyper-reflective areas representing infiltrates, and endothelial plaques characteristic of fungal infection. Moreover, in three cases, SD-OCT detected the infection without any clear findings on slit-lamp examination. Infection was confirmed with histological fungal staining, PCR, and microbiological culture positivity. Conclusions We developed a highly reproducible rat contact lens model and successfully induced contact lens–associated Fusarium keratitis in this model. The clinical presentation of contact lens–associated Fusarium keratitis in the rat model is similar to the human condition. SD-OCT is a valuable tool that

  6. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing.

    PubMed

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  7. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing

    PubMed Central

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  8. Specific Detection of Fusarium Species in Blood and Tissues by a PCR Technique

    PubMed Central

    Hue, Francois-Xavier; Huerre, Michel; Rouffault, Marie Ange; de Bievre, Claude

    1999-01-01

    Fusarium species are opportunistic nosocomial pathogens that often cause fatal invasive mycoses. We designed a primer pair that amplifies by PCR a fragment of a gene coding for the rRNA of Fusarium species. The DNAs of the main Fusarium species and Neocosmospora vasinfecta but not the DNAs from 11 medically important fungi were amplified by these primers. The lower limit of detection of the PCR system was 10 fg of Fusarium solani DNA by ethidium bromide staining. To test the ability of this PCR system to detect Fusarium DNA in tissues, we developed a mouse model of disseminated fusariosis. Using the PCR, we detected Fusarium DNA in mouse tissues and in spiked human blood. Furthermore, F. solani, Fusarium moniliforme, and Fusarium oxysporum were testing by random amplified polymorphic DNA (RAPD) analysis. The bands produced by RAPD analysis were purified, cloned, and sequenced. The information was used to design primer pairs that selectively amplified one or several Fusarium species. The method developed may be useful for the rapid detection and identification of Fusarium species both from culture and from clinical samples. PMID:10405380

  9. Brassinosteroid enhances resistance to fusarium diseases of barley.

    PubMed

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL. PMID:23777406

  10. FUSARIUM-ID v.2.0: A DNA Sequence Database for Identification and Characterization of Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last two decades, extensive molecular systematic studies have allowed the development of evolutionarily robust species concepts in the genus Fusarium. These advances in species recognition have necessitated the development of sequence-based tools for species identification. In 2004, we re...

  11. Genome distribution and validation of novel microsatellite markers of Fusarium verticillioides and their transferability to other Fusarium species.

    PubMed

    Leyva-Madrigal, Karla Y; Larralde-Corona, Claudia P; Calderón-Vázquez, Carlos L; Maldonado-Mendoza, Ignacio E

    2014-06-01

    Improved population studies in the fungus Fusarium verticillioides require the development of reliable microsatellite markers. Here we report a set of ten microsatellite loci that can be used for genetic diversity analyses in F. verticillioides, and are equally applicable to other fungi, especially those belonging to the Gibberella fujikuroi clade. PMID:24704573

  12. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three races (0, 1, and 2) of Fusarium oxysporum f. sp. niveum have been previously described in watermelon (Citrullus lanatus) based on their ability to cause disease on differential watermelon genotypes. Four isolates of F. oxysporum f. sp. niveum collected from wilted watermelon plants or infeste...

  13. Comparison of ELISA for Fusarium, Visual Screening, and Deoxynivalenol analysis of Fusarium Head Blight for Barley Field Nurseries.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we described an enzyme linked immunosorbent assay (ELISA) for quantifying Fusarium Head Blight (FHB) in barley. ELISA had lower variability than visual disease assessment or deoxynivalenol (DON) analyses. Thus we tested ELISA, DON, and visual assessment of FHB in 1) selections from a barl...

  14. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings.

    PubMed

    Batista, Karla A; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. PMID:23827626

  15. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method. PMID:24055964

  16. Production of L2 lipase by Bacillus sp. strain L2: nutritional and physical factors.

    PubMed

    Shariff, Fairolniza Mohd; Leow, Thean Chor; Mukred, A D; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd

    2007-10-01

    A thermophilic bacterium, Bacillus sp. strain L2 was isolated from a hot spring in Perak, Malaysia. An extracellular lipase activity was detected through plate and broth assays at 70 degrees C after 28 h of incubation. The L2 lipase production was growth dependent as revealed by a number of factors affecting the secretion of extracelullar lipase. As for nutritional factors, casamino acids, trehalose, Ca(2+) and Tween 60 were found to be more effective for lipase production. The optimum physical condition for L2 lipase production was obtained at 70 degrees C after 28 h of cultivation time, at pH 7.0, 150 rpm of agitation rate and 1% of starting inoculum size. The activity staining of crude L2 lipase revealed a clearing zone at 39 kDa. PMID:17910105

  17. Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase.

    PubMed

    Sagiroglu, Ayten

    2008-01-01

    Transesterification reaction was performed using sunflower oil and short-chain alcohol by immobilized lipases in organic solvents. The fatty acid ester, which is the product of this reaction, can be used as a diesel fuel that does not produce sulfur oxide and minimize the soot particulate. Immobilized porcine pancreatic lipase (PPL) and Candida rugosa lipase (CRL) showed the satisfactory activity in these reactions. Immobilization of lipases was carried out using inorganic absorbance Celit 545 particle as a carrier. Organic solvent like hexane in reactions was required when methanol and ethanol were used as alcoholic substrate. The reaction could be performed in absence of solvent when 1-propanol and 1-butanol were used as short-chain alcohol. The activities of immobilized lipases were highly increased in comparison with free lipases because its activity sites became more effective. Immobilized enzyme could be repeatedly used without difficult method of separation and the decrease in its activity was not largely observed. PMID:18437590

  18. Screening of food grade lipases to be used in esterification and interesterification reactions of industrial interest.

    PubMed

    de Paula, Ariela Veloso; Nunes, Gisele Fátima Morais; Silva, Josiane de Lourdes; de Castro, Heizir Ferreira; dos Santos, Júlio César

    2010-02-01

    Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.63 microM/g min) was achieved by Candida rugosa lipase, while the highest interesterification yield (31%, in 72 h) was achieved by lipase from Rhizopus oryzae, with the production of about 15 mM of the triglycerides C(50) and C(52). This lipase also showed a good performance in butyl butyrate synthesis, with an esterification activity of 171.14 microM/g min. The results demonstrated the feasibility of using lipases from C. rugosa for esterification and R. oryzae lipase for both esterification and interesterification reactions. PMID:19263247

  19. Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of type A trichothecenes has been reported in the closely related species Fusarium langsethiae and F. sporotrichioides. Here, we characterized a collection of Fusarium isolates from Siberia and the Russian Far East (hereafter Asian isolates) that produce high levels of the type A trichoth...

  20. Environmental conditions that contribute to development and severity of Sugar Beet Fusarium Yellows caused by Fusarium oxysporum f. sp. betae: temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows in sugar beet, caused by Fusarium oxysporum f. sp. betae, continues to cause significant problems to sugar beet production by causing considerable reductions in root yield, sucrose percentage, and juice purity in affected sugar beets. Environment plays a critical role in pathogen i...

  1. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat caused mainly by members of the Fusarium graminearum species complex (FGSC) is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kerne...

  2. Alterations in Kernel Proteome after Infection with Fusarium culmorum in Two Triticale Cultivars with Contrasting Resistance to Fusarium Head Blight

    PubMed Central

    Perlikowski, Dawid; Wiśniewska, Halina; Kaczmarek, Joanna; Góral, Tomasz; Ochodzki, Piotr; Kwiatek, Michał; Majka, Maciej; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Highlight: The level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to Fusarium head blight. Triticale was used here as a model to recognize new components of molecular mechanism of resistance to Fusarium head blight (FHB) in cereals. Fusarium-damaged kernels (FDK) of two lines distinct in levels of resistance to FHB were applied into a proteome profiling using two-dimensional gel electrophoresis (2-DE) to create protein maps and mass spectrometry (MS) to identify the proteins differentially accumulated between the analyzed lines. This proteomic research was supported by a measurement of alpha- and beta-amylase activities, mycotoxin content, and fungal biomass in the analyzed kernels. The 2-DE analysis indicated a total of 23 spots with clear differences in a protein content between the more resistant and more susceptible triticale lines after infection with Fusarium culmorum. A majority of the proteins were involved in a cell carbohydrate metabolism, stressing the importance of this protein group in a plant response to Fusarium infection. The increased accumulation levels of different isoforms of plant beta-amylase were observed for a more susceptible triticale line after inoculation but these were not supported by a total level of beta-amylase activity, showing the highest value in the control conditions. The more resistant line was characterized by a higher abundance of alpha-amylase inhibitor CM2 subunit and simultaneously a lower activity of alpha-amylase after inoculation. We suggest that the level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to FHB. PMID:27582751

  3. Alterations in Kernel Proteome after Infection with Fusarium culmorum in Two Triticale Cultivars with Contrasting Resistance to Fusarium Head Blight.

    PubMed

    Perlikowski, Dawid; Wiśniewska, Halina; Kaczmarek, Joanna; Góral, Tomasz; Ochodzki, Piotr; Kwiatek, Michał; Majka, Maciej; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Highlight: The level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to Fusarium head blight. Triticale was used here as a model to recognize new components of molecular mechanism of resistance to Fusarium head blight (FHB) in cereals. Fusarium-damaged kernels (FDK) of two lines distinct in levels of resistance to FHB were applied into a proteome profiling using two-dimensional gel electrophoresis (2-DE) to create protein maps and mass spectrometry (MS) to identify the proteins differentially accumulated between the analyzed lines. This proteomic research was supported by a measurement of alpha- and beta-amylase activities, mycotoxin content, and fungal biomass in the analyzed kernels. The 2-DE analysis indicated a total of 23 spots with clear differences in a protein content between the more resistant and more susceptible triticale lines after infection with Fusarium culmorum. A majority of the proteins were involved in a cell carbohydrate metabolism, stressing the importance of this protein group in a plant response to Fusarium infection. The increased accumulation levels of different isoforms of plant beta-amylase were observed for a more susceptible triticale line after inoculation but these were not supported by a total level of beta-amylase activity, showing the highest value in the control conditions. The more resistant line was characterized by a higher abundance of alpha-amylase inhibitor CM2 subunit and simultaneously a lower activity of alpha-amylase after inoculation. We suggest that the level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to FHB. PMID:27582751

  4. Secreted Fungal Effector Lipase Releases Free Fatty Acids to Inhibit Innate Immunity-Related Callose Formation during Wheat Head Infection[W][OPEN

    PubMed Central

    Blümke, Antje; Falter, Christian; Herrfurth, Cornelia; Sode, Björn; Bode, Rainer; Schäfer, Wilhelm; Feussner, Ivo; Voigt, Christian A.

    2014-01-01

    The deposition of the (1,3)-β-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant’s innate immunity. Infection of the Fusarium graminearum disruption mutant Δfgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the Δfgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and α-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with Δfgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the Δfgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and α-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection. PMID:24686113

  5. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel.

    PubMed

    Amoah, Jerome; Ho, Shih-Hsin; Hama, Shinji; Yoshida, Ayumi; Nakanishi, Akihito; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-07-01

    The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel. PMID:27019125

  6. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  7. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.

    PubMed

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  8. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  9. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2.

    PubMed

    Peng, Ren; Lin, Jinping; Wei, Dongzhi

    2010-10-01

    An extracellular lipase secreted by Pseudomonas aeruginosa CS-2 was purified to homogeneity about 25.5-fold with an overall yield of 45.5%. The molecular mass of the lipase was estimated to be 33.9 kDa by SDS-PAGE and 36 kDa by gel filtration. The optimum temperature and pH were 50 degrees C and 8.0. The lipase was found to be stable at pH 4-10 and below 50 degrees C. Its hydrolytic activity was highest against p-nitrophenyl palmitate (p-NPP) among p-nitrophenyl esters of fatty acids with various chain lengths. The lipase was activated in the presence of Ca(2+), while it was inactivated by other metal ions more or less. EDTA significantly reduced the lipase activity, indicating the lipase was a metalloenzyme. Gum Arabic and polyvinyl alcohol 124 enhanced lipase activity but Tween-20, Tween-80, and hexadecyltrimethyl ammonium bromide strongly inhibited the lipase. It exhibited stability in some organic solvents. The lipase was activated in the presence of acetonitrile. Conversely, it was drastically inactivated by methanol and ethanol. PMID:19936633

  10. In vitro effect of insulin and adrenaline on lung triglyceride-lipase activity in rats.

    PubMed

    Hadjiivanova, N; Koumanov, K; Georgiev, G

    1976-01-01

    The in vitro effect of insulin and adrenaline on the activity of lung triglyceride-lipases (alkaline and acid) has been investigated. Insulin inhibited strongly both triglyceride-lipases. Only caffein almost eliminated the inhibitory action of insulin, while adrenaline and dibutyryl cyclic adenosine monophosphate did not exhibit such an effect. It was assumed that the inhibition of lung triglyceride-lipases by insulin was effected through the activation of phosphodiesterases. On the other hand since adrenaline markedly activated lung triglyceride-lipases, this action was assumed to be carried out via the activation of lung adenylate cyclase and the increase of cyclic adenosine monophosphate. PMID:189868

  11. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals. PMID:25573113

  12. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  13. Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica lipase.

    PubMed

    Barrera-Rivera, Karla A; Flores-Carreón, Arturo; Martínez-Richa, Antonio

    2012-01-01

    Yarrowia lipolytica lipase (YLL) was used as catalyst in the enzymatic ring-opening polymerization (ROP) of ε-caprolactone. This low-cost solid-state lipase produces low-molecular-weight polyesters with unique multiphase morphology as determined by carbon-13 NMR. YLL attaches sugar head groups to polycaprolactone in a one-pot biocatalytic pathway. Synthesis of α-ω-telechelic (polymer with two reactive hydroxyl end groups) PCL diols is achieved by enzymatic ROP with YLL immobilized on the macroporous resin Lewatit VPOC 1026, and in the presence of diethylene glycol or poly(ethylene glycol). Biodegradable linear polyester urethanes are prepared by polycondensation between synthesized PCL diols and hexamethylene-diisocyanate. PMID:22426736

  14. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    PubMed Central

    Vavříková, Eva; Gavezzotti, Paolo; Purchartová, Kateřina; Fuksová, Kateřina; Biedermann, David; Kuzma, Marek; Riva, Sergio; Křen, Vladimír

    2015-01-01

    A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule. PMID:26016503

  15. Expanded bed adsorption of an alkaline lipase from Pseudomona cepacia.

    PubMed

    da Silva Padilha, Giovana; Curvelo-Santana, José Carlos; Alegre, Ranulfo Monte; Tambourgi, Elias Basile

    2009-02-15

    An extracellular lipase was isolated from Pseudomona cepacia by expanded bed adsorption on an Amberlite 410 ion-exchange resin. Enzyme characterization and hydrodynamic study of a chromatography column were done. Enzyme purification was done at three condition of expanded bed height (H): at one and half (6cm), at two (8cm) and at three (12cm) times the fixed bed height (H(0)=4cm). The results showed that the experimental data was fitted to the Richardson and Zaki equation, and the comparison between the experimental and calculated terminal velocities showed low relative error. In enzyme purification for better condition, a purification factor of about 80 times was found at 6cm of expanded bed height, or 1.5 times of expansion degree. Purified lipase had an optimal pH and a temperature of 8 and 37 degrees C, respectively. PMID:19162572

  16. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    NASA Astrophysics Data System (ADS)

    Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2008-05-01

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C- V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  17. Improved triglyceride transesterification by circular permuted Candida antarctica lipase B.

    PubMed

    Yu, Ying; Lutz, Stefan

    2010-01-01

    Lipases represent a versatile class of biocatalysts with numerous potential applications in industry including the production of biodiesel via enzyme-catalyzed transesterification. In this article, we have investigated the performance of cp283, a variant of Candida antarctica lipase B (CALB) engineered by circular permutation, with a series of esters, as well as pure and complex triglycerides. In comparison with wild-type CALB, the permutated enzyme showed consistently higher catalytic activity (2.6- to 9-fold) for trans and interesterification of the different substrates with 1-butanol and ethyl acetate as acyl acceptors. Differences in the observed rates for wild-type CALB and cp283 are believe to be related to changes in the rate-determining step of the catalytic cycle as a result of circular permutation. PMID:19609971

  18. Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions.

    PubMed

    Jin, Juan; Li, Dan; Zhu, Xue Mei; Adhikari, Prakash; Lee, Ki-Teak; Lee, Jeung-Hee

    2011-02-28

    The ability of free and immobilized lipase on the production of diacylglycerols (DAG) by transesterification of glycerol monooleate (GMO) and ethyl oleate was investigated. Among three free lipases such as lipase G (Penicillium cyclopium), lipase AK (Pseudomonas fluorescens) and lipase PS (Pseudomonas cepacia), lipase PS exhibited the highest DAG productivity, and the DAG content gradually increased up to 24 hours reaction and then remained steady. The comparative result for DAG productivity between free lipase PS and immobilized lipases (lipase PS-D and Lipozyme RM IM) during nine times of 24 hours reaction indicated that total DAG production was higher in immobilized lipase PS-D (183.5mM) and Lipozyme RM IM (309.5mM) than free lipase PS (122.0mM) at the first reaction, and that the DAG production rate was reduced by consecutive reactions, in which more sn-1,3-DAG was synthesized than sn-1,2-DAG. During the consecutive reactions, the activity of lipase PS was relatively steady by showing similar DAG content, whereas DAG production of lipase PS-D and Lipozyme RM IM was gradually decreased to 69.9 and 167.1mM at 9th reaction, respectively, resulting in 62% and 46% reduced production when compared with 1st reaction. Interestingly, from 7th reaction lipase PS produced more DAG than immobilized lipase PS-D, and exhibited a stable activity for DAG production. Therefore, the present study suggested that DAG productivity between GMO and ethyl oleate was higher in immobilized lipases than free lipases, but the activity was reduced with repeated uses. PMID:20951847

  19. Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk

    SciTech Connect

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1986-07-01

    The distribution of lipoprotein lipase among cream, casein, and milk serum can be evaluated by addition of a trace amount of /sup 125/I-labeled lipoprotein lipase to milk. Radioactive lipase was distributed in parallel to endogenous lipase under several conditions. In some milk samples, binding of lipase to cream increased when the milk was cooled. Correlation was good between bound labeled lipase and degree of cold-induced lipolysis in corresponding milk samples. Binding of lipase to cream or to casein was not saturable by addition of two-to threefold more lipase than is normally present in milk. In milk with a relatively high fraction of lipase bound to cream, a correspondingly lower fraction was associated with casein, whereas the fraction of lipase in milk serum was similar in all milk samples. Cold-induced binding of lipoprotein lipase to cream was not fully reversed when the milk was warmed again. Heparin released lipase from casein and increased the amount of lipase bound to cream after cooling.

  20. The Inhibition of Lipase and Glucosidase Activities by Acacia Polyphenol

    PubMed Central

    Ikarashi, Nobutomo; Takeda, Rumi; Ito, Kiyomi; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-01-01

    Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia mearnsii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. In an in vitro study, we measured the inhibitory activity of AP on lipase and glucosidase. In addition, we evaluated the effects of AP on absorption of orally administered olive oil, glucose, maltose, sucrose and starch solution in mice. We found that AP concentration-dependently inhibited the activity of lipase, maltase and sucrase with an IC50 of 0.95, 0.22 and 0.60 mg ml−1, respectively. In ICR mice, olive oil was administered orally immediately after oral administration of AP solution, and plasma triglyceride concentration was measured. We found that AP significantly inhibited the rise in plasma triglyceride concentration after olive oil loading. AP also significantly inhibited the rise in plasma glucose concentration after maltose and sucrose loading, and this effect was more potent against maltose. AP also inhibited the rise in plasma glucose concentration after glucose loading and slightly inhibited it after starch loading. Our results suggest that AP inhibits lipase and glucosidase activities, which leads to a reduction in the intestinal absorption of lipids and carbohydrates. PMID:21660093

  1. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  2. Lipase-mediated selective oxidation of furfural and 5-hydroxymethylfurfural.

    PubMed

    Krystof, Monika; Pérez-Sánchez, María; Domínguez de María, Pablo

    2013-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are important biomass-derived platform chemicals that can be obtained from the dehydration of lignocellulosic sugars. A possible route for the derivatization of furanics is their oxidation to afford a broad range of chemicals with promising applications (e.g., diacids, hydroxyl acids, aldehyde acids, monomers for novel polymers). Herein we explore the organic peracid-assisted oxidation of furanics under mild reaction conditions. Using lipases as biocatalysts, alkyl esters as acyl donors, and aqueous solutions of hydrogen peroxide (30 % v/v) added stepwise, peracids are formed in situ, which subsequently oxidize the aldehyde groups to afford carboxylic acids with high yields and excellent selectivities. Furthermore, the use of an immobilized silica-based 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) affords the selective oxidation of the hydroxymethyl group of HMF to afford 2,5-diformylfuran. That product can be subsequently oxidized using again lipases for the in situ peracid formation to yield 2,5-furandicarboxylic acid, which is considered to be a key building block for biorefineries. These lipase-mediated reactions proceeded efficiently even with high substrate loadings under still non-optimized conditions. Overall, a proof-of-concept for the oxidation of furanics (based on in situ formed organic peracids as oxidants) is provided. PMID:23576295

  3. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    PubMed Central

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-01-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  4. Isolation and characterization of novel thermophilic lipase-secreting bacteria.

    PubMed

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-12-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  5. Interesterification and synthesis by Candida cylindracea lipase in microemulsions.

    PubMed

    Bello, M; Thomas, D; Legoy, M D

    1987-07-15

    Unusual reactions of interesterification and synthesis catalyzed by Candida cylindracea lipase have been tested in reverse microemulsions. The microemulsions used are made of fatty acids or triglycerides, the enzyme dissolved in a very low water quantity, Brij 35 used as surfactant and an alcoholic cosurfactant. In such a system, fats and alcohols are both the substrates of the enzyme and the microemulsion components. Incidentally, non specific Candida cylindracea lipase does not catalyze interesterification of short chain triglycerides, revealing a specificity for the chain length. Interesterification reactions tested in the presence of a given water quantity but with varying water activities show that it is the water activity and not the water quantity which is a fundamental parameter of the system. The effect of the surfactant (Brij 35) on the interesterification reaction is studied. Heptyl-oleate synthesis catalyzed by non-specific lipase is obtained in microemulsions at a 98% yield. Synthesis of glycerol esters is also tested in monophasic medium and mono and diglycerides are obtained. PMID:3606623

  6. Solvent-free lipase-catalyzed preparation of diacylglycerols.

    PubMed

    Weber, Nikolaus; Mukherjee, Kumar D

    2004-08-25

    Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of

  7. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    PubMed

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-01-01

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study. PMID:25501150

  8. Spectrum of Fusarium infections in tropical dermatology evidenced by multilocus sequencing typing diagnostics.

    PubMed

    van Diepeningen, Anne D; Feng, Peiying; Ahmed, Sarah; Sudhadham, Montarop; Bunyaratavej, Sumanas; de Hoog, G Sybren

    2015-01-01

    Fusarium species are emerging causative agents of superficial, cutaneous and systemic human infections. In a study of the prevalence and genetic diversity of 464 fungal isolates from a dermatological ward in Thailand, 44 strains (9.5%) proved to belong to the genus Fusarium. Species identification was based on sequencing a portion of translation elongation factor 1-alpha (tef1-α), rDNA internal transcribed spacer and RNA-dependent polymerase subunit II (rpb2). Our results revealed that 37 isolates (84%) belonged to the Fusarium solani species complex (FSSC), one strain matched with Fusarium oxysporum (FOSC) complex 33, while six others belonged to the Fusarium incarnatum-equiseti species complex. Within the FSSC two predominant clusters represented Fusarium falciforme and recently described F. keratoplasticum. No gender differences in susceptibility to Fusarium were noted, but infections on the right side of the body prevailed. Eighty-nine per cent of the Fusarium isolates were involved in onychomycosis, while the remaining ones caused paronychia or severe tinea pedis. Comparing literature data, superficial infections by FSSC appear to be prevalent in Asia and Latin America, whereas FOSC is more common in Europe. The available data suggest that Fusarium is a common opportunistic human pathogens in tropical areas and has significant genetic variation worldwide. PMID:25530264

  9. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    PubMed

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-01

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible. PMID:24816267

  10. Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport.

    PubMed

    Annema, Wijtske; Tietge, Uwe J F

    2011-06-01

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall macrophage-to-feces RCT, knockout of both HL and EL leaves RCT essentially unaffected. With respect to important individual steps of RCT, current data on the role of EL and HL in cholesterol efflux are not conclusive. Both enzymes increase hepatic selective cholesterol uptake; however, this does not translate into altered biliary cholesterol secretion, which is regarded the final step of RCT. Also, the impact of HL and EL on atherosclerosis is not clear cut; rather it depends on respective experimental conditions and chosen models. More mechanistic insights into the diverse biological properties of these enzymes are therefore required to firmly establish EL and HL as targets for the treatment of atherosclerotic cardiovascular disease. PMID:21424685

  11. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes.

    PubMed Central

    Jørgensen, S; Skov, K W; Diderichsen, B

    1991-01-01

    The lipA gene encoding an extracellular lipase from Pseudomonas cepacia was cloned and sequenced. Downstream from the lipase gene an open reading frame was identified, and the corresponding gene was named limA. lipA was well expressed only in the presence of limA. limA exerts its effect both in cis and in trans and therefore produces a diffusible gene product, presumably a protein of 344 amino acids. Replacement of the lipA expression signals (promoter, ribosome-binding site, and signal peptide-coding sequences) by heterologous signals from gram-positive bacteria still resulted in limA-dependent lipA expression in Escherichia coli, Bacillus subtilis, and Streptomyces lividans. Images PMID:1987151

  12. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases with abnormal properties such as thermo stability, alkalinity, acidity and cold-activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in An...

  13. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases are industrially and useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial application...

  14. Influence of self-assembled monolayer surface chemistry on Candida antarctica lipase B adsorption and specific activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immobilization of Candida antarctica B lipase was examined on gold surfaces modified with either methyl- or hydroxyl-terminated self-assembled alkylthiol monolayers (SAMs), representing hydrophobic and hydrophilic surfaces, respectively. Lipase adsorption was monitored gravimetrically using a quart...

  15. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis.

    PubMed

    Rydén, Mikael; Jocken, Johan; van Harmelen, Vanessa; Dicker, Andrea; Hoffstedt, Johan; Wirén, Mikael; Blomqvist, Lennart; Mairal, Aline; Langin, Dominique; Blaak, Ellen; Arner, Peter

    2007-06-01

    Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) regulate adipocyte lipolysis in rodents. The purpose of this study was to compare the roles of these lipases for lipolysis in human adipocytes. Subcutaneous adipose tissue was investigated. HSL and ATGL protein expression were related to lipolysis in isolated mature fat cells. ATGL or HSL were knocked down by RNA interference (RNAi) or selectively inhibited, and effects on lipolysis were studied in differentiated preadipocytes or adipocytes derived from human mesenchymal stem cells (hMSC). Subjects were all women. There were 12 lean controls, 8 lean with polycystic ovary syndrome (PCOS), and 27 otherwise healthy obese subjects. We found that norepinephrine-induced lipolysis was positively correlated with HSL protein levels (P < 0.0001) but not with ATGL protein. Women with PCOS or obesity had significantly decreased norepinephrine-induced lipolysis and HSL protein expression but no change in ATGL protein expression. HSL knock down by RNAi reduced basal and catecholamine-induced lipolysis. Knock down of ATGL decreased basal lipolysis but did not change catecholamine-stimulated lipolysis. Treatment of hMSC with a selective HSL inhibitor during and/or after differentiation in adipocytes reduced basal lipolysis by 50%, but stimulated lipolysis was inhibited completely. In contrast to findings in rodents, ATGL is of less importance than HSL in regulating catecholamine-induced lipolysis and cannot replace HSL when this enzyme is continuously inhibited. However, both lipases regulate basal lipolysis in human adipocytes. ATGL expression, unlike HSL, is not influenced by obesity or PCOS. PMID:17327373

  16. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110

    PubMed Central

    Mobarak-Qamsari, E; Kasra-Kermanshahi, R; Moosavi-nejad, Z

    2011-01-01

    Background and Objectives Lipases are particularly important due to the fact that they specifically hydrolyze acyl glycerol, oils and greases, which is of great interest for different industrial applications. Materialst and Methods In this study, several lipase-producing bacteria were isolated from wastewater of an oil processing plant. The strain possessing the highest lipase activity was identified both biochemically and sequencing of 16S rRNA gene. Then we increase lipase activity by improving conditions of production medium. Also, lipase from this strain was preliminarily characterized for use in industrial application. Results The 16S rRNA sequensing revealed it as a new strain of Pseudomonas aeruginosa and the type strain was KM110. An overall 3-fold enhanced lipase production (0.76 U mL−1) was achieved after improving conditions of production medium. The olive oil and peptone was found to be the most suitable substrate for maximum enzyme production. Also the enzyme exhibited maximum lipolytic activity at 45°C where it was also stably maintained. At pH 8.0, the lipase had the highest stability but no activity. It was active over a pH range of 7.0–10.0. The lipase activity was inhibited by Zn2+ & Cu2+ (32 and 27%, respectively) at 1mM. The enzyme lost 29% of its initial activity in 1.0% SDS concentration, whereas, Triton X-100, Tween-80 & DMSO did not significantly inhibit lipase activity. Conclusions Based on the findings of present study, lipase of P. aeruginosa KM110 is a potential alkaline lipase and a candidate for industrial applications such as detergent, leather and fine chemical industries. PMID:22347589

  17. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products. PMID:23794138

  18. Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (Mirounga angustirostris).

    PubMed

    Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E; Shen, Wen-Jun; Kraemer, Fredric B

    2015-01-01

    Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL. PMID:25860827

  19. Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes*

    PubMed Central

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M.; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-01-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  20. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes.

    PubMed

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-07-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  1. A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda.

    PubMed

    Zaher, Ahmed M; Makboul, Makboul A; Moharram, Ahmad M; Tekwani, Babu L; Calderón, Angela I

    2015-03-01

    Enniatins (ENs), a group of antibiotics commonly produced by various strains of Fusarium, are six-membered cyclic depsipeptides formed by the union of three molecules of D-α-hydroxyisovaleric acid and three N-methyl-L-amino acids. The endophyte Fusarium tricinctum Corda was isolated from the fruits of Hordeum sativum Jess. and cultivated on a rice medium. The fungal metabolites were extracted with methanol and were identified, employing liquid chromatography-mass spectrometry as ENs A, A1, B, B1, B2 and Q. EN Q is a new analog of EN A and the occurrence of EN B2 is reported for the first time from this endophyte, in addition to four well-known ENs (A, A1, B and B1). The methanol extract of F. tricinctum showed mild antibacterial and antileishmanial activities. Additionally the tested extract displayed inhibition of the activity of thioredoxin reductase enzyme of Plasmodium falciparum. PMID:25315756

  2. Fusarium mycotoxins in cereals harvested from Hungarian fields.

    PubMed

    Tima, Helga; Brückner, Andrea; Mohácsi-Farkas, Csilla; Kiskó, Gabriella

    2016-06-01

    The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future. PMID:26892197

  3. [Invasive fungal disease due to Scedosporium, Fusarium and mucorales].

    PubMed

    Pemán, Javier; Salavert, Miguel

    2014-01-01

    The number of emerging organisms causing invasive fungal infections has increased in the last decades. These etiological agents include Scedosporium, Fusarium and mucorales. All of them can cause disseminated, virulent, and difficult-to treat infections in immunosuppressed patients, the most affected, due to their resistance to most available antifungal agents. Current trends in transplantation including the use of new immunosuppressive treatments, the common prescription of antifungal agents for prophylaxis, and new ecological niches could explain the emergence of these fungal pathogens. These pathogens can also affect immunocompetent individuals, especially after natural disasters (earthquakes, floods, tsunamis), combat wounds or near drowning. All the invasive infections caused by Scedosporium, Fusarium, and mucorales are potentially lethal and a favourable outcome is associated with rapid diagnosis by direct microscopic examination of the involved tissue, wide debridement of infected material, early use of antifungal agents including combination therapy, and an improvement in host defenses, especially neutropenia. PMID:25442383

  4. Multidrug-resistant Fusarium keratitis: diagnosis and treatment considerations.

    PubMed

    Sara, Sergio; Sharpe, Kendall; Morris, Sharon

    2016-01-01

    Mycotic keratitis is an ocular infective process derived from any fungal species capable of corneal invasion. Despite its rarity in developed countries, its challenging and elusive diagnosis may result in keratoplasty or enucleation following failed medical management. Filamentous fungi such as Fusarium are often implicated in mycotic keratitis. Bearing greater morbidity than its bacterial counterpart, mycotic keratitis requires early clinical suspicion and initiation of antifungal therapy to prevent devastating consequences. We describe a case of multidrug-resistant mycotic keratitis in a 46-year-old man who continued to decline despite maximal therapy and therapeutic keratoplasty. Finally, enucleation was performed as a means of source control preventing dissemination of a likely untreatable fungal infection into the orbit. Multidrug-resistant Fusarium is rare, and may progress to endophthalmitis. We discuss potential management options which may enhance diagnosis and outcome in this condition. PMID:27489066

  5. Aspects of the ecology of Fusarium toxins in cereals.

    PubMed

    Miller, J David

    2002-01-01

    Species of the genus Fusarium account for three of the five agriculturally important mycotoxins which are deoxynivalenol, aflatoxin, fumonisin, zearalenone and ochratoxin. The toxigenic fusaria have been complicated to study because morphologically-similar strains represent different biologies: saprophytes, pathyotypes and endophytes. This might explain the difficulties with systems of taxonomy for Fusarium species and increasing reliance on molecular techniques to characterize taxa. Another remarkable feature of the toxigenic fusaria is that each species produces compounds that cross several species as well as families of compounds that are species specific. In addition, reproductively-isolated strains (from different continents) of important species such as F. graminearum produce different compounds, and even produce the same compounds by different biosynthetic pathways. PMID:11922087

  6. [Improvement of the the thermostability of Penicillium expansum lipase by mutagenesis the random mutant ep8 at K55R].

    PubMed

    Cai, Shao-Li; Lin, Jun-Han; Wang, Cai-Mei; Lin, Lin

    2007-07-01

    In order to improve the thermostability of the Penicillium expansum Lipase (PEL), the lipase encoding genes was mutated by site-directed mutagenesis. A recombinant vector pAO815-ep8-K55R which contain double mutant genes was constructed by overlap extension PCR using the cDNA of a random-mutant lipase ep8 (a single site mutant) as the template and two special primers were used to generate another mutation site K55R. The recombinant vector was transformed into Pichia pastoris GS115 by electroporation and the recombinant mutant GS-pAO815-ep8- K55R can secret double-mutant lipase PEL-ep8-K55R-GS into the medium when it was induced by Methanol. The yield of the double-mutant lipase is 508 u/mL, which is 81% that of the wild type lipase PEL-GS (627 u/mL) and 55% that of random-mutant PEL-ep8-GS (924 u/mL). The specific activity of double-mutant lipase is 2309.1 u/mg, which is similar to random-mutant lipase PEL-ep8-GS and the wild type lipase PEL-GS. The optimum temperature of the double-mutant lipase is same with the wild type lipase PEL-GS and random-mutant lipase PEL-ep8-GS. While the Tm of the double-mutant lipase is 41.0 degrees C, 2.3 degrees C higher than the wild type lipase PEL-GS and 0.8% higher than the random-mutant lipase PEL-ep8-GS, indicating that the double-mutant lipase PEL-ep8-K55R-GS has higher thermostability. PMID:17822043

  7. The changes in pectin metabolism in flax infected with Fusarium.

    PubMed

    Wojtasik, Wioleta; Kulma, Anna; Kostyn, Kamil; Szopa, Jan

    2011-08-01

    Fusarium culmorum and Fusarium oxysporum are the most common fungal pathogens of flax (Linum usitatissimum L.), thus leading to the greatest losses in crop yield. A subtractive cDNA library was constructed from flax seedlings exposed for two days to F. oxysporum. This revealed a set of genes that are potentially involved in the flax defense responses. Two of those genes directly participate in cell wall sugar polymer metabolism: UDP-D-glucuronate 4-epimerase (GAE; EC 5.1.3.6) and formate dehydrogenase (FDH; EC 1.2.1.2). GAE delivers the main substrate for pectin biosynthesis, and decreases were detected in its mRNA level after Fusarium infection. FDH participates in the metabolism of formic acid, and the expression level of its gene increased after Fusarium infection. However, metabolite profiling analysis disclosed that the pectin content in the infected plants remained unchanged, but that there were reductions in both the levels of the soluble sugars that serve as pectin precursors, and in the level of formic acid. Since formic acid is the product of pectin demethylesterification, the level of mRNAs coding for pectin methylesterase (EC 3.1.1.11) in the infected flax was measured, revealing a decrease in its expression upon plant infection. Transgenic flax plants overexpressing fungal polygalacturonase (EC 3.2.1.15) and rhamnogalacturonase (EC 3.2.1.-) showed a decrease in the pectin content and an elevated level of formic acid, but the level of expression of the FDH gene remained unchanged. It is suspected that the expression of the formate dehydrogenase gene is directly controlled by the pathogen in the early stage of infection, and additionally by pectin degradation in the later stages. PMID:21435891

  8. Isolation and Structure Elucidation of Pentahydroxyscirpene, a Trichothecene Fusarium Mycotoxin

    PubMed Central

    2013-01-01

    Pentahydroxyscirpene, a novel trichothecene-type compound, was isolated from Fusarium-inoculated rice. The structure of pentahydroxyscirpene was elucidated by 1D and 2D NMR spectroscopy and X-ray single-crystal diffraction. The conformation in solution was determined by NOESY experiments supported by quantum chemical calculations. In vitro toxicity tests showed that pentahydroxyscirpene inhibits protein synthesis as do other trichothecenes. PMID:24367932

  9. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age. PMID:27237111

  10. Mycotoxin Production by Fusarium Species Isolated from Bananas

    PubMed Central

    Jimenez, M.; Huerta, T.; Mateo, R.

    1997-01-01

    The ability of Fusarium species isolated from bananas to produce mycotoxins was studied with 66 isolates of the following species: F. semitectum var. majus (8 isolates), F. camptoceras (3 isolates), a Fusarium sp. (3 isolates), F. moniliforme (16 isolates), F. proliferatum (9 isolates), F. subglutinans (3 isolates), F. solani (3 isolates), F. oxysporum (5 isolates), F. graminearum (7 isolates), F. dimerum (3 isolates), F. acuminatum (3 isolates), and F. equiseti (3 isolates). All isolates were cultured on autoclaved corn grains. Their toxicity to Artemia salina L. larvae was examined. Some of the toxic effects observed arose from the production of known mycotoxins that were determined by thin-layer chromatography, gas chromatography, or high-performance liquid chromatography. All F. camptoceras and Fusarium sp. isolates proved toxic to A. salina larvae; however, no specific toxic metabolites could be identified. This was also the case with eight isolates of F. moniliforme and three of F. proliferatum. The following mycotoxins were encountered in the corn culture extracts: fumonisin B(inf1) (40 to 2,900 (mu)g/g), fumonisin B(inf2) (150 to 320 (mu)g/g), moniliformin (10 to 1,670 (mu)g/g), zearalenone (5 to 470 (mu)g/g), (alpha)-zearalenol (5 to 10 (mu)g/g), deoxynivalenol (8 to 35 (mu)g/g), 3-acetyldeoxynivalenol (5 to 10 (mu)g/g), neosolaniol (50 to 180 (mu)g/g), and T-2 tetraol (5 to 15 (mu)g/g). Based on the results, additional compounds produced by the fungal isolates may play prominent roles in the toxic effects on larvae observed. This is the first reported study on the mycotoxin-producing abilities of Fusarium species that contaminate bananas. PMID:16535503

  11. An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by Euwallacea ambrosia beetles on avocado and other plant hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusu...

  12. Cyber-infrastructure for Fusarium (CiF): Three integrated platforms supporting strain identification, phylogenetics, comparative genomics, and knowledge sharing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on ...

  13. DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex.

    PubMed

    Al-Hatmi, Abdullah M S; Mirabolfathy, Mansoureh; Hagen, Ferry; Normand, Anne-Cécile; Stielow, J Benjamin; Karami-Osbo, Rouhollah; van Diepeningen, Anne D; Meis, Jacques F; de Hoog, G Sybren

    2016-02-01

    The Fusarium fujikuroi species complex (FFSC) is one of the most common groups of fusaria associated with plant diseases, mycotoxin production and traumatic and disseminated human infections. Here we present the description and taxonomy of a new taxon, Fusarium ficicrescens sp. nov., collected from contaminated fig fruits in Iran. Initially this species was identified as Fusarium andiyazi by morphology. In the present study the species was studied by multilocus sequence analysis, amplified fragment length polymorphism (AFLP), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic characters. Multilocus analyses were based on translation elongation factor 1α (TEF1), RNA polymerase subunit (RPB2) and beta-tubulin (BT2) and proved F. ficicrescens as a member of the FFSC. Phylogenetic analysis showed that the fungus is closely related to Fusarium lactis, Fusarium ramigenum, and Fusarium napiforme; known plant pathogens, mycotoxin producers, and occasionally occurring multidrug resistant opportunists. The new species differed by being able to grow at 37 °C and by the absence of mycotoxin production. TEF1 was confirmed as an essential barcode for identifying Fusarium species. In addition to TEF1, we evaluated BT2 and RPB2 in order to provide sufficient genetic and species boundaries information for recognition of the novel species. PMID:26781381

  14. A small molecule species specifically inhibits Fusarium myosin I.

    PubMed

    Zhang, Chengqi; Chen, Yun; Yin, Yanni; Ji, Huan-Hong; Shim, Won-Bo; Hou, Yiping; Zhou, Mingguo; Li, Xiang-Dong; Ma, Zhonghua

    2015-08-01

    Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease of cereal crops worldwide. Recently, a novel fungicide JS399-19 has been launched into the marketplace to manage FHB. It is compelling that JS399-19 shows highly inhibitory activity towards some Fusarium species, but not to other fungi, indicating that it is an environmentally compatible fungicide. To explore the mode of action of this species-specific compound, we conducted a whole-genome transcript profiling together with genetic and biochemical assays, and discovered that JS399-19 targets the myosin I of F. graminearum (FgMyo1). FgMyo1 is essential for F. graminearum growth. A point mutation S217L or E420K in FgMyo1 is responsible for F. graminearum resistance to JS399-19. In addition, transformation of F. graminearum with the myosin I gene of Magnaporthe grisea, the causal agent of rice blast, also led to JS399-19 resistance. JS399-19 strongly inhibits the ATPase activity of the wild-type FgMyo1, but not the mutated FgMyo1(S217L/E420K) . These results provide us a new insight into the design of species-specific antifungal compounds. Furthermore, our strategy can be applied to identify novel drug targets in various pathogenic organisms. PMID:25404531

  15. Effects of Phospholipase C on Fusarium graminearum Growth and Development.

    PubMed

    Zhu, Qili; Zhou, Benguo; Gao, Zhengliang; Liang, Yuancun

    2015-12-01

    Phospholipase C (PLC) plays important roles in regulating various biological processes in eukaryotes. Currently, little is known about the function of PLC in filamentous fungi, especially the plant pathogenic fungi. Fusarium graminearum is the causal agent of Fusarium head blight in many cereal crops. BLAST search revealed that Fusarium genome contains six FgPLC genes. Using quantitative RT-PCR, different FgPLC gene expressions in mycelia were analyzed. To investigate the role of FgPLC in F. graminearum biology, a pharmacological study using a known inhibitor of PLC (U73122) was conducted. Results showed that inhibition of FgPLC resulted in significant alterations of mycelial growth, conidiation, conidial germination, perithecium formation, and expressions of Tri5 and Tri6 genes. As expected, the treatment of F. graminearum with U73343, an inactive analog of U73122, showed no effect on F. graminearum biology. Our results suggested strongly that FgPLC plays important roles in F. graminearum growth and development. PMID:26316232

  16. Fusarium Wilt of Banana Is Caused by Several Pathogens Referred to as Fusarium oxysporum f. sp. cubense.

    PubMed

    Ploetz, Randy C

    2006-06-01

    ABSTRACT Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed. PMID:18943184

  17. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  18. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  19. [Progress in expression regulation of bacterial lipase genes--A review].

    PubMed

    Zha, Daiming; Yan, Yunjun

    2015-11-01

    Microbial lipases are major sources of commercial ones, which have been extensively used in a wide variety of industrial fields, such as foods, beverages, lipids, detergents, feeds, textiles, leathers, advanced materials, fine chemicals, medicines, cosmetics, papermaking, pollution treatment, and bioenergy. Compared with fungal lipases, bacterial lipases have more types of reactions and exhibit higher activity and better stability in aqueous or organic phases. Amongst bacterial lipases, the most excellent ones are those originating from the genus Pseudomonas. So far, the conventional strategies, such as traditional breeding, optimization of medium and fermentation conditions, cannot fundamentally solve the problem of low production of bacterial lipases. Construction of genetically engineered strains to efficiently overexpress their own lipases is an effective solution. But it must base on clarifying molecular regulation mechanism of lipase gene expression and further finding out key regulators. In this article, we reviewed the progress in expression regulation of bacterial lipase genes from the aspects of direct regulators, quorum sensing system, Gac/Rsm signal transduction system, regulators controlling the Gac/Rsm system, and other regulators. To provide a useful reference for the construction of genetically engineered strains, we also discussed a research prospect in this field based on our ongoing research. PMID:26915218

  20. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  1. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 134, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase...

  2. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  3. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 134, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase...

  4. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lipase enzyme preparation derived from Rhizopus... Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus....

  5. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 134, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase...

  6. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme... animals. (c) The enzyme is produced by a process which completely removes the organism Mucor miehei...

  7. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  8. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 134, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase...

  9. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  10. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  11. Production of a Novel Cold-Active Lipase from Pichia lynferdii Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase (triacylglycerol acylhydrolases, E.C. 3.1.1.3.) is one of the most important enzymes applied to the broad range of industrial application field. Especially, lipases with abnormal functionality such as thermo stability, alkaline, acidic, cold-activity gain special attention because of their a...

  12. Assaying lipase activity from oil palm fruit (Elaeis guineensis Jacq.) mesocarp.

    PubMed

    Ngando Ebongue, G F; Dhouib, R; Carrière, F; Amvam Zollo, P-H; Arondel, V

    2006-10-01

    The mesocarp of mature oil palm fruit undergoes intensive triglycerides hydrolysis upon abscission and bruising. This generates such a high amount of free fatty acids that the oil might become unfit for human consumption without appropriate refining. The lipase (EC 3.1.1.3) involved in the breakdown of the oil is not stable after homogenization of the tissue in aqueous buffers. In this study, we have devised a solvent-based procedure that allowed us to obtain fractions with stable lipase activity. Using these fractions, we have determined the optimal conditions for assaying mesocarp lipase activity. The activity was highest at a temperature of 35 degrees C and a pH of 9. The lipase was found to be strictly calcium dependent. The specific activity of the lipase measured in optimal conditions was found to be 33 mumol fatty acids released min(-1) mg(-1) protein using olive oil as substrate. The mesocarp contains about 190 U of lipase g(-1) fresh weight. This activity was found to be inhibited by the lipase inhibitor tetrahydrolipstatin (THL), suggesting that the lipase is a serine hydrolase. PMID:17064925

  13. Self injection of lipase--an extreme case for regulation in non-surgical cosmetic procedures.

    PubMed

    Khoo, A A K-A; Branford, O A; Javaid, M

    2010-01-01

    Mesotherapy or subcutaneous fat dissolution for cosmetic purposes has been described using phosphatidylcholine. A literature search found no reports of the use of lipase for mesotherapy. Substances for cosmetic mesotherapy are not licensed for use in the United Kingdom. We report a case of self injection using lipase obtained from the internet. PMID:19269909

  14. An activity-based probe for high-throughput measurements of triacylglycerol lipases.

    PubMed

    Tam, John; Henault, Martin; Li, Lianhai; Wang, Zhaoyin; Partridge, Anthony W; Melnyk, Roman A

    2011-07-15

    Modulating the activity of lipases involved in the metabolism of plasma lipoproteins is an attractive approach for developing lipid raising/lowering therapies to treat cardiovascular disease. Identifying small molecule inhibitors for these membrane-active enzymes, however, is complicated by difficulties associated with measuring lipase activity and inhibition at the water-membrane interface; substrate and compound dynamics at the particle interface have the potential to confound data interpretation. Here, we describe a novel ELISA-based lipase activity assay that employs as "bait" a biotinylated active-site probe that irreversibly binds to the catalytic active-site serine of members of the triacylglycerol lipase family (hepatic lipase, lipoprotein lipase, and endothelial lipase) in solution with high affinity. Detection of "captured" (probe-enzyme) complexes on streptavidin-coated plates using labeled secondary antibodies to specific primary antibodies offers several advantages over conventional assays, including the ability to eliminate enzyme-particle and compound-particle effects; specifically measure lipase activity in complex mixtures in vitro; preferentially identify active-site-directed inhibitors; and distinguish between reversible and irreversible inhibitors through a simple assay modification. Using EL as an exemplar, we demonstrate the versatility of this assay both for high-throughput screening and for compound mechanism-of-action studies. PMID:21397586

  15. High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate.

    PubMed

    Darvishi, Farshad; Destain, Jacqueline; Nahvi, Iraj; Thonart, Philippe; Zarkesh-Esfahani, Hamid

    2011-10-01

    The yeast Yarrowia lipolytica degrades efficiently low-cost hydrophobic substrates for the production of various added-value products such as lipases. To obtain yeast strains producing high levels of extracellular lipase, Y. lipolytica DSM3286 was subjected to mutation using ethyl methanesulfonate (EMS) and ultraviolet (UV) light. Twenty mutants were selected out of 1600 mutants of Y. lipolytica treated with EMS and UV based on lipase production ability on selective medium. A new industrial medium containing methyl oleate was optimized for lipase production. In the 20 L bioreactor containing new industrial medium, one UV mutant (U6) produced 356 U/mL of lipase after 24h, which is about 10.5-fold higher than that produced by the wild type strain. The properties of the mutant lipase were the same as those of the wild type: molecular weight 38 kDa, optimum temperature 37°C and optimum pH 7. Furthermore, the nucleotide sequences of extracellular lipase gene (LIP2) in wild type and mutant strains were determined. Only two silent substitutions at 362 and 385 positions were observed in the ORF region of LIP2. Two single substitutions and two duplications of the T nucleotide were also detected in the promoter region. LIP2 sequence comparison of the Y. lipolytica DSM3286 and U6 strains shows good targets to effective DNA recombinant for extracellular lipase of Y. lipolytica. PMID:21324386

  16. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  17. [Rapid and high throughput measurement of lipase thermo-stability through ANS fluorescence signal assay].

    PubMed

    Feng, Weizong; Lin, Junhan; Cai, Shaoli; Zou, Youtu; Chen, Guoren; Huang, Ping; Lin, Yajing; Wang, Bingbing; Lin, Lin

    2011-04-01

    We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement. PMID:21847993

  18. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution.

    PubMed

    Kawata, Takuya; Ogino, Hiroyasu

    2009-01-01

    LST-03 lipase from an organic solvent-tolerant Pseudomonas aeruginosa LST-03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent-stability of LST-03 lipase was attempted by directed evolution. The structural gene of the LST-03 lipase was amplified by the error prone-PCR method. Organic solvent-stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri-n-butyrin and which overlaid a plate medium. And the organic solvent-stability was also confirmed by measuring the half-life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent-stability in the presence of DMSO. The organic solvent-stabilities of mutated LST-03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half-lives of the LST-03-R65 lipase in the presence of cyclohexane and n-decane were about 9 to 11-fold longer than those of the wild-type lipase, respectively. Some substituted amino acid residues of mutated LST-03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. PMID:19731302

  19. Lipase catalyzed transesterification of castor oil by straight chain higher alcohols.

    PubMed

    Malhotra, Deepika; Mukherjee, Joyeeta; Gupta, Munishwar N

    2015-03-01

    Biolubricants from Castor oil were produced enzymatically by transesterification with higher alcohols using a lipase mixture of immobilized Mucor miehei (RMIM) and immobilized Candida antarctica lipase B (Novozym 435) under low water conditions. The conversions were in the range of 80-95% under the optimized conditions. PMID:25204793

  20. Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae.

    PubMed

    Huge-Jensen, B; Andreasen, F; Christensen, T; Christensen, M; Thim, L; Boel, E

    1989-09-01

    The cDNA encoding the precursor of the Rhizomucor miehei triglyceride lipase was inserted in an Aspergillus oryzae expression vector. In this vector the expression of the lipase cDNA is under control of the Aspergillus oryzae alpha-amylase gene promoter and the Aspergillus niger glucoamylase gene terminator. The recombinant plasmid was introduced into Aspergillus oryzae, and transformed colonies were selected and screened for lipase expression. Lipase-positive transformants were grown in a small fermentor, and recombinant triglyceride lipase was purified from the culture broth. The purified enzymatically active recombinant lipase (rRML) secreted from A. oryzae was shown to have the same characteristics with respect to mobility on reducing SDS-gels and amino acid composition as the native enzyme. N-terminal amino acid sequencing indicated that approximately 70% of the secreted rRML had the same N-terminal sequence as the native Rhizomucor miehei enzyme, whereas 30% of the secreted rRML was one amino acid residue shorter in the N-terminal. The recombinant lipase precursor, which has a 70 amino acid propeptide, is thus processed in and secreted from Aspergillus oryzae. We have hereby demonstrated the utility of this organism as a host for the production of recombinant triglyceride lipases. PMID:2586234

  1. Method of phorbol ester degradation in Jatropha curcas L. seed cake using rice bran lipase.

    PubMed

    Hidayat, Chusnul; Hastuti, Pudji; Wardhani, Avita Kusuma; Nadia, Lana Santika

    2014-03-01

    A novel enzymatic degradation of phorbol esters (PE) in the jatropha seed cake was developed using lipase. Cihera rice bran lipase had the highest ability to hydrolyze PE, and reduced PE to a safe level after 8 h of incubation. Enzymatic degradation may be a promising method for PE degradation. PMID:24099956

  2. Choline acetate enhanced the catalytic performance of Candida rogusa lipase in AOT reverse micelles.

    PubMed

    Xue, Luyan; Zhao, Yin; Yu, Lijie; Sun, Yanwen; Yan, Keqian; Li, Ying; Huang, Xirong; Qu, Yinbo

    2013-05-01

    Choline acetate is an ionic liquid composed of a kosmotropic anion and a chaotropic cation. According to Hofmeister series, a kosmotropic anion and/or a chaotropic cation could stabilize an enzyme, thereby facilitating the retention of the catalytic activity of the enzyme. In this work, we first report the influence of choline acetate on the activity and stability of lipase in AOT/water/isooctane reverse micelles. The indicator reaction is the lipase-catalyzed hydrolysis of 4-nitrophenyl butyrate. The results show that a low level of choline acetate does not affect the microstructure of the AOT reverse micelles, but the ionic liquid can improve the catalytic efficiency of lipase. Fluorescence spectra show that a high level of choline acetate has an impact on the conformation of lipase, so the activation is mainly due to the influence of choline acetate on the nucleophilicity of water. Infrared spectra demonstrate that choline acetate can form stronger hydrogen bonds with water surrounding lipase, and therefore enhance the nucleophilicity of the water, which makes it easier to attack the acyl enzyme intermediate, thereby increasing the activity of the lipase-catalyzed hydrolysis of the ester. A study on the stability of lipase in AOT reverse micelles indicates that the ionic liquid is able to maintain the activity of lipase to a certain extent. The effect of choline acetate is consistent with that predicted based on Hofmeister series. PMID:23352950

  3. Evaluation of a New Lipase from Staphylococcus sp. for Detergent Additive Capability

    PubMed Central

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase. PMID:24106703

  4. Identification of a new lipase family in the Brazilian Atlantic Forest soil metagenome.

    PubMed

    Faoro, Helisson; Glogauer, Arnaldo; Souza, Emanuel M; Rigo, Liu U; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O

    2011-12-01

    Lipases are the most investigated class of enzymes in metagenomics. Phylogenetic classification of bacterial lipases comprises eight families. Here we describe the construction and screening of three metagenomic libraries from Brazilian Atlantic Forest soil and identification of a new lipase family. The metagenomic libraries, MAF1, MAF2 and MAF3, contained 34 560, 29 280 and 36 288 clones respectively. Lipase screening on triolein-rhodamine B plates resulted in one positive clone, Lip018. The DNA insert of Lip018 was fully sequenced and 20 ORFs were identified by comparison against the GenBank. Transposon mutagenesis revealed that ORF15, similar to serine peptidases, and ORF16, a hypothetical protein, were both required for lipase activity. ORF16 has a typical lipase conserved pentapeptide G-X-S-X-G and the comparison against the Pfam database showed that ORF16 belongs to family 5 of αβ-hydrolase. Phylogenetic analyses indicated that ORF16, together with other related proteins, may be a member of a new lipase family, named LipAP, activated by a putative serine protease. Partial characterization of ORF16 lipase showed that the enzyme has activity against a broad range of p-nitrophenyl esters, but only after activation by the predicted peptidase ORF15. PMID:23761366

  5. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007.

    PubMed

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2016-02-01

    A screening method along with the combination of genome sequence of microorganism, pairwise alignment, and lipase classification was used to search the thermostable lipase. Then, a potential thermostable lipase (named MAS1) from marine Streptomyces sp. strain W007 was expressed in Pichia pastoris X-33, and the biochemical properties were characterized. Lipase MAS1 belongs to the subfamily I.7, and it has 38% identity to the well-characterized Bacillus subtilis thermostable lipases in the subfamily I.4. The purified enzyme was estimated to be 29 kDa. The enzyme showed optimal temperature at 40 °C, and retained more than 80% of initial activity after 1 H incubation at 60 °C, suggesting that MAS1 was a thermostable lipase. MAS1 was an alkaline enzyme with optimal pH value at 7.0 and had stable activity for 12 H of incubation at pH 6.0-9.0. It was stable and retained about 90% of initial activity in the presence of Cu(2+) , Ca(2+) , Ni(2+) , and Mg(2+) , whereas 89.05% of the initial activity was retained when ethylene diamine tetraacetic acid was added. MAS1 showed the tolerance to organic solvents, but was inhibited by various surfactants. MAS1 was verified to be a triglyceride lipase and could hydrolyze triacylglycerol and diacylglycerol. The result represents a good example for researchers to discover thermostable lipase for industrial application. PMID:25639796

  6. Rheology, microstructure and baking characteristics of frozen dough containing Rhizopus chinensis lipase and transglutaminase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beneficial effects of a new recombinant lipase (Rhizopus chinensis lipase, RCL) and transglutaminase (TG) were investigated on frozen dough systems and their breadmaking quality. Rheological properties and microstructure of doughs were measured using a dynamic rheometer, rheofermentometer F3, an...

  7. Transgenic wheat and barley carrying a barley UDP-glucosyltransferase exhibit high levels of Fusarium head blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is an old yet unsolved problem of cereal crops, mainly caused by the fungal pathogen Fusarium graminearum. During infection, trichothecenes produced by Fusarium increase fungal virulence and decrease grain quality. Previous work identified a barley UDP-glucosyltransferase ...

  8. Beltwide breeders' elite-Upland germplasm-pool assessment of Fusarium wilt (FOV) races 1 & 4 in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is currently the most economic and effective strategy for managing Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] in the San Joaquin Valley (SJV) of California. Recently, a strain of Fusarium (race 4) was identified in the SJV that damages most cultivars of Pima co...

  9. Identification of QTL controlling high levels of partial resistance to Fusarium solani f. sp. pisi in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot is a common biotic restraint on pea yields worldwide and genetic resistance is the most feasible method for improving pea production. This study was conducted to discover quantitative trait loci (QTL) controlling genetic partial resistance to Fusarium root rot caused by Fusarium s...

  10. Biosynthesis of DON/15-ADON and NX-2 by different variants of TRI1 from Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is one of the econimically most important plant pathogens causing diseases such as Fusarium Head Blight (FHB) of small grain cereals and ear rot of maize. During a large scale survey of Fusarium graminearum (sensu strictu) in the northern United States strains (termed N-strains)...

  11. New PCR Assays for the Identification of Fusarium verticillioides, Fusarium subglutinans, and Other Species of the Gibberella fujikuroi Complex

    PubMed Central

    Faria, Carla Bertechini; Abe, Camila Agnes Lumi; da Silva, Cleiltan Novais; Tessmann, Dauri José; Barbosa-Tessmann, Ione Parra

    2012-01-01

    Fusarium verticillioides and Fusarium subglutinans are important fungal pathogens of maize and other cereals worldwide. In this study, we developed PCR-based protocols for the identification of these pathogens targeting the gaoB gene, which codes for galactose oxidase. The designed primers recognized isolates of F. verticillioides and F. subglutinans that were obtained from maize seeds from several producing regions of Brazil but did not recognize other Fusarium spp. or other fungal genera that were either obtained from fungal collections or isolated from maize seeds. A multiplex PCR protocol was established to simultaneously detect the genomic DNA from F. verticillioides and F. subglutinans. This protocol could detect the DNA from these fungi growing in artificially or naturally infected maize seeds. Another multiplex reaction with a pair of primers developed in this work combined with a pre-existing pair of primers has allowed identifying F. subglutinans, F. konzum, and F. thapsinum. In addition, the identification of F. nygamai was also possible using a combination of two PCR reactions described in this work, and another described in the literature. PMID:22312242

  12. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp.

    PubMed

    Šiekštelė, Rimantas; Veteikytė, Aušra; Tvaska, Bronius; Matijošytė, Inga

    2015-10-01

    Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey--cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability. PMID:26254038

  13. Immobilization of Lipase by Adsorption Onto Magnetic Nanoparticles in Organic Solvents.

    PubMed

    Shi, Ying; Liu, Wei; Tao, Qing-Lan; Jiang, Xiao-Ping; Liu, Cai-Hong; Zeng, Sha; Zhang, Ye-Wang

    2016-01-01

    In order to improve the performance of lipase in organic solvents, a simple immobilization method was developed by adsorption of lipase onto Fe₃O₄@ SiO₂magnetic nanoparticles in organic solvent. Among the solvents tested, toluene was found to be the most effective solvent for the immobilization. A maximum immobilization yield of 97% and relative activity of 124% were achieved in toluene at 30 °C. The optimal temperature, enzyme loading and water activity were 30 °C, 1.25 mg/mg support and 0.48 aw, respectively. The residual activity of immobilized lipase was 67% after 10 cycles of use. The advantages of the immobilized lipase including easy recovery, high stability, and enhanced activity of immobilized lipase in organic solvents show potential industrial applications in anhydrous solvents. PMID:27398494

  14. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration.

    PubMed

    Morcillo, F; Cros, D; Billotte, N; Ngando-Ebongue, G-F; Domonhédo, H; Pizot, M; Cuéllar, T; Espéout, S; Dhouib, R; Bourgis, F; Claverol, S; Tranbarger, T J; Nouy, B; Arondel, V

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields. We identify the lipase and its gene cosegregates with the low-/high-lipase trait, providing breeders a marker to rapidly identify potent elite genitors and introgress the trait into major cultivars. Overall, economic gains brought by wide adoption of this material could represent up to one billion dollars per year. Expected benefits concern all planters but are likely to be highest for African smallholders who would be more able to produce oil that meets international quality standards. PMID:23857501

  15. Astaxanthin preparation by lipase-catalyzed hydrolysis of its esters from Haematococcus pluvialis algal extracts.

    PubMed

    Zhao, Yingying; Guan, Feifei; Wang, Guili; Miao, Lili; Ding, Jing; Guan, Guohua; Li, Ying; Hui, Bodi

    2011-05-01

    Five of 8 fungal lipases screened were found to effectively hydrolyze astaxanthin esters from Haematococcus pluvialis algal cell extracts. Among these, an alkaline lipase from Penicillium cyclopium, expressed in Pichia pastoris, had the highest enzymolysis efficiency. Tween80 was shown to be an effective emulsifier in this lipase hydrolysis system for the 1st time. A series of experiments were performed to find optimal conditions for hydrolysis (pH, temperature, reaction time, lipase dosage). In the optimal reaction system, Tween80 and H. pluvialis extracts (mass ratio 1:1) were emulsified and added to the above lipase at a dosage of 4.6 U/μg (relative to total carotenoids), in phosphate buffer (0.1 M, pH 7.0), and incubated at 28 °C for 7 h, with agitation at 180 rpm. The free astaxanthin recovery ratio under these conditions was 63.2%. PMID:22417348

  16. Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry

    PubMed Central

    Gopinath, Subash C. B.; Anbu, Periasamy; Lakshmipriya, Thangavel; Hilda, Azariah

    2013-01-01

    Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications. PMID:23865040

  17. Optimization of Lipase Production by a Rhizopus MR12 in Shake Culture

    NASA Astrophysics Data System (ADS)

    Kader, R.; Yousuf, A.; Hoq, M. M.

    Rhizopus sp. a mould of mucor family, excrete lipase when cultured on lipolytic media. The Rhizopus sp. produced a larger clear zone on tributyrin agar medium suggesting its esterase activity. It was further investigated in liquid medium in order to optimize the lipase production conditions under shake culture. Lipase production was found to be maximum with medium containing maltose (1%) and peptone (5%) as carbon and nitrogen sources, respectively with Rhizopus sp. The enzyme production was profoundly influenced by initial pH of the medium and optimum value of this parameter was found to be 6.0. Maximum enzyme production was obtained at 30°C with a shaking rate of 200 rpm. Ca2+ was found to stimulate lipase production, while it was strongly inhabited by Hg2+. Lipase production was increased about 23.7% under optimized cultivation conditions over olive oil-peptone medium.

  18. Lipase production by Aspergillus niger under various growth conditions using solid state fermentation.

    PubMed

    Olama, Z A; el-Sabaeny, A H

    1993-12-01

    Ricinus seed litters were chosen as a cheap carbon source for lipase production by A. niger under solid state fermentation (SSF). Maximum lipase production was achieved upon using an enriched (potassium citrate and casein) waste at pH 7.8 and 30 degrees C for 8 days incubation. Nitrogen sources as NH4Cl, NH4NO3, (NH4)2SO4, urea and amino acids repressed the lipolytic activity. The chloride salts of Ba2+, Co2+, Cu2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Na+ and Sn2+ inhibited, while Zn+2 did not affect lipase production. Compounds containing hydrolyzable ester group, such as Tween(s), were found to inhibit lipase activity. When the effect of different additives such as EDTA, gum acacia, span(s), mineral and vitamins, were studied, it was found that they all exhibit decreased lipase production by the tested fungus. PMID:8172691

  19. Enthalpic and entropic contributions in the transesterification of sucrose: computational study of lipases and subtilisin.

    PubMed

    Fuentes, Gloria; Ballesteros, Antonio; Verma, Chandra S

    2007-10-01

    Transesterification of sucrose with fatty acids catalyzed by subtilisin Carlsberg occurs with regioselectivity that is different from that in lipases. Thermomyces lanuginosus lipase (TlL) and Candida antarctica lipase B (CALB) catalyze synthesis at positions 6 and 6', with differing abilities, while subtilisin catalysis leads to the 1'-acylated sucrose. The catalytic machinery in lipases is approximately mirrored in subtilisins but different pocket morphologies including size, shape, and rearrangement of the catalytic elements underlies the differing regioselectivities. The thermodynamic consequences of these differences on the above reactions have been explored systematically using computational methods, determining the free energies of interaction of the putative transition-state adducts. Analysis of the conformers with the lowest transition state energies (protein-ligand interactions and vibrational entropy contributions) indicates that enthalpic factors control specificities in lipases while entropic factors are more important in subtilisin. PMID:17718593

  20. Enzymic interesterification of fats: Laboratory and pilot-scale studies with immobilized lipase from Rhizopus arrhizus.

    PubMed

    Wisdom, R A; Dunnill, P; Lilly, M D

    1987-06-01

    An immobilized lipase suitable for fat interesterification has been prepared by precipitation with acetone of a commercial lipase from Rhizopus arrhizus onto diatomaceous earth. As observed previously with a less active enzyme from Aspergillus sp., the interesterification activity was enhanced by addition of purified lipase or by high loadings of commercial enzyme. The interesterification activities reached maximum values in both cases. For immobilized preparations with purified enzyme, interesterification activity was also enhanced by the presence of a precoat of glutaraldehyde cross-linked commercial lipase. A 2.9-L column of immobilized lipase was used to interesterify batches of shea oleine (67 kg) and shea oil (40 kg). Little activity was lost processing shea oleine, but slow poisoning of the bed occurred when shea oil was fed to the column. PMID:18576561

  1. Extracellular lipase production by a sapwood-staining fungus, Ophiostoma piceae.

    PubMed

    Gao, Y; Breuil, C

    1995-11-01

    The extracellular lipase production of a sapwood-staining fungus, Ophiostoma piceae, grown in liquid media, was optimally active at pH 5.5 and 37°C. Although glucose, fructose, sucrose, starch and dextrin, as carbon sources for growth gave similar mycelial yields, which were higher than those obtained with arabinose, galactose or raffinose, the cells growing on those carbohydrates produced little extracellular lipase. However, both high biomass and lipase activity were obtained when plant oils (olive, soybean, corn, sunflower seed, sesame, cotton seed or peanut) were used as carbon sources. Among the nitrogen sources examined, Casamino acids gave the best growth, whereas (NH4)2SO4 gave the best lipase production. The highest lipase productivity seen was obtained in a medium with olive oil as carbon source and a combination of (NH4)2SO4and peptone as nitrogen source. PMID:24415011

  2. Genome sequencing and systems biology analysis of a lipase-producing bacterial strain.

    PubMed

    Li, N; Li, D D; Zhang, Y Z; Yuan, Y Z; Geng, H; Xiong, L; Liu, D L

    2016-01-01

    Lipase-producing bacteria are naturally-occurring, industrially-relevant microorganisms that produce lipases, which can be used to synthesize biodiesel from waste oils. The efficiency of lipase expression varies between various microbial strains. Therefore, strains that can produce lipases with high efficiency must be screened, and the conditions of lipase metabolism and optimization of the production process in a given environment must be thoroughly studied. A high efficiency lipase-producing strain was isolated from the sediments of Jinsha River, identified by 16S rRNA sequence analysis as Serratia marcescens, and designated as HS-L5. A schematic diagram of the genome sequence was constructed by high-throughput genome sequencing. A series of genes related to lipid degradation were identified by functional gene annotation through sequence homology analysis. A genome-scale metabolic model of HS-ML5 was constructed using systems biology techniques. The model consisted of 1722 genes and 1567 metabolic reactions. The topological graph of the genome-scale metabolic model was compared to that of conventional metabolic pathways using a visualization software and KEGG database. The basic components and boundaries of the tributyrin degradation subnetwork were determined, and its flux balance analyzed using Matlab and COBRA Toolbox to simulate the effects of different conditions on the catalytic efficiency of lipases produced by HS-ML5. We proved that the catalytic activity of microbial lipases was closely related to the carbon metabolic pathway. As production and catalytic efficiency of lipases varied greatly with the environment, the catalytic efficiency and environmental adaptability of microbial lipases can be improved by proper control of the production conditions. PMID:27050954

  3. Lipase Expression in Pseudomonas alcaligenes Is Under the Control of a Two-Component Regulatory System▿

    PubMed Central

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H.; Quax, Wim J.

    2008-01-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system. PMID:18192420

  4. Evolution of a Secondary Metabolite Biosynthetic Gene Cluster in Fusarium by Gene Relocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are secondary metabolites produced by multiple genera of fungi, including some plant pathogenic species of Fusarium. Trichothecenes contribute to virulence of Fusarium on some plants and are considered to be mycotoxins because of their human and animal toxicity. Previous analyses of...

  5. Disease Lesion Mimics of Maize as a Potential Source of Resistance to Fusarium Ear Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium ear rot of maize is a major problem worldwide, often resulting in poor quality grain and contamination with a family of mycotoxins called fumonisins. Fumonisins are produced by Fusarium verticillioides and related species and are acutely toxic to certain livestock. They function by inhibi...

  6. Genetic basis for the 3-ADON and 15-ADON Trichothecene chemotypes in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi in the Fusarium graminearum species complex (FGSC) and the related species F. cerealis (synonym F. crookwellense) and F. culmorum can cause Fusarium head blight (FHB) of wheat, barley, and other small cereal grain crops worldwide and contaminate grain with trichothecene mycotoxins. In general,...

  7. Genetic and phenotypic diversity within the Fusarium graminearum species complex in Norway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As has been observed in several European countries, the frequency of Fusarium head blight (FHB) caused by members of the Fusarium graminearum species complex (FGSC) has increased in Norwegian cereals in recent years, resulting in elevated levels of deoxynivalenol in cereal grains. The objective of t...

  8. Morphological and molecular variation among species of the Fusarium dimerum species group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The name Fusarium dimerum has been used in the past for saprotrophic fungi and opportunistic human pathogens with up to 3-septate but mostly 0- or 1-septate Fusarium-like conidia. On the basis of narrowly defined morphological characters, the varieties Pusillum, Nectrioides and Violaceum were disti...

  9. Comparison of sugar beet responses at different ages to isolates of Fusarium oxysporum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum has been reported to cause several diseases of sugar beet, including seedling damping-off, a mature plant wilt (Fusarium yellows), a mature plant root rot, and seed stalk blight. Recent work in our lab and others has shown a great deal of diversity in F. oxysporum from sugar beet....

  10. The nivalenol-producing Fusarium graminearum genotype in scabby North Carolina wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (or scab), caused primarily by F. graminearum in the U.S., leads to drastic decreases in yield and test weight of small grains. In addition, Fusarium mycotoxins in grain heads can render the crop unsuitable for human or animal consumption. In livestock, scabby grain can lead t...

  11. Mapping of Fusarium Head Blight Resistance QTL in Winter Wheat Cultivar NC-Neuse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), primarily caused by Fusarium graminearum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTL) for FHB resistance in the moderately resistant so...

  12. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the Fusarium graminearum species complex (Fg complex) are the causal agents of ear rot in maize and Fusarium head blight of wheat and other small grain cereals. The potential of these pathogens to contaminate cereals with trichothecene mycotoxins is a health risk for both humans and anima...

  13. Species diversity, pathogenicity and toxigenicity of Fusarium associated with rice seeds in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is commonly reported in association with rice seeds in Brazil, but knowledge on the species diversity and toxigenic potential is lacking. Such information is critical because maximum limits for Fusarium mycotoxins were set for Brazilian rice in 2011. Ninety-eight rice seed samples from the ...

  14. Aromatic polyketide synthases from 127 Fusarium: pas de deux for chemical diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including mycotoxins, of great concern. Many Fusarium NPs are derived from polyketide synthases (PKSs), large enzymes that catalyze the condensation of simple carboxylic acids. To gain ...

  15. Multiple minor QTLs are responsible for Fusarium head blight resistance in Chinese wheat landrace Haiyanzhong

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is a devastatingve disease in wheat (Triticum aestivum L.). Use of host resistance is one of the most effective strategies to minimize the disease damage. Haiyanzhong (HYZ) is a Chinese wheat landrace that shows a high level of resi...

  16. DGE-1, a durum alien disomic addition line with resistance to Fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scab or Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe., is a serious disease of durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) and current durum cultivars have almost no FHB resistance. Because diploid wheatgrass, Lophopyrum elongatum (2n = 2x = 14; EE...

  17. Analyses of Fusarium wilt race 3 resistance in upland cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Uzbekistan, the most northern cotton country, as well as in many others worldwide, Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. At least eight genotypes of FOV, called races, have been described. Thes...

  18. BACTERIAL ARTIFICIAL CHROMOSOME-BASED PHYSICAL MAP OF GIBBERELLA ZEAE (FUSARIUM GRAMINEARUM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is the primary causal pathogen of Fusarium head blight of wheat and barley, a major disease problem in the wheat and barley growing regions of the world. To accelerate genomic analysis of F. graminearum, we developed a bacterial artificial chromosome (BAC)-based physical map and...

  19. Head blight of wheat in South Africa is associated with numerous Fusarium species and chemotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat is caused by numerous Fusarium species, including trichothecene-producers. In South Africa, FHB is mostly associated with irrigated wheat rotated with maize. Twenty symptomatic wheat heads were collected from four cultivars each in irrigated fields during 2008 and...

  20. Spatio-temporal dynamics of Fusarium head blight and Trichothecene toxin types in Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many parts of the world Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB), a disease of cereal crops that adversely affects crop yield, food safety, and animal health. We previously demonstrated population structure associated with differences in trichothecene toxin t...

  1. The TRI101 story: engineering wheat and barley to resist Fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), caused primarily by Fusarium graminearum, is a major disease of wheat and barley in the United States and Canada. FHB epidemics have been on the increase since 1993, and have caused severe monetary damage for the growers and the seed industry. Along with reduced yields,...

  2. AN OUTBREAK OF FUSARIUM KERATITIS ASSOCIATED WITH USE OF A NEW CONTACT LENS SOLUTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Fusarium keratitis is a serious corneal infection, most commonly associated with corneal injury. Beginning in March, 2006, CDC received multiple reports of non-traumatic Fusarium keratitis among contact lens wearers. Objective: To define the specific activities, contact lens hygiene pra...

  3. Fusarium verticillioides: Managing the Endophytic Association with Maize for Reduced Fumonisins Accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a very important fungus from the aspects of plant disease, cereal production and food safety, particularly as it relates to corn. A major concern of this species is the fumonisin toxins that are harmful to humans and animals ingesting Fusarium-contaminated food or feed p...

  4. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and leads to significant reductions in root yield, sucrose percentage, juice purity, and storage for sugar beet producers. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum isolated from...

  5. First report of F. meridionale causing Fusarium Head Blight of wheat in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), also known as scab, is a destructive disease of small grain cereals caused by several species belonging to the Fusarium graminearum species complex (FGSC). Members of the FGSC produce trichothecene toxins that represent a threat to human and animal health (1). Despite the...

  6. Cross pathogenicity and vegetative compatibility of Fusarium oxysporum isolated from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. betae, which causes Fusarium yellows in sugar beet, can be highly variable in virulence and morphology, with further diversity derived due to the wide geographic distribution of sugar beet production. Little is known about factors that determine pathogenicity to sugar beet...

  7. Vine kill interval and temperature effects on Fusarium dry rot development in Russet Burbank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot disease development in potato storage is universal to all market sectors and regions. The objective of this 2-year study was to evaluate three possible management decisions that may impact Fusarium dry rot development in storage: a) vine kill to harvest time, b) harvested tuber pulp...

  8. Fusaric acid production and pathogenicity of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, Fusarium wilt of cotton has gained increased importance with the emergence of extremely virulent strains of Fusarium oxysporum f. sp. vasinfectum. The recent discovery of new pathotypes not previously found in the U.S. is of particular concern to the cotton industry. In addition, a ...

  9. Disruption of Genes Involved in Butenolide and Culmorin Synthesis in Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butenolide (4-acetamide-4-hydroxy-2-butenoic acid '-lactone) and culmorin (a tricyclic sesquiterpene diol) are two less-studied mycotoxins produced by several Fusarium species, including Fusarium graminearum. A putative butenolide biosynthetic eight-gene cluster in F. graminearum includes fg08080 w...

  10. Secondary Metabolites and Toxins of Fusarium - What is Causing Disease Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species produce a plethora of phytotoxic secondary metabolites. In the case of various races of Fusarium oxysporum f. sp. vasinfectum (F.o.v.) that attacks cotton, alfalfa, okra and other crops, many of these metabolites are derived from the polyketide biosynthetic pathway. The recent dis...

  11. A major quantitative trait locus is associated with Fusarium Wilt Race 1 resistance in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). A genetic population of 186 F3 families (24 plants in each family) exhibited continuous segregation for Fon race 1 response. Geno...

  12. Observations on the effect of lower-temperature dry heat treatments on Fusarium in cotton seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 has emerged as the dominant disease concern for cotton growers in California. Originally described from Asia, race 4 has spread into multiple counties in the San Joaquin Valley (SJV) since its discovery in one California fiel...

  13. Impact of five cover crop green manures and Actinovate on Fusarium Wilt of watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triploid watermelon cultivars are grown on more than 2,023 ha in Maryland and in Delaware. Triploid watermelons have little host resistance to Fusarium wilt of watermelon (Fusarium oxysporum f. sp. niveum). The effects of four different fall-planted cover crops that were tilled in the spring as gree...

  14. Update of Commercial Cultivar Screening for Resistance to Race 4 Fusarium oxysporum vasinfectum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt impacts on cotton in the San Joaquin Valley of California focused mostly on race 1 Fusarium oxysporum vasinfectum (FOV), with most economic impacts occurring when the disease was present in association with nematode damage. During the past five years, field investigations have found Fu...

  15. Mechanism of disease suppression of Fusarium wilt of watermelon by cover crop green manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fall planted Vicia villosa cover crop incorporated in spring as a green manure can suppress Fusarium wilt [Fusarium oxysporum f. sp. niveum (FON)] of watermelon in Maryland and Delaware. Experiments were conducted to determine whether the mechanism of this suppression was general or specific, and ...

  16. Convergent and divergent evolution of the trichothecene mycotoxin biosynthetic gene cluster in the Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fusarium trichothecenes nivalenol (NIV) and deoxynivalenol (DON) are among the mycotoxins of greatest concern to agricultural production and food/feed safety worldwide. Previous analyses indicate that during early evolution of the Fusarium incarnatum-F. equiseti species complex (FIESC), the tri...

  17. Composition of the Fusarium graminearum species complex populations in wheat cropping environments in Southern Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fusarium graminearum species complex (FGSC) comprises several toxigenic species that cause Fusarium head blight (FHB) in wheat. In this study, high number (n=671 isolates) of pathogenic isolates (isolated from infected spikes) was obtained from a 3-year large-scale survey (2009-2011) conducted o...

  18. The TRI101 Story: Engineering Wheat and Barley to Resist Fusarium Head Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), caused primarily by Fusarium graminearum, is a major disease of wheat and barley in the United States and Canada. The disease process depends on high humidity and the presence of inoculum (fungal spores), and therefore, the amount of disease can vary from year to year wi...

  19. Identification of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (...

  20. Presence of Fusarium spp. in air and soil associated with sorghum fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum grain, valuable for feed, food and bioenergy, can be colonized by several Fusarium species; therefore, it was of interest to identify possible sources of conidia. Analysis of air and soil samples provided evidence for the presence of propagules from Fusarium genotypes that may cause grain in...